]

i

Reihe Informatik
3/92

A definition of redundancy in relational databases

Mila E. Majster-Cederbaum
Peter Peters
Fakultat fur Mathematik und Informatik
Universitat Mannheim
Seminargebaude A5
6800 Mannheim 1

Mai 1992

RO ¥ TN

ey

A b oa ¥

0. Introduction

The relational data model as proposed by Codd is a well-established method for data abstraction. Two
essential aspects in this model are the definition of the data structure via the relation scheme and the
data semantics via data dependencies. Various classes of data dependencies have been studied in the
past {5, 6, 7, 8, 9, 13, 15]. In the presence of data dependencies “update dependencies” (or anomalies)
and “redundancy” may occur as first observed by Codd in [5, 6]. Normal forms have been proposed
as a means to control update anomalies and redundancy [6, 14]. But as the notion of redundancy has
never been formally defined, one cannot make any precise statement concerning the presence or absence
of redundancy for a given design.

i
3
N
]

In this paper we attempt to provide a formal definition of the notion of redundancy for the case of a single
b relation respectively relation scheme. We first give a static semantic definition of redundancy and then
present an operational analogue. Intuitively speaking a relation r contains redundancy, if some “part” of
the information given in r can be “determined” from the “rest” of r. And a relation scheme with a given
set of data dependencies admits redundancy if there is a relation belonging to this scheme that contains
redundancy.

The paper is organized in six sections. Section 1 contains the definition of the relational model that we
use. We make use of partial “relations” that are built from constants and variables. In section 2 we’
present the semantic definition of redundancy. Section 3 introduces a class of data dependencies, i.e.
implicational dependencies and a chase procedure for partial relations. Section 4 gives an operational
characterization of redundancy. The main theorem in this section is theorem 4.3. It states that a relation
r in a class of relations sat(D) contains redundancy if there exists a partial relation ¢ that “contains
less information” than r and for which chasep(g) =r, i.e. the missing information can be “derived”. In
section 5 we treat the special cases of functional dependencies and multivalued dependencies. It is shown
that in the case of functional dependencies BCNF is a necessary and sufficient condition for a relation
scheme not to admit redundancy. The analogous result is established for 4NF in the case of multivalued
dependencies. In section 6 we discuss some aspects of the case where a set of relation schemes instead of
a single relation scheme is considered. ‘

.

1. The relational model

In contrast to the original relational model we allow the use of variables in relations.

Definition 1.1: A relation scheme is given by its name R, a set of n attributes {A,,..., An} called
the universe of R and a set of m (m < n) domain symbols {Dy, ..., Dy} which are related to attributes
by a mapping

domsym : {A1,...,An} — {D1,...,Dm}.
"The type of a relation scheme is given by an expression
' R(A:|Di,, ..., AnlDy,),

where D;; = domsym(A;) (j = 1,...,n). n is called the degree of the relation scheme.
R(A1|D;,, ..., An|D;,) is often abbreviated by R(Ay, ..., An) or R. We also write attr(R) = {A1,..., An}
and deg(R) = 1. R is said to be of discrete type if

" domsym(A) # domsym(B) for all A, B € attr(R) with A # B.

For every domain symbol D a set of constants dom(D) and a set of variables var(D), both countable
- infinite and with dom(D) N var(D) = @, are given. We demand that dom(D;) N dom(D2) = 0 and
var(Dy) Nvar(D;) = @ for any two domain symbols Dy, D, of R.
For every domain symbol D we define a mapping

ord : var(D) Udom(D) — INg

that maps each variable to its indezx in IV and each constant to zero. We request that no two variables
in D obtain the same index.
For convenience we introduce the following notations :
For A € attr(R) we will use the notations dom(A), var(A) as well as dom(R), var(R) in the obvious way.

Similarly, for z € var(R) U dom(R) we want to use domsym(z) and attr(z), where in the non discrete
case we get

attr(z) = {A € attr(R); domsym(z) = domsym(A)},

while attr(z) consists of a single attribute in the discrete case.

Definition 1.2: For a relation scheme R(Aj, ..., A,) of degree n we define a partial tuple t as a
mapping
t : attr(R) — dom{R) U var(R),
where t(A4) € dom(A) Uvar(A) for each A € attr(R).

Sometimes we write t(ai,...,a,) or just (ai,...,a,) where a; = #(4;) fori=1,...,n.
def(t) is the set of all attributes 4 in R for which ¢(4) is a constant and

var(t) = t(attr(R)\ def(t))
dom(t) t(def(t))

A partial tuple for R is called a tuple for R if ¢ does not contain any variables.
Finally the set of all partial tuples for R is given by tup(R).

Definition 1.3: Let R be a relation scheme. A partial relation r for R is a finite set of partial
tuples for R. var(r)is the set of all variables of r and dom(r) is the set of all constants of r.
A partial relation for R is a relation for R if it does not contain any variables.
The set of all partial relations for R is denoted by rel(R).

Partial relations are used in [10] for handling the problem of null values.

Definition 1.4: Let R be a relation scheme. A mapping
_ d : var(R) U dom(R) — var(R) U dom(R),
where d(var(A)) C var(A) U dom(A) and d| dom(R) = id is called a domain mapping for R.
The set of all domain mappings for R is denoted by DOM (R). ‘

Definition 1.5: Let R be a relation scheme and d € DOM(R). Furthermore let [C var(R) x
(var(R) U dom(R)) such that
) (z,e)eI: = domsym(z) = domsym(c)
i) (z,c1) € Land (z,c2) €1 = ¢y =c3.
We then define

v if (z,y) €1
di(z)= { d(z) otherwise

In case I = {(z,c)} we write d(;,) for d;.

Definition 1.6: Let R be a relation scheme, t € tup(R) and d € DOM(R). We define a substitution
of t by d by ’

Ct{d)=dot.
A substitution for a partial relation r € rel(R) by d is given by
r{d) = {t(d);t € r}.
Obviously r(f o g) = r{g}{f) holds for arbitrary f,¢9 € DOM(R) and r € rel(R).

