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O. inlrotivetion

. O.. Introduetiolll

In the last years 30 series of papers appeared that deal with the semantics of those

languages or systems that allow forsom~ notion of concurrency [1-8, 13.18, 22]. The

approach of Francez et 31. [7] e.g. is based on complete partial orders, the work of de

Bakker and Zucker [6] is based on complete metric spaces, Plotkin presents an operation31

approach [17), axiomatic methods can be found in [1,3, 10, 13, 15, 18). The connection

between some of the approaches has been investigated in [8, 12).

We are here presenting an investigation and foundation of the metric space approach

of [6].
In order to do so we brießy sketch höw semantics is defined in [6]. The basic concepts

of [6] are the notion of a "processdomain" and 30 "domam equation". Given 30 language L

for which semantics is to be defined, the authors suggest to construct 30 suitable equation

P = l(P) , called domarn equation, such that the solution of this equation (a complete

metric space) provides a domainfor the interpretation of prograros, i.e. the meaning

function maps programs to elements of this solution.

The authors demonstrate their ideas concerning the solution of such equations by

considering the following four prototypes

p= {po} U (A X P)

P = {po} U Pc(A X P)

P = {Po} U (A -t ~c(B X P))

P = {po}U (A -t ~c ((B X P) U (0 -t P)))

(1)

(2)

(3)

(4)

where e.g. the Ca.rtesian product is used to model the sequencmg of adions, the powerset

construction~c (see sedion I.) and the function space construction is used to model

nondetenninism, concurrency and communication.

For each equation P = ldP), i = 1,2,3, 30 solution is constructed as follows (the

last equation is lcft to the reader): A sequence ((Pn, dn)) of metric spaces is cOllstructed,

Pw is defined as (UPn,Udn). his then shown that the completion (P,d) of Pw is 30

solution of thc given equation. The thus constroded solutions serve as semantic domarns

for vanous sampie languages.

When looking doser at the proposed handling of process domarn equations, 30 number

of questionsarise ~ediately:

Is the thus .constructed soll1tion the only solution? If not, what features charac-

tenze the constructed solution? And most important, under what conditions is
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o. lntrooluction

it possible to give a solutionofan equation P = l(P) in sucb a way? Wbat

properties must tbe operator lhave in order to guarantee the existence of a

solution alltogether?
In tros paper we are dealing withthese questions. In particular, we establish a

framework for discussing the existence.of solutions of equations as discussed above. Tros

is an important task, because, when we are trying to apply the techniques of [6}to some

nontriviallanguage like asp [8,11, 121 we have to have some criterion to decide if the

respective equation does have a solution at all.
Tros problem already occurswith such simple-Iooking equations as equation (4),

the solution of wroch isleft to thereader in [6].

We will prove that tros equatioricannot be solved in the way claimed in [6].

Tros is interesting, as the assodated operator 1 does not satisfy our conditions for

existence offixed points given inthe()reJ:I).12 and theorem 14.

We finally make two observations. First, there is a strong analogy between the

construction of a fixed point theory forthe category GPO of complete partial orders

from the theory of fixedpoints in complete partial orders on one side and our ideas on the

other. Second, everyone who wantsto usecomplete metric spaces to deHnethe semantics

of some language does nothaveto go into details about existence proofs of find points.

One only has to ensure some contractionproperty of the operator involved according to

theorem 12 or theorem 14. Tros canbe easily done by Lemma 11.

The paper is divided into five sections. Section I contains the definitions and eIe.

mentary statements. In section II weestablish conditions for existence and uniqueness

of fixed points. Section III is devotedto equ,ation (4) from above. Section IV deals with

the special role of the ~c -operator and section V creates the connection to related work.
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[. Definitions anti Elementar!! Properlies

I. Definitions and Elementary Properties

Definition 1

Let (N,dN) and (.1\-1, dM) be metric spaces. A function f : N -+ Al is called a

weak contract£on, if V xE N V yEN

Remark 1

In the following we will consider only metric spaces (N, dN) for which

holds. This is no restriction for OUT purposes, as dN and dN /(1 + dN) yield the same

topology on N.

Definition 2

Let (M, du) be a metric space (dM ~ 1), let te(M) denote the collection of all

subsets of Ai and let te c{l\l) denote the collection of all closed subsets of !vI. The

Hausdorff metric on ~(Al) is given by

d(X,Y) =max{sup inf.d(x,y),sup in! d(x,y)}
:rEX yEr yEy:rEX .

for X,Y E ~(M).

