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Abstract

Nonquadratic variational regularization is a well-known and powerful approach
for the discontinuity-preserving computation of optic flow. In the present paper, we
consider an extension of flow-driven spatial smoothness terms to spatio-temporal
regularizers. Our method leads to a rotationally invariant and time symmetrie con-
vex optimization problem. It has a unique minimum that can be found in a stable
way by standard algorithms such as gradient descent. Since the convexity guar-
antees global convergence, the result does not depend on the flow initialization.
An iterative algorithm is presented that is not difficult to implement. Qualita-
tive and quantitative results for synthetic and real-world scenes show that our
spatio-temporal approach (i) improves optic flow fields significantly, (ii) smoothes
out background noise efficiently, and (iii) preserves true motion boundaries. The
computational costs are only 50 % higher than for a pure spatial approach applied
to all subsequent image pairs of the sequence.

Keywords: optic flow, differential techniques, variational methods, spatio-tempo-
ral regularization, partial differential equations, finite differences, performance
evaluation
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1 Introd uction
Variational methods in image processing and computer vision have attracted a lot of
interest in recent years. They offer the advantage of providing a clear mathematical
formalism for all model assumptions. Minimizing the resulting energy functionals gives
solutions that are optimal with respect to the specified assumptions.

One of the earliest application areas of variational methods within computer vi-
sion is the estimation of optic flow [15]. The optic flow field of an image sequence
describes the displacement of brightness patterns over time. Applications of optic flow
range from vision-based robot navigation to second-generation video compression. Nu-
merous methods for calculating optic flow have been proposed in the last two decades;
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see e.g. the survey papers of Mitiche and Bouthemy [19]' and Stiller and Konrad [29].
Performance evaluations of some of the most popular algorithms have been carried out
by Barron et al. [5] and Galvin et al. [12]. These papers also showed that variational
optic fiow methods belong to the techniques that perform weIl. In contrast to many
other optic fiow methods, they offer the advantage of creating fiow fields with 100 %
density, such that no postprocessing by interpolation becomes necessary.

Variational optic fiow methods have been pioneered by Horn and Schunck [15] and
improved by Nagel [21] and many others. Approaches of this type calculate optic fiow as
the minimizer of an energy functional, which consists of a data term and a smoothness
term. The data term involves optic fiow constraints such as the assumption that corre-
sponding pixels in different frames should reveal the same grey value. The smoothness
term usually requires that the optic fiow field should vary smoothly in space. Such a
term may be modified in an image-driven way in order to suppress smoothing at image
boundaries; see e.g. [1, 2, 21, 26, 28]. Recently also fiow-driven modifications have been
proposed which reduce smoothing at fiow discontinuities [4, 9, 10, 17, 24, 27, 33]. These
nonlinear methods have already led to rather good results in spite of the fact that the
smoothness term imposed only spatial smoothness of the fiow field. They work locally
in time and do not make use of the temporal coherence within the sequence.

The goal of this paper is to investigate an extension of spatial fiow-driven smooth-
ness terms to spatio-temporal fiow-driven regularizations. Such an extension makes con-
sequent use of the available data, and it leads to equations which are hardly more
complicated than in the pure spatial case. Our experiments on synthetic and real-world
sequences, however, show that this approach leads to significantly more robust results.

Our paper is organized as follows. In Section 2 we review optic fiow approaches with
spatial smoothness terms, and Section 3 describes our novel method using a spatio-
temporal smoothness constraint. A simple numerical algorithm is derived in Section 4,
and Section 5 analyses the performance of our approach by applying it to synthetic and
real-world image sequences. The paper is concluded with a summary in Section 6. We
have presented a shorter preliminary version of this work at a national symposium [35].

Related work. While spatial s~oothness assumptions are common in the optic fiow
literature, spatio-temporal approaches are significantly less frequent.

An interesting extension of a smoothness constraint into the temporal domain has
been proposed by Nagel [22]. He derived the model for a spatio-temporal oriented
smoothness constraint, but did not present any experiments. Nagel's constraint was
image-driven, since it reduces smoothing across image discontinuities. Our approach is
fiow-driven due to the more direct constraint that smoothing at fiow discontinuities
should be reduced. For a more detailed account on image- and fiow-driven regularizers
and a weIl-posedness framework for both types we refer to [36].

