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Abstract

This paper adds the technique of chain completion to the setting of [MCB94]. We

develop the theory of chain completion Ch(V) of a domain V and show how this

completion relates to metric and ideal completion. Especially we study consistency

results for denotational semantics on D, Ch(V) and Idl(V).
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Introduction

Introduction

2

The aim of this paper is to add the techniqlle of chain completion to the setting of [MCB94]

which they describe as follows:

We assume tlwt V is a semantic domain for non-recllrsive programs of a CCS-like

language as finite strings on (labelled) trees of finite beigbt. ~ is a partial order

on V sucb tbat V bas a bottom element -.L wbicb eitber can be tbe meaning

of tbe nil program (tl1Cprogram wbicb does not perform any action) or wbicb

represents a totally undefined process. If we bave semantic operators on V wbich

are monotene w.r.t. ~ tben tbe ideal completion Idl(V) can be used as semantic

domain for a denotational cpo semantic wbicb extends tbe semantics on V for

reCllrSlve programs. On tbe otber band if V is endowed witb a metric such

tbat tbe semantic operators are non-distance-increasing resp. contracting we get

a denotational semantics on tbe metric completion V. Tbe question arises in

wbicb way tbe metric and ideal completion are related and bow tbe denotationa]

semantics on I dl(V) resp. V are connected. In tbis paper we answer tbis qllestiol1

llnder tbe assllmption tbat (V,~) can be endowed witb a finite lengtb. Tbis

lengtb induces a metric on V. By a fini te lengtb we mean a fllnction wbicb assigns

tbe maximal nllmber of atomic steps to eacb element x ofV wbicb are needed fm:

tbe execution of x. Here tbe elements ofV are considered as processes. E.g. tbe

leng tb of a finite string is its llsllallengtb, tbe lengtb of a tree is its beigbt. Tlw

distance d(x, y) induced by a lengtb counts tl1Cmaximal nllmber n of steps on

wbicb tbe execlltion of x and y coincide (and tben d(x, y) = 1/2").

This gives us our program: We have to develop the theory of the chain completion

Ch(V) of a domain V in a way that we are able to deal with semantics in the above

described sense. Especially we are interested in a conneetion of the denotational semantics

on D, Ch(V) and Idl(V). To give an impression how similar 01' how different chain and

ideal completion are we llsually cite the corresponding res1l1ts of [MCB94].

The paper is organized as follows: Chapter 1 gives some basic definitions. We intro-

duce the technique of chain completion and relate it to the weIl known ideal completion.

Furthermore we give a formal definition of the length p on a domain V and show how this

indllces a metric not only on V but also on the chain completion Ch(V) and the ideal com-

pletion Idl(V). Chapter 2 discusses the relations of the metric completions of V, Ch(V)

and I dl (V). In chapter 3 we present the application of the theory developed so far to

denotational semantics.
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In this chapter we introduce different completions of a semantic domain D which is equipped

with both a partial order [; ~ D X D and a length1 p: D ~ !No U {oo} which covers some

information from [; . First we present some not ions concerning partial orders. Then we

discuss in some detail the chain completion of a partially ordered set and compare it with

the weil known ideal completion. Finally we show how one can define ametrie on a partially

ordered set with bot tom using the length p.

1.1 Order theoretical notions

In order to compare completion techniques for semantic domains we need some order theo-

retical notions. Especially we introduce partially ordered sets, different completeness prop-

erties, corresponding stucture preserving functions and constructions to gain completeness.

A partially ordered set (poset) consists of a pair (D, [;) where D is a set and [; ~ D x D

is a binary relation on D which is reflexive, antisymmetrie and transitive. (D, [;) is pointed,

iff it contains a least element. This element is called bottom and is denoted by 1.. . If the

relation [; is only reflexive and transitive we call the pair (D, [;) preorder.

In aposet (D, [;) we write x U y for the least upper bound of two elements x, y E D
and US for the least llpper bound of a set S ~ D - if these bounds exist. Further we llse
the notions -l- x := {y E D I y [; x} and -l- S := {y E D 138 ES: y [; 8} for x E D, S ~ D.

In order to define complcteness properties it is necessary to characterize some subsets

of aposet. Let (D, [;) be a partially ordered set. A nonempty subset S ~ D is called

• leftclosed, iff "Ix E D, 8 ES: x [; 8 ::::}x E S .

• directed, iffVx,y E S3z ES: x ~ z /\ Y ~ z.

• ideal, iff S is directed and leftclosed .

• bounded, iff 3b E DVs ES: 8 [; b.

• finite bounded, iff S is a finite set and S is bounded.

• chain, iff S is totally ordered by [; n (S x S) .

• w-chain, iff S is countable and S is a chain. Sometimes we refer to the elements of

an w-chain Sand denote it by (Ci)iEN ~ D. In this case holdsVi E !N: Ci [; Ci+l'

I See subseetion 1.4 for details.
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As a chain is totally ordered it is a special case of a directed set.

Completeness distingllishes posets by marking the existence of Sl1prema für special kinds

of sl1bsets. We call aposet (D,~)

•. fb-cpo, iff each finite bOllnded set S ~ D has aleast llpper bOllnd in D .

• wc-cpo, iff each w-chain C ~ D has aleast llpper bOllnd in D .

• d-cpo, iff each directed set S ~ D has aleast llpper bOllnd in D .

• c-cpo, iff each chain C ~ D has aleast upper bound in D.

ObviollSly every d-epo is an wc-cpo. [AJ92] mentions that the notions d-epo and e-epo are

eqllivalent.

The concepts of a eompact element2 and of an algebraie poset are defined similarlyin

the setting of we-epos and d-epos. We present them in parallel, following the definitions of

[WWT78]3:

Let (D,~) be an we-epo. An element d E D is ealled wc-compaet iff for all w-ehains

C ~ D holds: d ~ UC* (:Je E C: d ~ e.) We denote the set of all we-compact elements

of D by Kw,,(D). Dis ealled wc-algebraic4, iff for all elements d E D there exists an w-chain

C ~ Kw,,(D) sueh that d = U C.
Sl1bstitllting w-ehains by directed sets we get: Let (D, ~) be a d-epo. An element d E D

is e~lled d-compaet iff for all directed sets S ~ D holds: d ~ U S * (:Js ES: d ~ s). We

denote the set of all d-eompact elements of D by Kd(D). D is called d-algebraic, iff für all

elements d E D there exists a directed set S ~ Kd(D) sueh that d = U S.

Next we eonsider fllnctions that preserve (some of) the structllre in different posets:

• Let (D, ~) and (eS, ~) be posets and f :D -+ eS. f is ealled monotone iff

Vx,y E D: x ~ y * f(x) ~ f(y) .

• Let (D, ~) and (eS,~) be we-epos and f :D -+ eS. f is ealled wc-continno7/,s iff

f is monotone and for all w-ehains C ~ D holds: f (UC) = U f (C) .

• Let (D,~) and (eS,~) be d-epos and f :D -+ eS. f is ealled d-contimw'IJ,s iff

f is monotone and for all directed sets S ~ D holds: .f(U S) = U f(S).

2Some authors call such an element "finite" or "isolated" .

