Reihe Informatik
1/1991

Z‘nxection between an event structure s%ﬁqéntics

\ an operational semantics for TCSP’

N Christel Baier
Nlila E. Majster-Cederbay

N %
3\.\ ‘:ﬁ;

Februar 1991

The connection between an

event structure semantics and an
operational semantics for TCSP

Christel Baier
Mila E. Majster-Cederbaum
Fakultat fir Mathematik und Informatik
Universitdt Mannheim

Seminargebiude A5
6800 Mannheim 1, FRG

1991

1 Introduction

Various formalisms have been proposed in the past for the description of nonde-
terministic concurrent systems, the most well- known of which are CCS [14,15],
ACP [2] and TCSP [6,13,17 ,19]. These languages or calculi have been given a
‘variety of semantical descriptions {1,2,3,4,5,6,7,8,10,11,12,18,20,21,22]. A first
classification of this semantics distinguishes between interleaving and noninter-
leaving models.

In noninterleaving models as {3,4,8,10,11,12,18,21,23] an attempt is made to
capture ’ true parallelism ’. In such models a parallel construct as e.g.
P, = a.stop || B.stop , that specifies the parallel execution of the process
a.stop (that first performs the action a and then stops) with the process 8.stop,
gets a different meaning than the process P, = «.8.stop 0 B.a.stop that
specifies the choice between a.f8.stop and S.a.stop. In interleaving models as

[1,2,5,6,7,19] concurrency is reduced to nondeterministic behaviour by arbitrary

interleaving of atomic actions, hence P, and P, have the same meaning in these
approaches.

The purpose of this paper is to study the relationship between two semantic spe-
cifications of full TCSP [17]. The first specification is an operational interleaving
description using a transition system, while the second is a noninterleaving mo-
del based on labelled event structures [16,23,24,25].

In an earlier paper [11] it has been shown for finite TCSP processes without
recursion and div’ that the interleaving transitions system based description and

2 THE SYNTAX OF GUARDED TCSP 2

the respective noninterleaving event structure semantics are consistent. It was
- an open problem, if this result also holds for full TCSP, i.e. including recursion,

see {11]. Asrecursion is a very powerful and indispensable tool for the definition

and modelling of processes, it is an interesting question if the consistency result
carries over to full TCSP. We show here that this question has a positive answer.
The result is particulary interesting as it not only relates an interleaving with
a noninterleaving specification but also relates at the same time an operational
transition system based specification with a compositional one, that describes
the meaning of processes via structural induction using semantic operators.

2 The syntax of guarded TCSP

Let Comm be the set of possible communications. A special action 7, as in
CCS, is introduced to describe internal actions which may not communicate.
For notational convenience, 7 is allowed to occur syntactially in expressions de-
noting processes.

So let the set Act of actions be defined as

Act = Comm U {1 }.

Let Idf be a set of identifiers which will serve as variables for programs. The set
TCSP of TCSP terms is defined by the following production system [6,17,19]:

P := stop|a.P|div|PorQ|POQ|
PllaQ|P\B|z]| fix z.P,

where a € Act, 8 € Comm, AC Comm, z € Idf .

2.1 Definition :

An occurence of an identifier z is called free in a term P € TCSP iff it does
not occur within a subterm of the form fiz z.Q. A TCSP term P is said to be
~ closed iff it does not contain identifiers which occur free in P.

An identifier x is guarded in a term P € TCSP iff each free occurence of x in P
is in the scope of a prefixing operation Q@ — «.Q .

The guardedness condition will bé needed for the event structure semantics. It
is not necessary for the operational specification.

A term P € TCSP is called guarded iff in each subterm fw z. Q of P the
identifier z is guarded in Q.

3 TRANSITION SYSTEMS ' ' 3

Let GTCSP be the set of all guarded TCSP terms. A GTCSP process is a
- closed, guarded TCSP term.

2.2 Definition :

Let P, A),...,A, € GTCSP and z,,...,z, € Idf pairwise distinct identifiers.
The GTCSP term

P[A/zy,...,Apn/z,] or shortly P[A/i]

arises from P by replacing each occurence of an identifier z in a subterm fizz.Q
of P by an identifier which does not appearin @Q and in A,,..., A, and then by
substituting each free occurrence of the identifiers z;,...,z, In P simultaneously
by the GTCSP terms A,,..., A,.

3 Transition systems

3.1 Definition : ‘ .
A= (S,L,—,q) is called a (labelled) transition system iff

S is a set of states.

L is a set of labels.

— C S x L xS, where we will write p = g instead of (p,a,q) € —.
g0 €S, qo is called the inttial state of A.

Ll

3.2 Definition :

Two equally labelled transition systems A; = (S;, L, =, ¢;), i = 1,2, are bisi-

mular (A; = As) if there exists a bisimulation R between A; and A,, ie. a

relation RC S) x S» with (¢1,92) € R and, for all (p,q) € R :

1. Whenever p =3, p’ for some ¢/ € S; then there exists some ¢’ € S, with

' (F'.¢)ERand ¢ S5, ¢

and symmetrically

2. whenever ¢ 5 ¢ for some ¢’ € S, then there exists some p' € S with
(7,¢)ERandp 3, p.

4 An mterleavmg transition system based de-
scription for TCSP

Following Plotkin [20], Olderog [17] gives an operational semantics for a process
P by structural induction on the syntactic structure of P as below.

