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0. Introduction

0. Introduction

In the last years a series of papers appeared that deal with the semantics of those
languages or systems that allow fof ‘some: notion of concurrency [1-8, 13-18, 22]. The
approach of Francez et al. [7] e.g. is" based on complete partial orders, the work of de
Bakker and Zucker [6] is based on coinpletg metric spaces, Plotkin presents an operational
approach [17], axiomatic methods cém be found in [1, 3, 10, 13, 15, 18]. The connection
between some of the approaches has been investigated in 8, 12].

We are here presenting an inve'étigation.and foundation of the metric space approach
of [6].

" In order to do so we briefly sketch how semantics is defined in [6]. The basic concepts
of [6] are the notion of a “t:roc‘ess domain” and a “domain equation”. Given a language L
for which semantics is to be defined, the authors suggest to construct a suitable equation
P = F(P), called domain equation, such that the solution of this equation (a complete
metric vspace) provides a domain for the interpretation of programs, i.e. the meaning
function maps programs to elements of this solution.

The authors demonstrate their ideas concerning the solution of such equations by

considering the following four prototypes

P={p}U(AxP) (1)
P ={po} Upc(A x P) (2)
P ={po} U (A — pe(B x P)) (3)
P={p}U(4d—pc((BxP)U(C— P)) (4)

where e.g. the Cartesian product is used to model the sequencing of actions, the powerset
construction g, (see section 1.) and the function space construction is used to model
nondeterminism, concurrency aﬁd communication.

For each equation P = %{P), 7 =1,2,3, a solution is constructed as follows (the
last equation is left to the reader): A sequence ((Pn,dn}) of metric spaces is constructed,
P, is defined as (UPn,Udy) . AIt is then shown that the completion (P, d) of P, isa
solution of the given equation. The thus constructed solutioﬁs gerve as semantic domains
for various sample languages. |

When looking closer at the proposed handling of process domain equations, a number
of questions arise imm,ediatelyﬁ : 4

Is the thus constructed solution vthe only solution? K not, what features charac-

~ terize the constructed solution? And most important, under what conditions is
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0. Introduction

it possible to give a solution of an equation P = F(P) in such a way? What
properties must the opera%(io:"'}". " have in order to guarantee the existence of a
solution alltogether? . '

In this paper we are dealmg w1th these questions. In particular, we establish a
framework for discussing the ex1stgnce of solutions of equations as discussed above. This
is an important task, because, wh'.envv‘ve are trying to apply the techniques of [6] to some

nontrivial language like CSP (8, 11 12] we have to have some criterion to decide if the

_respective equation does have a solutlon at all.

This problem already occurs w1th such simple-looking equations as equation (4),

the solution of which is left to the reader in [6].

We will prove that this equamon cannot be solved in the way claimed in [6].

This is interesting, as the as’sociaféd operator J does not satisfy our conditions for
existence of fixed points given m 't'.heo.r.ém 12 and theorem 14.

We finally make two observations. First, there is a strong analogy between the
construction of a fixed point theow for the category CPQ of complete partial orders
from the theory of fixed pointsin cvozm_‘pletve partial orders on one side and our ideas on the
other. Second, everyone who wants to use complete metric spaces to define the semnantics
of some language does not have't:,o go. into details about existence proofs of fixed points.
One only has to ensure some contracf.ioh'property of the operator involved according to
theorem 12 or theorem 14. This can be easily done by Lemma 11.

The paper is divided into ﬁi/‘e"se.'ctions Section I contains the definitions and ele-
mentary statements. In sectlon II we estabhsh conditions for existence and uniqueness
of fixed points. Section III is devoted_to equation (4) from above. Section IV deals with

the special role of the p.-operator and section V creates the connection to related work.




I. Definitions and Elementary Properlies

I. Definitions and Elementary Properties

Definition 1
Let (N,dy) and (M,dps) be metric spaces. A function f : N — M is called a
weak contraction f Ve e NVyeN

il (), 1 0) < dw (2:9).

