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Abstract

The purpose of this paper is twofold: First we show in which way the initial
solution of a domain equation for cpo’s solved by the methods of [19] and the
unique solution of a corresponding domain equation for metric spaces solved by the
methods of [5, 14, 16] are related. Second we present a technique to lift a given
domain equation for cpo’s to a corresponding domain equation for metric spaces.
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1 Introduction

The frameworks of cpo’s and complete metric spaces have proved to be very useful for
giving denotational semantics to concurrent programming languages. In various applica-
tions, e.g. {1, 3, 4, 8, 18], one has to solve recursive domain equations in order to obtain
a suitable semantic domain. First [19] presented general techniques to solve recursive do-
main equations in a partial order setting, later [5, 10, 14, 16] considered a metric setting.
[17] considered equations in a category of generalized ultrametric spaces, which summa-
rizes in a sense previous work, as cpo’s and ultrametric spaces are instances of generalized
ultrametric spaces. In the same sense [20] includes previous work.

We are here interested in the following question: what is the effect of the choice of a
mathematical discipline (i.e. cpo or metric) on the semantic domain obtained. Consider,
e.g. the simple equation

X~ {1} UuAxX

(where A is a fixed set) which could arise in the construction of the semantics for a simple
deterministic language with atomic actions a € A. Introducing metric or partial order
is a mathematical tool which helps solving such an equation. We consider equations
that can be handled both in a metric and cpo setting and ask how the solutions are
related. For this we introduce the notions of weak compatibility and of compatibility.
The (initial) cpo solution and the (unique) metric solution of an equation are weakly
compatible if the underlying sets coincide. Compatibility is motivated by semantic needs:
the meaning of a recursive program is obtained as the least upper bound of a monotone
approximation sequence in the partial order setting and is the limit of a Cauchy sequence
in the metric setting. Hence two weakly compatible solutions are called compatible if for
every monotone Cauchy sequence sequence (z,): |lz, = limz,. By this condition we
guarantee that infinite behaviour of processes is treated alike in both approaches.

Some constructs of programming languages, e.g. concatenation of commands (;) are diffi-
cult to model in the partial order setting as they fail to exhibit the necessary monotonicity
property. Other constructs, e.g. unguarded recursion, cause problems when metric is used
as contractiveness cannot be guaranteed. Let us assume that we have an equation in the
category of cpo’s and that one language construct fails to have a monotone semantic de-
scription in the (initial) solution D. Then one might switch from order to metric. We
investigate how this can be achieved.



The paper is organized as follows: Section 2 summarizes and unifies the various known
results concerning the solutions of domain equations using metric resp. order. In section
3 we establish conditions on domain equations that ensure the (weak) compatibility of
solutions. The passage from order to metric is stated in section 4. Examples satisfying the
conditions of section 3 and 4 are given in section 5. Section 6 discusses further research

and open problems. The appendix contains the formal definition of the functors used in
section 5.

2 Solving domain equations in the partial order and
metric approach

In this section we summarize and unify the results of [19] resp. 5, 14, 16] concerning the
solutions of domain equations with partial order resp. metric.

2.1 Initial cones and initial fixed points

We recall the definitions and results of [19] concerning the connection between initial
cones and initial fixed points of endofunctors in arbitrary categories.

Let Cat be a category. A tower in Cat is a sequence (O,,e,),>o consisting of objects
O, of Cat and morphisms e, : O, — O,4; in Cat. A cone of a tower (O,,e,) is a
pair (O, (hn)n>0) (shortly (O, h,)) consisting of an object O of Cat and a family (h,) of
morphisms A, : O, = O in Cat such that h,,,0e, = h, foralln > 0. An initial cone
of a tower (O,,e,) is a cone (O, h,) of (O,, e,) such that for each cone (U, f,) of (O,,e,)
there exists a unique morphism f : O — U with foh, = f, foralln > 0.

Let F : Cat — Cat be a functor. A fixed point of F is a pair (O, f) consisting of an
object O in Cat and an isomorphism f : O — F(O). In this case (O, f) is called an
initial fixed point of F iff for all fixed points (U, g) of F there exists a unique morphism
G : O — U in Cat such that

F(G)of = goG.

(O, f) is called the unique fixed point of F iff (O, f) is an initial fixed point of F such
that for each fixed point of (U, g) of F the unique morphism G : O — U in Cat with
F(G)Yo f = go(@G isan isomorphism.

Lemma 2.1 Let Cat be a category, F : Cat — Cat a fuhctor and Oy an initial object in
Cat. Let (Op,e,) be given by:

On+1 = f(on), €nt1 = f(en)

where ey : Og = F(Oy) is the unique arrow in Cat. Then we have:

(a) If (U, f.) is a cone of (On,e,) then also (F(U), fi) is a cone of (On,e,) where
fo 1 Og = F(U) is the unique arrow Oy — F(U) in Cat and f, , = F(f.). If in
addition (U, f,) is an initial cone then there exists a unique morphism g : U — F(U)

with go fo = F(faz1) foralln >1.



(b) If U, g) is a fized point of F then (U, f,) is a cone of (O,,e,) where fo:Op - U
denotes the unique arrow Op = U in Cat and fop1 = g~ o F(f,).

(¢) If (U, fu) is an initial cone of (On, e,) such that the unique arrow g : U — F(U) with
go fu = F{(fn-1) is an isomorphism then (U, g) is an initial fized point of F. In
this case for each fized point (U', ¢') of F we have: The unique morphism G : U — U’
with ¢’ oG = F(G)og is the unique morphism U - U' with G o f, = g, where
(U', gn) is the cone which is defined as in (b), i.e. Guy1 =9~ 0 F(gn).

In the proof of Theorem 5 we often use the following simple fact:

Lemma 2.2 Let Cat; and Caty be categories and T : Cat; — Caty, F, : Caty — Caty,
Fo : Caty = Caty be functors such that FooZ = To F,. Let (O,¢€) be a fized point of
Fi. Then (Z(0),I(e)) is a fized point of Fs.

2.2 Categories of sets

By a pointed set we mean a pair (X, ) consisting of a set X and an element { € X. {is
called the basis point of (X,&). In the following we write X instead of (X, &). The basis
point of X is denoted by £x. A basis point preserving function X — Y is a function
f: X =Y with f(éx) = & . An embedding projection pair X — Y is a pair < e,c >
consisting of functions e : X = Y and ¢: Y — X such that coe = idy.

Notation 2.3 SET denotes category of sets and functions, SET" the category of pointed
sets and basis point preserving functions. SET® resp. SET*F denote the category of sets
resp. pointed sets where the morphisms are embedding projection pairs resp. basis point
preserving embedding projection pairs.

In section 4 we need the following properties of endofunctors in SET™:

Lemma 2.4 Let K : SET* — SET™ be a functor and f : A - B, g : A — C morphisms
ain SET™. Then:

(a) If f is injective resp. surjective resp. bijective then K(f) is injective resp. surjective
resp. bijective.

(b) If Kern(f) = Kern(g) then Kern( K(f) ) = Kern( K(g) ).

Here for each function f: A — B: Kem(f) = {(,,8)e Ax A f(&) = f(E)}.

2.3 Initial solutions of domain equations for cpo’s
We recall some basic notions of domain theory and fixed point theorems for endofunctors
in order enriched categories. For further details see e.g. [2, 12, 13, 19].

A cpo (complete partial order) is a partially ordered set with a bottom element L where
each monotone sequence (z,) has a least upper bound (which we denote by || z,). If D,



D' are cpo’s and f : D — D' is a function then f is called continuous iff f is monotone
and f(Uz,) = U f(za) for each monotone sequence (z,) in D. f is called strict iff
f(Lp) = Lp. Let D, D' be cpo’s. An embedding projection pair D — D’ is a pair
< e,p > of continuous functions e : D = D’ and p: D' — D such that eop T idp and
poe = idp.

Notation 2.5 CPO denotes the category of cpo’s and continuous functions.

Let D be a subcategory of CPO. Then D denotes the category whose objects are the
objects of D and whose morphisms are strict D-morphisms, DF the category whose objects
are the objects of D and whose morphisms are embedding projections pairs in D.

The forgetful functors D, — SET, D, — SET*, D — SET® resp. Df — SET*? are
denoted by I.,,. Here the basis point of a cpo is its bottom element.

As shown in [19]: Each tower in CPO® has an initial cone.

Notation 2.6 In the following D denotes a subcategory of CPO such that:

(1) The single element cpo {L} is an D-object.

(i) For each tower (D,,tn)n>0 in D the initial cone in CPOF is the initial cone in
DE.

(i) If D, D' are D-objects and f : D — D’ is continuous then f is a D-morphism.

By (i) and (iii) {1} is the initial object in D. E.g. D = CPO or D = SFP (the category of
SF P domains and continuous functions [13]) satisfy (i) - (iii). The categories D, D, and
D?¥ are order enriched where the partial orders on the morphisms are defined as follows:
If f;: D — D’ are D-morphisms, i = 1,2, then:

i E fa &> VzeD: fifz) C fola).

If <ej,c;> D — D, i=1,2, are DE-morphisms then:
<enc> C <eypep> <= (e C e) A E c2)

A functor G : D, — D, resp. G: DZ — DE is called locally continuous if for all D-
objects D, D’ the function Mor(D,D’) — Mor(G(D),G(D")), f — G(f), is continuous.
Here Mor(D, D') means the set of morphisms D — D’ in D resp. DE,

Lemma 2.7 Each locally continuous functor G : DE — DE or G : D, — D, has an
initial fized point.

The construction of the initial fixed point is as follows [19]: Let G : D¥ — DF be a
locally continuous functor and let (D,,t,) be given by: Dy = {L}, Doyy = G(Dn).
Let ¢p be the unique arrow Dy — D, in D? and tny1 = G(tn). Then the initial cone of
(D,,t,) is the initial fixed point of G. More precisely: If (D, A,) is the initial cone of
(Dp,t,) and A : D — G(D) is the unique arrow in D¥ with Mo XA,y = G()\,) then Ais
an isomorphism in DZ and (D, ) is the initial fixed point of G.




Notation 2.8 IfG: D, — D} is a functor then G : D — DF s given by:
GE(D) = G(D), GE(<e,c>) =< Gle), G(c) >

IfG: D, — D, is locally continuous then so is G€ and (D, k) is the initial fixed point of
G where (D, < h,h™! >) is the initial fixed point of GF.

2.4 Unique solutions of domain equations for complete metric
spaces

We recall the definitions and results of [5, 14, 16]. We always require that the underlying
metric dys of a metric space M satisfies dy; < 1.

Notation 2.9 CMSy denotes the category of (empty or nonempty) complete metric spaces
and non-distance-increasing functions, CMS the subcategory of nonempty complete metric
spaces and CUM the subcategory of nonempty complete ultrametric spaces.

Notation 2.10 Let M be a subcategory of CMSy. Then M™ means the category whose o0b-
jects are pointed M-objects and whose morphisms are basis point preserving M-morphisms.
M, resp. M means the subcategory of M resp. M™ where the morphisms are restricted
to embeddings (i.e. distance preserving functions). The objects of M, resp. M are the
objects in M resp. M". MPF resp. M*? denotes the category whose objects are M-objects
resp. M™-objects and whose morphisms are embedding projection pairs in M resp. M™.

The forgetful functors M — SET, M* — SET", M? — SET® resp. M~% 5 SET*F are
denoted by Lepms.

Here an embedding projection pair M — M’ in M resp. M" is a pair < e, ¢ > consisting of
M-morphisms resp. M™-morphisms e : M — M’ and ¢: M’ — M such that coe = idy.
By a pointed metric space we mean a pointed set which is endowed with a metric. @ is the
initial object of CMSp, the single element space the initial object of CMS™ resp. CMSE.
CMS and CMSE do not have initial objects.

