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Abstract

Nonlinear diffusion processes can be found in many recent methods for image
processing and computer vision. In this article, four applications are surveyed:
nonlinear diffusion filtering, variational image regularization, optic flow estima-
tion, and geodesie active contours. For each of these techniques we explain the
main ideas, discuss theoretieal properties and present an appropriate numerical
scheme. The numerieal schemes are based on additive operator splittings (AOS).
In contrast to traditional multiplicative splittings such as ADI, LOD or D'yakonov
splittings, all axes are treated in the same manner, and additional possibilities for
efficient realizations on parallel and distributed architectures appear. Geodesic
active contours lead to equations that resemble mean curvature motion. For this
application, a novel AOS scheme is presented that uses harmonie averaging and
does not require reinitializations of the distance function in each iteration step.

Keywords: nonlinear diffusion, variational methods, image processing, computer
vision, finite difference methods, parallel algorithms

2000 Mathematics Subject Classification: 35-K35, 65-M06, 68-W10, 94-A08.

1 Introd uction
Many mathematicians have been attracted by image processing and computer vision in
recent years. This has been triggered by mathematically well-founded methods using
e.g. wavelets or nonlinear partipJ differential equations. The goal of the present paper
is to give an introduction to a subarea of this field, namely methods that are based on
nonlinear diffusion techniques.

This field has evolved in a very fruitful way. It is elosely connected to a specific
kind of multiscale analysis called scale-space [31, 23]' and it has first been used for
image smoothing with simultaneous edge enhancement [26]. Later on, elose connections
to regularization methods have been discovered [29], and related nonlinear methods
have also entered computer vision fields such as motion analysis in image sequences [8]
or interactive segmentation [4, 20]. In this paper we shall learn about the basic ideas
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behind these methods, but also ab out their theoretical foundation and their adequate
numerical realization.

It is important to note that the requirements for a good numerical scheme in im-
age processing or computer vision are different from some other application areas in
scientific computing. This shall be explained in the course of the paper as well. As a
consequence from these specific requirements, a special class of splitting-based finite
difference schemes is discussed. These semi-implicit schemes differ from their classical
counterparts by the fact that they use additive operator splittings (AOS) instead of
multiplicative ones. We shall see that these AOS schemes are simple and efficient, do
not require additional parameters, inherit important properties from the continuous
equations, and are widely applicable.

The paper is organized as follows: Section 2 gives an introduction to nonlinear diffu-
sion filtering, while Section 3 describes its relation to regularization methods. In Section
4, nonlinear diffusion is used for analysing motion in image sequences, and Section 5
shows how diffusion-like ideas can be used for interactive segmentation. Each of these
sections explains the main ideas, the theoretical foundation of the method, and an ap-
propriate numerical realization in terms of AOS schemes.

Related work. In view of the enormous amout of publications in this area, we
have to refer the reader to some recent collections and books in order to obtain a more
detailed overview of the state-of-the-art in diffusion-based image processing [5, 31, 23,
33]. Compared to this large number of publications, however, the number of papers
dealing with numerical aspects of diffusion filtering is still relatively small. Since the
pixel structure of digital images provides a natural discretization on a fixed rectangular
grid, it is not surprising that mainly finite difference methods are used in the image
processing community. For simplicity reasons, explicit schemes are still very common,
but absolutely stable semi-implicit schemes [6] are becoming more and more popular.
Alternatives to finite differences include finite element methods [30, 3, 19, 27]' wavelets
[11, 10]' finite and complementary volume schemes [13]' pseudospectral approaches [11]'
lattice Boltzmann methods [17], and stochastic simulations [28].

2 Nonlinear Diffusion Filtering

2.1 Basic Idea
Nonlinear diffusion filtering goes back to Perona and Malik [26]. Although their method
in its original formulation is regarded to be ill-posed, it has triggered a lot of research;
see [32, 33] for overviews. In the following we shall be concerned with one of its earliest
regularizations that is due to Catte, Lions, Morel, and Coll [6].

