Reihe Informatik
3/1989

Pre-Analysis Locking:
Static and Online Policies

Georg Lausen

/i
7 . ..
Wjas Soisalon-Soiningy

\% 4
W P
RN P

Mai 1989

Pre—Analysis Locking: Static and Online Policies t

Georg Lausen
Fakultat fiir Mathematik und Informatik
Universitat Mannheim, D-6800 Mannheim, West-Germany

Eljas Soisalon-Soininen *
Department of Computer Science
University of Helsinki, SF-00250 Helsinki 25, Finland

Abstract

Locking is considered as a means to achieve serializable schedules of concurrent
transactions. Transactions are assumed to be predeclared such that a pre-analysis
for locking becomes feasible to increase concurrency. A condition for safety is
introduced which, based on a pre-analysis, allows the design-of policies strictly
dominating known policies such as 2-phase locking. The static case, in which
the complete set of transactions is known in advance, and the online case, in
which a transaction is known when it is started, are considered. It is shown that a
policy strictly dominating 2-phase locking and some other interesting pre-analysis

policies can also be applied in an online environment.

T This paper contains results already presented at the International Conference on Mathematical Fun-
o damentals of DataBase Systems, Visegrad 1989 [9], and, in a revised form, results already presented

at the International Conference on Database Theory, Rome 1986 [7].

* The work of this author was supported by the Alexander von Humboldt Foundation.

1

1. Introduction

Locking as a means to achieve serializable schedules of concurrent transactions
has been investigated continuously over the recent years [1,10]. Usually, locking
is done according to the 2-phase locking (2PL) policy [4], which can be described
by the following rules: each action of a transaction has to be surrounded by a
lock/unlock pair, and all locks must precede all unlocks. This approach has two
main drawbacks. First, a transaction may be forced to wait for another transaction
also in cases where a non-serializable continuation cannot occur. Further, the time
an entity has to be locked depends on the lock/unlock rule and not only on the
position of the conflicting actions. To overcome these deficiencies a pre—analysis

of the transactions becomes attractive.

A pre—analysis is proposed by Bernstein et al. [2] for a concurrency control based
on time stamping to avoid unnecessary communication overhead in distributed
systems. Papadimitriou [11] discusses a conflict analysis to compute so called
“guardians”, which are a means to guarantee that only serializable schedules may
occur, i.e. which guarantee the safety of the corresponding transaction system.
Yannakakis [17] suggests how to implement guardians by locking for the 2-step
transaction model [11]. In a similar manner, for the multistep transaction model,
we have introduced a pre-analysis to insert lock and unlock operations into trans-
actions to achieve safety and freedom from deadlocks [6]. We call the corresponding
locking policy basic pre-analysis locking (bPAL) throughout this paper. bPAL can
be considered as an algorithmic continuation of the work on locking and geometry
started by Yannakakis, Papadimitriou and Kung [19] and Papadimitriou [13]). In
general, there is no dominance relationship between the 2PL policy and bPAL
with respect to the set of accepted schedules. The intention of the pre—analysis is
to maximize the potential degree of concurrency, i.e. the set of all possible sched-
ules of the corresponding locked transaction system. It is well known, that the
set of all serializable schedules of a given transaction system cannot be achieved
by locking [8,12,17]. In this paper we continue our investigations on pre—analysis
locking started in [6]. We will propose policies strictly dominating 2PL, and we
will also discuss the case of online scheduling,.

A pre-analysis to introduce early unlocking in originally 2-phase locked transac-
tions has been proposed by Wolfson [14,15]. The resulting transaction system
always allows at least as much concurrency as the original one and the method
can be extended to distributed databases. However the algorithms require that
the set of all transactions is given statically in advance. Wolfson further points

out that locking based on pre-analysis should use locking by symbolic names, i.e.

2

database entities of possibly varying granularity, which are determined by examin-
ing the programs during compile time [15]. Similar remarks apply for our methods,
however we use symbolic names to detect conflicting actions, for locking we use
uninterpreted locks.

Uninterpreted locks and entity locks have been discussed comprehensively by Pa-
padimitriou [10]. We use uninterpreted locks for the following reasons. Our poli-
cies include a pairwise analysis of transactions. Depending on the outcome of
such an analysis lock/unlock operations are inserted into transaction pairs. To
avoid side—effects between transactions in different pairs, we introduce for each
pair of transactions different uninterpreted locks. Thus our policies are conceptu-
ally different from other locking policies, which, te our knowledge, all are based
on entity locks. As a consequence, our policies do not belong to the hypergraph
family of locking policies introduced by Yannakakis [16], which captures all known
important locking policies.

In this paper we first consider the static case in which the complete set of all trans-
actions, i.e. the transaction system, is given in advance and we introduce a new
general condition that guarantees the safety of a locked transaction system. We
use this condition to define improvements over 2PL. Every given locked transaction
system according to 2PL can, after having been analyzed, be transformed into a
safe non-2PL locked transaction system which dominates the original system with
respect to the set of accepted schedules.

In order to study the problem of “online” scheduling for pre-analysis policies, we
require that each transaction is completely known when started - the set of all
transactions need not be known in advance. We first show that the improved
2PL policy can also be used for online scheduling. Moreover, we show that the
bPAL policy can be made applicable for online scheduling. Using bPAL for online
scheduling requires to compute the locks between all pairs of active transactions
anew for each transaction starting its execution. To reduce this overhead we
finally introduce iterative pre-analysis locking (iPAL), a policy in which locks
only have to be introduced into pairs of transactions in which one of them is the
new transaction.

The structure of the paper is as follows. In Section 2 we introduce the needed
definitions and the geometric framework. In Section 3 we introduce our condition
for safety and study static locking. Section 4 is devoted to the online case, and,
finally, in Section 5, a discussion of the proposed policies concludes the paper.

3

2. Basic Definitions and the Geometry of Locking

A transaction system 7 = {Ty,...,T;} is a set of transactions, where each
_ transaction Ty = (A;1,...,Aim;), mi > 1, is a sequence of actions. Each ac-
. tion A;j has associated with it an entity z;; € E, where E is a set of entities
forming the database. We distinguish read and write actions, A;; = Rz;; meaning
read z;; and A;; = Wz;; meaning write z;;. We will write R;z (Wiz), respec-
tively Rz (Wz), if the position of the action, respectively also the corresponding
transaction, is given by the context. Two actions of two different transactions

conflict, if they involve the same entity and at least one of them is a write action.
(1)

For transaction system 7, the (undirected) conflict graph 5(7') has as vertices the
transactions of 7, and an edge T; — T; whenever an action of T; and an action
of T; conflict. A schedule s of T is a permutation of all actions of =, with the
actions within each transaction in the prescribed order. If s is a schedule of 7 and
T;,T; € 7, then s;; is the projection of s on the actions of transactions T; and T;.
If A;; is an action in s, then s(A;;) denotes the position of A;; in s. A schedule is
serial if the transactions are not interleaved. For schedule s, the (directed) conflict
graph B(s) has as vertices the transactions of 7, and an arc T; — T; whenever an
action of T; precedes in s a conflicting action of T;. A schedule is called (conflict-)
serializable if B(s) = _5(3’) for some serial schedule s’ of 7, or, equivalently, if

B(s) is acyclic. 7 is (conflict-) safe if every schedule of T is serializable.

