
Reihe Informatik
3/92

$-

.
•

•

•

Adefinition of redundancy in relational databases

MilaE. Majster-Cederbaum
Peter Peters

Fakultät für Mathematik und Informatik
Universität Mannheim
Seminargebäude A5
6800 Mannheim 1

Mai 1992

.;

,.

rtthnffl': '"' --'.%*2"0-:". L~

",-'0;';:

1

O.. Introduction

The relational data model as proposed by Codd is a well-establishedmethod for data abstraction. Two
essential aspects in this model are the definition of the data structure via the relation scheme and the
data semantics via data dependencies. Various dasses of data dependencies have been studied in the
past [5, 6, 7, 8, 9, 13, 15]. In the presence of data dependencies "update dependencies" (or anomalies)
and "redundancy" may occur as first observed by Codd in [5, 6]. Normal forms have been proposed
as a means to control update anomalies and redundancy [6, 14]. But as the not ion of redundancy has
never been formally defined, one cannot make any precise statement concerning the presence or absence
of redundancy for a given design.

In this paper we attempt to provide a formal definition of the notion of redundancy for the case of a single
relation respectively relation scheme. We first give a static semantic definition of reclundancy and then
present an operational analogue. Intuitively speaking a relation r contains redundancy, if some "part" of
the information given in r can be "determined" from the "rest" of r. And a relation scheme with a given
set of data dependencies admits redundancy if there is a relation belonging to this scheme that contains
redundancy.

The paper is organized in six sections. Section 1 eontains the definition of the relational model that we
use. We make use of partial "relations" that are built from constants and variables. In seetion 2 we'
present the semantic definition of redundancy. Section 3 introduces a dass of data dependencies, i.e.
implicational dependencies and achase procedure for partial relations. Section 4 gives an operational
characterization of redundancy. The main theorem in this section is theorem 4.3. It states that a relation
r in a dass of relations sat(D) contains redundancy if there exists a partial relation q that "contains
less information" than rand for which chasev(q) = r, i.e. the missing information can be "derived". In
section 5 we treat the special cases of functional dependencies and multivalued clependencies. It is shown
that in the case of functional dependencies BCNF is a necessary and sufficient condition for a relation
scheme not to admit redunclancy. The analogous result is established for 4NF in the case of multivalued
dependencies. In section 6 we discuss sorne aspects of the case where a set of relation schemes insteac! of
a single relation scheme is considered.

1. The relational model

In contrast to the original relational model we allow the use of variables in relations.

Definition 1.1: A relation scheme is given by its name R, a set of n attributes {At •... , An} called
the universe of Rand a set of in (m :::;n) domain symbols {Dt, ... , Dm} which are related to attributes
by a mapping

domsym : {At ,An} ---+ {Dt •...• Dm} .

..The type of a relation scheme is given by an expression

R (AtlD." ...• An \D ••,) ,

where D'j domsym(Aj) (j = 1, ... ,n). n is called the degree of the relation scheme.
R (A1ID." ... , An ID.,,) is often abbreviated by R(At, ... ,An) or R. We also writeattr(R) = {At• An}
and deg(R) = n. R is said 1,0 be of discrete type if

domsym(A) :j.: domsym(B) far all A, BE attr(R) with A :j.: B.

For every domain symbol D a set of constants dom(D) and a set of variables var(D), both countable
infinite and with dom(D) n var(D) = 0, are given. We Jemand that dom(Dt} n dom(D2) = 0 and
var(Dt) n var(D2) = 0 for any two domain symbols Dt• D2 of R.
For every domain symbol D we e1enne a mapping

Ol,d: var(D) U dom(D) ---+ INp

thaI, maps each variable to its index in IN and each constant 1,0 zero. We request that no two variables
in D obtain the same index.

For convenience we introduce the following notations:
For A E attr(R) we will use the notations dom(A), var(A) as weil asdom(R), var(R) in the obviolls way.

2

Similarly, for x E var(R) U dom(R) we want to use domsym(x) and attr(x), where in the non discrele
case we get

attr(x) = {A E attr(R);domsym(x) = domsym(A)}, .

while attr(x) consists of a si~gle attribute in the discrete case.

Definition 1.2: For a relation scheme R(AI, ... , An) of degree n we define a partial tuple t as a
mapping

t : attr(R) -+ dom(R) U var(R),

where t(A) E dom(A) U var(A) for each A E attr(R).
Sometimes we write t(al, ... ,an) or just (al, ... , an) where ai = t(A;) for i = 1, ... , n.
deAt) is the set of all attributes A in R for which t(A) is a constant and

I•
I

var(t)
dom(t)

t(attr(R) \ def(t»
t(de.f(t))

A partial tuple for R is called a tuple for R if t does not contain any variables.
Finally the set of all partial tuples for R is given by t11.p(R).

Definition 1.3: Let R be a relation scheme. A partial relation r for R is a finite set of partial
tuples for R. var(r)is the set of all variables of rand dom(r) is the set of all constants of r.
A partial relation for R is a relation for R if it does not contain any variables.
The set of all partial relations for R is denoted by rel(R).
Partial relations are used in [10] for handling the problem of null values.

Definition 1.4: Let R be a relation scheme. A mapping

d : var(R) U dom(R) -+ var(R) U dom(R),

where d(var(A» ~ var(A) U dom(A) and d I dom(R) = id is called a domain mapping for R.
The set of all domain mappings for R is denoted by DOM(R).

Definition 1.5: Let R be a relation scheme and d E DOM(R). Furthermore let I C var(R) x
(var(R) U dom(R)) such that
i) (x, c) EI: => domsym(x) = domsym(c)
ii) (x, Cl) EI and (x, C2) EI=> Cl = C2.

We then define

{
y if(x,y) E I

d/(x) '= d(x) h .ot erWlse

In case I = {(x, c)} we write d(x,c) for d/.

Definition 1.6: Let R be a relation scheme, t E t11.p(R) and ,d E DOM(R). We define a substitution
clt~d~ .

t(d) = dot.
A substitution for a partial relation r E rel(R) by d is given by

r (d) = {t (d); t Er}.
Obviously r(J 0 g} = r(g}(J} holds for arbitrary f, gE DOM(R) and rE rel(R).

