
Reihe Informatik
1/90

redundancy, anomalies and on the qua,
"what da normal forms really da",

Mila E. Majster-Cederbaum
Ität für Mathematik und In£:

Seminargebäude A
6800 Mannhei

JANUAR 1990

I. INTRODUCnON

Since the very introduction of the relational model for data bases [2],
informal and intuitive concepts like redundancy and anomaly have played
an important role for the design theory of the relational model. In [3]
Codd presents examples for anomalies (which he calls "undesirable insert,
delete - and update dependencies") and thus yields a motivation for a data
base design theory. This theory deals with the question: what constitutes
a good da ta base design? The research in this area has concentrated on
investigating the structure of sets of dependencies, defining various nor-
mal forms for relation schemes, on developing efficient algorithms for at-
taining these normal forms on investigations of general forms of depen-
dencies, on complexity questions, on problems connected with the univer-
sal relation assumption and representation theory, see [7, 8] for a com-
prehensive list of references.

Only very few authors [1, S, 6, 9] tried to tie up ends and investigated, if
the original problems, Le. redundancy and anomalies, have been sol ved by
the theory. Is it true that the normal forms developed are good in the
sense that if we use data base schemes that obeynormal forms then we
know that redundancy and anomalies cannot occur?

The first problem with even formulating such a statement is that there
does not exist a general and formal definition of redundancy and anoma-
lies. Even worse, when looking at examples or formalizations given for in-
sert/delete anomalies by various authors we find that they seem to think
of different things [1,31 For special cases,'some authors have attempted
to capture the meaning of the anomalies in a formal way and related them
to normal forms [t,S 1

In this paper we first survey various examples for anomalies given in the
literature [1,3,8]. We discuss the formalizations and relate them to each
other and the examples. We give arguments that show that decomposition
of a relation scheme can help in getting rid of deletion/insertion anoma-
lies and can fail in getting rid of update anomalies in the decomposed ca-
se.

_ 2 _

2. EXAMPLES OF ANOMALIES

In our attempt to understand the nature of anomalies we first review va-
rious examples that were given in [1, 3, 8J as explanation.

We start with two examples provided by Codd [3], The first example is a
relation scheme

T (S~, P~, SC)

where S# = supplier number
p# = part number
SC = supplier city

together with the functional dependency

S -> SC

and the following relation for T

S# P~ SC
u 1 Poole
u 2 Poole
u 3 Poole
v t Feistritz
v 3 Feistritz

FIGURE 1

Codd writes: "Looking at a sampie instantaneous tabulation ot" T (FIGLlRE 1),

the undesirable properties ot" the T schema become immediately apparent.

We observe for example that, if supplier u relocates his base of operati-

ons t"rom Poole to Tolpuddle, more than one tuple has to be updated.

Worse still, the number of tuples to be updated can and, usually will,

change with time. It just happens to be three tuples at this instant. Now

suppose supplier y ceases to supply parts 1 and 3, but may in the near

future supply some other parts. Accordingly, we wish to retain the infor-

mation that supplier v i s located in Feistritz. Deletion of one ot" the two

tupels does not cause the complete disappearance of the association of v

with Feistritz, but deletion of both tupels does. This is an example of a

deletion dependency which is a consequence of the relational schema it-

self. It is left to the reader to iJlustrate a corresponding insertion depen-

dency using this example "

- 3 -

The second example of Codd [3] is the schema

W(EIl, JC, Oll, MIl, CT)

where

Eil = employee serial number
JC = employee jobcode
Oll = departmentnumber of employee
Mil = serial number of department manage
CT = contract type (government or nongovernment)

together with the functional dependencies

Oll -> CT, Mil

Eil -> MIl, J C, 0#, CT
M# -> CT, Oll (E# primary key)

and the relation

Eil JC 0# Mil CT

1 a x 11 g
2 c x 11 g
3 a y 12 n
4 b x 11 g
5 b y 12 n
6 c y 12 n
7 a z 13 n
8 c z 13 n