4.1 Definition : ,
Let — be the ternary relation on TCSP that is defined as follows :

4 TRANSITION SYSTEM BASED DESCRIPTION FOR TCSP 4

1. Prefixing o.P AP
2. Internal nondeterminism PorQ =P, Por QL Q
3. External nondeterminism -
PSP Q—Q
POQ3 P’ POQAQ’

External choice : where a # 1.

PL P Qo Q _
POQLPOQ PoQRLPOQ

" 4. Parallel composition

Internal choice :

PP, QQ

PlLoS P L Q , where o € A.

Synchronisation case :

Independent execution (modelled by interleaving):
PP Q= where a ¢ A
PllaQ3P llaQ PllaQ3PlaQ"’ /

5. Hiding
B a oy
Lo P P— P where a # f.
P\AZ P\ P\ASP\G "

fiz z.P/z] > Q'

6. Recursion P[fi;c — P iQ

7. Divergence div = div.

An interleaving model of a closed GTCSP term P is the transition system

A(P) = (GTCSP, Act, —, P). -

4.2 Definition : . ‘
For P,Q € GTCSP and w € Comm*, we define :
P 2 Q iff there exists a sequence

P=pP22pP3 33P.,=Q

where n > 0 and w results from a;...q, € Act* by skipping all occurrences
of 7. We call Q a dertvative of P.

5 LABELLED EVENT STRUCTURES 5

Let P be a closed GTCSP term. Then, the transition system

O(P) = (GTCSP,Comm",=,P)

gives an operational semantics for P that specifies only the observable behaviour
of the process P.

5 Labelled event structures

5.1 Definition :
e = (E,L,#,1)is called a (labelled) event structure iff

1. Eis aset (of events),
2. < is a partial order on F,
3. # is an irreflexive, symmetric relation on E , called conflict relation ,
with : Vej,eq,es € E: (e; < e, and e, #e;) = ea#tes,
4. 1: E — Act, where Act is the alphabet of actions (labelling functions).

5.2 Definition :
Let € = (E, <, #,!) be an event structure, E' C E,e€ E .

1. #(e) == { e €E:e'#e}.
2. #(E') = U,ep #(e)
3. le:= {e€FE :e'<eande’ #e} iscalled the preset of e .

5.3 Definition :

Let £ = (E, <, #,1) be an event structure, ¢ € E.

1 : : ifle=0
depth(e) = ¢ maz{depth(e’): e’ €l e} + 1: if} e is finite
‘ o0 : otherwise

5 LABELLED EVENT STRUCTURES 6

5.4 Definition :
An event structure € = (E, <, #,!0) is called (finitely) approzimable iff

1. for each e € E, depth(e) is finite and
2. foreach n € N, {e € E : depth(e) = n} is finite.

Ev denotes the set of all finitely approximable event structures where we ab-
stract from the names of the events, i.e. we will not distinguish isomorphic event
structures. Two event structures &; = (£;, <;,#,,;), i = 1,2 are isomorphic if
there exists a bijective mapping f: E‘l — E, so that

l.ey <y ea <= f(e1) <2 f(e2) Vey,e2€ Ey

2. e1 #1e2 &> f(er) #2 f(e2) Vey,e2 € Ey and

3. L(f(e)) = lLi(e) Ve€ E;. :

Event structures can be depicted graphically by representing events as boxes
(inscribed with the event label) and connecting them with their direct prede-
cessors and successors.

A conflict between two events is a direct conflict if no predecessors of the events
are in conflict. Direct conflicts are depicted graphically by a broken line .

-5.5 Example : ,
~ The event structure ¢ = (E,<,#,1) with E = {el,ez,ea}

e1 < ea, erffes, erffes and
l(e1) = a, l(e2) = B, l(e3) = is shown as

@ —
|
|
)

The < relation of an event structure models the causality of actions. Actions
that are neither in a causal nor in a conflict relation may take place concurrently.
. On the other hand, one may derive from an event structure £ an interleaving
behaviour by associating with ¢ a transition system as follows. -

5.6 Definition :
1. Let u € Act, €, € € Ev, e = (E,<,#,1). The transition relation
— C Evx Act x Ev on event structures is defined by :

e ¢ iff there exists some event ¢ € E with

depth(e) =1, l(e) = p and &' = (E', < |pixp #lexe lle)
where E' = E\ ({e} U #(e)).

'5 LABELLED EVENT STRUCTURES , ' 7

1
\
2. When we abstract from 7-events , we get the transition relation

= C FvxComm® x Ev: |

€ = ¢ iff there exists a sequence

By B
ez S eS3. Bea=¢

where n > 0, 4y,...,pun € Act and w € Comm* results from
H142 .. . ly, by removing all y; = 7.

3. The (observable) interleaving semantics of ¢ € Ev is defined as the tran- ,
sition system . |

O(e)=(Ev,Comm", = ,¢).

5.7 Definition :

The event structures €1,¢, are called 7-equivalent , written €; &, €4 , iff there
exist event structures ¢, Int,, Int, , where all events in Int,, Int, are labelled
by 7,with & = €||g Int;, i=1,2.

It is easy to see that r-equivalence is an equivalence relation on Ev. [11] have
shown that if €; &, €2 and &;=> ¢} then there exists €} € Ev with ¢} =, €}
and €; 2 ¢). _ '

5.8 Example :

feis [a] — [7] and Int, is [7] — [7] , Ints = (9,0,0,0),

then
€||¢Int1 ., E”aIntz =€ .