Definition 1.7: Let R be a relation scheme, 11.,VE t11.p(R) and q,r E rel(R).
We say, 11.subsumes v, if there exists a domain mapping d E DOM(R) such that u = v(d}. Then we
write 11.~d 11 or just 11.~ v. If 1l ~ v holds but not v ~ u, we write u > v.
Similarly, for partial relations we say, r subsumes q, if there exists a domain mapping d E DOM(R) such

if e(x) ff- {Cl,:'" cd
if e(x) = Ci, 1 ~ i ~k

3 .. ~{
';
..1

~
that r 2 q(d}. We write as before r ~d q or just r ~ q. If q ~e r for e E DOM(R) holds in addition we
say that q aod rare equivalent and write q == r. In the case r ~ q aod r F q we write r > q.
The term subsumes appears first in [10]' where it is introduced in the context of partial relations with
unmarked null values.

Theorem 1.1: Let R be a relation scheme. The subsumption ~ is a partial ordering and == is an
equivalence relation on rel(R).

Proof: The proof is a straight forward argument using the properties of ~ and the fact that
r(f).{g} = r(g 0 f} for all partial relations rE re/eR) and g, fE DOM(R).O

Definition 1.8: Let R be a relation scheme and q E re/eR). By

comp(q) = {r E re/eR); r is a relation and r ~ q}
we denote the setof all comp/etions of q in rel(R).

Theorem 1.2: Let R be a relation scheme. For rl, rz E re/eR)
comp(rl) ~ comp(rz) iff rl ~ rz.

Proof:
i) Let comp(rd ~ comp(rz).
If rl is a relation then rl E comp(rd and therefore rl E comp(rz). thus rl ~ rz.
If rl contains variables then let var(rd = {Xl, ... , xd. We select a set {Cl, ... , cd ~ dom(R.) of k distinct
constants that is disjoint to either of dom(rd and dom(rz) and satisfies domsym(cd = dornsym(x;).
We set

I = {(Xi, c;); 1~ i ~k}
and get

rl(idI} E comp(rl) ~ comp(rz).
Thus there exists e E DOM(R) with rI(idI} 2 rz(e}.
Finally we define d E DOM(R) by

d(x) = { :~x)

and get rl 2 rz{d}, thua rl ~ rz.
ii) Let rl ~ rz, then there exists d E DOM(R) with rl 2 rz(d}. For each r E comp(rl) there isa mapping
e E DOM(R) with r 2 rI(e}. Thus we obtain

rI(e} 2 r2(d}{e} 2 rz{e 0 d}
and so r 2 rz{e 0 d} hence rE comp(rz) holds.O

2. A semantic definition of redundancy
Intuitively some information ia redundant if it is somehow represented in more than one way in our system.
Hence we might drop parts of our description while still being able to obtain the same information as
before.

Definition 2.1: Let R be a relation scheme and sat ~ rel(R) a set of so called valid relations and
rE re/eR) a partial relation, then

comp,al (r) = camp(r) n sat
is the set of all valid completions of r.

Definition 2.2: Let R be a relation scheme and sat ~ rel(R) a set of valid relations. The set
of aJl partial relations that are consisten't with sat is denoted by

4

rcl.at(R) = {r; rE re/eR) and comp.at(r) =1= 0}.

Definition 2.3: Let R be a relation scheme and sat ~ re/eR) a set of relations. If rE re/eR) is a
partial relation then the set of all minimal valid completions is denoted by

min.at(r) = {q E camp.at(r); q E comp.at(r) and q ~ q implies ij = q}.

Lemma 2.1: Let R be a relation scheme, sat ~ re/eR) a set of relations and ql,q2 E re/.at(R)
partial relations. Then

holds iff

Proof: i) Let comp.at(ql) = comp.at(q2) and choose

rE min&at(qt} ~ comp.at(qt} = comp.at(q2)'
For each

we get

sE comp.at(ql)
and therefore s = r, because rE min.at(qt}. Thus

min.at(qt} ~ min.at(q2).
ii) Let min.at(qt} = min.at(q2) and s E comp.at(ql)' Since s is finite r E min&at(qd exists with r ~ s.
Clearly, s E sat and r E min.at(q2). Therefore q2 ~ r ~ s holds and finally s E comp.at(q2)' Thus
comp.at(qt} ~ comp.at(q2) holds. 0

Lemma 2.2: Let R be a relation scheme, sat ~ re/eR) a set of relations and q E re/.at(R) a partial
rela.tion. If minsat(q) consistsof a single relation then

min.at(q) = n(r; rE comp.at(q)) E sat

omitting parentheses.

, Proof:
i) Because min.at(q) consists of a single relation, each completion in comp.at(q), including minsat(q), is
a superset of min.at(q). Therefore

min.at(q) = n(r; rE comp.at(q)).
ii) By definition min.at(q) E comp.at(q), thus min.at(q) E sat. 0

Definition 2.4: Let R be a relation scheme and sat ~ re/eR) a set of relations. Furthermore let
r E sat be a relation. Then r contains redundancy wrt. sat, if there exists a partial rela.tion q with

r> q, Irl ~ Iql and comp.at(r) = comp.at(q).

Lemma 2.3: Let R be a relation scheme and sat ~ rel(R) a set of relations.' Furthermore Jet.
rE sat bp. a relation. Then r rontains redundancy wrt. sat, if there exists a partial relation 'I with

r> 'I, Irl ~ Iql and r = min.at(q).

3. Implicational dependencif~s and the chase

In the previous section we used a set sat to describe the set of those relations which we want 1.0 consider
valid in a given situation. Using sat we gave a semantic, i.e. static, definition of redundancy. We are now

-]
-j'i,
\

ABC
Al BI C2
A2 BI Cl
Al BI Cl

. "-.~*fj!C.f- _$.- -4ilip •.

5

looking for an operational, i.e. algorithmic counterpart. For this we have to give some more information
about how such a set sat might look like. We use implicational dependencies as introduced in [2, 4, 9]'
to characterize sets of valid relations.

Implicational dependencies (ID) fall into two dasses, the dass of equality generating dependencies
(EGDs) and the dass of total tuplegenerating dependencies (TTGDs). EGDs are generalizations of
FDs and TTG Ds are generalizations of MVDs.

