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Abstract

This paper adds the technique of chain completion to the setting of [MCB94]. We
develop the theory of chain completion Ch({D) of a domain D and show how this
completion relates to metric and ideal completion. Especially we study consistency

results for denotational semantics on D, Ch(D) and Idl(D).
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Introduction 2

Introduction

The aim of this paper is to add the technique of chain completion to the setting of [MCB94]

which they describe as follows:

We assume that D is a semantic domain for non-recursive programs of a CCS-like
language as finite strings on (labelled) trees of finite height. C is a partial order
on D such that D has a bottom element L which either can be the meaning
of the nil program (the program which does not perform any action) or which
represents a totally undefined process. If we have semantic operators on D which
are monotene w.r.t. C then the ideal completion I1dl(D) can be used as semantic
domain for a denotational cpo semantic which extends the semantics on D for
recursive programs. On the other hand if D is endowed with a metric such
that the semantic operators are non-distance-increasing resp. contracting we get
a denotational semantics on the metric completion D. The question arises in
which way the metric and ideal completion are related and how the denotational
semantics on Idl(D) resp. D are connected. In this paper we answer this question
under the assumption that (D,C) can be endowed with a finite length. This
length induces a metric on D. By a finite length we mean a function which assigns
the maximal number of atomic steps to each element x of D which are needed for
the execution of . Here the elements of D are considered as processes. E.g. the
length of a finite string is its usual length, the length of a tree is its height. The
distance d(z,y) induced by a length counts the maximal number n of steps on

which the execution of x and y coincide (and then d(z,y) =1/2").

This gives us our program: We have to develop the theory of the chain completion
Ch(D) of a domain D in a way that we are able to deal with semantics in the above
described sense. Especially we are interested in a connection of the denotational semantics
on D, Ch(D) and Idi(D). To give an impression how similar or how different chain and
ideal completion are we usually cite the corresponding results of [MCB94].

The paper is organized as follows: Chapter 1 gives some basic definitions. We intro-
duce the technique of chain completion and relate it to the well known ideal completion.
Furthermore we give a formal definition of the length p on a domain D and show how this
induces a metric not only on D but also on the chain completion Ch(D) and the ideal com-
pletion Idl(D). Chapter 2 discusses the relations of the metric completions of D, Ch(D)
and Idl(D). In chapter 3 we present the application of the theory developed so far to

denotational semantics.



Chapter 1: Basic definitions

1 Basic definitions

In this chapter we introduce different completions of a semantic domain D which is equipped
with both a partial order C C D x D and a length' p: D — Ny U {oco} which covers some
information from C . First we present some notions concerning partial orders. Then we
discuss in some detail the chain completion of a partially ordered set and compare it with
the well known ideal completion. Finally we show how one can define a metric on a partially

ordered set with bottom using the length p.

1.1 Order theoretical notions

In order to compare completion techniques for semantic domains we need some order theo-
retical notions. Especially we introduce partially ordered sets, different completeness prop-
erties, corresponding stucture preserving functions and constructions to gain completeness.

A partially ordered set (poset) consists of a pair (D, C) where D is aset and C C D xD
is a binary relation on D which is reflexive, antisymmetric and transitive. (D, C) is pointed,
iff it contains a least element. This element is called bottom and is denoted by L . If the
relation C is only reflexive and transitive we call the pair (D, C) preorder.

In a poset (D,C) we write z Uy for the least upper bound of two elements z, y € D
and | ]S for the least upper bound of a set S C D — if these bounds exist. Further we use
the notions | z:={y € D|yCz}and | S:={yeD|Is€S: yCs}forzeD, SCD.

In order to define completeness properties it is necessary to characterize some subsets

of a poset. Let (D, C) be a partially ordered set. A nonempty subset S C D is called

e leftclosed, iff Ve € D, s€S: 2 Cs=z€S.

directed, iff Ve, y € Sz € S: x C2AyC 2.

ideal, iff S is directed and leftclosed.

bounded, ifft 3b € DVs € S: sCb.

finite bounded, iff S is a finite set and S is bounded.

chain, iff S is totally ordered by T N (S x S).

w-chawn, iff S is countable and S is a chain. Sometimes we refer to the elements of

an w-chain S and denote it by (¢;);en € D. In this case holds Vi € N : ¢; E ¢iyq.

1See subsection 1.4 for details.
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As a chain is totally ordered it is a special case of a directed set.
. Completeness distinguishes posets by marking the existence of suprema for special kinds

of subsets. We call a poset (D,C)
e fb-cpo, iff each finite bounded set S C D has a least upper bound in D.
e wc-cpo, iff each w-chain C' C D has a least upper bound in D.
e d-cpo, iff each directed set § C D has a least upper bound in D.
e c-cpo, iff each chain C C D has a least upper bound in D.

Obviously every d-cpo is an wc-cpo. [AJ92] mentions that the notions d-cpo and c-cpo are
equivalent.

The concepts of a compact element? and of an algebraic poset are defined similarly in
the setting of wc-cpos and d-cpos. We present them in parallel, following the definitions of
[WWT78]:

Let (D,C) be an wc-cpo. An element d € D is called wc-compact iff for all w-chains
C CDholds: dC | JC = (3c€ C: d L c.) We denote the set of all wlc—compactbelements
of D by K_.(D). D is called we-algebraic®, iff for all elements d € D there exists an w-chain
C C K_.(D) such that d = | | C.

Substituting w-chains by directed sets we get: Let (D, C) be a d-cpo. An element d € D
is called d-compact iff for all directed sets S C D holds: dC ||S = (3s€ S: dC s). We
denote the set of all d-compact elements of D by K (D). D is called d-algebraic, iff for all
elements d € D there exists a directed set S C K4(D) such that d = |S.

Next we consider functions that preserve (some of) the structure in different posets:

e Let (D,C) and (£,C) be posets and f: D — £. f is called monotone iff
Ve,yeD: zCy= f(z)C fly).

e Let (D,C) and (£,C) be we-cpos and f : D — £. f is called wc-continuous iff
f is monotone and for all w-chains C C D holds: f(LUC) =] f(C).

e Let (D.C) and (£,C) be d-cpos and f: D — £. f is called d-continuous iff
f is monotone and for all directed sets S C D holds: f(|]S) = |] f(S).

*Some anuthors call such an element “finite” or “isolated”.
S[WWTT78] uses the notion “core complete” instead of “algebraic”.
1[AJ92] uses thie term “w-algebraic” to denote a d-cpo with a countable basis of compact elements.

It should be noted that the property “wc-algebraic” does not include any restriction in the number of

we-compact elements.
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A d-continuous function f is always wc-continuous.
For a given poset (D, LC) it is possible to construct a d-cpo and an wc-cpo which both
“contain” D. We discuss the second concept in the following subsection. In theorem 1.1 we

compile some properties which can be found for example in [AJ92]:

Theorem 1.1 (Basic properties of the ideal completion)

Let (D, C) be a poset. We consider the set Idl(D) := {I C D| I ideal}. Ordered by inclusion
it is a d-algebraic d-cpo. We call (Idl(D),C) the ideal completion of (D.C). The least
upper bound of a directed set S C Idl(D) is computed as | 1S = U;esI. The function
ta: D = Idl(D), d —| d, is monotone and injective, K,(Idl(D)) = 14(D). ‘

In order to compare metric and poset completions it is useful to introduce another d-
complete poset: Given a poset (D, ) the set P\(D) := {X C D|X leftclosed} ordered by
inclusioﬁ is a d-cpo. The least upper bound of a directed set S C P (D) is computed as
LS = Uxes X. The function vp : (D,E) = (Py(D), C), d | d, is monotone and injective.
For the ideal completion of D holds Idl(D) C P(D). If the poset (D, C) is pointed then
(Idl(D), C) and (P, (D), C) are just so.

1.2 The chain completion of a poset (D,C)

The chain completion of a poset (D, L) is defined as the set of all w-chains in D equipped

with some suitable equivalence relation. This technique works similar to the metric com-
pletion.

[WWT78] presents two general approaches — including the one we will use - to cons‘truci’;
from a “suitable” poset D a cpo Z(D) with, in effect, D as its compact elements. Thé
completness property of Z(D) is used as a parameter. It may be chosen widely, including
finite-bounded, directed, w-chain and chain. "

In spite of the elegant theory presented in [WWT78] we will do the completion “by
hand” and prove their properties in our own way. The reason is that this process sheds
some light on the nature of the chain completion. ’ »

Let (D,C) be a poset. Construct a preorderd set (D', Cp/) by
o D' = {(c;))ien CD|VieN:¢; C iy} and
[] ((Ii),jeN CEp (bi)iew =2 = N37 EN: a; C bj.

In order to obain a poset we define an equivalence relation = € D’ x D’ by

(a:)ien = (bi)ien <= (ai)ien o (bi)ien A (bi)ien o (a:)ien-
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We write [(a;)] or — if it is useful to refer to the index of the w-chain - [(a;);en] for the

induced equivalence classes on D’. The equivalence relation = induces furthermore a partial

order £, C D) x D)_. For all [(a,)], [(b;)] € D)= we define:

3

[(@)] C. [(5:)] <= (ai)ien Epr (bi)ien
Definition 1.2 (Chain completion)
Let (D,C) be a poset. We call Chain(D) := D)= ordered by T, the chain completion of D.