It is weIl known that (~c (Al), d) yields a metric space. Moreover it has been shown by

Hahn [9]:

Remark 2

If (M, dM) is complete, so is (~c (M), d) .

Definition 3

Let (N, dN), (M, dM) be metric spaces. A weak contraction f :N -+ M is ealled an

embeddinq, if it preserves distances, i.e. if dl\{ (f(x) ,/(y)) = dN (x, y) V x, yEN. If the

embedding f is onto, f is called an isometry.

Remark 3

Let (N, dN), (Al, dM) be complete metric spaces. If e : N -+ M is an embedding

then N can be identified with the closed subset e(N) of Al. Hence, we can talk about
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I. Definitions an" Elementary Properties

the distance of N and M (as elements of ~c(M)) with respect to the embedding

e, denoted by de (N, M) = d( e(N), M) .. The subscript e will often be omitted, if no

ambiguity arises.

Lemma 1

Let N , M , Z be complete metric spaces. Let e: N - M , j :M - Z be embeddings

then

de(N,M) 5 deo/ (N, Z) 1)

de(N,M) = d(e(N),lYJ)

= SUp inf d(x, y)
:rEM yEe(N)

= SUp inf d(J(x), j(y))
:rEM yEe(N)

- sup inf d(x, y)
:rE/(M) yE/(e(N»

5 sup inf d(x, y)
:rEZ yE/(e(N»

=d (J (e (N)) , Z)

= deo/ (N, Z).

Hence, if N can be embedded into M and M into Z we will write

d(N, A-f) 5 d(N, Z)

bearing in mind that the assumed embedding of N into Z is the functional composition

of the two given embeddings.

Definition 4

A sequence ((Mi, d.-)k::o of metric spaces together with a sequence of embeddings

(e;)j~O' ei : Mj - Mi+1 , is called an embeddinq sequence.

Definition 5

Let (N, dN), (Al,dM) be metric spaces, e: N -Al an embedding. A weak contraction

c : lYJ - N is called a u -cut (ar e if,

i) V xE N

~i) V x EM

1) e 0 f denotes the composition of e and

c(e(x)) = x

dM (x, e (c (x))) 5 f.L.

\
j such that -first e is applied anti then j .
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I. Definitions and Elementary Properties

Let ((Ali, di))i2:0 with (ei)i2:0 be anembedding sequence with associated J1-i-cuts Ci

then

Cmn : Ivlm -+ Mn

is defined by

. {id'
Cmn = Cm-l0"'OCn,

em 0 ••. 0 en-l,

üm=n
üm>n
if m < n.

Remark 4

Let (N, dN), (.Al,dM) be metric spaces, e : N -+ M an embedding, c: M -+ N a

weak contraction such that (i) holds. One may interprete c(x) as an approximation of

x in N . Then (ii) implies that the approximation is at least as good as jl.

Lemma 2

Let (N, dN), (M, dM) be complete metric spaces, e N -+ l\1 an embedding with

f.J. -cut C then

Proof:

By remark 3 and definition 2.

\

In order to be able to formulate the fixed point problem we have to define a suitable

category in whieh the equations have to be solved.

",Definition6

The categoryMS is defined as fo11ows: the objects- of AIS are themetric spaces

(d ~ 1) , the morphisms are the weak contractions. The category 01\1S has as objects

complete metric spaces, the morphisms are the weak contractions. The subcategory of

OMS that has the same objects and embeddings as morphisms is ca11ed ClviSE.

Remark 5=

In lviS and OMS the one.element spaces are terminal, the empty set is initial.

~Remark 6

In M S products exist.

\
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[. Definitions find ElementGrY P,opertitB

Remark 7

Let ((1\-1i,di )) with (ei) be an embedding sequence in M S. Then the direct limes of

(1\-1,.)in AIS with respect to (e.-) exists and is deIioted by (UMi, Ud,.) .

Lemma 3

Let ((1\-1i,di))i~O be an embedding sequence in CMS. Let M denote the completion

of the direct limes (UAli, ud,') of ((Mi, di)) in M S. If there exists a 0 ~ k < 1 such

that d(A/i,..i\Ii+d ~ k. d(Mi-l,Mi) for a11 i then Jlvf = limNIi in ~c(M).