Let S1 := (0, al) x ... x (0, am) be our image domain in IRm and consider a (scalar)
image f(x) E UXJ(S1). Then a filtered image u(x, t) of f(x) is calculated by solving a
nonlinear diffusion equation with the original image as initial state, and homogeneous
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Neumann boundary conditions:

atu = div (g(IV'uaI
2
) V'u)

u(x,O) = fex)
anu = 0

on
on
on

n x (0,00)
n,
an x (0, 00 ) ,

(1)
(2)
(3)

where n denotes the normal to the image boundary an.
The "time" t is a scale parameter: larger values lead to simpler image representations.

In order to reduce smoothing at edges, the diffusivity gis chosen as a decreasing function
of the edge detector IV'ua1

2, where V'ua is the gradient of a Gaussian-smoothed version
of u:

We use the diffusivity

(4)

(5)

{

I
g(82) :=

1 - exp (-3.315)
(s/>..)8

(82 = 0)

(82 > 0).
(6)

For such rapidly decreasing diffusivities, smoothing on both sides of an edge is much
stronger than smoothing across it. This selective smoothing process prefers intraregional
smoothing to interregional blurring. The factor 3.315 ensures that the flux <1>(8) := 8g(82)
is increasing for 181 :S A and decreasing for 181 > A. Thus, A is a contrast parameter
separating low-contrast regions with (smoothing) forward diffusion from high-contrast
locations where backward diffusion may enhance edges [26].

Figure 1 shows an application of image restoration by means of such a forward-
backward diffusion filter. A mammogram is denoised in such a way that the diagnosti-
cally relevant microcalcifications become much better visible.

2.2 Theoretical Foundation
2.2.1 Continuous Formulation

The preceding nonlinear diffusion filter belongs to a much larger filter dass for which
useful theoretical properties can be established. In particular it is possible to replace the
scalar-valued diffusivity 9 by a smooth matrix-valued function D that remains uniformly
positive definite as long as its argument is bounded. This allows for more flexible non-
linear diffusion models [33]. For such a dass the following properties can be established.

Theorem 1 (Properties of continuous diffusion filters)

(a) (Well-posedness and smoothness results)
There exists a unique solution u(x, t) in the distributional sense which is in COO(nx
(0, (0)) and depends continuously on f with respect to the U(n) norm.
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Figure 1: (a) Top LEFT: Mammogram with six microca1cifications, D = (0,128)2. (b)
Top RIGHT: 3D plot of (a), where the graph of f is regarded as a surface in IR3. (c)
BOTTOM LEFT: Nonlinear diffusion filteringof(a) (0-=1, >'=7.5, t=128). (d) BOTTOM
RIGHT: 3D plot of (c).

(b) (Extremumprinciple)
Let a := infn fand b := SUPn f. Then, a :s: u(x, t) :s: b on D x [0,(0).

(c) (Average grey level invariance)
The average grey level J-L:= lAI In f(x) dx is not affected by nonlinear diffusion
jiltering: lAI In u(x, t) dx = J-Lfor all t > o.

(d) (Lyapunov funetionals)
V(t) := In r(u(x, t)) dx is a Lyapunov function for all convex r E C2[a, b]:
V(t) is decreasing and bounded from below by In r(J-L)dx.

(e) (Convergence to a constant steady state)
lim u(x, t) = J-L in V(D), 1 :s: p < 00.
t-too

The existence, uniqueness and regularity proof of Theorem 1 is due to [6]' the other
results are proved in [33].
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Continuous dependence of the solution on the initial image is of significant practical
importance, since it guarantees stability under perturbations. This is relevant when
considering stereo images, image sequences or slices from medical CT or MR sequences,
since we know that similar images remain similar after filtering.