FIGURE 2

Codd writes: "Looking at a sampie instantaneous tabulation of W (FIGURE 2)
J

the undesirable properties of the W schema become immediately apparent. We

observe, for example, that it" the manager of department y should change,

more than one tuple has to be updated. The actual number of tuples to be

updated can and, usually wi/l, change with time. A simiJar remark applies if

department x is switched t"rom government work (contract type g) to nongo-

vernment work (contract type n). Deletion of the tuple for an employee has

- 4 -

two possible consequences:

deletion of the corresponding department inFormation if his tuple is the sole

one remaining just prior to deletion, and non-deletion oF the department in-

Formation otherwise (./.). IF the data base does not permit any primary key to

have an undet/necl value, then Dt: and CT inFormation For a new department

cannot be established in relation W beFore people are assigned to that cle-

partment. IF, on the other hand, the primary key Et: could have an undeFinecl

value, and iF a tuple were introclucecl with such a value For ~'t: together with

det/ned values For Dt: (a new departmentJ and CT, then insertion oF Et: and IC

values for the First employee in that department involves no new tuple whe-

reas each subsequent assignment oF an employee to that department does re-

quire a new tuple to be inserted. Conversion oF W to third normal form con-

sists oF replacing W by two oF its projections

W1 = nEt:, jC, Dt: (W)

W = n CT (W)2 Dt:, Mt:,

We thus obtain the relations tabulated in FIGURE 3.

"1 (EIl je Dt:) W2
(Dt: Mt: CT)

1 a x x 11 g

2 c x Y 12 n

3 a y z 13 n

4 b x

5 b Y
6 c Y
7 a z

B c z

FIGllRE 3

Note how the undesirable insertion, update and deletion dependencies have

disappeared with the removal oF transitive dependencies. No essential inFor-

mation has been lost, since at any time the original relation W may be reco-

vered by taking the natural join oF W1 and W2 on Du ...

- 5 -

Let us now consult Ullman [8] about anomalies. We find there the exam-
pie of a relation scheme

SUPPLIERS (SNAME, SADDRESS, ITEM, PRICE)

Ullman writes: ..We can see se\/eral problems with this scheme.

1. Redundancy. The address oF the supplier is repeated once For each item

suppliecl.

2. Potential inconsistency (update anomalies). As a consequence of the redun-

dancy, we could update the address for a supplier in one tuple whiJe lea-

ving it fixed in another. Thus we would not have a unique address for each

supplier as we fee! intuitively we should.

3. Insertion anomalies. We cannot record an address for a supplier if that

supplier does not currently supply at least one item. We might put null

values in the ITEM and PRICE components oF a tuple ror that supplier but

then when we enter an item for that supplier will we remember to clelete

the tuple with the nullst' Worse, IJJ:.M and SNAMl; Form a key f'or the re-

lation and it might be award or impossible to look up tuples with null va-

lues in the key.

4. Deletion anomalies. The inverse to problem (3) is that should we delete alJ

the items supplied by one supplier, we unintensionallY lose track of its

address ...

In this example all the above problems go away it' we replace SUPPLIERS

by the relation schemes

SA (SNAME, SADDRESS)

SIP (SNAME, ITEM, PRlCE)

It is typical that we do not find in [8] any statement that shows the general
benefit of normal forms and decomposition.

Let us now consider what Bernstein and Goodman understand by anomalies,
who were the first to attack the problem to prove that normal forms are
good [1J.
In their paper [1] introduce anomalies by referring to the above second exam-
pIe of Codd and Codd's comments on it.
It is very important at this point to note that in [1] Bernstein and Goodman
only partially quote what Codd wrote: in our above quotation we have marked

- 6 -

the position up to which they quote Codd by a ./. sign, i.e. they quote Codd's
comments on update and delete anomalies. Then Bernstein and Goodman con-
tinue in their paper with their own explanation about what an insert-anomaly
is, which is different from Codd's.
They write: "Inserting an employee tuple has the complementary problem: if

the employee is the t:irst member of a department, we must simultaneously

insert new Mit and er information for that department; inserting the second,

third, etc.) employee into that department has no such requirements".

In a framework of a data base scheme (= a set of relation schemes, each of
which has an associated set of functional dependencies they then give a for-
mal definition, when a relation scheme with associated set of functional de-
pendencies is free of anomalies (in their sense) and relate this eoneept to Bo-
yce-Codd normal form.