:l [\V\VT78]uses the notion "core complete" instead of "algebraic" .
1[A.J92] uses tlie term ":.v-~llgebraic"to denote a d-cpo with a countable basis of cOlnpact elements.

It shollld be noted that the property ":.vc-algebraic" does not inclllde any restriction in the IlllInber of

wc-compact elelnents.
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A d-continuous funetion f is always wc-continuous.
For a given poset (V, ~) it is possible to construet a d-cpo and an wc-cpo which both

"contain" V. We disC11SSthe second concept in the following subsection. In theorem 1.1 we

compile some properties which can be found for example in [AJ92]:

Theorem 1.1 (Basic properties of the ideal completion)

Let (V,~) be a po.get. We con.9ider the .get Idl(V) := {I ~ V I I ideal}. Ordered by inclu.9ion

it i.9 a. d-algebmic d-cpo. We co,ll (Idl(V),~) the ideal completion of (V, ~). The lea.9t

upper bound of a directed set S ~ Idl(V) is computed as U S = UIES I. The f11,nction

I'd : V -+ Idl(V), d H-J,. d, is monotone and injective, Kd(Idl(V)) = l'd(V).

In order to compare metric and poset completions it is useful to introduce another d-

complete poset: Given aposet (V,~) the set P!(V) := {X C V I X leftclosed} ordered by

inclusion is a d-cpo. The least upper bound of a directed set S ~ P!(V) is computed as

U S = UXE." X. The funetion I,p : (V,~) -+ (P!(V), ~), d H-J,. d, is monotone and injeetive.
For the ideal completion of D holds Idl(V) ~ P!(V). If the poset (V,~) is pointed then

(Idl(V),~) and (P!(V),~) are just so.

1.2 The chain completion of aposet (V, 1;;;;)

The chain completion of aposet (V,~) is defined as the set of all w-chains in V equipped

with some suitable equivalence relation. This technique works similar to the metric com-

pletion.

[WWT78] presents two general approaches - including the one we willuse - to construct

from a "suitable" poset V a cpo I(D) with, in effect, V as its compact elements. The

completness property of I(D) is used as a parameter. It may be chosen widely, inchlding

finite-bounded, directed, w-chain and chain.

In spite of the elegant theory presented in [WWT78] we will do the completion "by

hand" and prove their properties in our own way. The reason is that this process sheds

some light on the nature of the chain completion.

Let (V, ~) be aposet. Construet a preorderd set (V', ~D') by

In order to obain aposet we define an equivalence relation == ~ V' X V' by
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We write [(ai)] or - if it is useful to refer to the index of the w-chain - [(o,;);EN] for the
induced equivalence classes on V'. The eqllivalence relation == indllces furthermore a partial

order ~c ~ VI=. x VI=" For all [(ai)], [(bi)] E VI=. we define:

Definition 1.2 (Chain completion)

Let (V,~) be aposet. We call Cho,in(V) := VI=' ordered by ~c the chain completion ofV.

Definition 1.3 (Stationary w-chains)

Let (V,~) be aposet. We call an w-cho,in (Ci)iEN ~ V stationary iff"?'k E [N Vi ~ k : CA:= Cl.

It is easy to proof that all w-chains (ai) E [(Ci)] E Chain(V) are stationary iff (Ci) IS

stationary. The chain completion of aposet has the desired properties:

Theorem 1.4 (Basic properties of the chain completion)

Let (V,~) be aposet. The chain completion (Cho,in(V), ~J is an wc-algebraic wc-cpo.

The function l-c : (V,~) ~ (Cho,in(V), ~(J, d t-+ [(di)] with Vi E [N : di = d, is monotone

and in.iective, Kwc(Cho,in(V)) = I-c(V).

Proof: We prove first that (Cho,in(V), ~J is an wc-cpo. Consider an w-chain (Ci)iEN ~
Cho,in(V) with Ci = [(Ci,j)jEN]' We define by induction on i and .i a new represantant

(o,i,j)jEN ~ V for each Ci. Let

• for i = 1 : V.i E [N : o,l,j := CI,j and

• for i >1: V.i E [N: o,i,j:= Ci,A"where k:= min{i E [N Ii ~.i 1\ o,i-l,j ~ ci,d. Such a

k exists for every .i because (Ci) is an w-chain in Cho,in(V).

By induction on i one can prove that we gained indeed the property V.i E [N : o,;,j ~ o,i,j+l'
The construction ensures Ci,j ~ o,i,j for all i,.i E [N. The other way round for each o,i,j exists

k E [N such that ai,j = Ci,k' Therefore [(aiJjEN] = [(Ci,j)jEN] for all i E [N.

We claim that A := [(o,i,;)iEN] E Cho,in(V) is the least upper bound of (Ci)' By con-

struction we have for all i E [N : o,i,i ~ o,;+l,i ~ ai+l,i+J, i.e. (o,i,i)iEN is an w-chain in V. For

ai,j choose k := max{i,.i}. This resll1ts in o,i,j ~ o,k,k' Therefore A is an llpper bound for

(Ci)' Let B := (bi) E Cho,in(V) be an upper bOllnd. Then Vi,.j"?'k: o,i,j ~ bk. This holds

especially in the case i = .i and we get A ~c B.
Next we show that the elements of l,c(V) ~ Cha'in(V) are wc-compact. Let for 0, E V

A:= l-e(a) E Cho,in(V), (Ci)iEN ~ Cha:in(V) an w-chain with Ci = [(Ci,j)jEN] and A ~c

UCi =: C. W.l.o.g. we may assume C = [(Ci,i)iEIN]' As A ~c C there exists k E [N such that

a ~ Ck,k' Therefore we get l'c(a) ~c Ck.
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To prove that Chain(V) is wc-algebraic let C := [(Ci)] E Cha:in(V). Define an w-chain

(A;)iEN ~ Chain(V) by Ai := "c(Ci)' Obviously Vi EIN: Ai E l,c(V) ~ Kwc(Chain(V)) and

UAi=C.

To finish the prove of Kwc(Cha'in(V)) = l,c(V) we have to show that elements C E

Chain(V)Vc(V) are not wc-compact. Here we use an easy to proof charaeteristic of l,c(V) :

C = [(Ci)] E 1,r;(V) iff (Ci) is a stationary w-chain in V. Let C := [(Ci)] E Chain(V), (Ci) ~ V

a non-stationary w-chain. We construet an w-chain Ai ~ Chain(V) by Ai := l'c(Ci) for all

i E IN.Then we get: C ~ UAi, but there is no kEIN such that [(Ci)] ~c Ak. •

If the poset (V,~) is pointed then (Chain(V), ~(J is just so. We make the two central
construetions of the above proof explicit and present them as results of their own kind.

Finally we give a simple but useful lemma.

Corollary 1.5 (Computing least upper bounds of w-chains in Chain(V)

Let (V,~) be aposet, (Ci)iEN ~ Chain(V) an w-chain, Ci = [(Ci,j)jEN]'

1. Then there exist elements ai,j E V such that the following conditions hold:

ii.) Vi,j E IN3l EIN: ai,j = Ci,!,

iii.) Vi,j EIN: ai,j ~ ai,j+l 1\ ai,j ~ ai+l,j.