Definition 1.7: Let R be a relation scheme, u, v € tup(R) and q,r € rel(R).
We say, u subsumes v, if there exists a domain mapping d € DOM(R) such that u = v(d). Then we
write u >4 v or just u > v. If u > v holds but not v > u, we write u > v. '
Similarly, for partial relations we say, r subsumes g, if there exists a domain mapping d € DOM(R) such

3
3
:
€
3
3
1
‘1
1

B Y

that r D g(d). We write as before r >4 ¢ or just r > ¢. If ¢ >, r for e € DOM(R) holds in addition we
say that ¢ and r are equivalent and write ¢ =r. In the case r > g and r Z# ¢ we write r > g.

The term subsumes appears first in [10], where it is introduced in the context of partial relations with
unmarked null values. |

Theorem 1.1: Let R be a relation scheme. The subsumption > is a partial ordering and = is an
equivalence relation on rel(R).

Proof: The proof is a straight forward argument using the properties of C and the fact that
r{f){g) = r{g o f) for all partial relations r € rel(R) and g, f € DOM(R).O

Definition 1.8: Let R be a relation scheme and ¢ € rel(R). By
comp(q) = {r € rel(R);r is a relation and r > ¢}
we denote the set of all completions of ¢ in rel(R).
Theorem 1.2: Let R be a relation scheme. For ,r3 € rel(R)
comp(ry) C comp(rsg) iff ry > rs.

Proof:
1) Let comp(r1) C comp(rs).
If r; is a relation then 7y € comp(r;) and therefore r; € comp(rsy). thus ry > rs.
If 7) contains variables then let var(r1) = {z1,...,z;}. Weselect aset {c1,...,cx} C dom(R) of k distinct
constants that is disjoint to either of dorn(ry) and dom(r;) and satisfies domsym(c;) = domsym(z;).
We set

I={(zi,ci);1 < i<k}
and get
r1(2dr) € comp(r1) C comp(rs).

Thus there exists e € DOM(R) with ry(id) 2 ra(e).
Finally we define d € DOM(R) by

d(:c):{ e(z) ife(z) & {e,. .}

z; ife(z) =¢,1<i<k

and.get r1 D ra(d), thus ry > ry.
ii) Let 71 > ry, then there exists d € DOM (R) with r; D ry(d). For each r € comp(r,) there is'a mapping
e € DOM(R) with r 2 ri{e). Thus we obtain

rie) 2 r2(d)(e) 2 rz(e o d)
and so r D ro{e o d) hence r € comp(ry) holds.O

2. A semantic definition of redundancy

Intuitively some information is redundant if it is somehow represented in more than one way in our system.
Hence we might drop parts of our description while still being able to obtain the same information as
before.

Definition 2.1: Let R be a relation scheme and sat C rel(R) a set of so called valid relations and
r € rel(R) a partial relation, then

comp,ac(r) = comp(r) N sat

is the set of all valid completions of r.

Definition 2.2: Let R be a relation scheme and sat C rel(R) a set of valid relations. The set
of all partial relations that are consistent with sat is denoted by

*

relsai(R) = {r;r € rel(R) and comp,q:(r) # 0}.

Definition 2.3: Let R be a relation scheme and sat C rel(R) a set of relations. If r € rel(R) is a
partial relation then the set of all minimal valid completions is denoted by '

minga(r) = {q € comp,ai(r); § € compsai(r) and § C q implies § = g}.

Lemma 2.1: Let R be a relation scheme, sat C rel(R) a set of relations and ¢1,¢2 € relyq:(R)
partial relations. Then

) Compsat(‘h) = Compsat(q2)
holds iff

min, g (Q1) = Minyqa (q2)

Proof: i) Let comp,q:(q1) = compsai(g2) and choose
r € mingai(q1) C compsar(q1) = compsai(q2).

For each

5 € compsa(ge) with s Cr
we get

s € compsar(q1)

and therefore s = r, because r € mingq(¢q1). Thus

minga(q1) C minsai(g2)-

11) Let min,q:(q1) = min,q:(g2) and s € comp,q:(q1). Since s is finite » € min,,:(q1) exists with » C s.
Clearly, s € sat and r € mingq(q2). Therefore g2 < r < s holds and finally s € comp,4:(¢2). Thus
comp,at(q1) € compyai(g2) holds. O

Lemma 2.2: Let R be a relation scheme, sat C rel(R) a set of relations and ¢ € relyq;(R) a partial
relation. If ming,.{q) consists of a single relation then

mingae(q) = [)(r;r € comp,ai(q)) € sat
omitting parentheses.

Proof: v
1) Because min,q(q) consists of a single relation, each completion in comp,q:(q), including min,qi(q), is
a superset of min,g(g). Therefore »

min,q(q) = N(r; 7 € compsai(q)).-
i) By definition min,..(q) € comp,ai(q), thus min,q:(q) € sat. O

Definition 2.4: Let R be a relation scheme and sat C rel(R) a set of relations. Furthermore let
r € sat be a relation. Then r contains redundancy wrt. sai, if there exists a partial relation ¢ with

> q, |r| 2 |g| and compai(r) = compsa(9)-

Lemma 2.3: Let R be a relation scheme and sat C rel(R) a set of relations.” Furthermore let
r € sat be a relation. Then r contains redundancy wrt. sat, if there exists a partial relation g with

r>q, |r| > |q| and r = minga(g).

3. Implicational dependencies and the chase

In the previous section we used a set sat to describe the set of those relations which we want to consider
valid in a given situation. Using sat we gave a semantic, i.e. static, definition of redundancy. We are now

. N s ""‘. B TP
RO YRR AU YR SR SV O -~ ¥ VMO Y S, 4

P, SR

looking for an operational, i.e. algorithmic counterpa.ft. For this we have to give some more information
about how such a set sat might look like. We use implicational dependencies as introduced in {2, 4, 9],
to characterize sets of valid relations.

Implicational dependencies (ID) fall into two classes, the class of equality generating dependencies
(EGDs) and the class of total tuple generating dependencxes (TTGDs). EGDs are generahzatlons of
FDs and TTGDs are generalizations of MVDs.

Definition 3.1: Let R be a relation scheme of discrete type.
An EGD is an expression of the form {(a/b); U) where U € rel(R) with dom(U) = 0 and a,b € var(U
A TTGD is an expression of the form (v;U) where U € rel(R) with dor(U) = 0 and v € tup(R) with
var(v) C var(U) and def(v) = 0. =
Henceforth we assume that for every TTGD we have ord(v(A)) < ord(z) for all.z € var(A) and for all
A € attr(R). In a similar way we demand for all EGDs that ord(a) < ord(b) and ord(a) < ord(z) for all
z € var(attr(a)) holds.