Other temporal smoothness assumptions that have been studied in the literature
include the work of Murray and Buxton [20]' Black and Anandan [7]' and Black [6].
Their assumptions lead to nonconvex optimization problems which may have many
local minima and for which it is difficult to find algorithms that are both efficient and
converge to a global minimum. Algorithms that converge to a global minimum (such
as simulated annealing [18]) are computationally very expensive, while methods that
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are more efficient (such as graduated non-convexity algorithms [8]) may get trapped
in local minima. Our method leads to a nonquadratic convex optimizati~p problem. It
has a unique global minimum that can be found in a reliable way by using standard
techniques from convex optimization, for instance gradient descent methods. Since their
convergence is global, every arbitrary flow initialization leads to the same solution: the
global minimum of the functional. This property is an important quality of a robust
algarithm.

Another difference between the methods considered in [6, 7, 20] and our approach
is that our method uses a genuinely continuous farmulation and derives a discrete al-
gorithm afterwards by discretizing the corresponding partial differential equations. The
continuous formulation has the advantage of being rotationally invariant. Applying the
well-established theory of discretization methods allows us to derive a numerically con-
sistent scheme. It guarantees that rotational invariance is fulfilled up to an error of order
o (~2) where N denotes the number of pixels in x or y direction. Results of this type can-
not be established in genuinely discrete formulations. The discrete models in [6, 7, 20]'
for instance, approximate continuous processes that are not rotationally invariant.

The approaches of Black and Anandan [7] and Black [6] use a model which applies
incremental minimization over time. Such a technique is highly useful for tasks such as
robotics where images have to be processed online and only information from the past
is accessible. Our approach, however, is designed for batch mode since it is symmetric
with respect to past and future. Methods of this type are useful if a video sequence is to
be processed offline. In this case there is information available both from the past and
from the future and there is no reason far using only apart of it. Temporal symmetry
also guarantees that the first frame is processed in the same way as the last one.

2 Spatial Smoothness Terms
Let us denote an image sequence by some real-valued function j(x, y, z) where (x, y)
denotes the location within some rectangular image domain n and z E [0, T] is the time.
Many variational optic flow calculations determine the optic flow vector (u, vY based
on two assumptions:

1. Corresponding features are supposed to maintain their intensity over time. A dif-
ferential formulation of this brightness constancy assumption leads to the optic
ftow constraint (OFC) equation

(1)

where the subscripts denote partial derivatives. Numerous generalizations exist
where multiple constraint equations are used, or different "conserved quantities"
(replacing intensity) are considered; see e.g. [3, 11, 30, 31].
Evidently, the single equation (1) is not sufficient to determine the two unknown
functions u and v uniquely (aperture problem). In order to obtain a unique flow
field, a second constraint is needed.
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2. Such a second constraint may impose that the flow field should vary (piecewise)
smoothly in space. This can be achieved if

J W (lV'uI2 + lV'vI2) dx dy
n

(2)

is small, where W : IR ---t IR is an increasing differentiable function and V' :=
(ßx, ßyf denotes the 2D nabla operator. This assumption is called smoothness
constraint. In the sequel we shall assume that W(S2) is convex in s, and that there
exist constants Cl, C2 > 0 with CIS2 ~ W(S2) ~ C2S2 for all s. In this case the optic
flow problem becomes well-posed. Examples for W will be presented at the end of
this section.

In order to satisfy both the optic flow and the smoothness constraint as good as possible,
they are assembled into a single energy functional to be minimized:

E(u, v) := J (Uxu + fyv + fz)2 + a W(IV'uj2 + lV'vI2)) dx dy (3)
n

where the regularization parameter a > 0 specifies the weight of the second summand
(smoothness term, regularizer) relative to the first one (data term). Larger values for a
lead to smoother flow fields.

Using steepest descend for the minimization of (3) gives the diffusion-reaction system

div (w' (lV'uI2+IV'vn V'u) - ~fxUxu + fyv + fz),
div (w' (lV'uI2+IV'vI2) V'v) - ~fyUxu + fyv + fz),

(4)
(5)

where W' is the derivative of W with respect to its argument, and div denotes the 2D
divergence operator, i.e. div (~) := ßxa+ßyb. The diffusion time t is an artificial evolution
parameter which should not be mixed up with the time z oft he image sequence f(x, y, z).
For t ---t 00, the solution (u, v) gives the minimum of E(u, v). It is unique since W(S2) is
convex m s.

The diffusivity in both equations is given by W' (IV'uI2+ lV'vI2). It steers the activity
of the smoothing process: diffusion is strong at locations where the diffusivity is large,
and smoothing is reduced at pIaces where the diffusivity is small. We shall now consider
some examples which demonstrate how the choice of W influences the smoothing process.