We now introduce the geometric interpretation for concurrency control (10,13,18].
Consider each transaction to be an axis in a d-dimensional coordinate system, with
the actions being the coordinate values on the axes. Each pair of transactions
corresponds to a plane with a grid imposed by the actions. The geometric image
of a schedule in a plane (T;, T}) is a nondecreasing curve from point (0,0) to point
(mi+1,m;+1) not passing through any other grid point. The order of the actions
in the schedule is the order in which the curve intersects the corresponding grid
lines. Figure 2.1 shows the curve of the schedule

Rla Wla Rga sz Rlb Wlb RIC WIC R2C.

In [6] we introduced direct and indirect conflict points to represent conflicting

actions in the geometric setting.

(1) Entities may have different granularities, e.g. tuples in relations, complete
relations, or sets of tuples defined by certain predicates. Thus, more precisely, we
have a conflict whenever two sets have a nonempty intersection, in general. For
simplicity, we will ignore this subtlety.

o

A\
Rc ¢
Rb 4
i Ra
} + + + } + >Tl
Ra Wa Rb Wb Rc Wc

Figure 2.1 A schedule’s curve.

A point P = (4;p, Ajq) in plane (T;,T;) is a direct conflict point between T: and
Tj,t # j, if Aip and Aj, conflict.

There is an edge T; — T; in D(r) iff there is a direct conflict point (Aip, 4jq) in
plane (T;,T;). There is a path of length greater than one betweean,- and T} in
D() iff there exists an indirect conflict point (Aip, 4j4) in plane (T}, T;), which is
defined as follows.

Point P = (A;p, Ajy) is called an indirect conflict point between T: and T, # 5,

if there exists a set of transactions
{Tklll < l <n,n2 1} Cc (T - {T'!aT.'J})a

such that (Axp,, Akiy1qi4,), for some p; and gi41, is a direct conflict point be-
tween Ty, and Ty, foralll,1 <! < n-1, and (Aip, Ak,q,), for some ¢;, and
(AknpnsAjq), for some p,, are direct conflict points between T: and Tk, , and T},
and T}, respectively.

Direct and indirect conflict points are also called conflict points. Figure 2.2 shows
the conflict points of a transaction system. For example, indirect conflict point
(W1b, R2d) is implied by the direct conflict points (Wb, R3b),(Wsd, Ryd). If a

conflict point is direct and indirect, then it is represented as direct one only.

For a two-transaction system, a schedule is conflict-serializable iff its curve doesn’t
separate two (direct) conflict points (cf. [10]). In a system of more than two trans-
actions, each non-serializable schedule has a plane projection, i.e., a projection on
the actions of the transactions defining the plane, such that the corresponding
curve separates some conflict points. Moreover, at least one of the separated con-
flict points is a direct one [6]. However, some serializable schedules also separate

conflict points. Figure 2.2 provides examples. The solid schedule
h Rla Wla Rya Wga Rod Wzd Rlb Wlb Rlc ch R2C WQC T3

i | 5

° ol Wa—T] L]
o ofRaT °
T3 <+—+—1—+ — 1>
"Wd Rd Wb Rb Ra Wa Rb Wb Rc Wc
RbT .
it .
Rat+ [} o o -]
War o ° o o
V ‘
T3

Figure 2.2 Direct () and indirect () conflict points,
and the curves of two schedules.

is serializable although conflict points are separated, the dashed schedule
Rla Wla R2a Wga R2d ng T3 Rlb Wlb Rl'c ch RzC Wgc
is not serializable.

Let 7 = {T1, ..., T4} be a transaction system. A locked transaction system Lt
of 7 is a set of locked transactions, Lt = {LTy, ..., LT;}, where each locked
transaction is a transaction that contains, besides the actions, pairs of lock v (Lv)
and unlock v (Uv) operations, where v is an element of LV, the set of locking
variables, ENLV = {, and Lv always precedes Uv. Lt can also be read as ‘locked
version of 77. A locked schedule Ls of Lt is legal, if there is an Uv operation
between any two Lv operations in Ls. The set of schedules accepted by a locked
transaction system Lt is defined as Acc(L7) = {s|Ls is a legal schedule of Lr}. Lt
is safe if Acc(LT) contains only serializable schedules. Let LT and L'r be two locked

versions of transaction system 7. We say Lt dominates L't if Acc(Lt) D Acc(L'T).

Locking variables are uninterpreted, they are not associated with entities. Instead,

each locking variable v is associated with one pair of transactions, where at most

6

one Lv and one Uv operation is in each of these transactions. More than one
locking variable may be associated with the same two transactions. We use locking
variables instead of the usual entity-locks. Our pre-analysis algorithms are based
on a pairwise decomposition of the concurrency problem. In such a context locking
variables have the appealing property that they only act in one plane, while an
entity-lock in one transaction would act in all planes containing this transaction

and another transaction accessing the corresponding entity.

In the geometric representation Lv and Uv operations are coordinate values on
the axis of the coordinate system, too. The geometric image of a pair of Lv and
Uv operations in a transaction plane is a rectangle which cannot be entered by
the curve of any legal schedule [10] (cf. Figure 2.3). We call such a rectangle a
forbidden rectangle. The region defined by the union of all forbidden rectangles in
a plane is called the forbidden region of that plane.

'ﬁ 2
‘Uv. 71
Rc T : .
Uv 2
Lv 3
Rb + U
Uv 171
Lv 2 4 v
Ra . L4
Lv 1 b

.
/Tl

Lvl Ra Wa Rb Lv2 leWb Rc Lv3 Uv2Wc Uv3

Figure 2.3 The geomerty of lock and unlock.

Forbidden regions are a geometric means to guarantee serializable schedules by
enforcing an appropriate order for the actions appearing in the transactions. Let
T be a transaction system, T},T; € 7,4 # j. Let F}; be a forbidden region in plane
(Ti,T;). Then for any legal schedule s of 7, if Fj; is connected, then F;; enforces

an order on the actions of transactions T, T;:
(Aip; qu;),(Aipﬁ’qu;) € Fijys(Aip;) < 8(Ajq;) = s(Aipy) < s(4jq1)-

In the sequel we consider only connected forbidden regions.

7

The construction of forbidden regions is the critical task in the pre-analysis al-
gorithms to achieve safe locked transaction systems. For each plane (T}, Tj), we
will be interested in a forbidden region which contains some given set C(Ti,T;) of
points. Which points are selected depends on the concrete locking policy. For each
plane, the construction of such a forbidden region can be done by the following
steps (see [6] for details): '

(1) Construct a minimal connected rectilinear reéion which contains the respective

set of points in the plane.
(2) Compute a set of rectangles that covers the constructed rectilinear region.

(3) Make the rectangles forbidden, i.e., insert corresponding lock/unlock pairs |
into the transactions. The resulting locked transactions are denoted LT,-j and
LT} , whgre LTij is the locked version of T, and LT; is the locked version of
T;.