Example 3.1: For R(A, B,C) the FD AB — C and the MVD B —— C are given.
AB — (C is the EGD ((Cl/CQ), {(AI, Bl,Cl),(Al,Bl,Cz)}) and B —— (C is the TTGD
((Al,Bl,Cl);{(Al,Bl,CZ),(Az,Bl,Cl)}). ' . ‘

A B (C A B C
A B Gy Ay By G
Ay By G, Ay By C

Cl = Cz Al Bl C'1

EGD and TTGD as tables

Definition 3.2: Let R be a relation scheme of discrete type and D a set of [Ds for R. A relation
r for R is valid for D if for all IDs F in D the following holds:

(1) If F = {(v;U)} is a TTGD then for each d € DOM(R) with U(d) C r, v(d) € r holds.
(2) If F = {(a/b);U) is a EGD then for each d € DOM(R) with U(d) C r, d(a) = d(b) holds.

The set of all valid relations for D is denoted by sat(D). rel,ayp)(R) is defined as in Definition 2.2.

In [4] a decision procedure for the implication problem of IDs, the chase is given, using so-called £G D~
and TTG D-rules. Our rules differ from those in [4] as we also have to deal with constant values.

Definition 3.3: Let R be a relation scheme of discrete type. We introduce a relation = that is not
yet in rel{R). The relation Z has the role of an error relation. This error relation is the result of the
chase if an EG D-rule fails.

- Let » € rel(R) be a partial relation. ,
EGD-rules : If we have the EGD {(a/b);U) and d € DOM(R) so that U{d) C r holds we change r to
r’, where

(1) if d(a),d(b) € var(R) then
7'<id(d(a),d(b))> , ord(d(a)) > ord(d(b))
r(idgage),aay)) » ord(d(a)) < ord(d(b)),
(2) if d(a) € domn(R), d(b) € var(R) then
r' = r(id(aes),d(a)), .
(3) if d(b) € dom(R), d(a) € var(R?) then
r' = r(id(a(a),d(s)))
(4) if d(a), d(b) € dom(R) then
, d(a) = d(b)
, d(a) # d(b).

=

=

(1] 3

In this case we write ((a/b);U),: r — r’ , which means that we transform r to r’ under ((a/b);U)
with d by applying an EGD-rule. ' :
TTGD-rules : If we have a TTGD (v;U) and d € DOM(R), so that U(d) C r holds, we change r to r/
where v = r U {v(d)}.

In this case we write (v;U),;:r — ' , which means that we transform r to ' under (v;U) with d by
applying a TTG D-rule. '

Definition 3.4: Let R be a relation scheme of discrete type and D a set of I Ds for R. Furthermore
let r € rel(R) be a partial relation.
A generating sequence for r under D is a sequence rg, 7y, ..., ,, ... of partial relations, where r = ry and
every partial relation r;4+; with 0 < i is generated by applying an EGD- resp. a TTG D-rule to ;. Only
IDs from D are used. Furthermore we demand that r; # r;4y,2=0,1,....
If a generating sequence has a last element r,, i.e. no further EGD- resp. TTG D-rules can be applied,
then rj is called a chase of r under D. chasep(r) denotes the set of all last elements of r under D. '

Lemma 3.1: Let R be a relation scheme of discrete type and D a set of IDs for R. The chase

procedure terminates and for every partial relation r there exists a global upper bound for the length of :

all generating sequences of r under D.

Proof: Since a partial relation is finite it contains only a finite set of variables and constants. EGD-
and TTGD-rules can produce only a finite number of different partial relations, because these rules do
not create new constants or variables.

If in each generating sequence no partial relation occurs more than once, termination of the chase proce-
dure is proved. A global upper bound is the number of all different partial relations which may originate
from r by applying EGD- and TTG D-rules. We have to show that no partial relation occurs more than
once.

Let r;, r; be partial relations of some generating sequence for r where 7 < j.

If somewhere in r;,...,r; an EGD-rule is used then r; contains a variable that does not belong to r;,
thus r; # r;. .
If somewhere in ry,...,r; a TTGD-rule is used, either r; consists of more tuples than r; or after the

application of this TT'G D-rule a following E£G D-rule reduces the number of tuples to that of r; and our
previous argument applies. O

4. Some properties of the chase and
an operational characterization of redundancy

For the rest of the paper we will write minp(r) for min,q(p)(r) and compp(r) for comp,qy(p)(r) for a
set D of implicational dependencies.

Definition 4.1: Let R be a relation scheme of discrete type and D a set of IDs for R. The set of
all partial relations which are not affected by the applications of the chase is given by '

sat*(D) = {r € rel(R);chasep(r) = {r}}.

Definition 4.2: Let R be a relation scheme of discrete type and D a set of IDs for R. The set of
all partial relations for which the chase does not fail is given by

.relD(R) ={rerelR);E ¢ chasepl(r)}.

Lemma 4.1: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore
let » € relp(R). Then chasep(r) C sat*(D).

Proof: Because each partial relation r* € chasep(r) is a last element of some generating sequence

for r under D, by construction, no EGD-, resp. TTG D-rule is applicable to r*. Thus chasep(r*) = {r"}
and therefore r* € sat*(D). O

Lemma 4.2: Let R be a relation scheme of discrete type and D a set of IDs for R. Then

(1) sat(D) C sat*(D) C relp(R) and
(2) sat(D) = {r € sat*(D);r is a relation }.

Proof: The two statements follow directly from the definition of sat(D), sat*(D) resp. relp(R). O

Lemma 4.3: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore,
let r € sat*(D). If there is e in DOM(R) such that

(1) e{var(r)) C dom(R) \ dom(r) and
(2) e Ivar(r) is injective,

then r(e) € sat(D).

Proof: Because of the choice of e, r(e) is a non partial version of r. O

Theorem 4.1: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore
let r € relp(R) and 7 € chasep(r). Then there is a unique d(p 7 € DOM(R) satisfying

(1) r<d(D|".")) g F!
(2) var(r{d(p,rm)) = var(7),

(3) d(D r,F) iuar(R)\uar(r) id and

(4) d(D,r,r) - d(Dy"rr)

Here d(p) depends on r, 7 and on D. In addition, ord(d(p,r~(z)) < ord(z) holds for every z € var(R).