€ |lg Int; is given by .
= — :
—

5.9 Example :

eis

L

6 COMPOSITION OPERATIONS FOR EVENT STRUCTURES - 8

e I E
aJa
[

-
then ¢ = ¢, where ¢ is given by
— [a]

,_
6] — [

and we have ¢ = ¢” , where ¢” is given by

o]
d — & <

6 Composition operations for event structures

The event structure semantics for GTCSP to be defined is compositibna.l, which

means that composition operators corresponding to the syntactical operators
prefix, or , O, [la , \# and fir have to be defined. This section gives the

operations for finite approximable event structures modelling the operations of
GTCSP as defined in [11].

6.1 Definition : .
Let stop € Ev to be defined as
: stop = (0,0,0,0) .

6 COMPOSITION OPERATIONS FOR EVENT STRUCTURES 9 : i
. \

6.2 Definition: |
Let e = (F,<,#,1) € Ev,a € Act,eq ¢ E. Then, the event structure a.c will |
describe a process which first performs o and then behaves like e, -

ace = (B, < #.1)

where
1. E' = EU{eo}, :
2. 1< e; < e =€ or (e1,e2€ E & e; <€) |
3. 61#'82 <= e;,e90€FE & e1#es . }
4. I' 1 E' — Act is defined by I'(e) =l(e) ,if e € E,and I'(eo) = a. o

. _ |
6.3 Example : * Prefixing _ . R
a.€ describes a process that first performs a and then behaves like . If ¢ is |

= — [

[e] — [4]

@ — [
/|

@ —@

N E — [

then a.c is

6.4 Definition : . v
For e = (E, <, #,{) € Ev, we define the set of initial internal events by

In(e) = {e€ E:Ve' e E, e <e:lle)=71} .

6 COMPOSITION OPERATIONS FOR EVENT STRUCTURES 10

6.5 Definition :
Let ¢; = (E;, <i, #i,4i) € Ev,i=1,2, wlog. E, ﬂ E2 = @. The conditional
composttion of €; and €, is deﬁned by

€1 0¢; = (E, <, #,])

where
1. E = El U E2
2. £ =<5V
3. e F# ey < (ey,e2€E; &efies) or (61,626E2&61#262) or

(eleEl\In(El)&CQEEz\ITI 52)) or
(e1 € E3\ In(e3) & €3 € Ey \ In(ey))
4. 1. E—= Act,l(e) =k(e) ife€eE;, i=1,2.

€1 O g9 describes the process which behaves like one of the event structures €1
or €2 where the decision which alternative is left open as long as only internal
actions are being performed. ’

6.6 Example : 0O - choice

Let €; be — [a] ande; be @ . Then ¢, De, is gi-
ven by

EH— @
)

[}~

which describes that €; may perform its 7-actions independently and that a
decision has to take place as soon as communications are involved.

| 6.7 Example : - choice

Let élbe @ —-»@ and Egbe . ——+@ ,thén €, 0O e,y
@ — [7]
o — @

describing external choice.

6 COMPOSITION OPERATIONS FOR EVENT STRUCTURES 11

6.8 Definition :)
Let ¢; = (E;,<i,#i, ;)€ Ev,i=1,2,wlog E,NE,=0.
The nondeterministic combination of £, and ¢ is defined by

grorey = (E, <, #,1)

where . 7 _
1LE = E\UVUE U{fi,fi} , i, ¢ E\VUE,
2.e1<ey < (e,e2€E; & e <€y, i=lori=2)or
(ei=filker€E; i=lori=2)ore;=e¢;
3. # is the symmetric closure of #; :U #2 U ((Elu{fl}) x (EoU{f2})
4. 1:E— Act, l(e)=li(e)ife € E; and I(f;)=7,i=1,2.

The nondeterministic combination €; or €5 behaves like €, or like €5 where an
internal decision chooses the alternative.

6.9 Example : or-choice

Let &, be — [«] and eébe @

Then €; or €5 is given by

[[] — [— [a
f |
3

3

-

= — [

The internal character-of the or -choice is modelled by prefixing the respective
event structures with internal actions and by imposing a conflict between these
internal actions . : '

6.10 Definition :

_ Let g = (B, < #i, i) € Ev, i=1,2, wlog E;NEy=0and A C Comm.

6 COMPOSITION OPERATIONS FOR EVENT STRUCTURES 12

1. The syntactical communication of €, and ¢, on A is defined by

= {(ex) : eeEi,_Il(e)¢A}
U {(xe) : e€Ey lhe)g A}
U {(er,e2) €EE1 x Ez : hi(e1) =la(e2) €A}

COmmA(EI,Ez)

There * is an auxiliary symbol, x ¢ E, U E;. We extend the relation
<; and #; on the argument = by defining

(x<ie) V(e<i*) <= e =%

and)
—-(*#,-e) VCEE,'U{*}

2. Two communications (ey,e3),(e],e5) € Commy(ey,€2) are in conflict
iff they contain conflicting events, i.e. 61#161 or 62#262 , or one event
communicates with two distinct events, i.e. (e; = e} # *xAey # 62) or

(e2 =€y # xAey # e}).

