
A new algorithm for computerized tomography
based on fast Fourier transforms for nonequispaced data

Daniel Potts and Gabriele Steidl

Nr. 256

June 2000



A new algorithm for computerized tomography
based on fast Fourier transforms for nonequispaced data

Daniel Potts
Medical University of Lübeck
Institut of Mathematics

Wallstr. 40
D-23560 Lübeck

potts@math.mu-luebeck.de

and

Gabriele Steidl
University of Mannheim

Institut of Computer Science
D-68131 Mannheim

steidl@math.uni-mannheim.de

June, 2000

Abstract. In this paper, we propose a new linogram algorithm for the high quality Fourier
reconstruction of digital N x N images from their Radon transform. The algorithm is based
on univariate fast Fourier transforms for nonequispaced data in the time domain and in
the frequency domain. The algorithm requires only O(N2log N) arithmetic operations and
preserves the good reconstruction quality of the filtered backprojection.
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1 Introduction

We are interested in efficient and high quality reconstructions of digital N x N medical images
from their Radon transform. The standard reconstruction algorithm, the filtered backprojec-
tion, ensures a good quality of the images at the expense of O(N3) arithmetic operations.
Fourier reconstruction methods reduce the number of arithmetic operations to O(N2 logN),
a feature which will be of particular interest für future three-dimensional image processing.
Unfortunately, the straightforward Fourier reconstruction algorithm suffers from unacceptable
artifacts so that it is useless in practice. A better quality of the reconstructed images can be
achieved by linogram algorithms [4, 19]' the gridding algorithm [14, 18, 17]' the unified Fourier
reconstruction algorithm (UFR-algorithm) [10, 11] or by a recently developed algorithm by
K. Fourmont [7].
The consideration of other algorithms than Fourier reconstruction algorithms for the inversion
of the Radon transform, e.g. iterative algorithms, is beyond the scope of this paper. Here we
refer to [13].
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In this paper, we propose a new Fourier reconstruction algorithm having better or at least the
same quality as the above algorithms. Our algorithm is based on recent developments in con-
nection with the efficient computation of discrete Fourier transforms for nonequispaced data
(NFFTs). By using the linogram geometry, our algorithm requires only univariate NFFTs.
Consequen~ly, we can avoid the bivariate gridding step contained in the gridding algorithm
and in the UFR-algorithm.
This paper is organized as follows: In Section 2, we provide fast approximative algorithms
for the computation of discrete Fourier transforms for nonequispaced data recently developed
in [3, 1, 21]. We apply these algorithms for the numerical inversion of the Radon transform
in Section 3. Special attention is paid to the comparison of the NFFT and the chirp z-
transform, which can be used instead of the NFFT in the first step of our reconstruction
algorithm. Finally, Section 4 presents a numerical example.

2 Fast Fourier Transforms for nonequispaced data

While gridding methods in connection with efficient computations of discrete Fourier trans-
forms for nonequispaced data were applied in digital signal processing for a long time [20, 14]'
the theoretical foundations for these methods, in particular the relation between the speed
of the algorithm and the approximation error were developed only recently [3, 1, 21, 2]. On
the other hand, the theoretical examinations lead to a couple of improved and modified fast
Fourier transform algorithms for nonequispaced data [5, 15, 7, 23]. In the following, we shortly
describe their basic idea.
Let rrd := [~~, ~)d and IN := {k E Zd: -lf ::;k < ~}, where the inequalities hold compo-
nentwise. For Vj E Nrrd, and !k E C, we are interested in the fast and robust computation of
the discrete Fourier transforms

and

f(Vj) = 2:= fk e-21fikvj/N

kEIN

(2.1)