Definition 1.3 (Stationary w-chains)

Let (D,C) be a poset. We call an w-chain (¢;)ien C D stationary iff 3k e NVI >k : ¢ = ¢,

It is easy to proof that all w-chains (a;) € [(¢;)] € Chain(D) are stationary iff (¢;) is

stationary. The chain completion of a poset has the desired properties:

Theorem 1.4 (Basic properties of the chain completion)

Let (D,C) be a poset. The chain completion (Chain(D),C.) is an wec-algebraic wce-cpo.
The function 1. : (D,C) = (Chain(D),C.), d > [(d;)] with Vi € N : d; = d, is monotone
and injective, K, .(Chain(D)) = 1.(D).

Proof: We prove first that (Chain(D),C,) is an wc-cpo. Consider an w-chain (C;);en C
Chain(D) with C; = [(¢; j)jen]. We define by induction on 7 and j a new represantant
(ai,j)jEN g D for each Ci. Let

e fori=1: VjEN:a;;:=c ;and

o fore>1: VjEN: a;;

j = Ci, where k:=min{l E N|I > j A a;_; C ¢;,}. Such a

k exists for every j because (C;) is an w-chain in Chain(D).

By induction on 7 one can prove that we gained indeed the property V5 € N :a; ; E a; j41.
The construction ensures ¢; ; C a; ; for all 4,7 € N. The other way round for each a; ; exists
keN such that a; ; = ¢; . Therefore [(a; ;)jen] = [(¢i j)jen] for all 2 € N.

We claim that A := [(a;;)ien] € Chain(D) is the least upper bound of (C;). By con-

struction we have for all £ € N : a;; C a;41; C aiy1,i41, 1.e. (@ii)ien is an w-chain in D. For

a; ; choose k := max{¢,7}. This results in a;; T a4 ;. Therefore A is an upper bound for
(C:). Let B := (b;) € Chain(D) be an upper bound. Then Vz, 73k : a;; T b;. This holds
especially in the case 7 = 7 and we get AC, B.

. Next we show that the elements of +.(D) C Chain(D) are wec-compact. Let for a € D
A= 1,(a) € Chain(D), (C;)ien C Chain(D) an w-chain with C; = [(¢; ;)jen] and A
L C; =: C. W.lo.g. we may assume C = [(¢;;)ien]. As A T, C there exists k € N such that
a C ¢ . Therefore we get v.(a) C, Cy.
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To prove that Chain(D) is wc-algebraic let C := [(¢;)] € Chain(D). Define an w-chain
(Ai)ien C Chain(D) by A; :=i.(c;). Obviously Vi € N: A; € 1.(D) C K,.(Chain(D)) and
LA, =C

To finish the prove of K,.(Chain(D)) = 1.(D) we have to show that elements C €
Chain(D)\t.(D) are not we-compact. Here we use an easy to proof characteristic of +.(D) :
C = [(¢i)] € 1.(D) iff (¢;) is a stationary w-chain in D. Let C := [(¢;)] € Chain(D), (¢;) CD
a non-stationary w-chain. We construct an w-chain 4; C Chain(D) by A; := i.(c;) for all
2 € N. Then we get: C [ | | A;, but there isno & € N such that [(¢;)] T, Ay. [ ]

If the poset (D, L) is pointed then (Chain(D),C,) is just so. We make the two central
constructions of the above proof explicit and present them as results of their own kind.

Finally we give a simple but useful lemma.
Corollary 1.5 (Computing least upper bounds of w-chains in Chain(D))
Let (D,E) be a poset, (Ci)iew C Chain(D) an w-chain, C; = [(c; ;)jen]-
1. Then there exist elements a; ; € D such that the following conditions hold:
i) Vi€ Nt [(ai;)jen] = [(cij)jen]:
’L’l) V77 c N3 € N : a;; = ci,/-,
Z’L’L) Vi, 7 € N: (1,] = a; 54 /\(1.,"]' E Qig1,5-
2. If the w-chains (c; ;) fulfill condition 1i.) then the supremum may be computed by
Ue: = [(Ci,i)ielN]'

Corollary 1.6 (Construction of an w-chain with least upper bound C )
Let (D,C) be a poset, C = [(¢;)] € Chain(D). Then t.(c;) is an w-chain in K, (Chmn(D))
and L eo(er) = [(e)] = C

Let (D, ) be a poset. The function ¢, is monotone, i.e. Vz,y € D : 2 C y = 1.(z) C,
te(y). For elements of +.(D) the other direction holds as well:

Lemma 1.7 (Connection between C, and C on ch(Ch,ain(D)))
Let (D,C) be a poset, z,y € D. Then 1.(x) C. t.(y) implies = C y.

1.3 Chain completion versus ideal completion

In order to relate chain and ideal completion of a poset D we define an injective and wc-
continuous function f : (Chain(D),C.) — (Idl(D), C). In the case that D is countable we
prove (Chain(D),C.) ~ (Idl(D), C). Finally we give two examples. The first demonstrates
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that ideal completion and chain completion are different concepts. In the second Chain(D)
and Idl(D) coincide even though D is not countable.
Let (D, C) be a poset. Using corollary 1.6 we define a function

Iy (Chain(D),E,) — (Idl(D),C)
| ¢ =1(] s Lo valcs).

As (¢;) is an w-chain in D and 14 is monotone {t4(c;)) is an w-chain in Idl(D) and therefore
has a least upper bound in Idi(D). Let [(¢;)], [(d:)] € Chain(D) with (¢;) = (d;). This
implies Vi € N3k : ¢ C d and V5 € N3l : d; C ¢, Therefore | |14(d;) is an upper
bound for t4(c;) and |Jeq(c;) is an upper bound for ¢4(d;) for all 4 € N. This results in
Lt eales) = L ta(d;). Thus the function f is indeed well defined.

Theorem 1.8 (Properties of f : (Chain(D),C.) — (Idl(D),Q))
Let (D,C) be a poset. For the above defined function f : (Chain(D),C.) — (Idl(D), C)
holds:

® 1g=fou,

o f is injective,

o f i3 wc-continuous and

o Im(f) = {wa(d)|d € D} U {U;en ta(ci) | (ci) C D non-stationary w-chain} C Idl(D).

Proof: The first and the last property of f are obviou‘s.

To prove that f is injective let A = [(a;)], B = [(b;)] € Chain(D) with f(A) = f(B).-
Using theorem 1.1 we may compute f(A) = |Ja(a:) = Uta(a;) and f(B) = []wa(b;) =
Uta(b;). As for all 7 we have a; € 14(a;) this implies Vi € N : a; € [J14(b;). Therefore we
get Vi € NJ7 € N: a; € 14(b;) and hence a; C b;. Thus we can conclude (a;) Cp/ (b;). The
prove of (b;) Cp (a;) uses the same argument — with the roles of (a;) and (b;) exchanged.
This implies (a;) = (b;). |

Next we verify that f is monotone. Let A = [(a;)], B = [(b;)] € Chain(D) with AT, B.
Then for all + € N there exists j € N such that a; C b;. This implies t4(a;) C tq(b;) and
hence f(A4)  f(B). | '

Now we deal with the continuity of f. Let (C;) C Chain(D) be an w-chain with'| |C; =:
C € Chain(D). As Chain(D) is w-algebraic there exists an w-chain (4,),en C t.(D) with
LJ A, = C. Further for all i € N exist w-chains (B; ;)sen C (D) such that | |\ Bis = C;. As
A,,B; , € 1.(D) there exist elements a;,b; ; € D such that A, = ¢.(a,), and B; , = t.(b; ;) for

all 7, 7, s € N. Due to the special form of the w-chains (A4,) and (B; ;)sen We may compute
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their least upper bounds by || A, = [(a,)] and |J,cn Bis = [(bis)sen]. We already know
that f is monotone. Thus to finish the proof for the continuity of f we have to establish

FfUC) =U f(C)). The lefthandside evolves to

FUC) = F(©) = fF([(a)]) = [ Jralar)

while we get for the righthandside

I_I f(Cy) = U F([(bi ) sen]) = |__| U La(bis)-

1EN i€NsEN

As the A, are wc-compact we may conclude:

VreN: A, C.C=]C;
= VreNZeN: A C, Ci=lnBis
= VreNIi, seN: A, C,. B;,.

Starting withVi,s € N: B; , E, C; E, C E. | | A, we establishVi,s e NIr e N: B; ,C, A,
using the same argument as above. This results with lemma 1.7inVr € N3, s €N : a

r =

bisand Vi,s € NIr e N: b, ; C a,. Now we can compute

VreNDi, seN: a,. C b,
= VYreN: ) C Lien Usen ta(bi )
= Uealar) € Uien Usen talbis)
= f(UC) CUF(Cy).

The other direction is computed in the same way:

Vi,s ENIr e N: b;, C a,
= Vi,s € N : 14(bi;) C]eala,)
= Lien Usen ta(bis) € Uealar)
= U f(C) C fUCH.