Remark 1

In the following we will consider only metric spaces (N,dy) for which
VzVy dy(z,y) <1

holds. This is no restriction for our purposes, as dy and dy /(1 +dy) yield the same
_topology on IV . ‘

Definition 2 v

Let (M, dM) be a metric space (dM < 1), let ©(M) denote the collection of all
subsets of M and let g (M) denote the collection of all closed subsets of M. The
Hausdorff metric on p{M) is given by ‘

d(X,Y) = maz{sup inf d(z,y),sup inf d(e
. XY} =maz{sup inf d(z,y),sup inf d(z,9)}

for X,Y € p(M}.

It is well known that (p.(M),d) yields a metric space. Moreover it has been shown by
Hahn [9]:

Remark 2

If (M,das) is complete, so is (pc(M),d) .

Definition 3

‘Let (N,dn), (M,dar) be nietric spaces. A weak contraction f : N — M is called an
embedding, if it preserves distances, i.e. if das(f(2), f(v)) =dw(2z,y) V 2,y € N. If the
embedding f is onto, f is called an ssometry. »

Remark 3 ‘
Let (N,dn), (M,drs) be complete metric spaces. If e : N — M is an embedding:
then N can be identified with the closed subset ¢(N) of M. Hence, we can talk about
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I. Definitions and Elementary Properiies

the distance of N and M (as elements of g (M)} with respect to the embedding
e, denoted by d.(N,M) = d{e(N),M). The subscript e will often be omitted, if no

ambiguity arises.

Lemma 1 ‘
Let N, M, Z be complete metric spaces. Let e: N — M, f: M — Z be embeddings
then
de(N,M) £ deoy (N, Z) 1,
Proof:
d.(N,M) = d(e(N}), M)
= inf d(z,
59, &y Ao Y)
= inf d ,
sup Inf dl/(=), /()
su inf diz,v
xef(ll)\l) yE€f(e(N)) (29)

d{z,y)

<sup Inf
xcZ YEf(e(N))

! =d(f(e(N)),2)
- deof (N, Z)o
Hence, if N can be embedded into M and M into Z we will write

' \ d(N,M) < d(N, Z)

bearing in mind that the assumed embedding of N into Z is the functional composition

of the two given embeddings.

Definition 4

A sequence ((M;,d;));5, of metric spaces together with a sequence of embeddings

(ei);>0 s & :Mi — Miy1, is called an embedding sequence.

Definition §
Let (N,dy), (M,das) be metric spaces, e : N — M an embedding. A weak contraction
c:M — N iscalled a u-cut for e if,
i) VzeN cfefz)) =2

i) VeeM duy(z,e(c(2))) <.

1) ¢o f denotes the composition of e and f such that first e is applied and then f.
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I. Definitions and Elementary Propertiés

Let ((1\4.~,d,-)),~20 with (6")-‘20 be an embedding sequence with associated p;-cuts ¢;
then

cmn :Mm — M,
is defined by

id, , Hfm=n

Cmn =4 Cm-10--70¢n, Um>n
emo--ro0en_1, fm<n.

Remark 4 ‘
Let (N,dn), (M,drs) be metric spaces, ¢ : N — M an embedding, ¢ : M — N a
weak contraction such that (i) holds. One may interprete c(z) as an approximation of

z in N . Then (¢7) implies that the approximation is at least as good as 4.

Lemima 2 '
Let (N,dy), (M,das) be complete metric spaces, e : N — M an embedding with
g -cut ¢ then

N

de(N,M) < p.

Proof:

By remark 3 and definition 2.

In order to be ‘able to formulate the fixed point problem we have to define a suitable

category in which the equations have to be solved.

Definition 6

The category MS is defined as follows: the objects- of MS are the metric spé.'ces

{(d <1}, the morphisms are the weak contractions. The category OM.S has as objects

complete metric spaces, the morphisms are the weak contractions. The subcategory of

CMS that has the same objects and embeddings as morphisms is called CASr .

Rema.rk 5

In MS and CALS the one-element spaces are terminal, the empty set is initial.

Remark 8
In MS products exist.
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Remark 7

Let ({MM;,d;)) with (e;) be an embedding sequence in MS . Then the direct limes of -

(M;) in MS with respect to (e;) exists and is denoted by (UM;,Ud;}.

Lemma 3 : _

Let ({M;,di));>o be an embedding sequence in CMS. Let M denote the completion
of the direct limes (UM;,Ud;) of ((Mi,d;)) in MS. If there exists a 0 < k < 1 such
that d(M;,Mi11) < k-d(Mi—1,M;) for all ¢ then M =limAf; in pc(M).