3. A subset C of Commy(e;, ;) is conflict-free iff no two communications
in C are in conflict.

4. Let C C Commy(€;,¢€2) be conflict- free, (e;,€3),(f1,f2) €C .

(a) The relation < is defined by

(e1,€2) < (f1, f2) <= ((e1 <1 f1) A“(ez >,)V ((e2 <2 fo) A(er >1 f1)

We say (e1,ez) precedes (f1, f2) if (e1,€2) < (f1, fa).
(b) C is called complete iff
V(ey,e2) € C,Vfy € E, with f; <, e, there exists (f}, f2) € C with

(f1, f2) < (e1, €2)

and symmetrically
V(e eq) € C,Vf2 € E3 with fp < e there exists (f1, f2) € C with

(flyf2) < (61)62)‘

(c) C is called cycle-free iff the transitive closure of < is antisymmetric.

6 . COMPOSITION OPERATIONS FOR EVENT STRUCTURES 13

5. The parallel composition of €; and €3 with communicationon 4 C Comm
1s given by '
e1llacr = (B, #,1)

where

(a) E ={Cle, e;) : Cley,e0) © Commy(ey, €2) is conflict-free, cycle-free,
complete and (e;, e3) € C,, .,) is the only maximal
element (with respect to <) }

() < = C .

(c) # = {(C1,C2) € Ex E :3(ey,€3) € Cy, (f1, fo) € Cy with

(61)62)) (f11f2) in conflict }

(d) 1: E = Act , I(Ce,,e,)) = label(eq, e3)

where label(ey,ez) = l;(e;) if e; € E; and
Iabel(€1,€2) = 12(62) ifes € Ey.

The parallel composition ¢; ||4 €2 describes the independent execution of ¢,

and €3 where the actions of A may only be executed as joint actions by both .

processes together. In particular, ||g stand for fully independent execution
(without synchronisation), and on the other extrem, ||comm only allows actions
which are performed in common.

/6.11 Example : Parallel composition ||,

Letelbe@—a@—»md52bem—¥@—>@, _

then € ||{o) €2 is given by

(4]
R [¢]
6.12 Definition :

Let e = (E,<,#,1) € Ev,8 € Comm.

e\f = (E,S,#.1)

where I': E — Act, I'(e) =l(e) if I(e) # 8 and le)y=r1 otherwise.
The hiding operator transforms the actions labelled by £ into internal actions,
i.e. T-events. '

7 THE METRIC SPACE SPACE EV ' 14

6.13 Example : Hiding

Let ¢ be

|
[=]

then ¢ \ B is

G- B &F----6
i
[4]

7 The metric space of finite approximable
event structures

In this section we will define a metric d on finite approximable event stuctures.
(11] have shown that (Ev,d) is a complete ultametric space. Thus, every
Banach-contractive mapping & : Fv — Ev has a unique fixpoint in Ev.

7.1 Definition :.
Let e,¢’ € Ev,n€ N,e = (E,<,#,1).

1. The truncation of € (of the depth n) is defined as follows :

e" = (E™ < |gnxEn, #lEnxEn l|ER)
"~ where E® := {e € E : depth(e) < n}.

2. The distance between the event structures ¢, ¢’ is defined by
d(e,e'}=0 &> e=¢ : _ . :
de.¢)= & < ec#¢ and n=maz{i: e ="}~

We recall that we deal with isomorphism class of event structures, i.e. we
abstract of the names of the events e € E. It is clear that the distance d(e,¢’)
is independent of chosen representatives.

7.2 Definition : , :
Let Env:={c: o :Idf — Ev} the set of environments. These are mappings »
which assign a meaning to free identifiers of a term.

7 THE METRIC SPACE SPACE EV , 15

For €1,...,6n € Ev, we define ole,/z,,...,6,/2a]: Idf = Ev by
T; — &, 1i=1...,n,
y —oy) ifyé{z,...,z.}.

Let ®: GTCSP x Envx Idf — (Ev— Ev) be given by

®(P,0,z)() = M[Pole/d] |

where M is the meaning function

M : GTCSP x Env — FEv

given by :
Let 0 € Env, a€ Act, € Comm, A C Comm P, P,P, e GTCSP.

1. M[stople := (0,0,0,0) = stop .
2. M[div]le := (W <,0,7).

3. M[z]e := o(2) wherezeIdf.

4. M[a.Plo := a.M[Plo.
5. M[P\Blo = M[Plo \§.

6. M[Pll:le] = M[PI]O'] M[Pz]d’
7. M[PiorP)o := M[P]o or M[P;]o.
8. M[Pi|laP)o := M[P]o ||a M[P)]o.
9. M(fiz z.Plo := fiz ®(P,0,z)

where fiz ®(P, g, z) denotes the unique fixpoint of the Banach - contrac-

tive mapping ®(P, s, z). See [11],where it has been shown that ®(P, o, z)
is Banach - contractive .

~

7.3 Example :

Let P = «.f.stop O r.1.a.stop , then M[Plo is independent of the
environment o : 7 : '
[e] — [4]

~
-
~
-~
~

-~ .
— @& — [

" 7.4 Example :)
Let P = a.r.stop or t.z and 0 € Env where o(z) is given by :

-8 THE CONSISTENCY OF O(P) AND M{P]

o] — &
1

v
Then , M[Plo is given by :

- — @ — [

- — - -
7.5 Example :
Let P = fu::c a.z , then M[P]a is

7.6 beample :
Let P = r.fiz z. (a.z Of.stop), then M[P]o is given by :

/r 2
/;\‘l
g

/'
\

8 ‘The consistency of O(P) and M|[P]

16

In this section, we establish the result that the operational semantics O(P)
is consistent with the compositional event structure semantics M[P] for every

GTCSP process P. In particular, we show that O(P) and the observable inter-

leaving semantics O(M[P]) are bisimular.

