
Reihe Informatik
3/1989

Pre-Analysis Locking:
Static and Online Policies

Georg Lausen
i;

" 'as Soisalon-SoininJ."
~,/
/11',/

I>,'/(..;

Mai 1989

Pre-Analysis Locking: Static and OnIine Policies t

Georg Lausen
Fakultät für Mathematik und Informatik

Universität Mannheim, D-6800Mannheim, West-Germany

Eljas Soisalon:-Soininen*
Department of Computer Seienee

University of Helsinki, SF-00250 Helsinki 25, Finland

Abstract

Loeking is eonsidered as a means to aehieve serializable sehedules of eoneurrent
transactions. Transactions are assumed to be predeclared such that a pre-analysis
for loeking beeomes feasible to inerease eoneurreney. A eondition for safety is
introdueed whieh, based on a pre-analysis, allows the design of policies strictly
dominating known polieies such as 2-phase loeking. The statie ease, in whieh
the eomplete set of transactions is known in advanee, and the online case, in
which a transaction is known when it is started, are eonsidered. It is shown that a
poliey striet1y dominating 2-phase locking and some other interesting pre-analysis
polieies ean also be applied in an online environment.

t This papercontains results already presented at the International Conference on Mathematical Fun-
damentals of DataBase Systems, Visegrad 1989 [9], and, in a revised form, results already presented
at the International Conference on Database Theory, Rome 1986 [7].

* The work of this author was supported by the Alexander von Humboldt Foundation.

1

"-

•

1. Introduction

Locking as a means to achieve serializable sehedules of eoncurrent transactions
has been investigated continuously over the reeent years [1,10]. Usually, loeking
is done aeeording to the 2-phaselocking (2PL) poliey [4), whieh ean be deseribed
by the following rules: each action of a transaction has to be surrounded by a
loek/unlock pair, and alilocks must preeede all unloeks. This approach has two
main drawbacks. First, a transaction may be foreed to wait for another transaction
also in eases where a non-serializable continuation cannot occur. Further, the time
an entity has to be locked depends on the loek/unlock rule and not only on the
position of the conflicting actions. To overcome these deficiencies a pre-analysis
of the transactions becomes attractive.

A pre-analysis is proposed by Bernstein et al. [2] for a concurreney eontrol based
on time stamping to avoid unnecessary communication overhead in distributed
systems. Papadimitriou [11] diseusses a confiict analysis to compute so called
"guardians", which are a means to guarantee that only serializable sehedules may
oecur, i.e. which guarantee the safety of the corresponding transaction system.
Yannakakis [17] suggests how to implement guardians by locking for the 2-step
transaction model [11]. In a similar manner, for the multistep transaction model,
we have introduced a pre-analysis to insert lock and unlock operati~ns into trans-
actions to achieve safety and freedom from deadlocks [6]. We call the eorresponding
locking poliey basic pre-analysis locking (bPAL) throughout this paper. bPAL can
be eonsidered as an algorithmic eontinuation of the work on locking and geometry
started by Yannakakis, Papadimitriou and Kung [19] and Papadimitriou [13]. In
general, there is no dominance relationship between the 2PL policy and bPAL
with respect to the set of accepted schedules. The intention of the pre-analysis is
to maximize the potential degree of concurreney, i.e. the set of all possible sehed-
ules of the corresponding locked transaction system. It is weIl known, that the
set of all serializable schedules of a given transaction system cannot be aehieved
by loeking [8,12,17]. In this paper we continue our investigations on pre-analysis
loeking started in [6]. We will propose polieies strietly dominating 2PL, and we
will also diseuss the case of online scheduling.

A pre-analysis to introduce early unloeking in originally 2-phase loeked transac~
tions has been proposed by Wolfson [14,15]. The resulting transaction system
always allows at least as much concurreney as the original one and the method
ean be extended to distributed databases. However the algorithms require that
the set of all transactions is given statieally in advanee. Wolfson further points
out that loeking based on pre-analysis should use loeking by symbolie names, i.e.

2

database entities of possibly va.rying granularity, which a.re determined by examin-
ing the programs during compile time [15]. Similar remarks apply for our methods,
however we use symbolic names to detect conflicting a.ctions, fot locking we use
uninterpreted locks.

Uninterpreted locks and entity locks have been discussed comprehensively by Pa-
padimitriou [10]. We use uninterpreted locks for the following reasons. Our poli-
eies include a pairwise analysis of transactions. Depending on the outeome of
such an analysis lock/unlock operations are inserted into transaction pairs. To
avoid side-effects between transactions in different pairs, we introduce for each
pair of transactions different uninterpreted locks. Thus our policies are conceptu-
a11ydifferent from other locking policies, which, to our knowledge, all are based
on entity locks. As a consequence, our policies do not belong to the hypergraph
family of locking policies introduced by Yannakakis [16], which captures all known
important locking policies.

In this paper we first consider the static case in which the complete set of all trans-
actions, i.e. the transaction system, is given in advance and we introduce a new
general condition that guarantees the safety of a locked transaction system. We
use this condition to define improvements over 2PL. Every given locked transaction
system according to 2PL can, after having been analyzed, be transformed into a
safe non-2PL locked transaction system which dominates the original system with
respect to the set of accepted schedules.

In order to study the problem of "online" scheduling for pre-analysis poIicies, we
require that each transaction is completely known when started - the set of all
transactions need not be known in advance. We first show that the improved
2PL policy can also be used for onIine scheduling. Moreover, we show that the
bPAL policy can be made applicable for online scheduIing. Using bPAL for online
scheduling requires to compute the locks between all pairs of active transactions
anew for each transaction starting its execution. To reduce this overhead we
finally introduce iterative pre-analysis locking (iPAL), a policy in which locks
only have to be introduced into pairs of transa.ctions in which one of them is the
new transaction.

The structure of the paper is as fo11ows. In Section 2 we introduce the needed
definitions and the geometrie framework. In Section 3 we introduce our condition
for safety and study static locking. Seetion 4 is devoted to the online case, and,
finally, in Section 5, a discussion of the proposed poIicies concludes the paper.

3

2. Basic Definitions and the Geometry of Locking
A transaction system T = {Tl,"" Td} is a set of transactions, where each
trans action Ti = (Ai!, ... , Aimi), mi ~ 1, is a sequence of actions. Each ac-
tion Aij has associated with it an entity Xij E E, where E is a set of entities
forming the databa.se. We distinguish read and write actions, Aij = RXij meaning
read Xij and Aij = WXij meaning write Xij' We will write RiX (Wix), respec-
tively Rx (W x), if the position of the action, respeetively also the corresponding
transaetion, is given by the context. Two actions of two different transactions
confiiet, if they involve the same entity and at least one of them is a write action.
(1)

For transaction system T, the (undirected) confliet graph D(T) has as vertices the
transactions of T, and an edge Ti - Tj whenever an action of Ti and an action
of Tj confliet. A schedule 09 of T is a permutation of all aetions of T, with the
actions within each transaction in the prescribed order. If 09 is a schedule of T and
Ti, Tj E T, then Sij is the projection of 09 on the actions of transactions Ti and Tj.
If Aij is an action in 09, then S(Aij) denotes the position of Aij in s. A schedule is
serial if the transactions are not interleaved. For schedule 09, the (direeted) conflict

-+
graph D (09) has as vertices the transactions of T, and an arc Ti --+ Tj whenever an
action of Ti precedes in 09 a conflieting action of Tj. A schedule is called (conflict-)

-+ --+
serializable if D(s) = D(s') for some serial schedule 09' of T, or, equivalently, if
-+
D (s) is acyclic. T is (conftiet-) safe if every schedule of T is serializable.