Thus we have f(L|C;) = LI f(Cy).
=
For the purpose to relate metric completion with chain and ideal completion it is easier
to use the image f(Chain(D)) instead of Chain(D) itself. Therefore we have to establish
that (Chain(D),C.) ~ (f(Chain(D)), C). Figure 1 illustrates the situation: We use the
notion Ch(D) instead of Im(f) and introduce an wc-continuous function g that is an inverse

to f.

E '
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(Chain(D),C,)

(D.5)

(Ch(D),C) C (Idi(D),C)

Figure 1: (Chain(D),Z.) and (Ch(D), Q).

Theorem 1.9 (The chain completion as subset of the ideal completion)
Let (D,C) be a poset. Ch(D) := Im(f) ordered by inclusion is an wc-algebraic wc-cpo which
15 isomorphic to (Chain(D),C.). The least upper bound of an w-chain (I.)ien € Ch(D) is
computed as | |I; = UI;. The function vy : (D,C) — (Ch(D),Q).d —] d, is injective and
monotone, K,.(Ch(D)) = 14(D).

Proof: As Ch(D) is ordered by inclusion it is a poset. Let I be an element of Ch(‘D)V =
Im(f). Then there exists an element [(c;)] € Chain(D) with f([(¢;)] = [Jta(c;) = I. Using

the w-chain (¢;) C D we define a function

| (Cr(D),C) — (Chain(D),E,)
| I=F{e))) = Useles).

We claim that
1. g is well defined,
2. g is wc-continuous,
_ 3. fog= ”:d(?h(’D) and g o f = tdchain(p)-

To prove that g is well defined let I € Ch(D), [(c:)], [(d:)] € Chain(D) such that
fl(e)]) = F([(d))]) = I. For all k € N we have ty(ci) € f([(c)]) = F([(di)]) = Ura(d;) and
hence there exists | € N : ¢, C d;. The other way round we get Vm € NIn € N : d,, C c,.
Therefore holds (c¢;) = (d;).

Next we verity that ¢ is monotone. Let I = f({(¢;)]), J = f([(d))]) € Ch(D) with
I C J. Using the same argument as above we gain Yk € N3l € N : ¢; C d,. This implies
[(e)] Ee [(di)].

The proof that g is an inverse to f is straight forward. With this knowledge we can

establish that (Ch(D),C) is an wc-cpo and that the least upper bound of an w-chain
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(I;) € Ch(D) may be computed as | |I; = |J L. Let (I;) C Ch(D) be an w-chain. As g
is monotone (g(/;)) is an w-chain in Chain(D) and C := || g(!;) exists in Chain(D). We
compute f(C) = f(Ug(L;)) = LU(f o g)(I;) = |JI; which is an element of Ch(D) = Im(f).

Using corollary 1.5 we may assume w.o.l.g. that
e VieN: g(I)) = [(a:;)].
e Vi,7€N:a;; Ca;jn A a,; Ca;; and
o C=[(a;;)]

With this notions we have f(C) = U,y ta(ai) and I; = f(g(L;)) = f([(a:;)]) = Ujen talai ;).
Using the ordering property of the a, ; we get

U= f(C) = wla) = U U wle)) =L

ieN iEN jEN

Every d-compact element of Idl(D) is wc-compact in Idi(D). As 1y(D) C Ch(D) we
have K,(Idl(D)) C K,_.(Ch(D)). To get the inclusion the other way round we consider
an element I € K,.(Ch(D)). Let g(I) C, | |C; for an w-chain (C;) C Chain(D). Then we
have (fog)(I)=1C f(UCi) =) f(C;). As I is we-compact there exists k € N such that
I C f(Cy). Therefore g(I) C, Cy and thus g(I) € K,.(Chain(D)) = +,(D). This implieé
I €.4(D).

We already know that ¢ is monotone. Thus to finish the proof for the continuity of ¢
we have to establish g(||I;) = |]g(I;) for an w-chain (I;) C Ch(D). This can be done in
the same way as for f in the proof of theorem 1.8. Ch(D) is wc-algebraic, therefore the
construction of the desired w-chains is possible. As g is built like f the evaluation of g(| | ;)
and |} g(I;) results in similar terms as for f. The other arguments carry over by simple
substitution. [ ]

If D is countable then in (Idl(D), C) the concept of directed sets S C Idl(D) reduces
to the abilities of w-chains in Idl(D). We cite [AJ92] for the following theorem:

Theorem 1.10 (Directed sets and w-chains)
If (D,C) is a countable poset then every directed subset of Idl(D) contains an w-chain with

the same supremum.

Corollary 1.11 (Isomorphism between chain and ideal completion) v
If (D,C) is a countable poset then Ch(D) = I1dl(D) and therefore (Chain(D),C,) =
(al(D), ).
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Proof: Let I € Idl(D). As Idl(D) is d-algebraic there exists a directed set S C 14(D) with
LUS = I. Using theorem 1.10 we obtain an w-chain (C;) C S with | |C; = ||S = I - all
suprema computed in Idl(D).

Now we look for the least upper bound of the obtained w-chain (C;) in Ch(D). We know
that Vi € N : C; € Ch(D) and that (Ch(D), C) is an wec-cpo. Thus the w-chain (C;) has
a supremum C € Ch(D). In both cpos, Idl(D) and Ch(D), the suprema are computed by
U C;. Therefore we have C = I. ]

1.3.1 Example: Isomorphism classes of plain trees — Part I

To give an example of a poset (D,C) with Ch(D) # Idl(D) we introduce isomorphism
classes of plain trees using the notions (for the most part word for word) of [BMC94].

A plain tree over a set of actions A and a set Nodes is a quadrupel t = (N, E,l, v)
consisting of a set N C Nodes of nodes, a set E C N x N of edges, a labelling function
[: E — Aandanodewv, € N such that (N, E) is a tree with root v, in the graphtheoretical
sense, i.e. for each node v € N there exists a unique path from the root v, to v. The depth
of anode v € N is the length of the (unique) path from the root to v. The height of a plain
tree t it the length of a longest path in ¢. We denote the set of all plain trees over A and
Nodes by tree(A, Nodes).

Let t = (N, E,l,v), t = (N',E',l',v)) be plain trees over the same set of actions and
over possibly different sets Nodes and Nodes'. An embedding f : t — t' is an injective

function f : N — N’ with f(vy) = v} such that the following condition is satisfied:
If (v,w) € E then (f(v). f(w)) € E" and l(v, w) = I(f(v), f(w)).

We call f an isomorphism from t to t' iff f is a bijecitive function N — N’ such that f
and f~! are eﬁlbeddings. TREE(A) denotes the set of all ismorphism classes of plain trees
over A and a countable set Nodes.

Let t = (N,E,l,v,) be a plain tree. A subset N’ of N is called leftclosed iff N' is

nonempty and for all v € N’ the set of all predecessors of v is contained in N'. In this case
t[Nl = (N/, E N (N/ X Nl), ll.Eﬁ(;\"X;’V’): 'U())

is a plain tree.

Using this notion we define a partial order on tree(A, Nodes). Let s and t = (N, E. 1, vy)

be plain trees then

sCpt i< 3N’ C N : N'leftclosed A s =t[N".
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Now we can give a definition of a partial order on TREE(A). Let S, T € TREE(A) be

isomorphism classes of plain trees. Then we define:
SCT=dse S5, teT: s, t

In general the relation C is not antisymmetric. But restricted to isomorphism classes of
finitely branching trees it is a partial order.

We use the abbreviation T, for the isomorphism class of ({wy}, 0, 0, vy). >, a;. T}
describes the isomorphism class of a plain tree which has n branches at the root, each
labelled with an action a; € A and completed by an isomorphism class T;. A detailed
discussion of this notion can be found in [BMC94].

Using these definitions from [BMC94] we are able to present our example for a partial

order (D,C) with Ch(D) # Idi(D). Consider the poset (D, C) where
D :={T € TREE(R) | T finitely branching and height(T) < 1}

and T is the above mentioned partial order on isomorphism classes of plain trees redus-
tricted to D. |

We claim that D is a directed set. To prove this let S =37, a;. T, T =YL, b;. T, €
D. We define U := 370, a;. T, + Y72, b;.T.. Obviously we have U € D and S, T C U.

D is not countable because it has for example E := {r.T, |r € R} as subset. Consider
the ideal completion of D. As Idl(D) is a d-cpo it contains I := | |44(D) = Uyep ta(d). As
we have especially F C I the set I is not countable.

In the case of Ch(D) we claim that all its elements are countable sets. To prove
this we study first sets of the form | S in D, where S € D is an ismormism class of
plain trees. Let S € D.If S =T, we get | | T, | = 1. If S = >, a;. T, then the set
VS ={T } U{Zics. aiTL |1, ©{1,2,...,n}} is finite. Let C = J;c 4 Tz € Ch(D). As
the sets | T; are finite and the index set is countable, the set C is countable. j

Therefore we know that the above constructed set [ is not in Ch(D) and hence Ch(D) #
1dI(D). |  m

1.3.2 Example: Finite Strings over an alphabet A

With corollary 1.11 the question arises whether we have always Ch(D) # Idl(D) if D is
not, countable. The following example shows that this is not the case.
Let A be an alphabet, D := A* the set of all finite words over A including the empty

word €. We use the prefix relation to define a partial order on D. For all u, v € D we define:

UL efip V<= Jw €A™ ! uw =w.