8 THE CONSISTENCY OF O(P) AND M|P) 17

Lemmal: o
Let z € Idf be guarded in P € GTCSP.

1. 01,03 € Env,01(y) = oo(y)Vy € Idf \ {z)

= fiz ®(P,01,z) = fiz ®(P, 0y, z). : :
2. M[P]o depends only on o(z,),...,0(z,) where z,,. .., Zy, are the
identifiers which occur free in P. In particular, if P is closed, then M[P]o
and fiz ®(P,o,z) are independent of the environment ¢.
3. Let zy,...,z, be pairwise distinct identifiers, A,,..., 4, € GTCSP,
then :

M[PlAyfs1,...An/z0) o = M[Plo| M{a\Jo/z,,...M[Ad)e/zn].
Proof :
1. follows immediately from the definition of &.

2. is clear .

3. We define for P € GTCSP: P(A) = P[A,/z,...,An/2n] - and
foro € Env 1 0(A) = o[MlAo/zy, MlALo/z] .

By structural induction on the syntax of P we show that -

M[Plo(A) = M[P(/i)]a X

Basis of induction : .
1. P=stop or P=div: P(A)=P and M[Ploy = M[Plo, ¥ 0,,0; €

Env . .
2. P=zeldf:
M[I]O’(/i) — { M[Ai]U = M[P(AT)]U cifz = z;

o(z) = Mlzlo = M[P(A)lo : if z € Idf \ {z1,. -2 2n}.

Indﬁction step :
1. P= }3‘1 op P2 where op € {D,OT, “A} :

MIPlo(A) = (M[PiJo(A)) op (M(Pylo(A))
M[Py(A)]o op M[Py(A)le _
M[Pi(A) op Py(A) Jo = M[P(A)]o.

2. P=0p(P') where op(P')=a.P' or op(P')=P'/8:

M[Plo(A) = op(M[P|o(A)) = op(M[P'(A)]c)
= M[op(P'(A))]o = M[P(A))o.

8 THE CONSISTENCY OF O(P) AND M|P) 18

3. P=fizz.P:

If the identifier z occurs free in Ay, ..., An, then ‘we can deal with
R = fiz z.P'[z/z] where z € Idf \ {z,,...,z,} is an identifier which
does not occur free in Ay,..., A, and P’. Then,

- M[P(A)lo = M[R(A)]o

and for each o0 € Ev :
M[Ple = M[R]o.

Therefore, we can assume w.0.l.g. that R = P, i.e. that z does not occur
free in Aq,..., A,. '

Casel: z¢{z),...,z,}
= P(A)= fiz z.P'(A)
Then, for all ¢ € Fnv :

M[P'(/i)]a = M[P’]o'(fi) _ (by induction hypothesis)

= . &(P'(A),0,z) = ®(P',0(A),z))
= M[P(A)le = fiz ®(P'(A),0,2) = fiz ®(P',0(A),z) =

M[Plo(A). :

Case 2: z =z, foranindex ¢ € {1,...,n}. Then, z does not occur free
in P. Wolg.z=1z,. ' g '
Then, we have : P(A) = P[A3/z,,..., Ap/2zn).
Since z = z; does not occur free in P(A4) , we get by case 1 :

M[P(A)loc = M[P43/, ..., An/2a] o
M[P[Ag/.’l.'z, v ,A,,/:c,,]]O'[M[Al]a/:q]
M[P]U[A{[Allo/z,][M[A,]a/é:,,...,M[An]a/z,.] (by case 1)
M([P]o(A). : :

Lemma 2 : :
Let P,B A,...,An € GTCSP and let zy,...,z,,y € Idf be pairwise distinct
identifiers, so that y does not occur free in Ay,..., A,. Then,

| P{Ay/zy,. .., An/zn, BIA/#]/y] = P[B/y]lA/3). .

8 THE CONSISTENCY OF O(P) AND M([P] 19

Proof:
We proof the equality by induction on the syntax of P .
We use the following notation :

5 = Q[Al/zh-'-vAn/xn>B[/a/i]/y]
and :
Q = Q[B/y][A/3)
where Q) € GTCSP.

Basis of induction : . _
1. P=stop or P=div : Then, P= P = P ,since P is closed.

2. P=z€Idf:
Case1:z=1z; foranindexie€ {1,...,n}.

= P=A; and P = P[B/y][A/Z] = P[A/] = A

Case 2 : z=y,then, P =B[A/%] and P = P[B/y][4/Z] = B[A/%).
Case 3: z¢ {y,z1,...,2,} , then F:I‘S:P=; .

Induction step :
1. P =P, op P, where opE{ Q,omla }.
= P = P,opPg = PlopPg =P

2. P = op(P,) where op(P’) =a.P' or op(P’)-P’\ﬂ

= P=0P(Px)—0P(P1)-—P1

3. P= fiz z.P' :
Case 1 : z does not occur free in A;,...,A,,B:

= P.= fizzP = fizzP' = P.
Case 2 : z occurs free in one of the terms A,,..., A, or B:

- Let w € Idf \ {y,z1.....24} be an identifier whlch does not occur free in

Ay,..., A, and B. We deﬁne

R:= fiz w.P'[w/z].

By case 1, it fblloﬁs:

8 THE CONSISTENCY OF O(P) AND M{P] 20

P arises from R by substituting each free occurence of w in P'[w/2] by z. The-
refore, P arise from R by substlt.utmg each free occurence of w in P'[w/ z)by z.

