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8. Intredsction

0. Introduction

In the last years a seriss of papers appeared that deal with the semantjcs of those langua-
ges or systems that allow for some notion of concurrency [1,3-9, 15-20, 24]. The approach
of Francez et al. [3] e.g. is based on complete partial orders, the work of de Bakker and
Zucker [7] is based on complete metric spaces, Plotkin presents an operational approach
[19], axiomatic xﬁethods can be found in [1, 4, 11, 15, 17. 20]. The connection between
some of the approaches has been investigated in [9, 13].

. We are here presenting an investigation and foundation of the metric space approach of
[7]-

In order to do so we briefly sketch how semantics is defined in [7]. The basic concepts of
[7] are the notion of a “process domain™ and a “domain equation”. Given a language L
for which semantics is to be defined, the authors suggest to construct a suitable equation
P = F(P), called domain equation, such that the solution of this equation (a complete
metric space) provides a domain for the interpretation of programs, i.e. the meaning
function maps programs to elements of this solution.

The authors demonstrate their ideas concerning the solution of such equations by consi-

dering the following four prototypes

P={m}u(4xP) ‘()
P={po}Us.(AxP) L2
P={p} U (A — p (B x P)) " (3)
P={p}U (A~ p:((BxP)uU(C— P))) (9)

where e.g. the Cartesian product is used to model the sequencing of actions, the powedrset
construction p. (see section I.) and the function space construction are used to model
nondeterminism, concurrency and communication. : -
For each equation P = %(P), i = 1,2,3, the authors [7] construct a solution a8
follows (the last equation is left to the reader): A sequence ((P,,d,)) of metric spaces
is constructed by setting Py = {po}, Pj=7 (Pj-1),and P, is defined as (UP,,,Ud,.)
It is then shown that the completion (P,d) of P, is a solution of the given equatlon.
The thus constructed solutions serve as semantic domains for various sample languages.
When looking closer at the proposed handling of process domain equations, a number of
questions arise immediately: hb‘
Is the thus constructed solution the only solution? M not, what features ;:harac-

terize the constructed solution? And most important, under what conditions is
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9. Inlroduction

it possible to give a solution of an equation P = 7(P) in such a way? What
properties must the operator ¥ have in order to guarantee the existence of a
solution alltogether?

In this paper, which is based on a previsus report [14], we are dealing with these
questions. An independent investigation was developed in [2] and is discussed in section
V. In particular, we establish a framework for discussing the existence of solutions of
equations as discussed above. This is an important task, because, when we are trying to
apply the techniques of [7] to some nontrivial language like CSP [9, 12, 13, 27] we have
to have some criterion to decide if the respective equation does have a solutjon aﬁ all.

This problem already occurs with such simple-looking equations as equation (4},
the solution of which is left to the reader in [7).

We will prove that this equation cannot be sclved in the way claimed in [7.

This is interesting, as the associated operator 7 does not satisfy our coﬁdit-ions for
existence of fixed points given in theorem 10 and theorem 12. _

We finally make two observations. First, there is a strong analogy between the
construction of a fixed point theory for the category crPoO of complete partial orders
from the theory of fixed points in complete partial orders on one side and our ideas on the
other. Second, everyone who wants to use complete metric spaces to define the semantics
of some language does not have to go into details about existence proofs of fixed points.
One only has to ensure some contraction property of the operiior involved according to
theorem 10 or theorem 12. In this Lemma 9 is helpfal.

The paper is divided into seven sections. Section I contains the definitions and
elementary statements. In section Il we establish conditions for existence and uniqueness
of fixed points. Section III deals with the special role of the ;pc -operator. Section IV
deals with equation (4) from above and general considerations concerning the choice of

the metric and section V creates the connection to related work. Section V1 contains the

~

conclusion, section VII an appendix.




Definition 1
A  metric space is a pair (M,d) with M a set and d a mapping,
d: M x M —|[0,1] which satisfies !)

(3) Vz.yeM (d(z,y)=0z=y),

(b) Vz,yeM d(z,y)= dly,z),
(¢) Vz,y,2€M d(z,y) <d(z,2) +4d(z,7).

A sequence (z;) in a metric space (M,d) is a Cauchy sequence, whenever Ve > 0
AN e N Yn,m > N d(:t,,,zm)v< €. The metric space {M,d) is called comglcté
if ev'ery Cauchy sequence converges to an element of M . It is well known, that every
metric space tM, d) can be embedded into a “unique” “minimal” complete metric space,
called the comgpletion of (M, d).

Let (N,dny) and (M,dr) be metric spaces. A function f : N — M is called a
weak contraction, f Vze NVye N

dm(/(2): S (v)) < dn (2,9)-

Definition 2
Let (M,dps) be a metric space (_dM <1),let p.(M) denote the collection of all closed

nonempty subsets of M and let 93(M) denote p.(M)U{#}. The Hausdorff melric on
p?(M) is given by

d(X,Y) = maz{sup inf d(z sup inf d(z
(X,Y) {: P’;‘-Y (’y)’,epréx (z,9)}
for X,Y € pg(M)

It has been shown by Hahn [10}:

emar,

If (M,dps) is complete, so are (p.(M),d) and (p¥(M),d).