. iTn—1 — n =7 be a generating sequence for r. We
prove the assertion by induction on the length of the generating sequence.
Let n = 0. Under the assumption that d(p .) exists we first show that d(p r) is unique. We have r = 7,
thus

Proof: Let Flh i —ry,.. L B

’l)a'I‘(T(d(D,r,F))) = var(F) = var(r).
. Therefore d(p) is a one-to-one mapping from var(r) to var(r). Because of the conditon d(zD’”.) =
d(p r 7 we have _
if y = d(p,, 7 (z) then d(D,r,F)(y) = d?o,_;)(z) =d(prr)z) =
Consequently, d(p ,) is the identity. Obviously the mapping d(p,r7) = id satisfies all conditions.
Now let r € relp(R) be a partial relation with a generating sequence of length n resulting in 7 €
chasep(r). Consequently, the partial relation r; has a generating sequence of length n — 1 resulting in
71 = 7. By assumption, there is a mapping d(p r,) satisfying the propertles of the theorem We first

prove uniqueness under the assumption that d(p ,) exists.
If £ = (v;U) is a TTGD, then

U{fiCrandr; =rU{v(fi)}
holds. Thus we have .
U{dp,rsyo i) = U(AYdw,rm) Cr{dp,rmy) CF
and due to 7 € sat*(D) v
v(f/1){d(p 7)) €T

This means

s T 2 e e e Rt e B o —— . e JSUUS — - DO, . e =
. R) a T . - . .

ri{dp,rr) C T,
thus #(d(p r7) C r1{d(p,r7) C 7 = 1. From this we get

-5
<4
‘3
]
N
B
-%
4
i
{

.

ri{d(p,r,7) C 71 and var(ri(dp rm)) = var(f).
As var(r) = var(r,) we get ’
d(D:"»F) lvar(R)\var(_r‘) = d(Dr"v'T) Ivar(n)\uar(r) =id
and by assumption d?, vy = 4D
d(p rr) fulfills all properties of d(p,r, 7,) ,» but d(p r, 7,) is unique among all mappings with these prop-
erties. We have shown that d(p 7 = d(p r,) holds, and by that the uniqueness of d(p s follows from
. the uniqueness of d(p r, 7,) - '
If F1 = {(a/b);U) is an EGD, then

U(fi)Crandr = r(id(x,y))

where

(f1(a), f1(d)), f1(b) € dom(R) or
(z,y) = f1(b) € var(R) and ord(fi(a)) > ord(f1(b))
(f1(b), fi(a)), otherwise

Because of r(d(p)} C 7, it follows
U{dprr o fr) CUANdDr7) Cr{dprm) C©F
and due to 7 € sat*(D) we have
d(pr7)(z) = d(p.r.1)(¥)-
From z ¢ var(F) and d = d(D,r,F)(x 5 We conclude d(p r 7 = d o id(;). Now we have
, ri(d) = r{idz y)){d) = r{d(prr)) C F =71
This yields var(r;(d)) = var(7;) and ri(d) C 7,. Furthermore we know
d*(z) = 2y, (2) = d(prr)(2) = d(2) for z £ 2
and : . _
d*(z) = z = d(z).
Finally we have
) d I uar(R)\uar(rlj =1d
because of
var(r,) = var(r) \ {z} and d(z) = z.

As before, d fulfills all properties of d(p r, 7). We know that d(p ,) is unique hence d = d(p r,)
Thus d(p r 7 = d(D r,,7) 0 ¥d(z,y) is unique. It is easy to see that d(p r) fulfills the demanded properties.
- Finally we can conclude from the choice of (z,y) that the additional property holds. O

Lemma 4.4: Let R be a relation scheme of discrete type and D a set of IDs for R. If
r € rel(R), r* € sat*(D) and d € DOM(R)
such that

then for every TTG D- and EG D-rule

we have

and additionally

If Fisan EGD and # = r(id(,’;)) it follows that d(z) = d(y).
Proof: If F = (v;U) isa TTGD we have
(;U); :r — 7
and hence
U(f) Crand?=ruU{v(f)}
Thus we get
U{do f) = U(f){d) C r(d).

In addition

#d) = (rU{o(A})(d) = r(d) U {v{do f}}.
This yields

Faoy : v{d) — #(d) and r(d) C #{d) C r*

because of

r* € sat* (D).
If F = {(a/b);U) we have '
((a/b);U), :7 — 7
and hence _ »
U(f) Cr and # = r(id(s y))

where

(f(a), (b)), f(b) € dom(R) or
(z,y) = f(b) € var(R) and ord(f(a)) > ord(f(b)) .
(f(b), f(a)), otherwise

As

Uldo f) = U(f)(d) C r(d) C r* € sat* (D)
we get
d(z) = d(y)-
We may write
doidiry) =d=1idod=1ids)dy)°d
and get
Md) = r(idz) (d) = r{d o id(z,y)) = r{ida(z),a(y)) ©)
= r{d){id(az),a(y)) = 7(d)-
This means v
((a/b); U) 4oy : r(d) — #(d) and r{d) = #(d) C r*.00
Lemma 4.5: Let R be a relation scheme of discrete type and D a set of IDs for R. If
r € relp(R), r* € sat*(D) and 7 € chasep(r).
and
d € DOM(R) with r{d) C r*
then
r{d) C 7{d) C r*.

Proof: The proof is a simple induction on the length of generating sequences using the previous
lemma. O

Corollary: Let R be a relation schemne of discrete type and D a set of IDs for R. If

10

gerel(R),re€relp(R)and ¢ < r
then
q € relp(R).

Proof: We must show that = ¢ chasep(q). Let § € chasep(q). We know from r € relp(R) that
' chasep(r) C sat*(D).
We choose _
7 € chasep (r) with 7 € sat*(D).
We also know that a d € DOM(R) exists with
r{d) C .
From ¢ < r it follows that a mapping d € DOM (R) exists with
gd)cr

~

and so
g(dod) C 7 € sat*(D).
From Lemma 4.5 we get
gdod)C 7
Thus,
g € sat*(D) and E ¢ chasep(q)
because ¢ was arbitrarily choosen. O

The following theorem states that if we work with IDs then the chase consists only of a single partial
relation, in each case where the partial relation is consistent with the given IDs, and is the special
relation =, otherwise. Similar results are usua.lly proved via the Church Rosser property. ‘Here we give
an alternative proof.