We now introduce the geometrie interpretation for concurrency control [10,13,18].
Consider each transaction to be an axis in a d-dimensional coordinate system, with
the actions being the coordinate values on the axes. Each pair of transactions
corresponds to aplane with a grid imposed by the aetions. The geometrie image
of a schedule in a plane (Ti, Tj) is a nondecreasing curve from point (0,0) to point
(mi +1,mj +1) not passing through any other grid point. The order of the actions
in the schedule is the order in which the curve interseets the corresponding grid
lines. Figure 2.1 shows the curve of the schedule

In [6] we introduced direct and indirect conflict points to represent conflieting
actions in the geometrie setting.

(1) Entities may have different granularities, e.g. tuples in relations, complete
relations, or sets of tuples defined by certain predicates. Thus, more precisely, we
have a conflict whenever two sets have a nonempty intersection, in general. For
simplicity, we will ignore this subtlety.

4

Re

Rb

Ra

Ra Wa Rb Wb Re We

Figure 2.1 A schedule's curve.

A point P = (Aip, Ajq) in plane (Ti, Ti) is a direct eonfiiet point between Ti and
Tj, i ::j:. j, if Aip and Ajq conflict.

There is an edge Ti - Tj in D(r) iff there is a direct conflict pointJAip,Ajq) in
plane (Ti, Ti)' There is a path of length greater than one between Ti and Tj in
D(r) iffthere exists an indirect conflict point (Aip,Ajq) in plane (Ti, Ti), which is
defined as follows.

Point P = (Aip,Ajq) is called an ind!rect eonfiiet point between Ti and Tj, i::j:. j,
if there exists a set of transactions

such that (Ak1P/l Ak/+1q/+l)' for some PI and q'+ll is a direct conflict point be-
tween Tkl and Tk1+1 for all 1, 1 ~ 1 ~ n - 1, and (Aip, Ak1ql)' for some q}, and
(AknPn,Ajq), for some Pn, are direct conflict points between Ti and Tkll and Tkn
and Ti, respectively.

Direct and indirect conflict points are also called confiiet points. Figure 2.2 shows
the conflict points of a transaction system. For example, indirect conflict point
(W1 b, R2d) is implied by the direct conflict points (W1 b, Rab), (Wad, R2d). H a
conflict point is direct and indirect, then it is represented as direct one only.

For a two-transaction system, a schedule is conflict-serializable iff its curve doesn't
separate two (direct) conflict points (cf. [10]). In a system of more than two trans-
actions, each non-serializable schedule has aplane projection, i.e., a projection on
the actions of the transactions defining the plane, such that the corresponding
curve separates some conflict points. Moreover, at least one of the separated con-
flict points is a direct one [6]. However, some serializable schedules also separate
conflict points. Figure 2.2 provides examples. The solid schedule

5

o

o

o

.f'

•

o

o

• •

o

o

o

•
•

........................ ,

i •

o I
o 1

Figure 2.2 Direct (-) and indirect (0) conflict points,
and the curves of two schedules.

is serializable although conflict points are separated, the dashed schedule

~a~a~a~a~d~dn~b~b~c~c~c~c

is not serializable.

Let r = {Tl, ... , Td} be a transaction system. A locked transaetion sy8tem LT
of r is a set of locked transactions, LT = {LTI, ... , LTd}, where each locked
transaction is a transaction that contains, besides the actions, pairs of lock v (Lv)
and unlock v (Uv) operations, where v is an element of LV, the set of locking
variables, E n LV = 0, and Lv always precedes Uv. LT can also be read as 'locked
version of r'. A locked schedule Ls of LT is legal, if there is an Uv operation

between any two Lv operations in Ls. The set of schedules accepted by a locked

transaction system LT is defined as Acc(Lr) = {s ILs is a legal schedule of LT}. LT
is 8afe if Acc(Lr) contains only serializable schedules. Let Lr and L' r be two locked

versions oftransaction system T. vVesay LT dominates L'r if Acc(LT) ;2 Acc(L'T).
Locking variables are uninterpreted, they are not associated with entities. Instead,
each locking variable v is associated with one pair of transactions, where at most

6

one Lv and one Uv operation is in each of these transactions. More than one
locking variable may be associated with the same two transactions. We use locking
variables instead of the usual entity-Iocks. OUf pre-analysis algorithms are based
on a pairwise decomposition of the eoncurreney problem. In such a eontext locking
variables have the appealing property that they only aet in one plane, while an
entity-Ioek in one transaction would act in all planes eontaining this transaction
and another transaction aeeessing the eorresponding entity.

In the geometrie representation Lv and Uv operations are eoordinate values on
the axis of the eoordinate system, too. The geometrie image of a pair of Lv and
U v operations in a transaction plane is a reetangle whieh eannot be entered by
the eurve of any legal sehedule [10] (cf. Figure 2.3). We eall such a rectangle a
forbidden reetangle. The region defined by the union of all forbidden rectangles in
aplane is ealled the forbidden ~f;gion of that plane.

UV3
Re
UV2
LV3
Rb
Uv 1
LV2
Ra
LVI

•

•

•

Figure 2.3 The geomerty of lock and unlock.

Forbidden regions are a geometrie means to guarantee serializable sehedules by
enforeing an appropriate order for the actions appearing in the transaetions. Let
T be a transaction system, Ti, Tj E T, i f:. j. Let Fij be a forbidden region in plane
(Ti, Tj). Then for any legal sehedule S of T, if Fij is eonneeted, then Fij enforees
an order on the actions of transaetiöns Ti, Tj:

In the sequel we eonsider only connected forbidden regions.

7

The construction of forbidden regions is the critical task in the pre-analysis al-
gorithms to achieve safe locked transaction systems. For each plane (Ti, Ti), we
will be interested in a forbidden region which contains some given set C(Tj, Ti) of
points. Which points are selected depends on the concrete locking policy. For each
plane, the construction of such a forbidden region can be done by the following
steps (see [6]for details):

(1) Construct a minimal connected rectilinear region which contains the respective
set of points in the plane.

(2) Compute a set of rectangles that covers the constructed rectilinear region.