Yet another view of insert/delete anomalies is given by Fagin [5 J. let us con-
sider a relation scheme ABC with the functional dependeney B -> C and the
condition that the values for A, B, C are numbers in {1.tOO}. A relation for
this scheme is e.g.

r = A B C

1 3 99
2 3 99
2 4 99

In the sense of Fagin this sehe me has an insert anomaly beeause there is a
tuple t, e.g. t = (5, 3, 97), satisfying the range conditions such that r u {tl is
no longer a "valid" relation for the scheme (beeause r u {tl violates B -> C).

- 7 -

3. DISCUSSION OF EXAMPLES AND FORMALIZATIONS

We want now toinvestigate the various concepts and their relevance for da-
tabase design theory. For that purpose we separate the issue of update (= re-
placement, = change) anomalies from those of insert/delete anomalies and
treat the latter first.

3.1 DELETE ANOMALIES

In Codd's first example (FIG.1) a delete anomaly arises because the ad-
dress of a supplier gets lost when this supplier momentarily does no
longer supply any parts and does not get lost otherwise. In Codd's se-
cond example (FIG. 2) "information" on a department may or may not di-
sappear depending on the fact if the employee tuple to be deleted is or is
not the last containing this information. So, in both examples a "delete
anomaly" arises because there is some information that is considered to
be relevant, Le. the "information" on the address of a supplier in the first
case and the manager and contract type "information" in the second case.

Now let us consider a slightly modified situation. We consider again the
relation scheme W (Eu, JC, Du, Mu, CT) but admit that a department has
more than one manager and contract type, Le. we drop Du -> Mu, CT
while maintaining the remaining dependencies. We now look at the sampie
relation

Eu JC Du Mu CT
1 a x 11 g
2 c x 11 g
3 a y 12 n
4 b x 14 n
S b x 1S g
6 c y 12 n
7 a z 13 w
8 c z 13 w

FIGURB 4r

After the removal of the tuple for the employee with Eu = 1 (or Eu = 2)
we can still obtain the "information" that department x has the three
managers 11, 14, 15. After the removal of the tuple with Eu = 4 (or Eu = 6)
this "information" is lost. Now, if we consider this "information" as rele-
vant, we have a delete anomaly.

- 8 -

The same arguments can be made for Ullman's example. Ullman's exam-
pie describes the same type of delete-anomaly as Codd. Ullmann states
that a delete anomaly for the scheme

SUPPLIERS (SNAME, SADDRESS, ITEM, PRICE)

arises, because "when we delete all the items by one supplier then we
unintensionally lose track of his address". So again, we have some "infor-
mation" that is considered to be relevant, namely the address, that may
or may not get lost. Now, let us modify Ullman's example by taking as
fu nctiona I dependency

SNAME, ITEM -> PRICE

and hence SNAME, SADDRESS, ITEM form a key. By this we model that a
company may locate at different places. In this modified example a delete
anomaly arises as follows: when location x of company y currently does
not supply any items then the information about this location is lost. Ta-
ke e.g.

SNAME SADRESS ITEM PRICE
SIEMENS München a 100
SIEMENS München b 200
SIEMENS Erlangen c 100
IBM München a 90

FIGURE 5

Here, if SIEMENS Erlangen stops supplying c, we lose the information
about the location Erlangen alltogether. It should be c;lear that an at-
tempt to get rid of the delete anomaly in our modified example by de-
composing into BCNF must fai!.

From the above example we argue that deletion anomalies arise because
there is "information", considered to be relevant, that may unintensionally
get lost. This "information" may or may not obey functional dependencies.
If it does not, decomposition into BNCF will not help getting rid of the
problem. The reason, why some "information" is considered to be relevant
and some is not, depends on what operations will be performed on the
data base. If, e.g. we will never ask for the address of a supplier that
currently does not suppl)' anything then we do not ca re that such address
information may get lost.