1) 0 < d(z,y) <1 can be always obtained for an arbitrary metric d: M x M — R by
substituting g(z,y) by T(i%')l-'-Ll' d and d yield the same topology on M.
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L. Definitions ané Elementsry Propertics

Definition 3
Let (N.dy), (M,dp) be metric spaces. A weak contraction J:N —= M is called an
embedding, if it preserves distances, i.e. if das(f(2), f(y)) = dy (2,y) Yz,ye N . If the
embedding f is onto, f is called an ssometry. ’

emar .
Let (N.dy), (M,dr) be complete metric spaces. If ¢ : N — M is an embedding
then N can be identified with the closed subset ¢(N) of M . Hence, we can talk about
the distance of N and M (as elements of p2(M)) with respect to the embedding
¢, denoved by d.(N,M) = d(e(N),M). The subscript e will often be omitted, if no

ambiguity arises. -

Lemma } v ,
Let N y M . Z be complete metric spaces. Let e : N — Af, [+ M — Z be embeddings
then '
de(N,M) < deos(N,Z) ¥ and dr(M,Z) < d.oy(N,Z).
Proof:
We prove the first inequality
de(N,M) = d(e(N), M)
= inf d(z,
b A PR
=sup inf d W F
32 ylxty AU ) S )
inf d(z,
ey vei oy =)
< inf d(z,
- :Eug yES(e(N)) '(z v)
=d(f(e(N)),Z)
= GOI(N’ Z)°

Hence, if N can be embedded into M and M into Z we will write
d(N,M) < d(N, Z)

bearing in mind that the assumed embedding of N into Z is the fanctional composition
of the two given embeddings.

3) eo f denotes the composition of ¢ and / such that first ¢ is applied and then f.
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I. Definitions and Elementsry Froperties

Definiti

A sequence ((M,,d)),», of metric spaces together with a sequence of embeddings

(€)i>g» & : My — M., , is called an embedding sequence

Definition §
Let (N,dn), (M,dps) be metric spaces, ¢ : N — M an embedding. A weak contraction
¢c:M — N iscalled a u-cut for e if,
i) VZeN clefz)) ==
) YeeM dy(z,efc (2))) < u.
Let ((l\x.l,-,d.-)),-20 with (e;),5, be an embedding sequence with associated u; -cuts ¢;

then -
Cmn i My — M,

id, dfm=n
Cmn =19 ¢m-1°2-:0¢,, Hm>n

émo---0e,_ 1, fm<n.

is defined by

Remark 3
Let (N,dy), (M,dn;) be metric spaces, ¢ : N — M an embedding, ¢ : M — N a
weak contraction such that (i) holds. One may interprete ¢(z) as an approximation of

z in N. Then (:t) implies that the approximation is at least as good as 5.

Lemma 2

Let (N,dy), (M,dn) be complete metric spaces, ¢ : N — M an embeddinz with

#-cut ¢ then
d.(N,M) < p.

Proof:
By remark 2 and definition 2.

In order to be able to formulate the fixed point problem we have to define a suitable

category in which the equations have to be solved.

Definition 6
The category MS_is defined as follows: the objects of MS are the metric spaces
(d < 1), the morphisms are the weak contractions. The category CMS has as objects

complete metric spaces, the morphisms are the weak contractions.
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I. Definitions and Elementary Propertiss

Remark 4
In MS and CMS the empty set is initial.

Remark §
Let ((Mi,d;)) with (e;) be an embedding sequence in MS. Then the direct limit of

(M;} in MS with respect to (2;) exists and is denoted by (UM;,ud;).

Lemma 3

Let ((N(;,d;)) with (¢;) be an embedding sequence in CMS sy M #8. Let M dehoi;e
the completion of the direct limit (UM;, Ud;) of ((Mi,d:)) in MS. If there exists a
0 < k <1 such that d(M;,M:},) < k- d(M;-1,M;) for all i then M = limM; in
pc(M).

Proof:

Obviously each M; can be embedaed into M , hence (M:);>o is a Cauchy sequence in
(pc(M).d). By Hahn’s Theorem [10] one concludes that its Limit N equals

{z:2= li_ma:,,, (zn) Cauchy sequence, z,, € My} and hence N C M. Let now z €EM,
z =limz,, (z,) Cauchy sequence in UM, . If z € M, for some n nothing has to be
shown. Let us consider the case z @ M, for all n. We claim that there is a subsequence
(vn) of (z,) with y, € Mg, and koyy > kp:let y; = 2, and z1 € Mg, . Choose
now n with z, € M; , z, € My, . Such n exists, otherwiée, as My, is closed in M,
z € Mg, , which yields a contradiction. Thus &; > k, because otherwise M,, C M, ,
yielding a contradiction to z, & M, . We now choose y¥2 = z,. We continue this
construction for the remaining y; . It is easy to complete the sequence (yn) to yield a

- sequence (z,) with z, € M, and limz, = z.

emma
Let ((M;,d;));>, with (¢i)i>o be an embedding sequence in CMS. The completion
M of (UM;,Ud;) is the direct limit of (M;) in CMS.
Proof:
Let N be an object in CMS and g, : M, — N with gi = & ©g;+; morphisms. The
gn determine a unique weak contraction g : UM, — N such that we may first embed
M; into UM, and then apply g or immediately apply g; . From the universal property
of the completion M we can uniquely extend g to yield a continuous g:M—-N.We
have to show that g’ is a weak contraction. Let Zy€e€M, z=limz,, y= limy, ,
wlog. M, #8 and z,,y, € M,.

dn (4'(2),9'(v)) = dw (limgp(20), limgn (ya))
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I. Definitions end Elementary Proparties

< limdy, (zm Yn)

=dnm(2z,y) -

[n the following we will be interested in such solutions of equations that are complete
metric spaces as in [7]. The reason why fixed points that are not complete metric spaces
are not interesting for the semantic specification of programming languages is easily

understood by the following example.