Let M, N be metric spaces, AC N, n€ N, <e,c> M — N an embedding projection
pair. Then we put:

éx(mA) = inf {dv(n¢) : (€A}

3(A,N) = sup by(n,A) = sup { inf dy(n,Q) : me \}

neN

Ax(e,c) = sup {dn(e(c(n),n) : €N }.

Here dx denotes the underlying metric on N. If ¢+ : M — N is a morphism in CMSF,
¢t = < e, c>,then we put:
A() = Anle,c)

A tower (M,,.,) in MF is called converging iff for all € > 0 there exists ng > 0 such that

A{tnotpr10...0tn) S €
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for all n > m > ng or equivalently iff lim A(¢,) = 0.

As shown in [5]: Each converging tower in CMSP® resp. in CMS*? has an initial cone. [14]
gives a construction of an initial cone for towers (M, e,) in CMSy where e, : M, = M,
are embeddings. It is easy to see that for M to be one of the categories CMS, CMS*,
CUM or CUM™ and each tower (M,,e,) in M where e,, : M,, - M, are embeddings the
initial cone in CMSy is at the same time the initial cone in M and in M,. The connection
between the initial cones in CMS® and CMS is the following:

Lemma 2.11 Let (M,,t,) be a converging tower in CMSE, 1, = < en,c, >, and let
(M, \,) be the initial cone of (My,t,) in CMSE where \, = < hn,b, >. Then (M, h,)
is the initial cone of the tower (M,,e,) in CMS.

Let M be a subcategory of CMSy. A functor H: M —» M or H: M* — M~ is called
contracting iff H preserves embeddings and there exists a real number C with 0 < C < 1
such that

§(H(e) (H(M)), H(N)) < C-6(e(M),N)
for each embedding e : M — N in M. H is called cut-contracting iff H preserves embed-

dings and there exists a real number C with 0 < C' < 1 such that for each embedding
projection pair < e,c > in M:

AT (H(e),H(c)) < C-Axn(e,c).
H is called locally contracting iff there exists a real number C with 0 < C < 1 such that
A3 (ny (H(f1),H(f2)) < C- dn(f1, f2)

for all morphisms f; : M — N in M. Le. the function Mor(M, N} — Mor(H{M), H(N)),
f = H(f), is contracting with contracting constant C. Here Mor(M, N) means the set
of morphisms A/ — N in M resp. M" and

dn(fi, fo) = sup { dn( filz), folz) ) : z€ M}
for all f, fo» € Mor(M,N).

Let H : M® — MF be a functor. H is called e/p-contracting iff there exists a constant C
with 0 < C < 1 such that

AH() < C-AQ)

for all morphisms ¢ : M — N in M. Note that [5] uses the notion ’contracting’ instead
of our notion 'e/p-contracting’. We decided to use the prefix 'e/p’ (which stands for
'embedding/projection’) to prevent a confusion with the notion 'contracting’ of [14] which
we use for endofunctors of CMSy. H is called hom-contracting iff for all objects M, N
in M the function Mor(M,N) - Mor{(H(M), H(N)), ¢~ H(e), is contracting. Here
Mor(M, N) means the set of morphisms M — N in MZ.

Lemma 2.12 FEach e/p-contracting functor H : CMSE — CMSE has a fized point. If in
addition H is hom-contracting then H has a unique fized point.

Each e/p-contracting functor H : CMS*E CMS™E has o unique fized point.



In both cases the fixed point of H can be constructed as follows {5]: Let My be a metric
space consisting of a single element and let o be a morphism My = H(Mp) in CMS* and
M, = H(M,), tny1 = H(tn). Then the tower (M,,t,) is converging and has an initial
cone (M, A,). (M, A) is a fixed point of H where A is the unique morphism M — H(M)
in CMSE with Ao\, = H(Anzt)-

Notation 2.13 Let M be a subcategory of CMSy and H : M — M a functor. Then
HE : MP — ME is given by:

HE(M) = H(M), HE(<ec>) =< Hle), Hic) >.

(M, h) is a fixed point of H if and only if (M, < h,h~! >) is a fixed point of HE. If H
preserves embeddings then # is cut-contracting if and only if HE is e/p-contracting.

Lemma 2.14 If H : CMS — CMS is locally contracting then 'H has a unique fized point.

The fixed point of a locally contracting functor H can be constructed as follows [16]: The
induced functor HZ is e/p-contracting and hom-contracting. If (M, X) is the unique fixed
point of HE then A = < h,h~! > for some isometry h : M — H(M). (M,h) is the
unique fixed point of H.

Lemma 2.15 LetH : CMSy — CMSy be a functor with H(B) # 0. If H is cut-contracting

or contracting then H has a unique fired point.

The fixed point (M, e) of H can be constructed as follows [14]: Let My = 0 and e
the unique arrow My — H(My) in CMSy and Mny1 = H(M,), ear1 = H(e,). Then
(M,,e,) is a tower in CMSy such that e, : M, — M, are embeddings. If (M, h,) is
the initial cone of (M,,e,) in CMSy then the unique morphism e: M — H(M) with
H(h,) = eoh,y is an isometry and (M, e) the unique fixed point of H.

It is easy to see that this result of [14] carries over to the pointed case. Here we have to
deal with the tower (H"(Mp), H"(eg)) where My = {zo} is the initial object in CMS™ and
eo the unique arrow My — H(Mp) in CMS*. We obtain:

Lemma 2.16 FEach cut-contracting or contracting functor H : CMS™ — CMS™ has a
unique fized point.

The connection between the fixed point theorems of [53] and [14] is as follows: If F is a
cut-contracting endofunctor of CMSy with F(B) # 0 then F(M) # @ for all complete
metric spaces M. Hence F can be restricted to an endofunctor H of CMS. The induced
functor HF is e/p-contracting. The result of [5] (Lemma 2.12) ensures the existence (but
not the uniqueness) of cut-contracting endofunctors of CMSy. Vice versa the result of [14]
(Lemma 2.15) ensures the existence and uniqueness of the fixed point of e/p-contracting
endofunctors of CMS? which are induced by a cut-contracting endofunctor F of CMS,

with F(0) # 0.

Notation 2.17 In the following M denotes a subcategory of CMS such that:

(i) Each metric space which consists of a single element is an object in M.



(ii) For each tower (M,,e,) in M where e, : M, = M, are embeddings the initial
cone in CMSy is the initial cone in M.

(i) Whenever M, M' are objects of M and f : M — M’ is non-distance-increasing then
f is a M-morphism.

Eg. M = CMS or M = CUM are categories that satisfy (i) - (iii). It is easy to see
that the results of [5, 14, 16} remain true when one deals with endofunctors of M. The
proof of {14] for the existence and uniqueness of a fixed point of a contracting functor
H : CMSy — CMSy carries over to each contracting endofunctor of M. Here one has to
deal with the tower (H™(My), H"(eo)) where My = {zo} is the initial object in M. We

summarize:

Lemma 2.18

(a) Each e/p-contracting functor H : ME — MF has a fized point. If in addition H is
hom-contracting then H has a unique fized point.

(b) Each e/p-contracting functor H : M*E — M*F has a unique fized point.

(c) Each cut-contracting functor H : M — M has a fized point.

(d) Each contracting or cut-contracting functor H : M™ — M”" has a unique fized point.
(e) Each contracting functor H : M, — M has a unique fized point.

(f) Each locally contracting functor H : M = M or H : M* - M™ has a unique fized
point.

Notation 2.19 Let H be a functor which satisfies one of the conditions (a) - (f) in
Lemma 2.18. The fized point of H which is constructed as the initial cone of the tower
(H™(Mp),H" (1)) is called the canonical fixed point of H where My consists of a
single element and 1y is an arrow My — H(My) in the underlying category.

In [16] it is shown that the initial resp. unique fixed point of a locally continuous resp.
locally contracting functor CPO; — CPO; resp. CMS — CMS is also an initial algebra
and a final coalgebra. In this paper we do not make use of this result.

3 (Weakly) compatible domain equations

In this section we show the relation between the initial solution of a domain equation
for cpo’s and the canonical solution of a corresponding domain equation for complete
metric spaces (Theorem 1-4). In order to compare the solutions of a domain equation for
cpo’s and a domain equation for complete metric spaces we have to find a criterion which
relates a cpo and a complete metric space. Second we have to say what we mean by ’corre-
- sponding’ domain equations. In section 3.1 we introduce the notion of weakly compatible
domains which means that the underlying sets are the same. Weak compatible domain
equations are those which arise by lifting a domain equation for sets to a metric resp.



cpo equation. In section 3.2 we define compatible domains as weakly compatible domains
which induce equivalent notions of approximability. Compatible domain equations are
those which are given by functors that preserve compatibility.

In what follows D resp. M are subcategories of CPO or CMS that satisfy the conditions
(1) - (iil) of section 2.3 resp. section 2.4.

3.1 Weakly compatible domain equations

We show that the canonical solutions D, M of domain equations for cpo’s resp. complete
metric spaces that arise by lifting a domain equation for sets have the same underlying
set. This ensures that when D and M are used as semantic domain for denotational
semantics (where the same semantic operators on the underlying set are used and display

the necessary continuity and contractiveness properties) then the cpo and metric semantics
coincide.

Definition 3.1 Let D be a cpo and let M be a (pointed) complete metric space. Then D

and M are called weakly compatible iff the underlying (pointed) sets are the same, i.e.
Tepo(D) = Iems(M).

Definition 3.2 Let G : D, - D, and H: M = M be functors. Then G and H are
called weakly compatible iff there exists a functor K : SET — SET such that

KoZpo = Zepo0G and KoZems = Lems 0o H.

Le. the following diagram commutes:

D, g > D,
SET K o SET

Tems T Lems
M H > M

Similary we define weak compatibility for functors G : Df - Df gnd H : ME - MF
resp. G:DF - DF and H :M*E 5 M*Z resp. G: D, =+ D, and H:M™ —» M".

We now show that weakly compatible domain equations have weakly compatible solutions.

Theorem 1

Let G : D = DF be locally continuous and H : ME — MFE (resp. H : ME 5 ME)
e/p-contracting such that G and H are weakly compatible. Then the initial fired point of
G and the canonical (resp. unique) fized point of H are weakly compatible.
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Proof: We only consider the case that H is an endofunctor of M. The argumentation
for H to be an endofunctor of M*Z is similar.

We have to show that there exists a set A, a partial order C on A and a metric d on A
such that (M, k) is the canonical fixed point of H where M = (A,d) and (D, A) is the
initial fixed point of G where D = (A,C). Let K : SET® — SET® be a functor such that

KoZpo = ZpooG and KoZypg = Iems o H.

Let Ag = My = Do = {1} the set resp. complete metric space resp. cpo consisting of a
single element and let ¢ the unique arrow Dy — G(Dy) in DE. 44 can also be considered
as an arrow My — H(Mp) in MF and as an arrow Ay = K(4g) in SETE. We define:

Apyp = }C(An)» Mppl = ’H("Mn), Dnpy = g(Dn)a lnyl = }C(Ln)

Then Zens(Myn) = Zepo(Dn) = An, tnt1 = Hltn), tay1 = G(tn). Let 1, = < en,cp >
and let

A = {(&)nz0 € Mazo 4n 1 calbar) =& }-

By the results of [19] and [5]: A is the underlying set of the initial fixed point of G and of
the canonical fixed point of H. O

Theorem 2

Let G : D, — D, be locally continuous and H : M = M (resp. H : M™ —» M")
cut-contracting or locally contracting such that G and H are weakly compatible. Then
the initial fized point of G and the canonical (resp. unique) fired point of H are weakly
compatible.