Chapter 1: Basic definitions 14

Lemma 1.12 (Ideals in (A",C, . i)
Let A be an alphabet, D := A* ordered by C,,..;i. and I C D an ideal. Then I is an w-chain.

Proof: Let I C D be an ideal, z, y € I. Then there exists z € I with z, y Corefic 2.
Therefore there exist s, ¢ € D such that zs = z = yt. Let w.o.l.g. length(s) > length(t).
Then we get z C,,cs:, y. Thus I is totally ordered by Corepic NI x 1.

An element of I is uniquely determined by its length: Let z, y € I with length(z) =
length(y)'. Then 7 = y because we may assume w.l.o.g. 2 Cpofiz ¥y = ze =17 = 1.

'To prove that I is countable we introduce s := sup {length(z) |z € I'}. If s < co there
exists an element d € I with length(d) = s. In this case we have I = {e,z,,7s,...,2,},
where z; is the prefix of d with length 7. Thus I is a finite set. ‘

If s = oo we claim that I = (a;) for an w-chain (a;) where Vi € N : length(a;) = 4. As
s = oo there exists for all n € N an element a,, € I with length(a,,) > n. With a,, all its
prefixes are elements of I because an ideal is especially leftclosed. As an element of I is

uniquely determined by its length we may conclude I = (a;). [ |

Theorem 1.13 (Ch(A*) = IdI(A™))
Let A be an alphabet, D := A* ordered by C,,..sin . Then Ch(A*) = IdI(A*) and therefore
(Chain(A*),C,) ~ (Idl(A*), C).

Proof: Using theorem 1.9 we have Ch(A*) C Idl(A*). Lemma 1.12 gives us the inclusion

in the other direction. ]

1.4  Metric concepts on pointed posets

So far we aealed exclusively with order-theoretical concepts. Now we introduce a metric on
pointed posets with length. The definitions and theorems presented in this subsection are
completely due to [MCB94] (for the most part word for word). They can just so be found
- in a slightly different manner — in [BMC95]. The only new part is the straight forward
definition of the length p* and the metric d} on Ch(D). '

First we give the definitions of different kinds of a length on a pointed poset. Such a
length can be used to enrich a poset with a pseudo ultrametric or ~ under certain circum-
stances — with an ultrametric or even a complete ultrametric. Finally we show in Which
way a finite length on a pointed poset D induces an ultrametric on Ch(D), Idl(D) and
P, (D). This is the starting point of chapter two where we relate the concepts of chain,

ideal and metric competion.

Let (D, C) be a pointed poset. We call a function p: (D,C) — (Ny U {oo}, <) length on
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D. iff for all z. y € D holds:

p(z)=0e=z=1L and zCy= p(z) < p(y).
For £ € D, n € N we define:

V(@) ={yeD|yCzApy) <n}, V"(z):=1J ! (=)
neN

p is called finite, iff for all z € D we have p(z) < co. An element = € D is called approz-
imable, iff z is the least upper bound of [/ (x). M (D) denotes the set of approximable
elements.

Let (D, ) be a pointed poset. A weight is a lenght p on (D, C) such that for all z € D
and n > 0 the set |" (z) has a greatest element which we denote by z[n]. z[n] is called
the n-cut of x with respect to p. We call a weight p on an we-cpo (D, C) we-continuous
iff for all n € N the function f, : D — D, z > z[n], is wc-continuous. We call a weight
p on a d-cpo (D,C) d-continuous iff for all n € N the function f, : D — D, z — z[n], is
d-continuous.

Let (D, C) be a pointed poset with a length p. Then

DxD = Rsy
dlp] : N e ,
() = dpley) =it {E ] V@) =" @)

is a pseudo ultrametric on D and an ultrametric on M (D). If p is finite then d[p] is an
ultrametric on D. |

The following theorem shows that the length covers enough information of the partial-
order and thus enforces that under certain circumstances limit and least upper bound
coincide. ‘
Theorem 1.14 (Limit of monotone Cauchy-sequences)
Let (D,E) be a d-cpo, p a d-continuous weight on D. Then the induced ultrametric space

(M (D), d[p]) is complete. For each monotone Cauchy-sequence (x,) in M (D) we get

lim z, = |__|.7:,,.

n—00

To give some examples for weights we cite [MCB94]:
The concept of a finite weight can be realized on various domains, e.g.
e finite strings over some alphabet A (endowed with the prefixing

ordering and the weight p(z) = |z| where |z| means the usual

length of a string ),
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e trees of finite heigth endowed with Winskel’s partial order [Win84]

and height as underlying weight and

e prime event structures of finite depth with Winskel’s partial order

[Win82] and the depth as underlying weight.

Mazurkiewicz traces [Maz89] yield an example for a length which is not

a weight.®

Given a length p on a pointed poset (D, C) we are interested to carry over this concept
to Ch(D) and Idi(D). Here we use the set P\ (D) as common platform.
Let (D,C) be a pointed poset with length p. Then

[ Eme - ewuter
X — sup{p(z)|ze X}

is a d-continuous weight on P, (D). The n-cut of an element X € P, (D) with respect to p;
may be computed by
X[n] ={z € X |p(s) < n}.

If p is finite then all elements of P (D) are approximable with respect to p; and therefore
(P (D),d|p;]) is a complete ultrametric space. The metric d[p;] on P (D) may be computed
by the formula

Alp)(X,Y) = int{ 5 | X[n] = Yln] )

If (X,)nen € Pi(D) is a Cauchy-sequence with d[p,](X,, X,,,) < 5= for all n < m € N then

its limit is

lim X, = U Xa[n] (1)

n—ro
neN

Let p be a finite length on a pointed poset (D,C). Then we denote the restriction of
py to Ch(D) by p* and the restriction of d[p,] to Ch(D) by d}. Analogous we denote the
restriction of p| to Idl(D) by p* and the restriction of d[p ] to Idl(D) by d5. As (P, (D), d[p,])
is a metric space (Ch(D),d}) and (Idl(D),d}) are just so. .

We use the following notions: Let (M, d) be a metric space. Then the metric completion
of (M, d) is denoted by (M, d). We assume that M C M and that d is the restriction of d
on M. If (N,d') is a metric space and f : M — N a non-distance-increasing function then
7 denotes the unique non-distance-increasing function M — N with f(z) = f(z) for all

r € M.
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2 Ch(D) and Idl(D) as metric spaces

The aim of this paper is to give a basis for studies concerning consistency between deno-
tational semantics which employ different concepts to realize recursion: On the one hand
there are semantics which use partial order techniques on the other hand there are seman-
tics based on metric concepts. In this section we present completions of semantic domains
which contain both: The supremum of an w-chain and the limit of a Cauchy sequence.
We begin with a survey on the main concepts of chapter one, i.e. chain, ideal and
metric completion of a pointed poset (D, C) with length p. Before getting started we con-
vince ourselves that the introduced completion concepts are really different. Then we
look for conditions which ensure that chain completion (Ch(D),d}) and ideal completion
(Idi(D), d;) are complete metric spaces. Finally we study the relation between the metric
completion (D, d[p]) and the order theoretical completions Ch(D) and Idl(D) under the

condition that the latter are complete metric spaces.

2.1 Synopsis: Completions on a pointed poset with length

This section gives a synopsis on the so far introduced completions. We start with an
overview of the relevant order theoretical concepts and conclude with the metric situation.
Let (D,C) be a poset. From the order theoretical point of view we have the following

situation:

The function ¢4 : D — Ch(D) is monotone.

Let (D, C) be a pointed poset with finite length p. Looking from the metric setting we

find:
i (D,dlp)) — (Ch(D),df) C (Idi(D),d;) C (PyD),d[p))
- c - =
w: (D.dlp) — (Ch(D),d}) C (Idi(D),d;) C (Py(D),dlp]).

The function ¢y : D — Ch(D) is an isometric embedding of the metric space (D, d[p]) into

the metric space (Ch(D),d}) and hence its canonical extension 73 : D — Ch(D) is just so.

2.2 A first reflection

Before we present theorems on the relations of the above described completions of a pointed

poset (D, C) with a length p we should convince ourselves that

1. in general neither (Idl(D),d}) nor (Ch(D),d}) are complete metric spaces and that
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Ya, P =

Ty, p=4

L.p=0

Figure 2: A domain with a Cauchy sequence which is not an w-chain

2. the concepts of an w-chain in (D, C) and of a Cauchy sequence in (D, d[p]) are really
different.

For the first item we refer to [MCB94]). They give an example of a pointed poset
(D,E) with finite length p where Idl(D,d}) is not a complete metric space. The same
example holds for (Ch(D),d}) because the chosen set D is countable and thus we have
Idl(D) = Ch(D).

. For the second item we give two examples of our own. The first example shows a
Cauchy sequence in a metric space (D, d[p]) which is not an w-chain with respect to the
partial order C on D. It is moreover a demonstration of a poset (D,C) where the chain
completion is a complete metric space. The second example exhibits an w-chain in another

poset (D, C) with length p which is not a Cauchy sequence with respect to induced metric

d[p].