Analogous, P arises from R by substituting each free occurence of w in P’[w/z]
by z .

p—l ﬁ:}‘s

Lemma 3 :
Let P € GTCSP. Then, for all z,,...,z, € Idf pairwise distinct identifiers,
which are guarded in P , and for all A;,..., A, € GTCSP :
If P[A1/zy,...,An/2p]) = Q, then there exists P’ € GTCSP with
A P! and .
2. Pl[Al/zl,...,A"/zn] = Q .
Proof: '
Basis of induction :
" 1.P=stop: P[A/%] = stop has no derivative.

2.P=div : P[A/F] =div3 Q, thena_r , @ =div .
With P’ := div follows :
PSP, PlAJE] = Q.

3. P=z€ldf : ,
Since z; is guarded in P ,i=1,...,n, we have: z ¢ {z1,...,za}. -
= P[A/Z] = z has no derivative.

Induction step : ,
Let P[A/%] = Q. We consider only the following three cases

1. P=p.P,, then P[A/Z]=p.P|[A/3] 7
= PfA/%]=Q and a=f4, P2 P,.

2. P= P, or P, then P[A/%]= Py[A/Z] or Pz[A/-’L‘J
. = a=7 and (Q= P1[A/-’C] or@Q = P2[A/z])
wolg Q= PI[A/:L‘] Then P 3 P1

8 * THE CONSISTENCY OF O(P) AND M[P) | 21

3 P= fil' Z‘.Pl.

Case 1 : x‘¢ {z1,...,2,} and r does not occur free in Ay,..., An. Then,
P[A/Z] = fiz z.P\[A/).
We define : z,4 :=z and Anyy := fiz z.P[A/].

Then, z,,...,z,41 are pairwise distinct identifiers which are gua.rded in P,.
Since z does not occur free in A,,..., A,:

Pl Az, ..., An/%0, Ang1/Tntr]
= Pl[Al/xl) . ,Aﬂ/zn][fzzzpl[A/I]/z]
= P[A/Z] fwz-Pl[A/x]/z]

Since P[A/%] = Q

P\[A/#][fiz z.P[A/7)/z] 2 Q,

and since z does not occur free in Ay, ..., A, :

P A/z1,. .., An/Zn, Ang1/Tnt1] = Q.
_ By induction hypothesns there exists P{ € GTCSP w1th
1. P, 3 P and

2. P{[Ai/z1,...,An/2n, Ang1/Tarn] = Q.

By Lemma 2 : .
P|[fiz z.P [z |][A/3] :
= P{[Al/xlw --,Aﬂ/zn) (flz zPl)_[A/i]/z]
Pi[Ai/z1,...,An/Zn, fiz z.P[A/Z] [z]
g{[Al/l‘l,'...,An/zn,An+1/tn+1]

Since P, 5 P}, we have :
P[fiz z.P,/z] = P|[fiz z.Pl'/z] ,
~ and so
P=fizzP, & Pl fizz.P/z].
With P’:= P{[fiz z.P,/z], we have : '
P2 P and PA/E]=Q

Case 2 : z ¢ {z,,...,z,}, but there is a free occurence of z in one of the -

terms A;.

8 THE CONSISTENCY OF O(P) AND M(P) 22

Let z € Idf \ {z,21,...,2,} an identifier which does not occur free in
P,Ax,...,An. ’ '
We define B; := A;[z/z], i=1,...,n. Then,

P[A/F) = (fiz z.Pl[é/zp[z/z].
Since P[/i/i]f-»

fiz z.P,[B/%] = P[A/%)[z/z) & Qlz/z).

Since z does not occur free in By, ..., B,, we have :
fiz z.P,[B/%] = (fiz z.P,)[B/%) = P[E/i] .

It follows from case 1 that there exists P’ € GTCS P with

1. P=fizz.P, 3 P and '

2. P'[B/3] = Qlz/s].
Since P and A;,..., A, not contain a free occurence of z, the terms P’ and Q
also not contain any free occurence of z . It follows :

P'4/3) = P'[B/3][c/2) = Qlz/z)lz/z]) = Q.

Case 3 : £ =1z; foranindexi€ {1,...,n}, wlo.g. z = z;. Then,
P[“i/i] = P[Az/lz,...,An/In]

and z & {zs,...,2,}.
By cases 1 and 2, it follows that there exists a term P’ € GTCSP with
' 1. PSP and
2. P,[Ag/zz, . ,,/2,,] :
Since the identifier z = z, does not have free occurences in P the term P’
does also not contain free occurences of z = z, .
It follows :

P’[/i/i] = P'[As/zs,...,Anfzn] = Q.

8..1 Remark :
Let P,Q,A;,...,An € GTCSP and z4,...,2, E Idf be pairwise dxstmct
identifiers which are guarded in P so that P[A/::]

8 THE CONSISTENCY OF O(P) AND M[P] ’ .23

Then, by lemma 3, there exists P’ € GTCSP with
" LP3P and
2. P'[A/JZ) = @ .
It is easy to see that for all terms B,,..., B, € GTCSP :

P[B/%] & P'[B/3).

8.2 Remark :
If A€ GTCSP is closed then

M{Aloy = M[Alo; VY o,,05 € Env.

So, we can define

M[A] = M[A)e where o € Env.