Proof: We only consider the case that # is an endofunctor of M.

Let K : SET — SET with KoZypo = Zpoo K and KoZems = Iemso H. It is clear
that

KE :SET® - SETE, KE(4) = K(4), KE(<e,c>) = <K(e),K(c) >

is welldefined and KZ 0 Zopo = Zepo 0 GF, KF 0 Tems = ZLems © HE. Hence GF and H”
are weakly compatible. Since GF is locally continuous and since HZ is e/p-contracting
the functors GZ and HF satisfy the conditions of Theorem 1. The initial fixed point D of
G is the initial fixed point of G and the canonical fixed point M of H is the canonical
fixed point of H#Z. By Theorem 1 the underlying sets of D and M are the same. O

3.2 Compatible domain equations

In order to ensure that the partial order and the metric on weakly compatible domains
induce ‘compatible’ notions of approximability we define compatible domains as weakly
compatible domains where limits and least upper bounds of monotone Cauchy sequences
coincide.

11



Definition 3.3 Let D be a cpo and M o (pointed) complete metric space. Then D and

M are called compatible iff the underlying (pointed) sets are the same and for each
monotone Cauchy sequence (&,):

lim & = || &.

n—00
n>0

The notion 'compatible’ can be lifted to domain equations (or equivalenty to functors):

Definition 3.4 Let ‘H be an endofunctor M and G an endofunctor of D;. H and G are
called compatible iff the following conditions (i) and (i) are satisfied:

(1) If M is a M-object, D a D-object such that M and D are compatible then H{M)
and G(D) are compatible.

(i) If h: M — M' is a M-morphism, g : D — D' a D, -morphism such that M, D and
M', D' are compatible and Toms(h) = Tepolg) then Iems(H(h)) = Zpo(G(9)).

Similary we define compatibility for functors G : DF — DF and H : ME — MF resp.
G:Df - DF and H : M*E - M-E resp. G:D;, =2 Dy and H: M™ > M".

Remark 3.5 Let G : D; - D, and H: M — M (resp. H: M" — M) be functors
such that G and H are compatible. Then GF and HF are compatible.

The following lemma shows that compatible domain equations are weakly compatible.

Lemma 3.6 Assume that M contains all nonempty discrete metric spaces as objects.
Then: If H . M — M and G : D, — D, are compatible then there exists a unique
functor K : SET — SET such that

KoZims = ZemsoH and Koy, = Zpo©o§.

In particular H and G are weakly compatible.

Similar results can be established for compatible endofunctors D; — D, M™ — M~ resp.
D? —» DZ, Mf - MF? resp. D - DF, M*F - M.

Proof: If A is a set then we put: M4 = (A,d) where d denotes the discret metric on 4.
By assumption M, is a M-object. Then Z.s(M4) = A. If f: A — B is a morphism in

SET then f can be considered as a morphism M4 — Mp in M (because of assumption
(iii) about M). Then f is the unique morphism My — Mp in M with Zoqs(f) = f.

Uniqueness: If K is such a functor then for all ob jects A in SET:
K:(.A) = ’C(IcmS(*'wA)) = Icms(H(-’wA))
and for all morphisms f: 4 — B in SET:

K(f) = KZems(f) = Zens(H(S))
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Existence: If A is an object in SET then we define K(A) = Loy (H(M4)). Iff: A > B
is a morphism in SET then f : is a M-morphism M, — Mpg. We define:

K(f) = Icms (H(f)) .

It is clear that K : SET — SET is a welldefined functor with K o Zoy = Zepme 0 H. We
show that K oZ o =Zpo0G. If D is a D-object and A = Z,,(D) then D and M, are
compatible. Since G and H are compatible:

K(Zepo(D)) = K(Zems(Ma)) = Lems(H(Ma4)) = Zepo(G(D)).

Let g : D — C be a morphism in D,. Let A = Z;,o(D) and B = Z,,(C). g can be
considered as a morphism f : A — B is a morphism in SET and also as a morphism h :
My — Mpin M. Le. Ies(h) = f = Zepolg)- Since M4, D and Mg, C are compatible
(this is because Cauchy sequences in discret metric spaces are eventually constant) we
get:

K:(ICPO(Q)) = ’C(IcmS(h)) = IcmS(H(h)) = ICPO(Q(Q))-

We conclude: KoZyp, = Zpo0G. O

Next we show that compatible domain equations have compatible solutions. Moreover we
show that the isomorphisms M — H(M) and D — G(D) are the same.

Theorem 3

Let G : DF — DF be locally continuous and H : ME = ME (resp. % : M*F - M)
e/p-contracting such that G and ‘H are compatible. Then the initial fized point of G and
the canonical (resp. unique) fized point of H are compatible.

More precisely: If (D, \) is the initial fixed point of G, (M, k) the canonical fized point of
H then D and M are compatible and Zcpo(A) = Zems(k).

Before we give the proof of Theorem 3 we present the following corollary:

Theorem 4

Let G : Dy — D, be locally continuous and H : M — M (resp. H: M™ — M") cut-
contracting or locally contracting. If H and G are compatible then the initial fired point
of G and the canonical (resp. unique) fized point of H are compatible.

More precisely: If (D, R) is the initial fized point of G, (M, k) the canonical fized point of
H then D and M are compatible and Tepo(h) = Zems(k).

"Proof: Let §: D, — D, be locally continuous and H: M — M or H : M™ = M~ cut-

contracting or locally contracting such that G and H are compatible. Then the induced
functors GF and HE satisfy the conditions of Theorem 3, i.e. GF is locally continuous
and H¥ is e/p-contracting and GZ, HE are compatible. By Theorem 3 we get: If (D, A)
is the initial fixed point of G and (M, ) the canonical fixed point of H then D and M are
compatible and Z.po(A) = Zems(k). Let A = < h,h7! >, k = <k, k~!' >. Then (D, h) is
the initial fixed point of G, (M, k) the canonical fixed point of H and Zcpo(h) = Zems(k).
O
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Now we give the proof of Theorem 3. We only consider the case that H is an endofunctor
of ME. If H is an endofunctor of M*Z the argumentation is similar. The proof of Theorem
3 can be sketched as follows:

Step 1: If (D,, ¢t.) is a tower in CPO® and (M,, u.) a converging tower in D resp. MZ
such that D,, M, are compatible and Zpo(tn) = Zems(pn) for all n > 0 then the initial
cones (D, A,) and (M, k,) are compatible and Z.po(An) = Zems(kn) for all n > 0.

Step 2: Let G, H be as in Theorem 3 and
Do = IWO = {.L}, Dn+1 = g(D,l), 1\/In+1 = H(.’V[n)

Let ¢y be the unique arrow Dy — D, in DF and let pg be the unique arrow My — M, in
MF¥ which satisfies Zopo(t0) = Zems(i0)- Let tnss = G(tn), tins1 = H(tta). Then the towers
(Dn,tn) and (M,, p.) satisfy the conditions of Step 1. Hence the initial/canonical fixed
points of G and ‘H which are the initial cones of (D5, t,) resp. (M,, 1) are compatible.

In order to show that the initial cones of ‘compatible’ towers in DZ and M¥ are compatible
(Step 1) we use a new category of ’complete metric partial orders’ (i.e. sets which are
endowed with a partial order and a compatible metric). We show that G and H induce
an endofunctor F of the category of complete partial orders. F has an initial fixed point.
This is the initial fixed point of G and the canonical fixed point of H.

Definition 3.7 A cmpo (complete metric partial order) is a tripel (A,C,d) consisting of
a set A, a partial order € on A and a metricd <1 on A such that:

e (A,C) is a cpo.
o (A, d) is a complete metric space.

o (A,C) and (A,d) are compatible.

A homomorphism from a cmpo (A,Ea,d4) into a cmpo (B,Cpg,dp) is a function f : A — B
which is non-distance-increasing w.r.t. ds and dg and strict and continuous w.r.t.C4
and Cp. An embedding projection pair from (A,Ca,da) into (B,Cpg,dg) is a pair
< e,c > consisting of homomorphisms

e . (‘Aa;A;dA) - (Ba;BadB)

c (B’[;.B,dB) - (A’ _C.AadA)

such that coe = idy and eoc Cpg idg.

Definition 3.8 DM denotes the category whose objects are cmpo’s (A,C,d) such that
(A,C) is an D-object and (A, d) an M-object. The morphisms are embedding projection
pairs between DM-objects. The forgetful functors are denoted by:

Jemee : DM — DF, Jemee : DM — M7,
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Note that by the third assumption about D and M the morphisms in DM are those
embedding projection pairs in SET® which are at the same time morphisms in DZ and
ME. 1t is clear that {1} is the initial object of DM.

Lemma 3.9 Let G : DE — DF and #: ME - ME be compatible functors. Then there
exists a unique functor F : DM — DM with

Tgreg = FoJgw,

T oH = FoJome.

cms

Proof: It is easy to see that the functor F : DM — DM which is given by
o F(A,C,d) = (A, T, d) where G(A,C) = (A, C), H(A,d) = (A,d)
o F(<ec>) = GE(<e,c>) = HE(<e,c>)

. . : ] cmpo —_ cmpo cmpo — mpo
is the unique functor which satisfies J5oP° 0 G = F o JguP°, JaP® o H = F o Jompe.
a

Definition 3.10 A tower (A,,t,) in DM is called converging iff the tower (M,,1,) in
CMSE is converging where M, = J™°(A,).

Lemma 3.11 FEach converging tower in DM has an initial cone.

More precisely: Let (An,t,) be a converging tower in DM, where A, = (A,,C,,d,) and
tn = < en,¢, >. Then the initial cone (A, A,) of (A, tn) in DM satisfies:

o (D, \,) is the initial cone of (Dy, 1) in D¥ where D = JZmP°(A), D, = JEmP°(A,).
o (M, ),) is the initial cone of (M, 1) in MF where M = J™P°(A), M, = JEmP2(A,).
Proof: Let A = (A,C,d) and A\, = < h,,b, > be given by:
A = {(&ro € Tiso Ar @ & = ci(&ks1) }
(&) C (ye) <= & Gk ye VE20

d( (€k)r>0, (Me)kz0 ) = sup { de(&e,m) : K20}

hn . An - A-; hn(g) = ( en,k(g) )kZOa bn 1A > Ana bn( (€k)k20 ) = En

Here e, : A, = A is given by

ida, : ifk=n

€k—10€nm_20...0e, : ifk>n
€nk =
CkOCmg10...0Chy : ifk<m.



C denotes the partial order on Dy and dj the metric on M. By the results of [19] resp.
[5]: (D, A,) is the initial cone of (D,,,) in DZ and (M, ),) is the initial cone of (M, )
in ME. In particular: M is a complete metric space and D a cpo.

Claim 1: Ais a cmpo and A, : A, = A morphisms in DM.

Proof: Let (£(),5¢ be a monotone Cauchy sequence in A where £ = (&™) ,n>0 then:
(¢{M),,50 are monotone Cauchy sequences in the cmpo’s A, and

lim € = (lim €)= (Ll ﬁ'('?)) = U &
- m2>0

n>0 n20

Since A, : D, = D and A\, : M,, - M are morphisms in DE resp. ME we get that A\,
are morphisms A, = A in DM. In addition A, 0¢, = A,
Claim 2: (A, \,) is the initial cone of (A,,t,) in DM.
Proof: By Claim 1: (A, A,) is a cone of (A, tn).
Let (B,k,) be a cone of (A,,t,), B = (B,Cg,dB), kn = < gn,a, >, C = (B,Cp),
N = (B,dg). Then (C,&,) resp. (N,k,) is a cone of (D, t,) resp. (Mpn,t,) in DF resp.
ME. Since (D, A,) is the initial cone of (D,,t,) there exists a unique morphism

kK =<g,a> D->C
in D? with ko), = k,. Hence goh, = g,and byoa = a,.