Of course our above arguments concerning delete anomalies and BCNF
are informal, so let us have a look at formal definitions for delete ano-
malies and the related results as found in [51

- 9 -

In es] Fagin defines a relation scheme as a set of attributes together with
a set of constraints. A relation is a valid instance of a relation scheme if
it has the same attributes and obeys all constraints. Fagin considers c1as-
sical constraints as e.g. functional, multivalued and join dependencies and
in addition domain dependencies (DO) and key dependencies (KD). Fagin
then defines that a relation scheme has adeletion anomaly (which we call
F= deletion anomaly) iff there is a valid instance (of the schemel that
contains a tuple the removal of which yields an instance that is no longer
valid (Fagin then develops a normal form that is shown to be equivalent
to the nonexistence of F-insert/delete anomalies),

It is easy to see that a F-deletion anomaly is something different than
the delete anomalies presented by Codd and Ullman. The deletion of a
tuple in Codd's example does not yield a nonvalid instance, it may or may
not cause a loss of information.

So, Fagin's formal model, together with his normal form and the associa-
ted results, does not help in getting results for the connection between
normal forms and Codd-type deletion anomalies.

3.2 INSERT ANOMALIES

In Codd's second example an insert anomaly arises because

j) we cannot store D= and CT information far a new department
before people are assigned to that department in case that
primary keys are not allowed to have undefined values

or

ii) if primary keys may have undefined values, then other irregular
situations occur, see seetion 2) above.

In Ullman's example an insert anomaly arises because

j) we cannot record an address for a supplier if that supplier does
not currently supply at least some item (if null values are not
admitted)

or

jj) if null values for ITEM and PRICE are admitted then other
irregular situations occur (see section 2>'

- 10 -

So, basicly Codd and Ullman describe the same problem, namely that

there is some "information" that is considered to be important (O=-CT.

SNAME-SAOORESS) that sometimes cannot be represented in the chosen

relation scheme, if null values are not admitted. And if null values are

admitted, the information could be represented. but then other problems

arise.

As in the case of delete anomaly we argue that this missing facility to

store information is not restricted to the case of functional dependencies.

Let us e.g. for the scheme W (E=, jC, 0=, M=, CT) drop the functional

dependencies 0= -> CT, M=, i.e. a department may have more than one

manager and work under different contract types. We still request M= ->

0=, CT and E= -> jC, 0=, M=, CT. In this modified example that we can-

not adequately represent under which contract types a department may

work. E.g. the situation that one group of employees works under mana-

ger lt under contract type g, while another could also work under some

other manager under contract type n is not representable without null

values. With nulls we might get something like
E= JC 0= M= CT

1

2
.1

a

c

.1

x

x
x

lt
11
.1

g

g

n

FIGURE 6

where the same problems with nulls arise as Codd and Ullman mention.

So again, we argue that insert anomalies are not restricted to the case of

functional dependencies (and hence decomposition into BCNF does not

help>' For an insert anomaly it is important that certain information is

considered to relevant, i.e. in the above example under which contract ty-

pe(s) a department may work. If we are only interested in' the contract

type(s) under which a department currently works, we do not get into

problems with the above scheme.

Let us now see, what formal treatments we find in the literature for the

case of insert anomalies.

For Fagin [5], who works in the fram~work of a single relation scheme

with constaints (FO, MVO, jOIN-dependencies, OD, KD> a relation scheme

has an insertion anomal) lwhich we call F-insertion anomaly) if there is a

valid instance of the scheme and a compatible tuple such that adding the

tuple to the instance) ields a non-valid instance. (A tuple is compatible

with an instance if it has the right attributes, its components satisfy the

- 11 -

domain dependencies and if -for every key- it does not have the same va-
lue as any other tuple of the instance).

This notion of insert-anomaly is different from that of the examples of
Codd and Ullman. The problem in the examples of Codd and Ullman is
that certain information cannot be adequately stored and not that the ad-
dition of tuples yields non-valid instances.