As the forbidden rectangles define a forbidden region, we call these steps also the
realization of a forbidden region (by locking). A corresponding locked transaction
system is then derived by merging all versions LT,-j , 1 <3 £d,t # j for each
transaction T, such that the order of the actions and lock and unlock operations
for each version is preserved. The order of lock and unlock operations stemming
from different versions is not necessarily unique. For example, consider LT,-j =
...A,-,...Lv...Ai(H.l)...andLT,-" =...A4;...Uw... Ajq41) ..., where j # k and ,
v # w. Thus, after merging LT,-j and LTF, Lv either precedes Uw, or Uw precedes
Lv. In general, in such situations the order of lock/unlock operations may affect
serializability. (Remember the lock/unlock rule of 2-phase locking.) However,
for the policies we shall propose it is sufficient that for each plane (T;,T;) the
respective set C(T;, T;) is contained in the forbidden region. If during the merging
there exists more than one possible order for lock or unlock operations éternming
from different versions LT,-j ,LT¥, j # k, then any order may be chosen. Thus,
starting with an unlocked transaction system we can derive a locked version of this
system by realizing forbidden regions and afterwards merging the resulting locked

versions of each transaction.

3. On Safe Static Locking Policies

A (static) locking policy P is a function that maps a transaction system 7 to a set
of locked versions of 7. If Lt € P(r), we say that Lt is locked according to P.
Locking policy P is called safe, if any Lt locked according to P is safe.

This definition of a locking policy differs from [17]). As we will analyze complete
transaction systems, we define locking policies on transaction systems and not only

on transactions. Later we will also define online locking policies (Section 4).

Locking policy Pi dominates locking policy Py, if for every transaction system T
there holds:

L7 € P3(7) = there exists L't € Py(r) such that L'r dominates Lr.

In the sequel we will define locking policies by nondeterministic algorithms, which,
for any given transaction system, can derive any locked transaction system in
the corresponding image. In practice, such nondeterministic algorithms will be
implemented deterministically such that from the set of possible locked transaction
systems one is selected according to a fixed strategy. We therefore distinguish
between a locking policy P and a concrete implementation of P.

Basic pre-analysis locking (bPAL) [6] is a locking policy that maps any transaction
system 7 to a set of locked transaction systems. A forbidden region is created for
each pair of transactions T;, T; whose plane contains at least two conflict points,
one of which is a direct one, such that all conflict points in that plane, direct
and indirect ones, are included. This construction of forbidden regions guarantees
that no non-serializable schedule is legal, but in general also forbids serializable
schedules. In (6] we have described in detail a bPAL implementation which is free

from deadlock.

The locking policy 2-phase locking (2PL) maps any transaction system 7 to a set
of locked transaction systems such that the following two conditions are fulfilled
[4]: in each locked transaction each action is surrounded by a lock and unlock
operation, and every lock operation precedes all unlock operations. Usually entity—
locks are used such that each action accessing entity e is surrounded by Le and Ue.
In the sequel, whenever we refer to 2PL, we will assume entity—locks. Moreover,
for simplicity, only one lock mode is considered. The geometric representation of
a locked transaction system according to 2PL can be characterized as follows (cf.
[13]). First, for any plane T, T} the forbidden region is composed of overlapping
rectangles having at least one point in common. Second, for any transaction triple
T;,T;, Ty each forbidden rectangle in (T, T}) overlaps all forbidden rectangles in
(T, Tk) on their projections on the T;-axis. A detailed discussion of bPAL versus
2PL can be found in [6,9].

We now introduce a new sufficient geometric condition for safe locked transaction

systems. Similar to 2PL safety is guaranteed by overlapping forbidden regions.

9

However this will not imply that in adjacent planes, i.e. planes which have one
transaction in common, all forbidden rectangles have to overlap. Thus the restric-
tive lock/unlock rule of 2PL is weakened. ’

Let L7 be a locked transaction system. L7 is called overlap-locked (OL-locked), if

(OL1) In each plane, in which there is at least one direct conflict point, there is

a forbidden region which contains all direct conflict points.

(OL2) Let S; - S; —... - Sn — S1, n > 2 be a minimal cycle in D(r). (? Then
 there exist coordinates P, . .., Py (not necessarily grid coordinates), where
m=k-n,k > 1, such that

(P1, P2) € Fi2,(P2, B3) € Fas, ..., (P, P1) € Fy.

Fy2, Fp3,. .. Fin are the forbidden regions of planes (57, 55%), (S5, S3%), ...,
(S1.,S1), respectively, {S7,...,5,} = {S1,--.,Sx}, and

Sl — . =8 S =k(Si—...—Sp) = S1. ®

The points (P, P),...,(Pmn,Py) are called the overlap-points of the cor-

responding cycle.

Observation 1: Any OL-locked transaction system Lt is safe.

Proof: Let s be a schedule which is not serializable, i.e., B(s) contains a minimal
cycle S — S; = ... = S, — S;. As all direct conflict points in a plane are
contained in the forbidden region, we can assume n > 2. Let (Aip;y Ajq;) be a
direct conflict point of plane (T}, T}), where T; — Tj is contained in the cycle.
Thus s(Aip;) < s(Ajg;). As all direct conflict points and all overlap-points in one
plane are contained in the same forbidden region, we can conclude s(P;) < s(P;)
for all overlap—points (P;, P;) of the corresponding cycle. Since this holds for any
pair of neighbouring transactions in the cycle, s(P;) < s(P;) would be implied if

Lt accepted s, a contradiction. [

It is worth to note that condition (OL2) requires more than mere overlapping

forbidden regions of adjacent planes of a cycle. Figure 3.1 gives an example where

(2 A cycle ny - ...~ np - ny is called minimal, if n; # n; for1 <i < j<n,
and there are no other edges in the underlying graph between any two nodes in
the cycle.

() For k > 1 we denote by k(ny — ... - ny,) the path in which n; — ... - n, is
repeated k times.

10

adjacent planes have overlapping forbidden regions, however (OL2) is violated and
the locked transaction system is not safe as the indicated schedule

Rld R2g W-za Rza Rsb W3a Wzg Wlb W]f sz

is not serializable.

______ To ' -
N
» T
Wgt
Ra
Wdt Le
Rgt
T3 < + : . N — > T 1
Wa Rb Rd Wb WE
Rb1t Py
Wa -+
—
\%
T3

Figure 3.1 A locked transaction system which is not safe
although forbidden regions in adjacent planes
overlap.

OL-locking is not necessary for safety. As we are not restricted to entity-locks,
safety by locking can also be achieved as shown in Figure 3.2. The locked transac-
tion system is derived by the iterative PAL algorithm (cf. Section 5). Here, safety

is achieved by locking also in planes which do not contain a direct conflict point.

It is easy to show that the 2PL policy and the bPAL policy derive OL-locked

transaction systems {9].

We shall now present efficient static locking policies based on OL-locking which
dominate 2PL. We assume that the transaction system 7 is a priori krown. The

dynamic online case is treated in the next section.