Definition 3.1: Let R be a relation scheme of discrete type.
An EGD is an expression of the form (alb); U) where U E re/eR) with dom(U) = 0 and a, bE var(U).
A TTGD is an expression of the form (Vj U) where U E re/eR) with dorn(U) = 0 and v E tup(R) with
var(v) ~ var(U) and def(v) = 0.
Henceforth we assurne that for every TTGD we have ord(v(A» ::; ord(x) for all.x E var(A) and for all
A E attr(R). In a similar way we demand for aB EGDs that ord(a) ::; ord(b) and ord(a) ::; ord(x) for all
x E var(attr(a)) holds.

Example 3.1: For R(A, B, C) the F D AB -+ C and the MV D B -+-+ C are given.
AB -+ C is the EGD (CrlC2);{(AI,BI,Cd,(AI,BI,C2)}) and B -+-+ C IS the TTGD
(Al, BI, Cd; {(Al, BI, C2), (A2, BI, Cl)}).

ABC
Al BI Cl
Al BI C2
Cl = C2

EG D and TTG D as tables

Definition 3.2: Let R be a relation scheme of discrete type and D a set of I Ds for R. A relation
r for R is valid for D if for aB I Ds F in D the following holds:

(1) If F = (Vj U) is a TTGD then for each d E DOM(R) with U(d) ~ r, v(d) Er holds.
(2) If F = (alb); U) is a EGD then for each d E DOM(R) with U(d) ~ r,d(a) = d(b) holds.

The set of aB valid relations for Dis denoted by sat(D). re/.at(D)(R) is defined as in Definition 2.2.

In [4] adecision procedure for the implication problem of IDs, the chase is given, using so-called EGD-
and TTG D-rules. Our rules differ from those in [4] as we also have to deal with constant values.

Definition 3.3: Let R be a relation scheme of discrete type. We introduce a relation:::: that is not
yet in rei(R). The relation:::: has the role of an errcr relation. This errcr relation is the result of the
chase if an EG D-rule fails.
Let rE re/(R) be a partial relation.
EGD-rules: If we have the EGD (alb);U) and d E DOM(R) so that U(d) ~ r holds we change r to
r/, where

(1) if dCa), d(b) E var(R) then
r' _ {r(id(d(a),d(b») , 07'd(d(a)) ~ ord(d(b»

- r(id(d(b),d(a») , ord(d(a)) < ord(d(b),
(2) if d(a) E dom(R), d(b) E var(J?) then

r' = r(id(d(b),d(a»),
(3) if d(b) E dom(R), dCa) E var(U) t.hen

r' = r(id(d(a),d(b»),
(4) if dCa), d(b) E dom(R) then

r' = {: ' d(a) = d(b)
=. , d(a) ¥ d(b).

6

In this case we write (alb); U)d : r --. r' , which means that we transform r to r' under «alb); U)
with d by applying an EG D-rule.
TTGD-rules: If we have a TTGD (v; U) and d E DOM(R), so that U(d) ~ r holds, we change r to r'
where r' = rU {v(d)}.
In this case we write (v; U)d : r --. r' , which means that we transform r to r' under (v; U) with d by
applying a TTG D-rule.

Definition 3.4: Let R be a relation scheme of discrete type and D a set of I Ds for R. Furthermore
let r E. rel(R) be a partial relation.
A generating sequence for runder Dis a sequence Ta, Tl, ... , rn, ... of partial relations, where T = Ta and
every partial relation Ti+l with 0 ~ i is generated by applying an EG D- resp. a TTG D-rule to Ti. Only
IDs from D are used. Furthermore we demand that ri 'I ri+l, i = 0,1,
If a generating sequence has a last element Tn, i.e. no further EGD- resp: TTGD-rules can be applicd,
then Tn is called achase of runder D. chaseD(r) denotes the set of all last elements of runder D.

Lemma 3.1: Let R be a relation scheme of discrete type and D a set of I Ds for R. The chase
procedure terminates alld for every partial relation r there exists aglobaI upper bound for the length of
an generating sequences of runder D.

Proof: Since a partial relation is finite it contains only a finite set of variables and constants; EG D-
and TTGD-rules can produce only a finite number of different partial relations, because these rules do
not create new eonstants or variables.
If in eaeh generating sequenee no partial relation oeeurs more than onee, termination of the ehase pro ee-
dure is proved. Aglobai upper bound is the number of all different partial relations whieh may originate
from r by applying EG D- and TTG D-rules. We have to show that no partial relation occurs more than
onee.
Let ri, ri be partial relations of some generating sequenee for r where i < j.
If somewhere in Ti, ... , ri an EGD-rule is used then ri contains a variable that does not belong to Ti,
thus ri 'I ri'
If somewhere in ri, ... , ri a TTGD-rule is used, either ri eonsists of more tuples than ri or after the
applieation of this TTGD-rule a following EGD-rule reduees the number of tuples to that of Ti and our
previous argument applies. 0

4. Some properties of the chase and
an operational characterization of redundancy

For the rest of the paper we will write minDer) for min.at(D)(r) and compD(r) for comp.,at(D)(T) for a
set D of implieational dependeneies.

Definition 4.1: Let R be a relation seheme of diserete type and D a set of I Ds for R. The set of
an partial relations which are not affected by the applications of the eh ase is given by

sat"(D) = {r E rel(R);ehaseD(T) = {rn.

Definition 4.2: Let R be a relation scheme of diserete type and D a set of I Ds for R. The set of
an partial relations for whieh the ehase does not fail is given by

re/DeR) = {r E rel(R);3 ~ ehaseD(r)}.

Lemma 4.1: Let R be a relation scheme of discrete type and D a set of I Ds for R. Furt.hermore
let r E re/DeR). Then ehaseD(l') ~ sat"(D).

Proof: Because each partial relation r" E ehaseD(r) is a last element of some generating sequcnce

.;

i----

7

for runder D, by construction, no EGD-, resp. TTG D-rule is applicable to r*. Thus chasev (r*) = {r*}
and therefore r* E sat*(D). 0

Lemma 4.2: Let R be a relation scheme of discrete type and D a set of I Ds for R. Then

(1) sat(D) ~ sat*(D) ~ relv(R) and
(2) sat(D) = {r E sat*(D); r is a relation }.