Proof:

Obviouslyeach NIi can be embedded into Jlvf, hence (A.f.-)i~O is a Cauchy sequence in

(~c(M), d) . By Hahn's Theorem [9] one concludes that its limes N equals

{z : Z = limxn, (Zn) Cauchy sequence, Xn E JlvIn} and hence N ~ JlvI. To show that

AI ~ N consider z E NI, z = limYn ,. Yn E UMi, (Yn) Cauchy-sequence and construct

a suitable subsequence (xn) with Zn E Jo.,fn •

Lemma 4

Let ((Mi,di))i~O with (e.-)i~O be an embedding sequence in Ci'vIS. The completion

AI of (UMi, Ud..) is the direct limes of (Jo.,f.-) in CAI S .

Proof:

By the universal properties of the completion and the continuity of the metric.

In the following we will be interested in such solutions of equations that are complete

metric spaces as in [6]. The reason why fixed points that are not complete metric spaces

are not interesting for the semantic specification of programming languages is easily

understood by the fo11owingexample.

Example 1 (see [6]):

Let (X, d) be a metric space, d ~ l, Po a distinguished element, A an arbitrary set.

Consider Y = {po} U A X X together with the metric

d(po, po) = 0,

d(po,y)=d(y,po)=l for y1=Po,

d(( ) (' ')) {l, ifa1=a'a, x , a, Z = 1d( ') .f _ ,2" X,X ,la - a.

Let 1be the functor in NI S that maps X to {po} U A X X . Define

\
Po = {po}, Pi+l = 1(Pi), i~0
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I. Definitions and Elementary Properlies

and Pw = U Pi with the inherited metric then elearly there is an isometry between Pw
i>O

and 1 (P w) ~ hence P w is a fixed point of 1 . 1£, however, P w is to be used' as a seman-

tic domain for the interpretation of programs, the problem arises that nonterminating

pro gram executions cannot be handled. This can be achieved by taking the completion

of Pw as a semantic domain. A nonterminating computation can then be modelled by

the limes of the Cauchy sequence of its finite approximations.

Definition 7

Let 1 : lvfS _ !viS be a funetor. A metric space X in MS is called a prefi:xed po~'ntof

1 , if there is an embedding e: X - 1 (X) . A prefixed point X is called a fi:xed point

if e is an isometry.

Definition 8

Let n ~ 1 and let

1: MS x ... xMS -MS

n times

be a functor. 1 preserves completeness, if for lvI}, ... ,Poln m ClviS, 1(M1, ••• ,lvin)

is an object in CMS. 1 preser1Jes embeddings if, given embeddings ei : Ni - Mi,

i=l, ... ,n, 1(el, ... ,en) isanembeddingfrom 1(N1, •.• ,Nn) to 1(Mb ••• ,Mn). If

1 preserves embeddings we say that 1 preserves /..f -cuts if, given embeddings ei with

fl,-cuts Ci, i=l, ... ,n,'then 1(Cl""'Cn) isa fl,-cutfor 1(el, ... ,en).

Lemma 5

Let 1 : fviS -+ AIS be a functor that preserves completeness and embeddings. Then

there is a prefixed pointof 1 in CPoIS.

Proof:

1£ 10 = 0 nothing has to be shown. Let now 10 =1= 0, hence 1(X) =1= 0 for all X in

fviS. Let !vlo be any ~etric space consisting of one element and define Mi = 1 (lvIi-I) ,

i ~1. As Mo is complete, so are the Mi. Moreover, Mo can be embedded into

1 (Mo) , eo : Mo -,0 1 (NIo) = IM1 , hence there is an embedding ei : Mi -+ Mi+ 1 • Let

Al denote the completion of the direct limes oI the (Mi)' There is a canonical embedding

hi : Poli-+!vI , hence there is an embedding 1(hi) : 1(M;) =Mi+l -+ 1(M), i ~O. We

conelude that UAIi can be embedded into 1 (1\1), e: UMi -+ 1 (M) . By the universal

properties of thecompletion, the fact that 1 (M) is complete and the continuity of the

metric we conelude the existence of an embedding from Mto 1(1\1).
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I. Definitions lind Elemenlllry Properlics

Corollarv 6

Every functor ,: CMS --+ CMS that preserves embeddings has a prefixed point.

Corollary 7

Every frinctor 1:CAt[SE --+ CMSE has a prefixed point.

