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Summary

In (S) de Bakker and Zucker proposed to use complete metric spaces for the semantic definition oj
programming languages that allow for concurrency and synchronisation. The use of the tools oj
metric topology has been advocated by Nivat and his colleagues already in the seventies and metric
topology was successfully applied to various problems (12, lSj. Recently, the question under which
circumstances fixed point equations involving complete metric spaces can be (uniquely) solved has
attracted attention, e.g. (1,11j. The solution of such equation provides the basis for the semantics
of a given language and is hence of practical relevance. In (1), a criterion for the existence oj
a solution, namely that the respective funetor is contracting, is provided. This property together
with an additional criterion, namely that the respective funetor is hom-contracting, was shown
in (l) to guarantee uniqueness. In this paper we show that the contraction property is already
sufficient to guarantee the uniqueness.

1



1. Introd"ction

1. Introduction

In [3] de Bakker et al. proposed a promising approach tothe definition of semantics for

programming languages that allow for concurrency and communication. It is based on the

concept of complete metric spaces. The technique has been successfully applied to various

languages involving concurrency, e.g. to different variants of Hoare's communicating

sequential processes [8]. In [14] the method is used to specify a language that includes

dynamic process creation. The idea of the approach of [3] is to establish a meaning

funetion Methat maps a program F (in a language 1:) to its meaning M elF] , which
is an element of a certain complete metric space M£, Me: Programs --> ML. ML is

construeted as solution of a certain fixed point equation

FLX = X

called process domain equation.

Here FL is a funetor in a suitable category of metric spaces. Ever since the quest ion of

existence and uniqueness of solutions of such fixed point equations as weIl as the connec-

tion to other models for semantics, e.g. the denotational approach based on CPO's

(complete partial orders) has attraeted interest [5,6,9,10,11,15,16,17,18,19]. In [1] Ame-

rica and Rutten developed general criteria to ensure existence and uniqueness of fixed

points. They show that contraeting funetors have fixed points and that contraeting func-

tors that are hom-contraeting have unique fixed points (up to isometry). In a previous

paper [9] we showed that contraeting funetors have "minimal" fixed points and contrac-

ting funetors that map the empty space to a one-element space already possess unique

fixed points. In this paper we prove the stronger result that the contraetion property

is already sufficient to guarantee uniqueness. By this we solve an open problem of [1]'

namely the problem to establish a contraeting funetor that has nonisometric fixed points:

such funetors do not exist. It should be noted that - for practical applications -, one

does not really have to construct the solution ML of the process domain equation in

order to assign a meaning to pro grams in a language 1:. One only has to ensure the

contraetion property of the respective funetor Fe. and can then make use of the fact

that Me. is the unique space that satisfies the equation Fe.X = X for further purposes.
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2. Mathematieal Preliminaries

2. Mathematieal Preliminaries

A metric space IS a paIr (M, d) with M a set and d a mappmg,

d: M x M -+ [0,1] whieh satisfies (1)

(a) 'r/x,y E M (d(x,y) = 0 {::}x = y),

(b) 'r/x,yEM d(x,y)=d(y,x),

(e) 'r/x,y,zEM d(x,Y)Sd(x,z)+d(z,y).

A sequenee (Xi) in ametrie space (M, d) is a Cauehy seguenee, whenever 'r/€ > 0

3N E IN 'r/n, m > N d(xn, xm) < €. The metric spaee (M, d) is called complete if

every Cauchy sequenee converges to an element of M .

Let (M1,dr), (M2,d2) be metric spaees. A function f
non distanee increasing, if 'r/x, y E MI

f is called (isometrie) embedding, if 'r/x, y E MI

f is called an isometry, if f is onto and an (isometrie) embedding.

It is weH known, [4), that every metrie spaee (M, d) ean be embedded into a "unique"

"minimal" complete metric spaee, eaHed the completion of (M, d) .

Let M denote the eategory that has metrie spaces as objeets and

non distance inereasing functions as arrows.

A sequence ((Mi, di))i~O of metric spaees together with a sequence of embeddings

(edi ~ 0' ei : Mi -+ Mi+! , is called an embedding seguence. Let ((Mi, di)) i~0 with

(edi~O be an embedding sequence. The direct limes of (Md in M with respeet to (ed

exists and is denoted by (UMi, Udi) .

Let C denote the category that has eomplete metric spaees as objects. The arrows in C

are the non distance inereasing funetions. The empty space 0 is an initial objeet in C.

Let MI, M2 be complete metrie spaees, and let

e : MI -+ M2 be an embedding

(1) 0 S d(x, y) S 1 can be always obtained for an arbitrary metric d: M x M -+ IR by

b. . d~( ) b d(x y)su stltutmg x, y y d( ') .
x,y +1
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2. Mathemat.eal Prehminanes

and e : M2 -+ M1 be a non distance increasing function.

e is called a cut for e if e 0 e = idM, (2). For embedding e : M1 -+ M2 with cut e

we put L = (e, e) and write M1 ---+' M2 and define

M= sup {dM2(x,e(e(x)))}
xEM2

We say that a functor F : C -+ C preserves embeddings iff Fe is an embedding for

every embedding e. If a functor F preserves embeddings then Fe is a cut for Fe,

whenever e is a cut for e. A functor F: C -+ C that preserves embeddings is called

contracting if there exists an f, 0::; f < 1, such that for all D ---+' E E C, t = (e, e) ,

where Ft = (Fe, Fe) .

Please note that we have modified the definition of [1] slightly, just in order to be able

to include the empty space as an object.