(3) Make the rectangles forbidden, i.e., insert corresponding lock/unlock pairs
into the transactions. The resulting locked transactions are denoted LT/ and
LT~, where LT/ is the locked version of Ti, and LTj is the locked version of] -

Ti'

As the forbidden rectangles define a forbidden region, we call these steps also the
realization of a forbidden region (by locking). A corresponding locked transaction
system is then derived by merging all versions LT/, 1 < j < d, i =F j for each
transaction Ti, such that the order of the actions and lock and unlock operations
for each version is preserved. The order of lock and unlock operations stemrning
from different versions is not necessarily unique. For exarnple, consider LT/ =
... Ail ... Lv ... Ai(l+l) ... and LTl = ... Au ... Uw ... Ai(l+l)"', where j =F k and
v =F w. Thus, after merging LT/ and LTl', Lv either precedes Uw, or Uw precedes
Lv. In general, in such situations the order of lock/unlock operations may affect
serializability. (Remember the lock/unlock rule of 2-phase locking.) However,
for the policies we shall propose it is sufficient that for each plane (Ti, Ti) the
respective set C(Ti, Ti) is contained in the forbidden region. If during the merging
there exists more than one possible order for lock or unlock operations stemrning
from different versions LT/, LTl', j =F k, then any order may be chosen. Thus,
starting with an unlocked transaction system we can derive a locked version of this
system by realizing forbidden regions and afterwards merging the resulting locked
versions of each transaction.

3. On Safe Static Locking Policies

A (statie) locking policy Pis a function that maps a transaction system r to a set
of locked versions of r. If Lr E P(r), we say that Lr is locked according to P.
Locking policy P is called safe, if any Lr locked according to P is safe.

8

This definition of aloeking poliey differs from [17]. As we will analyze eomplete
transaction systems, we define loeking policies on transaction systems and not only
on transactions. Later we will also define online loeking polieies (Section 4).

Locking poliey PI dominates locking policy P2, if for every trans action system T

there holds:

LT E P2 (T) ~ there exists L' T E PI (T) such that L' T dominates LT.

In the sequel we will define locking policies by nondeterministie algorithms, which,
for any given transaction system, can derive any locked transaction system in
the corresponding image. In practice, such nondeterministic algorithms will be
implemented deterministically such that from the set of possible loeked transaction
systems one is selected according to a fixed strategy. We therefore distinguish
between a locking poliey P and a concrete implementation of P.

Basic pre-analysis locking (bPAL) [6]is a locking poliey that maps any transaction
system T to a set of loeked transaction systems. A forbidden region is created for
eaeh pair of transactions Ti, Tj whose plane contains at least two eonflict points,
one of which is a direct one, such that all eonflict points in that plane, direct
and indirect ones, are included. This construction of forbidden regions guarantees
that no non-serializable schedule is legal, but in general also forbids serializable
sehedules. In [6]we have described in detail a bPAL implementation whieh is free
from deadloek.

The locking policy 2-phase loeking (2PL) maps any transaction system T to a set
of locked transaction systems such that the following two conditions are fulfilled
[4]: in each loeked transaction eaeh action is surrounded by a lock and unloek
operation, and every lock operation precedes a11unloek operations. Usuallyentity-
loeks are used such that each action aecessingentity e is surrounded by Le and Ue.
In the sequel, whenever we refer to 2PL, we will assume entity-Ioeks. Moreover,
for simplieity, only one lock mode is considered. The geometrie representation of
a loeked transaction system aeeording to 2PL ean be eharacterized as follows (cf.
[13]). First, for any plane Ti, Tj the forbidden region is eomposed of overlapping
rectangles having at least one point in eommon. Seeond, for any.transaction tripie
Ti, Tj, Tl: eaeh forbidden rectangle in (Ti, Tj) overlaps all forbidden reetangles in
(Tj, Tl:) on their projeetions on the Traxis. A detailed discussion of bPAL versus
2PL ean be found in [6,9].

We now introduee a new sufficient geometrie condition for safe locked transaction
systems. Similar to 2PL safety is guaranteed by overlapping forbidden regions.

9

However this will not imply that in adjacent planes, i.e. planes which have one
transaction in common, all forbidden rectangles have to overlap. Thus the restric-
tive lock/unlock rule of 2PL is weakened.

Let Lr be a locked transaction system. Lr is called overlap-Iocked (OL-Iocked), if

(OLl) In each plane, in which there is at least one direct confliet point, there is
a forpidden region which contains all direct conflict points.

(OL2) Let SI - S2 - ... - Sn - SI, n > 2 be a minimal cycle in D(r). (2) Then
there exist coordinates PI,' .. , Pm (not necessarilygrid coordinates), where
m= k. n, k 2:: 1, such that

F12, F23, ... Fml are the forbidden regions of planes (SL S~), (S~, S~), ... ,

(S:n, SD, respectively, {S~, ... , S:n} = {Sb'''' Sn}, and

S~ - ... - S:n - S~ = k(SI - ... - Sn) - SI' (3)

The points (PI, P2),! .. , (Pm, Pd are called the overlap-points of the cor-
responding cycle.

Observation 1: Any OL-Iocked transaetion system Lr is safe.
. ' -+

Proof: Let s be a schedule which is not serializable, i.e., D (s) contains a minimal
cycle SI -+ S2 -+ ... -+ Sn -+ SI' As all direct conflict points in a plane are
contained in the forbidden region, we can assurne n > 2. Let (Aipi' Ajqj) be a
direct conflict point of plane (Ti, Tj), where Ti -+ Tj is contained in the cycle.
Thus s(Aipi) < s(A jqj)' As all direct conflict points and all overlap-points in one
plane are contained in the same forbidden region, we can conclude s(Pi) < s(Pj)
for all overlap-points (Pi, Pj) of the corresponding cycle. Since this holds for any
pair of neighbouring transactions in the cycle, s(Pl) < s(Pd would be implied if
Lr accepted s, a contradiction. •

It is worth to note that condition (OL2) requires more than mere overlapping
forbidden regions of adjacent planes of a cycle. Figure 3.1 gives an example where

(2) A cycle nl - ... - nn - nl is called minimal, if ni '# nj for 1 ~ i < j~ n,
and there are no other edges in the underlying graph between any two nodes in
the cycle.
(3) For k > 1 we denote by k(nl - ... - nn) the path in which nl - '" - nn is

repeated k times.

10

adjacent planes have overlapping forbidden regions, however (OL2) is violated and
the locked transaction sy'stem is not safe as the indicated schedule

is not serializable.

D
Wa

T2

Wf

Wg

Ra

wd •
Rg

Rd
Rb

Wa

Wb
•

•

Wf

Figure 3.1 A locked transaction system which is not safe
although forbidden regions in adjacent planes
overlap.

OL-Iocking is not necessary for safety. As we are not restricted to entity-Iocks,
safety by locking can also be achieved as shown in Figure 3.2. The locked transac-
tion system is derived by the iterative PAL algorithm(cf. Section 5). Here, safety
is achieved by locking also in planes which do not contain a direet conflict point.

It is easy to show that the 2PL policy and the bPAL policy. derive OL-Iocked
transaction systems [9].

We shall now present efficient static locking policies based on OL-Iocking which
dorninate 2PL. We assume that the transaction system T is apriori known. The
dynarnic online case is treated in the next section.

11

T2 Tl T2

•We 0 Wb 0 We D0 Rb • Ra 0 Rb
T3 Wd Re Ra Wb

Tl Re Wd
T3 Rd Wa

T4DRd Do Wa

T4

Figure 3.2 A safe locked transaction system which is not OL-Iocked.

The policy overlap-point locking (OL) seleets for each transaetion one umque
overlap-point coordinate. For any given transaetion system the corresponding
set of locked transaetion systems is derived by the followingnondeterministic al-
gorithm OL:

Algorithm OL

Let r = {Tb ... ' Td}, d ~ 2, be a transaction system. The algorithm OL considers
each transaetion pair and may realize forbidden regions in the corresponding planes
in order to construet a locked transaction system Lr.