2. If the w-chains (Ci,j) fuJfill condition iii.) then the supremum may be computed by

UCi = [(Ci,i)iEN]'

Corollary 1.6 (Construction of an w-chain with least upper bound C )

Let (V,~) be aposet, C = [(Ci)] E Chain(V). Then "c(Ci) is an w-chain in Kwc(Chain(V))

a:nd U Lc(Ci) = [(c;)] = C.

Let (V,~) be aposet. The function "c is monotone, i.e. "Ix, y E V : x ~ y =} "c(x) ~c

l'c{]J). For elements of l,c(V) the other direction holds as well:

Lemma 1.7 (Connection between ~c and ~ on Kwc(Chain(V)))

Let (V,~) be aposet, x, y E V. Then l,c(X) ~c I,c(y) implies x ~ y.

1.3 Chain completion versus ideal completion

In order to relate chain and ideal completion of aposet V we define an injeetive and wc-

continuolls funetion f : (Chain(V), ~J -+ (Idl(V), ~). In the case that V is countablewe

prove (Chain(V), ~J c:::: (Idl(V), ~). Finally we give two examples. The first demonstrates
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that ideal completion and chain completion are different concepts. In the second Chain(D)

and Idl(D) coincide even though D is not countable.

Let (D, ~) be aposet. Usin?; corollary 1.6 we define a function

f : { (C~ain(D), ~,,) -+ (Idl(D),~)
C - [(c;)] H UiEN "d(C;).

As (Ci) is an w-chain in D and "d is monotone (/'d(Ci)) is an w-chain in Idl(D) and therefore

has aleast upper bound in Idl(D). Let [(Ci)], [(di)] E Cha:in(D) with (Ci) == (di). This

implies V.i E lN::Ik : Ci ~ dk and Vj E lN::Il : dj ~ Cl. Therefore U "d(di) is an upper

bound for "d(Ci) and U Ld(Ci) is an upper bound for "d(di) for all i E IN. This results in

U "d(C;) = U "d(di). Thus the function f is indeed wen defined.

Theorem 1.8 (Properties off: (Chain(D),~J -+ (Idl(D),~))

Let (D,~) be a. poset. FOT the a.bove defined f7Lnction f : (Chain(D), ~J -+ (Idl(D),~)

holds:

• "d = f 0 1,(;,

• f is injective,

• f is w c- contin7Lo7Ls a.nd

• Im(f) = {"d(d) I d E D} Ü {UiEN"d(Ci) I (Ci) ~ D non-sta.tiona.TY w-cha.in} ~ Idl(D).

Proof: The first and the last property of f are obvious.
To prove that f is injedive let A = [(ai)], B = [(bj)] E Chain(D) with f(A) = f(B).

Using theorem 1.1 we may compute f(A) = U "d(ai) = U "r1(ai) and f(B) = U "d(bJ =
U "d(bj). As for an i we have ai E "d(ai) this implies V.i EIN: ai E U "d(bj). Therefore we

get Vi E IN::I.i EIN: ai E "d(bj) and hence ai ~ bj. Thus we can conclude (ai) ~'D' (bj). The

prove of (bj) ~'D' (ai) uses the same argument - with the roles of (ai) and (bj) exchanged.

This implies (ai) == (bj).
Next we verify that f is monotone. Let A = [(ai)], B = [(bi)] E Cha.in(D) with A ~G B.

Then for an i E IN there exists j E IN such that ai ~ bj. This implies "d(ai) ~ "d(bj) and

hence f(A) ~ f(B).

Now we deal with the continllity of.f. Let (C;) ~ Chain(D) be an w-chain withUCi =:

C E Chain(D). As Chain(D) is w-algebraic there exists an w-chain (Ar)rEN ~ I,,,(D) with

U Ar = C. Further for an i E IN exist w-chains (Bi,sLEN ~ I,,,(D) such that UsENBi,., = Ci. As

Ar, Bi,s E l'c(D) there exist elements ai, bi,s E D such that Ar = ",,(ar), and Bi,s = ",,(bi,s)for

all T, i, sEIN. Due to the special form of the w-chains (A,.) and (Bi,s).'EN we may compllte



Chapter 1: Basic definitions 9

their least upper bounds by U Ar' = [(ar')] and U.'EN Bi,., = [(bi,s)SEN]' We already know

that J is monotone. Thus to finish the proof for the continuity of J we have to establish
J (UC;) = U J (Ci)' The lefthandside evolves to

while we get for the righthandside

As the Ar are wc-compact we may conclude:

"Ir ErN: Ar [;0 C = U Ci

===> "Ir E rN3-i ErN: Ar [;c Ci = U.'EN Bi,s

===> "Ir E rN3'i, s ErN: Ar [;" Bi,s'

Starting with V-i, s ErN: Bi,s [;0 Ci [;" C [;c UAr' we establish V-i, s E rN3r ErN: Bi,s [;" Ar'

using the same argument as above. This results with lemma 1.7 in "Ir E rN3-i, s ErN: ar [;

bi,s and V-i, s E rN3r ErN: bi,s [; 0,1" Now we can compute

"Ir E rN3-i, s ErN: ar [; bi,s

===> "Ir ErN: "d(ar) ~ UiEN UsEN "<I(bi,.,)

===> U ',<I (ar') ~ UiEN UsEN "<I(bi,.,)

===> J(U Ci) ~ U .f(Ci).

The other direction is computed in the same way:

V-i, s E rN37" ErN: bi,., [; 0,1'

===> V-i, s ErN: "<I(bi,s) ~ U "<1(0,1')

===> UiEN UsEN "d(bi,s) ~ U "d(ar.)
===> UJ(Ci) ~ J(UCi).

Thus we have J(U Ci) = U J(Ci).

••
For the purpose to relate metric completion with chain and ideal completion it is easier

to use the image J(Cha-in(V)) instead of Cha-in(V) itself. Therefore we have to establish

that (Cha-in(V), [;c) ~ (f(Cha-in(V)), ~). Figure 1 illustrates the situation: We use the

not ion Ch(V) instead of lrn(f) and introduce an wc-continuous funetion g that is an inverse

to J.
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('O~~)

(Cha'in('O), ~(J

9

(Ch('O)~~) c (Idl('O),~)

Figure 1: (Chain('O), ~J and (Ch('O), ~).

Theorem 1.9 (The chain completion as subset of the ideal completion)

Let ('O,~) be 0. poset. Ch('O) := Im(.f) ordered by indusion is an wc-algebraic wc-cpo which

is isomorphic to (Cha'in('O)~ ~c). The least v.pper bound of an w-chain (IiLEIN ~ Ch('O) is

computed as U Ii = U 1;. The function Ld : ('O,~) -+ (Ch('O) ~~), d Mt d, is injective and

monotone, Kwc(Ch('O)) = l.d('O).

Proof: As Ch('O) is ordered by inclusion it. is aposet.. Let. I be an element. of Ch('D) =
Im(.f). Then t.here exist.s an element. [(Ci)] E Chain('O) wit.h f([(Ci)] = U Ld(Ci) = I. Using

the w-chain (Ci) ~ V we define a funct.ion

-+ (Chain('O), ~c)

U L,,(Ci)'
g: { (Ch('O)~~)
. 1= f([(Ci)]) M

We claim t.hat.