Exampl: 1 (see [7]):
Let (X,d) be a metric space, d <1, p; a distinguished elem2nt, 4 an arbitrary set.
Consider ¥ = {po} UA x X together with the metric

d(po, po) =0,
d(POa!J d(y PO) =1 for v # o,
d((an))(al,Z'))'_— {1 lfa#a'

%,d(z,z’), ifa=a'.
Let 7 be the functor in MS that maps X to {psJUAXX . Foramorphism f: X - Y
we define 7(f) : {p}UAXX = {p} UAXY, 7(f)(p0) = po and if X #
F{f}a,2z) = (a, f(z)). Define

{pO}) Piyy = I(P.), 120

and P, = |J P; with the inherited metric then clearly there is an isometry between P
>0

and F(P,), hence P, is a fixed point of 7. If, however, P, is to be used as a seman-
tic domain for the interpretation of programs, the problem arises that nonterminating
- program executions cannot be handled. This can be achieved by taking the completion
of P, as a semantic domain. A nonterminating computation can then be modelled by
the limit of the Cauchy sequence of its finite approximations.
Definition 7
Let n > 1 and let

F:MSx---xMS -+ MS

_——

n times

be a functor. 7 preserves completeness, if for My,.... M, in CMS, 7(M,,...,.M,)
is an object in CMS. ¥ preserves embeddings if, given embeddings e; : N; — M;,
t=1,...,n, Fe1,...,e,) is an embedding from F(Niyoo oy Ny) to F(My,...,.M,). If
7 preserves embeddings we say that 7 preserves y -cuts if, given embeddings ¢; with

p-cuts ¢, s=1,...,n,then F(c1,...,c,) is a p-cut for Flers--.ven).
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I. Definitions and Elsmentary Propertise

Let 7 : MS — MS be a functor that preserves completeness and embeddings. We
define an smbedding sequence as follows: let My =@ { the empty space },

]\rl,‘ = ;(M,'—l) y 12 1

and let ep : My — M, be the unique embedding and ¢; = F(e;_;), ¢ 2 1. Clearly, the
M, are complete. Let M denote the completion of the direct limit of this embedding

sequence in MS,

emma 5
Let 7 :MS — MS be a functor that preserves completeness and embeddings. Let M
be given as above. Then there is an embedding ¢ : M — 7 (M) .
Proof: |
Let h; : M; — M be the canonical embeddings, i > 0. As

hl' =€ 0 hi-{—l
we obtain
aiv1:=Fhi=¢410Fhiy;, 120

where Fh; : M;; — F(M). M, can be trivially embedded into 7 (M), say by ap,
and eg o Fho = ag by the initiality of M. As by Lemma 4 M is the direct limit of
the embedding sequence in CMS and 7 (M) is complete we conclude the existence of
a weak contraction e : M — 7(M) such that hgoe=ap and fh = h.+1 oe. By the

construction of e, see lemma 4, it is clea.r that ¢ is an embeddmg

efinition 8
i) Let A be a set, (X,d) a metric space. Define a metric on A x X by
ifa#a
d((a, z) (', z')) = { ld(z,z’) else:f

ii) Let A be aset, (X,d) a metric space. A — X is the set of functions from A to
X . Define a metricon A — X by

d(f,9) = sup d(f(a),g(a)).
acEA ‘
iii) Let (X;,d1), (X3,d;) be metric spaces. Define a metric on M; x M, by

d((zx s 22), (:/h 3/2)) = max{dl (-'n ) !Jl)a do(zmyz)}-

8
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1. Definitions snd Elemantary Fropertica

;g

Lemma 6
Let the endofunctor 7 in MS be defined by

FX)=AxX
F(f)= AMe, 2)(a, f(2))

then 7 preserves completeness, embeddings und g -cuts.

Proof:

Let {y,} be a Cauchy sequence in 4 x X ; from the deﬁ.nition of the metric it follows
that there is ng € IV and a € A such that Yn = (a,2z,) for n > ng aﬁd (zn) is a
'Cauchy sequence in X . Hence {y,} converges io (a,limz,). Let ¢: X — ¥ be an
embedding then

(7 (e} ((2:2)), 7 () ((¢". 2))) = d (s, e (2)) , (a', ¢ (2')))

_ {1 o if a
- %d((a"’)’ (@, 7)) else
= d((a, 2), (¢ #).
Let c be a p-cut for e, i.e. |
C(e(z)) =z VzeX
dlyec@)) <u Vyey.

Let z€ F(X)=Ax X,z =(a,z), then ”
F()F () (2) = (a, ¢ fe (<)) :

= (a, 2)
andforzef(Y)=AxY,z=(a,y) ’

d(z, 7 ()7 (c)(z) = d((a,y) @el6)) .

= 24 (el () N

<

#

Lemma 7 *®
The endofunctor 7 : MS — MS e
F(X) = A= X

F(f) = M 2at(s(a)) %

preserves completeness, embeddings and u -cuts.




I. Definitions and Elemenlary Propertics

Proof:

in analogy to Lemma 6.

e a8
The functor 7 : MMS x MS — MS
;(Xl,X2)=z\’1 XX2
j(flan) = ’\(373/) (fl(z)u"?(y))

preserves completsness, embeddings and u -cuts.
Proof:

in analogy to Lemma 6.

By now, we have treated some examples of functors that are relevant for the definition
of the semantics of programming languagss. One functor of interest in this context, the

functor g, is given special treatment in section III.
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Il. The Exielence ¢nd Uniguencss of Fizxed Pointa

In this section we are going to derive conditions for the existence of fixed points.