(2.2)h(k) := 2:= fj e-21fikvj/N

JEIM

i.e. either the nodes in time or frequency domain are equispaced. It is easy to check that
once we have an algorithm for the efficient computation of (2.1), we can simply design an
efficient algorithm for (2.2) which we will call the "transposed" algorithm. Therefore, we
rest riet our attention to (2.1). For an algorithm with both nonequispaced nodes in time and
frequency domain see [6]. Straightforward computation of (2.1) requires O(Nd Md) arithmetic
operations, t.oo much for the applications we have in mind. Only in case of equispaced nodes
Vj := j (j EIN), the ab.ove values can be evaluated by the well-known fast Fourier transform
(FFT) with only O(Nd log N) arithmetic operations. To speed up the computation of (2.1),
we suggest the following approximate procedure:
Instead of evaluating the 1-periodic trigonometrie polynomial

f(v) := 2:= !k e-21fikv

kEIN

at the nodes Wj := Vj/N E rrd (j E IM), we intend to evaluate a functi.on of the form

l
Sl(V):= 2:=91 cp(v - -).n

lEIn
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Here <P is an 1-periodic function which we will specify later and n := aN with an oversampling
factor a > 1. Switching to the frequency domain, we obtain

81 (v) = L flk cd<p) e-27rikv + L L 9k Ck+nr(<P) e~27ri(k+nr)v (2.4)
kEIn rEZd\ {a} kEin

with

9k :=L 91 e27rikl/n,
lEIn

Ck(<P) := J <p(v)e27rikv dv (kE Zd).

rrd

(2.5)

Let Ck (<p) =1= 0 (k EIN)' Since 81 should be a good approximation of f, we suggest by
comparing (2.3) with (2.4) to set

9k:= { (2.6)

Then the values 91 can be obtained from (2.5) by the reduced inverse d-variate FFT of size
n. If <P is well-localized in time domain such that it can be approximated by a 1-periodic
function 'ljJwith supp'ljJ n rrd ~ ~ rrd (m « n), then

(2.7)

where In,m(Wj) := {l E IN : nWj - m ~ l ~ nWj + m}. For fixed Wj E rrd, the above sum
contains at most (2m + l)d nonzero summands.
In summary, we obtain the following algorithm for the fast computation of (2.1) with
O((aN)d log(aN) + (2m + l)d Md) arithmetic operations:

Algorithm 2.1 (NFFT) .
Input: NE N, a> 1, n:= aN, Wj E rrd, fk E<C (j E IM, kEIN)'

Precomputation: Ck(<p) (k EIN), 'ljJ(Wj -~) (j E IM, l E In,m(wj))'

1. Form 9k := ik/cd<p) (k EIN).

2. Compute by d-variate reduced FFT

91 := n-d L 9k e-27rikl/n (l EIn).
kEIN

3. Set
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Output: S(Wj) approximate value of f(wj) (j E IM)'

The corresponding "transposed" algorithm for the fast computation of (2.2) reads as follows:

Algorithm 2.2 (NFFTT)

Input: NE N, a> 1, n:= aN, Wj E rrd, fk E C (j E IM,k EIN)'

Precomputation: cd<p) (k EIN), 'l/J(Wj -~) (l E In,j E Jn,m(l)).

1. Set

where Jm,n := {j E IM : l - m ~ nWj ~ l +m} (l EIn)'

2. Compute by d-variate reduced FFT

Ck(g) := n-d L 91 e-27rikl/n (k E IN).
lEIn

3. Form ,h(k) := Ck(g)/Ck(<P) (k EIN).

Output: h(k) approximate value of h(k) (k E IN).

Step 3 of Algorithm 2.1 and Step 1 of Algorithm 2.2 are called "gridding steps".
Both algorithms introduce the same approximation error

Ea(Wj) ~ Ilflh ~~ L I Ck:(r(r) I '
N rEZd\ {a} k <P

where IlfI11:= L lAI. By (2.7), (2.6) and (2.5), the truncation error fulfills
kEIN

which by (2.4) and (2.7) splits into the aliasing errar Ea(wj) := If(wj) - sdwj)1 and the
truncatian errar Et(wj) := h(wj) - s(wj)l. By (2.4) and (2.6), the aliasing error can be
estimated by

Note that the truncation error may be zero, i.e. <P = 'l/J, if<p has compact support.
Thus, the whole approximation error E(wj) depends on the localization of the function <p
in time and frequency domain. Clearly, by Heisenberg's uncertainty principle, there doesn't
exist a window function <p with arbitrary good localization in both time and frequency domain.
However, for various functions <p, it was proved that the approximation error E(wj) decays
exponentially as a function of the "support width" m of 'l/J. In particular, we refer to

• [3,21,5,2] for estimates with (tensor products of) Gaussian beIls, Gaussian beIls tapered
with I1anning windows or with sinc-kernels,
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• [1, 16J for estimates with (tensor products of) B-splines and to [5J for estimates with
three-directional Box-splines,

• [8, 7J for estimates with (tensor products of) Kaiser-Bessel functions.