Proof: The two statements follow directly from the definition of sat(D), sat*(D) resp. relv(R). 0

Lemma 4.3: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore,
let rE sat*(D). If there is e in DOM(R) such that

(1) e(var(r)) ~ dom(R) \ dom(r) and
(2) el var(r) is injective,

then r(e) E sat(D).
Proof: Because of the choice of e, r(e) is a non partial version of r. 0

Theorem 4.1: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore
let rE re/v(R) and rE chasev(r). Then there is a unique d(V,r,r) E DOM(R) satisfying

(1)
(2)
(3)
(4)

r(d(V,r,r») ~ f,
var(r(d(V,r,i'))) = var(r),
d(v -)' I = id and,r,r var(R)\var(r)
drD,r,r) = d(D,r,r)'

Here d(D,r,r) depends on r, rand on D. In addition, ord(d(D,r,r)(x)) ~ ord(x) holds for every x E var(R).

Proof: Let FI/t: r ~ .rl, ... , Fn/n ; rn-l ~ rn = r be a generating sequence for r. We
prove the assertion by induction on the length of the generating sequence.
Let n = O. Under the assumption that d(V,r,r) exists we first show that d(D,r,i') is unique. We have r = r,
thus

var(r(d(D,r,i'))) = var(r) = var(r).
Therefore d(V,r,r) is a one-to-one mapping from var(r) to var(r). Because of the conditon drv,r,i')
d(D,r,r) we have

if y = d(V,r,r)(x) then d(V,",r)(Y) = d(V,r,r)(x) = d(V,r,r)(x) = y .
Consequently, d(D,r,i') is the identity. Obviously the mapping d(V,r,r) = id satisfies all condit.ions.
Now let. r E reID(R) be a partial relat.ion with a generating sequence of lengt.h n result.ing in f E
chaseD(r). Consequently, the partial relation rl has a generating sequence of length n - 1 resulting in
rl = r. By assumption, there is a mapping d(D,rl>tl satisfying the properties of the theorem. We first
prove uniqueness under the assumption that d(V,r,r) exists.
Ir PI = (v; U) is a TTGD, then

UUd ~ rand rl = rU {v(ft)}
holds. Thus we have

and due to rE sat*(D)

This means

""itf¥fuf;j +? ..•.. <Ei' .. ~<FV~e_-; #.
-.':~"': ;;:;...•,; .•.

8

r1 (d(D,r,F») ~ 1',

thus r(d(D,r,F») ~ 1'1 (d(D,r,F)) ~ l' = 1'1. From this we get

rr(d(D,r,r)) ~ 1'1 and var(rdd(D,r,r»)) = var(rt}.
As var(r) = var(rI) we get

d I - d I - id(D,r,r) lIar(R)\lIar(r.) - (D,r,r) lIar(R)\lIar(r)-

and by assumption d(2D -) = d(D r F)',r,r , ,
d(D,r,F) fulfms all properties of d(D,r"Fd ' but d(D,r, ,F,) is unique among all mappings with these prop-
erties. We have shown that d(D,r,F) = d(D,r"F.) holds, and by that the uniqueness of d(D,r,r) follows from
the uniqueness of d(D ,r, ,rd .
If F1 = ((alb); U) is an EGD, then

where

{

(ft(a),ft(b)), ft(b) E dom(R)or
(x, y) = ft(b) E var(R) and ord(ft(a)) ~ ord(h(b))

(h(b), h(a)), otherwise

Because of r(d(D,r,F») ~ 1', it follows
U(d(D,r,F) 0 h) ~ U(h)(d(D,r,r») ~ r(d(D,r,r») ~ l'

and due to l' E sat*(D) we have

d(D,r,r)(x) = d(D,r,r)(Y).
From x 1ft var(r) and d = d(D,r,r)(x,x) we conclude d(D,r,r) = d 0 id(x,y). Now we have

r1(d) = r(id(x,y))(d) = r(d(D,r,r») ~ l' = 1'1.
This yields var(rr(d)) = var(rt} and 'r1(d) ~ 1'1. Furthermore we know

d2(z) = d[D,r,r)(z) = d(~,r,f')(z) = dez) for z i- x
and

d2(x) = X = d(x).
Finally we have

d I = idlIar(R)\lIar(r,)

because of

var(rI) = var(r) \ {x} and d(x) = x.
As before, d fulfills all properties of d(D,r"Fd . We know that d(D,r..rd is unique hence d = d(D,r"rd'
Thus d(D,r,r) = d(D,r"rdOid(x,y) is unique. It is easy to see that d(D,r,r) fulfills the demanded properties.
Finally we can conclude from the choice of (x, y) that the additional property holds. 0

Lemma 4.4: Let R be a relation scheme of discrete type and D a set of IDs for R. If

rE rei(R), r* E sat*(D) and d E DOM(R)
such that

r(d) ~ r*

then for every TTG D- and EG D-rule

we have

FdoJ : r(d) ~ red)
and additionally

r(d) ~ red) ~ r*.

- obMen

9

If Fis an EGD and f = r(id(,;,;)) it followB that d(x) = d(y).
Proof: If F = (Vj U) is a TTGD we have

{v; U)J : r -+ f

and hence

U(f) ~ rand f = rU {v(f)}.
Thus we get

U{d 0 J) = U(f)(d) ~ r{d).
In addition

f(d) = (r U {v(f)})(d) = r(d) U {v(d 0 f)}.
This yields

FdoJ : r(d) -+ f(d) and r(d) ~ r(d) ~ r.

because of

r. E sat. (D).

If F = ((alb); U) we have

((alb); U)J : r -+ f

and hence

U(f) ~ rand f = r{id(,;,y))
where

{

(/(a), f(b)), f(b) E dom(R) or
(x, y) = f(b) E var(R) and ord(/(a)) ~ ord(/(b))

(/(b), f(a)), otherwise

As

U(d 0 f) = U(f)(d) ~ r(d) ~ r. E sat.(D)
we get

d(x) = d(y).
We may write

d 0 id(r,y) = d = id 0 d = id(d(r),d(y)) 0 d
and get

f(d) = r(id(r,y))(d) = r(d 0 id(r,y)) = r(id(d(r),d(y)) 0 d)
= r(d)(id(d(r),d(y))) = r(d).

This means

((alb); U)doJ : r(d) -+ f{d) and r{d) = f{d) ~ r •. O

Lemma 4.5: Let R be a relation scheme of discrete type and D a set of IDs for R. If

rE reID(R), r. E sat.(D) and fE chaseD(r).
and

d E DOM(R) with r{d) ~ r.

then

r(d) ~ r(d) ~ r •.

Proof: The proof is a simple induction on the length of generating sequences using the previous
lemma. 0

Corollary: Let R be a relation scheme of discrete type and D a set of IDs for R. If

p'hfi%-

,. .:..~~',;~;.~.;

10

q E rel(R), rE relD(R) and q ~ r

then

q E relD(R).