1. For each transaetion Ti seleet one coordinate on the Ti-axis as overlap-point
coordinate; denote this coordinate Q i.

2. For each pair of transactions Ti, Tj, i :j:. j, initialize the set C(Ti, Ti) to contain
the direct conflict points of plane (Ti, Ti). If C(Ti, Ti) is not empty, thenadd
overlap-point (Qi, Qi) to C(Ti, Ti).

3. For each pair of transaetions Ti, Ti, i :j:. j such that C(Ti, Ti) is not empty,
realize a forbidden region which contains all points in C(Ti, Ti). The resulting
locked transaetions are denoted LT/ and LTj, respectively.

4. For each transaetion Ti and each pair of transactions Ti, Ti, i :j:. j, merge the
lockedtransaetions LT/ to LTi. Lr is then the set of al1such LTi, 1 ~ i ~d.

•
Theorem 1: Policy OL is safe and dominates policy 2PL.

Proof: Safety followsanalogously to the proof of Observation 1.

12

Then let LT be any locked transaction system according to 2Pt. Wewill show that
algorithm OL can construct a locked transaction system L'T which dominates LT.
To this end choose in step 1 as coordinates of the overlap-point the first unlock
operation in each locked transaction in LT. It follows that the overlap-points are
contained in the forbidden regions of LT. Then, in step 3, realize forbidden regions
in such a way, that each forbidden region of L' T is contained in the corresponding
forbidden region of LT. Since the forbidden regions in LT contain all direct conflict
points and the respective overlap-point, such forbidden regions always exist for
L'T. a

Figure 3.3 shows a locked transaetion system according to OL which dominates a
transaetion system originally locked according to 2PL.

OL is an improvement over 2PL in the sense that the forbidden regions can be
made smaller. An even better policy can be obtained if we combine OL with apre-
analysis of the transaction system T to decide for each pair of transactions Ti, Ti
whether there exists a cycle of length greater than 2 in D(T) containing an edge
Ti - Ti' Obviously, only in those cases an overlap-point has to be introduced in
plane (Ti, Ti)' We shall call the resulting policy overlap-point pre-analY8i3 locking
(OLPAL).

Algorithm OLPAL

Let T = {Tl,' .. , Td}, d ~ 2, be a transaction system. The algorithm OLPAL con-
siders each transaetion pair and may realize forbidden regions in the corresponding
planes in order to construct a locked transaction system LT.

1. For each transaction Ti seleet one coordinate on the Ti-axis as over1ap-point
coordinate; denote this coordinate Q i.

2. For each pair oftransaetions Ti, Ti, i :f. j, initialize the set C(Ti, Ti) to contain
the direct confliet points of plane (Ti, Ti)'

3. For each pair of transactions Ti, Tj, i :f. j such that C(Ti, Ti) is not empty,
add over1ap-point (Qi, Qi) to C(Ti, Ti) whenever there exists a path Ti -Tk-
... - Ti in D(T), where Tk E T \ {Ti, Ti}'

4. For each pair of transactions Ti, Ti, i :f. j such that C(Ti, Ti) contains at least
two points, realize a forbidden region which contains all points in C(Ti, Ti)'
The resulting locked transactions are denoted LT! and LTj, respectively.

5. For each transaction Ti and each pair of transaetions Ti, Ti, i =f. j, merge the
locked transactions LT! to LTi. LT is then the set of all such LTi, 1~ i :5 d.

13

• •

•
...• - .x,

0 0"

0 0

11. • -+-
•

~-_._ .._ ...]

:...•......•...................... :

0 0 We

0 0 Re
................................... ,

x
• • Wd

• Rd
.....................................

0 0 Wa

0 0 Ra

T
Wd Rd Wb Rb Ra Wa Rb Wb Re We

Rb

Wb

Rd o

............................ -_ .i.---------, i

I · : I
I ~ .. .lo 0 o

Wd o o o o

Figure 3.3 A OL-Iocked safe transaction system which dominates a
2PL locked transaction system (dashed Iines) . The over-
lapp-points are denoted by x.

•
The following theorem is now straightforward:

Theorem 2: Poliey OLPAL is safe and dominates poliey OL. •
To eonclude this seetion we shall eomment on the time eomplexity of appropriate
implement at ions of algorithms OL and OLPAL. The following time bounds are
taken from [6]. Let us assume that the seleetion of overlap-points is done in eon-
stant time for eaeh transaetion. Let n be the number of all aetions of transaetions

14

in T, and d the number of transactions. All sets C(Tj, Tj) of direct conflict points
can be derived in time O(n(d + logn». The realization of the forbidden regions of
all planes and the merging can be done .in time O(n2Iogn). Therefore an imple-
mentation of OL needs time O(n2Iogn) to derive a locked transaction system in
the worst case. For each pair of transactions Ti, Tj the test for a cyc1eof length
greater than 2 Can be done in time O(e), where e is the number of edges in D(T).
Thus an implement ation of OLPAL needs time O(n210gn + e2), in the worst case,
which is identical to the time bound of bPAL.

4. On Safe OnIine Locking PoIicies

4.1 The Problem of OnIine SeheduIing

By a scheduler we mean the component of a database management system which
is responsible for concurrency contro1. We call a scheduler online, if the complete
transaction system need not be known in advance. However, we require that
whenever a new transaction is issued by auser, then the complete (action sequence
of the) transaction is made known to the schedulerj the same assumption is made
e.g. in [3,5].

OnIine scheduling becomes more difficult for uninterpreted locks than for entity
locks. The reason is that a lock on an entity influences also future transactions
which may access this entity, while the same cannot be achieved for uninterpreted
locks as future transactions are unknown. In other words, as uninterpreted locks
can only be introduced with respect to conflicts between the currently known
transactions, new conflicts may arise whenever a new transaction arrives, which
may require additionallocks in the already running transactions. This means the
schedule processed thus far is not necessarily legal after the introduction of the
new locks. A straightforward solution to this problem could be to force the new
transaction to wait until it is guaranteed that the current schedule is not affected.
We shall concentrate on more elegant solutions in which every new transaction
can start its execution immediately after having been analyzed by the scheduler.
This is possible, of course, for the 2PL policy as entity locks are used. We shall
show that the OL policy, which is a 2PL dominating policy, can also be applied
in the online case. Moreover, also bPAL can be adopted to the online case. That
is, whenever the arrival of a new transaction would cause the current schedule to
be illegal, the illegality can be ignored by removing those locks which caused the
illegality. This is possible because non-serializable continuations of the schedule
will be avoided otherwise. As a negative result we show that OLPAL cannot be
applied to online scheduling, in general. Finally, we introduce iPAL, which is a

15

different, more efficient online poliey than bPAL•.

A scheduler ean be thought of as a (deterministie) implementation of a (nondeter-
ministie) online locking poliey.

Let LT be a loeked version of transaetion system T, Ls be aprefix of a legallocked
sehedule of LT and let T' f/. T be a transaetion. Finally, let T' = TU {T'}.