Remark 8

The existence of a weak contraction hom M to 1 (1"1) (Notation of Lemma 5) can be

concluded from the fact that !vI is the direct limes of the Mi 's. This can be easily seen

by observing that

hi-1 = ei-l 0 hi

implies

1(hi-d = 1(ei-d 0 J(h,.)

= ei 0 1(kr").

Definition 9

i) Let A be a set, (X, d) a metric space. Define a metric on A X X by

d( ( ) (' ')) { 1 if a =1= a'a, x , a, x = ld( ') 12 x, x e se.

ii) Let A be a set, (X, d) a metric space. A --+ X is the set of functions from A to

X . Define a metric on A --+ X by

d(l,g) = sup d(l(a),g(a)).
- aEA

Lemma 8

Let the endofunctor 1 in M S be defined by

1(X)=AxX

1(1) = .\(a,x)(a,f(x))
\

then ,. preserves completeness, embeddings und J1 -cuts:
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I. Defin£iioM "ni Elemenl",y Pf'o,e,'i~&

Proof..;.
Let {Yn} be a Cauchy sequence in A X X ; £romthe definition of the metric it follows

that there is no E IN and a E A such that Yn = (a, xn) for n > no and (Zn) is a

Cauchy sequence in X. Hence {Yn} converges to (a,limxn). Let e : X -- Y be an

embedding then

d (1(e) ((a, z)) ,1 (e) ((a', x'))) = d (( a, e (x)) , (a', e (x')))_ {I if a f a'
- ~d((a, x), (a', x')) else

= d((a, x), (a', x')).

Let c be a fo'.cutfor e, i.e.

e(e(x)) = x V x E X

d (y, e (c (Y))) ~ fo' V Y E Y.

Let z E l(X) = A X X, z = (a,x), then

l(c}(l(e)(z)) = (a, c (e (x)))

= (a, x)

=z.
and for z E l(Y) = A X Y, z =(a, y)

d(z, 1 (e}1(c)(z)) = d ((a, y), (a, e (c (y))))
1

= 2d(y,e(c(y)))

~ fo'.

Lemma 9

The endofunctor 1 :MB--MB
l(X) = A--X

1(1) = >'g >'a /(g(a))

preserves completeness, embeddings-and ~ -cuts.

Proof:

in analogy to Lemma 5.

Lemma 10

The functor 1 :MS X MS -- MS.

1(Xr,X2) = Xl X X2

1(11112) = >.(x,y) (h(z),h(y))
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I. Definition •• n4 Elernenl.,y Properties

pr(!serves completeness,embeddings and/L -cutS.

Proof:

in analogy to Lemma 5.

By now, we have treated someexamples of functors that are relevant for the definition

of the semantics oI programming languages. One functor of intell"estin this context, the

functor ~c, is given special treatIIlent in section IV.
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ll. Thc Ezi8tencII lind UnifUllnllu 01Fix.4 Pointe

ll. The Existence andUnigueness 01 Fixed Points

In this section we are going to deriveconditions for the existence of lixed points.
"

In analogy to the classical case,'6{6xea points in complete metric spaces we establish

conditions that guarantee tilat

i) a sequence {Md ofmetric spaces generated by iteration as in Lemma 6 is a

"Cauchy sequence"

and

ü) its "limes" is a fixed point.

The first criterion is derived frollltheBanach principle.

Definition 10

Let J : M S -- M S be a functorthatpreservescompleteness and embeddings. 1 is

called a contraction fundor, iI thereexists a k, 0 ~ k < 1, such that £or all N,M in

CMS and all embeddings e: N-.M

Definition 11

Let 1: MS -- MS be a nmctor that preserves completeness, embeddings and IJ -cuts.

1 is called cut-contraetiv~ iI there isak, 0 ~ k< 1, such tilat £or every embedding e

with IJ-cut c, 1(c) is a (k "lJ),cut for 1(e).