Hummel [15] has shown that extremum principles for a large dass of linear and
nonlinear parabolic operators imply that no new level sets can be created that are
absent at smaller scales t > O. This so-called causality property allows to trace back
structures in time (e.g. in order to improve their localization). It is important in many
computer vision applications.

Average grey level invariance is a property which distinguishes nonlinear diffusion
filtering from other PDE-based image processing techniques such as mean curvature
motion [2]. The latter one is not in divergence form and, thus, can not be conservative.
Average grey level invariance is required in some segmentation algorithms such as the
hyperstack [24].

Lyapunov functionals are of theoretical importance, as they allow to prove that -
in spite of its image enhancing qualities - our filter dass consists of smoothing trans-
formations: Indeed, the special choices r(s) := fslP, r(s) := (s_jL)2n and r(s) := s Ins,
respectively, imply that all V norms with 2 ~ p ~ 00 are decreasing (e.g. the energy
Ilu(t)II~2(n))' all even central moments are decreasing (e.g. the variance), and the entropy
S[u(t)] := - In u(x, t) ln(u(x, t)) dx, a measure of uncertainty and missing information,
is increasing with respect to t. Thus, in spite of the fact that out filters may act image
enhancing, their global smoothing properties in terms of Lyapunov functionals can be
interpreted in a deterministic, stochastic, and information-theoretic manner.

The result (e) teIls us that, for t -+ 00, diffusion filtering tends to the most global
image representation that is possible: a constant image with the same average grey level
as f.

A continuous family {u(t) I t ~ O} of simplified versions off = u(O) with properties
like the ones above is called a scale-space representation. Scale-spaces have turned out
to be useful image processing and computer vision techniques with many applications
[31,23].

2.2.2 Semidiscrete and Discrete Formulations

The preceding theoretical framework yielded several properties that are desirable from
an image processing viewpoint. Since digital images are discretized on a regular pixel
grid, however, the natural quest ion arises whether these properties are still preserved
for suitable numerical approximations. We would thus need semidiscrete and discrete
theories that guarantee the same properties.

Such a framework has been developed in [33], both for the spatially discrete and
for the fully discrete case when finite differences are used. In this setting, semidiscrete
filters (discrete in space and continuous in time) are given by a coupled system of
ordinary differential equations, while fully discrete methods may lead to matrix-vector
multiplications where the matrix depends nonlinearly on the evolving image.

Table 1 gives an overview of the requirements which are needed in order that well-
posedness properties, average grey value invariance, causality in terms of an extremum
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Table 1: Requirements for eontinuous, semidiserete and fully diserete nonlinear diffusion
seale-spaees. From [33].

requirement eontinuous semidiserete diserete

OtU = div (DVu) ~~= A(u)u Uk+l = Q( uk)Uk

u(x, 0) = f(x) u(O) = f UD= f

smoothness D E Coo A Lipsehitz- Q eontinuous

eontinuous

symmetry D symmetrie Asymmetrie Q symmetrie

eonservation divergenee form; 2: aij = 0 2: qij = 1
i i

(DVu,n) = 0

nonnegativity positive nonnegative nonnegative

semidefinite off-diagonals elements

eonneeti vi ty uniformly A irredueible Q irredueible;

positive definite pos. diagonal

prineiple and Lyapunov funetionals, and eonvergenee to a eonstant steady-state are in-
herited from the eontinuous setting. We observe that the requirements belong to five
eategories: smoothness, symmetry, eonservation, nonnegativity and eonneetivity require-
ments. These eriteria are easy to eheek for many diseretizations.