Note that other candidates for cp with good localization in time and frequency domain as for
example prolate spheroidal functions are not suited for our algorithms since their evaluation
at various points Wj - ~ in the precomputation step is rat her expensive. See also [2J.
In the following, we apply the Algorithms 2.1 and 2.2 with d = 1, the dilated periodized
Gaussian bell

cp(v) = (1l"b)-1/2 L e-(n(v+r))2/b

rEZ

and its truncated version

'l/J(v) = (1l"b)-1/2 L e-(n(v+r))2/b X[-rn,rn] (n(v + r)) ,
rEZ

(2.8)

(2.9)

(B := (cos cp,sin cpf)

where b:= (2;c:n.:)1r and where X[-rn,rn] denotes the characteristic function of [-m,mJ. By [6]'
it is sufficient to choose m = 5 to obtain an approximation error ::; 10-5 (single precision).
Finally, it is remarkable that similar to the classical FFT the NFFT is more robust with respect
to roundoff errors introduced by the finite arithmetic of the computer than the straightforward
summation of (2.1) or (2.2) [16J.

3 Application of NFFT and NFFTT in computerized tomog-
raphy

In this section, we propose a new Fourier reconstruction algorithm for computerized tomo-
graphy, where we restrict our attention to the standard parallel scanning geometry. More
precisely, we are interested in the inversion of the Radon tran8form
R: L2(O) -7 L2([-I, IJ x S\ (1 - 82)-1/2),

Rf(s, cp):= / f(x) dx
(x,B)=s

based on the Fourier Slice Theorem

00

j(aB) = / Rf(s, cp)e-21ris<T ds = Rf(a, cp).
-00

(3.1)

We suppose that supp f ~ 0 := {x E ]R2 : 11 x 11 ::; I}. We want to reconstruct f on the grid

Let Rf be given at the grid points

R R
(t=O, ... ,T-l;r=-"2"" '"2-1),
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Figure 1: Linogram of Algorithm 3.2

where, by Shannon's sampling theorem [9]' R 2: N and T 2: 1r2R.

The standard Fourier reconstruction method follows directly from (3.1) and consists of the
following three steps:

Algorithm 3.1

1. Computation of

for m = -~, ... ,~ - 1; t = 0, ... T - 1 by T univariate FFT's of length 4L. Here
~ 2: 1 is an oversampling factor."

2. Inteq~olation from the polar grid to the cartesian grid.

3. Computation of f(xj, Yk) (j, k = - ~,... ,~ - 1) by bivariate FFT of size ~N.

The above algorithm pro duces essential artifacts so that it is useless in practice. In [12],
F. Natterer proved that most of these artifacts result from the interpolation in the radial
direction in Step 2. This justifies a couple of higher quality Fourier reconstruction algorithms
as:

• Fourmont's algorithm [7]
By applying T univariate NFFTs of length N in Step 1, the algorithm requires only
linear interpolations in angular directions in Step 2.

I

• Gridding algorithm / UFR-algorithm [14, 18, 10, 11, 19, 17]
Here Step 1 of Algorithm 3.1 is computed with oversampling factor ~ > 1, i.e., ~ = 4
[19]. Instead of Step 2, a bivariate gridding step is performed which approximates
the values of j on the cartesian grid. Step 3 coincides with the corresponding step of
Algorithm 3.l.

Note that [17] presents a new gridding algorithm based on bivariate NFFTT s. A similar
algorithm is also in progress by F. Fourmont and F. Natterer.
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• Linogram algorithms [4, 19]
By T chirp-z transforms of length ~ in Step 1, the algorithm requires only linear
interpolations in x-direction and in y-direction, respectively, i.e. in "nearly" angular
directions in Step 2. Another version of the Linogram algorithm [4] computes linear
interpolations in the Radon domain (sinogram). Then the linear interpolations in Step
2 can be avoided by using chirp-z transforms in Step 3, too.