Lemma 4 : .
Let P € GTCSP, o € Act, o € Env.

1.If PS5 P then M[Plo 3 M[P']o, where & =a>i‘f>a¢ T and &
denotes the empty word in Comm* if a = 1.

-2. If z;,...,z, be the pairwise distinct identifiers that are guarded in P and
roccur free in P and if o(z;) = M[A;] where A; is a closed GTCSP term,
i=1,...,n , then, for all event structures ¢’ € Ev with "‘M[Plo 5 ¢
there exists a closed term P’ € GTCSP with
1. P[Ay/zy,...,An/zn] S P' and
2. M[P'] = M[P|o =, €.

Proof : v
We will prove the statements by induction on the structure of P .

1. We assume that P = P’.
Basis of induction :
1. P = stop has no derivatives. , '
2. P=div ,then a =7 and P'=div, M[Ploc = M[P']o.
3. P=z2¢€ Idf ,then P has no derivatives. :

8 THE CONSISTENCY OF O(P) AND M[P] | 7!

Induction step :
The most interesting operator is the fiz- operator.

P = fiz z.Q, then Q[fir z.Q/z] > P'.

By Lemma 3, there exists Q° € GTCSP with Q 5 @ and
Qfiz z.Q/z]=P'. :
By induction hypothesis :

M[Qlo[Mma/;] 3 MQo[Mirlos=]

On the other side, we have :

M[Ple = fiz®(Q,0,z) = M[Q]o[M(Plo/z]

and
M[P'lc = M[Q'[fiz z.Q/zlle = M[Q'[P/z]]c = M[Q']a’[M[Plo/z]
(Lemma 1,3.). ' ' '

Then, M[P}s g M[P')o.

2. Induction step :
- Again, we only consider the fiz - operator : P = fiz z.Q .

The identifiers occuring free in Q are z;,...,z, and z . We get :

M[Ple = fiz(Q,0,2) = <§(Q,a’, z)(M[P]a'v) = M[Qlo[M{Plo/s |

and '
AM[P]U =<M[P[A1/1:1,...,An/.’tn]]
(by Lemma 1,3.).

Hence ' -
o MiPlore (5) = M[Ple = M[PLA/z]] and
o'[M(Plo/s](:.) = o(x) = M[A,'] ,i=1,...,n.

Since M[Plo = ¢,

M{Qlo[MiPloe] = €.

8 THE CONSISTENCY OF O(P) AND M|P) : 25

By induction hypothesis, there exists P’ € GTCSP with

Ql Ai/z1,...,Ap/zn, PlAJE)/z] & P and
M[P'lo[M[Po/z] =~, €. :

Since P’ is closed, we have : M[P'] = M[P'lo[M[Plo/z] = M[P']o .

Since the terms A, ... , An are closed, we get :

QUA/Z) P[A/2)/z] = Q[Ar/z1,...,An/za, PIA/E)/z).
Then : Q[A/3][fiz z.Q[A/3])/z]2 P'

We get : P[A/Z] = fiz z.Q[4/7] S P

8.3 Remark :

In Lemma 4,2., we have to deal with T-equivalence :

When P is a closed GTCSP - term and M[P] % ¢, so we cannot conclude
that there exists P’ € GTCSP with M[P}=¢ and P 5 P’ .

8.4 Example :
Let P = (a.B.stop O r.stop) \ B, then M[P]is

[o] —
and we have : M[P] % ¢ , where ¢ is

On the other side, P has only one a-derivative :

P 3 (B.stop)\ B and M| (ﬂ.stqp)\ﬂ] is given by .

9 CONCLUSION 26

Corollary :
Let R := {(P,e): P€ GTCSP,P closed, ¢ € Ev, € ~, M[P] }.
Then , R is a bisimulation between the transition systems O(P) and O(M[P]).

Proof :

Let (P,e) € R.

It is easy to see that it is enough to show that :
1. If P P’ -, then there exists ¢’ € Ev with

_ M[P]ge’ and (P',¢) € R and
2. 1f M[P] 3¢ , then there exists P' € GTCSP with
P2 P and (P,e)ER. __
1. When P 5 P’ , so we have by Lemma 4,1. : M[P]gM[P'] .

Since €=, M[P], there exists & € Evwith ¢3¢ and ¢ =~, M[P).
Then (P',€') € R.

2. When ¢ 3 ¢’ , then there exists ¢” € Ev with

M[P]ge" and £ =, "

By Lemma4,2., it is easy to show that there exists P’ € GTCSP, P’ closed, with

PA P MPix, e .
Then, M[P] ~, ¢ and (P',¢')€R.

Theorem :

For every closed P € GTCSP(i.e. every guarded process), the transition sy-

- . stems O(P) and O(M[P)) are bisimular.

9 Conclusion

We have shown that an interleaving specification of a GTCSP process P and a
noninterleaving meaning of P are 'bisimular’. One difficulty in establishing such
a result, in particular when including recursion via the fiz-operator, is, that
a compositional semantics that provides semantic operators for the syntactical
constructs, is compared with an operational semantics using a transition system.
Hence, in order to establish a relation between the two meanings of a process P

10 REFERENCES . ' 27

we may not simply perform an induction on the structure of P . In particular,

in the case of recursion, we have no operator that determines the 'meaning’ of

fiz z.Q from the ’meaning’ of @ in the transition system case.

Our proof works by obtaining information on the behaviour of a process P from

the knowledge of the behaviour of P[A/Z], see lemma 3 and lemma 4 .