Theorem 4.2: Let R be a relation scheme of discrete type and D a set of IDs for R. For
every partial relation r € rel(R), chasep(r) is a smgleton set, say {7}. Thus only one d(p,) exists if
r € relp(R).

(Henceforth we write chasep(r) = 7 for chaseD(r) = {7} and d(D ry for dip rry.)

Proof: _
First let » € rel(R) \ relp(R). Assume there is
7 € chasep(r) with 7 # =.
It follows that
r <7 and 7 € relp(R).
As '
r € relp(R),

we obtain a contradicton. ‘
Now let r € relp(R) and choose 7,7y € chasep(r). Then

d(Dr.r), d(D 1,7y € DOM(R)
exist by Theorem 4.1. We have

r{d(p.rr)y) C 71 and r{d(p,rr)) C 72
From Lemma 4.5 we conclude

r{d(pry) € F2{dprry) CF

and

r{d(p r72)) C F1{d(D rrs)) C T

it e i

EE T TR

Because of the properties of J(D,,,,—x) and d—(D,r,Fg) we have

var(r(J(D,,,,vl))) = var(f'g((f(p,r,ﬁ))) = var(F;)

and _
var(r{d(p 7)) = var(F1(d(p,r.7))) = var(s)
thus
var(fy) = var(fa{dp,rr))) = var(F1{d(p re)) (d(D r71)))
= uar(r‘-l <d(D,r,ﬁ) [} d(D,r,F,)))-
Therefore

d(D,r,Fl) [} d(D,r,Fa) l var(f)
is bijective and so
d(Dr'n’Tﬂ) luar(ﬁ)'
Now we conclude
17F1{d(D,rma)) = |1
and in a similar way

|72(d(p,r,m))| = [Fal-
This leads to '
1] = 1P {d(D rea))| < 172l = [Fa{d(D e r))| < IF1]
thus '
|71] = |72
and we get

fo{d(p r.r)) = 71 and F1{d(p rr)) = T2
71 = T(d(p,rr)) = FU{d(D,rr))(d(D 7)) = Fl(&(Dfr,Fl) o d(D r,52))-
For d(p r,) and d(p r,7) we have from Theorem 4.1
ord(d¢p r7)(2)) < ord(z) and ord(d(p r r,)(z) < ord(z)
for all z € var(R). Thus
‘ d0,r2) | yar(ry) = 14
and hence

1 = 72.0

Lemma 4.6: Let R be a relation scheme of discrete type and D a set of IDs for R. If
r € rel(R), r* € sat*(D) and d € DOM(R)
such that
r{d) C r*
then '
r{d) C chasep(r){d) C chasep(r{d)) C r*.

Proof: Because of r(d) C r* it follows from Lemma 4.5 that
r{d) C chasep(r{d)) C r*
holds and also from Lemma 4.5 we conclude

r(d) C chasep(r)(d) C chasep(r{d))

chasep(r{d)) € sat*(D).0

11

]
1

12

Corollﬁy: Let R be a relation scheme of discrete type and D a set of 1Ds for R. Let
r1,72 € relp(R) and r; < 7y
then
chasep(r1) < chasep(ra)
holds. |

Lemma 4.7: Let R be a relation scheme of discrete type and D a set of I Ds for R.
relp(R) = relyqp)(R)

Proof: If r € relp(R), we have
chasep(r) = r* # Z and r* € sat*(D).
From Lemma 4.3 we know that there exists a mapping e € DOM(R) with
r*(e) € sat(D).

As .
r{eodipry) =r{dpr)le) Cr*(e)
we have
r*(e) € compp(r)
hence

r € relyqpy(R).
If » € relyayp)(R), then '

compp(r) # 0.

Thus there is a relation r* € sat(D) with
| r<rh.
From r* € sat(D) it follows that _
' r* € relp(R)

and therefore by the corollary of Lemma 4.5
| r € relp(R).0

Lemma 4.8: Let R be a relation scheme of discrete type and D a set of [Ds for R. If r € relp(R)
then

(1) compp(r) = compp(chasep(r))
(2) chasep(r) = chasep(r{d(p,r)))-

Proof:

1. (a) Because of r < chasep(r) we conclude by Theorem 1.2 that comp(r) 2 comp(chasep(r)) and
therefore compp(r)} D compp(chasep(r)). _
(b) For each 7 € compp(r) C sat(D) C sat*(D), r(d) C 7 for some d € DOM(R) holds. By
Lemma 4.6 it follows that chasep(r){d) C 7 and therefore 7 € compp(chasep(r)).

)
S
i

2. Because of r{d(p,r)) C chasep(r) and chasep(r) € sat*(D) we conclude by Lemma 4.6 that

r(dp,r)) C chasep(r){d(p r))
: C chasep(r{d(p,r)))
C chasep(r).

Since

var(r(d(p r))) = var(chasep(r))
and

var(chasep(r)) = var(chasep (r){d(p r)))

we get'

chasep(r) = chasep(r){d(p r)),
and finally

chasep(r) = chasep(r{d(p,))
holds.O

We are now ready to state our first main theorem. It provides an operational characterization of redun-
dancy.

Theorem 4.3: Let R be a relation scheme of discrete type and D a set of IDs for R. A relat.lon
r € sat(D) contains redundancy wrt. D iff a partial relation ¢ exists with

g <, |g| <|r|l and chasep(q) =r.

Proof:
i) Let r € sat(D) contain redundancy wrt. D. Hence there exists a partial relation ¢ € relp(R) with

g <r, g <|r| and minp(q) =r.

We prove that chasep(gq) = r holds. Let ¢* = chasep(q).
We know from Lemma 4.8 that

compp(q) = compp(q*). _
Moreover we know that -
r = minp(q) is minimal in compp (¢)
and hence r is minimal in compp(g*). Now we choose e € DOM(R) with
e(var(q*)) C dom(R) \ dom(r)

and ‘
' e |uar(q,) is injective.
Then ¢*(e) € sat(D) holds and so ,

q*(e) € compp(g*).
Since r is minimal we get

‘ r C q* (e}

and because of our choice of e it follows that

r C ¢* = chasep(q).
Since ¢ < r we also have

chasep(q) < r.