1. Horn and Schunck [15] considered the linear case W(S2) = S2. This corresponds to
the constant diffusivity W' (S2) = 1. Therefore, the smoothing activity of the Horn
and Schunck method does not depend on the flow variation S2 = IV'U 1

2 + I V' V 1
2
. As

a consequence, the flow is also smoothed across motion boundaries. This explains
a well-known drawback of this method: a blurry flow field which is ignorant of the
true motion boundaries.

2. Many modifications have been proposed to alleviate this problem. Nagel [21] for
instance reduced diffusion across image boundaries with large IV' fl. Thus, this
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method considers an image-driven smoothness term for the £low field. In many
cases this modification outperfarms the Horn and Schunck approach. In specific
situations, however, image discontinuities may not coincide with £low discontinu-
ities: strongly textured rigid objects, far example, have numerous texture edges
which are not motion boundaries. Then an image-driven smoothness term would
lead to an oversegmentation and it would be desirable to replace it by one which
respects £low discontinuities instead of image discontinuities.

3. A jlow-driven smoothness term can be constructed by using a nonlinear convex
regularizer W(82) which creates a decreasing diffusivity W'(82). This ensures that
the smoothing is reduced at locations where the £low magnitude is small. In the
context of optic £low, such methods have been considered by Schnörr [27] and
Weickert [33]. One may far instance consider the regularizer

with 0 < c « 1 and ,\.> O. It leads to the diffusivity

l-cw' (82) = c + -~~~~-==vI+ 82/,\.2

(6)

(7)

We observe that ,\. can be regarded as a contrast parameter: If the £low variation
82 = l\7uI2+I\7vI2 is large compared to ,\.2, then the diffusivity is dose to 0, and for
S2 « ,\.2 the diffusivity tends to 1. Choosing a very small value for ,\. relates this
method to total variation regularization, a powerful denoising technique permitting
discontinuous solutions [25]. The parameter c is only required for proving well-
posedness. In practical applications it can be fixed to some small value, e.g. c :=
10-6.

4. Other £low-driven smoothness terms from the literat ure [4, 9, 10, 17] replace the
regularizer w(l\7uI2+ l\7vI2) by w(l\7uI2) + w(l\7vI2). This leads to two diffusion-
reaction equations where the joint diffusivity w'(I\7uI2 + l\7vI2) is replaced by
w'(I\7uI2) and w'(I\7vI2), respectively. Hence, the coupling between the two equa-
tions becomes weaker and £lowdiscontinuities may be formed at different locations
for u and v. It should also be mentioned that in general such models are not rota-
tionally invariant.

3 Spatio-Temporal Smoothness Terms
The methods that we have discussed so far work locally in time: two frames are sufficient
to calculate the optic £low field. In general, however, we have much more data at our
disposal, namely the entire image sequence. It would thus be consequent if we use this
full information for computing the optic £low field. In this way we may expect more
robust results.
Using the knowledge from the previous section it is not difficult to extend the smooth-

ness constraint into the temporal domain. Instead of calculating the optic £low (u, v) as
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the minimizer of the two-dimensional integral (3) for each time frame z, we now mini-
mize a single three-dimensional integral whose solution is the optic flow for alt frames
z E [O,T]:

E(u, v) := J (Uxu + fyv + fz)2 + a w(j\7ouI2 + l\70vI2)) dx dy dz (8)
nx[O,TJ

where \70 := (ox, Oy, ozf denotes the spatio-temporal nabla operator. The corresponding
steepest descent equations are given by

Ut = \70. (w' (l\70uI2+I\70vI2) \7ou) - ~fxUxu + fyv + fz), (9)
Vt = \70. (w' (l\70uI2+I\70vn \7ov) - ~fyUxu + fyv + fz)' (10)

In contrast to the two-dimensional diffusion-reaction system (4)-(5) we now have a
three-dimensional problem. In the present paper we study this process for the nonlinear
regularizer given in (6).

The diffusion part in (9)-(10) has the same structure as nonlinear diffusion filters
for regularizing three-dimensional vector-valued images. Such methods have first been
applied by Gerig et al. [13] in the context of medical imaging. The latter approach,
however, uses diffusivities from [23] which may create ill-posed processes. This cannot
happen in our case, where convex smoothness terms in the energy functional create
well-posed diffusion-reaction processes. The well-posedness proof is a straightforward
extension of the results in [27] to the spatio-temporal case. For a more detailed discussion
of non linear diffusion filtering we refer to [14, 32].

4 Numerical Aspects

(11)La~j uJ - ~fxi UxiU~+l + fyiVf + fzd,
j

T

We approximate the 2-D diffusion-reaction system (4)-(5) and its 3-D counterpart (9)-
(10) by finite differences. Derivatives in x, y and z are approximated by central differ-
ences, and for the discretization in t direction we use a slightly modified explicit (Euler
forward) scheme.

