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Abstract

In image sequence analysis, variational optical £low computations require the
solution of a parameter dependent optimization problem with a data term and a
regularizer. In this paper we study existence and uniqueness of the optimizers.
Our studies rely on quasiconvex functionals on the spaces WI,P(O, IRd), withp > 1,
BV(O, IRd), BD(O). The methods that are covered by our results include several
existing techniques. Experiments are presented that illustrate the behavior of
these approaches.

Keywords: Optical £low, calculus of variations, quasiconvex functionals, functions of
bounded variation and deformation

1 Introduction
Optical fiow is the apparent 2D motion that needs to be recovered from a video sequence.
2D motions find diverse applications in video processing as well as in computer vision.
In video compression knowledge of motion helps to remove temporal data redundancy
which in turn is used to compress video sequences with high compression ratios.
For the detection of motion one typically uses the following model. Let I (x, t) be the

measured image intensity at position (x, t), with x = (Xl, X2) in [0, 1]2 ~ ]R2. Let x(t)
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be the parametrisation of a path of constant image intensity, i.e., I(x(t), t) = constant
for t E [0,(0), then

81
8t (x(t), t) = 0 . (1)

By applying the chain rule and assuming that structures do not change their intensities
over time, (1) can be written as the optical fiow equation

o = lXI (x, t)u(x, t) + IX2 (x, t)v(x, t) + It(x, t)
= (\7 I)t(x, t)w(x, t) + It(x, t) ,

(2)

(3)

where w(x, t) = (u, v)t(x, t) denotes the optical flow £leId. We use the convention that
subscripts denote partial derivatives and ~t denotes the total derivative.

In this paper we analyze models for recovering a motion £leIdw in (2) from a sequence
of image intensities.

2 Models for motion representation
The motion £leId w = (u, v)t is not uniquely determined by (2), since it is one equation
for two unknown functions u and v. Thus additional constraints have to imposed and
there have been proposed several models in the literature.

Yariational optical flow computations started with the pioneering wor~ of Horn and
Schunck [19] who proposed to calculate an approximate solution of (2) that minimizes
the functional

JHS(w) = ~ r (l\7u(x)12 + l\7v(x)12) dx .
2 in

Recently there has been a trend to use more sophisticated constraints to preserve edges
and corners in the motion £leId (see e.g. [23, 8, 27, 30, 2, 31]). This can be achieved by
considering e.g. penalizing functionals like

(4)

with
1 {( .EL(x) ) ( .EL(x) )t }

D2(\7I) (x) = I\7I(x)12 + 2,\2 ~::l(x) . ~~l(x) + ,\2E

Here and in the sequel of the paper 1.1 denotes the Euclidean norm and E denotes
the unitary matrix. The motivation for using such penalizing functionals comes from
anisotropie diffusion £lltering. For some background on this topic we refer to [29].

Another frequently used edge preserving technique is via BV penalizing functionals
like [8] ,

JBy(w) =1(l\7u(x)1 + l\7v(x)l) dx,
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where both In lV'ul dx and In lV'vl dx are understood as the bounded variations semi-
norms of u and v. For adefinition of the space of functions of bounded variation and
the sem i-norm we refer to [13].

Following the standard way of solving a constraint optimization problems, we ap-
proximate minimizers of JHS, JNE' JBV that satisfy the constraint (2) by solutions of
the unconstraint optimization problem to minimize the functional

(6)

where .\ is the positive penalizing parameter and i = H 5, NE, BV, respectively. Here
q; is a nonnegative function. Examples of frequently used functions q; in optical fiow
computations are q;(.) = I. IP, P = 1,2.

3 Lower semi-continuous functionals
For the analysis of optical fiow problems we utilize dassical result of calculus 01 variations
and nonlinear partial differential equation. All the particular functionals for optical fiow
computations outlined in Section 2 fit into the dass of problems of minimization of a
functional

w -+ ![w] :=1j(x, w, V'w) dx. (7)

In this particular paper we consider minimization over Banach spaces W1,p(n, )Rd) and
BV(n, )Rd), d ;:::1. All along the remainder of this paper we assume that n ~ )Rn is
bounded with piecewise smooth boundary.