(2) Throughout this text the composition fog offunctions stands for AX.g(J(X)).
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.s. Uniqueness of Fixpomts of Contrc>ctingFunctors

3. Unigueness of Fixpoints of Contracting Funetors

In this section we show that the contraction property of a functor F : C -+ C is already

sufficient to guarantee uniqueness of fixed points. By this we solve an open problem of

[1J toestablish a contracting functor that has nonisometrie fixed points.

Remark 1

Let (M, d) be a complete metric space. Let

Pc(M) = {U C M : U is non-empty and closed}

and let dM denote the Hausdorff metric on Pc(M), i.e. for x, y E M, X, Y E Pc(M)

let

ß(x, Y) = inf d(x, y)
yEY

dM (X, Y) = max{ sup {ß(x, Y)}, sup{ß(y, X)}} .
"'EX yEY

It is well-known that (Pc(M), dM) is a complete metric space, see e.g. [4].

Let now D ---+' E E C, L = (e, e). In particular D is isometrically embedded into E

via e and we can view D as a closed subset of E, i.e. an element of Pc(E). Let dE

be the Hausdorff metric on Pc(E) then we can talk about

dE(D, E)

or

d(D, E)

for ease of notation, considering D and E as elements of Pc(E). (3)

Remark 2

Let D ---+' E E C, L = (e, e) . If \:Ix E E

dE(x, e(e(x))) ::; /-L

(3) Strictly speaking the "distance of D and E as elements of Pc(E) JJ also depends on the

choice of the embedding e. But as this choice will always be clear from the context, we

omit its indication.
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3. Uniqueness of Fixpomts of Contractmg Functors

then

d(D,E)~J1-.

This can be easily seen by the definition of the Hausdorff metric.

Remark 3

Let D ---t' E E ethen

by the above remark and the definition of 6(t) .

Lemma

Let ((Mi,dd)i~O with (ei)i~O be an embedding sequence, where every (Mi,di) is a

complete metric space. The completion M of (UMi, Udi) is the direct limes of the

((Mi,di))i~O in the category C (with respect to the (edi~O)'

Proof

By the universal properties of the completion and the continuity of the metric. See also

[19].

Theorem

Let F: C -> C be a contracting functor with F0 i 0. Then :F has a fixed point that

is unique (up to isomorphism).

Proof

We choose a one-element space So = {xo} and let Si = FSi-l, i 2:: 1. Clearly Si IS a

complete metric space. In addition let Mo = 0, Mi = F Mi-I, i 2:: 1 , and let

be the unique embedding and

There is a unique embedding

io : Mo -> So .

We choose in addition an embedding
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3. Umqueness of Fixpomts of Contracting Functors

which is possible as So = {Xo} and M1 = F0 =j:. 0 by assumption. From the initiality

of Mo we obtain

eo = io ° >'0 .

We now put 0'0 = >'0 °Fio and Co = >.x.xo

(I)

and O'i = FO'i-1, Ci = FCi-1 I i 2: 1, having thus turned the sequence Si into an

embedding sequence (with embeddings O'i)'

Let S denote the completion of USi and let ki : Si -> S be the canonical embeddings,

i 2: O. It has been shown in [1,11] that S is a fixed point of F. Let now N be another

fixed point of F. Hence there is an isometry

h: FN -> N.

Let jo : 0 -> N be the unique morphism then by the initiality of Mo we have

jo = eo ° F jo ° h .

We define now 'To : So -> N

'To = AO ° F jo ° h

and set 'Ti : Si -> N

'Ti = F'Ti-1 ° h

and get

0'0 ° 'Tl = 0'0 ° (F'To ° h) by Def. of 'Tl

= (>'0 ° Fio) ° (FTo ° h) by Def. of 0'0

= AO ° F( io ° 'To) ° h

= >'0 ° F(io ° '\0 ° Fjo ° h) ° h by Def.of TO

=>'ooF(€ooFjooh)oh by(I)

= Ao ° F(jo) ° h by (II)

= 'To by Def. of Ta
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3, Umqueness of Fixpomts of Contractmg Fu.nctors

commutes. Consequently

by induction. Hence, as S is the direct limit of the Si with respect to the (Ti we

conclude that there is a unique embedding

f:S-N

with Ti = ki 0 f, i ~0 .

It remains to show that the embedding sequence Si (with respect to (Ti) converges to

N . For this we define
go : N - So

go = AX.XO

and

Clearly Ta 0 go = 1 and 6( (Ta, go)) ::; 1. By induction

As F is contracting there is f, 0 ::; f < I, with 6(Ft) < f . 6(t). By induction

6((Ti,gi))::; fi, as for aB xE N

dN (X, Ti+l (gi+l(X))) = d( x, h(FTi(Fgi(h-1(x)))))

= dN (h(Y), h(FTi(Fgi(y))) ) where h(y) = x

= d:F(N)(y,FTi(Fgi(y)))

as h is an isometry.

Hence dr• (Si, N) ::; fi by Remark 3, hence N and S coincide up to isometry.
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!J. Umqueness 0/ Fixpoints 0/ Contracttng F'unctors

Example

The functor

F(X) = {PO} U (A -+ Pc({f, 6,.L} U (A UCu p(I)) x (X U (V x X) U (V -+ X))))

that is the basis for a semantic definition of CSP in [19] satisfies the conditions of the

theorem.

Remark 4

It should be noted that such a uniqueness result cannot be obtained by a general

category-theoretic investigation as e.g. in [18].
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