In analogy to the classical case of fixed points in complete metric spaces we establish

conditions that guarantee that

i) asequence {M;} of metric spaces generated by iteration as in Lemma 5 is a “Cauchy -
sequence”

and _

i1) its “limit” is a fixed point.

The first criterion is derived from the fixed point theorem by Banach-Cacciopoli.

Definition 9 | |

Let 7 :MS — MS be a functor that preserves completeness and embeddings. 7 is
called a contraction functor, if there exists a k, 0 < k < 1, such that for all N,M in
CMS and all embeddings 2: N — M with N #£8

dy (o) (F(N), 7(M)) < k-d.(N,M)

holds.

Definition 10

Let 7 :MS — MS be a functor that preserves completeness, embeddings and 4 -cuts.
F is called cut-contractive, if thereisa k, 0 < k < 1, such that for every embedding e
with p-cut ¢, F(c) isa (k- pu)-cut for 7(e).

For practical purposes there is an easy way to determine these properties for a given

functor:

Lemma 9 ,

Let F=%0% -or F= fg;o 71 where 7 is an endofunctor in MS, { = 1,2, that

preserves embeddings and cq_mpleteness.

a) If #; is a contraction f:mctor and J; satisfies a weak contraction property; i.e.
ds,(¢)(#3(N), :(M)) < d.(N,M) for every embedding ¢, ¢ : N — M, N#§,

then 7 is a contraction functor.

b) If 7, is cut-contractive and 7, preserves yu-cuts then 7 is cut-contractive,




H. Ths Exisfence and Uniguences of Fized Pointe

a) Let F =705, e:N—M an embedding, N#£9,
110 (7 (N). 7(M)) = ds, oo (52 (51 (V). 53 (7 0))
< dg (o) (A1(N), 1 (M)
< k-do(N,M). |
b) Let F=Ffo0%,e:N—M an embedding with u-cut ¢ : M — N. We have to
show that there is a & such that F(c) isa (k- ) -cut. Clearly 7{c)(7(¢)(2)) = =.
Consider _ | -
W7 (7)), 2) = d(fz(?l (@) (7 (% (c))(z)),z)
| <k-p - -
s Fie) is a‘(k-u) -cut for 7i(e) and 7; preserves this property.

Theorem 10
Let 7 :MS — MS be a contraction functor then 7 has a fixed point in CMS. If in

addition 7@ # @, this fixed point is unique up to isometry among the objects of CMS.
In other words, 7 considered as functor from CMS to CMS hasa unique fixed point.

Proof: o
If 78 = § the statement is trivial. Let now 7§ # 0. As a first step we construct

an embedding sequence (M;) as in Lemma 5 by choosing M, as the empty space-and
M; = F(M;_1), i 2 1; each M; is complete and can be identified with an element of
9?(M), where M is the completion of UM, . We already know by Lemma 5 that there
is an embedding e: M — F(M) with Fh; =hiyjoe,hence
v d"n+1 (M'H'UM) = d"n-ﬂ (;(Mﬂ)’M)

< d,.,,“o,(f(M,,),f(M)) by Lemma 1

= ds () (7 (Mn), F(M))

<k- dk,. (M'HM)’

‘where the h; are the canonical embeddings. Continuing this argument we get

d(Mns1,M) < k™ d(M;, M),
hence M is the limit of the embedding sequence (M;) with (¢;) in p¥(M).
On the other hand
d(Mn+1,7 (M)) = drr,) (7 (My), 7(M))
< k-dy, (Mn, M),

12




Il. Tie Exiatence and Unigquenese of Fizxred Points

hence 7 (M) is the limit of the embedding sequence (Af;), () in p(7(M)) from
which we conclude that M is a fixed point.
Let N be another fixed point of # in CMS, hence there is an isometry

h:f(N)—pN. .
As M, is mmal we have a unique embedding go : My — N and go =eyoFgooh where
eo : My — F(Mg) =M, . Let for 1 > 1 embeddmgs g: be defined by

g = ]gi—l oh

g : M =N
then g; =¢; 0giy, for ) 2 0, i.e. the -M; can be embedded into N in a way that is
compatible with the embeddings e; . Hence there is an embeddmg f, '

f:M—N ’

such that h;o f =g;, 5> 0. In addition for 121

dgisy (Misy,N) = dy,., (7(M,),N).
< dg,yy0n-1 (7 (M), 7(N))
= ds,, (7 (M;), 7 (N))
< k-dy (M;,N)

hence the M; converge towards N from where we conclude M=N.

Remark 6 |
Obviously definitions 9 and 10, as well as lemma 9 and theorem 10 can be adapted to

n -ary functors.

Example 2

The functor 7 given in Example 1 satisfies the conditions of Theorem 10 with k= 1

as contraction constant.

Example 3
The functor G : MS — MS given by

G(X) = {po}UA X (XU (B x X))

and suitably defined for morphisms satisfies the conditions of theorem 10,

13



{I. The Exietence and Uniguencos of Fized Points

By applying lemma 9 various functors can be shown to satisfy the conditions of Theorem
10. There are, however, interesting cases for which the conditions of Theorem 10 are too
strong, e.g. functors that are built with the g, -functor as F(X) = {po} Up (A x X).

For these cases we use the concept cut-contractiva.