Proof:

Obviously each M; can be embedded into M , hence (AL;) >0 is a Cauchy sequence in
(vc(M),d) . By Hahn’s Theorem [9] one concludes that its limes N equals

{z : ¢ = limz,, (z,) Cauchy sequence,z, € M,} and henée N C M. To show that
"M C N consider z € M, z=limyn, yn € UM;, (yn) Cauchy-sequence and construct

a suitable subsequence (z,) with z, € M,.

Lemma 4

Let ((Mi’di))izo with {e;);>o be an embedding sequence in CMS. The completioﬁ
M of (UM;,Ud;} is the direct limes of (M) in CJ\IS .

Proof:

By the universal properties of the completion and the continuity of the metric.

\

In the following we will be interested in such solutions of equations that are complete
metric spaces as in [6]. The reason why fixed points that are not complete metric spaces
are not interesting for the semantic specification of programming languages is easily

understood by the following example.

Example 1 (see [6]):
- Let (X,d) be a metric space, d <1, po a distinguished element, A an arbitrary set.
Consider ¥ = {po} U A x X together with the metric

d(pUaPO) =0,
d(po,y) = d(y,po) =1 for y # pq,
d((a,2), (', 2')) = {1, ifata

%d(z,m'), ifa=ad.

Let 7 be the functor in M.S that maps X to {po} U A x X . Define

\ .

Py ={po}, Pis1 =F(P), 120
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I. Definitions and Elementary Properlies

and P, = |J P; with the inherited metric then clearly there is an isometry between P,
20 ) v )

and F(P,),hence P, is a fixed point of 7. If, however, P, is to be used as a seran-

tic domain for the interpretation of programs, the problem arises that nonterminating

program executions cannot be handled. This can be achieved by taking the completion

of P, as a semantic domain. A nonterminating ¢omputation can then be modelled by .

the limes of the Cauchy sequence of its finite approximations.

Definition 7
Let F:MS — MS be afunctor. A metric space X in MS is called a prefized point of
7, if there is an embedding e : X — F(X). A prefixed point X is called a fized point

if ¢ is an isometry.

Definition 8
Let > 1 and let
F:MSx---xMS —MS

o

n times

be a functor. 7. preserves completeness, if for M;,...,M, in CMS, F(My,...,M,)

is an object in CMS. F preserves embeddings if, given embeddings ¢; : N; — M;,
i=1,...,n, Fler,...,en) is an embedding from F(Ny,...,Nyn} to F(My,...,My). If

F preserves embeddings we say that 7 preserves u -cuis if, given embeddings e; with

p-cuts ¢ , i=1,...,n, then Flery..eycn) 1sa p-cut for F(er,...,en).

Lemma §

Let F:MS — MS be a functor that preserves completeness and embeddings. Then
there is a prefixed point of 7 in CMS.

Proof:

If 70 = ® nothing has to be shown. Let now 78 # @, hence 7(X) #£ 8 for all X in
MS . Let M be any metric space consisting of one element and define M; =¥ (I\r[,-;l) ,
) 2 1. As My is complete, so are the M;. Moreover, My can be embedded into
F(Mo), eo : My — (M) = M, , hence there is an embedding ¢; : M; — M, . Let
M denote the completion of the direct limes of the (M;) . There is a canonical embedding
hi : M; — M ,hence there is an embedding 7 (hi) : F(M;) =M1 — F (M), 12 0. We
conclude that UM; can be embedded into ¥ (M), e:UM; — F (M) . By the universal
properties of the completion, the fact that 7 (M ) is complete and the continuity of the

metric we conclude the existence of an embedding from M to F{M).




I. Definitions and Elementary Properties

Corollary 6 v
Every functor ¥ : CMS — CMS that preserves embeddings has a prefixed point.

Corollary 7
Every functor 7 : CMSg — CMSE has a prefixed point.

Remark 8
The existence of a weak contraction from M to 7 (M) (Notation of Lemma 5) can be
concluded from the fact that M is the direct limes of the M;’s. This can be easily seen

by observing that

hi-1 =¢i_10h;
implies
Flhi=1) = Flei-1) o T (ki)
= ei0 T (k).