11

A A A
*Wecr ° Wbt ° We °
] Rb L] Ra 1 -] Rb]
T3< + + + >Tl >T3 : —+ >T4
Wd Rc Ra Wb Rc Wd Rd Wa -
* RAT) ‘
Owa [
/
Ty

Figure 3.2 A safe locked transaction system which is not OL-locked.

The policy overlap-point locking (OL) selects for each transaction one unique
overlap-point coordinate. For any given transaction system the corresponding
set of locked transaction systems is derived by the following nondeterministic al-

gorithm OL:

Algorithm OL
Let 7 = {T1,...,T4},d > 2, be a transaction system. The algorithm OL considers

each transaction pair and may realize forbidden regions in the corresponding planes

in order to construct a locked transaction system L.

1. For each transaction T; select one coordinate on the T;—axis as overlap—point

coordinate; denote this coordinate Q;.

2. For each pair of transactions T3, T}, i # j, initialize the set C(T}, T;) to contain
the direct conflict points of plane (T3, T;). If C(T;,T;) is not empty, then add
overlap-point (Q;, @;) to C(T;, T}).

3. For each pair of transactions T}, T}j,7 # j such that C(T;,Tj) is not empty,

realize a forbidden region which contains all points in C(T}, T;). The resulting
locked transactions are denoted LT,-j and LT}, respectively.

4. For each transaction T; and each pair of transactions T}, T}, # j, merge the
locked transactions LTij to LT;. Lt is then the set of all such LT;,1 <3 <d.

. Theorem 1: Policy OL is safe and dominates policy 2PL.

Proof: Safety follows analogously to the proof of Observation 1.

2]

12

Then let Lt be any locked transaction system according to 2PL. We will show that
algorithm OL can construct a locked transaction system L't which dominates L.
To this end choose in step 1 as coordinates of the overlap—point the first unlock
operation in each locked transaction in Lr. It follows that the overlap-points are
_contained in the forbidden regions of L7. Then, in step 3, realize forbidden regions (
in such a way, that each forbidden region of L't is contained in the corresponding
forbidden region of LT. Since the forbidden regions in L+ contain all direct conflict

points and the respective overlap—point, such forbidden regions always exist for

L'r. B |

Figure 3.3 shows a locked transaction system according to OL which dominates a

transaction system originally locked according to 2PL.

OL is an improvement over 2PL in the sense that the forbidden regions can be

made smaller. An even better policy can be obtained if we combine OL with a pre—
analysis of the transaction system 7 to decide for each pair of transactions T;,T;
whether there exists a cycle of length greater than 2 in D(7) containing an edge
T; — T;. Obviously, only in those cases an overlap-point has to be introduced in
plane (T, Tj). We shall call the resulting policy overlap-point pre-analysis locking
(OLPAL).

Algorithm OLPAL
Let 7 = {T1,...,T4},d > 2, be a transaction system. The algorithm OLPAL con-

siders each transaction pair and may realize forbidden regions in the corresponding

planes in order to construct a locked transaction system L.

1. For each transaction T; select one coordinate on the T;—axis as overlap—point
coordinate; denote this coordinate Q;.

2. For each pair of transactions T;, T}, # j, initialize the set C(T,, T;) to contain
the direct conflict points of plane (T3, Tj).

3. For each pair of transactions T, Tj,¢ # j such that C(T:,T;) is not empty,
add overlap-point (Q;, Q;) to C(T;, T;) whenever there exists a path T; — T} —
... —Tj in D(r), where Tk € 7\ {T}, T}}.

4. For each pair of transactions T}, Tj,¢ # j such that C(T;,T;) contains at least
two points, realize a forbidden region which contains all points in C(T;, Tj).
The resulting locked transactions are denoted LT,-j and LT}, respectively.

5. For each transaction T; and each pair of transactions T}, T;,t # 7, merge the
locked transactions LTij to LT;. Lt is then the set of all such LT},1 <i<d.

13

o

-] -] Wc 3
/ ° ° Rc
X
[] ® Wd--
. Rdt
o °o Wa+ [o .
=] o Ra L]
T ot : ! —
Wd Rd Wb Rb Ra Wa
Rb-.-
Wb_..

T3

Figure 3.3 A OL-locked safe transaction system which dominates a
2PL locked transaction system (dashed lines) . The over-
lapp-points are denoted by x.

The following theorem is now straightforward:
Theorem 2: Policy OLPAL is safe and dominates policy OL. 2

To conclude this section we shall comment on the time complexity of appropriate
implementations of algorithms OL and OLPAL. The following time bounds are
taken from [6]. Let us assume that the selection of overlap—points is done in con-

stant time for each transaction. Let n be the number of all actions of transactions

14

in 7, and d the number of transactions. All sets C(T;, T;) of direct conflict points
can be derived in time O(n(d +logn)). The realization of the forbidden regions of
all planes and the merging can be done in time O(n’logn). Therefore an imple-
mentation of OL needs time O(n?logn) to derive a locked transaction system in
the worst case. For each pair of transactions T, T; the test for a cycle of length
greater than 2 can be done in time O(e), where e is the number of edges in D(7).
Thus an implementation of OLPAL needs time O(n?logn + €?), in the worst case,
which is identical to the time bound of bPAL.

4. On Safe Online Locking Policies
4.1 The Problem of Online Scheduling

By a scheduler we mean the component of a database management system which
is responsible for concurrency control. We call a scheduler online, if the complete
transaction system need not be known in advance. However, we require that
whenever a new transaction is issued by a user, then the complete (action sequence
of the) transaction is made known to the scheduler; the same assumption is made

e.g. in [3,5].

Online scheduling becomes more difficult for uninterpreted locks than for entity
locks. The reason is that a lock on an entity influences also future transactions
which may access this entity, while the same cannot be achieved for uninterpreted
locks as future transactions are unknown. In other words, as uninterpreted locks
can only be introduced with respect to conflicts between the currently known
transactions, new conflicts may arise whenever a new transaction arrives, which
may require additional locks in the already running transactions. This means the
schedule processed thus far is not necessarily legal after the introduction of the
new locks. A straightforward solution to this problem could be to force the new
transaction to wait until it is guaranteed that the current schedule is not affected.
We shall concentrate on more elegant solutions in which every new transaction
can start its execution immediately after having been analyzed by the scheduler.
This is possible, of course, for the 2PL policy as entity locks are used. We shall
show that the OL policy, which is a 2PL dominating policy, can also be applied
in the online case. Moreover, also bPAL can be adopted to the online case. That
is, whenever the arrival of a new transaction would cause the current schedule to
be illegal, the illegality can be ignored by removing those locks which caused the
illegality. This is possible because non-serializable continuations of the schedule
will be avoided otherwise. As a negative result we show that OLPAL cannot be
applied to online scheduling, in general. Finally, we introduce iPAL, which is a

15

.

P

different, more efficient online policy fthan bPAL*.

A scheduler can be thought of as a (deterministic) implementation of a (nondeter-
ministic) online locking policy.

Let Lt be a locked version of transaction system 7, Ls be a prefix of a legal locked
schedule of L7 and let ' € be a transaction. Finally, let ' = r U {T"}.