Hence

chasep(q)Er.

- ii) Let chasep(q) = r for some partial relation g € relp(R), r € sat(D) where ¢ < r and |q| < |r|. Then

14

. compp(chasep(q)) = compp(q) = compp(r)
by Lemma 4.8 and therefore we get
minp{chasep(q)) = minp(q) = minp(r)=r

hence r is a relation in sat(D). O

Lemma 4.9: Let R be a relation scheme of discrete type and D a set of I1Ds for R. Furthermore,
let r € relp(R) a partial relation, r* = chasep(r) and e € DOM(R) a mapping with

(1) e(var(r*)) C dom(R) \ dom(r*),
(2) e var(r) is injective and ' o
= 1id. r ' ' B

(3) € ' var{R)\var(r*)

PRTEY S

Then
chasep(r){e) = chasep(r(e)) € sat(D).

Proof: i
i) r{d(p,r)) € chasep(r) by Theorem 4.1 and therefore - :

r{eodp,)) = r{dwp,r) (e} C chasep(r){e).
Because of e o d(p) = e od(p r)oe it follows that

[T TRETS, T RS N A

SR

r{e)(eodpr) =r{eodpryoe) =r{eodpp,y) =r(dp,r)e)
C chasep(r{d(p,r)){e) = chasep(r)(e)
by Lemma 4.6.
This yields r{e) € relp(R), thus chasep(r) # E.
ii) Since r(e) € relp(R), d(p,r(e}) € DOM(R) exists and r{e)(d(p r(e))) C chasep(r(e})). By Lemma 4.6
we get

B e e e

r(e){d(D,r(e))) C chasep(r)(e){d(p r(e))) = chasep(r)(e)
C chasep(r{e)),

it P~ €

hence var(chasep(r)(e)) = 0.
This implies chasep(r){e) C chasep(r{e)).
iii) As shown in ii),
r{e}{d(D r(e})) - chasep(r)(e)
holds. A further application of Lemma 4.6 leads to
r(e)(d(D,,(e))) - C chasep(r(e))(d(p,,(e)))

C chasep(r{e){dD r(ep))
C chasep(r){e),

sl . e

thus chasep(r(e)) C chasep(r)(e). O

Definition 4.3: Let R be a relation scheme of discrete type and D a set of IDs for B. D
admits (resp. does not admit) redundancy if there exists (resp. does not exist) r € sat(D) that contains
redundancy.

Theorem 4.4: Let R be a relation scheme of discrete type and D a set of IDs for R. D admits
redundancy, iff there exists a partial relation ¢ € relp(R) \ sat*(D) with

lg| < |chasep(g)i-

~ Proof:
i) Let D admit redundancy.
Then there exist a relation r € sat(D) and a partial relation ¢ € relp(R) with

g <, lgl <|r| and chasep(g) =r.

. Since g<r and chasep(q) = r we have ¢ # chasep(q) thus
_ q € relp(R) \ sat* (D). ;
Because of chasep(q) = r and r € sat(D) we conclude : 3

r C chasep(q)

hence
Il < Ichasen(q)| :
and therefore Q
lg| < |chasep(g)l- 3
ii) Let us assume that we have a partial relation | ;
) g € relp(R) \ sat*(D) with |¢| < |chaseD(q)
If we set r* = chasep(q) and define ¢ € DOM(R) as in the previous lemma then. we get '
: chasep(q(e)) = r*{e) : ’
by this lemma. ‘ '
Set 7 = r*{e).
Since e is injective on var{r*) and e(z) = z for all £ € var(q) \ var(r*) we know that ;
) e is injective on var(q). | , jl
From this and the assumption we get
lg(e)] < |chasep(g){e)| = |7.
Now, from chasep(q(e)) = ¥ we conclude that |
gle) < 7.
We must show that g{e} < 7 holds.
We assume that 7 < ¢{e) holds. i
Since 7 € sat(D) we have R
7 Cgle)
and because of || > |g(e}| we get ‘ ;
7 =qe)
Thus, e evaluates all variables in q. Therefore

var(q) C var(chasep(q))
because e evaluates at most all variables from chasep (¢). The converse
var{chasep(q)) C var(q)
. ‘holds always, hence
. var(chasep(q)) = var(q).

Consequently the chase-procedure does not replace variables in ¢. It follows that

d(p,g) =1d
" and hence '
. qC chas-eD(q).
By this and chasep(gq){e) = q{e) we get

. g = chasep(q).
' But we know from the assumption that _
q # chasep(q).

This yields a contradiction and we know that g(e) < 7 holds.
Now let us define § = ¢(e). Then :

4] < |7| and chasep(q) = 7.0

4

qg<

5. Redundancy and Normal Forms

Notation: Let R be a relation scheme of discrete type. For all attributes A € attr(R) we select
variables a4, b4 € var(R) where ord(as) =1 and ord(bs) = 2.
For X C attr(R) we define ux € tup(R) as
[aa ,A€X
»U'X(A)_{bA Ag X

and then ug = Uater(R)-
FDs X — Aresp. MV Ds X ——Y can be described as IDs ((aA/bA) {ur,ux}) resp. (ugr;{uxy,uy})

where Y = attr(R)\ Y.
The definition of the notion “logically implies” (l=) is found e.g. in {4, 14].

Theorem 5.1: [4] Let R be a relation scheme of discrete type and D a set of IDs for R.

(1) D logically implies (v; U) iff v € chasep(U). . 1
(2) D logically implies ((a/b); U) iff b & chasep(U). :

Using Lemma 8 in [4], we get the following theorem."

Theorem 5.2: Let R be a relation scheme of discrete type and D), D2 two sets of 1Ds for R
Dy == Dy iff relp,(R) = relp,(R) and for all ¢ € relp,(R), chasep,(q) = chasep,(q) holds.

Notation: Let R be a relation scheme of discrete type and D a set of IDs for R.

key(D) ={X — A; X is a key for R wrt. D}
supkey(D) = {X — A; X is a superkey for R wrt. D}

As a simple consequence we get key(D) == supkey(D).