1. 9 is well defined~

2. 9 is wc-continuous~

3. fog = idch(v) and gof = idChain(V)'

To prove t.hat. 9 is weH defined let I E Ch('O), [(Ci)], [(di)] E Chain('O) such t.hat

f([(Ci)]) = f([(di)]) = I. For all k E tN we have I'd(cd ~ f([(Ci)]) = f([(di)]) = U I'd(di) and

hence there exists l E tN : Ck ~ dl• The ot.her way round we get 'im E tN 3n E tN : dm ~ Cn-

Therefore holds (Ci) == (di).

Next we verity that 9 is monotone. Let I = f([(Ci)]), J = f([(di)]) E Ch('O) with

I ~ J. Using the same argument as above we gain 'ik E tN 3l E tN : Cl ~ dk. This implies

[(Ci)] ~~, [(d.i)].
The proof that 9 is an inverse to f is straight forward. With this knowledge we can

establish that (Ch('O)~~) is an wc-cpo and that the least upper bound of an w-chain
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(Ii) ~ Ch(V) may be compllted as U Ii = U 1;. Let (Ii) ~ Ch(V) be an w-chain. As .11

is monotone (g(Ii)) is an w-chain in Chain(V) and C := Ug(I;) exists in Chain(V). We

compllte f(C) = f(Ug(Ii)) = UU 0 .11) (I;) = UIi which is an element of Ch(V) = ImU).

Using corollary 1.5 we may assume w.o.l.g. that

• Vi ErN: g(I;) = [(ai,j)J,

• Vi, j ErN: ai,j ~ ai,j+1 1\ ai,j ~ ai+1,j and

• C = [(ai,i)]'

With this notions we have f(C) = U;EIN (d(ai,i) and Ii = f(g(Ii)) = f([(ai)]) = UjEIN '~d(ai,j)'
Using the ordering property of the ai,j we get

U Ii = f(C) = U "d(ai,;) = U U (d(ai,j) = U1;.
;EIN iEINJEIN

Every d-compact element of Idl(V) is wc-compact in Idl(V). As '~d(V) ~ Ch(V) we

have Kd(Idl(V)) ~ Kwe(Ch(V)). To get the inclllsion the other way round we consider

an element I E Kwc(Ch(V)). Let g(I) ~c UCi for an w-chain (Ci) ~ Chain(V). Then we

have U 0 .11)( 1) = I ~ .f(UCi) = U f (Ci)' As I is wc-compact there exists kErN such that

I ~ f(CI.J. Therefore .11(1) ~c CI., and thus g(I) E Kwe(Chain(V)) = "c(V). This implies

I E '~d(V).

We already know that .11 is monotone. Thus to finish the proof for the continuity of .11

we have to establish g(U I;) = U g(Ii) for an w-chain (Ii) ~ Ch(V). This can be done in

the same way as for f in the proof of theorem 1.8. Ch(V) is wc-algebraic, therefore the

construction of the desired w-chains is possible. As .11 is built like f the evaluation of g(U Ii)

and U .11 (I;) results in similar terms as for f. The other arguments carry over by simple

substitution. •
If D is countable then in (Idl(V) , ~) the concept of directed sets S ~ Idl(V) reduces

to the abilities of w-chains in Idl(V). We cite [AJ92] for the following theorem:

Theorem 1.10 (Directed sets and w-chains)

If (D,~) is 0, countablc poset then every directed subset of Idl(V) contains an w-chain with

the same supremum.

Corollary 1.11 (Isomorphism between chain and ideal completion)

If (D,~) is a countable poset then Ch(V) = Idl(V) and therefore (Chain(V), ~c). ~

(Idl(V) , ~).



Chapter 1: Basic definitions 12

Proof: Let I E Idl(D). As Idl(D) is d-algebraic there exists a directed set 5 ~ "r1(D)with

US = I. Using theorem 1.10 we obtain an w-chain (C;) ~ 5 with UCi = US = I-all

suprema computed in Idl(D).

Now we look for the least upper bOllnd of the obtained w-chain (C;) in Ch(D). We know

that Vi E [N : Ci E Ch(D) and that (Ch(D),~) is an wc-cpo. Thus the w-chain (Ci) has

a supremum CE Ch(D). In both cpos, Idl(D) and Ch(D), the suprema are computed by

U C;. Therefore we have C = I. •

1.3.1 Example: Isomorphism classes of plain trees - Part I

To give an example of aposet (D,~) with Ch(D) =I- Idl(D) we introdllce isomorphism

classes of plain trees llsing the notions (for the most part word for word) of [BMC94].

A plain tree over a set of actions A and a set Nodcs is a quadrupel t = (N, E, l, vo)
consisting of a set N ~ Nodes of nodes, a set E ~ N x N of edges, a labelling function

l : E -+ A and anode Vo E N such that (N, E) is a tree with root Vo in the graphtheoretical

sense, i.e. for each node v E N there exists a llniqlle path from the root Vo to 11. The depth

of anode 11 E N is the length of the (unique) path from the root to v. The height of a plain

tree t it the length of a longest path in t. We denote the set of all plain trees over A and

Nodes by tree(A, Nodes).

Let t = (N, E, l, 110), t' = (N', E', l', v{)) be plain trees over the same set of actions and

over possibly different sets Nodes and Nodes/. An embedding f : t -+ t' is an injective

fllnction f : N -+ N' with f(vo) = 1I~ such that the following condition is satisfied:

If (11, 11)) E Ethen Cf (v) , f (1J) )) E E' and l (11, 1J)) = l Cf (v), f (11)) ).

We call f an isomorphism from t to t' iff f is a bijecitive function N -+ N' such that f

and f-I are embeddings. TREE(A) denotes the set of all ismorphism classes of plain trees

over A and a countable set Nodes.

Let t = (N, E, l, vo) be a plain tree. A subset N' of N is called leftclosed iff N' is

nonempty and for all v E N' the set of all predecessors of 11 is contained in N'. In this case

tfN' := (N', E n (N' x N'), lIEn(N'xN')' vo)

is a plain tree.

Using this notion we define a partial order on tree(A, Nodes). Let sand t = (N, E, l, vo)
be plain trees then

S ~pt t ;~ 3N' ~ N ; N'leftclosed 1\ s = tfN'.
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Now we can give adefinition of a partial order on TREE(A). Let S, T E TREE(A) be

isomorphism classes of plain trees. Then we define:

S G; T :~ :309 E S, t E T: s G;p/ t.

In general the relation G; is not antisymmetric. Bllt restricted to isomorphism classes of

finitely branching trees it is a partial order.

We use the abbreviation TJ.. for the isomorphism class of ({vo}, 0, 0, vo). I:~~lo,;.T;

describes the isomorphism class of a plain tree which has n branches at the root, each

labelIed with an action 0,; E A and completed by an isomorphism class T;. A detailed

discussion of this notion can be found in [BMC94].

Dsing these definitions from [BMC94] we are able to present our example for a partial

order (D, G;) with Ch(D) =1= Idl(D). Consider the poset (D, G;) where

D := {T E TREE(fR) I T finitely branching and height(T) ~ I}

and r;;;; is the above mentioned partial order on isomorphism classes of plain trees redlls-

tricted to D.