For practical purposes there is an easy way to determine contractiveness of a given

functor:

Lemma 11

Let 1 = '1 0 ''1 or 1 = ''1 011 where Ti is an endofunctor in MS, i = 1,2, that
preserves embeddings.

a} lf '1 is a contraction functc>r, ''1 preserves completeness and satisfies a weak contrac-

tion propertYi i.e. dF~(II)(1'1(N), ''J(M)) ~ dll(N,M} for every emheddinge, then

1 is a contraction funetor .

b) I£ '1 is cut-contractive and1'Jpreserves IJ -cuts then 1 is cut.contractive.
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Proo!:

a) Let 1 = '1 0 12, e: N-M an embedding.

d'(e) (l(N), J{Mn= d'2('de» (12 (ldN)), 12(ldM)))
..$d'1(e)(11 (N), 11(M))

$ k. de(N,M).

b) Let 1 = '1 0 12, e: N -Man embedding with p -cut c: M- N . We have to

show that there is a k such:ihatl( c) is a (k. p) -cut. Clearly 1 (c)( 1 (e)( x)) = x .
Consider

as 1t{c) 18 a

d(l(c) (l(e) (4), x} .d(12 (11 (c)) (12 (11 (e)) (x)), x)
-5.k . p

(k. p) -cut for lde) and 12 preserves this property.

Theorem 12
Let 1 : MS _ MS be a conttaction runctor then 1 has a fixed point in GMS.

Moreover, thisfixed point is unique up to isometry among the objects oi GMS. In

other word8, 1 considered as functor £rom GMS to GMS has a unique 6.xedpoint.

Proo!:

Clearly 10 f". As a first stepweconstruct an embedding sequence (Md as in Lemma

5 by choosing Mo as a one-~lement space and Mi = 1 (Mi -1), i ~1; each Mj is

complete andcan be identifiedwith an element of ~c(M), where M is the completion

oe UMi. We already know byL~mma 5 that M is a prefixed point.

dhn+1 (Mn+1 ,M) = dhn+1 (l(Mn),M)

~ dhn+1oe(1(Mn), l(M)) by Lemma 1

= dl(h,;) (l(Mn), l(M)) by the universal properties

of the direct limit

where the hj are the canonical embeddings. Continuing this argument we get

d(Mn+hM) -5. kn+ld(Mo,M),

henee M is the limes of theMjin ~c(M).

On the other hand

d(Mn+17 l(M)) = d'(hn) (l(Mn), l(M))

-5.k .dhn (Mn,M),

12
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ll. TAt: Ezistt:nct: and Uniqunus 01 Fizt:d Points

hence 1 (1\tI) is the limes of the Mi In ~ c (1 (M)) £rom which we conclude that M 15

a fixed point.

Let N be another fixed point of 1 in CAIS. Chose YoE N and construct Yo= {Yo} ,

Y;. = l(Yi-d, i ~1. Then the completion Y of UY;. is a fixed point and can be

embedded into N , hence
d(Y, N) = d(l (Y), l(N))

:5 k. d(Y,N)

£rom where N = Y folIows. As Mi is isometrical to Yi we conclude that M IS

isometrical to N.

Remark

Obviously definitions 10 and 11, as weil as lemma 11 can be adapted to n -ary functors.

Example 2

The functor 1given in Example 1 satisfies the conditions of Theorem 12 with k = t
as contraction constant.

Example 3

The functor 9 :1\1S -- M S given by

9 (X) = {Po} U A x (X U (B x X))

and suitably defined for morphisms satisfies the conditions of the theorem.

By applying lemma 10 various functors can be shown to satisfy the conditions of Theorem

12. There are, however, interesting cases for which the conditions of Theorem 12 are too

strong, e.g. functors that are built with the ~c .functor. For these cases we use cut-

contractiveness.

Lemma 13

Let 1 : !YIS -- AIS be a cut'contractive functor. Let Mo be a complete metric space

such that there is an embedding eo : Alo -- 1 (Mo) with f-L -cut Co : 1 (.1\tIo) -- i'vfo • Let

Mi = l(Mj-d, i ~1, ei = l(ei-d, Ci = l(Ci-d, i ~1. Let M be the completion

of UAIi and let hi : Mi -+ AI be the canonical embedding. Then there is a f-Li.cut

li :M -- Alj for hi with .lim f-Lj= 0 .
1-+00

\
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Proof:

From the properties of 1 it is<dearthat Ci is a (p. ki) -cut for ej. For fixed n we

consider the family o£morphist# (Cmn)m~o as given in Definition 5, Cmn : At/m -+Mn'

As M is the direct limes of theM.' according to Lemma 4 there is a uniquely determined

contraetioil in :M -+ Mn such.that

Cmn. . hm 0 ln m 2: o.