Definition 5.1: (8]
Let R be a relation scheme of discrete type and D a set of FDs for R. The relation scheme R together
with D is in BCNF iff
key(D) E D
holds.

Theorem 5.3: Let R be a relation scheme of discrete type and D a set of FDs for R.
R together with D is in BCNF iff D does not admit redundancy.

Proof: Let R in BCNF.
Thus we have key(D) [==] D and therefore chasep(q) = chasekey(p)(q) for g € relp(R). We must show
that D does not admit redundancy.
Let q be an arbitrarily chosen partial relation from relp(R)\ sat*(D). It follows that chaserey(py(q) # 0.
Thus we need at least one EG D-rule in the chase of g, say

Fyiq—4.

Because we select F from key(D), the left hand side of F, say K, is a key for D. However, by application
of F', we can apply all FDs in key(D), having K as left hand side directly to the two tuples concerned.
Consequently, by the cha.se—procedure we identify these both tuples.. Smce we do not use T7TG D-rules
we get [chasep(q)] < |gl-

If D does not admit redundancy then we must prove that key(D) [= D. Hence let K be the left hand
side of an arbitrary but nontrivial FD from D. We know that |chasep(Uk)| < |Uk| holds, where
Uk ={uk,ur}, because Ux € relp(R)\ sat*(D). Actually we have chasep(Uk) = ug, so that for all

17

{(ac/bc); Uk) w1t.h C € attr(R)\ K, ac,bc € var(C) with ord(ac) = 1 as well as ord(bc) = 2, we
have bi ¢ var(chasep (UK)) Accordingly we know from Theorem 5.1., that D = K — C holds for all
C € attr(R). Thus K is a superkey for R wrt. D. Hence key(D) = D.O

Definition 5.2: (8]
Let R a be a relation scheme of discrete type and D a set of FDs and M VDs for R. The relation scheme
R together with D is in 4NF iff

key(D) = D
holds.

Theorem 5.4: Let R be a relation scheme of discrete type and D a set of FDs and MV Ds for R.

R together with D is in 4N F iff D does not admit redundancy.

Proof: If Risin 4N F then we show in the same way as in the previous theorem, that D does not
admit redundancy. In order to prove the opposite direction of the proposition we will show

key(D) k= supkey(D) = D.
If F € Disa FD we have already shown that key(D) |= F holds. Therefore let now FF = X ——Y
an arbitrary but nontrivial MV D from D. The associated TTGD is {ugp; {uxy,uxz}), where Z =
XY. Since F is nontrivial we have {uxy,uxz} € relp(R) \ sat*(D) and because D does not admit
redundancy we get |chasep ({uxy,uxz}) < |{uxy,uxz}| thus chasep({uxy,uxz}) = ur. The latter
holds because, during the chase-procedure, we only substitute variables with higher index by variables
with lower index. However, this means that for all G¢ = ((ac/be); {uxy,uxz}) we have D = Gc.
Since G¢ [==§ X — C for all C € X, X is a superkey for R wrt. D.
Hence for every nontrivial MVD X ——Y from D, X is-a superkey for R wrt. D. Thus we have
supkey(D) = D and obviously key(D) k= supkey(D), so key(D) = D. Hence key(D) =5 D. 0O

We conclude this section by considering another class of dependencies, the join dependencies (J D).
Join dependencies were introduced in [12]. In [1] Beeri et al. showed that a subclass of join dependencies,
the so called acyclic J Ds, are equivalent to a set of MV Ds. Hence in the case of acyclic join dependencies
. Theorem 5.4 applies as well. If, however, we allow for cyclic join dependencies then it may happen that
the dependencies do not admit redundancy but key(D) [£ D.

Definition 5.3: Let R(A;|Dy,. .'.,Anan) be a relation scheme. If {A;;,..., Aix} C {41,..., An}

then .
S = S(Ai|Ds1, ..., Aig|Dig}

is a subscheme of R with degree k.

Definition 5.4: Let R be a relation scheme and S a subscheme of R. If » € rel(R) is a partial
relation for R, then by

ls(r) = {ts € tup(S); there is tp € r with ts =tr |, (s}

the projection from r to S is given.

Definition-5.5: Let R be a relation scheme and Si, Sz be two subschemes of R where attr(R) =
attr(S1) U attr(Sz). If sy € rel(S1) and s, € rel(S;) then

r = 51 04 83 = {t, € tup(R); there is {,, € s1,1,, € 57 with ¢, | =1,, and t, |

attr(Sy) attr(S3) = 1‘7}’

denotes the (natural) join for s; and s;.

Definition 5.6: Let R be a relation scheme of discrete type and Xl, .., Xk C attr(R) sets of
attributes of R where attr(R) = | J(Xi;1 < i < k), then

o [Xy, .o, Xe)

denotes a join dependency (JD). :
Let S; with attr(S;) = X;, ¢ = 1,...,k, be subschemes of R. A relation r € rel(R) is valid for
N[X],...,X};] if .

2
&3
3

-4
%
3

-1
“
1

S L

r= HSI(T)M---NH&(‘I‘).

Remark: Let R be a relation scheme of discrete type and s [X1,- -, Xe] a JD for R. As described
in {13] one can formulate 0q [X1, - - -, X;] as a TTGD in the following way :

For all 1 £ ¢ < k create a partial tuple u; that has a variable with index 1 in all X;-components

and a variable that occurs in none of the other uj, (1 < j # j < k), otherwise. This yields :

the TTGD i
(t; {ul) Tty Uk}),

where t is a partial tuple that consists only of variables with index 1.

Example 5.1: Let R(A, B, C) be a relation scheme of discrete type, AB — C, BC — A FDs for
R and 04 [AB, BC, AC) a JD for R. :
Let D ={AB — C,BC — A, = [AB, BC, AC]}. - _
The dependencies in D are equivalent to the EGDs Fy, Fy as depicted below. i

A B (C A B C
A1 Bz Cl A1 B2 Cl
A1 Bl Cz Al Bl CZ
Ay B Cl Aq By C
Al = Az 01 = Cz
EGD F, EGD F,
Because of D k= {Fl,Fg} = E we get chasep(r)' = chaseg(r) for all partial relations r € relp(R). |

Either the application of F} (resp. F3) identifies two tuples or after that the application of F; (vesp. Fy)
identifies two tuples.