An online locking policy P is a function that maps a tripIe (LT, Ls, T') into a set
of loeked transaction systems LT'. Moreover, for each trbsaction T E T and each
LT/E P(LT, Ls, T'), the locked version LT E LT eqUalslthe projeetion of loeked
version L'T E LT' on all actions and loek/unloek operations in LT. This eondition
implies that the locked version of a transaction in thJ new loeked transaction
system is derived from the loeked version in the old loekld transaction system by
inserting new loek/unlock operations, at most.
-

Online loeking poliey PI dominates online loeking policy P2, if for any tripIe
(LT, Ls, T') there holds:

there exists L' T' E PI (LT, Ls, T') such that L' T' dominates LT'.

Can we devise an online seheduler based on a pre-analysis poliey, e.g. bPAL,
OLPAL, or OL? That is, when seheduling aceording to dne of these policies, ean
a new transaction be issued dynamieally and a new lo1ked transaction system
constructed obeying this poliey such that scheduling Jay be eontinued? The
basic problem here is that the partial sehedule proeessed thus far must be a legal
partial schedule also when the new transaction is present. Thus, there should not
oceur a transaction whieh eontradicts the partial sehedJIe of the eurrent locked
transaction system. More precisely, let (LT, Ls, T') be al tripIe as above, and let
LT' E P(LT, Ls, T'). T' is called contradictory to Ls if there exists a pair of
transactions Ti, Tj E T such that Sij interseets the forbiddbn region Pij implied by
LT'. Figure 4.1 shows an example of a contradictory trahsaction (for brevity we
will use in the following examples only write actions).

Assume that there are first only two transactions (cf. Figpre 4.1),
Tl: Wa Wb
T2: Wa Wc.

As there is only one eonfiiet, Tl and T2 ean be scheduled 1thout locking. Assurne
then that the first action of Tl and the whole transaction T2 have been performed
at the point when a new transaction

Ta: Wc Wb

16

T2

DWC 0

o Wa
T I TlTl Wb Wc fitWc

Wb I.

T3
(b)

Wc

Wa

(a)

Figure 4.1 The partial schedule W1a ~a W2cdoes rot pass any
forbidden region when only 11 and T2arelpresent (a)
but is forbidden by bPAL policy when T3has arrived (b).

is no more legal, i.e., 812 now intersects F12, and thus we m8lYnot continue sehedul-
ing aeeording to the new system. This example shows that contradictory transac-

tions may occur under bPAL and therefore, bPAL cannot as such be used as an
online poliey.

Contradictory transactions are not an unsolvable problem or a scheduler. When-
I

ever a new transaetion arrives which turns out to be contradietory, it can be forced
to wait until those transactions have finished their executioJ and are removed from
the system which caused the contradictory situation. Howi~er, such a scheme has
two main drawbacks. Firstly, there is no guarantee that the transaction can enter

the system at some time point without additional mecha1usms. Secondly, each

time a eontradictory transaetion is detected the time spent Ito derive a new locked
transaction system has been wasted. For these reasons we will call only those
schedulersonline which guarantee the absence of contradiclory transactions.

Finally we should note that in the online ease the transJtion system need not
grow indefinitely. A transaction T can be removed from th~ current system when

all its actions have been performed and there is no direetl conflict point (A, B),
where A is an action of T, such that in the current partiaJ. schedule B appears
before A. Thus, there cannot occur a cyde in the conflict gr~ph which contains T.

17

2.2

2.3

2.5

There always exists a eandidate for removal, sinee every partial sehedule processed
thus far is serializable.

4.2 Online Seheduling with OL

Let us first eonsider the online loeking poliey based on Oll, wrueh we shall denote
OL*.

Algorithm OL*

The algorithm simulates the onIine situation in whieh new transaetions may arrive
while the transactions already received are being executed. Let Tl,"" Td be a
sequence of transactions and assume that the seheduler redeives the transactions in
this order. Whenever a new transaction arrives, a new loc~ed transaction system is
constructed such that for all i = 1, ... , d the already proJessed schedule, denoted
si-I, remains legal after the introduction of transaction ITi (SO is assumed to be
the empty string). The current set Tl, ... , Ti, 1 ~ i ~d, of transactions is denoted
by ri, and A~-l denotes the last action of Tj in si-I.

1. Let Lrl = {Tt}.

2. For i = 2 to d perform

2.1 For transaction Ti select one eoordinate on the i'i-axis as overlap-point
coordinate; denote trus coordinate Qi.

For each pair of transactions Ti, Tj, 1 <j < i, initialize the set C(Ti, Tj)
to eontain the direct eonflict points of plane (Ti, Tj). If C(Ti, Tj) is not
empty, then add overlap-point (Qi, Qj) to C(Ti, Tj).

For'each pair of transactions Ti, Tj, 1 ~ j < i such that C(Ti, Tj) is not
empty, realize a forbidden region which contain~ all points in C(Ti, Tj).I . " .
The resulting locked transactions are ~enoted L1' and LTJ, respectively.

2.4 Let. 1 ~ j < i .. For Ti, merg~ all LT/ to LTi. lor each Tj merge LTj E

Lr,-l and LTJ to L'Tj. Lr' then is the set of an L'Tj, 1 < j < i, and
LTi.

For each transaction LTj E Lri, 1 ~ j < i, insert those loek/unlock
operations into si-l which have been introduce~ in step 2.3 and are to
the left from A~-l. Preserve the order with respbet to LTj. I

It is interesting to note that 0 L* does not suffer from contradietory transactions.
The reason for this is that forbidden regions onee compute~ need not to be changed

18

•

when a new transaction arrives. Note, that in steps 2.l,2.4 we have to insert
lock/unlock operations also in already running transaeti1ns, respeetively in step
2.5 in the current schedule. However this does not causf a problem, since new
locking variables are used and the new transaction Ti has not yet started its
execution. As OL dominates 2PL in the static case we ha~e:

Theorem 3: OL* dominates online 2PL. •
In order to derive the time complexity of computing the new locked transaetion
system when the ith transaction arrives, we denote by n tpe number of aetions of
all i transaetions, and mi the number of actions of the ith transaction (cf. [6]).
Then step 2.2 requires time O(n. mi) and step 2.3 and 2.4 time O(n. milogn),. As
step 2.5 can be perfonned in time O(n), the total time complexity is O(n.milogn). --
If we assume that the maximal number of actions i~ each Itransaction is bounded
by a constant, we can write this time bound also as O(i . lbgi).

4.3 OnIine Seheduling with bPAL

Now we consider the question of whether bPAL itself woulG!be "safe" enough that
we could ignore those forbidden regions, which imply conJradictory transaetions.
In the above example (cf. Figure 4.1), we may ignore t1heforbidden region in
the plane (Tb T2), as all non-serializable schedules of {Tl, ~2' T3} will be deteeted
by the other two forbidden regions. Therefore, the solutirn is to build a locked
transaction system that realizes only the forbidden regions of (T2, T3) and (Tl, T3).

According to this system the already processed schedule
Tl: Wa
T2: Wa Wc

is legal and the scheduling can be continued safely.

The question is: can we indeed always forget a new forbidden region computed ac-
cording to bPAL jf it cuts the projected schedule processedl thus far? Surprisingly,
the answer is yes. We shall now outline an algorithm fOI:constructing a loeked
transactions system dynamically in the sense that new tradsactions are allowed to
arrive when transactions are bei~g processed. T~e construftion is done such that
the schedule processed thus far IS always legal wlth resped to the current locked
transaction system.