An online locking policy P is a function that maps a triple (L7, Ls, T) into a set
of locked transaction systems L7, Moreover, for each transaction T € 7 and each
Lt' € P(Lt,Ls,T"), the locked version LT € L+ equals the projection of locked
version L'T € L7’ on all actions and lock /unlock operations in LT. This condition
implies that the locked version of a transaction in the new locked transaction
system is derived from the locked version in the old locked transaction system by

inserting new lock/unlock operations, at most.

Online locking policy P; dominates online locking policy Py, if for any triple
(Lt,Ls,T") there holds:
Lt' € Py(Lt,Ls,T") =

there exists L'r' € Pi(Lr, Ls,T') such that L'r' dominates L+

Can we devise an online scheduler based on a pre-analysis policy, e.g. bPAL,
OLPAL, or OL? That is, when scheduling according to one of these policies, can
a new transaction be issued dynamically and a new locked transaction system
constructed obeying this policy such that scheduling may be continued? The
basic problem here is that the partial schedule processed thus far must be a legal
partial schedule also when the new transaction is present. Thus, there should not
occur a transaction which contradicts the partial schedule of the current locked
transaction system. More precisely, let (L7,Ls,T') be a|triple as above, and let
Lt € P(Lt,Ls,T'). T' is called contradictory to Ls if there exists a pair of
transactions T}, Tj € 7 such that 3ij intersects the forbidden region F;; implied by
L7'. Figure 4.1 shows an example of a contradictory transaction (for brevity we
will use in the following examples only write actions).

Assume that there are first only two transactions (cf. Figure 4.1),
Ti: Wa Wb
T;: Wa We.

As there is only one conflict, 7} and T; can be scheduled without locking. Assume
then that the first action of T} and the whole transaction T, have been performed

at the point when a new transaction

T3: We Wb

16

AN /
A He °We 7|
wat ™ o Wa (e
‘ >~ T < + + > T
Wa Wb~ Tl 3= Wb Wc Wa |Wb 1
We °
A\
T
3
(a) (b)

Figure 4.1 The partial schedule Wja W,a Wéc does not pass any
forbidden region when only Ty and T are present (a)
but is forbidden by bPAL policy when T3 has arrived (b).

arrives. When bPAL is applied to {T},T5,T3}, we obtain a locked transaction
system such that the already processed partial schedule
TII Wa
T5: Wa We

is no more legal, i.e., 515 now intersects F3, and thus we may not continue schedul-
ing according to the new system. This example shows that| contradictory transac-
tions may occur under bPAL and therefore, bPAL cannot|as such be used as an

online policy.

Contradictory transactions are not an unsolvable problem for a scheduler. When-
ever a new transaction arrives which turns out to be contradictory, it can be forced
to wait until those transactions have finished their execution and are removed from
the system which caused the contradictory situation. However, such a scheme has
two main drawbacks. Firstly, there is no guarantee that the transaction can enter
the system at some time point without additional mechanisms. Secondly, each
time a contradictory transaction is detected the time spent |to derive a new locked
transaction system has been wasted. For these reasons we will call only those

schedulers online which guarantee the absence of contradictory transactions.

Finally we should note that in the online case the transaction system need not
grow indefinitely. A transaction T can be removed from the current system when
all its actions have been performed and there is no direct| conflict point (A, B)s
where A is an action of T, such that in the current partial schedule B appears

before A. Thus, there cannot occur a cycle in the conflict graph which contains T

17

There always exists a candidate for removal, since every partial schedule processed

thus far is serializable.

4.2 Online Scheduling with OL

Let us first consider the online locking policy based on OI

OL*.

Algorithm OL*

The algorithm simulates the online situation in which new

while the transactions already received are being execut

sequence of transactions and assume that the scheduler rec

,, which we shall denote

transactions may arrive
ed. Let Ty,...,T; be a

eives the transactions in

this order. Whenever a new transaction arrives, a new locked transaction system is

constructed such that for all 2 = 1,...,d the already proc

st—l

the empty string). The current set Ty,...,T;,1 <:<d, 0

by 7*, and A;'_l denotes the last action of T; in s*~!.

, remains legal after the introduction of transaction

1. Let L7! = {T}}.
2. For i = 2 to d perform

2.1 For transaction T; select one coordinate on the

coordinate; denote this coordinate Q;.
2.2
to contain the direct conflict points of plane (T;
empty, then add overlap-point (Q;, @;) to C(T;,

2.3

For each pair of transactions T;,Tj,1 < j < 1, in

essed schedule, denoted
T; (s° is assumed to be

f transactions is denoted

I;—axis as overlap—point

itialize the set C(T3,T;)
, Tj). If C(T;,Tj) is not
Tj). ‘

For -each pair of transactions T;,Tj,1 < j < i such that C(T;, Tj) is not

empty, realize a forbidden region which contains 'all points in C(T;, Tj).

‘The resulting locked transactions are denoted L7} and 'LTJ?', respectively.

2.4 Let 1 < j <:. For T;, merge all LT,-j to LT;. F
L7*~! and LT} to L'T;. Lt* then is the set of
LT;..

2.5

operations into s*~! which have been introduce

the left from A;_l. Preserve the order with resp

It is interesting to note that OL* does not suffer from co
The reason for this is that forbidden regions once compute

18

or each T; merge LTj €
all L'T;, 1 < j < 1, and

For each transaction LT; € Lt%,1 < j < 1, insert those lock/unlock

d in step 2.3 and are to
ect to LT). 1

ntradictory transactions.
d need not to be changed

when a new transaction arrives. Note, that in steps 2.3,

|

lock/unlock operations also in already running transacti

2.5 in the current schedule. However this does not caus‘

locking variables are used and the new transaction T,

2.4 we have to insert

ons, respectively in step

:

a problem, since new

has not yet started its

execution. As OL dominates 2PL in the static case we have:

Theorem 3: OL* dominates online 2PL.

In order to derive the time complexity of computing the
system when the i** transaction arrives, we denote by n t]
all 7 transactions, and m; the number of actions of the i

Then step 2.2 requires time O(n - m;) and step 2.3 and 2.4

new locked transaction
he number of actions of
% transaction (cf. [6).

time O(n - m;logn). As

step 2.5 can be performed in time O(n), the total time complexity is O(n-m,logn). -
If we assume that the maximal number of actions in each transaction is bounded

by a constant, we can write this time bound also as O(i - g1).

4.3 Online Scheduling with bPAL |
1 be “safe” enough that

radictory transactions.

Now we consider the question of whether bPAL itself woul

we could ignore those forbidden regions, which imply cont

In the above example (cf. Figure 4.1), we may ignore the forbidden region in

the plane (T1,T3), as all non—serializable schedules of {T1,T;,T3} will be detected

by the other two forbidden regions. Therefore, the solution is to build a locked

transaction system that realizes only the forbidden regions of (T, T3) and (T, T3).

According to this system the already processed schedule : '
Ty: Wa

T: Wa We

is legal and the scheduling can be continued safely.