Proof: We must show that ::::f/:. chaseD(q). Let ij E chaseD(q). We know [rom r E relD(R) that

chaseD(r) ~ sat*(D).
We choose

fE chaseD(r) with rE sat*(D).
We also know that adE DOM(R) exists with

r(d) ~ f.

From q ~ r it follows that a mapping d E DOM(R) exists with

q(d) ~ r

and so

q(d 0 d) ~ rE sat*(D).
From Lemma 4.5 we get

ij(d 0 d) ~ r.
Thus,

ij E sat*(D) and ::::f/:. chaseD(q)
because ij was arbitrarily choosen. 0

The following theorem states that if we work with I Ds then the chase consists only of a single partial
relation, in each case where the partial relation is consistent with the given I Ds, and is the special
relation 3, otherwise. Similar results are usually proved via the Church-Rosser property. Here we give
an alternative proof.

Theorem 4.2: Let R be a relation scheme of discrete type and D a set of I Ds. for R. For
every partial relation rE rel(R), chaseD(r) is a singleton set, say {r}. Thus only one d(D,r,r) exists if
rE relD(R).
(Henceforth we write chaseD(r) = f for chaseD(r) = {f} and d(D,r) for d(D,r,f)')

Proof:

First let rE rel(R) \ relD(R). Assurne there is

rE chaseo(r) with f f. 3.
It follows that

r ~ rand fE relD(R).
As

rE relD(R),
we obtain a contradicton.
Now let rE relD(R) and choose 1'1,1'2 E chaseD(r). Then

d(O,r,;'d' d(D,r,r~) E DOM(R)
exist by Theorem 4.1. We have

From Lemma 4.5 we conclude

and

- .

Because of the properties of d(D,r,rt} and t1(D,r,r~) we have
var(r(cl(D,r,f.»)) = var(r2(cl(D,r,f.»)) = var(rd

and

thus

var(rd = Var(1'2(~(D,r,rd))::= var(1'dcl(D,rh)) (cl(D,r,rt}})
= var(rdd(D,r,rt} 0 d(D,r,r~)})'

Therefore

is bijective and SO

Now we conclude

and in a similar way

This leads to

thus

and we get

1'2(cl(D,r,rt}) = 1'i and 1'1(t1(D,rh)) = 1'2

1'1 = T2(t1(D,r,rt}) = ft (cl(D,r,r~))(d(D,r.r.)) = 1'1(cl(D,r,rl) 0 cl(D,r,r~))'
For cl(D,r,rl) and cl(D,r,r~) we have from Theorem 4.1

ord(cl(D,r,r.)(x)) ~ ord(x) and ord(cl(D,r,r~)(x) ~ ord(x)
for all x E var(R). Thus

cl(I - idD,r,f~) var(rt}-
and hence

Lemma 4.6: Let R be a relation scheme of discrete type and D a set of I Ds for R. Ir
rE re/eR), r* E sat*(D) and d E DOM(R)

such that

red) ~ r*

then

red) ~ chaseD(r)(d) ~ chaseD(r{d}) ~ r*.

Proof: Because of red) ~ r* it follows from Lemma 4.5 that

red) ~ chaseD(r(d)) ~ r*

holds and also from Lemma 4.5 we conclude

red) ~ chaseD(r)(d) ~ chaseD(r(d))

chaseD(r(d)) E sat*(D).O

11

12

Corollary: Let R be a relation scheme of discrete type and D a set of I Ds for R. Let

rl,r2 E relD(R) and rl ~ r2

then

holds.

Lemma 4.7: Let R be a relation scheme of discrete type and D a set of I Ds for R.

relD(R) = rel&at(D)(R)

Proof: If rE relD(R), we have

chaseD(r) = r* f. :=: and r* E sat*(D).

From Lemma 4.3 we know that there exists a mapping e E DOM(R) with

r*(e) E sat(D).

As

r(e 0 d(D,r») = r(d(D,r»){e) ~ r* (e)

we have

r*(e) E compD(r)

hence

r E rel.at(D)(R).

If rE rel&at(D)(R), then

compD(r) f. 0.
Thus there is a relation r* E sat(D) with

r ~ r*.

From r* E sat(D) it follows that

r* E relD(R)

and therefore by the corollary of Lemma 4.5

rE relD(R).O

Lemma 4.8: Let R be a relation scheme of discrete type and Da set of I Ds for R. If rE relD(R)
then

(1) compD(r) = compD(chaseD(r))
(2) chaseD(r) = chaseD(r(d(D,r»)).

Proof:

1. (a) Because of r ~ chaseD(r) we conclude by Theorem 1.2 that comp(r) 2 comp(chaseD(r)) and
therefore comp D(r) 2 comp D (chase D (r)).

(b) For each f. E compD(r) ~ sai(D) ~ sat*(D), r(d) £; r for some d E DOM(R) holds. By
Lemma 4.6 it follows that chaseD(r)(d) ~ rand therefore rE compD(chasfD(r)).

2. Because of r{d(D.r)} ~ chaseD(r) and chaseD(r) E sat*(D) we conclude by Lemma 4.6that

r(d(D,r)} ~ chaseD(r)(d(D,r)}
~ chaseD(r(d(D,r)})
~ chaseD(r).

Since
var(r(d(D,r»)) = var(chaseD(r»

and
var(chaseD(r» = var(chasen(r){d(D,r»))

we get
chaseD(r) = chaseD(r)(d(D,r»),

and finally
chaseD(r) = chasen(r(d(D,r»))

holds.O

We are now ready to state our first main theorem. It provides an operation al characterization of redun-
dancy.

Theorem 4.3: Let R be a relation scheme of discrete type and D a set of I Ds for R. A relation
rE sat(D) contains redundancy wrt. D iff a partial relation q exists with .

q < r, Igl :::;Irl and chaseD(q) == r.

Proof:
i) Let rE sat(D) contain redundancy wrt. D. Hence there existsa partial relation q E re/n(R) with

q < r, Iql :::;Irl and minD(q) = r.
We prove that chaseo(q) == r holds. Let q* = chaseD(q).
We know from Lemma 4.8 that

compD(q) = compo(q*).
Moreover we know that

r = minn(q) is minimal in compD(q)
and hence r is minimal in compo(q*). Now we choose e E DOM(R) with

e(var(q*» ~ dom(R) \ dom(r)
and

e I (.) is injective."ar q

Then q*(e} E sat(D) holds and so
q*(e} E compD(q*).