Algorithm bPAL*

19

2.3

•

The algorithm simulates the online situation in which nei transactions may arnve
while the transactions already received are being executed. Let Tl, ... , Td;be a
sequence of transactions and assume that the scheduler reJeives the transactions in
this order. Whenever a new transaction arrives, a new loc~ed transaction system is
constructed such that for all i = 1, ... , d the already pro~essed schedule, denoted
si -1, remains legal after the introduction of trans action ITi (sO is assumed to be
the empty string). The current set Tl, ... , Ti, 1 < i ~d, of transactions is denoted
by ri, and Atl denotes the last action of Tj in si-I.

1. Let Lrl = {Td.

2. For i = 2 to d perform

2.1 Let Lsi-l be aprefix of a legal schedule of Lri-l such that Lsi-2 is a
prefix of LSi-l (4).

2.2 For each pair of transaction Tj, Tk, 1 < j < k < i, determinethe set
C(Tj, Tk) defined by:

C(Tj, TIc)= {(Ajp, Akq) I (Ajp, Akq) is a direct or indirect conflict point
Qf ri in the plane (~j, Tk) and whenever indirect landj, k < ~,then Ajp is
to the right from Art in Tj and Akq is to the right from A~-l in Tk}.

For each pair of transactions Tj, Tk, 1 < j < k k i such that C(Tj, Tk)
I

contains at least two conflict points one of which is a direct one, realize
a forbidden region which contains all points in IC~Tj, Tk). To this end
first take the forbidden region with respect to Lr'-l.If this forbidden
region does not contain all points in C(Tj, Tk), c4nstruct a new forbidden
conneeted rectilinear region by enlarging the old one (by adding new
rectangles) such that it contains all points in b(Tj, Tk) and doek not
intersect the current schedule's curve. The resulhng locked transactions
are denoted LT! and LTj, respectively.

2.4

2.5

For each transaction Ti and each pair of transactions Ti, Tj, i =I- j, merge
the lockedtransactions LT! to LTi. Lri then is t~e set of all such LTi, 1 ~
i < d.

For each transaction LTj E Lri, 1 ~ j < i, insert those lock/unlock
operations into si-l which have bee~ introducedl in step 2.3 for the new
rectangles and are to the left from Arl. Preserve the order with respeet
to LTj. •

(4) Here we assurne that between the arrival of Ti-l and the arrival of Ti the
schedule Lsi-2 is continued to Lsi-l.

20

•

Similar to OL*, bPAL* does not suffer from eontradietory transactions. However
the reasons here are that we either eonsider eonflict boints, whose eoordinate

I

actions have not yet been exeeuted (cf. step 2.2), or eonfliet points, whieh have as
I

one eoordinate action an action of the new transaction. Note further, that in step
2.3 we always reuse the lock and unloek operations of thelprevious iteration round.
This guarantees that the old loeked version of a transaction always ean be derived

I

by projeetion from the new locked version as it is reqwred for an onIine poliey.-
Step 2.3 eonta~nsa minor geometrie problem. It might ~Iethe case that the curve
of schedule LSI-l already passed below or above the complete forbidden region of
aplane with respect to LTi-1• If now the old forbidden legion has to be enlarged
to eontain a new point (whose actions are not part of L~i-l), then this task has
to be performed without interseetion with the schedule'~ eurve. However, as the
sehedule either passed above or below the old forbiddeh region, we can always
manage to enlarge the old region appropriately. We will Jot go into further details
here, the preeise geometrie algorithms are beyond the scobe of this paper. Finally,
similar to OL*, in step 2.5 lock/unloek operations ean bJ inserted in the running
sehedule without introducing an illegaIity.

The following theorem states that a loeked trans action system derived by the
bPAL* algorithm accepts only serializable schedules.

Theorem 4: Let LTi, 1 :::;i :::;d, be a locked transaction system constructed by
. I. .the algorithm bPAL*. Whenever LSI is a legal schedule of LT1 with prefix LSI-l,

schedule si is serializable with respect to Ti.

Proof: The proof is by induction on i. Clearly, for i = 1 the claim holds. Then
let i > 2, and assume that si is a non-serializable sehedJle of Ti. We shall show
that LTi forbids si after having processed the partial sch~dule Lsi-l, aprefix of
a legal schedule of LTi-1• That is, we shall show that thlre is a projection of si

on a transaction pair such that this projection will pass - after the arrival of the
latest transaction - through twoconflict points.

If si is a non-serializable scheduleof Ti-I, then, by the induction hypothesis, si is
forbidden by LTi-1• Thus the graph D(si) contains a miJimal cycle

ISI -+ S2 -+ ... -+ Sn -+ Sn+l = SI,n::::j> 1,

where one transaction, say Sk, is Ti, the transaction noJ yet included in Ti-I.

AS8umethat each arc S", -+ Sv in the cycle i8 implied by a direct conflictbetween
action A",pu and succeeding action Avq". If there exist more than one pair implying
the respective arc, consider only one of these and call the corresponding aetions

21

•
the actions in the eyele. We may further Msurne witlut loss of generality that
action AIPl of SI appears in si before all other actions ~f the cycle. There are two
cases to consider depending on the form of si with reJpect to the actions in the
cycle.

case 1. The actions of Sk+I, ... , Sn appearing in the cycle lie in si after Akpll of
Sk, 1 ~ k < n. Then si is either of the form:

(here the mutual order of Alql of SI and Anqn of Sn is irrelevant), or of the form:

In both cases, after the arrival of Sk, the projection of si on the plane (S}, S~)
will pass through two conflict points.

case 2. At least one action of Sk+l, ... , Sn appearing in the cycle lies in si before
Akpll of Sk, 2 ::::;k ::::;n. Then let j > k be the smallest iJdex such that Si has an
action appearing in the cycle and lying in si before Akpll of Sk. This action must
be Aipi of Sj, because if it were Ajqi, then Aj-lPi_l of Sj-l would lie before Akpll
of Sk, too. Thus si is of the form:

SI: AIPl

In t~s case, the projeetion of si on (Sj-l, Sj) will pMStJugh two confliet points,
Moreover, trus happens certainly after the arrival of the ~ransaction Sk, because
the involved actions of Sj-l, Aj-1Pi_l and Ai-lqi_l' boJh appear only after an

22

•

•

action ofSk. (Aj-1Pi_l must appear after Akp." otherwiJ Aj-2Pi_2 would appear
before Akp., which contradicts j being the smallest ind~x such that Sj has an
action lying before Akp •.) Thus wehave shown that in all dases a desired forbidden
region exists and si is not accepted although its prefixsiJI is accepted. •

bPAL- basically does for each transaction Ti and transadion system Ti the same
amount of work as bPAL does in the static case [6]. Therefdre, a rough estimate for
the time needed, which assurnes that all conflict points Je computed anew each
iteration round, is O(n210g n +e~), where n is the number lofall actions in Ti, and
e is the number of edges in D(TI). We conjecture, that this upper bound is large
enough to capture, in comparison to bPAL, the additioJal geometrie overhead
imposed by step 2.3. Finally, as e is O(eP), and under tJe assumption that the
maximal number of actions in each transactions is boun~ed, we also can write
O(d4) a~ time complexity for bPAL-.