A

Definition 9
i) Let A be a set, {X,d) a metric space. Define a metric on A x X by

d((a,2), (', 2')} = { %—d(m, z') ieﬁsi.?é ¢

ii) Let A be a set, (X,d} a metric space. A — X 1is the set of functions from A to
X . Define a metric on A — X by

d(f,g) = sup d(f(a), g(a)).

acA

i1} Let (Xy,di), (X2,d2) be metric spaces. Define a metric on M) X M by

d((ﬁ ’ 32), (3/1, 3/2)) = max{dl (-’51 ’ yl), dy (052 y 92)}-

Lemm:; 8

Let the endofunctor 7 in M.S be defined by
FX)=AxX
F(£) = Ma,2)(a,/ (2))

then F preserves completeness, embeddings und gz -cuts:




I. Definiiions end FElementary Propertize

Proof: 3
Let {yn} be a Cauchy sequence in A % X ; from the definition of the metric it follows
that there is ng € IN and a € A such that y, = (ayzn) for n > ng and (z,) is a

Cauchy sequence in X . Hence {yn} convergesto (a,limz,). Let ¢: X — Y be an
embedding then

MTMUMQLT@ﬂdﬁm%=NWW@DJ%CWD)
:{ fa#d
d

(XTI e

d((a,2), (a',2')) else

Let ¢ be a u-cut for e, i.e.

Let ze F(X)=AXX,2z= (a,z),'then

(&) (F(e)()) = (a,c (e (2)])

andfor ze F(Y) =A XY,z =(a,y)
e, 7T () = (0r9), e e 6)
= 3d(5 ()
< pe

Lemma 9
The endofunctor F : MS — MS _
F(X) = A—X
f(f.) = AgXa f{g{a))
preserves completeness,'en.lbevddings}a.nd» i -cuts.
Proof: '

in analogy to Lemma 5.

Lemma 10
The fanctor ¥ : MS xMS -—+MS

F(X1,X3) = X3 x Xa
7(f1:12) = Mas3) (fa(e)s ofo)
R
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preserves completeness, embeddings and 4 -cuts.
Proof: B

in analogy to Lemma 5.

By now, we have treated some;éXa_.mplés' of functors that are relevant for the definition
of the semantics of programming languages. One functor of interest in this context, the

functor g, is given special tre'a»tmént in section IV.
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Il. The Existence end Uniguencas of Fixed Poinle

In this section we are going to denve condxt.mns for the existence of fixed points.
In analogy to the classical case of ﬁxed pomts in complete metric spaces we establish
conditions that guarantee that 3 ‘
i) a sequence {M;} of metnc spaces generated by iteration as in Lemma 5 is a
“Cauchy sequence”
and _
i} its “limes” is a fixed point.

The first criterion is derived ﬁ'ofxl the Banach principle.

Definition 10
Let 7 : MS — MS bea functor that preserves completeness and embeddings. F is

called a contraction functor, if ther_e exists a k, 0 < k < 1, such that for all N,M in
CMS and all embeddings e: N —M

dy (o) (F(N), T (M)) < k- d.(N,M).
Definition 11

Let F:MS —MS bea functbr that preserves completeness, embeddings and p -cuts.
7 is called cut-contractive, if there isa k, 0 < k <1, such that for every embedding e

w1th u-cut ¢, f(c) 1s a (k u) -cut for Fle).

For préctica.l purposes there is an easy way to determine contractiveness of a given

functor: o »

Lemma 11 . _

Let F = Fiof; or 7 = F 07 where % is an endofunctor in MS, 7 = 1,2, that

preserves embeddings. B

a} If #1 isa contraction functdr, kD) preserves completeness and satisfies a weak contrac-
tion property; i.e. dg, () (52(N), 2(M)) < de(N,M) for every embedding e, then
7 is a contraction functor. ' | '

b) If 7 is cut-contractive and F; preserves u-cuts then 7 is cut-contractive.