We claim that D is a directed set. To prove this let S = I:7=1o,;.TJ.., T = I:7~]bj.TJ.. E
D. We define U := I:~~]o,;.TJ.. + I:7~]bj.TJ... ObviollSly we have U E D and S, T G; U.

D is not countable because it has for example E := {r.TJ..lr E fR} as sllbset. Consider

the ideal completion of D. As Idl(D) is a d-cpo it contains I := U l'd(D) = UdE'D I'd(d). As

we have especially E ~ I the set I is not countable.

In the case of Ch(D) we claim that all its elements are countable sets. To prove

this we study first sets of the form .j.. S in D, where S E D is an ismormism class of

plain trees. Let S E D, If S = TJ.. we get I .j.. TJ..I = 1. If S = I:;~]o.i,TJ.. then the set

.j.. S = {TJ..} U {I:;Eln o,;.TJ..1 In ~ {I, 2, ... , n}} is finite. Let C = UiEN .j.. Ti E Ch(D). As
the sets .j.. Ti are finite and the index set is countable, the set C is countable.

Therefore we know that the above constructed set I is not in Ch(D) and hence Ch(D) =1=

Idl(D). •

1.3.2 Example: Finite Strings over an alphabet A

With corollary 1.11 the question arises whether we have always Ch(D) =1= Idl(D) if D is

not countable. The following example shows that this is not the case.

Let A be an alphabet, D := A' the set of all finite words over A inclllding the empty

word €. We use the prefix relation to define a partial order on D. For allll, v E D we define:

II G;pl'ejix V :~ :3111 E A" : llW = v,
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Lemma 1.12 (Ideals in (A*, ~pT'eJ;',))

Let A be an alphabet, 1J := A* ordered by ~pT'eJ;:c and I ~ 1J an ideal. Then I is an w ..ehain.

Proof: Let I ~ D be an ideal, x, y E I. Then there exists z E I with x, Y ~pT'eJ;" z.

Therefore there exist s, t E 1J such that xs = z = yt. Let w.o.l.g. length(s) 2: length(t).
Then we get x ~pT'eJ;:c y. Thus I is totally ordered by ~preJ;:c n I x I.

An element of I is uniquely determined by its length: Let x, y E I with length(x) =

length(y). Then x = y because we may assume w.l.o.g. X ~T!1.eJ;:c Y ::::}XE = X = y.

To prove that I is countable we introduce s := sup {length(x) I x E I}. If .')< 00 there

exists an element dEI with length(d) = s. In this case we have 1= {E,Xl,X2, ... ,X8},

where x; is the prefix of d with length i. Thus I is a finite set.

If s = 00 we claim that 1= (0,;) for an w-chain (0,;) where Vi EIN: length(a;) = i. As

s = 00 there exists for all nEIN an element am E I with length(am) 2: n. With am all its

prefixes are elements of I because an ideal is especially leftclosed. As an element of I is

uniquely determined by its length we may conclude I = (0,;). •

Theorem 1.13 (Ch(A*) = Idl(A*))

Let A be an alphabet, 1J := A* ordered by ~pT'eJ;" . Then Ch(A*) = Idl(A*) and thereforc

(Chain(A*), ~(J~ (Idl(A*), ~).

Proof: Using theorem 1.9 we have Ch(A*) ~ Idl(A*). Lemma 1.12 gives us the inclusion

in the other direction. •

1.4 Metric concepts on pointed posets

So far we dealed exclusively with order-theoretical concepts. Now we introduce a metric on

pointed posets with length. The definitions and theorems presented in this sl1bsection are

completely due to [MCB94] (for the most part word for word). They can jllSt so be fOllnd

- in a slightly different manner - in [BMC95]. The only new part is the straight forward

definition of the length p+ and the metric d~ on Ch(1J).

First we give the definitions of different kinds of a length on a pointed poset. Such a

length can be used to enrich aposet with a pselldo 11ltrametric or - llnder certain cirCllm-

stances - with an l1ltrametric or even a complete 11ltrametric. Finally we show in which

way a finite length on a pointed poset 1J indllces an 11ltrametric on Ch(1J), Idl(1J) and

Pt(1J). This is the starting point of chapter two where we relate the concepts of chain,

ideal and metric competion.

Let (1J,~) be a pointed poset. We call a function p : (1J,~) -t (lNo U {oo},::;) length. on
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D, iff for a11x, y E D holds:
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p(x) = 0 <===} x =-.1 and x ~ y::::} p(x) ~ p(y).

For x E D, nEIN we define:

f)(x):={yEDly~xl\p(y)~n}, .j./in(x):= U f)(x).
nEIN

P is ca11edfinite, iff for a11x E D we have pe£) < 00. An element x E D is ca11ed approx-

imable, iff x is the least upper bound of .j./i" (x). M(D) denotes the set of approximable

elements.

Let (D,~) be a pointed poset. A weight is a lenght p on (D,~) such that for a11x E D

and n ~ 0 the set V' (x) has a greatest element whieh we denote by x[n]. x[nJ is ca11ed

the n-cut of x with resped to p. We ea11a weight p on an we-cpo (D,~) wc-continv,ous

iff for a11nEIN the function i" : D --+ D, x I---t x[nJ, is wc-continuous. We ea11a weight

p on a d-cpo (D,~) d-contin1Lous iff for a11nEIN the function in : D --+ D, x I---t x [n), is

d-continuous.

Let (D, ~) be a pointed poset with a length p. Then

[ {
D x D --+ lR>o

d p] : -
(x,y) I---t d[p](x,y):=inf{21n I .j."(x)=.j."(y)}

is a pseudo ultrametrie on D and an ultrametric on M(D). If p is finite then d[p] 1S an

ultrametric on D.

The fo11owingtheorem shows that the length covers enough information of the partial.

order and thus enforees that under eertain eireumstances limit and least upper bound

coincide.

Theorem 1.14 (Limit of monotone Cauchy-sequences)

Let (D,~) be a d-cpo; p a d-contin7Wus weight on D. Then the induced ultrametric space

(M(D), d[p]) is complete. For each monotone Cauchy-sequence (x,,) in M(D) we get

lim Xn = Ux",
n--+oo

To give some examples for weights we cite [MCB94]:

Tbe eoneept oEa nnite weight ean be realized on various domains, e.g .

• nnite strings over some alpbabet A (endowed witb tbe prenxing

ordering and tbe weigbt p( x) = Ix I wbere Ix I means tbe usual

leng tb oEastring x),
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• trees of fini te heigth endowed wi th Winskel 's partial order {Win84}

and height as underl.Ying weight and

• prime event structures of finite depth with Win..,kel's partial order

{Win82} and the depth as underl'ying weight.

Mazurkiewicz tmces {Maz89} 'yield an example for a length which is not

a weight."
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Given a length p on a pointed poset (TJ,~) we are interested to carry over this concept

to Ch(TJ) and Idl(TJ). Here we use the set P.).(TJ) as common platform.

Let (TJ, ~) be a pointed poset with length p. Then

{
(P.).(TJ), ~) -t (tNo U {oo}, ::;)

p.). :
X H sup{p(x) I x EX}

is a d-continuous weight on P.).(TJ). The n-cut of an element X E P.).(TJ) with respect to p.).

may be computed by

X[n] = {x EX Ip(s):::; n}.