The obtained theorem may be interpreted as a consistency result.

Consistency problems concerning noninterleaving and interleaving models are

also discussed in [9,18,21]. These investigations differ from the present work
_in particular in the noninterleaving model (petri nets, prime event structures)

and/or in the language studied and in the proof method.

10 References

1. J.W. de Bakker, J.I.Zucker :
Processes and the Denotational Semantics of Concurrency,
Information and Control, Vol.54, No 1/2, pp 70-120, 1982 .

2. J.A. Bergstra, J.W Klop :
Process Algebra for Synchronous Communication,
Information and Control, Vol 60 , No 1-3, pp 109 - 137, 1984 .

3. G. Boudol, I.Castellani :
On the Semantics of Concurrency : Partial Orders and Transition Systems,
Proc. TAPSOFT 87, Vol 1, Lecture Notes in Computer Science 249,
Springer - Verlag, pp 123 - 137, 1987 .

4. G. Boudol, I.Castellani :
Permutation of transitions : An event structure semantics for CCS and
SCCS,
Proc. School/Workshop on Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency ,

Lecture Notes in Computer Science 354 , Springer - Verlag, pp 411-427,
1989 .

5. S.D. Brookes :
A Model for Communicating Sequential Processes,
report CMU-CS 83-149, Carnegie-Mellon University, January 1983 .

6. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe :
A Theory of Communicating Sequential Processes, °
Journal ACM, Vol. 31, No. 3, July 1984 .

7. S.D. Brookes, A.-W. Roscoe :) :
An improved Failure Model for Communicating Processes,
Seminar on Concurrency, Lecture Notes in Computer Science 197, Sprin-
ger - Verlag, 1985 .

10 REFERENCES 28

8.

10.

11.

12.

13.
14.

15.

16.

17.

P.Degano, R.De Nicola, U. Montanari :

A Distributed Operational Semantics for CCS Based on Condition/ Event
Systems, '

Acta Informatica 26 , pp 59 - 91, 1988 .

P.Degano, R.De Nicola, U. Montanari :
On the Consistency of "Truly Concurrent’ Operational and Denotational
Semantics,

Proc. Symposiumon Logic in Computer Scxence Edinburgh, pp 133 - 141,
1988 .

U. Goltz :

On Representing CCS Programs as Finite Petri Nets,
Proc.MFCS 88, Lecture Notes in Computer Science 324, Sprmger—Verlag,
pp 339 - 350, 1988.

U. Goltz, R. Loogan :
Modelling Nondeterministic Concurrent Processes with Event Structures,

 Fundamentae Informaticae, Vol.14, No.1, pp 39 - 73 , 1991.

U. Goltz, A. Mycroft : .

On the Relationship of CCS and Petri Nets,

Proc. ICALP 84, Lecture Notes in Computer Sc1ence 172, Springer -
Verlag , 1984 .

C.A.R. Hoare :
Communication Sequential Processes,

Prentice Hall, 1985 .

R. Milner :
A Calculus of Communication Systems,
Lecture Notes in Computer Science 92, Springer - Verlag, 1980 .

R. Milner :

Lectures on a Calculus of Communicat.ing Systems,

Seminar on Concurrency, Lecture Notes in Computer Science 197, Sprm-
ger - Verlag, 1985 .

M. Nielsen, G. Plotkin , G. Winskel :
Petri - Nets, Event Structures and Domains ,
Theoretical Computer Science, Vol. 13, No. 1, pp 85 - 108, 1981 .

ER. Olderog :
TCSP : Theory of Commumca.tmg Sequential Processes ,
Advances in Petri - Nets 1986 ,)

Lecture Notes in Computer Scnence 255 , Springer - Verlag pp 441 - 465,
1987 .

10 REFERENCES ' 29

18.

19.

-20.

21.

22.

23.

24.

25.

E.R. Olderog :

Operational Petri - Net Semantics for CCSP,

Advances in Petri - Nets 1987 ,

Lecture Notes in Computer Science 266, Springer - Verlag, pp 196 - 223 ,
1987 .

E.R. Olderog, C.A.R. Hoare :
Specification - oriented semantics for communicating processes ,
Acta Informatica 23 , pp 9 - 66 , 1986 .

G.D. Plotkin :

An Operational Semantics for CSP ,

Formal Descnptlon of Programmmg Concepts II, North Holland, pp 199 - 225,
1983 .

W. Reisig :

Partial Order Semantics versus Interleaving Semantics for CSP - like lan-
guages and its Impact on Fairness,

Proc. ICALP 84, Lecture Notes in Computer Science 172, Springer -
Verlag, pp 403 - 413, 1984 .

D. Taubner, W. Vogler :

The Step Failure Semantics,

Proc. STACS 87, Lecture Notes in Computer Science 247, Springer -
Verlag, pp 348 - 359, 1987 .

G. Winskel :
Events in Computation ,
Ph.D.Thesis, University of Edinburgh, report CST-10-80, December 1980 .

G. Winskel :

Event Structure Semantics for CCS and Related Languages,

Proc. ICALP 82, Lecture Notes in Computer Science 140, Springer -
Verlag, pp 561 - 576, 1982 . Theoretical Computer Science, May 1985 .

G. Winskel :

Event Structures,

Petri - Nets : Applications and Relationships to Other Models of Concur-
rency,

Lecture Notes in Computer Science 255, Spnnger - Verlag, pp 325 - 392,
1987 .