1




[I. The Existence and Uniguencss of Fixed Pointa

Proof T
a) Let F=F107;, e: N—-»M anembeddmg

ds (o (F (N), 7 (M)} = dryqs, oy (B (7 (V). 52 (72 (0)))
<RI, A(M)
C Kk de(N,M).
b) Let F =FoF, e:N —->M an embeddmg with p-cut ¢ : M — N . We have to
show that there isa k such that ¥ (c) is a (k- p)-cut. Clearly F{c)(7(e)(z}) =

Consider ’
(}'(c V(7 (e) (z)) ),q_-_d(fg(fl(C))(;2(;1(6))(3)),3)
3 Sk-p

as Fi(c) isa (k- u) -cut for .7'1 (e) and £ preserves this property.

heorem.lz : :
Let 7 : MS — MS be a contract.lon functor then 7 has a fixed point in CMS.
Moreover, this fixed point is unique up to isometry a.mong the objects of CMS. In
other words, 7 considered as ﬁxﬁctéqr from CMS to CMS has a unique fixed point.
Proof: L

Clearly 7o # 8. Asa first step Wwe construct an embedding sequence (M;) as in Lemma
5 by choosing M; as a one-element space and M; = F(M;_,), ¢ > 1; each M; is
complete and can be ldentlﬁedwmh an element of g,(M), where M is the completion
of UM; . We already know by ﬂeiﬁma 5 that M is a prefixed point.

dhpys (Mn%hM) dh..+1 (7(My), M) ,
< dh,,+,_ge(f(Mn), 7(M)) by Lemma 1
= dy"(,,,;) (f(M,,), F(M)) by the universal propert,.ies
_ of the direct limit
< k d;, (M., M),
where _the h; are the canomcal embeddings. Céntinuing this argument we get
| d(M”n;x,M) < g+t d(Mo, M),
hence M is the limes of the M in pc(M)
On the other hand
d(Mn-f-lv (M)) = d’(hn)(? f(M))
L k-dy,(Mn, M),

12
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hence F (M) is the limes of the M; in éc(f (M)) from which we conclude that M is
a fixed point. |
Let N be another fixed point of ¥ in CMS. Chose yo € N and construct Yy = {yo},
Y; = F(Yi=1), 7 2 1. Then the completion ¥ of UY; is a fixed point and can be
embedded into IV, hence :
dlY,N)=4d(F(Y), F(N))

< k-d(Y,N)
from where N =Y follows. As M; is isometrical to Y; we conclude that M is

isometrical to N .

Remark

Obviously definitions 10 and 11, as well as lemma 11 can be adapted to n-ary functors.

Example 2 v
The functor 7 given in Example 1 satisfies the conditions of Theorem 12 with k = %

as contraction constant.

Example 3 .
The functor §:MS — MS given by

G6(X) = {po} UA x (X U (B x X})

A

and suitably defined for morphisms satisfies the conditions of the theorem.

By applying lemma 10 various functors can be shown to satisfy the conditions of Theorem
12. There are, however, interesting cases for which the conditions of Theorem 12 are too
strong, e.g. functors that are built with the g.-functor. For these cases we use cut-

contractiveness.

Lemma 13

Let ¥ :MS — MS be a cut-contractive functor. Let My be a complete metric space
such that there is an embedding eg : My — F{My) with g -cut co.: F{My) — My . Let
M;=F(M;_1), 121, e, =7F(ei-1), ci = F(ci-1), 1= 1. Let M be the completion
of UM; and let h; : M; — M be the canonical embedding. Then theré is a p¢-cut
li :M — M; for h; with lim u; =0. '

1 — 00

A\
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fI. The Existence and [Uniguenass of Fized Poinls

Proof: , ‘
From the properties of 7 it is ‘;c'lear that ¢; is a (p-k')-cut for ¢; . For fixed n we
consider the family of morp}ﬁsxi;iéj (éﬁn)m'z o as given in Definition §, cnn : My, — M, .
As M is the direct limes of the M. according to Lemma 4 there is a uniquely determined
contraction [, : M — M, suchl\it'havt

cm,,= hmoln m20.
From this we iﬁnhediately get thét :

l,,h,,(z) =2z VzeM,.
It remains to evaluate d(z, hnlﬁ'(:pi) vfor. z€M. Forthislet n >0 and 2 € Mpiq. As

cn isa (u- k") -cut

d (Cn-f-l (z), en (Cn (cn+x(z)))) ﬁ ook
hence S

d(enﬂ (cns1(2)), entr (en (cn (c+1())) )) <pek

implying

d(z, ent1 (cn (cn (.cn+'v1<i(z)v)))): < d(z,ens1{ens1(2)))
S d(en+1 (ensa(o))senes (en (cn(cn-u(z)))))