If p is finite then all elements of P.).(TJ) are approximable with respect to p.). and therefore

(P.).(TJ), d[p.).]) is a complete ultrametric space. The metric d[p.).] on P.).(TJ) may be computed

by the formula
. 1

d[p.).](X, Y) =mf{ 2" I X[n] = Y[n]}.

If (Xn)"EN ~ P.).(TJ) is a Cauchy-sequence with d[p.).](X",Xm):::; ;n for all n:::; rn E tN then

its limit is

lim X" = U X,,[n].
7l--+OO

"EN
(1)

Let p be a finite length on a pointed poset (TJ,~). Then we denote the restriction of

p.). to Ch(TJ) by p+ and the restriction of d[p.).] to Ch(TJ) by dt. Analogous we denote the

restriction of p.).to I dl(TJ) by p" and the restriction of d[p.).] to I dl(TJ) by d~. As (P.).(TJ), d[p.).])

is a metric space (Ch(TJ), dt) and (Idl(TJ), d~) are just so.

We use the following notions: Let (M, d) be a metric space. Then the metric completion

of (M, d) is denoted by (M, d). We assume that M ~ M and that dis the restriction of d
on M. If (N, d') is a metric space and .f : M -t N a non-distance-increasing function then

7 denotes the unique non-distance-increasing function M -t N with 7(x) = .f (x) for all

xE M.
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2 Ch(D) and Idl(D) as metric spaces
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The aim of this paper is to give a basis for studies concerning consistency between deno-

tational semantics which employ different concepts to realize recllrsion: On the one hand

there are semantics which use partial order techniques on the other hand there are seman-

tics based on metric concepts. In this section we present completions of semantic domains
which contain both: The supremum of an w-chain and the limit of a Cauchy sequence.

We begin with a survey on the main concepts of chapter one, i.e. chain, ideal and

metric completion of a pointed poset (D, [;;;)with length p. Before getting started we con-

vince ourselves that the introduced completion concepts are really different. Then we

look for conditions which ensure that chain completion (Ch(D), dt) and ideal completion

(I dl(D), d;) are complete metric spaces. Finally we study the relation between the metric

completion (D, d[p]) and the order theoretical completions Ch(D) and I dl(D) under the

condition that the laUer are complete metric spaces.

2.1 Synopsis: Completions on a pointed poset with length

This section gives a synopsis on the so far introduced completions. We start with an

overview of the relevant order theoretical concepts and condude with the metric situation.

Let (D, [;;;)be aposet. From the order theoretical point of view we have the following

situation:

I,cl: (D, [;;;) ~ (Ch(D),~) C (Idl(D), ~) C (P,!-(D), ~).

The funetion I,cl : D ~ Ch(D) is monotone.

Let (D, [;;;)be a pointed poset with finite length p. Looking from the metric setting we

find:
(D,d[p]) ~

C

(Ch(D), dn
C

c c

I,cl: (D,d[p]) ~ (Ch(D),dt) C (Idl(D),d~) C (P,!-(D),d[p,!-]).

The funetion I,cl : D ~ Ch(D) is an isometric embedding of the metric space (D, d[p]) into

the metric space (Ch(D), dt) and hence its canonical extension "cl : D ~ Ch(D) is just so.

2.2 A first reflection

Before we present theorems on the relations of the above described completions of a pointed

paset (D, [;;;)with a length p we should convince ourselves that

1. in general neither (Idl(D), d;) nor (Ch(D), dn are complete metric spaces and that
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..l,p=o

Figure 2: A domain with a Cauchy sequence which is not an w-chain
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2. the concepts of an w-chain in (V, [;;;) and of a Cauchy sequence in (V, d[p]) are really

different.

For the first item we refer to [MCB941. They glve an example of a pointed poset

(V, [;;;)with finite length p where Idl(V,d;) is not a complete metric space. The same

example holds for (Ch(V),dt) because the chosen set V is countable and thus we have

Idl(V) = Ch(V).
For the second item we give two examples of our own. The first example shows a

Cauchy sequence in a metric space (V, d[p]) which is not an w-chain with respect to the

partial order [;;;on V. It is moreover a demonstration of aposet (V, [;;;)where the chain

completion is a complete metric space. The second example exhibits an w-chain in another

poset (V, [;;;)with length p which is not a Cauchy sequence with respect to induced metric

d[pl.

2.2.1 Example: A Cauchy sequence wh ich is not an w-chain

To present an example of a Cauchy sequence which is not an w-chain we introduce a
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pointed poset (D, ~) with length where

D:= {l-} U {x,,, Y" In E N}

and where ~ is the smallest partial order on D which satisfies:

We define a finite length P : D -* No by

p(1..) := 0 and for all n E N: p(x,,):= n, p(y,,) := n + 1.

Figure 2 shows a small part of the poset D. It is easy to prove that pis a finite weight:

• ../.k (1..) = {1..} for all k E N.

{

../. Xn, k > n
• For all n E N : ../.k (x n) = ../.x k, 1:S k :S n

{1..}. k=O.

{

../.Y,,, k > n
• For all n E N : ../.k (Yn) = ../.Xk, 1:S k :S n

{1..}, k=O.
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We claim that (Yi)iEIN is a Cauchy sequence but not an w-chain in D. To prove this

we use the above computed results concerning Ym, Yn with rn > n E N. They imply that

the sets ../.k (x m) and ../.k (x n) coincide exactly for 0 :S k :S n. Thus for the distance holds
d[P](Yn, Ym) = 2in' n < m E N. As neither Yi ~ Yi+i nor Yi+i ~ Yi the Cauchy sequence (Yi)
is not an w-chain.

Next we study whether the ideal completion of D contains a limit for the Cauchy

sequence (t'd(Yi)). In order to compute Idl(D) we may use the identity Ch(D) = Idl(D)
of corollary 1.11 because D is countable. Theorem 1.8 teils us via the charaeterization of

Ch(D) = ImU) that the only "new" elements in Ch(D) arise from non-stationary w-chains

in (D, ~). w-chains which contain an Yi have to become stationary, as there are no elements

above Yi. [(Xi)] E Chain(D) is the only class of non-stationary w-chains in D built from 1..

and elements of {x n In E N}. Thus we have

Idl(D) = Ch(D) = {t'd I d E D} U {f([(Xi)]}.

f([(Xi)]) = U t'd(Xi) is both: The least upper bound of (rd(xi))iEIN thought as w-chain

and limit of the same sequence understood as Cauchy sequence. Furthermore it is the limit

of the Cauchy sequence (t'd(Yi))iEIN. Thus (Ch(D),~) is an wc-cpo and (Ch(D),d~) is a

complete metric space - this result coincides with theorem 2.5 which we will present in

seetion 2.3.3.
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Xa,P= 3

-.1, P = 0

Figure 3: A domain with an w-chain which is not a Cauchy seqllence

2.2.2 Example: An w-chain which is not a Cauchy sequence
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To present an example of an w-chain which is not a Callchy sequence we introduce a

pointed poset (D,~) with length where

and where ~ is the smallest partial order on D which satisfies:

We define a finite length p : D ~ [No by

p(-.1) := 0 and for all n E [N: p(xn) := n, p(y,,) := 1.