Since r is minimal we get

and because of our choice of e it foltows that
r ~ q* = chaseD(q).

Since q < r we also have
chasen(q) :::;r.

Hence
chaseo(q) == r.

ii) Let chaseD(q) == r for some partial relation q E re/o(R), rE sat(D) where q < rand Iql :::;Irl. Then

.:

14

compD(chaseD(q)) = COmpD(q) = COmpD(r)
',"

by Lemma 4.8 and therefore we get
minD(chaseD(q)) = minD(q) = minDer) = r

hence r is a relation in sat(D). 0

Lemma 4.9: Let R be a relation scheme of discrete type and D a set of IDs for R. Furthermore,
let r E re/DeR) a partial relation, r* = chaseD(r) and e E DOM(R) a mapping with

(1) e(var(r*» ~ dom(R) \ dom(r*),
(2) e IlIar(r*) is injective and
(3) e IlIar(R)\lIar(rO) = id.

Then
chaseD(r)(e) = chaseD(r(e) E sat(D).

Proof:
i) r(d(D,r») ~ chaseD(r) by Theorem 4.1 and therefore

r(e 0 d(D,r») = r(d(D,r»)(e) ~ chaseD(r)(e).
Because of e 0 d(D,r) = e 0 d(D,r) 0 e it follows that

r(e)(e 0 d(D,r») = r(e 0 d(D,r) 0 e) = r(e 0 d(D,r») = r(d(D,r»)(e)
~ chaseD(r(d(D,r»))(e) = chaseD(r)(e)

by Lemma 4.6.
This yields r(e) E relD(R), thus chaseD(r) ::p S.
ii) Since r(e) E relD(R), d(D,r(e) E DOM(R) exists and r(e)(d(D,r(e))) ~ chaseD(r(e). By Lemma 4.6
we get

r(e)(d(D,r(e)) ~ chaseD(r)(e)(d(D,r{e)) = chaseD(r)(e)
~ chaseD(r(e),

hence var(chaseD(r)(e) = 0.
This implies chaseD(r)(e) ~ chaseD(r(e).
iii) As shown in ii),

r(e)(d(D,r{e)) ~ chaseD(r)(e)
holds. A furt her application of Lemma 4.6 leads to

r(e)(d(D,r{e)) ~ chaseD(r(e)(d(D,r{e))
~ chaseD(r(e)(d(D,r{e)))
~ chaseD(r)(e),

thus chaseD(r(e) ~ chaseD(r)(e). 0

Definition 4.3: Let R be a relation scheme of discrete type and D a set of 1Ds for R. D
admits (resp. does not admit) redundancy if there exists (resp. does not exist) rE sat(D) that contains
redundancy.

Theorem 4.4: Let R be a relation scheme of discrete type and D a set of IDs for R. D admits
redundancy, iff there exists a partial relation q E re/DeR) \ sat.(D) with

Iql ~ IchaseD(q)l.

Proof:
i) Let D admit redundancy.
Then there exist a relation r E sat(D) and a partial relation q E relD (R) with

",,
1,
i
j

.1
&
j
!

'. ,.....•.~::..•...

q < r, Iql ~ Irl and chaseD(q) == r.
Since q < rand chaseD(q) == r we have q # chaseD(q) thus

q E relD(R) \ sat*(D).
Because of chaseD(q) == rand r E sat(D) we conclude

r ~ chaseD(q)
hence

Irl ~ IchaseD(q)1
and therefore

Iql ~ IchaseD(q)l.
ii) Let us assurne that we have a partial relation

q E relD(R) \ sat*(D) with Iql ~ IchaseD(q)l.
If we set r* = chase D (q) and define e E DOM (R) as in the previous lemma then. we get

chaseD(q(e)) = r*(e)
by this lemma.
Set r = r*(e).
Since e is injective on var(r*) and e(x) = x for all x E var(q) \ var(r*) we know that

e is injective on var(q).
From this and the assumption we get

Iq(e)1 ~ IchaseD(q)(e)1 = Irl.
Now, from chaseD(q(e)) = r we conclude that

q(e) ~ r.
We must show that q(e) < l' holds.
We assurne that f ~ q(e) holds.
Since l' E sat(D) we have

l' ~ q(e)
and because of 11'1 ~ Iq(e)1 we get

r=q(e).
Thus, e evaluates all variables in q. Therefore

var(q) ~ var(~haseD(q))
because e evaluates at most all variables from chaseD(q). The converse

\

var(chaseD(q)) ~ var(q)
holds always, hence

var(chaseD(q)) = var(q).
Consequently the chase-procedure does not replace variables in q. It follows that

d(D,q) = id

. and hence

q ~ chaseD(q).
By this and chaseD(q)(e) = q(e) we get

q = chaseD(q).
Hut we know from the assumption that

..~
, ~i,
.J

16
.,~

5. Redundancy and Normal Forms

Notation: Let R be a relation scheme of discrete type. For all attributes A E altr(R) we select
variables aA, bA E var(R) where ord(aA) = 1 and ord(bA) = 2.
For X C;; attr(R) we define Ux E tup(R) as

ux(A) = { ~; :~~;

and then UR = Uattr(R). .
F Ds X - A resp. MV Ds X -- Y can be described as [Ds «aA/bA); {UR, ux}) resp. (UR; {UXY, Uy})
where Y = attr(R) \ Y.
The definitionof the notion "Iogically implies" (F) is found e.g. in [4, 14].

Theorem 5.1: [4] Let R be a relation scheme of discrete type and D a set of [Ds for R.

(1) D logical.ly implies (v; U) iff v E chaseD(U),
(2) D logically implies «alb); U) iff b tf. chaseD(U)'

Using Lemma 8 in [4]' we get the following theorem.
Theorem 5.2: Let R be a relation scheme of discrete type and D1, D2 two sets of [Ds for R.

D1 F=I D2 iff relDI (R) = relD](R) and for all q E relDI (R), chaseDI (q) = chaseD](q) holds.

Notation: Let R be a relation scheme of discrete type and D a set of IDs for R.

key(D)
supkey(D)

= {X - A; X is a key for R wrt. D}
= {X - A; Xis a superkey for R wrt. D}

As a simple consequence we get key(D) 1==1supkey(D).