It should be noted that this table provides design eriteria for reliable algorithms. Cri-
teria that guarantee a diserete extremum prineiple, for instanee, eonstitute strong sta-
bility properties. The table also shows an important differenee between image proeessing
and other fields of seientifie eomputing. In other fields, a diffusion equation is motivated
from some underlying physieal problem. Henee, a good numerieal method aims at ap-
proximating it as closely as possible. This may result e.g. in high-order methods and
sophistieated errror estimators. In image proeessing, there is no physieal problem behind
the model and one is interested in having methods that inherit all qualitative properties
of a eontinuous model rather than highly preeise, but possibly oseillating sehemes. It
should also be noted that our diserete seale-spaee framework is not neeessarily limited
to finite differenee methods, as it is well known that e.g. finite volume sehemes may lead
to the same algorithms on a regular grid.
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2.3 Adequate Numerical Schemes
2.3.1 Classical Semi-Implicit Schemes

Let us now consider finite difference approximations to the m-dimensional diffusion
filter of Catte et al. [6]. A discrete m-dimensional image can be regarded as a vector
f ElRN, whose components h i E {1, ... ,N} display the grey values at the pixels. Pixel
i represents the location Xi. Let hl denote the grid size in the l direction. We consider
discrete times tk := kT, where k E INo and T is the time step size. By u~ and gf we
denote approximations to U(Xi, tk) andg(l\7ua(Xi, tk) 1

2), respectively, where the gradient
is replaced by central differences.

A semi-implicit (linear implicit) discretization of the diffusion equation with reflect-
ing boundary conditions is given by

T
(7)

where Ni (i) consists of the two neighbours of pixel i along the l direction (boundary
pixels may have only one neighbour). In vector-matrix notation this becomes

(8)

Al describes the diffusive interaction in l direction. This scheme does not give the solution
uk+1 directly: it requires to solve a linear system first. Its solution is formally given by

m 1

uk+l = (1- T LAl(uk)) - Uk.
l=1

(9)

In [33] it is shown that this scheme satisfies all discrete scale-space requirements for all
time step sizes T > O.This absolute stability shows in particular that one does not have
to consider numerically more expensive fully implicit schemes.

How expensive is it to solve the linear system? In the 1-D case the system matrix
is tridiagonal and diagonally dominant. Here a simple Gaussian algorithm for tridiag-
onal systems solves the problem in linear complexity. For dimensions m ~ 2, however,
the matrix may reveal a much larger bandwidth. Applying direct algorithms such as
Gaussian elimination would destroy the zeros within the band and would lead to an
immense storage and computation effort. Classical iterative algorithms become slow for
large T, since this increases the condition number of the system matrix. Hence, it would
be natural to consider e.g. multigrid methods [1] whose convergence can be independent
of the condition number, or preconditioned conjugate gradient methods [27, 13]. The
implementation and parameter specification of some of these methods, however, may
be nontrivial for image processing practitioners who do not have an appropriate back-
ground in numerical analysis. Therefore, we shall study a simple and parameter-free
splitting-based alternative next.
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2.3.2 AOS Schemes

Let us now consider a modification of (9), namely the additive operator splitting (AGS)
scheme [38]

(10)

The operators BI (uk) := I-mT Al (uk) describe one-dimensional diffusion processes
along the Xl axes. Under a consecutive pixel numbering along the direction l they come
down to strictly diagonally dominant tridiagonallinear systems which can be solved in
linear complexity with a simple Gaussian algorithm.

It should be noted that (10) has the same first-order Taylor expansion in T as the
semi-implicit scheme: both methods are O( T + hi + ...+ h'?n) approximations to the
continuous equation.

Moreover, since it (10) an additive splitting, all coordinate axes are treated in exactly
the same manner. This is in contrast to conventional splitting techniques from the
literature auch as ADI methods, D'yakonov splitting or LOD techniques [21]: they are
multiplicative and may produce different results in the nonlinear setting if the image is
rotated by 90 degrees. In general, they also produce nonsymmetric system matrices, for
which the discrete scale-space framework from Table 1 is not applicable.

The AOS scheme, however, satisfies this framework for all time step sizes [38]. As a
consequence, it preserves the average grey level J.L, satisfies a causality property in terms
of a maximum-minimum principle, possesses the desired dass of Lyapunov sequences
and converges to a constant steady state.