Figure 3 shows a small part of the poset D. Obviously (xn) is an w-chain in (D, ~), but

we claim that it is not a Cauchy seqllence with respeet to d[pl. To prove this we compllte

the distance d(xm,x,,) for rn > n E [N.The sets .j,.k (x"J and +" (xT,) coincide for k = O. But

for k > 0 we have (YTT,)E +" (xm) and (Ym) ~.j,.k (xn). Therefore d(xm, ::rn) = inf {"2\ I +"
(xm) =.j,.k (xTJ} = 1 and (xn) is not a Callchy sequence.
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Without a proof we claim that like in example 2.2.1 p is a finite weight. The set '0

is countable, therefore Idl('O) and Ch('O) coincide. Using theorem 2.5 from section 2.3.3

again we establish that (Ch('O), dn is a complete metric space.

2.3 (Ch(D), cl;) and (Icll(D), cl;) as complete metric spaces

The aim of this section is to find properties of a pointed poset ('0, ~) with a finite length p 01'

a finite weight p which ensure that (Ch('O), d~) respective (Idl('O), d;) are complete metric

spaces. The central idea to establish such a characteristic is based on the computation of

limites in (P.j.('O), d[p.j.]) which we presented in section 1.7 as equation (1): The limit X

of a Cauchy sequence (X,,) ~ P.j.('O) with d[p.j.](Xm, XT/) :::;21n for all n :::;rn E rN may be
computed as

lim X" = U XT/[n] =: X.
n-+CX) "EIN

Thus to establish that (Ch('O), d~) is a complete metric space we have to prove that

for any Cauchy sequence (X,,) ~ Ch('O) its limit X E P.j.('O) is of the form U I-d(Ci) for an

w-chain (Ci) ~ '0 and therefore an element of Ch('O).

For the ideal completion we formulate: To establish that (Idl('O), d;) is a complete

metric space we have to prove that for any Cauchy sequence (XT/) ~ Idl('O) its limit

X E P.j.('O) is an ideal in ('O,~) and therefore an element of Idl('O).

This section is divided in three parts: First we deal with pointed posets which are

equipped with a finite length. Then we present Mazurkiewicz traces as an application of

our theoretical results. The last part studies the situation when the poset exhibits a finite

weight.

2.3.1 Starting with a length

Concerning the ideal completion of a pointed poset ('0, ~) with length p we cite a result of

[MCB94]:

Theorem 2.1 (The ideal eompletion as ems indueed by a length)

Let ('O,~) be a pointed fb-cpo with a finite length p. Then (Idl('O), d;) is a complete metric

space a:nd l-d : ('0, d[p]) -+ (I dl ('0), d;) is an isometric embedding.

In order to establish an analog result for the chain completion we provide a simple

lemma which is a slight modification of theorem 1.10: While we requested there that the

poset D should be countable, we now assume that an ideal I ~ '0 is countable.
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Lemma 2.2 (Countable ideals and w-ehains)

Let (TJ,~) be aposet, I E Idl(TJ) be a countable set. Then there exists an w-chain (Ci) ~ TJ

such that I = U l>d(Ci), i.e. I E Ch(TJ).

Proof: Let (Xi) be an enumeration of I. Define the w-chain (Ci) by induction on i, starting

with Cl := XI' Assume that we have defined the elements of this chain up to Ci. Consider

the set S := {k E [N I Xk ~ U~=I rd(ci)}. If this set is empty let Ci+I := Ci else let 1 :=min S.

As I is directed, Ci and X, are in I, there exists z E I with Ci ~ z and X, ~ z. Let Ci+l := z.

Obviously we get U l'd(C;) ~ I. To prove the inclusion the other way round let X E I. Then

there exists an index n E [N such that X = X7I' By construction we have x" ~ C,,' thus

•
Theorem 2.3 (The chain eompletion as ems induced by a length)

Let (TJ,~) be a pointed fb-cpo mäh a finite lcngth p s'uch that for all C E Ch(D), n E [N

holds: the set C[n] := {c E Clp(c) :::;n} is countable. Then (Ch(D),dt) is a complete

metric space and I>d: (TJ, d[p]) -+ (Ch(TJ), dt) is an isometric embedding.

Proof: Using theorem 2.1 we know: Under the choosen assumptions on (TJ,~) and p the

ideal completion (I dl (TJ), d;) is a complete metric space, i.e. the limit I of any Cauchy

sequence sequence (In) ~ Idl(TJ) is an ideal in TJ.

Let (Ci) ~ Ch(TJ) be a Cauchy sequence. As Ch(TJ) ~ Idl(TJ) we know that C :=

lim,,--+ooC" - computed in Idl(TJ) - is an ideal in TJ.

We claim that C is countable: By assumption for all nE [Nthe sets Cn[n] are countable.

In Idl(TJ) the limit C is computed as the union of all these sets and therefore cOllntable.

Using lemma 2.2 this establishes C E Ch(C) and therefore (Ch(TJ), dt) is a complete metric

space. •

2.3.2 Example: Mazurkiewicz traees - Part I

To present an application of theorem 2.3 we introduce the domain of Mazurkiewicz traces

[Maz89]. A concurrent alphabet is a pair (A,Ind) consisting of a set of actions A and an

independence relation I nd ~ A x A which is irreflexive and symmetric. Let for x, y E A"

X=.' y :~ :3a,b E A:3u,v E A": (a,b) E Ind /\ X = uabv /\ y = ubav.

We define an eqllivalence relation =. on A" as the reflexive and transitive closure of the

relation =.' and denote the indllced equvalence classes by [x] for X E A". The set of all

Mazurkiewicz traces on a concurrent alphabet (A,Ind) is given by

MT(A,Ind) := {[:r] I xE A"}.
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Using the prefix ordering on A~ - see section 1.3.2 - we define a partial order C on

MT(A,Ind). Let [x]'[y] E MT(A,Ind) :

[x] ~ [y] :~ 3'U. E [x]' 11 E [y]: '/L ~pT'efi" '/I.

The length p of an element [x] of MT(A,Ind) is given by p([x]) := lxi. Thus we gained a
pointed poset with length. For further details see [Maz89].

If A contains more than one element and I nd # 0 the function p is not a weight.

For this result we cite an example of [MCB94]: Let A := {a,ß}, Ind:= {(aß), (ß,cv.)}.
Consider the set .V ([aß]) = {..l, [al, [ß]}. It contains no greatest element since [al and [ß]
are incomparable.

[Kwi91] has shown that (MT(A, Ind),~) is an tb-cpo. Thus we get with theorem 2.1:

(I dl(MT(A,Ind)), d;) is a complete metric space. If MT(A,Ind) is countable its .chain

completion coincides with its ideal completion. There remain two problems:

1. Do the Mazurkiewicz traces fulfill the requirements of theorem 2.3?

2. Is there a concurrent alphabet (A,Ind) with Ch(MT(A,Ind)) # Idl(MT(A,Ind))?

As we will show in the sequel the answer is "yes" for both questions.

Concerning the first question we prove astronger property than the required one in

theorem 2.3. We claim that for any concurrent alphabet (A,Ind) the elements C E

Ch(MT(A, Ind)) are countable sets.