Each iteration step proceeds as folIows. Let T be the step size in t direction and let
fxi, fyi and fzi denote central difference approximations of fx, fy and fz in some pixel
i, respectively. Let the flow components for the first iteration be initialized by O. The
(k+1)-th iteration calculates the unknown flow components u~+l and Vf+l using known
values from level k:

Uk+l _ uk
t t

T
L a~j vj - ~fyi UxiU~ + fyiVf+l + fzi),
j

(12)

(13)

The matrix entries a~j result from a standard discretization of the divergence expressions:
W,k W,k

._ "'" j + i ( k _ k)6 2 uJ ut,
jEN(i)
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(15)

(14)

where N (i) denotes the set of (4 in 2-D, 6 in 3-D) neighbours of pixel i, and w'7
approximates the diffusivity w'(IVuI2 + IVvI2) in pixel i at time level k. In (11) and
(12), one expression in the reaction term is approximated at time level k + 1 in order to
improve stability. Note that this scheme can still be solved explicitly for u7+1 and vf+l:

u7 + T Lj a7j uj - ~fXi (fyiv7 + fzi)
1+ 2:.12

Q xz

vf + T Lj a7j vj - ~fyi (fxiu7 + fzi)
1+ 2:.12.

Q yz

We used the time step size T = 1/4 in the 2-D case and T = 1/6 in the 3-D case. The
iterations were stopped when the Euclidean norm of the relative residue dropped below
0.001.

The explicit scheme (11),(12) has been chosen for simplicity reasons. In order to
gain absolute stability, it is also possible to replace it by a slightly more complicated
semi-implicit approximation, for instance the additive operator splitting (AOS) scheme
considered in [33].

It should be noted that the 3-D scheme requires only about 50 % more computing
time than a corresponding 2-D scheme that is applied to all subsequent frame pairs of
an image sequence: 2-D diffusion within a 4-neighbourhood is replaced by 3-D diffusion
within a 6-neighbourhood. The main difference is an increased memory requirement,
since, in the 3-D case, the whole sequence is processed simultaneously. For the typical
test sequences in computer vision, this does not lead to problems when modern pes or
workstations are used: on a computer with 512 MB memory one can expect to be able
to process sequences with sizes up to 256 x 256 x 128.

5 Experiments
In this section we illustrate the behaviour of our method by applying it to three test
image sequences. We compare pure 2D processing (eqns. (4)-(5)) with 3D processing
(eqns. (9)-(10)).

Figure 1 depicts one frame from a hallway scene where a person is moving towards
the camera. The calculated optic fiow results are shown in Figure 2. For pure spatial
regularization we observe that outliers dominate, and that it is difficult to achieve good
motion segmentation by thresholding the optic fiow vectors. Spatio-temporal regular-
ization, on the other hand, creates a more homogeneous motion field within the contour
of the person, and motion segmentation is much more realistic.

Figure 3 shows the results of our comparison far the famous Hamburg taxi sequence.
It is available via anonymous ftp from the site ftp: / / csd. uwo . ca under the directory
pub/vision. Also far this sequence one observes that spatio-temporal processing leads
to more realistic motion segmentation. Mareover, it is less sensitive to noise than a pure
spatial processing. It is worth emphasizing that in this and in the previous example,
the same parameters have been used for both methods, and no presmoothing of any
kind has been applied. All smoothing effects are thus caused by the regularizers. Figure
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4 shows that the better smoothing behaviour of spatio-temporal regularizers mayaIso
reduce temporal aliasing problems: for the pedestrian in the taxi scene, pure spatial
processing gives an optic flow £leId that points in the wrong direction, while spatio-
temporal processing creates coherent optic flow vectors pointing in the correct direction.

After these qualitative comparisons, let us now turn our attention to a quantitative
validation. To this end we consider a synthetic street sequence for which ground truth
flow data are available. We obtained it from

http://www.cs.otago.ac.nz/research/vision/Downloads/

It has been created by Galvin et al. [12] for evaluating eight optic flow algorithms,
and it is one of a few nontrivial test sequences with ground truth data, where motion
boundaries are important. We used the full sequence from the web, consisting of 20
frames of size 200 x 200 pixels. An interesting detail is depicted in Figure 5(a), and
the corresponding ground truth flow £leId and the calculated ones are given in Figures
5(b), (c), (d), respectively. For assessing the performance of our method, we calculated
the angular error

,T, (ueue + VeVe + 1 )'*'e:= arccos ---;==========
J(u~ + v~+ l)(u~ + v~+ 1)

(16)

where (ue, ve) denotes the correct flow, and (ue, ve) is the estimated flow (cf. also [5]).
In order to make our method comparable with the other approaches, we applied some
presmoothing by convolving the images with a Gaussian with standard deviation a.
Preprocessing steps of this type are common for evaluating optic flow algorithms [5].