The question is: can we indeed always forget a new forbidden region computed ac-

cording to bPAL if it cuts the projected schedule processed| thus far? Surprisingly,
- the answer is yes. We shall now outline an algorithm for constructing a locked
transactions system dynamically in the sense that new transactions are allowed to
- arrive when transactions are being processed. The construction is done such that
the schedule processed thus far is always legal with respect to the current locked

transaction system.

Algorithm bPAL*

19

The algorithm simulates the online situation in which new

transactions may arrive

while the transactions already received are being executed. Let Tj,... » T4 be a

sequence of transactions and assume that the scheduler receives the transactions in

this order. Whenever a new transaction arrives, a new lock

constructed such that for all ¢ = 1,...,d the already proc

s*~! remains legal after the introduction of transaction

the empty string). The current set T3,...,T;,1 <1 < d, of
by 7%, and A;™" denotes the last action of T; in s'~1.

1. Let LT1 = {Tl}
2. For i = 2 to d perform

2.1 Let Ls'~! be a prefix of a legal schedule of Lt~

prefix of Lsi~1 (4),

2.2 For each pair of transaction T;,T, 1 < j < k
C(Tj,Ti) defined by:

ced transaction system is
ressed schedule, denoted

T; (s° is assumed to be

f transactions is denoted

! such that Ls*~? is a

< 1, determine the set

C(T;,Ti) = {(Ajp, Akq) | (Ajp, Akq) is a direct or indirect conflict point

of 7! in the plane (T}, Tk) and whenever indirect
to the right from A}™! in T; and Ay, is to the ri

2.3 For each pair of transactions T}, Tk, 1 < j < k

and j,k < i, then A4;, is
ght from AL~! in T}).

< ¢ such that C(T},Tx)

contains at least two conflict points one of which is a direct one, realize

a forbidden region which contains all points in

C(Tj,Tx). To this end

first take the forbidden region with respect to L7i~1. If this forbidden

region does not contain all points in C(T}, T}), co

nstruct a new forbidden

connected rectilinear region by enlarging the old one (by adding new

rectangles) such that it contains all points in C(T},Tk) and does not

intersect the current schedule’s curve. The resulLing locked transactions

are denoted LT,-j and LT}, respectively.

2.4 For each transaction T; and each pair of transact
the locked transactions LT} to LT;. L7* then is th
i<d. |

2.5 For each transaction LT; € L1 <j < i i
' operations into s*~! which have been introduced

rectangles and are to the left from A;'l. Preserve
to LTj.

ions T3, Tj,t # j, merge
e set of all such LT;,1 <

1sert those lock/unlock
in step 2.3 for the new

e the order with respect

(4} Here we assume that between the arrival of T;_; and the arrival of T; the

schedule Ls*~2 is continued to Ls*~!.

20

Similar to OL*, bPAL* does not suffer from contradictory transactions. However
the reasons here are that we either consider conflict points, whose coordinate
actions have not yet been executed (cf. step 2.2), or conflict points, which have as
one coordinate action an action of the new transaction. Note further, that in step
2.3 we always reuse the lock and unlock operations of the|previous iteration round.
This guarantees that the old locked version of a transaction always can be derived
by projection from the new locked version as it is required for an online policy.”
Step 2.3 contains a minor geometric problem. It might be the case that the curve
of schedule Ls*~! already passed below or above the com plete forbidden region of
a plane with respect to L7*~1. If now the old forbidden region has to be enlarged.
to contain a new point (whose actions are not part of L7*=1), then this task has
to be performed without intersection with the schedule’s curve. However, as the
schedule either passed above or below the old forbidden region, we can always
manage to enlarge the old region appropriately. We will not go into further details
here, the precise geometric algorithms are beyond the scope of this paper. Finally,
similar to OL*, in step 2.5 lock/unlock operations can be inserted in the running

schedule without introducing an illegality.

The following theorem states that a locked transaction| system derived by the
bPAL* algorithm accepts only serializable schedules.

‘Theorem 4: Let L7',1 < i < d, be a locked transaction system constructed by
the algorithm bPAL*. Whenever Ls' is a legal schedule of Lt! with prefix Ls*~1,

schedule s' is serializable with respect to 7.

Proof: The proof is by induction on i. Clearly, for i = 1 the claim holds. Then
let ¢ > 2, and assume that s' is a non-serializable schedule of 7!. We shall show
that L7t forbids s' after having processed the partial schedule Ls*~!, a prefix of
a legal schedule of Lr¢~!. That is, we shall show that there is a projection of s*
on a transaction pair such that this projection will pass - after the arrival of the

latest transaction - through two conflict points.
If s* is a non-serializable schedule of 7i=1, then, by the induction hypothesis, s* is
forbidden by Lr'~!. Thus the graph B(si) contains a minimal cycle

Sl —§S2_)..._’Sn—)5n+l=sl,nzt 1,

where one transaction, say Si, is T}, the transaction not yvet included in ri-1,
Assume that each arc S, — S, in the cycle is implied by a direct conflict between
action A,,, and succeeding action 4,,,. If there exist more than one pair implying

the respective arc, consider only one of these and call the corresponding actions

21

the actions in the cycle. We may further assume withLut loss of generality that

action A;p, of S) appears in s* before all other actions of

the cycle. There are two

cases to consider depending on the form of s' with respect to the actions in the

cycle.

case 1. The actions of Siyy,...,S. appearing in the cycle lie in s' after Agp, of

Sk, 1 < k < n. Then s' is either of the form:

51: A1p1 Aw1
Sk: Akp,
Sn: Anp,, A"Qn
(here the mutual order of A4, of Sy and Ay, of S, is irrelevant), or of the form:
511 Alm A1q1
S'k: Akpk
Sﬂ: ’ AnQn Anpn

In both cases, after the arrival of S, the projection of
will pass through two conflict points.

s' on the plane (51, Sn)

case 2. At least one action of Siy1,...,Sn appearing in the cycle lies in s* before
'Ak;,,, of Sk, 2 <k < n. Then let j > k be the smallest index such that S; has an

action appearing in the cycle and lying in s* before Aip,
be A;,. of S;, because if it were Ajg;,then A;_yp. | of S
of Sk, too. Thus s* is of the form:

513 A1p1

Sk: Ak’,,g

of Si. This action must

-1 would lie before Agp,

In this case, the projection of s* on (Sj-1, S;) will pass through two conflict points.

Moreover, this happens certainly after the arrival of the

the involved actions of Sj-1,Aj-1p;_, and Aj_14;_1, bo

22

transaction Si, because

th appear only after an

.action of Sk. (Aj-1p;_, must appear after A,,, otherwise Aj_2p;_, would appear
before Agp,, which contradicts j being the smallest index such that S; has an

ases a desired forbidden

1
|

action lying before Ajy,.) Thus we have shown that in all c
region exists and s' is not accepted although its prefix s'7! is accepted.
bPAL* basically does for each transaction T and transaction system 7' the same
amount of work as bPAL does in the static case [6]. Therefore, a rough estimate for
the time needed, which assumes that all conflict points are computed anew each
iteration round, is O(n?log n + €?), where n is the number of all actions in ¢ and
e is the number of edges in D(7'). We conjecture, that this upper bound is large
enough to capture, in comparison to bPAL, the additional geometric overhead
imposed by step 2.3. Finally, as e is O(d?), and under the assumption that the
maximal number of actions in each transactions is bounded, we also can write

O(d*) as time complexity for bPAL*.
Theorem 5: There is no dominance relationship between bPAL* and OL*.