Let us now turn to the approach of Bernstein and Goodman Cl J. Even
though [1] seem to quote Codd, we already found that, while working
with the same sampie relation scheme, Bernstein and Goodman's explana-
tion of insert anomaly is different from Codd's (see end of section 2).
The essence of their explanation is that an insert anomaly arises because
sometimes (e.g. when an employee tuple to be added is the first member
of a department) we must give a completely specified tuple whereas so-
metimes we may only partially specify such a tuple and the missing in-
formation can be deduced by means of functional dependencies. E. g. let
us consider the relation given in FIGURE 2. Then for a first member of
department v we have to give a tuple like

(9, a, v, 16, g)

whereas we may add the tuple

and the missing information is deduced to yield

1- =11
1

1-
2

= g

Evidently, this notion of insert anomaly which is based on redundancy re-
sulting from functional dependencies is a quite different one than that of
Codd and Ullmann. For Codd and Ullman an insert anomaly is, that there
are problems of representing certain relevant "subinformation": if there is
no employee in a certain department then Ma, CT information for that
department cannot be weil represented in the relation scheme W, i.e. we
have a partial information of the form

(1- . 1-':), V, 16, g)
1 ~

where the undefined elements may cause problems for later operations
and c1early here, values for 1-

1
, 1-

2
cannot be deduced.

- 12 -

3.3 HOW TO HANDLE DELETE/INSERT ANOMALIES

Summarizing 3.1 and 3.2 we observe that the existing formal investigati-
ons do not clarify the nature of delete and insert anomalies (as presented
by Codd) and their relation to normal forms.

We suggest to take the following attitude towards these anomalies: at
the design stage for a relation scheme over the attributes At' ... An one
has to make the decision which attribute combinations constitute "rele-
vant information". For every such attribute combination, e.g. AtA2

A
3
, we

introduce a new attribute N and add the functional dependency

A A A -> N
1 2 3

to the other conditions for the relation scheme. Let us ass urne that there
is no functional dependency relating A ... A in the original design. If we

t n
suceed to give a loss- lessjoin decomposition p = {Rt, ... ~} of the rela-
tion scheme into BCNF preserving functional dependencies, then we know
that there will be an element

R = A A A N("')'i 1 2 3 tn p.

R. represents the relevant information which Can now be maintained when
1

other parts of information are deleted or not yet provided. So, in a cer-
tain sense BCNF helps us in getting rid of delete/insert anomalies. The
problem is more difficult, however, for update anomalies, as can be seen
in the following.

3.4 UPDATE ANOMALY (change, replacement)
As far as the examples are concerned, Codd, Ullmann and Bernstein and
Goodman what an update anomaly is at least in the context of a single
relation scheme with an associated set of functional dependencies. The
functional dependencies induce the existence of "redundant" information,
which causes problems, when updating occurs. Decomposition into BCNF is
proposed as a cure [4,7J.

There are, however, other forms of "redundancy" and "update-anomalies"
than displayed in the above examples.

a) There are other forms of constraints that induce the existence of "re-
dundant" information. which causes problems when updating occurs.
Consider as an example a relation scheme over the attributes A, B, C

(.) Clearly we do not have to actually store values for N.

- 13 -

together with the multivalued dependency A -> -> C and no functional
dependencies (hence trivially in BCNF) and the relation

A B C
a b c
a b' c
a b" c"

a b c
a b' c
a b c
a b' c"

a b" c
a b" c
a b c"

FIGURE 7

Here e, g, the following can happen

j) the A-value of the first tu pie is changed into äthen the tuple (a b c>
has to be added in order to satisfy A -> -> C

ij) the A-value of the fourth tuple is changed into athen a number of tu-
pies depending on the actual relation has to be added

iii) the C-value of a tuple is changed, Then a number of tupies, depending
on the actual relation has to be modified as weil. Of course , we
might try to decompose a relation scheme with multivalued depen-
dencies into 4NF. But can we be sure in general that then the above
problems go away? Probably not, see b>'

b) Eyen if we restrict oursel ves for the moment to relation schemes
with functional dependencies then the decomposition of a relation scheme
into BCNF can produce undesired effects. For this consider the example
of a relation scheme R over the attributes ABCD and the functional de-
pendencies F = {A -> B, B -> C D} and the decomposition
P1 = {AB, BC, BCD}. Pt is a loss-less join decomposition of R that preser-
ves functional dependencies. Each R. is in BCNF. Now consider a relation

I

r for R that contains the tuple t = (a, b, c, d) in the decomposition of r
we find

- 14 -

(a, b) E TI AB (r) = r
1

(b, cl E TI
BC

(r) = r2

(b,c,d)E TI
BCD

(r) = r3

If we now modify c to c' we have to perform thi s update in r2 and in r3'
a situation that is probably undesirable.
So, even though the relation schemes of the decomposition are in BCNF
and the decomposition is a loss-!ess join decomposition and preserves
functional dependencies, wehave some form of "redundancy" and hence
undesired update behaviour.