2.2.1 Example: A Cauchy sequence which is not an w-chain

To present an example of a Cauchy sequence which is not an w-chain we introduce a
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pointed poset (D, C) with length where
D:={L}U{z,, y.|n €N}
and where C is the smallest partial order on D which satisfies:
YneN: 1Lz, AN 2z, Ex,q A 2, Eyn.
We define a finite length p: D — N, by
p(L)y:=0and for alln e N: p(z,) :=n, p(y,) :==n+1.
Figure 2 shows a small part of the poset D. It is easy to prove that p is a finite weight:

o [F(L)={Ll}forall keN.

;

Izn, k>n

e ForallneN: [*(z,) =X |z, 1<k<n
\ {L}, k=0.
' Yo, E>n

e ForallneN: [*(y,)=% |z, 1<k<n
\ {1}, k=0.

We claim that (y;);en is a Cauchy sequence but not an w-chain in D. To prove this
we use the above computed results concerning y,,, ¥, with m > n € N. They imply that
the sets |* (z,,) and |* (z,) coincide exactly for 0 < k < n. Thus for the distance holds
APl (Yn, Ym) = zL" n < m € N. As neither y; C y;4, nor y,4, C y; the Cauchy sequence (y;)
is not an w-chain.

Next we study whether the ideal completion of D contains a limit for the Cauchy
sequence (tq(y;)). In order to compute Idl(D) we may use the identity Ch(D) = Idl(D)
of corollary 1.11 because D is countable. Theorem 1.8 tells us via the characterization of
Ch(D) = Im(f) that the only “new” elements in Ch(D) arise from non-stationary w-chains
in (D, C). w-chains which contain an y; have to become stationary, as there are no elements
above y;. [(z;)] € Chain(D) is the only class of non-stationary w-chains in D built from L

and elements of {z, |n € N}. Thus we have
1dI(D) = Ch(D) = {1a]d € D} U {f ([(x)]}.

f([(z5)]) = Uta(z;) is both: The least upper bound of (14(7;))ien thought as w-chain.
and limit of the same sequence understood as Cauchy sequence. Furthermore it is the limit
of the Cauchy sequence (t4(yi))ien. Thus (Ch(D),C) is an wc-cpo and (Ch(D),d}) is a
complete metric space - this result coincides with theorem 2.5 which we will present in

section 2.3.3.
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T3, p=3
To, p=2
T, p=1

yp=1lyp=1ysp=1

Figure 3: A domain with an w-chain which is not a Cauchy sequence

2.2.2 Example: An w-chain which is not a Cauchy sequence

To present an example of an w-chain which is not a Cauchy sequence we introduce a

poinﬁed poset (D, C) with length where
D= {1} U {20y n € N}
and where C is the smallest partial order on D which satisfies:
YneN: LCz,,y, A 2, Cx,1 Ay E z,,.
We define a finite length p: D — N, by
| p(L):=0and foralln € N: p(z,) :=n, p(y,) = 1.

Figure 3 shows a small part of the poset D. Obviously (z,,) is an w-chain in (D, C), but

we claim that it is not a Cauchy sequence with respect to d[p]. To prove this we compute

the distance d(z,,, z,) for m > n € N. The sets |* (x,,) and |* (z,,) coincide for k¥ = 0. But
for k > 0 we have (ym,) €1* (z,) and (yn) ¢ 1* (2,). Therefore d(z,,,z,) = inf { Jc | |

(z,,) =4 (z,) } =1 and (=,,) is not a Cauchy sequence.
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Without a proof we claim that like in example 2.2.1 p is a finite weight. The set D
is countable, therefore Idl(D) and Ch(D) coincide. Using theorem 2.5 from section 2.3.3

again we establish that (Ch(D),d}) is a complete metric space.

2.3 (Ch(D),d}) and (Idl(D),d;) as complete metric spaces

The aim of this section is to find properties of a pointed poset (D, L) with a finite length p or
a finite weight p which ensure that (Ch(D),d}) respective (Idi(D),d}) are complete metric
spaces. The central idea to establish such a characteristic is based on the computation of
limites in (Py(D),d[p;]) which we presented in section 1.7 as equation (1): The limit X
of a Cauchy sequence (X,) C P((D) with d[p,}(X.n, X,,) < 5% for all n < m € N may be
computed as

lim X, = | Xa[n] =: X.

n—o0
nenN

Thus to establish that (Ch(D).d}) is a complete metric space we have to prove that
for any Cauchy sequence (X,) C Ch(D) its limit X € P|(D) is of the form |Jta(c;) for an
w-chain (¢;) € D and therefore an element of Ch(D).

For the ideal completion we formulate: To establish that (Idl(D),d}) is a complete
metric space we have to prove that for any Cauchy sequence (X,) C IdI(D) its limit
X € P|(D) is an ideal in (D, C) and therefore an element of Idl(D).

This section is divided in three parts: First we deal with pointed posets which are
equipped with a finite length. Then we present Mazurkiewicz traces as an application of
our theoretical results. The last part studies the situation when the poset exhibits a finite

weight.

2.3.1 Starting with a length

Concerning the ideal completion of a pointed poset (D, C) with length p we cite a result of

[MCBY4]:

Theorem 2.1 (The ideal completion as cms induced by a length)
Let (D, C) be a pointed fb-cpo with a finite length p. Then (Idl(D),d}) is a complete metric
space and g : (D, d[p]) — (Idl(D), d;) is an isometric embedding.

" In order to establish an analog result for the chain completion we provide a simple
lemma which is a slight modification of theorem 1.10: While we requested there that the

poset D should be countable, we now assume that an ideal I C D is countable.
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Lemma 2.2 (Countable ideals and w-chains)
Let (D,C) be a poset, I € Idl(D) be a countable set. Then there erists an w-chain (¢;) €D
such that I = Jta(c;), i.e. I € Ch(D).

Proof: Let (z;) be an enumeration of I. Define the w-chain (c¢;) by induction on 7, starting
with ¢; := z,. Assume that we have defined the elements of this chain up to ¢;. Consider
the set S:={k € N|z\ ¢ Uj:] ta(c;) }. If this set is empty let ¢; 4, := ¢; else let [ := min S.
As I is directed, ¢; and z; are in I, there exists z € I with ¢; C z and z; C 2. Let ¢;4 1= 2.
Obviously we get | ta(c;) € I. To prove the inclusion the other way round let = € I. Then

there exists an index n € N such that x = z,,. By construction we have z,, C ¢,, thus
T, € ULd(C,'). |

Theorem 2.3 (The chain completion as cms induced by a length)

Let (D,C) be a pointed fb-cpo with a finite length p such that for all C € Ch(D),n € N
holds: the set Cln] := {c € C'|p(c) < n} is countable. Then (Ch(D),d}) is a complete
metric space and Ty : (D, d[p]) — (Ch(D),d}) is an isometric embedding.

Proof: Using theorem 2.1 we know: Under the choosen assumptions on (D,C) and p the
ideal completion (Idl(D),d;) is a complete metric space, i.e. the limit I of any Cauchy
sequence sequence (I,) C Idl(D) is an ideal in D.

Let (C;) € Ch(D) be a Cauchy sequence. As Ch(D) C Idi(D) we know that C :=
lim,, 0 C,, — computed in Idl(D) — is an ideal in D.

We claim that C is countable: By assumption for all n € N the sets C,,[n] are countable.
In Idl(D) the limit C is computed as the union of all these sets and therefore countable.
Using lemma 2.2 this establishes C € Ch(C) and therefore (C’h(D), d}) is a complete metric

space. n

2.3.2 Example: Mazurkiewicz traces — Part I

To present an application of theorem 2.3 we introduce the domain of Mazurkiewicz traces
[Maz89]. A concurrent alphabet is a pair (A, Ind) consisting of a set of actions A and an

independence relation Ind C A x A which is irreflexive and symmetric. Let for z, y € A"
z="y <= Ja,b€ AJu,v € A" : (a,b) € Ind A = = uabv A\ y = ubav.

We define an equivalence relation = on A* as the reflexive and transitive closure of the

/

relation =’ and denote the induced equvalence classes by [z] for z € A*. The set of all

Mazurkiewicz traces on a concurrent alphabet (A, Ind) is given by

MT(A, Ind) == {[z] |z € A™}.
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Using the prefix ordering on A* — see section 1.3.2 — we define a partial order C on

MT(A,Ind). Let [z],[y] € MT(A, Ind) :
[Z]C [y] = Fuez],vE[y]: ul,epizv.

The length p of an element [z] of MT(A, Ind) is given by p([z]) := |z|. Thus we gained a
pointed poset with length. For further details see [Maz89).

If A contains more than one element and Ind # § the function p is not a weight.
For this result we cite an example of [MCB94]: Let A := {«, 3}, Ind := {(«, ), (B,0)}.
Consider the set |' ([@8]) = {L,[a],[B]}. It contains no greatest element since [] and [0]
are incomparable.

[Kwi91] has shown that (MT(A, Ind),C) is an ftb-cpo. Thus we get with theorem 2.1:
(IdIl(MT(A,Ind)),d}) is a complete metric space. If MT(A, Ind) is countable its .chain

completion coincides with its ideal completion. There remain two problems:
1. Do the Mazurkiewicz traces fulfill the requirements of theorem 2.37
2. Is there a concurrent alphabet (A, Ind) with Ch(MT(A, Ind)) # Idl(MT(A, Ind))?

As we will show in the sequel the answer is “yes” for both questions.