B7RY AR TR
=g (B4R
thus
d(-"v;’n_—;—z,n(z)) Su: (k" + kn+1)
and in general S | :
e S
for all m 2 n. Pﬁt ‘

;I‘n':.'I"ka

. m2n
=“."_(1k—k)

d(z;In(2) = d(limzm, imemn(em))

= ]j_nxind('zm? Cmn(zm))

Let now 2 € M, z = limzm, Tm € Mp.

< fn,

14



II. The Esistenrce and Uniqueness of Fixed Pornts

omitting the explicit notation of the canonical embeddings.

Theorem 14 o

Let ¥ : MS — MS bea cut-;,c‘ontr.ac’tive functor and 79 2 @. Then 7 has a fixed
point in CM S that is unique up to isometry among the objects in CMS.

Proof: - o

Let My = {zo} bea one-elem‘e’nt space, eo : My — 7 (M) an erﬁbedding @d define
co : F(Mp) — My by |

cog = AT . Zg

¢o isa 1-cut for eg . Let M; =}"(M-1) , 2 21, and pull up the ¢; and ¢; analogously.
Let M be the completion of UA; . From Lemma 13 we conclude the existence of up-
cuts ln, ln : M — M, , for the canonical embeddings h,, hn : M, — M, where

fp = fb° % . By Lemma 2 we 'cthlu'de‘
d(MrnM) S Hn,y

hence M = limM, in p.(M). On the other hand dy(h”)(f(Mn),}'(M)) <k -pp as
F is cut-contractive, hence (M) =limM, =M up to isometry. Uniqueness is shown

v as in Theorem 12.

Remark 9

Under the conditions of Theorem 14 one can see that A is the inverse limes of
the M; in CMS with respect to the p,-cuts c,. As the [, induce contractions
F(la) : F(M) — F(M,) we ’ééh'clude the existence of a unique contraction f from
F(M) to M. The direct limes property of M guarantees the existence of a unique
contraction ¢ from M to F (M) . Showing that fog =id and go f =id and obser-
ving that the isomorphisms of MS are exactly the isometries yields a category-theoretic

proof of the above theorem.

Remark 10

As p. preserves p-cuts {see secf.ion TV} Theorem 14 together with Lemma 11 allow us

to handle a variety of interesting functors.
Ex 4

The functor F(X) = {po} U (A,-—_-» p;(B x (PU(C— P)))) satisfies the conditions of
Theorem 14. A

15



Il. The Esiatence and Uniguenece of Fized Points
Example 5§
The functor
7(X) = (po} U (A — p.({/,8, L}U(AUCUp(I)) x (XU (V x X) U (V — X))))

that is the basis for a semanti;: ":d‘evﬁnition of CSP in [12] satisfies the conditions of
Theorem 14. ‘

16



Ifl. The Egquation P={po}u(Ad—p ({Bx P}u(C—P)})

We claimed in the mtroductxon that the above equation in [8], the solution of which is

left to the reader, cannot be solved as proposed by [6], namely by putting

Yo“{z?o}
--{po}u(Aw(wxmu(o-»Y)))

and showing that the complet.lon Y of UY; is a solution of the above equation by
establishing an 1sometry between: Y and F(Y).

We do not claim that the equatxon does not have a solutlon at all. We do claim that Y
* cannot be one. :
Let us consider the functor .T( ) {po} U (A — pe((BxX)u(C — X))) in more
detail. 7 clearly preserves completeness and embeddings and according to Lemma 5, ¥
is a prefixed point of 7 ,i.e. there 1s an embeddmg ®:Y — F(Y). In order to establish
- that & is an isometry, we have.‘t.o Show that & is onto.
We claim that this cannot be t]ll_ev'i‘c'é_ée.' ‘Let us for simplicity only consider the case where
A, B and C are finite sets. o .
We define the infinite set

o = {Acpo; AcXadepo, AchareAaepo, - - }

and observe
i) S C(C—Y),
i) S isclosed, as there ao :n_.ot exist any nontrivial convergent sequences in S ,
ie. S € pe((BXxY)U(C—Y)),
i) Se has non co'untabl.yv.mz:n.xy infinite subsets T, , each of which is closed, as
there are no nontrivial coheergent sequences.