Definition 5.1: [8]
Let R be a relation scheme of discrete type and D a set of F Ds for R. The relation scheme R. together
with Dis in BCN F iff

key(D) F D
holds.

Theorem 5.3: Let R be a relation scheme of discrete type and D a set of F Ds for R.
R together with D is in BCN F iff D does not admit redundancy.

Proof: Let R in BeNF.
Thus we have key(D) 1==1D and therefore chaseD(q) = chaSekey(D)(q) for q E relD(R). We must show
that D does not admit redul1dancy.
Let q be an arbitrarily chosen partial relation from relD(R) \ sat*(D). It follows that chaSekey(D)(q) f. q.
Thus we need at least one EGD-rule in the chase of q, say

Fj : q --+ ij.

Because we select F from key(D), the left hand side of F, say K, is a key for D. However, by applicat.ion
of F, we can apply all F Ds in key(D), having K as left hand side directly to the two tuples COllcerned.
Consequently, by the chase-proceJure, we identify these both tupies .. Since we da not use TTG D-rules
we get IchaseD(q)1 < Iql.
UD does not admit redundancy then we must prove that key(D) F D. Hence let J(be the left hand
side of an arbitrary but nontrivial F D from D. We know that IchaseD(U K)I < IUK I holds, where
UK = {UK,uR},because UK E re1n(R) \ sat*(D). Actually we have chaseD(UK) = UR, so that for all

17

(ac/be)jUK) with C E attr(R) \ K, ae,be E var(C) with ord(ae) = 1 aBwell aBord(be) = 2, we
have bc 'I. var(ehase D (UK)). Accordingly we know [rom Theorem 5.1., that D F K - C holde for all
CE attr(R). Thus K is a superkey for R wrt. D. Hence key(D) F D.O
Definition 5.2: [8J

Let Rabe a relation scheme of discrete type and D a set of F Ds and MV Ds for R. The relation scheme
R taget her with D ia in 4NF iff

key(D) F D
holds.
Theorem 5.4: Let R be a relation scheme of discrete type and D a set of F Ds and MV Ds for R.

R tagether with D is in 4N F iff D does not admit redundancy.
Proof: If R is in 4N F then we show in the same way aBin the previous theorem, that D does not

admit redundancy. In order to prove the opposite direction of the proposition we will show
key(D) F supkey(D) F D.

If F E D is a F D we have already shown that key(D) F F holds. Therefore let now F = X -- Y
an arbitrary but nontrivial MVD from D. The aBsociated TTGD is (UR; {UXy,uxz}), where Z =
XY. Since F is nontrivial we have {UXy,uxz} E relD(R) \ sat*(D) and because D does not admit
redundancy we get IchaseD({uXy,uxz})1 < j{uxy,uxzll thus chaseD({uXY,uxz}) = UR. The latter
holds bec;:tuse, during the chaBe-procedure, we only substitute variables with higher index by variables
with lower index. However, this means that for all Ge = (ac/be); {UXY, uxz}) we have D F Ge.
Since Ge F=lX - C for all C E X, X is a superkey for R wrt. D. .
Hence for every nontrivial MV D X -- Y from D, X is a superkey for R wrt. D. Thus we have
supkey(D) F D arid obviously key(D) F supkey(D), so key(D) F D. Hence key(D) F=lD. 0
We conclude this section by considering another claBSof dependencies, the join dependencies (J D).
Join dependencies wereintroduced in [12J. In [1] Beeri et al. showed that a subclass of join dependencies,
the so caHed acyclic JDs, are equivalen.t to a set of MV Ds. Hence in the case of acyclic join dependencies
Theorem 5.4 applies as weH. If, however, we allow for cyclic join dependencies then it may happen that
the dependencies da not admit redundancy but key(D) ~ D.
Definition 5.3: Let R(AtlD1" .. ,AnIDn) be a relation scheme. If {An, ... ,Aid ~ {At, ... ,An}

then

is a subscheme of R with degree k.

Definition 5.4: Let R be a relation scheme and 5 a subscheme of R. If r E rel(R) is a partial
relation for R, then by

IIs(r) = {ts E tup(S); there is tR E r with ts = tR I attr(S)}

the projection from r to S is given.

Definition 5.5: Let R be a relation scheme and SI, 52 be two subschemes of R where attr(R) =
attr(5t} U attr(S2). If SI E rel(St} and s2 E rel(S2) then

r = SI D<I S2 = {tr E tup(R); there is tOt E SI, to~ E 82 with tr Iattr(s~) = tOt and tr I att~(S~) = to~},

denotes the (natural) join for SI and 82.

Definition 5.6: Let R be a relation scheme ofdiscrete type and Xl, ... ,X", ~ attr(R) sets of
attributes of R where attr(R) = U(X;; 1 $ i $ k), then

D<I[Xl, ... ,X",J
denotes a join dependency (J D).
Let Si with attr(Si) = Xi, i = 1, .. o,le, be subschemes of R. A relation r E rel(R) IS valid für
D<I [Xl, ... , X",] if

•

•

•
18

r = lISt (r) CXI ••• CXI IIsk (r).
Remark: Let R be a relation scheme of discrete type and CXI [Xl, ... ,Xk] a JD for R. As described

in [13] one can formulate CXI [Xl,"', Xk] as a TTGD in the following way :

For all 1 ~ i ~k create a partial tuple Ui that has a variable with index 1 in all Xi-components
and a variable that occurs in none of the other Uj, (1 ~ j =P j ~k), otherwise. This yields
the TTGD

(t;{Ul, ... ,ud),
where t is a partial tuple that consists only of variables with index 1.

Example 5.1: Let R(A, B, C) be a relation scheme of discrete type, AB _ C, BC _ A F Ds for
Rand CXI [AB, BC, AC] a J D for R.
Let D = {AB- C, BC - A, CXI [AB, BC, AC)}.
The dependencies in D are equivalent to the EGDs Fl, F2 as depicted below.