Concerning the first question we prove a stronger property than the required one in
theorem 2.3. We claim that for any concurrent alphabet (A, Ind) the elements C €
Ch(MT(A, Ind)) are countable sets.

Before we begin with the proof we define: Let [z] € MT(A, Ind) be a Mazurkiewicz
trace. action([z]) :={a € A|31 < j < |z|: z; = a} denotes the set of all actions to be
found in [z].

Let C = Uta(ci) € Ch(MT(A, Ind)). For all © € N the set action(c;) is finite. Thus
their union |J action(c;) =: B is countable. This implies that B* is countable and therefore
MT(B,Ind N (B x B)) is countable. _

" Let [z] € C. Then there exists k € N : [z] T ¢, i.e. there exist representants ' €
[z], ¢, € ¢ such that 2’ C,,.f;y ¢,. This means especially that [z] consists only from
actions in B and is therefore an element of MT(B,Ind N (B x B)). Thus the set C is
countable.

This result imlies that independent of the cardinality of the set A in the concurrent
alphabet (A, Ind) the chain completion of Mazurkiewicz traces (Ch(MT (A, Ind),d})) is a
complete metric space. |

To answer the second question we give an example of a concurrent alphabet (A, Ind)
with Ch(MT(A, Ind)) # Idl(MT(A, Ind)). In order to etablish this inequality we use the
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property that elements C € Ch(MT(A, Ind)) are countable sets and construct an ideal
I € Idi(MT(A, Ind)) that is not countable.

Let (A, Ind) be a concurrent alphabet with both, A and Ind, not countable. We use
the notion m;(Ind) := {a; € A|(ay,a,) € Ind}, i € {1,2}, to denote the projection of Ind
on its +** component.

First we claim that 7 (Ind) is not countable. Assume that (Ind) is countable. As
Ind is a symmetric relation we have m(Ind) = m(Ind) and therefore the set Ind' :=
m (Ind) X my(Ind) is countable. As Ind C Ind’ the set Ind is countable — contradiction.

Now we define I' := MT(m,(Ind),Ind). As {[a]|a € m,(Ind)} C I' the set I’ is not
countable. To show that it is directed let [u], [v] € I’. Obviously we have [u] C [uv]
and [v] C [vu]. As [u] and [v] are built from actions in ,(Ind) we have [uv] = [vu] and
[uv] € I'. Thus the set I := 4(I') is an ideal in MT(A, Ind), therefore an element of
IdI(MT(A, Ind)), and especially not countable.

2.3.3 Starting with a weight

If the pointed poset (D, L) is equipped with a weight p the requirements to establish that
the chain completion respective the ideal completion are complete metric spaces become
less strong. Again we cite first [MCB94] for a theorem concerning the ideal completion

before we present our result in the case of the chain completion.

Theorem 2.4 (The ideal completion as cms induced by a weight)
Let p be a finite weight on a pointed poset (D, E). Then (Idl(D),d}) is a complete metric
space, 7z : (D, d[p]) — (Idl(D),d;) is an isometric embedding and p* is a d-continuous

weight.

Theorem 2.5 (The chain completion as cms induced by a weight)
Let p be a finite weight on a pointed poset (D,C). Then (Ch(D),d}) is a complete metric
space, Ty : (D, d[p]) — (Ch(D),d}) is an isometric embedding and p* is an wc-continuous

weight.

Proof: First we claim that p* is a weight on Ch(D), i.e. for all C € Ch(D), n € N, the
set C[n] := {c € C'|p(c) < n} is an element of Ch(D) :

Let C € Ch(D),n € N. As Ch(D) is wc-algebraic there exists an w-chain (¢;) € D
such that C = |Jta(c;). By assumption p is a weight on D, thus for all ¢; their the n-cut

ci[n] exists in D. (¢;[n])ien is an w-chain in D : Let 7 € N. As p(c;[n]) < n and ¢; C ¢y

we get ¢;[n] €1" (cit1). Therefore ¢;[n] C c;y[n] because ¢;y[n] is the greatest element of
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3" (€ip1)- Let
C' = U ta(ci[n]).

iEN

To prove that C[n] = C’ let. z € C’. Then there exists + € N such that z T ¢;[n]. This
implies z C ¢; and p(z) < n. Thus we get z € C[n]. To get the inclusion the other way
round let y € C[n]. Then we have p(y) < n and there exists j € N such that y C ¢; . This
implies y C ¢;[n]. Thus we get y € C’ and established therefore C[n] € Ch(D).

Let (C,) be a Cauchy sequence in Ch(D) with d}(C,,,C,) < 5= for all m > n € N. As
we mentioned above its limit in (P (D), d[p,]) is computed as C' = lim, 0, C,, = U Cy[n].
We have just proved that the sets C,,[n] are elements of Ch(D). As C,,[n] = C,[n] C C,,[m)]
for all m > n € N they form an w-chain in Ch(D) and their least upper bound C is an
element of Ch(D).

Let for n € N the function f, : Ch(D) = Ch(D), C — C[n]. We claim that all functions
fn are wc-continuous. Let C € Ch(D). Then there exists an w-chain (¢;) € D such that
C = U talci). As we have proved above for the n-cut of C holds C[n] = U ¢ta(ci[n]).

First we verify that the functions f, are monotone. Let n € N and A = Jq(a;), B =
U ta(b;) E Ch(D) with A C B. This implies that for all ¥ € N there exists I € N such that
ay T b;. Therefore ay[n] T b[n] and f,(A) = Ura(ai[n]) C Uea(bj[n]) = f.(B). Thus f, is
monotone.

Now we establish f, (| |C;) = I f.(C;) for all w-chains (C;) C Ch(D), n € N. Let (C;) C
Ch(D) be an w-chain, let n € N. Using corollary 1.5 and the isomorphy (Chain(D),C,) ~
(Ch(D),C) we may assumse w.l.o.g. that C; = U;ep ta(ci;) and C := [ |C; = Uy talcii)

for w-chains (¢; ;)jen, (¢ii)en € D. With this notions we can compute

fUCi) = fu(C) = Cln] = U;ep talcii[n])  and
L en fn(Ci) = Uien Ci[n] = UieN UjerN Ld(ci,j[”])-

Studying the relations between the n-cuts ¢; j[n] we get for all 4,7 € N : As ¢; ; T ¢; j41 the
n-cut ¢; ;[n] is an element of |" (¢;;3+1) and therefore we get ¢; ;[n] C ¢; j4+1[n]. The same
argument establishes ¢; ;[n] C ¢;11 j[n]. Thus the w-chains (¢; j[n]) jen fulfill the requirements
of corollary 1.5 and we may conclude U, ¢y Ujen ta(cij[n]) = Usen ta(eiiln]). -
2.4 Isometry between (D,d[p]) and (Ch(D),d;f) respective (Idl(D),d;)

In section 2.3 we have seen that for a domain D under certain circumstances the order
theoretical completions (Ch(D),d}) and (Idl(D), d}) are complete metric spaces. Now we

ask for a relation of these complete metric spaces to the metric completion (D, d[p]).
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In general the function 73 maps from the metric completion of D to the metric completion

of Ch(D) respective Idl(D) :

7a: D — Ch(D) C Idi(D) (2)

14 is an isometric embedding. We try to characterize the situation when either Ch(D) or
1dl(D) is a complete metric space and 7 is surjective.

Starting with a finite length p on a pointed fb-cpo (D,C) theorem 2.1 claims that
the ideal completion is a complete metric space. Concerning the chain completion as
complete metric space we needed an additional condition in theorem 2.3. Thus we obtain
the situation:

u: D — Ch(D) C IdI(D). (3)

If (Idl(D), d;) is isometric to (D, d[p] the ideal completion Idl(D) coincides with the metric
completion of Ch(D).
Starting with a finite weight p on a pointed poset (D, C) both ideal and chain completion

are complete metric spaces. Thus we have:

a: D = Ch(D) C IdI(D).

If (Idl(D), d}) is isometric to (D, d[p]) ideal completion and chain completion coincide.
Concerning isometry between ideal completion and metric completion [MCB94] gives

the following condition:

Lemma 2.6 (A condition on isometry in the case of ideal completion)

Let p be a finite length on a pointed poset (D,C) such that:

e (Idl(D).d;) is a complete metric space.

o ForallI € Idl(D), n € N: The set I[n] :={x € I|p(x) < n} is finite.
Then 7g : D — IdL(D) is an isometry.

The assumptions of this lemma are rather restrictive. They reduce the ideal completion

to the chain completion:

Lemma 2.7 (Consequence of the isometry condition)

Under. the assumptions of lemma 2.6 holds: Chain completion and ideal completion of .

(D,C) coincide, i.e. Ch(D) = IdI(D).
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3 L3

Proof: Let I € Idl(D). Then I i especially an ideal in D. As p is a finite length on D we
have I = |JI[n]. By assumption the sets I[n] are finite. Thus I is countable. This implies
with lemma 2.2 that I € Ch(D). [ |
It should be mentioned that lemma 2.7 is not a “natural” consequence of isometry.
Equations (2) and (3) show that in general isometry between D and Idi(D) concerns only
the metric completion of Ch(D) — not Ch(D) itself.
Using lemma 2.6, lemma 2.7 and theorem 2.1 respective theorem 2.4 we summerize —

following and completing two theorems of [MCB94| — for the ideal completion:

Theorem 2.8 (Isometry starting with a length in the case of ideal completion)
Let (D,C) be a pointed fb-cpo with a finite length p such that for all I € Idl(D), n € N
holds: The set I[n] := {x € I|p(z) < n} is finite. Then Idl(D) = Ch(D), especially
Ch(D) = Ch(D), and 7y : (D,d[p]) — (IdI(D), d}) is an isometry.