In the first case we can utilize dassical results on calculus of variations (see e.g.,
Morrey [21, 22]' Ball [5]' Dacorogna [10]) which guarantee lower semi-continuity of the
functional ![w] in W1,p(n, )Rd), 1 < p :::; 00. These abstract results will be applied
afterwards to prove existence of minimizers of optical fiow models. Weak lower semi-
continuity of ![w] on BV(n, )Rd) is a rather challenging topic. There are several results
in this direction (see e.g. [4, 15, 16, 14] to name but a few) which deal with semi-
continuity of ![w] in a general setting. There are some easier results available if we take
into account the special structure of penalized least squares functionals such as modeled
in Section 2.

3.1 Quasiconvex functional on WI,P(Sl, }Rd)

In this section we recall the concept of quasiconvexity and summarize some results
on (weak) lower semi-continuity of the functional (7) on the space W1,p(n, )Rd). We
associate with each space of vector-valued functions X(n, )Rd) the norm

d

Illil:= L Iljill~.
i=l
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Definition 1. A function

f : ]Rnxd -+ ]R

P -+ f(P)

is called quasiconvex if

i f(P) dy ::;i f(P + \7iJ) dy (8)

for each P E ]Rnxd and iJ E C~(D; ]Rd). Here C~(D; ]Rd) denotes the subspace of
COO(D; ]Rd) with functions of compact support in D.

Note that any convex function is quasiconvex (see e.g [12]).
Sometimes instead of (8) an equivalent formulation of quasiconvexity is used

f(P) ::; 1 (D) r f(P + \7iJ) dy .
meas in (9)

The following structural theorem holds for quasiconvex functionals (see e.g. [12]).

Theorem 2. Let 1< p < 00. Suppose f satisfies

(10)

for some constants C and p > 1; here IPI denotes the Frobenius norm of the matrix P.
Then the functional

G[w] = i f(\7w) dx (11)

is lower semi-continuous with respect to weak convergence in W1,P(D, ]Rd) if and only if
f is quasiconvex.

Now we turn to the more general situation that f is of the general form (7). We can
rely on a variety of results. A few of them are quoted here for the readers convenience.

One of the first results in this direction can be found in Morrey [21]. More recently
Fonseca and Müller [15] proved the following result:

Theorem 3. (Fonseca and Müller) Let f be continuous from D x ]Rd X ]Rnxd into
[0,00) satisfying

1. fex, w,.) is quasiconvex

2. There exits a nonnegative, bounded, continuous function f : D X ]Rd -+ [0,00),
constants Q., Ci" > 0 such that

Q.f(x, w)IPI- Ci" ::; fex, w, P) < Ci"f(x, w)(l + IPI)
for all (x, w, P) E D X ]Rd X ]Rnxd.

4
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3. For alt (xo, wo) E 0 x jRd and for all 7] > 0 there exists ö > 0 such that for
Ix - Xo I + Iw - Wo I ::; ö implies that

and

f(xo, w, P) - f(xo, Wo, P) 2 -7](1 +IPI) ,

If(xo, w, P) - fex, w, P)I ::; 7](1 + IPI) .

(13)

(14)

I[w] ::; lim inf I[wn] .
n-+oo

For our purposes Theorem 2 is not practicable since for optical £low simulations we
require instead of (12) estimates of the form

9:(1 + Iwl + !PI) ::; fex, w, P) ::; 0i(1 + Iwl + !PI) (15)

on the space of functions of bounded variation (instead of WI,I(O, jRd)). Modifications
of this theorem which can be applied to the analysis of optical £low problems are given
below.

In Dacorogna [10, p. 167] we find the following resu1t:

Theorem 4. (see Dacorogna) For 1 < p < 00. Let f be continuous from 0 x jRd X

jRnxd into [0,(0) satisfying

1. fex, w,.) is quasiconvex.

2. There exists a positive constant Oi such that

o ::; fex, w, P) ::; 0i(1 + IwlP + IPIP) .

3. There exists a positive constant ß > 0 such that

If(x,w,PI) - f(x,wo,P2)1::; ß(l + Iwlp-I + IwolP-1+ !PIlp-1 + IP2IP-I)

. (I w - Wo I + !PI - p21) .

4. There exists a continuous, increasing function 7] satisfying 7](0) = 0 such that

If(x, w, P) - f(y, w, P) I ::; 7](lx - yl) (1+ IwlP+ IPIP) .