With optimized parameters for a, a and A we obtained an average angular error of
6.62° for the spatial approach, and 4.85° for the spatio-temporal approach. The best
method that has been reported by Galvin et al. [12] was a thresholded version of the
Lucas-Kanade algorithm [16]. It achieved an average angular error of 5°, but the density
of its flow £leId was only 32 %, while our method creates flow £leIds with 100 % density.
The best full density method in [12] was an algorithm by Proesmans et al. [24] with an
average angular error of 7°. This shows that our spatio-temporal method has very good
performance. Also for less optimal parameter settings, the results remained competitive.

6 Conclusions and Further Work
We have presented a nonlinear spatio-temporal regularization approach for the compu-
tation of piecewise smooth optic flow. It leads to a convex nonquadratic optimization
problem which has a unique minimum that can be recovered by a globally convergent
gradient descent algorithm. The model has a rotationally invariant continuous formu-
lation, it is symmetrie in time and it avoids smoothing over spatial and temporal flow
discontinuities. Qualitative and quantitative comparisons showed a signi£lcant improve-
ment over pure 2D processing at low additional computational costs.

It appears that the limited computer memory was the main reason why spatio-
temporal optic flow regularizers have been used so rarely in the past. Since this is no
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Figure 1: (a) Left: Frame 8 of a hallway sequence of size 256 x 256 x 16 pixels. A person
is moving towards the camera. (b) Right: Detail.

Figure 2: Computed fiow fields using the hallway sequence. From left to right: (a) Grey
value plot of the optic fiow magnitude for 2-D processing (eqns. (4)-(5)). Note how
outliers dominate the image such that other regions get scaled down. (b) Vector plot of
the optic fiow field for 2-D processing, subsampled by a factor 2. For better visibility,
vectors w with Iwl < 0.2 pixels have not been drawn. (c) Optic fiow magnitude for 3-D
processing (eqns. (9)-(10)). (d) Vector plot for 3-D processing, subsampled by a factor
2, and thresholded at 0.2 pixels. The proposed extension of adaptive smoothing to the
temporal axis gives a much more coherent and complete result.
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Figure 3: (a) Top: Frame 10 of the well-known Hamburg taxi scene (20 frames of size
256 x 190). (b) Bottom Zeft: Optic flow £leId for 2-D processing, subsampled by factor
4 and thresholded at 0.2 pixels for better visibility. (c) Bottom right: Result for 3-
D processing. Spatio-temporal regularization improves the vector £leIds signi£lcantly,
smoothes out background noise, and preserves true motion boundaries.

longer a problem, it is likely that these methods will gain more importance in the future.
It should also be noted that the spatio-temporal extension that we studied he re is of
course not limited to the speci£lc nonlinear flow-driven regularizer that we used in this
paper. It is a general strategy for exploiting the entire image sequence data for reliable
optic flow estimation within a variational framework.

Based on these encouraging results we are currently investigating the design of highly
efficient optic flow algorithms for sequential and parallel computer architectures. Some
of these techniques will be based on our recent research on efficient algorithms for
variational image restoration and nonlinear diffusion £lltering [34].

Acknowledgements. We thank OIe Fogh Olsen and Mads Nielsen (Department of
Computer Science, University of Copenhagen) for providing the hallway sequence. J.W.
also thanks Jens Arnspang (Department of Computer Science, University of Copen-
hagen) for interesting discussions on optic flow. Part of this work has been supported ..
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Figure 4: (a) Left: Magnification showing the pedestrian in the upper left part of the
taxi scene (9 x 20 pixels). The pedestrian moves to the left. (b) Middle: Optic flow field
for 2-D processing, subsampled by a factor 2, and thresholded at 0.2 pixels. The 2-D
processing smoothes out the noisy local motion data (normal flow). Temporal aliasing,
however, creates an erroneous motion to the right. (c) Right: Optic flow field for 3-D
processing, subsampled by a factor 2. The 3D processing computes a coherent flow field
for the "rigid part" of the pedestrian. The motion is in the correct direction. Regions
with moving limbs are interpreted as noise at such a small spatial scale.

by the EU-TMR Project VIRGO.
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