If ¥ : A — Bis a morphism in DM with ' 0o A\, = &, then ¥ : D — C is a morphism
in D€. By the uniqueness of x as a morphism D — C in D¥ with ko A\, = K, we get
K=K.

Now we show that x : A — B is a morphism in DM. We have:

g = 1] gnoba, a = |] hnoan
n>0 n>0
Since (M, \,) is the initial cone of (M,,:,) & =< ¢,d >: M — N is a MP-morphism
with K oA = k, where ¢ = lim g,0b,, d = lim h,oa,. We conclude: For each
¢ € A and ¢ € B the sequences (¢,(ba(£)))n>0 resp. (hn(@a(C)))n>0 are monotone Cauchy
sequences in the cmpo’s B resp. .A. Hence

46 = lim 0.60.(6) = L] 0:(6a6)) = 9(6),

n>0
4O = Jim halenl®) = U Alan(©) = o(0)

le.k =<g,a>=<g,a >= & isamorphism in D¥ and in M?. Hence x: A — B
is a morphism in DM. O

We show the following stronger version of Theorem 3:

Lemma 3.12 Let G : DP — DF be locally continuous and let H : MF — MF be e/p-
contracting such that G and H are compatible. Let F : DM — DM be the unique functor
with

Jeme oG = FoJumme and JuwooM = FoJu

(see Lemma 3.9). Then F has an initial fized point (A, X) and:
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o (M, ) is the canonical fized point of H where M = JEPo(A)

H

o (D, ) is the initial fired point of G where D = Jgup°(A).

Proof: Let Ay = {L} be the initial object in DM, ¢ the unique arrow Ay = F(Ay) in
DM and A,.+1 = F(A,), tnr1 = F(n). Let

M, = JEP(A,), Dn = JEmo(A).

Then Mny1 = H(M,) and Doy, = G(D,). Since H is e/p-contracting (M,,t,) is a
converging tower in M?. Hence (A,,,) is a converging tower in DM. By Lemma 3.11:
The initial cone (A, A,) of (An,t,) exists and (D, A,) resp. (M, A,,) is the initial cone of
(Dn, An) Tesp. (M, ),) in DZ resp. ME where

D = Jg(A), M = JP(A).

Let A : A — F(A) be the unique morphism in DM with Ao A, = F(A,-;) (which exists
by Lemma 2.1(a)). A is a morphism D — G(D) in DF satisfying Ao X, = G(A._y).
Hence A is an isomorphism and (D, A) the initial fixed point of G. In particular X as a
morphism in DM is an isomorphism. By Lemma 2.1(c): (A, A) is an initial fixed point
of F. X as a morphism M — H(M) in M satisfies Ao A, = H(\._1). Hence (M, \) is
the canonical fixed point of H. O

D* G .
locally continuous
a A
cmpo cmpo
‘7(:[)0 jcpop
DM v > DM
cmpo cmpo
j;:msp Jcmsp
v
M I > MPF

e/p—contracting

4 Lifting of endofunctors of CPO, to endofunctors
of CUM

In this section we show how a given domain equation for cpo’s can be lifted to a ’corre-
sponding’ domain equation for pointed complete ultrametric spaces and in which way the
solutions are connected. In general we cannot guarantee that there exists a corresponding
domain equation in the whole category CMS but in the subcategory CUM; (the category
of pointed complete ultrametric spaces and embeddings). The induced domain equation
in CUM, is some new sense contracting which we call 'T-contracting’. We show that the
induced metric equation has a unique solution which is compatible to the initial solution
of the cpo equation.
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Definition 4.1 Lety:[0,1] = {0,1,3,4,5,...,} be given by: v(0) =0 and

1
5 7€) < & <)
for all0 < € < 1. The functor T' : CMS — CMS 1is given by:
N(M,d) = (M,vod), T(f) = f.
In the following we write ['M instead of I'(M,d). If M is a subcategory of CMS then

I'M denotes the subcategory of M whose objects are those objects M in M such that
M =TI'M and whose morphisms are M-morphisms between I'M-objects.

If H: M — M is a functor with I' o = H then H(M) is an object in I'M for all objects
M in M. In particular, if (M, e) is a fixed point of H then M is an object in 'M.

Definition 4.2 Let M be a subcategory of CMS and H : M — M a functor. H is called
I'-contracting iff ToH = H and H|I'M — I'M s contracting.

In the following theorem we deal with I-contracting endofunctors of the category CUM.
Since [ CUM satisfies the conditions (i) - (iii) of section 2.4 we obtain by Lemma 2.18(e):

Lemma 4.3 Fach I'-contracting functor H : CUM, — CUM, has a unique fized point.

We now present the main result of this section which asserts that each domain equation for
cpo’s which is a lifting of a domain equation for pointed sets induces a weakly compatible
domain equation for pointed complete ultrametric spaces such that the initial solution of
the cpo equation and the unique solution of the metric equation are compatible.

Theorem 5

IfG:D, — D, is a locally continuous functor and K : SET™ — SET™ a functor with
Tpo0oG = Kol

then there exists a ['-contracting functor
H: CUM, —» CUM,

with Tomso M = K oZyys and such that: If (M, k) is the unique fized point of H and
(D, h) the initial fized point of G then D, M are compatible and Z.po(h) = Zcms(k).

D'L locally c%nt.inuous s Dl
Z'(:po Icpo
v v
SET" K > SET"
A
Icms Icrns
CUM; H > CUM:

F—cont.mct.ing
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In the rest of this section we give the proof of Theorem 5. The main idea for the proof is
the use of rank orderings as in [9] which are special kinds of ultrametric spaces. As in [7]
the notion of a rank ordering is adapted to cpo’s. The proof can be sketched as follows:

Step 1: If G : D, — D is locally continuous then G induces an endofunctor G,,, of the
category of rank ordered D-objects. The initial fixed point D of G can be endowed with
a rank ordering such that D is the initial fixed point of G,nx.

Step 2: If G : D, — D, is a locally continuous functor and K : SET* — SET" and a
functor such that Z ., 0 G = K 0 I, then K induces an endofunctor F of complete rank
ordered sets (i.e. rank ordered sets where the associated ultrametric space is complete).

Step 3: Let G, K, F be as in Step 2 and D as in Step 1. Then F induces a I'-contracting
functor H : CUM, = CUM; with .0 H = K 0 Z.ys. The rank ordering on D induces
a metric on D that turns D into a complete ultrametric space which is the unique fixed
point of H.

In section 4.3, Lemma 4.17, we give the definition of the functor G.... Section 4.2, Lemma
4.9(c) and (d), shows how to define the functors F and H. The complete proof of Theorem
5 (using Lemma 4.9 and Lemma 4.17) is given in section 4.4.

4.1 Rank ordered sets

Rank ordered sets are introduced in [9]. They are closely related to projection spaces [11].
Rank ordered sets are special kinds of pointed ultrametric spaces. In Lemma 4.7 we show
the converse: pointed ultrametric spaces can be considered as rank ordered sets.

Definition 4.4 Let M be a pointed set. A rank ordering on M isa family® = (7,)u>0
of functions m, : M — M such that

(7) Th O, = MpO0T, = T, fOT all 0 < n<m.
(i) If &, n€ M and 7,(§) = mu(n) for alln >0 then & = 1.
(i) mo = A.&ur

Let (M,7) be a rank ordered set (i.e. M is a pointed set and 7 a rank ordering on M).
Then

A€ &) = inf { - m(6) = m(6) |

is an ultrametric on M and d[#] = v o d[F]. We say that a rank ordered set (M, ) is

complete iff the induced ultrametric space (M, d[7]) is complete. If d is metric on M then
vyod = d[#] if and only if for all &, & € M:

d(é,&) < 1/ = m(&) = m(&)
In this case we say that 7 is a suitable rank ordering for the pointed metric space (M, d).

Definition 4.5 Let (M, %), (N, i) be rank ordered sets. A function f: M — N is called
rank preserving iff fom, = pa,of for all n>0. f is called o rank preserving
embedding iff f is rank preserving and injective.
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Because of fomy = pg o f rank preserving functions always preserve the basis point.

Lemma 4.6 Let (M, ) and (N, ji) be rank ordered sets and f : M — N a function.
Then: f is non-distance-increasing w.r.t. d[#] resp. d[ii] if and only if

pno fom, = ,u-nof

for all n > 0. If f is rank preserving then f is non-distance-increasing. If f is a rank
preserving embedding then f is an embedding of the metric space (M, d[7]) into the metric
space (N, d[g]).

The next lemma shows that each pointed complete ultrametric space M can be endowed
with a suitable rank ordering. In addition it shows that for any suitable rank ordering on
a complete rank ordered set M and for any basis point preserving embeddinge : M - N
there exist a function ¢ : N — M and a suitable rank ordering on N such that e and ¢
are rank preserving. This result is needed for the lifting of a given endofunctor of SET*
to an endofunctor of CUM; (Lemma 4.9).

Lemma 4.7 For each pointed ultrametric space (M, dy) there exists a rank ordering 7
on M such that d[T] = vyody.

If (M,dy) and (N,dx) are pointed complete ultrametric spaces and e : M — N a
basis point preserving embedding then we have: If T is a rank ordering on M with
vody = d[TT] then there exist a rank ordering i on N with vody = d[a] and a
basts point preserving function ¢ : N — M  such that the following conditions are satis-

fied:

(i) e and ¢ are rank preserving w.r.t. T and [i, t.e. p,o0e = eon, and T,0C = CO U,
foralln > 0.

(ii)) coe = idy and 6( e(TM), TN ) = Arx(e,c)

Proof: If (M,d) is a pointed ultrametric space and XA = (Mn)n>0 a family of functions
An: M — M then we say A a pre-ranking iff the following conditions are satisfied:

o dEN(E) < 1/2°
o M(§) =M(n) = dn) < 1/20
o )¢ is constant with A\g(§) = &y forallé e M

B(&,r) denotes the closed ball in M with center £ and radius r. I.e.
Br) = {neM : d§n) <t}

Claim 1: For each pointed ultrametric space (M, d) with d < 1 there exists a pre-ranking.

Proof: Let B = {B(£,1/2") : £ € M,n € INo}. By the axiom of choice there exists a
function A: B — M with A(B) € B for all B € B and A(M) = &y. Then A = (A\.)u>0
is a pre-ranking on M where

M = A( Ble52) ).

20




Claim 2: Let (M, d) be a pointed ultrametric space with d < 1. If Aisa pre-ranking on M
then rank()) is a rank ordering on M with yod = d[rank())] where rank(\) = (Ta)n>0
is defined as follows:

T(€) ¢ ifd(ma(€),6) < 1720
o = Ao, Tntri(€) =

An+1(§) : otherwise.

Proof: Since mg = A9 we have mo(§) = &pr for all £ € M. We show by induction on n:

(i) d(ma(§),€) < 1/27
(ii) d(§,n) < 1/2" <= m (&) = ma(n)

(i) T, 0mm = oM, = M, forall0<m<n

Then by (ii): If m,(§) = ma(n) for all n > 0 then d(¢,n) = 0 and hence £ = 7. By (iii)
(7a)n>0 is a rank ordering on M. (i) and (ii) imply that v o rank{A].