Lemma 11

Let 7 :MS — MS be a cut-contractive functor. Let M; be a complete metric space
such that there is an embedding ¢, : My — F(My) with g-cut ¢ : F(Mg) = My . Let
M.'\= F(Miy), 21, ¢ = Fleicy), i = Flei-1), 2 1. Let M be the completion
of UM, and let A, : M; — M be the canonical embedding. Then there is a [ ~cut
li : M — M; for h; with ‘_lim w; =0,

Proof: N |

From the properties of 7 it is clear that ¢, is a (- k) -cut for e;. For fixed n we
consider the family of morphisms (Cmn)m>o as given in Definition 5, Cmn : My — M, .
As M is the direct limit of the M; according to Lemma 4 there is a uniquely determined
contraction I, : M — M, such that

c n = hm < ln m Z 0.
From this we immediately get that
laha(z) = 2 VzeM,.

It remains to evaluate d{z,Anls(z)) for z € M. For thislet n > 0 and z EM,.3. As

cn is a (g k") -cut

d(cn+1(z),en(cn(cn+1(3)))) <u-k"

hence
d (€n+1 (ent1(2))s ent1 (en (Cn (en+1 (3))))) <up-k"

implying

d(z, €n+1 (en (Cn (Cn+l (3))))) < d(z, €n+1 (°n+l (3)))
+ d(cnﬂ (en+1 (2))rensr (Cn (Cn (en+1 (3)))))

Sp-ktl 4 opkn

=p- (kn +kn+1)




II. The Existence 4nd Uniguences of Fized Pointe

d(z,cn+3,n(2)) < & - (k" + k"*1)
and in general
d(zscmn(‘z)) Su- (kn + kn-t +_._+km-l)

for all m > n. Put

Bn = 4 - ka

m>n

=”'(1k—nk)

Let now z € M, z = limz,,, z,, € M,,.

d(z,l,.(:c)) = d(]i:lnfm)linlpcmn(zm))
= limd{zm, cmn(2m))

< bn,
omirting the explicit notation of the canonizal embeddings.
In the following we present an existence and uniqueness result for cut—contractive func-

tors. The existence part has been independently found in a similar form by [2]. See also

section V for detailed discussion.

he 12
Let 7 : MS — MS be a cut-contractive functor. Then 7 has a fixed point in CMS.

e
wit Fe

If in addition 7@ # @ then 7 has a fixed point that is unique up to isometry among
the objects of CMS. ‘

Proof
If 70 = @ the statement is trivial. Let now 7@ # #. Choose a one-element space

So = {zo} and let S; = 7S;_,, : > 1. Clearly S; is a complete metric space. As
before let My =8, M; = FM;_;, i>1, and

eo : My — M,

the unique embedding and ' <

6,'=.76.'..1, 1.21.

There is a unique embedding
‘l:o :Mo — So .

We choose in addition an embedding
Ag : So — M;

15



Il. The Existance ¢nd Uniguences of Fixed Pointe

R N

which is possible as So = {20} and M; = 78 # @ by assumption. From the initiality

of My we obtain
eg = io o /\o . (1)

We now put a9 = )y o 71

" oo : Sp — S
and o; = Fo;_;, 1 2 1,having thus turned the sequence S; into an embedding sequence
(with embeddings o; ). ,
Let S denote the completion of the US; and let k : S; — S be the canonical embed-
dings, 1> 0.
We first observe that ,

rie1 =Tk : Sy — 7S, i20

is an embedding and

Ti+1=0;410%,3, 220. (II)

We put ro =090 Fky and get
To=0por;. (111)

As S is the direct limit of the S; in CMS we conclude the existence of an embedding

e:S—FS (Iv)
such that :
=kioe. (V)
Let us define
Co * Sl - So
Co = Az.zo

then according to lemma 11 there are y; -cuts li:8—S; for k; with limy; =0. As
dk, (Si, S) < pi

by lemma 2, we conclude that S = imS; in p.(S). On the other hand

Ay (Si+1, 7S) = dgk,(Si41, 7S) S k- g

and hence 7S =1limS; in p.(7S). By (II), (111), (IV), (V) we conclude that Fs

and § coincide up to isomorphism.

Let now N be another fixed point. Hence there is an isometry L

h:FN = N.
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Il. Tie Existence 6nd Unigueness of Fixed Pointe

Let 70 :8 — N be the unique morphism then by the initiality of Af, we have

n=¢eoFpoh. (vI)

We define now rg: Sy — N

T0=/\0°fjb°h

and set

ri=Fri_ioh

and get

soor  =350(Fryoh) by Def. of 1,
=(Xo o Fio)o (Frooh) by Def. of 5,
=XooF(iryor0)ok
=XooF(igodooFjoh)oh byDef. of 7
=XooF(woFjooh)oh by(l)
=XMoF(n)eh by (V)

=719 by Def. of 7y (viI)

hence 7o is an embadding such that the following diagram

P N 77007
g)(.f 7(‘}‘;,0)(

AN Fr o4
Y,

*\

N\
5,

commutes. Consequently

T = 0{ 0T+

by induction. Hence, as S is the direct limit of the S; with respect to the o; we
conclude that there is a unique embedding

f:S—N

with r,=k;of, i>0.

It remains to show that the embedding sequence S; (with respect to o; ) converges to

17




1. The Exietence end Unijsences of Fizzd Points

N . For this we define
go: N — S

go = Az.zq
and
gf:h_l °;gt—la ‘21

gi:N—=5;

Clearly go is a 1-cut for 7. By induction
riegi=1, 120,
By induction g; is a k' -cut for 7;,asforall ze N

dn (2-, 'r.~+1(g.'+1(-’4))) = d(z h{Fri(Fgi(h )))))
= an (h(y), h(fn(fg.-(y))))
= dg(n) (y’ «’ﬂ'(?g;(y)))
<k K.