Then I[w] is weakly lower semi-continuous on WI,P(O; jRd).

The following corollary can be proven similarly to Theorem 3 by taking into account
the Sobolev embedding theorem.
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Corollary 5. For 1 < p < 00 and q satisfying

1 ::;q < nn!p if 1< p < n
or

1 ::;q < 00 if p 2: n
(16)

set s := max{q,p}. Moreover, let f be continuous from D x jRd X jRnxd into [0, (0)
satisfying

1. f(x,w,') is quasiconvex.

2. There exists a positive constant 07 such that

o ::; f(x, w, P) ::;07(1 + Iwl8 + IPIP) .

3. There exists a positive constant ß > 0 such that

If(x, w, PI) - f(x, Wo, P2) I::;ß (1+ Iwls-I + Iwols-I + In IP-I + IP2IP-I)

. (lw - WoI+ IPI - p21) .

4. There exists a continuous, increasing function TJsatisfying TJ(O)= 0 such that

If(x, w, P) - f(y, w, P) I ::; TJ(lx - yl) (1+ Iwl8 + IPIP) .

Then I[w] is weakly lower semi-continuous on WI,P(D; jRd).

3.2 Quasiconvex functional on BV(n, IR.d)
If f(x, w,.) is quasiconvex then the functional (7) defined on BV(D, jRd) is implicitly
defined via the following limiting procedure (relaxation)

I[w] := inf {lim inf ( f(x, wn(x), Vwn(x)) dx :
{Wn} n--+oo } !1

wn E WI,I(D,jRd) and wn -+ w E LI(D,jRd)} .

If f is quasiconvex and satisfies some growth properties then there exists an integral
representation for I[w] consisting of three integrals (see e.g. [15, 16]); the first integral
takes care of the regular parts of Vwand the second and third parts take care of the
singular parts of the measure VW.

A few results are available in the literature on weak lower semi-continuity of I[w]
on BV(D, jRd). One result showing semi-continuity of £his functional has been given
in Aviles and Giga [4]. Their result is technically complicated and we confine oUf
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considerations to a subclass of functionals (7) on the space of functions of bounded
variation for which an easier analysis is accessible. Let us assume bounded variation
penalization models of the form

f(x, w, Vw) = 4J(x, w) + IVwil ,

d

IVwil =L IVwil .
i=l

(17)

That is we assume that the functional f consists of two sums, where only one is depen-
dent on the gradient. In this situation lower semi-continuity of the functional I[w] is
easier tractable. At the current status of research in optical flow models on the space
of functions of bounded variation it is sufficient to consider such models; all (numer-
ically) investigated models are of such a form. The technical advantage of the term
IVwh is that the relaxed functional In IVwil dx is the bounded variation semi-norm of
all components for which an integral decomposition in regular and singular parts of the
measure is well-understood (see e.g. [13]).

In the following we utilize a weak continuity result on LP(rl, }Rd) similar to one stated
in Dacorogna [9]. Surprisingly we were not able to find the particular result in the
literat ure on calculus of variations. The difference to the result stated in [9] is that the
function 4J is also dependent on the space variable x. Thus for the sake of completeness
of the paper we include a proof although it is a straight forward modification of Theorem
1.1 in [9]. .

Lemma 6. Let 4J be uniformly Lipschitz continuous in rl with respect to W, z.e.,

14J(x,w) - 4J(x, wo) I :s; Llw - WoI .

Then the functional

H(w) := l4J(x, w) dx ,

is weakly lower semi-continuous on V(rl, }Rd) for any 1 :s; p < 00 if 4J(x, .) is convex for
alt x E rl.

Proof. Let wn be we~kly convergent to ilJ and L := lim infn--+oo H( wn) . We want to show
that L ~ H (ilJ). Without loss of generality we assume that the sequence {wn} satisfies

L = lim H(wn) .
n--+oo

From Mazur's lemma we get (see e.g. [11]) that there exists a sequence of convex
combinations {vn} such that

N N

vn =L O'.kWk, where L O'.k = 1 and O'.k ~ 0 and n :s; k :s; N
k=n k=n
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which converges to ilJ in LP(O, IRd).

Using the Hölder-inequality and the Lipschitz continuity of cjYwe find

(19)

Using the fact that cjYis convex with respect to the second component we find for
sufficiently large N

In 1>(x, in) dx Sc In 1> (x, ~QkWk) dx + E

N

:S L Ctk1cjY(x, Wk) dx + E:
k=n !1

:S L + 2E: .