Proof: This follows immediately as bPAL (OL) is a special case of bPAL* (OL*),

since there does not exist a dominance relationship between bPAL and OL. 5

> above in the case of
e.g. OLPAL for an

e transactions

Our next task is to show that safe “dynamizing” as done
bPAL* is not possible for an arbitrary OL-locked policy,
arbitrary selection strategy of points (Q;, @;). Consider the

Ty: Wa Wa' Wb
T5: Wa We
T3I We Wb

and assume that first only 77 and T are present and that the situation is as
depicted in Figure 4.2(a) when transation T arrives. Figure 4.2(b) shows a pos-
sibility for choosing forbidden regions for {T},T,,T3} according to OLPAL, and
further describes how a non-serializable schedule could occur. The overlap-points

are denoted by ‘x’.

4.4 The Iterative Pre—Analysis Locking Policy

t

The obvious deficiency of bPAL* is that the set of all indirec
be recomputed for each new transaction. The following polic
analysis Locking (1iPAL), bases on a different idea. For each
those pairs have to be considered in which one transaction is

To achieve safety, iPAL may also introduce locks between tra.

23

y

conflict points has to
, called Iterative Pre—
new transaction only
the new transaction.

nsactions which have

T. T
2 2
N A
Cc+ [] C\+ [
X X
aft . ° ar °
+ + + >T1 T, &— 4 ' ' > 7
a a b 3> b ¢ a a b~ "1
C+ °
X
b+t °
vV
T3
a
(a) (b)

Figure 4.2 (a) The transaction system contains first only two transactions

which are processed as shown. (b) The third
arrived. If now forbidden region of (To) willi
the non-serializable schedule Wa wza

will be accepted.

no (directly) conflicting actions.

transaction has
be ignored, then

e Wae Wab Woa Wb |

This is necessary as iPAL may not introduce

- locks between transactions which have conflicting actions in situations, in which

bPAL, or 2PL, for instance, would have introduced locl

KS.

iPAL therefore is a

policy which behaves in a completely different way when compared with all other

known locking policies.

iPAL can be used as a static, or as an online locking pc

iPAL for the (more interesting) online case. For the static

online algorithm iPAL* and start execution of the transs

of all transactions has finished.

Algorithm iPAL*

The algorithm simulates the online situation in which new

while the transactions already received are being execute

sequence of transactions and assume that the scheduler rec

this order. Whenever a new transaction arrives, a new locke

constructed such that foralli =1,...

st—l

the empty string). The current set Ty, ...
by ¢, and A;'l denotes the last action of T; in s*~!.

1. Let L' = Ty.

2. For : = 2 to d perform

24

licy. We shall describe
case perform the below

ictions when processing

transactions may arrive
d. Let T1,...,T4 be a
eives the transactions in

d transaction system is

,d the already processed schedule, denoted
, remains legal after the introduction of transaction T} (s° is assumed to be
5,1 <1< d, of

transactions is denoted

2.1 Determine for each pair of transactions T}, T}, 1
conflict points. Denote this set C(Tj, T;).

< Jj <t the set of direct

2.2 For each pair of transactions T}, T;,1 < j < ¢, for each sequénce of direct

conflict points

(Ajpj 3 qu;)s cey (ng’, ’ Aiq.')’ (Aipu Clq;’)a ceey (chp’,"v qu,')’

g + h > 1, such that the corresponding trans
cycle ‘

T,—Ti—..-T) =T, TV — ..
in D(7%), add conflict points (Ajp;, Aig;) and

actions form a minimal

"
=T, — 1T

AJ'%‘) Aib.‘) to C(Tj, T;).

Moreover, whenever p; < ¢; and g; < pi, then also add eztrapoint

(quj) Aiqe) to C(Tj, T;).

2.3 For each pair of transactions T;,7;,1 < j < ¢ such that C(T;,Ty)

contains at least two conflict points, realize a
contains all points in C(T},T;). The resulting
denoted LT} and LT;.

2.4 Let 1 < j < i. For T}, merge all LT} to L

forbidden region which

locked transactions are

T;. For each T; merge

LT; € LT""! and LT; to L'T;. Lt* then is the set of all L'Tj,1<j5<4,

and LT;.

2.5 For each transaction LTj € Lt',1 < j < i, insert those lock/unlock

operations into s'~! which have been introduced in step 2.3, act in

|

plane (T}, T;) and are to the left from Aj-_l. Preserve the order with

respect to LTj.

For iPAL* the same remarks apply as for OL* with respect to contradictory trans-

actions and the insertion of lock/unlock operations into| the running schedule.

Figure 3.6 shows a locked transaction system according toiPAL* when the trans-

actions are processed in the order Ty, T3, T3, Ty. Observe, that forbidden regions

are only introduced in planes which involve T;. No locks are introduced in planes

(T1,T3), (T2, T3) even though there are two conflict points, one of which is a direct

one. However, locks are introduced in plane (T3, T), even though there is no direct

conflict point.

Theorem 6: Let L7',1 < i < d be a locked transaction system constructed by
the algorithm iPAL*. Whenever Ls’ is a legal schedule of Lt* with prefix Ls'~?,

schedule s' is serializable with respect to 7.

25

Proof: The proof is by induction on i. Clearly, for i =

1 the claim holds. Then

let i > 2, and assume that s* is a non-serializable schedule of 7. By the induction

hypothesis there must exist a minimal cycle in B(s‘) which contains T:

T, =T — ...

—»Tg'—>T,~—>T1"—>...—>

U
Th - T]’

where g + h > 1. Let a corresponding sequence of direct lconflict points be

(AJ'Pj ’ qu{ Doy (Byp;’ Aig;) (Aipi, Clq’,’)’ SRRR)

We then can infer indirect conflict points (Ajq;, Aip;) an

(Cﬁp;'v quj)-

d (Ajp,. , A,'q..). -Further,

since in the planes (T}, T;) conflict points are contained in forbidden regions, we

can follow one of the following cases:

(1) S =... A,'q'.... Ajpj..., and s =... _A,'p'.... qu,' Leay
(i) s=... Ajp; ... Aig; ..,ands=... Ajg. ... Aip,
Assume case (i). As we have T; — ... — T; and s(Ai;) < s(4;p;), there must
exist a set of transactions ¥ = {T},...,T,} C {TY,... y Ty}, such that
T,-—»...—-)Tl —»...—-)Tr—-»...—»T,-

and, for actions Blﬂ and qu, of T} € #, there holds 1<i<r):

S=... BlPl"'Aij"'BIQI""
S=... sz,...Bl_.lp,_l...qu,..., and
S$=... By, ...Aig;...Brq, ...