In the following, we propose a Fourier reconstruction algorithm which is based on the linogram
geometry, but avoids linear interpolations by using NFFTs and NFFTT s. The algorithm in-
cludes only univariate transforms so that a bivariate gridding step as in the gridding algorithm
or in the UFR-algorithm is not necessary.
We sketch the algorithm first and give some explanations later.
Let T be divisible by 4.

Algorithm 3.2 (NFFT /NFFTT)

1. Computation of

~-I
,m 1 ' m 1 2 '""' 2 27rirm 1 /(!kL)f(---Bt) = Rf(---,'Pd := R ~ Rf(rR,'Pde- cOS'!'t 2

, cos 'Pt , cos 'Pt
r=-~

£ t - ü T.. 3T T - 1 d - r- & 1 rR-y 1 - 1or - ,..., 4' 4 ,... , an m - 4 cos 'Pt ,..., 4 cos 'Pt ,

K-I
,m 1 ' m 1 2 ~ 2 -27rirm-1-/(!kL)f( --.-Bt) = Rf( --.-, 'Pt) := - ~ Rf(r-, 'Pt)e sin'Pt 2

, Sm'Pt , Sm'Pt R R
r--K- 2

for t = t+1, ... ,3'.[ -1 and m = r-~ sin'Ptl, ... ,r~ sin'Ptl-1 by univariate NFFTs.
Let the other values j C!ff co; 'Pt ()d and j (!fi sinl'Pt ()d m E (- ~, ... , ~ - 1) be zero.

2. Computation of

~-I t-I ..
7r '""' '""' 1 f'( m m sm 'Pt) 27rism 'Pt mk/(!:!:L) 27riJm/(!:!:L)

.- 2T ~ I/m ~ -co-s-2-'P-t-;y' -;Y-CO-S-{fl-te COS'Pt 2 e 2

, -!kL t=_I.
4

rm-- 4

~-I t
7r L L 1 f,(m sin'Pt m) 27risin'Ptmj/(!:!:L) 27rikm/(!:!:L)

0- 1/ --- --- - e COS'Pt 2 e 22T m 2 ', !kL T cos 'Pt ,COS 'Pt ,
m=- 4 t=-4+I

(j, k = - ~,... , ~ - 1) by ~ univariate NFFTT s of length !!,J for the inner sums and
N univariate FFTs of length !!,J for the outer sum, where

-

.1

Set

{

-m

I/m:= ~

m - _& -1- 4 , ... , ,

m=ü,
-1 &-1m- ,... , 4 .
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Algorithmsi uses the fact that

j( -aB) = j(aB) . (3.2)

Based on (3.2) further improvements are possible which are incorporated in our implementa-
tion but will not be described in detail here. Furt her, as usual a "filter step" in the Fourier
domain will be added after Step 1. Here we apply sinc filter.

Let us give some more comments concerning our algorithm.

First step
For arbitrary fixed <Pt, let h(s) := Rf(s, <Pt) and h(a) := Rf(a, <Pt). In the first step of our
algorithm, we discretize the integral

1

h(a) = J h(s)e-27rislT ds.
-1

By Poisson's summation formula, we obtain

E.-1~ I:~ R 2 I:2
R 2. j(R)h(a) + h(a + n-) = - h(r- )e- 7r"lT(T 2" .

2 R 2
nEZ r--E.n~O - 2

(3.3)

Since we want to reconstruct only details of f of size ~ il and R ~ N, we can assume by
Shannon's sampling theorem, that h(a) is neglectable small for lai > ~. Thus, the right-hand
side of (3.3) is a good approximation of h(a) for a E [-~, ~J.

Second step
In the second step of our algorithm, we compute a discretized form of the integral

f(x,y)

00 00J J j(u, v)e27ri(ux+vy) dudv

-00 -00

00 7rJ a J j(acos<p,asin<p)e27ria(cos'Px+sin'PY) d<pda.

o -7r

Since the inner integral considered as function of a is even, the above formula can be rewritten
as

7r 00

f(x,y) = ~J J lalj(acos<p,asin<p)e27ria(cos'Px+sin'PY)d<pda.
-7r -00

(3.4)

g(v)

We considerthe inner integral. For arbitraryfixed (x,y) E [-1,1]2 and<p E [-11",11"], we set

g( a) ._ lalj (a cos <p,a sin <p)e27ria(COs 'Px+sin 'Py) ,
00J g(a)e27riva da.