Hence d,,(S:,N) < k' hence N and S coincide up to isometry.

emark

As p. preserves p-cuts (see section II[) Theorem 12 together with Lemma 9 allow us

to handle a variety of interesting functors.

Example 4 '
The functor 7(X) = {po} U (A —p(Bx(XU(C— X)))) satisfies the conditions of
Theorem 12.

xample § »
In [13] a detailed semantic definition of Hoare’s communicating sequential processes [12]
is given using the metric space approach. The equation, that is the basis for this definition
is described by the functor: |

7(X) — {po} U (4= pel{,6,L}U (AUCUB(I)) x (XU (V x X) U (¥ — x)))

which satisfies the conditions of Theorem 12. The details of this semantic descnptxon

are too lengthy to be presented here.




. The Functrr p,

IIl. The Functor ¢,

In this section we deal with the operator ¢, that deserves some spacial consideration
because it cannot be simply considered as an endofun:tor in MS, as, in general, an
arbitrary morphism in MS '

J:N—>M

will not yield a morphism from p.(N) to ¢ (M) via AU f(U). So g, has to be
restricted to those morphisms f : N — M that are closed, i.e. that they map closed
subsets of N to closed subsets of M . If we denote by MS, the subcategory of MS

that has the same objects as MS and closed.morp}u'sms as morphisms then g, is a
functor from MS, to MS.

Clearly all the definitions of prefixed point, completeness preserving etc. can be easily

adapted to the case of such a “partial” functor.

Lemma 13:

The functor g, : MS. — MS preserves completeness, embeddings and 4 -cuts.
Proof: |

pc preserves completeness according to Remark 1. Preservation of embeddings is trivial,

preservation of u-cuts follows from the definition of the Hausdorff metric.

For functors ¥ that arise from combination of 9. with other functors it has to be ensured
that the construction of fixed points by iteratively deﬁmng an embedding sequence (S:)
with respective u -cuts is not affected.
We have to establish that starting with

09 :Sp — F(Sy) So= {20}

0 :F(So) = So  ¢o = Azz

we can always apply 7 iteratively to get
oi = J¥(0y)
G = F ‘ (Co).

Definition 11:
A metric space (X,d) has the minimum distance property, if there exists 6 € R, § > 0,

such that for all z,ye X, z#y, d(z,y) 2 4.
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ITl. The Funclorp,

Remark 8:
The topology of a metric space with the minimum distance property is the discrete

topology, as every one-element ser. is open.

emma 14:
The functors 71(X)=AXx X, H(X)=A— X, 73(X) = pc(X),
Fu( X1, X3) = X1 uX,, 5 (Xl,Xg) = X] x X, preserve the minimum distance property,
i.e. if the arguments of % inhibit the minimum dlstance property, so does the resulting
metric space. |
Proof:
As an exémple we treat the case of 7;. Let (X;d) be a metric space and & €R y6>0
such that d(z,y) >6 Vz,ye X. Let f,g€ i (X)

d(f,g) = sup d(f(a),g(a))

26.

Lemma 15;

Let 7 be a functor that is compased of functors in {#i,..., %} (see Lernma 14). Let
N be a metric space that has the minimam distance property and g : M — N a
contraction, then 7 is defined for g.

Proof:

For ease of notation we only treat unary functors in {#1,..., %5} . Let hence
F=G10810 06 with §; (unary)in {f,.... s}, 1<i<k. As N has the
minimum distance property so does §, (N), §2(G1(N)), etc. and finally F(N) by
Lemma 16. Hence the topology of §,(N), G, (§1(N)) ete. is the discrete topology by
Remark 11. As N has the discrete topology we conclude that g is a closed morphism,
hence §, is defined for g, G1(9) : 61(M) — G1(N). Similarly G1(N) has the discrete
topology, hence §; is defined for §, (9) and so on. '

Corollary 16:

Let 7 be asin Lemma 15, N a metric space that has the minimum distance property,

g:M — N amorphism. Then 7" is defined for g forall n>1.

The above observations guarantee that our results also hold for functors that are com-
posed from p. and others. Obviously the above results can be extended to any other

functors that preserve the minimum distance property.
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IIl. The Furvtar .,

There is an alternative approach to treat the powerset construction which has been
recently proposed by [2]. There, the auth..r- lefine for a complete metric space M
M+#9,

,

9c(M)={UCAM :1 closed,U # 8}
and for f: N - M

Fe(f) = A7 el(f(U))

where cl(X) of a subset X of M stands for the closure of M. It probably depends
on the particular application which of the iw« different powerset functors is adequate.
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IV. The Eguetion P={po}U(A—p.((Bx P)U(C—P))) end General Considerations on ihs Choice of Metris

We claimed in the introduction that the above equation in [7], the solution of which is

left to the reader, cannot be solved as proposed by [7], namely by putting

Yo = {po}
Yi={p}U (4 —((Bx¥)U(C )

and showing that the completion Y of UY; is a solution of the above equation by
establishing an iscmetry between Y and 7(Y).

We do not claim that the equation does not have a solution at all. We do claim that ¥
cannot be one.

Let us consider the functor 7(X) = {po} U (A — pA(BxX)U(C — X))) in more
detail. 7 clearly preserves completeness and embeddings and, according to Lemma 5,
there is an embedding ® : Y — 7(Y). In order to establish that & is an isometry, we
have to show that & is onto.