In practise, it makes of course not much sense to use extremely large time steps,
since this leads to poor rotation invariance, as splitting effects become visible. Evalu-
ations have shown that for h1 = h2 = 1 a step size of T = 5 is a good compromise
between accuracy and efficiency [38]. Many nonlinear diffusion problems require only
the elimination of noise and some small-scale details. Often this can be accomplished
with no more than 5 iterations. This requires ab out 0.3 CPU seconds for an image with
256 x 256 pixels on a 700 MHz PC. For many applications this is sufficiently fast.

In case one is interested in a further speed-up, on should notice that AOS schemes
are well-suited for parallel computing as they possess two granularities of parallelism:

• Coarse grain parallelism: Diffusion in different directions can be performed simul-
taneously on different processors .

• Mid grain parallelism: 1D diffusions along the same direction decouple as weIl.

Motivated from our encouraging results with AOS schemes on a shared memory machine
[35]' we are currently studying their behaviour on architectures with distributed memory
such as system area networks with low latency communication.
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3 Regularization Methods

3.1 Basic Idea and Theoretical Foundation
Regularization methods constitute an interesting alternative to nonlinear diffusion fil-
ters. Typical variational methods for image restoration (such as [7, 9, 16, 25, 30]) obtain
a filtered version of some degraded image f as the minimizer Ua of

Ef(u) := J ((u- 1)2 + aW(IVuI2)) dx.
n

(11)

The first summand encourages similarity between the restored imag~ and the original
one, while the second summand rewards smoothness. The smoothness weight a > 0 is
called regularization parameter. In our case, the regularizer W is supposed to satisfy the
following conditions:

• W(.) is continuous for any compact K ~ [0,00) .
• w(I.12) is convex from IRm to IR.
• W(.) is increasing in [0, 00) .
• There exists a constant c > 0 with W(S2) ;::::cs2.

One example is given by

(12)

For this class of regularization methods one can establish a similar well-posedness and
scale-space framework as for nonlinear diffusion filtering if one considers the regulariza-
tion parameter a as scale. In [29] the following properties have been proved:

Theorem 2 (Properties of regularization methods)

(a) (Well-posedness and regularity)
Let fE UX)(O). Then thefunctional (11) has a unique minimizerua in the Sobolev
space H1(O). Moreover, Ua E H2(O) and IluallL2(n) depends continuously on a.

(b) (Extremum principle)
Let a := infn fand b := SUPn f. Then, a :::;ua(x) :::;b on O.

(c) (Average grey level invariance)
The average grey level /-1 := I~I In f(x) dx remains constant under regularization:

I~I In ua(x) dx = /-1.

(d) (Lyapunov functionals)
V(a) := In r(ua(x)) dx is a Lyapunov functional for all r E C2[a, b] with r" ;::::0:
V(a) :::;V(O) for alt a ;::::0 and V(a) ;::::In r(/-1) dx.

(e) (Convergence to a constant image for a -+ 00)
1f m = 2, then lim Ilua - /-1IILP(n)= 0 for any pE [1,00).

a--+oo
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Let us now give an intuitive reason for this large amount of structural similarities
between diffusion filters and regularization methods. If W is differentiable, then the
minimizer of Ef(u) satisfies the Euler-Lagrange equation

(13)

This can be regarded as a fully implicit time discretization of the diffusion filter

(14)

One may thus regard our well-posedness and scale-space framework for regularization
methods as a time-discrete framework for diffusion filtering. This would constitute an-
other column in Table 1.

It should be noted, however, that we have restricted ourselves to convex regularizers
W. In this case the flux function W'(S2) s is always increasing. This implies that there
is no contrast enhancement in a similar way as for forward-backward diffusion filters.
Nevertheless, since the diffusivity w'(IVuI2) is decreasing in IVuI2, smoothing at edges
is reduced and discontinuities are better preserved than in linear smoothing methods.