-00
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Then we obtain by Poisson's summation formula

9 (0) +L g(-y cos <P n) = 1 L 9 ( m )
. , cos <P '7J , COS <P., nEZ mEQ.J

. n;=O

and since j (a cos <P, a sin <p) is neglectable small for Ia I > ~,

r ~-ycos cp1-1
g(O) +L g(-y cos <p n) :::::: 1 L 9 ( m )

'V COS {fl 'V COS {fl
nEZ I r _r!kL 1 I r
n;=O m- - 4 coscp

The aliasing error on the left-hand side becomes smaller with increasing ,. For example, since
cos<p 2: 1- (<p E [-~, ~])., the right-hand side is a good approximation of g(O) if, = J2 and
if g(n) (n E Z\ {O}) is neglectable smalL
Under the assumption that g(a) := aj(a cos <p, a sin <p)e21riu(cos cpx+sincpy) has "essential" band-
width « ,cos <p, the aliasing error can be estimated as in [13] by

~ 1,
LJ g(-y cos <pn) ::::::6 2 2 f(O, 0) ,
nEZ , COS <p
n;=O

(3.5)

Since we only want to reconstruct details of f of size 2: ~, we can discretize the outer in-
tegral in (3.4) with small aliasing error by the trapezoidal rule at the nodes <Pt = t¥ (t =
-T, ... ,T - 1) if T 2: 1r~. This results in Step 2 of OUf Algorithms 3.2. In particular, (3.5)
explains the coefficient va of j(O, 0).

In Step 1 of Algorithm 3.2, the NFFTs can be replaced by chirp z-transforms as folIows: We
want to compute

l{-1

jm = L fre-21rirmc/R

r=-l{
(3.6)

where jm := j(!!f cos1CPt ()d, fr := ~ Rf(r~, <Pt), C := 1/ cos(<pd and , = 2. Using

(m - r)2 r2 m2

rm = - --2-- + 2 + -2-,

and setting

9r .- fre-21rir2c/(2R),

9m ._ jme21rim2c/(2R),

(3.6) can be rewritten as

(3.7)
(3.8)

l{-1

9m = L 9re2rri(m-r)2c/(2R)

r=-l{

9
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Now (3.9) can be computed by the cyclic convolution (gm);;;--::~R:= 9 * W of length 2R of the

vectors W := (e-27rir2c/(2R)) ::~R and 9 := (gr)~~R' where gr := 0 if r t/. {-~, ~ -I}. Note

that we only need the inner R components of g. As usual, we can use FFTs for the efficient
computation of cyclic convolutions.
In summary, the fast computation of (3.6) by the chirp z-transform requires

1. R premultiplications (real number - complex number) (see (3.7))

2. Cyclit convolution via

2.1. reduced FFT of length 2R of the complex vector 9

2.2. FFT of length 2R of the complex, even vector w

2.3. 2R multiplication of complex numbers

2.4. reduced inverse FFT of length 2R of the complex vector (9 * w r
3. R postmultiplications of complex numbers (see (3.8))

In contrast, if we compute (3.6) by the NFFT with a = 2, (2.8), (2.9) and m = 5, we need

1. R premultiplications (real number - complex number)

2. reduced FFT of length 2R of a complex vector

3. R(2m + 2) = 12R multiplications (real number - complex number) and R(2m + 1)
additions of complex numbers, i.e., 2R(2m + 2) multiplications of real numbers and
2R(2m + 1) additions of real numbers

The arithmetic complexity of the Steps 1 and. 2 of the NFFT is the same as the arithmetic
complexity of the Steps 1 and 2.4 of the chirp z-transform. If we assume that the FFT of
length R für complex data can be computed with ~ R log R - 3R multiplications (of real data)
and ~ 3R log R - 3R additions (of real data), then the Steps 2.2 - 3 of the chirp-z transform
require ~ 4R log(2R) multiplications and ~ 12R log(2R) additions. These are significantly
more arithmetic operations than those needed in Step 3 of the NFFT for R ~ 32. Our
numerical results (Table 1) confirm these considerations.