Theorem 5: There is no dominance relationship between bPAL- and OL-.
I

Proof: This followsimmediately as bPAL (OL) is a special case ofbPAL- (OL-),
since there does not exist a dominance relationship betweeh bPAL and OL. •

Our next task is to show that safe "dynamizing" as doJ above in the ease of
bPAL- is not possible for an arbitrary OL-locked policyJ e.g. OLPAL for an
arbitrary selection strategy of points (Qi, Qj). Consider th~ transactions

Tl: Wa Wa' Wb
T2:' Wa Wc
T3: Wc Wb

and assume that first only Tl and T2 are present and th t the situation is as
depieted in Figure 4.2(a) when transation T3 arrives. FiguJe 4.2(b) shows a pos-
sibility for choosing forbidden regions for {Tb T2, T3} acco~ding to OLPAL, and
furt her describes how a non-serializable schedule could occu~. The overlap-points
are denoted by 'x'.

4.4 The Iterative Pre-Analysis Locking Policy

The obvious deficiency of bPAL- is that the set of all indirect
l
conflict points has to

be recomputed for each new transaction. The followingpolic)f,called Iterative Pre- .
analY8i8 Locking (iPAL), bases on a different idea. For each new transaction only
those pairs have to be considered in which one transaction is the new transaction.
To achieve safety, iPAL mayaiso introduce locks between transactions whichhave

23

•

c

a •

a a' b

(a)

~2

~C 0

0 a

T3 b c I
,

b Tla a
c, 0

b D
I

'113

(b)

•

Figure 4.2 (a) The transaction system contains first onl¥ two transactions
which are processedas shown. (b) The thireJtransaction has
arrived. If now forbidden region of (11 T2)will! be ignored, then
the non-serializable schedule ~ a ~a W2c Wsc Wsb ~ a ~ b
will be accepted.

no (directly) conflicting actions. This is necessary as iPAL may not introduce
locks between transactions which have conflicting actioJ in situations, in which

I -
bPAL, or 2PL, for instance, would have introduced locks. iPAL therefore is a
poIicy which behaves in a completely different way when bompared with all other
known locking poIicies.

iPALcan be used as a static, or as an onIine locking policy. We shall describe
iPAL for the (more interesting) onIine case. For the staticl case perform the below
online algorithm iPAL* and start execution of the transactions when processing
of al1transactions has finished.

Algorithm iPAL*

The algorithm simulates the onIine situation in which new fransactions may arrive
while the transactions already received are being executed. Let Tl,"" Td be a
sequence of transactions and assume that the scheduler rec~ivesthe transactions in
this order. Whenever a new transaction arrives, a new lock~dtransaction system is
constructed such that for all i = 1, ... , d the already proc~ssed schedule, denoted

. . I 0
s.-t, remains legal after the introduction of transaction Ti (s is assumed to be
the empty string). The current set Tl, ... ,Ti, 1 < i < d, of transactions is denoted
by Ti, and A~-l denotes the last action of Tj in si-I.

1. Let LT1 = Tl'

2. For i= 2 to d perform

24

•
2.1 Determine for each pair of transactions Tj, Ti, 1 :5 j < i the set of direct

conflict points. Denote this set C(Tj, Ti)'
-

2.2 For each pair of transaetions Tj, Ti, 1 :s; j < i, f<!>reach sequence of direct
conflict points

2.3

2.4

2.5

(Aj,;, B,.), ... ,(Bg,;, Ai •.), (Ai,,, C,.? j' ... ,(Ch,~,Aj.;),
9 + h ~ 1, such that the corresponding transaetions form a minimal
cyde

Tj - T{ - ... - T; - Ti - T{' - .. - T~' - Tj
- . ()in D(rl), add confliet points. Ajpj, AiqJ and ~Ajqj' AipJ to C(Tj, Ti).

Moreover, whenever Pj < qj and qi < Pi, tHen also add exirapoint
(Ajqj, AiqJ to C(Tj, Ti)'

For each pair of transaetions Tj, Ti, 1 :s; j <!: i such that C(Tj, Ti)
contains at least two conflict points, realize a forbidden region which
contains al1 points in C(Tj, Ti)' The resulting locked transactions are
denoted LTj and LT/.

Let 1 < j < i. For Ti, merge all LT! to LTi. For each Tj merge
LTj E Lri-1 and LTj to L'Tj. Lri then is the sbt of al1 L'Tj, 1 <j < i,
and LTi.

For each transaetion LTj E Lri, 1 :s; j < i, insert those lock/unlock
operations into 8

i-1 which have been introdubed in step 2.3, aet in
plane (Tj, Ti) and are to the left from A~-l. ~reserve the order with
re~eet~L~. •

•

For iPAL* the same remarks applyas for OL* with respect to contradictory trans-
actions and the insertion of lock/unlock operations into the running schedule.
Figure 3.6 shows a locked transaction system according to iPAL* when the trans-
aetions are processed in the order Tl, T2, T3, T4• Observe, that forbidden regions
are only introduced in planes which involve T4• No locks are introduced in planes
(Tb T2), (T2, T3) even though there are two confiiet points, pne of which is a direct
one. However, locks are introduced in plane (T2, T4), eventhough there is no direet
confliet point.

Theorem 6: Let Lri, 1 :s; i :s; d be a locked transaction system construeted by
the algorithm iPAL*. \Vhenever Lsi is a legal schedule of ~ri with prefix Lsi-1,
schedule si is serializable with respect to ri.

25

.

•
'•.

•

Proof: The proof is by in~uetion on i. Clearly, for i 11 the. claim holds. Then
let i > 2, and assume that SI is a non-serializable sehedule of Tl. By the induetion
hypothesis there must exist a minimal eycle in D (si) wßich contains Ti:

where 9 + h 2:: 1. Let a corresponding sequence of direct conflict points be

We then can infer indirect conflict points (Ajqj' AipJ ~d (Ajpj, AiqJ. Further,
since in the planes (Tj, Ti) confliet points are contained in forbidden regions, we
can followone of the following eases:

(i)s = Aiq,... Ajpj , and s = Aip,'.' Ajqj ,

(ii) s = Ajpj .. ' Aiq, , and s = Ajqj .. ' Aip, .

Assume ease (i). As we have TjA ~ ... A~ Ti and S(Aiq, ~ < s(Ajpj), there must
exist a set of transactions T = {Tl,' .. ' Tr} ~ {Ti, ... , T;}, such that

and, for actions B,p, and B'q, ofT, E T, there holds (1 < I <r):

There exist indireet eonflict points (Brpr, Aiq;) and (Brqr, 1ipJ. The latterfollows
as we have also a path Ti ~ ... ~ Tj in the eycle. We ~now further s(Brpr) <
s(BrqJ. Thus, depending on the order of Aiq, and AiP,,1 there exist one of the
situations shown in Figure 4.3. In case (a), both eurves separate two indirect
conflict points, whieh is a eontradiction to our assumption Lr' being eonstructed by
iPAL*. In case (b) the solid eurve does not separate two conflict points. However,
as LT' is eonstructed by iPAL*, there exists also an extr~ point (Brqr, Aiq,) in
the plane (Tr, Ti) (in the figure the extra point is denote1 'x'). Thus the solid
curve separates an indirect eonflict point and this extra Joint, whieh gives us a
contradietion as desired.