Since E: is arbitrary the assertion follows. o
The assumption on the Lipschitz continuity in Lemma 6 can be modified: let us

denote by Lx,w,wo the Lipschitz constant of cjYat x, W, and Wo, i.e.,

If

IcjY(x,w) - cjY(x,wo)1 :S Lx,w,wolw - wal. (20)

(21)

with 0 :S s :S p - 1, holds, then the conclusion of (18), i.e., (19), remains valid.
Using Lemma 6 we are able to prove a result on lower semi-continuity on BV(O).

Theorem 7. Let cjY(x, w) be convex with respect to W. Moreover, let cjYsatisfy (21). Then
for any uniformly bounded sequence {wn} in BV(O, IRd) with weak limit w in LI (0) we
have w E BV(O, IRd) and

I[wJ :S lim inf I[wnJ .
n--+oo
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Proof. The bounded variation semi-norm is weakly lower semi-continuous on £1 (0, jRd),
and thus W E BV(O, jRd) satisfies

r l\7wll dx ::::;lim inf r l\7wnh dx < 00 .in n-+oo in
This result follows from the fact that the dual of LI and Loo are isomorphic, and therefore
for each iJ E CJ(O, jRn) and i = 1,'" , d we have

r wi\7.iJ dx = lim r w~ \7.iJ dx .in n-+oo in
Consequently,

which shows the assertion.
The functional H(w) is weakly lower semi-continuous on LP(n, jRd) for any p ~ 1 by

Lemma 6. Thus I is weakly lower semi-continuous. 0

Under some additional assumptions we are even able to prove a lower semi-continuity
result for nonconvex functionals which satisfy a growth condition.

Theorem 8. For n = 2,3 let 1>(x,w) be continuous and satisfy

with

where 0 ::::;q < 1 1 for n = 2 and 0 ::::;q < 1/2 for n = 3. Then for any uniformly
bounded sequence {wn} in BV(O,jRd) with weak limit w in £1(0) we have

I[w] ::::;lim inf I[wn] .
n-+oo

Proof. By means of the weak lower semi-continuity of the BV-seminorm we conclude
that w E BV(O, jRd) (see e.g. [17]).

• For n = 2 each subsequence of {wn} has a strongly convergent subsequence to
w in £8 (0, jRd) with 1 ::::;s < 2. This follows from the compact Sobolev embed-
ding theorem [20, Theorem 3.5.2 and Section 6.1.2]. Thus {wn} is itself strongly
convergent in £8(0, jRd). Moreover, the embedding of BV(O, jRd) into L2(0, jRd)

1All along this paper we use the convention xO = 1 for x 2 0

9
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(22)

....--------------------------------_._---

is bounded. Then by the Cauchy-Hölder inequality we get with the setting t > 2
and qt = 2 and 1/ s = 1 - l/t (for q = 0 set formally t = 00 and use xO = 1)

IL cP(x, wn) - cP(x, w) dxl

:s cL max{l + Iwlq, 1 + Iwnlq}lw - w~1dx

:s c (max {In (1+ Iwnl')'dx, In (1+ Iwl')' dx } ) 1/'

(In Iw - ,ll;.I' dX) 1/, .

The last term tends to zero by the Sobolev embedding theorem .

• For n = 3 each subsequence of {wn} has a strongly convergent subsequence to w
in LS(O, IRd) with 1 :s s < 3/2. Thus it follows from the Cauchy-Hölder inequality
with the setting t > 3/2 and qt = 3/2 and 1/ s = 1 - l/t and the growth property
of cP that

IL (cP(x, wn) - cP(x, w)) dxl

:sc Lmax{(l + Iwlq), (1 + Iwnlq)}lw - w~1dx

( )

1ft

:sc Lmax{(l + Iwlq)t, (1 + Iwnlq)t} dx

(In Iw - w~l'dX) 1/, .

Again from the Sobolev embedding theorem the assertion follows.

o
In particular the above proofreveals that the operator H is even continuous on BV(O, IRd).