4 Numerical examples

A commonly examined model in computerized tomography is the Shepp-Logan Phantom of
the brain. This model consists of several ellipses so that its Radon transform can be evaluated
analytically. In order to get a sampled version of the phantom and its Radon transform we
have used the software packages "RadonAna" [22]. The algorithms were implemented in C
on a Sun Ultrasparc-II 248MHz.
The original image (Figure 2 (left)) is of size N x N = 180 x 180 and its sinogram of size
R x T = 180 x 600. Figure 2 (right) presents the reconstructed image obtained by the filtered
backprojection. Here we have used the software package "iradon" [22].
The reconstructed image in (Figure 3 (left)) was computed by the linogram algorithm with
linear inter])olation in x and y directions (NFFTL) [19]' where we have used the filter sinc3

in the Fourier domain.
Figure 3 (right) shows that our Algorithm 3.2 leads to higher quality images than the above
convenient linogram algorithm. Here Algorithm 3.2 was applied with the oversampling factor
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Figure 2: Shepp-Logan phantom, original (left) and reconstructed image by filtered backpro-
jection (right).

1.5

Figure 3: Reconstructed image by Algorithm NFFTL (left) and by Algorithm 3.2 (right).

~ = i~~(;::::.J2). Oversampling seems to be only necessary for artificial images containing high
frequencies. Step 1 of Algorithm 3.2 was realized by Algorithm 2.1 with d = 1, oversampling
factor a = 2, m = 5 and b = ~~.We have chosen ep as dilated periodized Gaussian bell (2.8)
and'l/J as its truncated version (2.9). Step 2 of Algorithm 3.2 was computed by Algorithm 2.2
with the same parameters as in Step 1. Further we have used the sinc filter in the Fourier
domain.
Next we compare the computation time of the filtered backprojection and of different linogram
algorithms. Note that our FFT algorithms are not fully optimized, i.e. the computation time
may be furt her improved e.g. by using the FFTW-library or reduced FFTs.

We compare the following algorithms:

FB Filtered backprojection (implementation by [22])

ChirpL Linogram algorithm with chirp z-transforms in the first step, linear interpolation in
x and y direction, respectively, and Step 3 of Algorithm 3.1 (two dimensional FFT)
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NFFTL Linogram algorithm with NFFTs (a = 2, m = 5, b = ~~) in the first step, lin-
ear interpolation in x and y direction, respectively, and Step 3 of Algorithm 3.1 (two
dimensional FFT)

Chirp /NFFTT Linogram algorithm with chirp z-transforms in the first step and NFFTT s
in the. second step

NFFT /NFFTT Linogram algorithm with NFFTs in the first step and NFFTT s in the second
step, i.e. Algorithm 3.2

The second column and third column of Table 1 show the size R x T of the given sinogram and
the forth colum.p. the size of the reconstructed image. Note that we have used oversampling
factors I = i~~and I = ~g(:::::v'2), respectively. The fifth column contains the computa-
tion time in seconds. The last column presents the contribution of FFT algorithms to the
total computation time. As expected, the algorithms with NFFTs in the first step (NFFTL,
NFFT /NFFTT) are much faster than the algorithms with chirp-z transforms in the first step
(ChirpL, Chirp/NFFTT). The quality of the reconstructed images is the same for ChirpL,
NFFTL and for Chirp /NFFTT, NFFT /NFFTT, respectively.

R T N time in s %FFT

FB 180 600 180 20.2 11.7

ChirpL 180 600 180 4.22 80.3

NFFTL 180 600 180 2.08 43.6

Chirp /NFFTT 180 600 180 5.63 66.7

NFFT/NFFTT 180 600 180 3.5 32.6

FB 362 900 362 127.81 3.49

ChirpL 362 900 362 15.32 84.1

NFFTL 362 900 362 8.44 45.6

Chirp/NFFTT 362 900 362 19.15 70.4

NFFT/NFFTT 362 900 362 10.59 36.3

Table 1: Corhputation time of the filtered backprojection and of different linogram algorithms

Finally, note that we can detect differences in the quality of the reconstructed images much
better if we are given colored images. For this we refer to
http://www.math.mu-luebeek.de/potts/radon/ima.
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