From this we immediately get that

lnhn(z) = z V z EMn'

It remains to evaluate d(z, hnln(z)) tor z EM . For this let n 2: 0 and z E Mn+'J . As

Cn 15 a (p' kn) -cut

d(cn+dz),en(cn(cn+i(zH)}:5 JJ' kn

hence

d(en+den+, (ol), en+1(en (en (en+l (ol)J)) ~p' kn

implying+'en+l (en (en (en+i(o) )))) ~ d(.,en+l (en+dol))

+ +n+den+,(o)), en+1(en (en(en+1(0)) J) )
:5 p' kn+1 + p . k"
= p . (len + kn+1)

thus

and in general

d(z, cmn(z)) :5 p' (kn + kn+1 + ...+ km-I)

for all m 2: n. Put

IJ.n =p' L km
m~n

=p.(~).1-k
Let now z E M, z = limzm, zmEMm.

d(z, ln (z)) = d(limzm, limcmn(Zm))
.' .. m m

= limd(zm, cmn(zm))m .

14



ff. Tlu Eziateflf:C a nll Uniqu/ln/lu Qj' Fi:r,i Pointa

omitting the explicit notation of thecanonical embeddings.

Theorem 14

Let 1 :MS -+ MS be a cut-contractive functor and 10 :f 0. Then 1 has a fixed

point in aMS that is uniqueup to isometry among the objects in aMS.

Proof:

Let Mo = {xo} be a one-elementspace, eo : Mo -+ 1(Mo) an embedding and deSne

Co: 1(Mo) -+ Mo by

Co is aI-cut for eo. Let Mi = l(Mi-d , i~1, and pull up the ej and Ci analogously.

Let M be the completion of UMi' From Lemma 13 we conclude the existenee of Pn-

cuts Ln, In : M -+ Mn , for thecanomcal embeddings hn, hn : Mn -+ M , where

f-ln = jJ .t:k . By Lemma 2 we.conclude

hence M = limMn in ~c(M). On the other hand d'(hn) (1(Mn), 1(M)) ~ k . JJn as

1 is eut-contractive, henee 1(M) = limMn =M up to isometry. Uniqueness is shown

as in Theorem 12.

Remark 9

Under the eonditions of Theorem 14 one can see that M is the inverse limes o£

the Mi in aMS with respectto the f-ln -cuts Cn• As the In induee eontraetions

1(ln) : 1(M) -+ 1(Mn) wecondude the existence o! a unique contraction f trom

1 (M) to M. Thedirect limes property of M guarantees the existence of a unique

contraction g fromM to 1(M). Showing that fog = id and goi = id and obser-

ving that the isomorphisms of.M S are exactly the isometries yields a category-theoretic

proo! of the above theorem.

Remark 10

As ~c preserves JJ .cuts (see seetionIV) Theorem 14 together with Lemma 11 allow us

to handle a vanety of interesting functors.

Example 4

The funetor 1(X) = {po}U (A-+ ~c(B X (P U (a -+ P)))) satisfies the conditions of

Theorem 14.
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Example 5

The funetor

l(X) = {po} U (A -+ ~c( {j,6,1.} U(AU CU ~(I)) x (X U (V x X) U (V -+ X))))

that is the basis for a semanticdefinition of asp in [12] satis6es the conditions of

Theorem 14.

16



if :l:E B x Yn, y E 0 -+ Yn or viceversa
. if :I:,'Y E Bx Yn,:I: = (a,z'), y = (b,y'), a:;. b
if Z = (a,z'), y =(a, y')'
ifa:,yE 0 -+ Yn•

Tl!. Tlu Efjllation P={Po}u(A .....•p.«BxP)u(O-i.P»)

ID. The Eguation':P={pO} U (A -+ f!)c{(B x P) U (0 -+ P)))
,";!::;~ .

We claimed in the introduction;~~at the above equation in [6], the solution of wruch is

left to the reader, cannot be sol~~(asPl"oposed by [6], namely by putting

Yo = {po}

Yi = {poFU (A-+ .~((B X Yi) U (0 -+ Yj)))

and showing that the completion Y of UYj is a solution of the above equation by

establismng an isometry betweell: Y and 1 (Y) .
We do not claim that the equationdoes not have a solution at all. We do claim that Y

cannot be one.

Let us consider the functor 1(X) •. {po} U (A -+ ~c((B X X) U (0 -+ X))) in more

detail. 1 clearly preserves completenessand embeddings and according to Lemma 5, Y

is a prefixed point of 1 , Le. there isaneinbedding ~ : Y -+ 1(Y). Inorder to establish

that ~ is an isometry, we haveto show ihat ~ is onto.