3.2 Numerical Approximation

From the discussion in the last section it follows that one may use any diffusion algo-
rithm in order to approximate a regularization method. All one has to do is to use the
regularization parameter as stopping time.

If one wants to have a more accurate approximation, an alternative way to use
diffusion techniques would be to discretize the steepest des cend equation of (11),

OtU = div (w'(IVuI2)Vu) + ~ (J - u) (15)

and extract the desired regularization from its steady state (t --7 00). In matrix-vector
notation a semi-implicit discretization of this diffusion-reaction equation is given by

T

Solving for Uk+1 yields

m

LA1(Uk) Uk+1+ a (J - uk+l).
1=1

(16)

(17)

In analogy to the previous section we may replace this scheme by its AOS approximation

(18)
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Figure 2: (a) Top: Restriction of a noisy test image. (b) BOTTOM: Regularized by an
AOS scheme embedded in a nested iteration strategy. From [34].

which again leads to simple tridiagonallinear systems of equations.
In contrast to the pure diffusion filter, however, we are now interested in approximat-

ing the solution for t ---+ 00. In order to speed up the process, we may embed the AOS
scheme into a multilevel framework [34]. Experiments have shown that a simple nested
iteration strategy with full weighting for restiction and with linear interpolation gives
sufficiently fast and accurate results. Figure 2 illustrates this approach. Regularizing a
2562 image on a 700 MHz PC with 5 iterations per level requires about 0.3 CPU seconds.

4 Optic Flow Estimation
Let us now investigate the use of nonlinear diffusion processes in the context of image
sequence analysis. One of the main goals of image sequence analysis is the recovery of
the so-called optic fiow field. Optic fiow describes the apparent motion of structures
in the image plane. It can be used in a large variety of applications ranging from the
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(19)

recovery of motion parameters in robotics to the design of efficient algorithms for second
generation video compression.

In the following we consider an image sequence f(x, y, z) where (x, y) E r2 denotes
the location and z E [0, Z] is the time. We are looking for the optic fiow field (u((X,y,z)))

v x,y,z

which describes the correspondence of image structures at different times. Variational
methods constitute one possibility to solve the optic fiow problem; see e.g. [14, 22, 8, 37].
In [36] a method is considered which is based on the following two assumptions:

1. Image structures do not change their grey value over time. Therefore, along their
path (x(z), y(z)) one obtains

o = _df_(x_(_z)_,y_(_z)_,z_) = fxu + fyv + fz.
dz

2. As second assumption we impose a spatio-temporal smoothness constraint:

J '1J (IViuI2 + IV'zv1
2
) dx dy dz is "small" ,

nx[o,z]

(20)

whereV'z := (8x, 8y, 8zf and W is a regularizer as in the previous section.

Combining these two constraints in a single energy functional, one can obtain the optic
fiow as a minimizer of

Ej(u, v):= J (Uxu+ fyv+ fz)2 + Cl: '1J (IViuI2 + IVivI2)) dx dy dz (21)
nx[o,z]

This functional can be regarded as a special representative of a much larger dass of optic
fiow functionals for which one can establish general well-posedness results in H1 (r2 x
(0, T)) x H1(r2 x (0, T)). For more details the reader is referred to [37].

The steepest descent equations for (21) with a differentiable regularizer '1J are

Vi. ('1J' (IV'zuI2+IVivI2) Viu) - ~ fx Uxu+ fyv+ fz),
Vi. (w' (IViuI2+IV'zvI2) V'zv) - ~ fy Uxu+ fyv+ fz)'

(22)
(23)

This is a coupled three-dimensional diffusion-reaction system. It may be treated numer-
ically in the same way as the regularization methods from the last section. In matrix-
vector notation, the resulting AOS scheme is given by

3

uk+l = ~ L (I + 3; f;1 - 37A1(Uk, vk)r1 (uk - ~fx (JyVk+ fz)) (24)
1=1
3

vk+l = ~ L(I+~J;1-37Al(uk,vk)r1 (vk-~fy (Jxuk+fz)) (25)
1=1

Figure 3 shows an example. We can see that the recovered optic fiow field gives a quite
realistic description of the person's movement towards the camera.