We claim that this cannot be the case. Let us for simplicity only consider the case where
A, B and C are finite sets.
We define the infinite set

S0 = {Aepo, Aedadepo, Acadedadepy, ...}

and obssrve

i) Se C(C—Y]),

i) S i3 closed, as there do not exist any nontrivial convergent sequences in S, ,‘
ie. S € pe((BxY)U(C —Y)),

iii) Sco has non countably many infinite subsets T, , each of which is closed, as

there are no nontrivial convergent sequences.

To see this, remember that the metric on Y,,; is given by

dn+l(P,P0) = d(p,po) =1 p 7"' Do
dn+l(p1 P’) = :‘elg{d(pl(a)’ p(a))}

and for z,y € (B xY,)U (C —Y,)

1, ifz€ BxY,,y€ C —Y, or viceversa
1, ifz,y€BxYs 2= (a,2),y=(b,y),a#b
d(z'y) = %‘d(z'a y’)’ ifz= (av z,)a y= (G, y')

sup(z(c),y(c)), f z,y€ C —Y,.
ecC
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IV. The Equation P={po}U(A—p,((Bx P)U(C—P))) and General Consideretions on the Choice of Metris

Let us assume that there is an isometry ¢ : ¥ — 7 (Y). We consider the family of

functions
g =2AaSs

9r, = AaT

where T is an infinite subset of S, . Clearly g and all g, are elements of 7 (Y ). If
®:Y — 7(Y) is onto there must be an f € Y such that ®(f)=g. f€Y implies

e Jv

>0

that either

or

‘ .f = limfn fn €Y,.
Assume that f =limf,, and f @ UY; then we get

0 = Lim d(®(f), 2(fn})
= hm d(g, Q(fn),)

yielding ®(fn) — g and hence a contradiction, because only a trivial (finally constant)
sequence can converge towards g. On the other hand & is one-to-one and {fa} cannot
be trivial because f @ UY; was assumed.

So we conclude that no 2lement in Y\ U Y; can be mapped to g or analogously to any
g, » thus only remain the elements o'foJY,- as candidates. But from the definition of
the functor it is clear that UY; has only countably many elements. Hence there cannot

exist an isometry. It is easy to see that the functor
Hﬂ=hQUQ~¢Manuw~xm

is not cut-contractive. As by the above the standard construction does not work to con-
struct a fixed point the condition “cut—contractive” seems to be quite narrow a criterion

for the existence of fixed points.

Let us now consider this matter a little further. We slightly modify the
functor g(x ) = C — X where the metric on C — X is given in Definition 8 i)y
d(f,g) = :gg dx (f{a),g(a)) and put §’(X) = C — X where the metric on C — X
is now given by d'(f,g) = %::g dx(f(a),g(a)). What happens now is, that if we use
the modified definition §’ instead of the original one, then the resulting functor 7' is
cut—contractive, 7'@ # @ and hence 7’ has a unique fixed point. In general, it is true
that if we have a functor § : CMS — CMS that preserves p—cuts then we get a
cut—contracti\;'e functor §’ by proceeding as follows: let (X,dx) be a complete metric
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1V. The Equation P={po}U(A—p,((Bx PYU(C—~P))) end Generel Considerations on the Cheoice of Metrizs

space and let G((X,dx)) = (Y,dy), then §'((X, dx)) = (Y, kdy), where k is a fixed
constant, 0 < k<1.

Here, immediately the question arises which definition is adequate for our original pur-
poses, i.e. the semantic definition of programming languages. Given a language [ s
one constructs a suitable domain equation P = 73 P such that the solution S of this

equation, if any, is the range of the meaning function
Me : Programs — S .

Very roughly speaking the functor 7» reflects the kind of operatlons that can be perfor-
med in the language £. So e. g. a functor that maps (X,dx) to Y =Ax X together
with some metric dy serves to describe the “ sequencing” of actions. There is, however,
some freedom with respect to the choice of the metric dy . In the original paper of [7]

dy 1is chosen to be

dy((e,2), (d,y)) = { ;d(z,y) ' zzz:

| (Clearly, any 0 < k < 1 instead would serve the same purpose). One might interprete

this choice of dy as follows: the semantics of languages £ treated by [7] is operational
in flavour, i.e. for the case of a sequential program p, its meaning in this approach is
basicly the “sequence” of the meaning of its actions. Under the above choice of dy two
programs p; and p; that coincide in their first [ actions are regarded to be “closer”
than two programs p; and p} that coincide only on some h actions, & < {. Hence
this chonce of dy by [7] is very intuitive having the above interpretation in mind. We
find it very hard, however, to justify — on the grounds of relevance for programming
language semantics - the choice of &(f,g) = 3 sup dx(f{a),g(a)) for the set C — X
instead of the original d. We cannot find an mtmtlve explanation for this change in
metric. Consider equations (3) and (4) from the introduction, both of which are the
basis for semantic specification of certain programming languages in [7]. Whereas (3)
can be solved if the “old” metric d on the function space is used, equation (4) is only
solved by the standard approach if the “new” metric & is introduced.
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V. Related Work

V. Belated Work

Recursive specification of “domains” plays a crucial role in the denotational s2mantics
based on metric spaces [7] as well as in the denotational semantics as developed by Scott
and Strachey. First approaches of Scott to solve recursive equations were his inverse limit
construction [22], which were later substituted by using a universal domain and a fixed
point construction [23].