The basis n = 0 is clear. Step of induction n = n + 1:

(i) If € € M then d(m.1(€),€) < 1/27 since d(Any1(€),€) < 1/27FL

(ii) If d(¢,n) < 1/2"*! then by induction hypothesis m,(§) = m.(n). Hence (by the
triangle inequality)

1
d(1a(€),6) < 5o = dlm@).n) <
We get:

o T d(ma(€),6) < 1/2°*) then mop1(€) = Tal€) = (1) = Tara(1).
o If d(7,(€),€) > 1/2" " then mo41(€) = Ms1(§) = Aapi(m) = Turr(m).

If Tp41(€) = mas1(n) then by (i) and the triangle inequality:
d(&,n) < max { d(§ man1(€), d(Tasa(n),m) } < 1/27F

(iii) If 0 < m < n then by induction hypothesis: T,(Tn(§)) = 7m(€). Hence

d(mp(mm(£)), ™m(§)) = 0 <

and therefore T, 1(Tm(€)) = ma(Tm(€)) = Tm(€).
If0<m<n+1then (by (1)):

d(ma1(6),€) < 1/271 < 1/2™

Then by (il): T (mns1(6)) = Tm(E):
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Claim 3: Let (M, dy), (N, ) be pointed ultrametric spaces, e : M — N a basis point
preserving embedding and % = (7,)n50 a rank ordering on M with d[#] = 7 o0dy,. Let

B = {B(n,1/2") :n€ N,n > 0}.
Then:

(i) Foralln > 0 and n € N we have: 7, | e"'(B(n,1/2")) = N is constant.
(i) There exists a function A : B = N such that
e \(B)ye Bforall BeB
o If B = B(n,1/2") then A(B) = e(m.(£)) for all ¢ € e™'(B).
(iti) A = (An)n>o0 is a pre-ranking on N where A, (7) = A( B(n,1/2") ).

(iv) Let i = rank(}\) be the associated rank ordering (Claim 2) then eom, = p,oe
for all n > 0. Le. e is rank preserving w.r.t. # and f.

Proof:

(i) If B = B(n,1/2") € B and e(§), e(¢') € B then

du(6,€) = dy(e().e(€)) < max {dy(e(€)n), dw(ne(€)} < o

Hence m,(§) = m,(¢'). Le. we get that 7, | e”!(B) — M is constant.

(ii) If B € B, e7!(B) # 0 then let A(B) € M denote the value of the constant function
m,le"(B) = M. For each B € B with e™'(B) = 0 let ng be an arbitrary point in
B (axiom of choice). Then A: B = N,

{e(.f\(B)) . if e"1(B) # 0
A(B) =
7

B . otherwise
is a function which has the desired properties of (ii).

(iii) X is a pre-ranking:
Forall{ e N: X, (&) = A B(§,1/2%)) € B(£,1/2"). Hence

dn(6, () < =

If A.(€) = An(n) then

1

dN(€777) S max { dN(fv )‘n(é.))v dN(/\n(T]) ’7) } S ’é:

On the other hand: If dn(&,7) < 1/2" then B(£,1/2") = B(n,1/2"). Hence
() = A(B(§1/2%) ) = A(B(n,1/2%) ) = Auln).
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. oy

Let £ € N. Then B(£,1) = N (because of the assumption dy < 1). By definition
A(N) is the value of the constant function g, i.e. A(N) = &y. Hence
M(€) = AN) = e(A(N)) = e(fm)-

Since e is basis point preserving: A\o(§) = e(éy) = En.

(iv) Let i = rank()) be defined as in Claim 2. We show by induction on n that
€0, = UpOE.
Basis of induction n = 0: Since e is basis point preserving and my(&) = £ur:
po(e(§)) = Mol e(€)) = &v = elbw) = e(m(¢)).

Step of induction n => n + 1:

o B dy(ma(€),6) < 1/2°* then mayy(§) = mMupa(ma(€)) = ma(€). By induction
hypothesis and since e is an embedding:

dn( pa(e(©)), e(€)) = du( e(na(€)), e(6) ) = du(mal£),6) < —

= 9n+l’

Therefore pini1(e(§)) = pnti1(pa(e(€))) = pa(e(€)). Again by induction hy-
pothesis:

pnti(e(§)) = pa(e(§)) = e(m(§)) = e(mnsi(§))-
o If dy(mn(£),€) > 1/2™! then by induction hypothesis

dn( pn(e(€)), e(€) ) = dn(e(ma(é)), e(€) ) = du(ma(£),8) > 2n1+1-

Hence by definition of p,+1, Ant1 and by (ii):
par1(e(§)) = Nari(e(€)) = A(B(e(€),1/2") = e(mny1(€))-

Claim 4: Let (M,dy) and (V,dy) be pointed complete ultrametric spaces, 7 resp. ji
rank orderings on M resp. N with yody = d[7]| resp. yody = d[g]ande: M - N
a rank preserving embedding. Then there exists a function ¢: N — M such that

e coe = Iidy
o drx(e(c(n)),m) = orn(n, e(M))
e cis rank preserving.
In particular: ¢ is basis point preserving and Aryx(e,c) = 6(e(TM),T'N).

Proof: W.lo.g. 'M = M,T'N = N. Then dy = d[7], dy = d[fi]. Let Z: N — Ny U {0}
be given by

=(n) = sup { n>0: et <B(77, %)) #0 }
and let

B(n,1/25M) : if Z(n) # o0
B(n) = {

{n} : otherwise.
Then for all n, ¥ € N:




() If dy(n,7) < 1/2* then

e either Z(n) ==(1/) <k, B(n) = B(7)

o or Z(n), Z(7) > &, B(n)ﬂB(n’) C B(n,1/2¥) = B(7,1/2¥)
(II) 2(n) =0 <= neEeM)

(I) and (II) are easy verifications. In (II) we need the completeness of M. (II) implies
that for all n € N:

e”'(B(n)) # 0

If 2(n) = oo then e™'(B(n)) consists of a single element (since e is injective). Otherwise
):

for all ¢, & € e™}(B(n)): Since e(£), e(¢') € B(n):

d(6.€) = dn(e©.e(€)) < 727

and therefore m=z(;)(§) = mz(;(¢'). Hence we may define c: N — M as follows:
cln) = Te(€) where € € e (B(n)) and me(8) = €
Now we show:
(A) coe = l.dM
(B) dw(e(c(n),n) = dx(n,e(M) (= inf {dn(e(§),n): £ € M})
(C) cou, = mao0c
ad (A): Since Z(e(§)) = oo and Ble(¢)) = {e(§)} we get c(e(§)) = E&.
ad (B): If é5(n,e(M)) = 1/2™ then B(n,1/2") Ne(M) # 0 for all n < m and
B(n,1/2™ ) ne(M) = 0.
- Le. Z2(n) = mande(c(n)) € B(n) = B(n,1/2™). Hence

deele(n)), 1) S g = Sl e(M).
On the other hand dx(n,e(M)) < dn(e(c(n)),n).

ad (C): Let n € N, Z(n) = m, ¢(n) = mn(§) where £ € B(n).
Case 1: 0<n <m. Since dy(u,(n),n < 1/2™

g€ e (Bn12)) = ¢ (B (mm5) ).

Therefore
Epa(m) 2 7m0 clpa(m) = m(¢)
where k = Z(u.(n)) and £ € e~ (B( 2(n),1/25) ) Then k£ > n and



We have to show that m,(£§) = c(un(n)). Therefore we have to show that 7,(€) = m(¢&):
Since & > n and dn(ua(n),e(&')) < 1/2% we get:

pa(n) = pme(pa(n) = pe(e(€))

Thercfore
tn(e(§)) = palpr(e(€))) = palpa(n) = pa(n).

Since e is a rank preserving embedding:

du(12(€), &) = dn(e(ma(¢)),e(€)) = dnlua(e(€)),e())

= dum(n),e(€) <
Hence me(m,(&')) = me(£'). Since k > n: m,(&) = me(ma(¢)). Hence

me(€) = m(£).
Since £ € e~!(B(n,1/2")):

dvlel@)n) < o5
Since pa(n) = pa(e(€)): .
dV(un(n)ve(gl)) < 5;
We get:
dv(e(€),e(§)) < max{ dv(e(§),n),dn(n, pa(m), dn(pa(n), e(§)) } < QL,

Since e is distance preserving:

dl(6,€) = dy(el€)el€)) < =

We conclude: (&) = m.(§) = . ().
Case 2: n>m. Then by (I): Z(ua(n)) = =Z(n) = mand B( p.(n) ) = B(n). Hence
by definition of c¢:

c(pa(m) = c(n) = Tm(§)
where £ € e"}(B(n)). Therefore m,(c(n)) = ma(mm(£))

]
3
3
=

Il

C(Nﬂ(n) ) .0

4.2 Lifting of endofunctors in SET* to endofunctors in CUM;

We present a technique to lift endofunctors of SET™ to I'-contracting endofunctors of
CUM. Given an endofunctor of SET™ we define an endofunctor of the category of com-
plete rank ordered sets and then an endofunctor of CUM,.
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Notation 4.8 CRankSET" denotes the category whose objects are complete rank ordered
sets and whose morphisms are rank preserving functions. CRankSET, denotes the sub-
category of complete rank ordered sets and rank preserving embeddings as morphisms.

Zrunk denotes the forgetful functor CRankSET" — SET*. M : CRankSET. — C UM;
15 given by:
MM, 7) = (M, d[7]), Ml(e) =e.

Note that by Lemma 4.6 rank preserving embeddings (which are by definition rank pre-

serving injections) are embeddings of the underlying metric spaces. Hence M is wellde-
fined.

Given an endofunctor K of SET™ we present conditions that allow the definition of a
functor F : CRankSET" — CRankSET". These conditions are satisfied when K has
a lifting G on the category D, (as it is the case in Theorem 35, see Claim 1 in section
4.4). We show that this functor F preserves embeddings and hence can be considered
as endofunctor of CRankSET,. Then Lemma 4.7 ensures that F (as an endofunctor of
CRankSET) can be lifted to a I-contracting endofunctor H of CUM.

SETr —XK L  SET
A \
Irank ﬂ Irank
CRankSET. ——F & CRankSET:
M M
com:  —H o cUM

Lemma 4.9 Let K : SET" — SET" be a functor. Then for each rank ordered set (M, 7):
K(7) = (7 )n0, T = An.basis point of K(M), ., = K(m,)

satisfies the conditions (i) and (i) of rank orderings (Definition 4.4).

Now we assume that K satisfies the following two conditions: For each complete rank
ordered set (M, 7):

(1) IfE, € € K(M) with K(m,)(€) = K(m,)(&) for alln >0 then & = €.

(II) Whenever (n,) is a sequence in K(M) such that K(7,)(n,) = K(m,)(nm) for all
m > n > 0 then there exists n € K(M) such that for alln > 0:

K(ma)(n) = K(ma)(na)

Then we have:

(a) For all cornplete rank ordered sets (M, 7): K(%) is a rank ordering on K(M) and
the rank ordered set (K(M),K(#)) is complete.
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(b) If &, i are cornplete rank orderings on a pointed set M with M(M, %) = M(M, fi)
then

MK(M),K(7)) = M(K(M),K(4)).
(¢) The functor F : CRankSET" — CRankSET" which is given by
F(M,7) = (K(M),K(7)), F(f)=K(f)
is welldefined, preserves rank preserving embeddings and Zaqk © F = K 0 Tpppx.

(d) The functor H : CUM, — CUM, which is given by
H(M) = M(F(M, 7)), H(e) = K(e)
1s welldefined, ['-contracting and satisfies
MoF = HoM, ImsoH = KoZ .

Here F is considered as functor CRankSET,; — CRankSET;, and #¥ is a fized rank
ordering on M with yody = d[#™] (Lemma 4.7 and aziom of choice for classes).