3.3 Quasiconvex functionals on BD(D)

Let 0 ~ IRn be the space BD(O) of vector fields with bounded deformation (see e.g.
[28]). This is the space of all vector fields w E LI (0, IRn) satisfying

j(w) =t llDijWI dx < 00;

t,]=l

he re
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has to be understood as aRadon measure.
We remark that analogously to BV-functions it can be shown that j(.) is weakly

lower semi-continuous on V(n, jRd), p ~ 1.

Lemma 9. 1. Let {wn} a sequence of functions in BD(n) which converges weakly
in (V(n))n, 1 ::;p < 00 to W, then

j (w) ::; j (wn) .

Due to similar difficulties as for the functions space BV(n, jRd) we restrict our at-
tention to functionals of the form

with

J[w] := L f(x, W, Dijw) dx

d

f(x,w,Dij(w)) = <jJ(x,w) + L IDij(w)l.
i,j=1

(23)

(24)

Theorem 10. Let <jJ(x,w) satisfy the assumptions of Theorem 7. Then for any uni-
formly bounded sequence {wm} in BD(n) with weak limit w in LI (0,) we have w E
BD(n) and

I[w] ::; lim inf I[wm] .
m-too

Proof. Temam and Strang [28] showed that the embedding

i :BD(n) -+ (Ln/(n-l) (0,)r (25)

is continuous. Thus any bounded subsequence {wm} in BD(n) has a weakly convergent
subsequence in (Ln/(n-l) (0,) rand the weak limit w is in BD(n) due to the weak lower
semi-continuity of the BD-norm. This proves the assertion. D

4 Existence of minimizers of quasiconvex function-
als

The functional C[W] as introduced in (11) attains a minimum on any closed ball of
W1,p(n, jRd), 1< p < 00:

Theorem 11. Let f satisfy (10) and be quasiconvex. Then C[ w] attains a minimum
on any closed ball of W1,p(n, jRd), 1< p < 00.

Proof. Let {wn} be a sequence in a closed ball e of W1,p(n, jRd). Suppose that C[wn]
converges toz, the global minimum of C[w] in 8. By the theorem of Alaoglu-Bourbaki-
Kakutani, since W1,p(n, jRd) is reflexive, each ball is weakly compact and we can select
a subsequence that is weakly convergent to w E e such that C[wn] -+ z. Since C is
weakly lower semi-continuous the assertion follows. D
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For the functional 1[ü!] defined in (7) we have the following results on existence of
minimizers:

Theorem 12. Let f : 0 x lRd X lRd -'-+ [0,00) be continuous and f(x, ü!,.) quasiconvex
for all (x, ü!) E 0 X lRd.

1. Let f additionally satisfy the assumptions item 2- 4 in Theorem 4 and

[(x) + Q(Iü!IP + IPIP) :s; f(x, ü!, P) (26)

with Q > 0 and [E £1(0), then 1[ü!] attains a minimum on W1,p(0,IRd), 1< p <
00.

2. Let f additionally satisfy assumptions item 2- 4 in Corollary 5 and

[(x) + Q(Iü!IP + IPIP) ~ f(x, ü!, P) ,

with

(27)

o <Q,

Then 1[w] attains a minimum on W1,P(0, lRd).

3. Let f satisfy (17) and

[(x) +QIü!1 :s; cP(x, ü!) , (28)

where [ E £1(0). 1f cPsatisfies either the assumptions of Theorem 7 or Theorem
8, then the functional 1[ü!] attains a minimum in BV(O, lRd).

4. Let f satisfy (24) and (28). 1f cPsatisfies the assumptions of Theorem 7, then the
functional J[ü!] (defined in (23)) attains a minimum in BD(O).

Proof. 1.-2. The proof of the first and second item is very similar to the proof of
Theorem 2.9 in [10, p.180].

3.-4. The proofs are similar to the proof of the first item by taking into account
the special structure of the functionals 1[ü!] and J[ü!].

o

5 Analysis of optical flow models
The optical flow models considered in (2) reveal a special structure which is inherent
in many variational problems in nonlinear elasticity (see e.g. [5]). The most commonly
used model are of the form

f(x, Ü!, \7ü!) = W(x, \7ü!) + cP(x, ü!) .

12



In nonlinear elasticity W(x, Vw) is the stored-energy function and cP is a body force
potential. The obvious coherence between nonlinear elasticity and optical flow models
allows us to give physical interpretations in terms of nonlinear elastic models.