A B C A B C
Al B2 Cl Al B2 Cl
Al BI C2 Al Bl C2
A2 BI Cl A2 Bl Cl

Al = A2 Cl = C2
EGD F1 EGD F2

Because of D t= {F1, F2} = E we get ehase D (r) = eh ase E (r) for all partial relations r E rel D (R).
Either the applieation of F1 (resp. F2) identifies two tuples or after that the applieation of F2 (resp. Ft)
identifies two tupies.
From this it follows for all r E reID(r) \ sat-(D) that

lehaseD(r)1 = ehaseE(r)1 < [rl.
Thus D doesnot admit redundaney.
Furthermore

key(D) = {AB - C, BC _ A}
holds but

key(D) t= D.
does not hold.
Thus we found a set of I Ds that does not admit redundaney and yet is not logieally implied from keys.

6. Discussion

In the previous section we gave a statie and adynamie characterization of redundancy for the case of a
single relation scherne. Without giving a formal definition for update anomalies as discussed in [5, 6]' we
argue now that a relation scheme that admits redundancy with respect to a set sat of relations will also
cause update anomalies and viceversa if we request that updating of a relation in sat results in a relation
in sat. Informally a relation that contains redundancy with respect to sat contains some information
more than once and hence updating of this information affects more than one item. Viceversa if in a
relation update anomalies with respecL to sat may occur, i.e. more than one item is affecLed if some piece
of information is to be changed, then this means some form of redundancy is contained. As a very simple
example consider sat = {r1, r2, r3} where

{")

, I

e
e'

C E F

~)c
c

B C F

b
b':')e'

c
c

c

B C E

b
b
b'

e
e'
e'

c
c
c

B C E F
b
b
b'

r= (

where Rl = (Empl #, Tel #) und R2 = (Empl #, Project #) indeed gets rid of the redundant storing
of the telephone numher for employees that work in more than one project. So substituting a relation r
for R that satisfies Empl # -+ Tel # by the two projected relations IIRl (r) and IIR, (r) solves the prob-
lem of reduncancy and update anomalies. However, one may easily construct examples where a desired
decomposition into BCN F exists but the update anonialy problem is even worse after decomposition.
Such an example is given in the following: We consider a relation scheme BCEF and dependencies
BC -+ F,CE -+ F. We consider the decomposition (Rl,R2,R3) = (BCE,BCF,CEF). Then each
Rt is in BC N F, the decomposition is a lossless-join decomposition and all functional dependencies are
preserved. Let us now consider the relation r and its projections on Rt as follows:

R = (Empl #, Tel #, Project #)

Now changing 1to 1in the second tuple ofr forces us to change 1also in the other tuples of r, i.e. 3
values are affected. In the decomposed case, we have to modify all f's in r2 and r3!
The above examples show that there are cases where a BCN F decomposition may help in getting rid of
the redundancy (update anomaly) problem and cases ",here it does not help. It is an interesting problem
to provide a criterion that teils üs when decomposition is useful and when it is not. For this a formal
framework has to be given, in which we may talk about redundancy and update anomalies for a set of
relation schemes.

with Empl # -+ Tel #. Then the BCN F decomposition

.;:. .:::~;~;i?'~.:. :~,~:(;,;;~\~\."~;'.",; .' . " .
A.n.\ip~ite::'operatioil?bIi rr modifying g. to g' causes an update. dependency as h and i have to. b~~:~.

• changed' aswelL.Clekly rl, r2, r3 exibit redundancy; In each case a partial relation qi exists that satisfies;.
Iqil $ Iril, qi< ri .and ri = min,at(qi). .

We showedbefore that in the case where sat is characterized by same set offunctional (resp. multivalued)
dependenciesj BCN F (resp. 4N F) is a necessary and sufficient condition to avoid redundancy (and thus
update anomaIies).'

Let us now assume that we have to deal with a relation scheme Rand a set F of functional dependencies,
that admits redundancy (and hence update anomalies). One way to handle this situation could be to
construct a loss-less join decomposition of the scheme into BNCF. Let us assume we found such a
decomposition that also preserves the functional dependencies, as e.g. in the example of [6}, where

•

.~

References

[1] C. BEERI, R. FAGIN, D. MAlER, and M. YANNAKAKIS. On the Desirability of Ayclic Database
Schemes. Journal 01 the ACM, 30(3):479 - 513, July 1983.

[2] C. BEERI and M. Y. VARD!. The Implication Problem for Data Dependencies. Lecture Notes in
Computer Science, vol. 115; 73 - 85. Springer Verlag, New York, 1981.

[3] C. BEERI and M. Y. VARDI, Formal Systems for Tupel and Equality Generating Dependencies.
SIAM Journal 01 Computing, 13(1):76 - 98, February 1984.

[4] C. BEERI and M. Y. VARD!. A Proof Procedure for Data Dependencies. Journal olihe ACM,
31(4):718 - 741, October 1984.

[5] E. F. CODD. A Relational Model of Data for Large Shared Data Banks. Communications 0/ the
ACM, 13(6):377 - 387, June 1970.

;,",}

1,

•

[6] Er F. CODD. Further Normalization of the Data Base Relational Model. In: Rustin, R.: Data B48e~
Systems, Courant lnst. Comp. Sei. Symp. 6, 33 - 64, Prentice-Hall, Englewood Cliffs, N. Y., 1971. '

[7] R. FAGIN. Multivalued Dependeneies and a New Normal Form for Relational Databases; ACM
Transactions on Database Systems, 2(3):262 - 278, September 1977.

[8] R. FAGIN. Normal Forms and Relational Database Operators. In: Proc. ACM SJGMOD, 153":'160,
1979.

[9] R. FAGIN. Horn Clauses and Database Dependeneies. Journal o/the ACM, 29(4):952 - 985, October
1982.

[10] D. MAlER. The Theory of Relational Databases. Computer Science Press, Rockville, 1983.

[11] J. A. MAKOWSKY. Charaeterizing Data Base Dependeneies. Lecture Notes in Computer Science,
vol. 115; 86 - 97. Springer Verlag, New York, 1981.

[12] J. RISSANEN. Theory of Relations for Databases - a Tutorial Survey. Lecture Notes in Computer
Science, vol. 64; 537 - 551. Springer Verlag, New York, 1978.

./
[13] E. SCIORE. A Complete Axiomatization of Full loin Dependeneies. Journ.al 0/ the ACM, 29(2}:373 I

- 393, April 1982. ',. .

[14] J. D. ULLMAN. Prineiples of Database Systems. Computer Seien ce Press, Roekville, 1983i
-';:

[15] M. YANNAKAKIS and C. H. PAPADIMITRIOU. Aigebraie dependeneies. Journal 0/ Computer .
and System Siences, 25:2 - 41, 1982.

. ~.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021