To see this, remember that the-me_tric on Y,4; is given by

dnt1 (P, o) = d(p, po) = lv»‘ "p-%f p.o'
d,,.H(p,p)—sup{d( 1?( ))}
and for z,y € (B % Y,,) u (C,-.—-» Y,.)

(1 . 'if'zEBXY,.,yEC—-»Y or viceversa
' 1, : fz,y€eBXYn, z=(a,2},y=(b,y'), 0% b
d(z.y) = 1d(.’r:’ y) Co fz=(a,2'), y=(a,¥')

snexp(z( ),y(c)) ifz,ye C— Y.

17




HI. The Eguation P={po}u(A—p.({Bx PIU{C—F)))

Let us assume that there is anlsometry ®:Y — F(Y). We consider the family of

functions - R
Cg=daSs

, Gr,, = AaTe
where Ty 1s an infinite subset of S Clearly g and all g7 are elements of 7(Y). If
®:Y — F(Y) is onto there must be an f €Y such that ¥(f)=g. f €Y implies

that either
f € U Y;

n>0
-orT e
-f’— lim/fn fa €Y.
Assume that f =1lim f, and f ¢ UY~ then we get
0 = lim d(2(/), 2(/n))

= hm d(g, ®(/n))

yielding $(fn) — g and hencev a' contradlctlon, because only a trivial (finally constant)
sequence can converge towards g On the other hand & is one-to-one and {f,} cannot
be trlvxal because f ¢ UY; was assumed

So we conclude that no element m Y \ U Y; can be mapped to g or analogously to any
gT., s thus only remain the elements olf>fJY as candidates. But from the definition of
the functor it is clear that UY has only countably many elements. Hence there cannot

exist an isometry.
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IV. The functor p.

IV. The functor O

In this s_ection we deal with the operator g, that deserves some special consideration
because it cannot be simply considered as an endofunctor in M.S, as, in general, an
arbitrary morphism in MS |

f:N—-M

will not yield a morphism from p.(N) to p (M) via AU f(U). So p has to be
restricted to those morphisms f : N — M that are closed, i.e. that they map closed
subsets of N to closed subsets of M . If we denote by MS, the subcategory of MS

that has the same objects as MS and closed morphisms as morphisms then p. is a

functor from MS, to MS.

Clearly all the definitions of prefixed point, completeness preserving etc. can be easily

adapted to the case of such a “partial” functor.

Lemma 15:

The functor g, : MS. — MS preserves completeness, embeddings and g -cuts.

Proof: |

pc preserves completeness according to Remark 2. Preservation of embeddings 1s trivial,

preservation of p-cuts follows from the definition of the Hausdorff metric.

For functors 7 that arise from combination of g, with other functors it has to be ensured
that the construction of fixed points by iteratively defining an embedding sequence (M)
with respective p-cuts is not affected.
We have to establish that starting with

eo :My — F(My) Mo = {ze}

co :F(Mo) — My co = Azzg

we can always apply F iteratively to get

& = f'- (Co)
Ve C;'==].'.(CQ).

Definition 12:

A metric space (X,d) has the minimum distance property, if there exists seR,8§20,
such that for all z,y€ X, z#y, d(z,y) 26.
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V. The funciorp,

Remark 14: ‘
The topology of a metric spac'év_{ﬁ/’it.h the minimum distance property is the discrete

topology, as every one-element set is open.

Lemmna 16: el
The functors 7 (X) = Ax X, a(X) = A —» X, %(X) = p.(X),
Fo( X1, X3) = X1UX,, s (Xl,Xg) X3 X X3 preserve the minimum distance property,
i.e. if the arguments of %; m}ubnt the minimum disntance property, so does the resulting
metnc space.
Proof:
As an example we treat the case of Jy. Let (X,d) be a metric space and 6 € IR, 6§ > 0
such ﬁhat d(z,y) > 6 Yaz,y€ ‘X."Ltve't"f,g € RH(X)

d5:0) = smp (7 (e, ole)

26.

Lemma 17: .