In the following we apply the general results of Sections 3 and 4 to the models
outlined in Section 2.

All along this Section we restrict our attention to 0 = [0, 1Fand assurne that the
image data I is in C2([0, 1]2), and we denote

Let p be a continuous non-negative function from .IR into [0, (0), then

(29)

is continuous with respect to (x, w). The term QlwlP, with Q > 0, is used to guarantee
ellipticity in the space W1,P(O, IRd) with p > 1 or in BV(O, .lRd) with 1 ~ P ~ 2. In
most numerical simulations this term can be neglected since already the properties of I
guarantee that

(30)

However, in general it is not possible to derive this estimate as one sees from the triv-
ial example I = O. In order to guarantee (30) one would have to impose technical
assumptions on I which we want to avoid.

In the following lemma we summarize a basic result on Lipschitz continuity of cP.

Lemma 13. Let p be uniformly Lipschitz continuous on every closed ball B(r) C IR
with radius r, with Lipschitz constant Lr, i. e., for all Si, S2 E B (r) we have

Let f = C(l + J2lwl), then

IcP(x, w) - cP(xo, w) I ~ LfC(Vi + 21wl) Ix - Xo I . (31)

Moreover, with f = C(l + J2 max{lwl, Iwol}) we have

IcP(xo, w) - cP(xo, wo)1 ~ (ViLfC + QPmax{lwIP-\ IwoIP-1}) Iw - wol . (32)

The following lemma relates convexity of p and cP:

Lemma 14. Let p ~ 1 and p convex. Then cP(x, w) is convex with respect to w.

13



Proof. For fixed x E 0 the function

is affine linear and thus the superposition

q;(x, w) = po h(w)

is convex (with respect to w), too.

Now we are able to formulate an existence result in BV(O, jR2):

o

Theorem 15. • Let 1 ::::;p < 2 in (29). 1/ p satisfies the growth condition

(33)

with 0 ::::;s < 1, then

1[w] = J q;(x, w) dx + a llV'Wl1 dx

attains a minimum on BV(O, jR2) .

• For 1 ::::;p ::::;2 in (29). 1/ p is convex with respect to W, and satisfies (33) with
0::::; s::::;1, then 1[w] attains a minimum on BV(O, jR2).

Proof. Let q := max{s,p - 1}, then from (32) we get

1. In the first case the function q; satisfies the general assumption of Theorem 8. For
p = 1, (28) is trivially satisfied with 0 = f = L For p > 1,

Thus, (28) holds with [ = f = -Q. From Theorem 12 the assertion follows.

2. The embedding of BV(O, jRd) in L2(0, jRd) is bounded. Let 1[wn] converge to its
infimum, then due to the boundedness of {wn} in BV(O, jRd) it has a subsequence
which is weakly convergent in L2(0, jRd). From Lemma 6 it follows (taking into
account the remark after this lemma) that In q;(x, w) dx is weakly lower semi-
continuous on L2(0, jRd). Since the bounded variation seminorm is weakly lower
semi-continuous on BV(O, jRd) as weIl, the assertion follows.

o

14



Now we turn to existence results on W1,P(O, )Rd). For 1 < p < 2, let 1 :::;q :::;2~P' for
p ~ 2 let 1 :::; q < 00. Set s = max{p, q} and let p be nonnegative with p(O) = 0,
satisfying

(34)

Then we have

o :::;c/J(x, w)
= p( (\7 I)t(x)w + 1t(X)) - p(O) + Q:lwIP

:::;6(1+ [wIS) ,

with a generic constant 6. This in particular shows that item 2 in Corollary 5 holds
with f replaced by c/J + W if W(x, \7w) quasiconvex, satisfying

1. there exists a positive constant ß > 0 such that

2. there exists a continuous, increasing function 7] satisfying 7](0) = 0 such that

IW(x, P) - W(y, P)I :::; 7](lx - y[)(1 + IPIP),

3. there exist constants Q > 0,0' > 0, and ~ E )R, such that

(36)

(37)

From (31) and (32) we see that items 3 and 4 in Corollary 5 hold with f replaced
by c/J + W. Moreover, (27) holds by the imposed assumptions on Wand (29). Thus
according to Theorem 12 the functional l[w] with p satisfying (34) attains a minimum
in W1,p(O,)R2).