Had we decomposed the scheme by

92 = (AB, BC, BOl = (R'l' R'2' R')

then this decomposition is again a lossless join decomposition that pre-
serves functional dependencies. The R: are in BCNF. In this decomposition

1

the change of a C-value remains local. A change of B-values does not re-
main local, however, this can be considered as an effect of a different ty-
pe as B is key in R'2 and R'3 and a foreign key in R'(

In [6] decompositions like 9
1
that contain "superfluous" attributes (namely

the attribute C in BCD) are treated and it is shown how a. relation scheme
with functional dependencies can be decomposed into 3 NF such that no
"superfluous" attributes occur.

However, superfluous attributes are not the only problems with decom-
positions.

The situation can be more complicated; consider e.g. a relation scheme
with attributes BCEF and functional dependencies

BC -> F

CE -> F

- IS -

'-- ----------_ .._---

Let

then each R is in BCNF, the decomposition is lossless and all functional
1

dependencies are preserved.(") Let us now consider the example given in
FIGURE 8.

B C E F
r = b c e f

b c e f
b' c e f

A relation for BCEF

B C E B C E C E E

r = b c e r = b c f r
3
= c e f

t 2
b c e , b' c f c e f
b' c e

Its projections onto the R.
1

FIGURB 8

"v

Now changing f to f in the second tu pie original relation r (that is not in
BCNF) forces us to cha~e f to f also for the other tuples in r. In the de-
composed case we have to modify all f's in r2 and r3 !

Now one might argue that this decomposition was akwardly chosen, so let us
consider the decomposition that results from the decomposition algorithm [8]

'2 = {BCF, BCE}

(••) 1:
1
is the only loss-Iess join decomposition of BCEF that preserves

functional dependencies.
- 16 -

which is lossless and both schemes are in BCNF but"2 does not preserve
functional dependencies. This decomposition leads to

B C E B C E

sI = b c e s = b c f2
b c e b' c f
b' c e

FIGURE 9

If we now consider the modification of f in the second tuple of the relation r
as before then all f's in 52 have to be modified as weil.

What is even worse with examples alike scheme BCEF and its functional de-
pendencies is that it is not obvious to find out in the decomposed case what
modification have to be carried out as a consequence of the modification of a

single value!

Our list, however, of intriguing examples is not yet ended, Consider the sche-
me BCEF with functional dependencies

and the following sampie relation

CE -> F
B -> E with key BC

B C E E
r = b c e f

b' c e f
b" c e f'
b'" c e f'

rr (r) = C E E rr (r) = B C rr (r) = B E

CEF c e f' BC b c BE b e

c e f b' c b' e
b" c b" e

FIGURE 10

- 17 -

Consider now the update of the EF-value for the second tuple in r where we
wish to substitute b' c e f by b' c e' f". In order to satisfy the constraints we
have to modify the third and fourth tuple as weil yielding a relation r'; if we
had changed e into e" the third and fourth tuple were not affected, so we ha-
ve a case of an "update anomaly", Let us now consider the lossless join de-
composition into BCNF

(J = {CEF, BE, BC}

let us now look at the action we have to perform on the projections of r in
order to be able to obtain r', In this ca se we have to modify the second tuple
in rr (r) even though the first tuple of TI (r) originally held the respective in-

CEF CEF
formation for t = (b' c e f), In addition we have to modify the second tuple of
TI (r).BE

We consider now the case that we want to modify -in the relation r- the se-
cond tuple (b' c e f) into (b' c e" fl.

(n this case no other tuples of r have to be modified to preserve consistency.
But for the projections we have to do the following steps;

- insert a tuple c e" f into rr (r)
CEF

- substitute the second tuple in rr (r) by b' e",
BE

In contrast to the examples usually presented in connection with update ano-
malies, where it is typically demonstrated that decomposition removes the
undesired effects [3,4,8 J, our above presented cases demonstrate that after
decomposing the situation may become even worse,

The question remains, if in such cases there is a decomposition such that the
above undesired update behaviour can be avoided? If not, what conditions
must the functional dependencies for a given relation scheme satisfy such
that there exists a "useful" decomposition, Le, a decomposition that is free of
"update anomalies?"