Let 7 be a functor that is com'p‘déed of functors in {#1,...,%} (see Lemma 16). Let
N be a metric space that has the minimum distance property and g : M — N a
contraction, then ¥ is deﬁned for g

Proof: o ‘

For ease of notation we only tréat. unary functors in {f,...,%}. Let hence

7= 61063008k with § (unary) in {f,...,/s}, 1 <i<k. As N has the
minimum distance property so does G61(N), §3(G1(N)), etc. and finally F(N) by
Lemma 16. Hence the topology of‘ 91( }> G2(G1(N)) etc. is the discrete topology by
Remark 11. As N has the diécre"t.:e‘ topology we conclude that g is a closed morphism,
hence §; is defined for g, §1(g) _:'gl (M) — G1(IN) . Similarly §;{N) has the discrete
topology, hence §, is defined for 91(9) and so on. ’

Corollary 18: _
Let 7 be asin Lemma 17, N a metric space that has the minimum distance property,

g:M — N a morphism. Then 77 is defined for g forall n> 1.

The above observations guérant.ée that our results also hold for functors that are com-
posed from p. and others. Obviously the above results can be extended to any other

functors that preserve the minimum distance property.
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V. Relaled Wort

‘V," Related Work

Recursive specification of “domams” pla.ys a crucial role in the denotational semantics
based on metric spaces [6] as wellas ‘i’n_'t.he denotational semantics as develloped by Scott
and Strachey. First approaches ;f)fj S.g‘;)tt to solve recursive equations were his inverse limit
construction {20}, which were l_é;.t‘g.féﬁbstituted by using a universal domain and a fixed
point construction [21]. » |

The categorical aspects of the“s'e “approaches were studied e.g. by Reynolds [19] and
Wand [24]. These investigations {-t_;ypicall.y stuck to one fixed category, e.g. the category
CPO of complete partial ordv'e'rsv with strict continuous functions or the category of
countably based continuous latf._ic_gshnd ‘continuous functions, and are at the same level
of abstraction as our work prevs_en_t_e‘d here.

In [23] and [24] a further abstrééﬁ.‘ion' step is initiated to develop a theory of solving

recursive equations for general .éategoﬁes. For this [23] elaborate a basic lemma:

Basic lemma [23] A

“Let k be a category with initial object 1r andlet F:k—k bea functor. Define the
w-chain A to be (F"(ly), 7"(.LF_L)) . Suppose that both x: A — A and

Fu:FA — FA are colimiting :c'.qn_e_s: then the initial fixed point exist.”

In the sequel [23] discuss how ﬂi_e :conditions of the lemma can be satisfied for the class
of O -categories, ie. categories "bt'h’a-t,exhi_bit certain order structures in their hom-sets.

If we compare. our procedere ;Qithv'_that implied by the basic lemma, then obviously
choosing k =CMS our M (thé completion of UM; in theorems 12 and 14) plays the
role of A and we know that M. is the direct limes of (A;} in CMS . In order to prove
the fixed point property, howé.v‘e'l", we do not show that 7 (M) is direct limes of 7(Af;),
but rather show that the distance between 7(M;) = M;1; and 7(M) (understood as
elements in p.(¥(M))) tends to zero as i — oco. Having then established the fixed
point property of M we get #s a t,rivi:ﬂ conclusion that 7 (M) is the direct limes of
7 (M;). So, M is a fixed point if and only if ¥ (M) is direct limes of (A;). In addition,
in CMS besides exis_fence the }mi_queness Qf fixed points is guaranteed for functors with

a contraction property.
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VI. Conclusion

. ¥E Conclusion

We have proposed a rigorous &E@uieWork within which the problem of solving recursive
equations such that the solution 'c"(’mstbitutes a complete metric space can be formulated
and discussed. We established ébnditions, that are very easy to verify for a given functor,
see Lemma 11, under which the (uhiqixe) existence of a solution is guaranteed. For
example, all'équations in [6] -i_‘e)ﬁcépt‘ for equation (4) from our introduction - satisfy
either the conditions of Theorer&ﬂ or Theorem 14. Equation (4) has been investigated
and it has been shown that the methods of [8] do not apply to it. The question if this
equation does have a solution at all is open. We have also given special attention to the

functor p. because of its partiality and we pointed out some connection to related work.
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