There exist indirect conflict points (Erp,, Aiq;) and (3rq, » Aip;). The latter follows

as we have also a path T; — .

s(B,,.). Thus, depending on the order of Aig; and A;p,,

. = T; in the cycle. We know further S(Brpr) <

there exist one of the

situations shown in Figure 4.3. In case (a), both curves separate two indirect

conflict points, which is a contradiction to our assumption Lr’ being constructed by

iPAL*. In case (b) the solid curve does not separate two conflict points. However,

as L7’ is constructed by iPAL*, there exists also an extra point (B,q,,Aiqi) in

|

the plane (T, T}) (in the figure the extra point is denoted ‘x’). Thus the solid

curve separates an indirect conflict point and this extra point, which gives us a

contradiction as desired.

26

L] .

N A
Alql ’"—O“J_ ipy g
Bip, 1 o Rigt ° R
~ — o
Brpr Brpr Brpr érpr
(@) (b)

Figure 4.3 The situations in the proof of Theorem 5.

Assume case (ii). As we have T; —

... = Tj and s(Ajq;) < s(Aip;), we can

derive a contradiction by similar arguments as above. However in this case the

contradiction does not depend on extra points.

To see that extra points may be necessary consider as an example the transaction

system 7 = {T1,T2,T3}, where

Ty=Wd Wa Wb, To,=Wc Wa,

T3 =We

Wb.

Assume that the transactions are processed by iPAL* in the order T} ,12,T3. Then

the not serializable schedule

s = Wid Whe Wic Wia Waa Wib Wib

will only be forbidden due to the extra point in plane (T3,T}) (cf. Figure 4.4,

the extra point ié_denoted by ‘x’), as only in plane (T, T
constructed.

T> T T3
N - N N
Wa * Wb 1 i Wb ° I
Wwc t ° ‘ Wct ° ' Wet ¢ | X
' + —> T, E— — Tl + —> T,
Wd Wa Wb Wd Wa Wb Wc Wa

~ Figure 4.4 Extra points are necessary to guarantee the safety of iPAL" .

Theorem 7: There is no dominance relationship betwee

2PL, and OL*, respectively.

27

n iPAL* and bPAL*,

;) a forbidden region is

The proof of this theorem follows immediately as iPAL* may introduce forbidden
regions in planes which have no direct conflict point. For example, the locked
transaction system in Figure 3.2 is derived by iPAL when processing the transac-
tions in the order Ty, T3, T3, Ty.

Finally, we shall comment on the time complexity of iPAL*. The computation of
direct and indirect conflict points can be done in a similar way as described in
[6] for bPAL. However, iPAL* in each iteration step, has to consider ¢ planes in
contrast to bPAL*, which has to consider O(:?) planes. Taking this into account
iPAL* needs no more than time O(n?logn + e - 1), where n is the number of all
actions in 7¢ and e is the number of edges in D(7*). By similar arguments as above

we can write this time bound also as O(3).

5. Conclusion -

In this paper we have discussed locking policies which are based on a pre-analysis of
the transactions. We distinguished static policies and online policies. In the static
case, the set of all transactions must be completely known in advance to perform
the pre-analysis. In the online case, a transaction musL be completely known
when it starts its execution. Here, the pre-analysis considers the new, previously
unknown transaction and the already running ones. We proposed overlap—point
locking, which is applicable in the static and online case. O]L.;‘ strictly dominates 2-
phase locking (2PL). We therefore consider OL* as an interesting policy of practical
relevance, which, for each new transaction, needs time O(dlogd), where d is the
number of active transactions. We further introduced two online policies, which
are in the line of the pre-analysis locking policy (bPAL) introduced in [6]. Both

policies have theoretically surprising properties. The time complexity for each new

transaction to perform the pre-analysis is of order O(d*) for bPAL*, respectively,

O(d®) for iPAL*, where d is the number of active transactions.

One characteristic property of our policies is early unlocking, i.e., locks may be re-
linquished before the commit point of the transactions. This has the consequence
that to commit a transaction one has to wait until all pre'decessors of the trans-
action in the dependency graph have already committed. We do not consider this
as a severe limitation for practical purposes, in principle. %‘inally, or policies are
based on (syntactic) locking variables, where all known policies use entity locks
(cf. [16]). Locking variables are easy to implement. For example, new variables

can be introduced by cyclicly incrementing an integer counter.

28

6.

[1]

2]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

References

Bernstein, P.A., Hadzilacos, V., Goodman, N. (1987), “Concurrency control
and recovery in database systems”, Addison Wesley

Bernstein, P.A., Shipman, D.W., Rothnie, J.B.(1980), “Concurrency control in
a system for distributed databases (SDD1)”, ACMTrans.DatabaseSystems
5, 18-51. _._

Casanova, M.A., Bernstein, P.A. (1980), “General purpose schedulers for
database systems,” ActalInformatica 14, 195-220.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, L.L. (1976), “The no-
tions of consistency and predicate locks in a database system,” Comm. Assoc.
Comput. Mach. 19, 624-633. |

Katoh, N., Ibaraki, T., and Kamada, T. (1985), “Cautious transaction sched-
ulers with admission control,” ACMTrans.Database Systems 10, 205-229.

Lausen, G., Soisalon-Soininen, E., and Widmayer, |P. (1986), “Pre-analysis
locking,” InformationandControl 70, 193-215.

Lausen, G., Soisalon-Soininen, E., and Widmayer, P\ (1986), “Towards online
schedulers based on pre-analysis locking,” Proc. Int.| Conf. Database Theory,

Lecture Notes in Computer Science 243, Springer Verlag, 242-259.

|

Lausen, G., Soisalon-Soininen, E., and Widmayer, P., “On the power of safe

locking,” JournalofComputerandSystemSciences, to appear.

Lausen, G., and Soisalon-Soininen, E.,“Locking Policiels and Predeclared Trans-

actions,” Proc. Int. Conf. Mathematical Fundamentals of DataBase Systems,
Visegrad 1989, Lecture Notes in Computer Science , Springer Verlag, to appear.

Papadimitriou, C.H. (1986), “Database concurrency control”, Computer Sci-
ence Press.

Papadimitriou, C.H. (1979), “Serializability of concurrent database updates,”
J.Assoc. Comput Mach. 26, 631-653.

Papadimitriou, C.H. (1982), “A theorem in database concurrency control,”
J.Assoc.Comput.Mach. 29, 998-1006.

Papadimitriou, C.H. (1983), “Concurrency control by locking,” SIAM J. Com-
put. 12, 215-226.

Wolfson, O. (1986), “An algorithm for early unlocking of entities in database
transactions,” J. Algorithms 7, 146-156.

29

7

(15] Wolfson, O. (1987), “The virtues of locking by symbolic names,” J.Algorithms

8, 536-556.

[16] Yannakakis, M. (1982), “A theory of safe locking policies in database systems,”

J.Assoc.Comput.Mach. 29, 718-740.

[17] Yannakakis, M. (1984), “Serializability by locking,”
31, 227-244.

[18] Yannakakis, M., Papadimitriou, C.H., Kung, H.T. (}

J.Assoc.Comput.Mach.

1979), “Locking policies:

Safety and freedom from deadlock,” Proc. 20th IEEE Sympos. Found. of

Comput. Sci., 286-297.

30

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031