Proof: By definition @ is constant and its value is the basis point of K(M). Since
K(m,—1) = m, is basis point preserving (by definition of morphisms in SET™) we get:

Ty O M, = W,0my = T,
Ifn,m>1,k = min{n,m} then

/

mom, = K(fpoy 0 Tmey) = K(mee)) = 7.

Hence by assumption (I) K(#) is a rank ordering on K(M). It is easy to see that assump-
tion (II) ensures the completeness of the rank ordered set (K(M), K(7)).

If M(M,%) = M(M, i) then we have:

W@ =€) = dul€) S 5 = () = walE)

Therefore by Lemma 2.4(b):

! /

() = m@) <= p(n) =pn).
Le. d[K(7)] = d[K(g)]. Hence M(K(M),K(7)) = MK(M),K()).

For each rank preserving function f : (M, #) — (N, i) we have:

K(f)om, = K(f)oK(ma-1) = K(foma1)

= K(pn-10f) = K(pn-1) o K(f) = £, 0 K(f).

Le. K(f) is rank preserving w.r.t. K(%) and K(f1). Hence F is welldefined (by (a)). It is
clear that T,k 0 F = Ko Zank.




If f is a rank preserving embedding then f is injective. By Lemma 2.4(a) K(f) is injective.
Le. K(f) = F(f) is a rank preserving embedding. Hence F preserves rank preserving
cmbeddings.

Let M, N be objects in CUM; and let e : M — N be an embedding. First we show that
K(e) is an embedding
M(F(M, 7)) = M(F(N,7V).

By Lemma 4.7 there exist a rank ordering fi on N with
Yo dN = d[ﬁ]

and a function ¢ : N = M with coe = idy such that e and c are rank preserving w.r.t.
M and ji and

6( e(TM),I'N) = Arwn(e,c).

By (c) we get that K(e) and K(c) are rank preserving w.r.t. K(7#) and K(f1). Hence
K(e) and K(c) are non-distance-increasing w.r.t. d[K(7)] and d[K(#)] (Lemma 4.6). Since

K(c)oK(e) = K(coe) = K(idy) = idic )

we get that K(e) is an embedding M(K(M),K(74)) — M(K(N),K(f)). By definition
of #V we have: d[#¥] = d[fi]. Hence

M(N,E) = M(N, 7).
Then by (b):

M KN, K@Y)) = M(K(M), K(@)) .
Hence c is an embedding M(F(M, 7)) — M(F(N,7V)). Le. H is welldefined. It is
clear that H satisfies: Mo F = H oMand Z.ns o H = Ko Zeps.

Now we show that H is [-contracting. It is clear that ToH = H. Let e: M — N be
an embedding, 'M = M and '’N = V. Let ¢ be as above. Then

5(e(M),N) = Ay(e,c).
We assume that Ay(e,c¢) = 1/2" for some n > 0. Then

1

di\;( 6(0(77))’ n ) on

for all n € N. Hence by Lemma 4.6: 7 oeoc = 7 for alln > 0. Then

IA

K(n¥)o K(e) o K(c) = K(n¥)

n

for all n > 0. Let d denote the metric on H (V). Then by definition of H:

ae ) = it { s - KEHE© = KENE) |

where inf( = 1. Hence for all n € H(V):

28



Since H(e) = K(e) (or more precisely Z.ms(H(e)) = K(e)):

We conclude:

5(He) (M), HIN)) < Ay (He)H() <

a

Remark 4.10 There exist endofunctors K of SET" and rank ordered sets (M, #) such
that () is not a rank ordering on K(M). For instance consider the functor M s P, (M),
f = MA.f(A). Here P,(-) means the collection of all nonempty subsets of (). Let X be
a nonempty set. X (the collection of all finite or infinite sequences over X) with the
empty sequence as basis point can be endowed with the rank ordering (7,) where m,(w)
is the n-th prefix of w. Then

Pa(ma)(X™) = Pa(m)(X®) Vn >0

where X~ means the set of all finite sequences over X. IL.e. P,(7) is not a rank ordering
on P,(X>).

4.3 Rank ordered cpo’s

As in {7] we introduce the notion of a rank ordered cpo which means a cpo with a suitable
rank ordering. In Lemma 4.17 we show that each locally continuous endofunctor G of D
induces an endofunctor G,k of rank ordered D-objects such that the initial fixed point
of D endowed with a suitable rank ordering is the initial fixed point of G,.x-

Definition 4.11 Let (D,C) be a cpo. A rank ordering on (D,C) is a rank ordering
T = (Tn)n>0 on D (where the basis point of D is Lp) such that m, is continuous and
T, T idp for alln > 0. A rank ordered cpo is a tripel (D,C,7) consisting of a cpo

(D,C) and a rank ordering @ on (D,C).

The following lemma shows that a rank orderings on cpo D induces a complete rank
ordered set such that D and the associated metric space are compatible. The proof is
omitted. It can be found in [7].

Lemma 4.12 Let (D,C, %) be a rank ordered cpo. Then (m,)n>0 is monotone and

U Tp, = ldD

n>0
(D, %) is a complete rank ordered set and (D,C), (D, d[7]) are compatible.

Lemma 4.13 shows the converse of Lemma 4.12. It asserts that each complete rank ordered
set induces a compatible rank ordered cpo.
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Lemma 4.13 Let (M, ) be a complete rank ordered set. Then
D(M,7) = (M,C)
is a cpo and T a rank ordering on D(M, ) where the partial order C is given by:
¢Cn = {=nV InelN¢{=mn)

D(M,7) and (M,d[7]) are compatible.

If (M, 7) and (N, fi) are complete rank ordered sets and f : M — N is rank preserving
function then f as a function D(M,%) — D(N,ft) 1s strict and continuous.

Proof: Let D = D(M,#). It is easy to see that C is a partial order. Since

Em = m(§) C ¢

the basis point of M is the bottom element of D. We put

Teo(§) = &

forall{ € M. Then { T ¢ impliesé = m,(¢&') forsome m € INgU {o0}. If ¢ T ¢ and
§ C & then € = mp(¢'), & = (&) for some k and I. If k£ > [ then

£ = m(m(E) = m(E") = & = m(f).

Hence whenever (&,),>0 is a monotone sequence in D then there exists a monotone se-
quence (m,),>o in INg U {00} such that &, = T, (§ns1)-

Claim 1: Whenever (¢,) is a monotone sequence in D then (¢,) is a Cauchy sequence in
M and the limit of (£,) in M is the least upper bound in D.

Proof: Let (£,) be a monotone sequence in D and (m,) a monotone sequence in NoU {co}
such that &, = 7, (&uy1- Thenforalll >n > 0:

én = Trmn (gl)
We first consider the case that there is some subsequence (m,, )r>o such that
Mpy < My, < My, < ...

Let K be a natural number. There is some Ng > 0 such that m, > K for all n > Np.
Therefore for all [ > n > Ng:

T(€n) = Tr( Tma (&) ) = 7 (&)

and hence d[7](£,,&) < 1/2% for alll > n > Ng. Hence (£,) is a Cauchy sequence in
M. Let £ = lim &,. Then:

1
d[ﬁ] (gnaf) = lllglo d[ﬁ-] (grn 51) S -2'?\7
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Le. mx(§) = mx(&n) for all n > Ng. We show that £ is the least upper bound of (£,):
If n is an arbitrary natural number and K = m,, | > min {Ng,n} then

bn = T (&) = (&) = mk(€) C &

If £ is also an upper bound of (£,) then &, = 7, (&) for some m!,. As mentioned above
we may assume that

! / !
mg < mp < my < ...

If there is some m' € INg U {00} such that m], = m’ for almost all n > 0 then

n

é-n = ﬂ-m’(gl)
for almost all n. Hence :
£ = lim & = () C ¢,
Otherwise for each natural number K there is some Ny > 0 such that m!, > K for all
n > Ng. Then for all n > max {Ng, Ni}:

ﬂ’K(f) = 7rK(fn) = 7TK( Wm;(fl)) = WK(fl)-
Hence d[7](£,£') = 0 and therefore £ = ¢'.

Now we consider the case that there exists some m € Vg U {oo} such that m, = m for

almost all n > 0. Then there exists some ng > 0 such that m, = m for all n > ngy. Then
gn = Tm (£n+1) = Wm(ﬁ'm(§n+2)) = 71'm(frw»2) = £n+1

forall n > ng. Hence &,, = &nget = &ng+2 = ... is the limit and least upper bound of

(&n)- |

Claim 2: D is a cpo and D, M are compatible.

Proof: follows immediately by Claim 1.

Claim 3: 7 is a rank ordering on the cpo D.

Proof: Since 7 is a rank ordering on M and since m9(§) = €y = L and m, C idp
we only have to show that the functions 7, are continuous. Let k& > 0 and let (£,) be a
monotone sequence in D and §¢ = | §,. By Claim 1:

b =6

Hence for each k > 0 there is some ng > 0 with d[7](£,£,) < 1/2* for all n > ng. Then
7(€) = me(&,) for all n > ng and therefore

Wk(f) = LI Wk(fn)'

n>0
Claim 4: If (M, 7) and (&, i) are complete rank ordered sets and f : M — N is rank
preserving function then f as a function D(M,#) — D(N,f) is strict and continuous.

Proof: f is strict since fomy = pgo f. We show that f is monotone: If §¢ T &, { # &
then ¢ = 7,(¢') for some n > 0. Hence

F&) = f(m(€) = m(f(€) E FE).

31




Now we show that f is continuous: Let (£.) be a monotone sequence in D(M, %) and

§ = Ll &. Since f is monotone the sequence (f(£,)) is monotone. By Claim 1:
fim 6= & Jm s = L] £

Since f is non-distance-increasing (Lemma 4.6) we have:

f&) = lim f(&) = [] f&)

L+ 00
n>0
Hence f is continuous. O

Definition 4.14 RankD denotes the category of rank ordered D-objects. The morphism
in RankD are rank preserving D-morphisms.

Jink ;. RankD — CPO,

Jrnk . RankD —» CRankSET

denote the forgetful functors. RankDE denotes the category of rank ordered D-objects and
DE.-morphisms < e, ¢ > such e and ¢ are rank preserving.

It is clear that { L} (considered as a rank ordered cpo) is the initial object in RankD and
RankD¥®.

Lemma 4.15 Each tower in RankD? has an initial cone.

More precisely: If (D, 7™),1,) is a tower in RankDE and (D, ),) the initial cone of
the tower (D,,i,) in DF then there exists a rank ordering @ on D such that ((D, %), \,)
is the initial cone of ((D,,7™),1,) in RankD¥.

Proof: Let ((D,,7™),,) be a tower in RankD? and ¢, = < en,c, >. Let (D, An),
An = < hy,b, >, be the initial cone of the tower (D,, ;) in DE. Let enk : Dn = Dy be
defined as in the proof of Lemma 3.11. C, denotes the underlying partial order on D,,.
We use the following properties of the initial cone (D, A,):

(I) bpoh, = én,k for all n, & > 0.

(II) If Cisacpoand f: D — C a function then f is continuous if and only if for all
n > 0 the function foh, : D, — C is continuous.

(1) U (hxob) = idp.

Claim 0: 7¥ oe;; = e ;07 forall¢, j, n>0.

Proof: easy verification, uses the fact that e, and ¢, are rank preserving.

Claim 1: For each k > 0 the sequence (h, o 7r,(c“) 0b,)n>0 is monotone.
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Proof: For all n > 0 we have: h, = h,, 0e, and b, = ¢, 0b,;,. Since c, is rank
preserving we have:

1
t™oc, = cponi™Y
Therefore
1)
hno7r 0b, = hpnyy oenow,(c )0 Cp0bnpy = hnyr0en ocnon',(c"+ 0bny).