We claim that this cannot be thecase.Let us for simplicity only consider the case where

A, B and 0 are finite sets.

We define the infinite set

and observe

i) Soo c (0 -+ Y) ,

ü) S= IS closed, as there do not exist any nontrivial convergent sequences in S= ,

i.e. S= E ~c((B x Y)U (0-'-+ Y)) ;
üi) S= has non countably ,many infinite subsets T00 , each of which is closed, as

there are no nontrivial convergent sequences.

To see this, remember that themetric on Yn+1 is given by

dn+1 (p,po) = d(p,po) = Ipfpo

dn+dv,p') = sup{d(p'(a),p(a))}
aEA

and for :1:, y E (B x Yn) U (0-+ Yn)

{

I,
1,

d(:I:.Y) = ~d(:c', y'), .
:~ (z«),y( cl),
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lll. TluEfution P={Po}u(A-".«BxP)u(C-P»)

Let us assumethat thereis an/isometry ~ : Y -+ l(Y). We consider the family oi
'..,:

functions
"J" 9 = 'AaSoo

groo = AaToo

where T00 is an infinite subset 9f, Soo . Clearly g and all gr are elements of 1 (Y) . If

~ : Y - 1(Y) isonto there mustbe an f E Y such that 4>(J) = g. 1E Y implies

that either
'JEUYi

i~O

or
. ,'. .

J = limln In E Yn•

Assume that f == lim1n and ['f/.UY;.then we get

ö> limd(4)(J), ~(Jn))

-lim d(g,4>(Jn))

yielding ~ (Jn) - g and heneeaeontradiction, beeause only a trivial (6nally constant)

sequence ean eonverge towardsg.Onthe otherhand ~ is one-to.one and {In} tannot

be trivial beeause f f/. Uf;. wa~a.ssUmed.
So we eonelude that no element.iIlY \ U Yi eanbe mapped to g or analogously to any

, i>O
Ur 00 , thus only remam the elements of uf;. as eandidates. But £rom the definition of

the functor it is dear that Uf;.'has only eountably many elements. Henee there eannot

exist an isometry.
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lV. The funclor p.

IV. The fundor w c

In this section we deal with the operator ~c that deserves some special consideration

because it eannot be simply considered as an endofunctor in MS, as, in general, an

arbitrary morphism in AiS

f:N~M

will not yield a morphism £rom ~c(N) to S"c(M) VIa AU J(U). SO ~c has to be

restricted to those morphisms f : N ~ M that are closed, i.e. that they map closed

subsets of N to closed subsets of AI. If we denote by MSc the subcategory of MS

that has the same objects as MS and closed morphisms as morphisms then ~c is a

functor from !vI Sc to M S .

Clearly all the definitions of prefixed point, completeness preserving etc. can be easily

adapted to the case of such a "partial" functor.

Lemma 1.5:

The funCtor ~c : !vI Sc ~ M S preserves completeness, embeddings and Jl-cuts.

Proof:

jJc preserves completeness according to Remark 2. Preservation of embeddings is trivial,

preservation of Jl-cuts follows £rom the definition of the Hausdorff metric_

For functors 1that arise £rom combination of ~ c with other functors it has to be ensured

that the construction of fixed points by iteratively defining an embedding sequence (Mi)

with respective p,-cuts is not affected.

We have to establish that starting with

eo :1\;[0 ~ 1(lUo) !vIo - {xo}

Co :1(!vIo) ~ Mo Co= '\xxo

we can always apply 1 iteratively to get

/

ei =1i(eo)

Ci =1i(co).

Definition 12:

A ~etric space (X, d) has the rninimu1n distance prO'Perttl, ifthere exists 8 E IR , 8 ~ 0 ,

such that for all x, y EX, x f y, d(z, y) ~ 8 .
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Remark 14:

The topology of ametrie space'with the minimum mstance property is the discrete

topology, as every one-elementsetisopen.

Lemma 16:

The funetors 11(X) ~ A xX , 12(X) == A -+ X, la(X) = ~c(X) ,

'4(X1, X2) = XII:.JX2, '5 (X1,X2)- Xl X X2 preserve the minimum distance property,

i.e. if the arguments of 1•.inhibitth~ minimum disntance property, so does the resulting

metric space.