12



Figure 3: (a) LEFT: One frame of a hallway sequence with 256 x 256 x 16 pixels. A
person is approaching the camera. (b) MIDDLE: Detail. (c) RIGHT: Computed optic
flow. From [36].

5 Geodesie Active Contours

5.1 Basic Idea and Theoretical Properties
Active contours [18] play an important role in interactive image segmentation, in partic-
ular for medical applications. The basic idea is that the user specifies an initial guess of
an interesting contour (organ, tumour, ... ). Then this contour is moved by image-driven
forces to the edges of the desired object.

So-called geodesic active contour models [4, 20] achieve this by applying a specific
kind of level set ideas. In its simplest form, a geodesic active contour model consists
of the following steps. One embeds the user-specified initial curve Co (s) as a zero level
curve into a function Uo : IR? -+ lR, for instance by using the distance transformation.
Then Uo is evolved under a PDE which includes knowledge about the original image f:

for Vu =1= 0,

else,
(26)

where g inhibits evolution at edges of f. One may choose decreasing functions such as
(6). In general, (26) will have nontrivial steady states. The evolution is stopped at some
time T, when the process does hardly alter anymore, and the final contour C is extracted
as the zero level curve of u(x, T). Figure 4 gives an example of such a geodesic active
contour evolution. It can be interpreted as a curve evolution that follows a modified
mean curvature motion.

The theoretical analysis from [4, 20] shows that the initial value problem has a
unique viscosity solution u E DXJ(O,T; W1,00(lR2)) n C([O, (0) x lR2) for initial data
Uo E C(lR2) n W1,00(lR2). This solution satisfies an extremum principle and depends
continuously on the initial data with respect to the Loo norm.
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Figure 4: Temporal evolution of a geodesic active contour superimposed on the original
image (0 = (0,256)2, A = 5, a = 1). FROM LEFT TO RIGHT: t = 0, 1500,7500. Larger
values for t do not alter the result.

5.2 Numerical Approximation

Next we present a novel scheme for the geodesic active contour model. Although (26) is
not a diffusion process in a strict sense - it cannot be written in divergence form - one
may use similar techniques as before.

Since the trivial case \lu = 0 is of no furt her interest, let us consider the case
where \lu i- 0 in some pixel i. Here straightforward finite difference implementations
would give rise to problems when \lu vanishes in the 4-neighbourhood N(i) of i. These
problems do not appear if one uses a finite difference scheme with harmonie averaging.
In its semi-implicit formulation such a scheme reads

uk+l _ uk 2
z z - l\lulk '"""

'T - i ~ (~)k (~)k
jE./If(i) 9 j + 9 i

(27)

Note that the denominator cannot vanish in this scheme. One can also verify that such
a scheme is absolutely stable, since it satisfies the discrete extremum principle

min UO,i :S uJ :S max UO,iz z
(28)

for all j and for all k > O. An AOS variant of this scheme can be constructed in exactly
the same mann er as in Section 2. The only difference is that Al (uk) Uk+l is now a semi-
implicit discretization of l\luloxl (g\lu/I\lul) instead of OXI(g\lu). The AOS scheme for
geodesic active contours also inherits absolute stability from (27).

It should be mentioned that this scheme is not the only AOS approach that has been
proposed for geodesic active contours. In [12], Goldenberg et al. present a method that
requires to apply a distance transformation in each iteration. This is done in order to
obtain l\lul = 1 such that (27) becomes the diffusion process

OtU = div (g(l\lhcrI
2
) \lu)

for which the standard AOS from Section 2 is used. Since our method does not require
any time-consuming distance transformation in each iteration step, it is not only simpler,
but also more efficient.
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