Since €, 0 ¢ Caty idp,,, We get:  h, 0 7r,(c”) 0b, © hpyo0 7r,(c"+l) 0bny).

Definition: Let # = (m)k>o be given by:

me:D =D, m = U hnon,(c")obn
n>0
Claim 2: hjo w,(cj) = mgoh; forallj, k>0
Proof: Let j > 0. By Claim 0 and (I} we get for all n > 0:

hnorr,(c")obnohj = hno7'r,(c")oej,n = hnoej,nov'r,(cj) = (hnoby)o(h; o 7).

By (III) we get:

meoh; = || hnow,gn)obnohj = || (hnobn)o(hjom(cj)) = h; o).

n>0 n>0

Claim 3: m is continuous for all £ > 0.

Proof: Since h; and 7r,(cj ) are continuous the functions my o h; = hjo w,(cj ) are continuous
for all 7 > 0 (Claim 2). Therefore m is continuous (by (II)).

Claim4: m,om, = Tpom, = 7 where &k = min {n,m}.

Proof: By Claim 0 and (I) we get:

h,-OTr,(f)ob,-oh]-owT(,{)obj = hiow,(f)oej’iorrﬁ,{)obj
= h,‘OGjJOTl‘Slj)OWT({;)ObjI (h,‘Ob,‘)O(h]'O'iT,E:j)Obj)

Since h; o 7 0 b; and h; o b; are continuous we get:

h,-ow,(f)obiO',Tm—_-(h o7r(')ob (Uhow(")ob)

ji=0

= |_|(h ond ob;ohjortd ob) = |J(hiob) o (hjord ob;)
j20 320
= (hiob)o||] hjor? ob) = (h; 0 b;) o m.
j=0
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Since U(h;ob;) = idp (see (1)) we get:

Twofm = || hiorlobjom, = || (hiob)om = m.
i>0 i>0
Claim 5: || mx = idp
Proof: In each cpo we have

I_l U kn = |_| l__l Gkn

k>0 n>0 n>0 k>0

where (agn)e>0 and (agq.)n>0 are monotone. Since (7#(") is a rank ordering on D, we
have:

L] W,(c")obn = b,
k>0

Since h, is continuous we get by (III):

L] m = L U hnow,(c")obn = | L h.now,(c")ob,,

k>0 k>0 n>0 n>0 k>0
= | hao |_|7r,(c")obn = | haob, = idp
n>0 k>0 n>0
Claim 6: b,om, = 7™ob, forallm,n>0.

Proof: It is easy to see that b, o hy 0 by = b, for all £ > n. Hence by Claim 0:

b, 0 by o 7®

®ob, = 7l ob,

Therefore:
byom, = b, o ( L] hkowﬁf)obk)
£>0

= || baohgor®ob, = 7l ob,.
k>0

Claim 7: 7 is a rank ordering on D and h;, b; are rank preserving.

Proof: Since #(™ are rank orderings W(()") = A.Llp,. Since h, is strict we get:
(&) = [ k(787 (0a(®)) = L] Aa(Lp.) = Lp.
n>0 n>0

By Claim 3-5 we get that 7 is a rank ordering on D. By Claim 2 and 6 h; and b; rank
preserving.

Claim 8: Let (C,x,) be a cone of (Dp,tp), kn = < gn,an >, and let 7 = (pr)r>0 be
a rank ordering on C such that g, and a, are rank preserving w.r.t. #(® and ji. Let
® =< g,a> be the unique morphism in D¥ with ®o), = k,. Then ¢ and a are
rank preserving w.r.t. @ and fi.
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Proof: We have to show that for all £ > 0:

gom = UgOg, QO U = TrO0a
Since g, = go h, is rank preserving we get:
goh,o 7r£") ob, = g0 ﬂ,(c") ob, = pgog,0b, = progoh,ob,

Since p o g is continuous we get by (III):

n>0 n>0

U Uxrogoh,ob, = (ykog)o(u hnobn) = prog

Since g is continuous we conclude:

gom. = go||] hno'/r,(cn)obn = Ugohnom(c")obn
n>0 n>0
= |__| progoh,ob, = prog
n>0
Since b, oa = a, and since a, is rank preserving we have:
Teo0aQ = |__| h'non',(cn)obnoa
n>0

= U hnoa,ouy = ao py.
n>0
Claim 9: ((D,#),\,) is the initial cone of the tower ((D,,#™),,) in RankD?.

Proof: By Claim 7 ((D, %), \,) is a cone. If ((C, fi), k) is also a cone then (C,k,) is a
cone of (D, t,) in DZ. By Claim 8 the unique arrow ® : D — C in D€ with ®o ), = &,
is an arrow (D,#) — (C,f) in RankDF®.

If & : (D,#) = (C,fi) is also an arrow in RankD® with ® o\, = x, then & : D = C
is an arrow in DF. By the uniqueness of ® as an arrow in DZ with ®o ), = «, we
conclude: & = @'. O
Lemma 4.16 Let G: D, — D, be a locally continuous functor. Then:
(a) If (D, *) is a rank ordered cpo then (G(D),G(%)) is a rank ordered cpo where
g(ﬁ) = (W;)nZOa 71'6 = )\f._Lg(D), 7‘—:1+1 = g(ﬂﬂ)'

(b) If (D,#), (E, ) are rank ordered cpo’s and f : D — E is continuous and rank
preserving then G(f) : G(D) — G(E) is rank preserving w.r.t. G(7) and G(f1).

Proof: Since m, are D -morphisms 7/, is strict and continuous. Since G is locally con-
tinuous:

U m = [ ) = Q( L ”n) = idgp).

n>0 n>1




If & ne€ G(D) and n),(§) = ! (n) for all n > 0 then
€= m© = U mm) =n

n>0 n>0
As in the proof of Lemma 4.9 it can be shown that G(7) is a rank ordering on G(D) and
that for each rank preserving D-morphism f the function G(f) is rank preserving w.r.t.

G() and G(). O
Lemma 4.17 Let G : D, — D, be a locally continuous functor. Then

grank:RankD_)Ra'nkDa grank(D,ﬁ) = (g(D),G(ﬁ')), grank(f) = G(f),

s a welldefined functor and
jrank o g — g o jrank
cpo rank — cpo °

Let (D, h) the initial fized point of G. Then there ezists a rank ordering & on D such that
( (D,7), h) is the initial fized point of Grank-

Proof: G...« is welldefined by Lemma 4.16. It is clear that jgggk 0Gank = Go j;ggk.
Let GE . : RankD¥ — RankDE be given by:

gr?mk(Dvﬁ-) = grank(D;ﬁ'), ggnk(< €, C >) =< grank(e)7 grank(c) >

Using Lemma 2.1 and Lemma 4.153 it is easy to show that the initial fixed point (D, A)
of GE can be endowed with a rank ordering # such that ((D,#), ) is the initial fixed
point of GE .. Then A = < h,h™! > for some isomorphism 2 : (D, %) — Grank(D,7)
in RankD®. Then (D, h) is the initial fixed point of G, ((D,7),h) a fixed point of G ak-

We show that ((D, 7), h) is the initial fixed point of Geank. Let ((C, i), 1) be a fixed point
of Grank- Then (C,1) is a fixed point of G. Hence whenever F : (D,%) — (C,f) is an
arrow in RankD such that i0 F = Gn(F) o h then F is the unique arrow D — C in
D, with io F = G(F) o h. Hence there exists at most one arrow F : (D, #) = (C, i)
with 10 F = G (F) o h.

Let k = < ¢,i7' >. Then ((
morphism & : (D,7) — (

E

ran

), &) is a fixed point of G
) in RankD¥ satisfying

C,h - Hence there exists a unique
C,h
ko® = GE (®)o

rank

Let F be the first component of . Then F : (D,#) — (C, i) is a morphism in RankD
satisfyingio F = G (F)oh. O

4.4 Proof of Theorem 5

We suppose that G : D, — D, is locally continuous and X : SET™ — SET” is a functor
with Zpo0G = KoZ,. Let (D,h) be the initial fixed point of G.

Claim 1: K satisfies the conditions of Lemma 4.9, i.e.: if (M, ) is a complete rank ordered
set then:




(I) K(ma)(€) = K(ma)(n) for all n > 0 implies £ = 7.

(II) Whenever (n,) is a sequence in K(M) such that K(m.)(n.) = K(m,)(nm) for all
m > n > 0 then there exists n € (M) such that for all n > 0:

K:(ﬂ'n) (’7) = K:(ﬂ’n) (")n)

Proof: Let (M, ) be a complete rank ordered set. By Lemma 4.13: 7 is a rank ordering
on the cpo D(M, 7). Then by Lemma 4.16: K(#) = G(#) is a rank ordering on the cpo
G( D(M,#) ). In particular K(7) is a rank ordering on the pointed set

Zepo (G(D(M,7))) = }C(ICPO( D(M,%))) = K(M)

and hence satisfies (I). If (1.) is a sequence in K(M) with K(m,)(n.) = K(7,)(nm) for
all m > n > 0 then the sequence ( K(7)(7m) )m>0 is monotone in G( D(M, 7) ). Let

n = 1 Ktm)(m).

m>0

Since K(7,) = Zepol G(ma) ) and G(m,) : G(D(M, 7)) = G(D(M,7) is continuous and
since

K(mn) 0o K(7m) = K(mn)

for all m > n we have:

K(m)(m) = [ K(m) (K(mm) () ) = K(m)(na)

m>0

a

Because of Claim 1 we may apply Lemma 4.9: Let
F : CRankSET" — CRankSET", H:CUM, — CUM;
be the liftings of K as in Lemma 4.9 with
Ziank 0 F = KoZpnk, ZemsOH = KoZeps.

- H is ['-contracting and hence has an unique fixed point (Lemma 4.3). F preserves em-
beddings and can be considered as a functor CRankSET, — CRankSET,. Then

MoF = HoM.
Claim 2: Let M = (A,d[7]) where A = Z po(D). Then:

(a) ((A,7),h) is a fixed point of F.
(b) (M, h) is the unique fixed point of H.

(c) For each monotone Cauchy sequence (§,) in A: lim§, = ¢,

Proof: Let G.ank : RankD — RankD be as in Lemma 4.17 and let & be a rank ordering
on D such that ((D,#),h) is the initial fixed point of Granx (Lemma 4.17).
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(a) It is easy to see that J'2" 0 Gapk = F 0 J2k, Since
(A7) = JEZXD,7)
we get by Lemma 2.2: ((A,#),h) is a fixed point of F.

(b) Since M = (A,d[7]) = M(A,7) and since MoF = HoM we get by Lemma
2.2 that (M, h) is a fixed point of H. Since H is I'-contracting (M, h) is the unique
fixed point of H (Lemma 4.3).

(c) follows immediately by Lemma 4.12. O

RankD Grank > RankD
ran rank
Jcpo %
P
1 TTocally continuous D,

Z-cpo l \ Icpo

Y
Jcrgnk SET* K » SET* Jcrra(.)nk
Icms “ T _Icms
CUM; —p—B—— CUM;
-contracting o
7 M
v v
CRankSET" Vi & CRankSET"
5 Examples

We give examples for functors which satisfy the conditions of Theorem 1-5. These functors
are built from production systems that contain:

¢ identity functors id and in the metric case identity functors id, which multiply the
metric by a positive factor ¢ < 1

e constant functors const, that assign to each object a fixed object A

e function space functors X — F where all functions from the set X into the under-
lying set of F(-) are considered

¢ functors of the form X ® F which assign to each object A an object of the form
{L} U X x F(A)
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e product functors F| x F,
o functors of the form F| @ F, which assign to each A an object of the form
{L}wF (A) W Fa(A)

where ¥ means disjoint union.