Proof:

As an example we treat the case of 12. J...et (X, d)be ametrie spaee and 5 E IR., 6> 0

such that d(x,y) ~ 6 V x, Y EX. Let f,g E 12(X)

d(J,g) = sup d(J(a),g(a))
, aEA

~ 6.

Lemma 17:

Let 1 be a functor that is composeclöf functors in {Tl!"" ,5} (see Lemma 16). Let

N be a metric space that hasthe minimum distance properly and g : M -+ N a

contraetion, then 1 is deBned forg.

proor:

For ease of notation we only tl"eat unaryfunetors in {1I, ••• , ,5} • Let henee

1= 91 092 0 ... 0 9k with.9i(unary) in {lI"'" ,6}, 1 ~ i ~ k. As N has the

minimum distaneeproperty sodo~s 91 (N), 92(91 (N)) , etc. and finally l(N) by

Lemma 16. Henee the topology 01 9dN), 92(9t{N)) etc. is the discrete topology by

Remark 11. As N has the discrete topology we conclude that g is a closed morpmsm,

henee 91 is defined for g, 9tfg): 9dM) -+ 9dN) . Similarly 9t{N) has the diserete

topology, henee 92 is defined for9dg) and so on.

Corollary 18:

Let 1 be asin Lemma 17, N 'a metric,space that has the minimum distanee property,

g :M -+ N a. morphism. Then ,n is de6.ned for g for all n ~ 1.

The above observationsguarantee that our results also hold for funetors that are com-

posed horn ~c and others. Obviöuslythe above results can be extended to any other

functors that preserve the miliimumdistance property.
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Recursive specification of "dolll:lins"plays a crucial role in the denotation aI semantics

based on metric spaces [6] as wellas inthe denotational semantics as develloped by Scott

and Strachey. First approachespfScott to solve recursive equations were bis inverse limit

construction [20],wbich were l~t'ersubstituted by using a universal domain and a fixed

point constrnction [21].
The categorical aspects of these 'a.pproaches were studied e.g. by Reynolds [19] and
Wand [24]. These investigationstypica1ly stuck to one find category, e.g. the category

apo of complete partial orders with. strict continuous functions or the category of

countably based .continuous latticesand"continuous functions, and are at the same level

of abstraction as our work presentedhere.

In [23] and [24] a. further abstraction step is initiated to develop a theory of solving

recursive equations for general categories. For this [23]elaborate a basic lemma:

Basic lemma [23]

"Let k be a category with initialobject .l.k and let T : k - k be a fundor. Define the

w -chain A to be (Tn(.l.k)' ,n (.lF,1)) . Suppose that both J.£: A _ A and

T J.£ : !A - lA are colimiting tones then the initial fixed point exist."

In the sequel [23] discuss how the conditions of the lemIna can be satis6.ed for the dass

of 0 -categories, i.e. categoriesthatexhibit cerlain order strnctures in their horn-sets.

Ir we compare our procedere with that implied by the basic lemma, then obviously

choosing k = aMS our M (the completion of UMi in theorems 12 and 14) plays the

role of A and we know that M is the direct limes of (M;) in aMS. In order to prove

the find point properly, however, we do not show that 1(M) is direct limes of !(M;) ,

but rather show that the distancebetween !(Md = Mi+! and !(M) (understood as

elements in ~c(!(M))) tendsto zero as i - 00. Having then established the fixed

point propeTty of M Weget as atrivial conclusion that 1(M) is the direct limes of

! (Mi) . So, M is a fixed pointif and only if 1(M) is direct limes of (Mi). In addition,

in aMS besides existence the uniqueness of fixed points is guaranteed for functors with
a contraction properly.
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. VI. CondusioQ

We have proposed a rigorous framework witm."lwroch the problem of solvmg recursive

equations such that the solution constitutes -a complete metric space can be fommlated

and discussed. We established cOll<litions,that are very easy to verify for a given fundo!",

see Lemma 11, under which the (unique) existence of a solution is guaranteed. For

example, allequations in [6] 'ex~eptfor equation (4) !rom our introduction . satisfy

either the conditions of Theorem 12 or Theorem 14. Equation (4) has heen mvestigated

and it has heen shown that the methods of [6] do not apply to it. The question ü tros

equation does have a solution ai all is open. We have also given special attention to the

functor ~c because of its partialityand we pointed out some connection to related work.
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