26

T.
1.

I, .

o

o

"-Brp
r

(a)

T.
1.

I""T.....•......
A1.'Pi :0

1 I
Aiq. 0 1x

1. f ••••••••••••••••••• l I

~p ~p
r r

(b)

1'r

Figure 4.3 The situations in the proof of Theorem 5.

Assume case (ii). As we have Ti -+ ... -+ Tj and s(1jqj) < S(Aipi)' we can
derive a contradietion by similar arguments as above. However in this case the
contradiction does not depend on extra points. I

To see that extra points may be necessary consider as an example the transaetion
system T = {TI, T2, T3}, where

Tl = Wd Wa Wb, T2 = Wc Wa, T3 = Wc Wb.

Assume that the~transactions are processed by iPAL* in thl order T" T2, T,. Then
the not serializable schedule J

s = Wld W2c W3c Wla W2a W3b Ib

I
will only be forbidden due to the extra point in plane (T3, T2) (cf. Figure 4.4,
the extra point is denoted by 'x '), as only in plane (T2, Tb a forbidden region is
constructed.

Wa

Wc
• Wb • Wb

WC I0 0 WC

Tl TWd Wa Wb Wd Wa Wb 1

•

Wc Wa

•
. .

Figure 4.4 Extra points are necessary to guarantee the safety of iPAL* .

Theorem 7: There is no dominance relationship between iPAL* and bPAL* ,
2PL, and OL*, respectively. I

27

•

The proof of this theorem follows immediately as iPAL* may introduce forbidden
I

regions in planes which have no direct conflict point. For example, the locked
transaction system in Figure 3.2 is derived by iPAL whe~ processing the transac-
tions in the order Tl, T2, T3, T4•

Finally, we shall comment on the time eomplexity of iPAL*. The eomputation of
I

direct and indireet eonflict points ean be done in a similar way as deseribed in
[6] for bPAL. However, iPAL* in each iteration step, hJ to eonsider i planes in

I

eontrast to bPAL*, whieh has to eonsider O(i2) planes. 'I'aking this into aecount
iPAL* needs no more than time O(n21ogn + e . i), wher6 n is the number of all
aetions in Ti and e is the number of edges in D(Ti). By sirrlilar arguments as above
we ean write this time bound also as O(i3).

5. Conclusion

In this paper wehave discussed loeking policieswhich are based on a pre-analysis of
the transactions. We distinguished statie policies andonlihe policies. In the static
ease, the set of all transaetions must be completely knowJ in advanee to perform

_ the pre-analysis. In the online ease, a transaction must be completely known
when it starts its exeeution. Here, the pre-analysis considers the new, previously
unknown transaction and the already running ones. We broposed overlap-point

I
loeking, which is applicable in the statie and online ease. OL* strictly dominates 2-
phase loeking (2PL). We therefore eonsider OL*as an interJsting poliey of practieal
relevanee, whieh, for eaeh new transaetion, needs time O(dlogd), where d is the
number of active transactions. We further introdueed tw~ online polieies, which
are in the line of the pre-analysis locking poliey (bPAL) i6troduced in [6]. Both
policies have theoretically surprising properlies. The time ebmplexity for eaeh new
transaction to perform the pre-analysis is of order O(d4) fbr bPAL*, respeetively,
O(d3) for iPAL*, where dis the number of active transactiions.

One characteristic property of our policies is early unlOckink, i.e., locks may be re-
linquished before the commit point of the transactions. Th~shas the consequence
that to commit a transaction one has to wait until all pre~ecessors of the trans-
action in the dependency graph have already committed. We do not consider this
as a severe limitation for practieal purposes, in principle. ~inally, or policies are
based on (syntactie) locking variables, where all known pblieies use entity locks
(cf. [16]). Locking variables are easy to implement. For ekample, ~ew variables
can be introduced by cyclicly incrementing an integer eoun~er.

28

•

•

6. References

I
[1) Bernstein, P.A., Hadzilacos, V., Goodman, N. (1987), "Concurrency control

and recovery in database systems", Addison wesleyl

[2] Bernstein, P.A., Shipman, D.W., Rothnie, J.B.(1980~, "Concurrency control in
I

a system for distributed databases (SDD1)", ACMTrans.DatabaseSystems
5, 18-51.

[3] Casanova, M.A., Bernstein, P.A. (1980), "General purpose schedulers for
database systems," Acialnformatica 14, 195-220. !

[4] Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L. (1976), "The no-
tions of consistency and predicate locks in a databasb system," Comm. Assoe.
Comput. Mach. 19, 624-633.

[5] Katoh, N., Ibaraki, T., and -Kamada, T. (1985), "C~utious transaction sched-
ulers with admission control," ACMTrans.DatabasJSystems 10, 205-229.

[6] Lausen, G., Soisalon-Soininen, E., and Widmayer, ip. (1986), "Pre-analysis
locking," InformationandControl 70, 193-215.

[7] Lausen, G., Soisalon-Soininen, E., and Widmayer, P. (1986), "Towards online
schedulers based on pre-analysis locking," Proc. Int.1Conf. Database Theory,
Leeture Notes in Computer Science 243, Springer Verlag, 242-259.

I
[8] Lausen, G., Soisalon-Soininen, E., and Widmayer, PI" "On the power of safe

locking," JournalofComputerandSystemSciences, tr appear.

[9] Lausen, G., and Soisalon-Soininen, E., "Locking Policies and Predeclared Trans-
aetions," Proc. Int. Conf. Mathematical Fundament~s of DataBase Systems,
Visegrad 1989, Lecture Notes in Computer Science, SJringer Verlag, to appear.

[10] Papadimitriou, C.H. (1986), "Database concurrency bontrol", Computer Sci-
ence Press.

[11] Papadimitriou, C.H. (1979), "Serializability of concur['ent database updates,"
J.Assoc.Comput.M ach. 26, 631-653.

[12] Papadimitriou, C.H. (1982), "A theorem in database concurrency control,"
J.Assoc.Comput.Mach. 29,998-1006.

[13] Papadimitriou, C.R. (1983), "Coilcurrency control by locking," SIAM J. Com-
put. 12, 215-226.

[14] Wolfson, O. (1986), "An algorithm for early unlocking of entities in database
transaetions," J.Algorithms 7, 146-156 .

29

,.

•

[15] Wolfson, O. (1987), "The virtues of locking by symbolic names," J.Algorithms
8,536-556.

[16] Yannakakis, M. (1982), "A theory of safe locking poli€ies in database systems,"
J.Assoc.Comput.Mach. 29, 718-740.

[17] Yannakakis, M. (1984), "Serializability by loeking," J.Assoc.Comput.M ach.
31, 227-244.

[18] Yannakakis, M., Papadimitriou, C.H., Kung, H.T. (11979), "Loeking polieies:
Safety and freedom from deadloek," Proe. 20th IEEE Sympos. Found. of
Comput. Sei., 286-297 .

30

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031