Theorem 2.9 (Isometry starting with a weight in the case of ideal completion)
Let p be a finite weight on a pointed poset (D, C) such that for all I € Idl(D), n € N holds:
The set I[n] :== {z € I|p(z) < n} is finite. Then Idl(D) = Ch(D) and i3 : (D,d[p]) —
(Idi(D),d}) is an isometry.

Theorem 2.9 confirms our result concerning the domain D of finite strings over some
alphabet A from section 1.3.1 in a new way. We proved there that Idl(D) = Ch(D) even
if A is not countable. As the n-cut of an ideal in D is a finite set Idl(D) suffices the
requirements of theorem 2.9 and we get: Idi(D) = Ch(D).

In the case of the chain completion we give the following condition on isometry:

Lemma 2.10 (A condition on isometry in the case of chain completion)

Let p be a finite length on a pointed poset (D,C) such that:
e (Ch(D),d;) is a complete metric space.

e For all C € Ch(D), n € N: The set Cln] :={z € C|p(z) < n} is finite.
Then 7y : D — Ch(D) is an isometry.

Proof: (Outline®) Let C € Ch(D). Then there exists an w-chain (¢;) € D such that
C = Utalc;). We construct a subsequence (c!) of (¢;). For x € C we define ind(z) :=
min{k € N|z C ¢, }. For n € N let num(n) := max{ind(z) |z € C[n]}. As by assumption

the sets C[n] are finite for all n € N this maximum exists. With this notions we define:

5This proof is a variation of the proof of lemma 2.6 which can be found in [MCB94].
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Vi € N @ ¢} := Cpum(y- For this chain holds +4(c¢}) = C[i]. Furthermore (c}) is a Cauchy
sequence in D and 75(lim; . ;) = C. n
Using lemma 2.10 and theorem 2.3 respective theorem 2.5 we summerize for the chain

completion:

Theorem 2.11 (Isometry starting with a length in the case of chain completion)
Let (D,C) be a pointed fb-cpo with a finite length p such that for all C € Ch(D),n € N
holds: The set C[n] := {c € C|p(c) < n} is finite. Then iy : (D,d[p]) — (Ch(D),d}) is an

isometry.

Theorem 2.12 (Isometry starting with a weight in the case of chain completion)
Let p be a finite weight on a pointed poset (D,C) such that for all C € Ch(D), n € N
holds: The set Cln] := {c € C|p(c) < n} is finite. Then 13 : (D,d[p]) — (Ch(D),d}) is an

1sometry.

We conclude this section with two examples. The first continues section 1.3.1 on iso-
morphism classes of plain trees. It demonstrates that metric, chain and ideal completion
may be different concepts even when we start with a finite weight on a pointed poset. The
second example illustrates theorem 2.11. We establish for a special kind of concurrent

alphabets an isometry for the domain D of Mazurkiewicz traces between D and Ch(D).

2.4.1 Example: Isomorphism classes of plain trees — Part II

Consider the poset D := {T € TREE(R)|T finitely branching and height(T) < 1} from’
section 1.3.1 equipped with the there introduced partial order E and the height as length -
p.

We already know that Ch(D) # IdI(D). As pis a finite weight we conclude with theorem
2.5 that Ch(D) = Ch(D) and with theorem 2.4 that Idl(D) = IdI(D). d[p] is a discrete
metric on D therefore we gain D = D.

The function ty : D — Ch(D) is not surjective — for example there is no isomorphism
class S of finite branching plain trees with ¢4(S) = U,enta(Xi=; ¢.T1). Thus we have
the situatation that D, Ch(D) and Idl(D) are all complete metric spaces which are not
isometric. Therefore we may conclude that in general neither for I € Ch(D) nor for

I € 1dI(D) holds that I[n] is a finite set for all n € N.

2.4.2 Example: Mazurkiewicz traces — Part 11

Let (A, Ind) be a concurrent alphabet where I'nd is a finite set. We claim that Mazurkiewicz

traces on such a concurrent alphabet fulfill the requirements of theorem 2.11. We already




Chapter 2: Ch(D) and Idl(D) as metric spaces 29

know from part I that Mazurkiev;'icz traces form a fb-cpo. Thus it remains to prove that for
all C € Ch(MT(A,Ind)) and n € N the set C[n] is finite — independent of the cardinality
of the alphabet A.

Let C € Ch(MT(A, Ind)), n € N. Then there exist an w-chain (¢;) € MT(A, Ind) such
that C = Jtu(c;). Let for 0 <7< n

R;:={z € C|p(z) =7}

With this notion holds C[n] = U}, R;. Thus C[n] is a finite set iff for all j the sets R; are
finite. We prove this by induction on j.

For the basis of the induction let j = 0. The only element in MT(A, Ind) with length
0 is the equivalence class of the empty word ¢ which is simultaneous the bottom element
of the partial order. Thus we have Ry = {[¢]} and the basis holds. A

For the induction step “7 — 7 4+ 1" we differentiate two situtations: If the set R;; is
empty we are done. If R;, is not empty we find an element u = [y uy ... uju;1] € Rjyq.
As C[n] is leftclosed there exists a “corresponding” element v’ € R; with u' = [ujus ... u,].
By the induction hypothesis the set I; is finite. We claim that there are only finitely many
choices on u;;, and that therefore the set R, is finite.

Let v := [uju, .. ujul, ] with u;-H € A be an element of R;;,. Using the fact that «
and v both are elements of C' we get that there exists m € N such that u E ¢, and v C c¢,,.
Thus there exist w,w’ € A* with [uju, ... wju;w] = ¢, and [uu, .. .ujug-ﬂw'] = cCp. We
conclude [u uy ... ujujp w] = [uyug . ujuf, w'] and” [u; 4 w] = (Wi w'] ujp, € m(Ind)
then w;, = u},, and thus u = v. If u;;, € m(Ind) then u},, € m,(Ind) and there are only..
finitely many choices for u},,. Thus the set R;y, is finite.

~We conclude this section with a survey on results concerning metric, chain and ideal

completion of Mazurkiewicz traces MT(A, Ind) on a concurrent alphabet (4, Ind).
[Kwi91] showed:

e (MT(A,Ind),C) is an fb-cpo.

e If Ais finite then (Idl(MT(A, Ind)),d}) is isometric to (MT(A, Ind),d[p]).

e If Ais countable then (Idl(MT(A, Ind)),d}) is a complete metric space.

e If A is infinite then an example shows that (Idl(MT(A, Ind)),d;) ﬁlust not be

isometric to (MT(A, Ind), d[p]).

[MCB94] proved:

7~ with proposition 2.2.5 of [Maz89] —
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Figure 4: Extension of a monotone function f to a continuous function f%

e (IdI(MT(A,Ind)),d;) is a complete metric space — independent of the cardinal-
ity of the alphabet A.

Our results are:

e There is an example with Ch(MT(A, Ind)) # Idl(MT(A, Ind)) — see section
2.3.2.

o (Ch{MT(A,Ind)),d}) is a complete metric space — see section 2.3.2.

o If Ind is finite then (Ch(MT(A, Ind)),d}) is isometric to (MT(A, Ind),d[p]) -
independent of the cardinality of the alphabet A.

3 Denotational semantics on the different completions

This chapter is devoted to the application of our studies in denotational semantics. We
begin with a discussion of different extensions of functions, whether they “coincide” and
have “the same” fixed points. Finally we present two consistency results for a CCS-like
language £ : We model the finite part of £ in D. Under some conditions we can show
that the sematics of “full” £ defined by structural induction on D or on Ch(D) respective
IdI(D) are consistent.

3.1 Canonical extensions of functions

Up to now we studied the relation between metric and order theoretical completions
on the level of elements of a set, i.e. whether there is some sort of embedding or — the
same question from another point — whether the desired sets fulfill a special completeness
property.

Now we turn our discussion to functions and their extensions. Let f : D — D be

a function which is monotone with respect to C and non-distance-increasing/contracting
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with respect to d[p]. Then there are canonical extenstions of f on D, Ch(D) and Idl(D).
The questions is: How are these different extensions related?

First we compile some results on standard techniques to extend a monotone function
f : D — & to a continuous function fZ : Z(D) — Z(£) where (D,Cp) and (£,Cg) are
posets and Z is some completion operator. Figure 4 shows the general situtation. The first
result of the following theorem concerns the choice Z = Chain and is due to [Kni]. With
theorem 1.9 we “translate” it for the case 7 = Ch. The situation Z = Idl is studied for
example in [AJ92).

Theorem 3.1 (Continuous extension of a monotone function)

Let (D,Cp), (€,C¢) be posets, let f: D — £ be a monotone function.