In the cases where the morphisms of the underlying categories are embedding projection
pairs we also use function space functors of the form

Fi —)E }-2

which assign to each object A an object of the form F;(4) — Fy(A) (i.e. an object
which consists of all functions from the underlying set of F,(A) into the underlying set
of F5(A)). The exact definitions of these functors are given in the appendix.

Lemma 5.1 id : CPO, = CPO, and id. : CMS = CMS (or id. : CMS™ — CMS”)
are compatible. If D is a cpo and M a (pointed) complete metric space such that D
and M are compatible then constp : CPOy — CPOy and consty : CMS — CMS (resp.
consty : CMS™ — CMS™) are compatible.

If G,G;: CPOL — CPO; and H, H;: CMS — CMS (or H, H;: CMS™ — CMS™) are
functors such that G, H resp. G;, H; are compatible then also

e X > Gand X - H
e X®G and X QH

e G, xGs and H| X H»
¢ G1DGs and H, & H,
o GE and HE

are compatible. IfG; : CPO® — CPOF®, H; : CMS? — CMS® (or H; : CMS™® - CMS™F)
are compatible, i = 1,2, then also G =% Gy and H, —F Hy are compatible.

Theorem 1 and 3 can be applied to all functors G : CPO® — CPOE, H : CMS® — CMSE
or H : CMS*EF - CMS*E which are given by the following production system and which
satisfy ¢(H) < 1.
(G,H) == (id,id.) | (constp,consty) |
(X=2G,X-H) | (XQGXOH) |
(G1x G, Hi x Ha) | (G1®Ga, Hi® Ha) |

(G =% Ga, Hi —F Ha)
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Here D and M are compatible. ¢(H) is defined as in [5]:

c(id,) = ¢, c(consty) = 0,
X 2o H) = (XQH) = c(H),
c(Hi x Hz) = c(Hi®Hz) = max { c(Hi1), «(Ha) },

c(Hi =% Hy) = max { 00 c(H1), c(Ha) }.

with 000 = 0 and co-¢c = oo if ¢ > 0. Removing the function space functor —+% from
the production system of above we get examples for functors satisfying the conditions of
Theorem 2 and 4.

Each functor G : CPO, — CPO, which is given by the following production system
satisfies the conditions of Theorem 5:

G = id|constp, | X—=G | X®G| G1xGa| G1DGs
The induced functors H : CUM; — CUM;, are given by:

H u= idyol | consty, | X >H | X@H| HixHa| HiDHo

Here My = (Ag,d) where Ay is the underlying set of Dy and d is the discrete metric on
Ag.

Example 5.2 {1} is the initial fixed point of G = id as endofunctor of CPO, and the
unique fixed point of the associated functor

H = idyoT: CUM: — CUMS, H(M,d) = (M,%M/od).

1
2

{L} is also the initial fixed point of the functor
G=(X—->id): CPOL — CPO,
and the unique fixed point of the associated functor
H:CUM; » CUM, H(M) = X — ids(TM)

The functor ¢ = X ®id : CPO;, — CPO, induces the functor H : CUM; — CUM;
which is given by:
H(M) = {L} W X xid (TM)

X (the collection of all finite or infinite sequences over X) endowed with the prefix
ordering is the initial fixed point of G. X* endowed with the distance

d(wi,ws) = inf {2% : wl[n]=w2[n]}

is the unique fixed point of H. Here w[n] is the n-th prefix of w. O
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6 Conclusion

In Theorem 1-4 we have shown that domain equations which can be considered in the
metric and in the cpo setting and which can be solved by the methods of [19] resp.
(5, 14, 16] have (weakly) compatible solutions. In Theorem 5 we presented a method to
define a corresponding metric domain equation for a giving cpo domain equation such
that the solutions are compatible. The question arises whether in analogy to Theorem 5

domain equations in the metric setting can be lifted to domain equations for cpo’s. Given
functors

H:CUM" - CUM", K:SET" — SET"

such that H is locally contracting and Z.,s 0 H = K o s a locally continuous functor
R : RankCPO — RankCPO

can be derived such that R has an initial fixed point (D,#) where D and the unique

fixed point of H are compatible. The construction of R is as follows: H and K induces a
functor

F : CRankSET* - CRankSET"

which is given by: F(M,7) = (K(M), (7)), F(f) = K(f). In order to show that
K(#) is a rank ordering on K(M) we use the first part of Lemma 4.9 and the fact that
(because H is locally contracting):

, , 1
d(idicyy, Klm) ) < d(idy, 1) < =

271,

Hence whenever K(m,)(§) = K(m,)(n) for all n > 0 then

d(&n) < max { d(§K(m)(¢)). dK(ma)(n),7) } < 5

and therefore £ = 7.

F induces the functor R as follows: Using Lemma 4.13
D : CRankSET" — RankCPO, (M,7) — D(M,7), f—f

is a welldefined functor and hence we may put R = DoFo jc‘;(‘)‘k. Similar to the con-
struction of the initial fixed point for locally continuous endofunctors in CPO, an initial
fixed point (D, #) of R can be constructed as the initial cone of the tower (R"({L}))
in RankCPO®. Here we use Lemma 2.1 and Lemma 4.15. Using Lemma 3.11 it can be

shown that D and the unique fixed point of H are compatible.

In general for this functor R there does not exist a functor G : CPO, — CPO/ such that
R = Grank- This can be seen as follows: Let H = id% and K = idthen F(M, %) = (M, #)
where 7/, = m,4;. Therefore

R(D,7) = D(ZLypo(D), 7).

When we assume that there is a functor G : CPO; — CPO; with R = G.ank then for
each cpo D and each two rank orderings 7, i on D:

Tt ( R(D,7) ) = Jge™( R(D, f) )
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Consider the cpo D = {L1,£,6,§} where L T &, & C fand & Z &, & Z &
Then (7,), (#.) are rank orderings on D where 7, = u, = idp for n > 2 and

L :n=41 1 :np=4
mmn) =9 & =6 p(m = &+ n=E&
fl : "7=€101‘T)=f 52 . "7=§20f”)=§

Then & and € are incomparible in R(D, #) but & C € in R(D, j1). Hence
Ts¥(R(D, 7)) # Tes*(R(D, ).
Contradiction.

Hence using the idea to go the opposite way in the proof of Theorem 4, i.e. going from
complete ultrametric spaces to complete rank orderings to rank ordered cpo’s and then
to cpo’s, fails. At this moment we have no idea how a given metric domain equation can
be lifted to a corresponding domain equation for cpo’s.

In Theorem 1-5 we cannot deal with powerdomain constructions like Ppiouin(+) 0T Peiosed (")
(where Ppiowkin(-) denotes the Plotkin powerdomain of (-) and Pgesea(M) the collection of
closed subsets of a metric space M) or with function space functors like

H(My, My) = My —" M,

(which means the collection of all non-distance-increasing functions from the metric space
M, into the metric space Ms) or

G(Dy,Dy) = Dy —" Dy

(which means the collection of all continuous functions from the cpo D) into the cpo Ds).
The reason is that the underlying set of the image F(4) of an object A under such functors
F depends on the underlying partial order resp. metric and not only on the underlying
set Z(A). This implies that there does not exist an endofunctor K of a suitable category
of sets such that K oZ = Z o F (where Z means the forgetful functor). I.e. domain
equations envolving powerdomain or function space constructions like Ppiotkin, Peloseds
—ndi - _yeont yiglate our assumption that the domain equations under consideration arise
by lifting a domain equation for sets. It is an open question whether a suitable notion of
the correspondence for domain equations of the form

D = Pepo(G(D)), M = Pems(H(M))

resp.

D ~ Gi(D) — Go(D), M ~ Hy(M) —™ Hy(M)

can be found where G, H resp. G;, H; induces compatible domain equations (in our or in
some other sense). Here Pcpo(-) resp. Pems(:) means a suitable powerdomain construction
in the partial order rsp. metric setting, —° resp. —%" a suitable function space
construction for cpo’s resp. complete metric spaces.
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A Formal definitions of the functors in section 5

In what follows C is one of the categories CPO,, CMS, CMS*, SET or SET™, O and U C-objects
and f: O — U a C-morphism. id means the identity on C, i.e. id(O) = O and id(f) = f. If M
is one of the categories CMS or CUM, and c a real number with 0 < ¢ < 1thenid.: M — M is
given by: id.(M,d) = (M,c-d), id.(f) = f.If Ais a fixed object in C then consts(O) = A,
consta(f) = ida. If X is a set and F : C — C a functor then: X - F = £; o F where
&1 :C — C is given by:

E(0) = X =0, &(f) = Ap(fop)

Here X — O means the set of functions from X into the underlying set of . In the pointed
case the function A£. §y is the basis point of X — O where £ is the basis point of @. The
partial order &' on X — (D, C) is given by:

¢ &Y = ¢ C Yl YEeD.

The metric d’ on X — (M, d) is given by:
d( @, ¥ ) = sup {d(p(§),¥(&)) : £€ X }.

If X is a set and F : C — C a functor then: X ® F = £50 F where £2:C — C is given by:

£2(0) = {L}¥ X x 0, &(f) = fx
where W means disjoint union. In the pointed case L is the basis point. fx is given by:

fx : (LIwX x0) = ({L}wX xU)
where

1 : ifp=1

fx(n) =
<a,f()> : ifn =< o>

The partial order &’ on £2(D,C) is:
pC P = (=Ll V(p=<ai>Ap =<ao,&>AECE).
The metric d’ on £9(M,d) is: (L, L)=0and d'(L,p) = d'(p,L)=1if p# L and

d¢,n) : fa=p
d(<a,§>,<Bqg>) =

1 : otherwise.




Let |, F : C = C be functors. Then: F| x F2 = €30 (F(,F3) where £3:C x C — C is given
by: ,
£3(01,02) = 01 x 0

E3(fi,f2) = fixfa = X&En).(f1(E), f2(n))

In the pointed case (§1,0,&2,0) is the basis point of O; x Oz where &; o is the basis point of O;.
The partial order on (D),C)) x (D9, Eo) is:

&mn C ) = I AnCq
The metric d on (M},d)) x (Ma,ds) is:
d( (&,m), (€,n')) = max {di(§€), da(n,7) }.

Let 1, F2 : C — C be functors. Then: 7| & Fo = &40 (F1,F2) whereE4:C x C — C is given
by:
E4(01,02) = 01002 = {L}wW0O, ¥ O,

Ea(fi, fo) = [1® fo

where ¥ means disjoint union and L is the basis point. If f; : O; = U; are morphisms in C then
fiefr : (01©02) = (U1 ®U2)

is defined by:
. L : fé=1
(fi@ f2)(€) =
fi€) - if§e D
The partial order on (D{,C;) & (D2,Co) is:
ECn < =1L V ({neDiANECn).
The metric on (My,d,) & (Ms,ds):

di(§,m) : if&neM;
dg,m) = { 0 L ife=n=1
1 :  otherwise.
The same notations are used to denote the induced functors
FE.CE 5 CE, FE(O) = F(O), FE(<ec>) =< Fle), Flc) >

Eg. X®FE = (X® F)E. If F;: CF — CF are functors then Fy =% Fy : CE — CF is given
by:
Fi1=FFy = E50(F1,Fa)

where £5: C x C — C is given by:
£5(01,02) = 01 =0y

Es( <eper >, <eca>) =< Ap.(ezopocy), M.(czopoey) >

Here Oy — O means the set of functions 4, — Ao where A; is the underlying set of O;. In the
pointed case < Ap.\E.£2, Ap.An.£) > is the basis point where &; is the basis point of O;.
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