_The categorical aspects of these approaches were studied e.g. by Reynolds [21] and
Wand [26]. These investigarions typically stuck to one fixed category, e.g. the category
CPO of complete partial orders with strict continuous functions or the category of
countably based continuous lattices and continuous functions, and are at the same level
of abstraction as our work presented here. |

In [25] and [26] a further abstraction step is initiated to develop a theory of solving

recursive equations for general categories. For this [25] elaborate a basic lemma:

Basic lemma [25]

“Let k be a category with initial object 1, and let 7 : k — % be a functor. De-
fine the w-chain A to be (F7(Ls), 7"(Lr1)) . Suppose that both b:A— A and
Fu:F7A — FA are colimiting cones then the initial fixed point exist.”

In the sequel [25] discuss how the conditions of the lemma can be satisfied for the class
of O -categories, i.e. categories that exhibit certain order structures in their hom-sets.
If we co.mpare our procedere with that implied by the basic lemma, then obviously
choosing k = CMS our M (the completion of UM, in theorem 10) plays the role of 4
and we know that M is the direct limit of (M;) in CMS . In order to prove the fixed
point property, however, we do not show that 7 (M) is direct limit of 7 (M;) , but rather
show that the distance between 7(M;)=M;,; and 7 (M) (understood as elements in
#c(7(M)) ) tends to zero as i — co. Having then established the fixed point property
of M we get as a trivial conclusion that 7 (M) is the direct limit of 7 (M;). So, M is
a fixed point if and only if 7 (M) is direct limit of (M;) . In addition, in CMS besides
existence the uniqueness of fixed points is guaranteed for functors with a contraction
property.

While this present paper was being refereed we learned about the recent and independent
work of [2]. Let us relate our work to [2]; in which also a problem of the present paper
is tackled, i.e. the question of the solution of equations P = 7P . In [2] the authors
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V. Related Work

first establish a criterion, that ensures the existence of solutions of equations of the
form P = 7P in a category of complete metric spaces. In a second step they develop
a criterion that ensures uniqueness in a slightly modified category of complete metric
spaces by adding base pqints.

Where do our results and those by [2] coincide, where do they differ? We show in the
appendix that the notion of “contracting” functor of [2] (not to be confused with our
definition of contracting) is about the same as our concept of ux -contractive functor
(modulo sﬁght changes in categories). So the result conzerning the existence part of our
theorem 12 is about the same as the result of [2] concerning the existence of fixed points.
In contrast to [2] we show, however, that a cut-contractive 7 already has a unigue fixed
point, unless 7@ =@ . By this we also answer an spen question of [2], namely to exhibit
a contracting functor (in their terminology) that has nonisometric fixed points: There
does not exist such a functor 7 with 7@ #£89. |

Note at this point that all functors considered in [7] fulfill the condition 78 # # because
~ of the so-called “nil” process po . Omne could argue that our approach gives a “reason”
- why this nil process is introduced. It guarantees that 70 #0.

In addition to theorem 12 we derived in theorem 10 another criterion for existence and
uniqueness that is unrelated to theorem 12 and the results of [2] as it does not make use

of cuts.
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VI. Conclusion

onc on

We have proposed a rigorous framework within which the problem of solving recursive
equations such that the solution constitutes a complete metric space can be formulated
and discussed. We established conditions, under which the (unique) existence of a solu-
tion is guaranteed. For example, all equations in [7] - except for equation (4) from our
introduction - satisfy either the conditions of Theorem 10 or Theorem 12. We have also
given special attention to the functor ¢, because of jts partiality and we pointed out
some connection to related work. Equation (4) has been investigated and it has been
shown that the methods of [7] do not apply to it. The question if this equation does have
a solution at all is open. Moreover we discussed to some extent the problem of choice of

metric. Relation to other work is discussed in detail.
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Vil. Appendix

VII. Appendix

We briefly introduce the concepts of [2] in order to be able to relate them to the ones
used in this paper.
Let C be the category with complete, nonempty metric spaces as objects and pairs

¢t = (1.7) as arrows where ¢ is an embedding
1: Ml - M2
and J 1s a weak contraction
7:M; —- M,
such that 107 =idyy, .
A functor 7 : C — C is called contracting in [2] (which we will call £-contracting for
distinction) if there is ¢, 0 < ¢ < 1, such that

8(Fi) < € 8(:)

where &(:) = sup {dM, (z,i(j(z)))} .

SGMQ .
A functor that is 2-contracting is shown in [2] to have a fixed point. For uniqueness an
additional property has to be satisfied in [2]. ‘
Our criterion of cut-contractiveness was formulated for functors in the slightly different
category CMS (which was defined differently just in order to be able to include the

empty space) and amounts to

3k, 0< k<1 :Vembeddings ¢ with cuts }
’ *
(Y2 € M; d(z,i((z)) < 4 = Vy € 7M, d(y, FiFiw)) <k ). )

Let now : = (4,7) be an arrow in C and 7 2-contracting, i.e. §(F1) < - 5(¢) then
(#) is satisfied: let '
d(z,i(j(z))) S u Yz e M,

then §(:) <y and 7 2-contracting yields
6(F)<e-8(t)<e-p
hence d(y, Fi(#j(y))) <e-u Vy€ M, by definition of §. -
Let conversely 7 satisfy () then clearly
d(2,4(i(2))) < 6() Yz e M,
hence d(y, Fi(7;(y))) < k-6(t) Yy € 7M; hence 6(71) < k-6(c). Hence, neglecting the

slight differences in categories, the notion of a cut-contractive functor and a 2-contracting

functor is the same.
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