From this it follows for all » € relp(r) \ sat* (D) that
|chasep(r)| = chaseg(r)| < |r].

Thus D does not admit redundancy.
Furthermore

v ‘key(D) = {AB — C,BC — A}
holds but

o key(D) E D.
does not hold.
Thus we found a set of 1Ds that does not admit redundancy and yet is not logically implied from keys.

6. Discussion

In the previous section we gave a static and a dynamic characterization of redundancy for the case of a
single relation scheme. Without giving a formal definition for update anomalies as discussed in {5, 6], we
argue now that a relation scheme that admits redundancy with respect to a set sat of relations will also
cause update anomalies and viceversa if we request that updating of a relation in sat results in a relation
in sat. Informally a relation that contains redundancy with respect to sat contains some information
more than once and hence updating of this information affects more than one item. Viceversa if in a
relation update anomalies with respect to sat may occur, i.e. more than one item is affected if some piece
of information is to be changed, then this means some form of redundancy is contained. As a very simple
example consider sat = {ry,ry,r3} where

a b ¢ a b ¢
ry = d e f r3 = d € f

a b
™ = d e
g h gl hl il gll hll i"

N-k,,ﬁ

l‘bl < l"il; ¢ < ri and r; = mmaat(?t)

We showed before that in the case where sat is characterized by some set of functional (resp. multxvalued) .

dependencies; BCNF (resp. 4N F) is a necessary and suﬂiaent condition to avoid redundancy (and thus
~ update anomalies). - : :

Let us now assume that we have to deal with a relation scheme R and a set F of functional dependencies,

that admits redundancy (and hence update anomalies). One way to handle this situation could be to
construct a loss-less join decomposition of the scheme into BNCF. Let us assume we found such a
decomposition that also preserves the functional dependencies, as e.g. in the example of [6], where

R = (Empl #,Tel #, Project #)
with Empl # — Tel #. Then the BCN F decomposition
P= (Rl» Rz)

where Ry = (Empl #,Tel #) und R, = (Empl #, Project #) indeed gets rid of the redundant storing
of the telephone number for employees that work in more than one project. So substituting.a relation r

for R that satisfies Empl # — Tel # by the two projected relations I g, () and IIg,(r) solves the prob- -
lem of reduncancy and update anomalies. However, one may easily construct examples where a desired .
decomposition into BCN F exists but the update anomaly problem is even worse after decomposition.- - '
Such an example is given in the following: We consider a relation scheme BCEF and dependencies -

BC — F,CE — F. We consider the decomposition (Ry, R3, R3) = (BCE,BCF,CEF). Then each

R; isin BCNF, the decomposition is a lossless—join decomposition and all functional dependencies are-

preserved. Let us now consider the relation r and its projections on R; as follows:

B C E F B C E B C. F C E F
b e f b ¢ e -

r=} b ¢ € f o= b ¢ ¢ r3=<:, ¢ ;) r3=<c e, -];)
¥ ¢ € f b ¢ € ¢ € ¢ ‘

Now changing f to f in the second tuple of r forces us to change f also in the other tuplés of r,ie 3
values are affected. In the decomposed case, we have to modify all f’s in r; and rj3!

The above examples show that there are cases where a BCN F decomposition may help in getting rid of
the redundancy (update anomaly) problem and cases where it does not help. It is an interesting problem
to provide a criterion that tells us when decomposition is useful and when it is not. For this a formal
framework has to be given, in which we may talk about redundancy and update anomalies for a set of
relation schemes.

'References

[1} C. BEERI, R. FAGIN, D. MAIER, and M. YANNAKAKIS. On the Desirability of Ayclic Database

Schemes. Journal of the ACM, 30(3):479 - 513, July 1983.

[2] C. BEERI and M. Y. VARDI. The Implication Problem for Data Dependencies. Le.cture Notes in
Computer Science, vol. 115; 73 ~ 85. Springer Verlag, New York, 1981.

[3] C. BEERI and M. Y. VARDI. Formal Systems for Tupel and Equality Generating Dependenc1es
SIAM Journal of Computing, 13(1):76 - 98, February 1984.

[4] C. BEERI and M. Y. VARDL A Proof Procedure for Data Dependenues Journal of the ACM,
31(4):718 — 741, October 1984.

[5] E. F. CODD. A Relational Model of Data for Large Shared Data Banks. Commumcatzons of the
ACM, 13(6):377 — 387, June 1970.

cha.nged as well..Clearly 1, r, r3 exibit redundancy In ea.ch case a parua.l relat.lon ¢; exists. that satlsﬁesrav

PR S N

~ REFERENCESH

| . [6] ExF. CODD. Further Normalization of the Data Base Relational Model. In: Rustin, R.; Data Base-. .
Y Systéms, Courant Inst. Comp. Sci. Symp. 6, 33 — 64, Prentice~-Hall, Englewood Cliffs, N.Y., 1971.

[7] R. FAGIN. Multivalued Dependencies and a New Normal Form for Relational Databases. ACM
Transactions on Database Systems, 2(3):262 — 278, September 1977.

(8] R. FAGIN. Normal Forms and Relational Database Operators. In: Proc. ACM SIGM 0D, 153-160,
1979.

[9] R. FAGIN. Horn Clauses and Database Dependencies. Journal of the ACM, 29(4):952 - 985, ‘October
1982.

[10] D. MAIER. The Theory of Relational Databases. Computer Science Press, Rockville, 1983.

. [11] J. A. MAKOWSKY. Characterizing Data Base Dependencies. Lecture Notes in Computer Science,
vol 115;86 - 97. Springer Verlag, New York, 1981. 3

[12] J RISSANEN Theory of Relations for Databases — a Tutorial Survey. Lecture Notes in Computerﬁf{. i
Science, vol. 64; 537 — 551. Springer Verlag, New York, 1978. . :

[13] E. SCIORE. A Complete Axiomatization of Full Join Dependencies. Journal of the ACM, 29(2) 373 (
- 393, April 1982, - "i

- [14] J. D. ULLMAN. Principles of Database Systems Computer Science Press, Rockvxlle, 1983“ 3 -]

[15]) M. YANNAKAKIS and C. H. PAPADIMITRIOU. Algebraic dependencnes Journal of Campuier) ff:
and System Stences, 25:2 - 41, 1982.

W e ok TR

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021