5.1 Examples

In the following we show particular examples of weakly lower semi-continuous optical
flow models.

1. Let 1 :::;s + 1 :::;2. The function p(.) = I. Is+1 is convex and Lipschitz continuous
on bounded sets and satisfies

Thus according to Lemma 14 and Theorem 15 the functional

l[w] := ll(\7I)tw + 1t1

S+1 dx + a l (glwl + l\7wh) dx,

attains a minimum on BV(O, )Rd).
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The case s = 0 has been studied in [3].

2. Let us consider the specific example

11(V'1)t(x)w + It(x)lq dx + allwll~l,p(n,lRd) ,

with 1 < p and q satisfying (16) (with n = 2).

The according function p(t) = tq is Lipschitz continuous with Lipschitz constant
Lf = C(l + fq-l). Thus from Theorem 12 and Corollary 5 it follows that I[w]
attains a minimum on W1,P(D, I!~.2).

The case q = 1, P = 2 has been studied in [18].

The case q = 2, P = 2 goes back to [19] and has been analyzed in [26].

As long as W(P) is quasiconvex, satisfies some growth rate and is elliptic, Theorem
12 and Corollary 5 are valid and guarantee weak lower semi-continuity of I[w] on
W1,P(D, jRd) and existence of a minimizer.

In particular the general results are applicable in the following situations:

Let p = 2, 1 ::; q and p satisfy

(38)

• With

the functional I[w] is weakly lower semi-continuous on W1,2(D, jR2) and at-
tains aminimum.

• For the integrand in the anisotropic diffusion penalizing functional (4) there
exist constants c, C such that

for all P E jR2x2. Investigating the eigenvalues of D2(V' 1) shows that one
may choose

c '- ).2

sup IV'I(x) 1
2 + 2).2

x
C .- 1

This shows (37). The functional W(x,.) is quasiconvex since it is a sum
of convex operations. The estimates (35) and (36) follow from elementary
calculus.
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<Pi (T) = ET + A7 J1+ T / A~ - A7 (39)

is convex with respect to (PI, P2) and satisfies (35)-(37); he re E > 0 is a
positive parameter and Ai > 0 denotes a contrast parameter.

3. Nonconvex growth functions may be considered as weIl:

with 1 < p < 00 attains a minimum on WI,P(O, jRd).

attains a minimum on BV(O, jRd).

4. I. I is convex and thus from Lemma 14 we see that <p(x,.) is convex, too. Thus
from Theorem 12 it follows that

attains a minimum on BD(O).

6 Numerical Experiments
For our numerical experiments we consider the non-quadratic functional

(40)

where the growth function <Pi was specified in (39). In order to show the influence of
the growth function on the data term we compare this functional with [30]

(41)

For both convex functionals, the steepest des cent equations have been discretized with
a simple explicit finite difference scheme.

The results are depicted in Figure 1. It shows a weIl-known test sequence with a taxi
scene. Using functional (41) leads to a relatively noisy optical flow field. With functional
(40), noise is successfully removed and the flow field of the taxi is more homogeneous
and realistic. Für a suitable parameter choice, it is even possible to focus on the taxi
movement by smoothing away the flow fields of the two faster vehicles. Since they were
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faster, they are treated as outliers in the data term. As a result, they are significantly
less penalized than in the functional (41).

This shows that from a practical viewpoint, it may be interesting to consider non-
quadratic growth functions not only in the regularizer, but also in the data term. They
may lead to increased robustness and give additional degrees of freedom. Experiments
by Black and Ananden [6, 7] point in the same direction. In their articles, nonconvex
growth functionals have been motivated from robust statistics. However, our numerical
experiments indicate that a similar effect might be achieved using convex non-quadratic
growth functionals (40) which are more convenient from a numerical point of view.

Figure 1: (a) Top LEFT: Frame 10 of the Hainburg taxi sequence, n = (0,256) x
(0,190). (b) Top RIGHT: Frame 11. The car in the lower left corner moved to the
right, the taxi turned around the street corner, and the bus at the lower right corner
moved to the left. (c) BOTTOM LEFT: Computed optic fiow magnitude using the
functional (41) with the parameters a = 1000 and '\2 = 0.01. (d) BOTTOM RIGHT:
Result using (40) with a = 1000, '\1 = 0.000001, and '\2 = 0.01.
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