1. Let WP : D — Chain(D), i{ : € = Chain(€) be the canonical embeddings of D in
Chain(D) respective £ in Chain(E). Then S

fmmw{cmmw>—>cmmw>
‘ [(ci)ien] = [(f(e))ien]

is an we-continuous function with f€"*" o ,P = £ o f.

2. Let .2 : D — Ch(D), 5 : € = Ch(E) be the canonical embeddings of D in Ch(D)
respective £ in Ch(E). Then

Feh Ch(D) — Ch(€)
. Uienti(ci) = Uiena(f(c)
is -an wc-continuous function with f¢"o.1P =150 f.

3. Let T : D — Idl(D), 5 : € — IdI(E) be the canonical embeddings of D in Idl(D)':
respective € in IdI(E). Then ’

pra, | 1UD) = Td(E)
B ¢ G (F)

is a d-continuous function with fi* 0.2 = .50 f.
4. The estensions f<" and f'* coincide on Ch(D), i.e. f<" = f¥ p).

Proof: Above we gave references for the first three items. Thus it remains to prove that
" = fiéhp) Let C =U17(c;) € Ch(D). We have to show that | 5(f(c;)) = 15(f(C)).

Let z € UJt5(f(c:)). Then there exists i € N such that z T, f(c;). As ¢; € C we get
2 € i5(f(C)) and therefore U4 (f(c:)) C (£(C)).
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Figure 5: The commuting diagram in the case of a finite weight, Z € {Idl,Ch}

Let z € 15(f(C)). Then there exist y € f(C) with 2 T y. Furthermore there exists 7 € N
such that y Cg f(c;). Transitivity gives us z C¢ f(c;) and we may conclude z € |J 5 (f(c;)).
Therefore we get o5(f(C)) C U 5(f(c)). |

Let (D,C) be a poset with finite length p. Let f : D — D be a function which is
monotone with respect to C and non-distance-increasing with respect to d[p]. We study
the relation between its canonical extension

- | D - D

7 { T =Hm, o, > flz):=lim,_ e f(z,)
concerning the metric completion D and the continuous extensions f¢" respective f/%
concerning the order theoretical completions Ch(D) respective Idl(D).

In the case that p is a finite weight we get the expected result of a commuting diagram,
see figure 5. If p is just a finite lenght this relation does not hold in general: [MCB94] gives
a counterexample for both, Ch(D) and Idi(D).

If the canonical extension f of f is contracting it has by Banach’s fixed point theorem an
unique fixed point fiz(f) € D. On the other hand both f¢" and f# have a least fixed point
Ifp(f<") € Ch(D) respective Ifp(f4) € Idl(D) by Tarski’s fixed point theorem. Concerning

these different fixed points we can establish under certain circumstances that

mafia(P) = Yp(7), T € {Ch, Idl} (4)

for both, p a lenght and p a weight.
First we present the results in the case that pis a finite weight. For the ideal completion

we cite [MCB94]:

Lemma 3.2 (Relation between f and f/“ if p is a finite weight)
Let p be a finite weight on a pointed poset (D,E). Then by theorem 2.4 (Idl(D),d}) is

a complete metric space. If f : D — D is monotone and non-distance-increasing then
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2o f = fl¥o1y, see figure 5. Furthermore f'% is non-distance-increasing. If f is conitracting

then also f'* is contracting.

Part 4 of theorem 3.1 allows us to use lemma 3.2 to formulate an analog result for the

chain completion. As f" = f ¥ 5 we may conclude:

Ch if p is a finite weight)

Lemma 3.3 (Relation between f and f
Let p be a finite weight on a pointed poset (D,C). Then by theorem 2.5 (Ch(D),d}) is
a complete metric space. If f : D — D is monotone and non-distance-increasing then
Taof = f*oiy, see figure 5. Furthermore f€" is non-distance-increasing. If f is contracting

then also f©* is contracting.

If p is just a finite lenght [MCB94] shows by an example that in general f’* is not non-
distance-increasing for a monotone and non-distance-increasing function f. As the chosen .
domain D is countable in this example it is also a counterexamble for f¢". Nevertheless

[MCB94] gives a positive result concerning contracting functions:

Lemma 3.4 (Relation between fiz(f) and Ifp(f'¥) if p is a finite lenght)
Let p be a finite lenght on a pointed poset (D, ) such that (Idl(D),d}) is a complete metric
space. Let f : D — D be a monotone and contracting function. Then f is contracting with

contracting constant 3 and 13(fiz(f)) = ifp(f'").

For the chain completion we formulate without an explicit proof an analog lemma. The
proof for the above lemma 3.4 in [MCB94] can be used word by word for our claim. As
in the case of a finite length we do not know whether the ideal completion or the chain-
completion are in general complete metric spaces the relation between lemma 3.4 and 3.5

is different from those between lemma 3.2 and 3.4.

Lemma 3.5 (Relation between fiz(f) and Ifp(f¢") if p is a lenght)
Let p be a finite lenght on a pointed poset (D, E) such that (Ch(D),d}) is a complete metric
space. Let f: D — D be a monotone and contracting function. Then f is contracting with

contracting constant § and a(fiz(H) = Ufp(F°M).

Lemma 3.4 and 3.5 concern not only the case of a finite length. As a weight is a lenght
they provide especially a proof of equation (4).
3.2 The consistency of denotational semantics

Most of this section is completely due to [MCB94] - sometimes word for word. We follow

their definitions of the language £ and its denotational semantics on the metric completion
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and on the ideal completion. New is the straight forward definition of a denotational
sematic on the chain completion and — of course — the theorem of consistency concerning
the chain completion.

Let (D,C) be pointed poset with a finite length p. We assume that D is a semantic
domain for nonrecursive programs. We consider a language where recursion is modelled
by declarations, i.e. a program is a pair < s,0 >. A statement s is built from operator
symbols (like prefixing or sequential composition, nondeterministic choice, parallelism, etc.)
or process variables. A declaration ¢ is a function which assigns to each process variable z
a statement o(x). We denote the set of all statements s by L.

For each operator symbol w in £ let wp be a semantic operator on D which is monotone
with respect to C and non-distance-increasing/contracting with respect to d[p]. Let f :

L — D be any function. For a fixed declaration o we may define a mapping
F:(L—>D)—>(L—>D)
by structural induction on s € L :
e Let F(f)(a) := ap for each constant symbol a € Lan.
e Let F(f)(z):= f(o(z)) for each process variable z.

o Let F(.f)(w(sl: S250 0y S.,,)) = w'D(F(.f)(Sl)z F(f)(SQ) s F(f)(sn)) for each n-ary

operator symbol w in L..
Similarly we ge mappings
o Fs: (L—=D)—= (L—>D),
o Fcp: (L — Ch(D)) = (L — Ch(D)) and

Ch Idi

where we use the canonical extensions @, w“" respective w'® as semantic operators.
Since F¢p, and Fg are wc-continuous we have denotational cpo semantics on Ch(D)
respective Idl(D) :

L Ch(D L — Idi(D
Mecy, : - (D) Me;y : (D)

s = Ifp(Fen)(s) s = Ufp(Fra)(s)

Under certain conditions (e.g. the guardedness of the statements o(z) in the sense of

[Mil89]) the function F,, is contracting and hence has a unique fixed point. In this case
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we get a metric denotational semantics on D :
L — D

Me(,'r"s :
S — ﬁm(chs)(S)

[MCB94] gives the following consistency result for Me.,,, and Meyy :

Theorem 3.6 (Consistency of Me.,,; and Mey)
Let p be a finite length on a pointed poset (D, C) such that (Idl(D),d}) is a complete metric
space. Then '

ZZ o Mecms = Me]dl~

We add a theorem for Me.,,, and Mecy, :

Theorem 3.7 (Consistency of Me,,,, and Mec,,)
Let p be a finite length on a pointed poset (D, C) such that (Ch(D),d}) is a complete metric
space. Then

7:(70 Mecrns = MeCh.-

Proof: For a proof we refer to the proof of above cited theorem 3.6 in [MCB94]. This
proof does not use any specific property of the ideal completion and holds so as well in the

case of the chain completion. [ |

Conclusion

In this paper we successfully added the technique of chain completion to the theory of
[MCB94] concerning the relation between the metric and the ideal completion of a pointed

poset with finite length and its application in denotational semantics. We showed

1. that the usual chain completion Chain(D) can be reformulated as an isomorphic

completion Ch(D) which is a subset of the ideal completion Idl(D).
2. that the metric space (Ch(D),d}) is complete under certain circumstances.

3. that under certain circumstances there is an isometry between the complete metric
spaces (Ch(D),d}) and (D, d).

4. that under certain circumstances the denotational semantics on the metric completion

and on the chain completions are consistent (see figure 6).
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Figure 6: Consistency of denational semantics

The following aspects secem to be worth mentioning:

Probably the most important result of our work is that it is possible to “translate”
the definitions and theorems from the ideal completion to the chain completion. This
shows that the ideas of [MCB94] are of fundamental nature and not specific to the ideal
completion.

It is not our intention to claim for semantics based on chain completion. The examples
of domains where chain and ideal completion differ are probably not the standard situation
in denotational semantics. But another approach to the ideal completion of a countable
domain seems to be useful. Knowing that ideal and chain completion coincide gives a

second description of the elements in the completed domain.
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