- 18 -

From the above we conclude that we need a formal framework which allows
us to talk about "redundancy" and "update anomalies" for sets of relation
schemes on which certain constraints are given.

Let us now look at the formal models given in [l,S] to capture the meaning of
anomalies. In [S] only insert and delete anomalies are treated. In Cl] Bernstein
and Goodman treat the case of a single relation scheme with functional de-
pendencies. They define a relation scheme with a set F of functional depen-
dencies free of replacement (= update) anomalies iff for each relation for that
scheme that satisfies Fand for every X -> Y in F there are no two tuples
with the same X value. Obviously, under this definition a relation scheme (R,
F) is free of update anomalies iff (R, F) in BCNF. The case of constraints
other than functional dependencies and the case of a decomposition p, i.e. a
set of schemes is considered in Cl] for insert/delete anomalies on the basis of
a universal relation assumption but not for replacement.

Summerizing the topic of update (= replacement) anomaly we make the follo-
wing observations:

O. There does not exist a formal framework for defining and discussing up-
date anomalies

1. If we deal with the case of a single relation scheme with functional depen-
dencies then BCNF guarantees that the scheme does not display update
anomalies [11 This is intuitively obvious, beeause BCNF means that there
are no other funetional dependencies than those derived from key informa-
tion

2. update anomalies originating from eonditions other than funetional depen-
dencies have not been treated so far even for the ease of a single relation
sehe me

3. if p is a functional dependencies preserving loss-join deeomposition (e.g.
into BCNF) of the relation seheme R with functional dependencies there is
no knowledge about it, if and when we got rid of the problem of update
anomalies. It even seems that deeomposing might make problems worse!

- 19 -

4. CONCLUSION AND FURTHER INVESTIGATIONS

We discussed some issues that arise, if we want clarify the benefit of de-
compositions of a relation scheme according to some normal form. In par-
ticular we were interested in the question if decomposing a relation sche-
me guarantees the disappearance of anomalies. We argue that, in a certain
sense, lossless join decompositions into BCNF that preserve functional de-
pendencies help to handle insert/delete anomalies as introduced by Codd
[3J. We presented some of intriguing examples that show that such de-
compositions may fail in getting rid of update anomalies as introduced by
Codd [3J. The question, under which circumstances one can get rid of up-
date anomalies is open.

It has to be considered as a deficiency of the data base design theory de-
veloped so far, that the notions of anomaly and redundancy, that were the
origin for the normal form theory, have not been formally defined and
hence no general formal statement about the value of normal forms with
respect to anomalies exists.

- 20 -

Bernstein, P.
Goodmann, N.

2 Codd, E.F.

3 Codd, E.F.

4- Codd, E.F.

5 Fagin, R.

6 Ling, T.
Frank, T.
Kameda T.

7 Maier, D.

8 Ullman, J.D.

9 Vossen, G.

REFERENCES

What does Boyce-Codd Normal Form do?
Proc. Int. Conference on very large Data Base (1980) 245-259

A relational model of data for large shared data banks.
Com. ACM 13, 6 (1970)

Further normaIization of the data base relational model
In: Data Base Systems, Courant Computer Science
Symposia 6, Prentice Hall (1972) 65-98

Recent investigations in relational da ta bases.
Proc 1974 IFIP Congress, North Holland (1974) 1017-1021

A Normal Form for Relational Data Bases that is based
on Domains and Keys. ACM TODS Vol. 6, No. 3 (1980
387-415

An Improved Third Normal Form for Relational Data Bases.
ACM TODS, Vol. 6, No. 2 0981> 329-346

The Theory of Relational Data Bases.
Computer Science Press (983)

Principles of Data Base and Knowleclge Base Systems.
Vol. 1 Computer Science Press 1988

A new characterization of FD implication with an
application to update anomalies.
Information Processing Letter 29 (988) 131-135

- 21 -

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021