Before we begin with the proof we define: Let [x] E MT(A, Ind) be a Mazurkiewicz

trace. action([x]) := {a E AI 31 ::; j ::; Ix I: x j = a} denotes the set of all actions to be

found in [x].
Let C = U "d(Ci) E Ch(MT(A,Ind)). For all i E [N the set action(c;) is finite. Thus

their union Uaction( Ci) =: B is countable. This implies that B~ is countable and therefore

MT(B, Ind n (B x B)) is countable.

Let [x] E C. Then there exists k E [N : [x] ~ Ck, i.e. there exist representants x' E

[x], c~ E Ck such that x' ~pT'efi" c~. This means especially that [x] consists only from

actions in Band is therefore an element of MT(B, Ind n (B x B)). Thus the set C is

countable.

This result imlies that independent of the cardinality of the set A in the concurrent

alphabet (A,Ind) the chain completion of Mazurkiewicz traces (Ch(MT(A, Ind), dt)) is a

complete metric space.

To answer the second question we give an example of a concurrent alphabet (A, I nd)

with Ch(MT(A,Ind)) # Idl(MT(A,Ind)). In order to etablish this inequality we use the
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property that elements C E Ch(MT(A,1nd)) are countable sets and construet an ideal

1 E 1dl(MT(A,Ind)) that is not countable.

Let (A,1nd) be a concurrent alphabet with both, A and 1nd, not cOllntable. We use

the notion 7ri(1nd) := {ai E AI (0,],0,2) E 1nd}, i E {I, 2}, to denote the projeetion of 1nd

on its ith component.

First we claim that 7r] (1nd) is not countable. Assllme that 7r] (Ind) is cOllntable. As
1nd is a symmetric relation we have 7r2 (Ind) = 7r] (Ind) and therefore the set 1nd' :=

7r1 (Ind) x 7r2(Ind) is countable. As 1nd ~ 1nd' the set 1nd is countable - contradietion.

Now we define l' := MT(7r] (Ind) , 1nd). As {la] 10,E 7r] (Ind)} ~ l' the set l' is not

countable. To show that it is direeted let [u]' [v] E 1'. ObviollSly we have [u] ~ luv]

and [v] ~ [vu]. As [u] and [v] are built from actions in 7r] (Ind) we have luv] = [vu] and

luv] E 1'. Thus the set 1 := "d(I') is an ideal in MT(A,1nd), therefore an element of

1dl(MT(A, 1nd)), and especially not countable.

2.3.3 Starting with a weight

If the pointed poset (V, ~) is equipped with a weight p the reqllirements to establish that

the chain completion respeetive the ideal completion are complete metric spaces become

less strong. Again we cite first [MCB94] for a theorem concerning the ideal completion

before we present our result in the case of the chain completion.

Theorem 2.4 (The ideal eompletion as ems indueed by a weight)

Let p be 0, finite weight on a pointed poset (V, ~). Then (Idl(V), d;) is a complete metric

space, "d : (V, d[p]) -+ (Idl(V), d;) is an isometric embedding and p* is a d-continuous

weight.

Theorem 2.5 (The ehain eompletion as ems indueed by a weight)

Let p be a finite weight on a pointed poset (V, ~). Then (Ch(V), d;;) is a complete rnetric

space, Ld : (V, d[p]) -+ (Ch(V), d;;) is an isometric embedding and p+ is an wc-contimlOUS

wei,ljht.

Proof: First we claim that p+ is a weight on Ch(V), i.e. for all C E Ch(D), n E [N, the

set C[n] := {c E CI p(c) :::;n} is an element of Ch(V):

Let C E Ch(D), n E [N. As Ch(D) is wc-algebraic there exists an w-chain (Ci) E V

such that C = U "d(Ci)' By assumption p is a weight on V, thus for all Ci their the n-cut

ci[n] exists in V. (ci[n])iEN is an w-chain in V : Let i E [N. As p(cdn]) :::;n and Ci ~ Ci+]

we get Ci[n] E tri (Ci+]). Therefore cdn] ~ ci+dn] because ci+dn] is the greatest element of
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C' := U '-d(c;[n]).
iEIN

Ta prove that C[n] = C' let x E C'. Then there exists i E N such that x ~ ci[n]. This

implies x ~ Ci and p( x) :s: n. Thus we get x E C[n]. To get the indusion the other way

round let y E C[n]. Then we have p(y) :s: n and there exists JEN such that y ~ Cj . This

implies y ~ cj[n]. Thus we get y E CI and established therefore C[n] E Ch(V).

Let (CH) be a Cauchy sequence in Ch(D) with dt(Cm, C,,) :s: 2~ for all rn > n E N. As

we mentioned above its limit in (P.).(V),d[p.).]) is computed as C = limn--+ooC"= UC,,[n].
We have just proved that the sets Cn [n] are elements of Ch(V). As Cn[n] = Cm[n] ~ Cm[m]

for all m 2: n E N they form an w-chain in Ch(V) and their least upper bound C is an

element of Ch(V).

Let for n E N the function I" : Ch(V) -+ Ch(V), C 1-+C[n]. We claim that all functions

In are wc-continuous. Let C E Ch(V). Then there exists an w-chain (c;) ~ V such that

C = U "d(Ci). As we have proved above for the n-cut of C holds C[n] = U '-d(ci[n]).

First we verify that the functions In are monotone. Let n E N and A = U '-d(o,i), B =

U '-d(bj) E Ch(V) with A ~ B. This implies that for all k E N there exists 1 E N such that

o,k ~ b,. Therefore o,dn] ~ b,[n] and In(A) = U '-d(ai[n]) ~ U "d(bj[n]) = In(B). Thus In is

monotone.

Now we establish In(UCi) = U In (Ci) for all w-chains (Ci) ~ Ch(V), n E N. Let (Ci) ~

Ch(V) be an w-chain, let n E N. Using corollary 1.5 and the isomorphy (Chain(V), ~c) ~
(Ch(V),~) we mayassumse w.l.o.g. that Ci = UjEIN"d(Ci,J and C := UCi = UiEIN'-d(Ci,i)

for w-chains (Ci,j)jEIN,(Ci,i)EIN~ V. With this notions we can compute

In(UCi) = I,,(C) = C[n] = UiEIN'-d(cdn]) and

UiEIN.fn(Ci) = UiEINCi[n] = UiEINUjEIN'-d(ci,j[n]).

Studying the relations between the n-cuts ciAn] we get for all i, JEN: As Ci,j ~ ci,j+! the

n-cut Ci,j[n] is an element of V' (Ci,j+l) and therefore we get Ci,j[n] ~ Ci,j+! [n]. The same

argument establishes Ci,j[n] ~ Ci+!,j[n]. Thus the w-chains (c;,j[n])jEINfulfill the requirements

of corollary 1.5 and we may conclude UiEINUjEIN'-d(ci,j[n]) = UiEIN'-d(ci,i[n]). •

2.4 Isometry between (D,d[p]) and (Ch(V),dt) respective (Idl(V),d;)

In section 2.3 we have seen that for a domain V under certain circumstances the order

theoretical completions (Ch(V), dn and (Idl(V), d;) are complete metric spaces. Now we

ask for a relation of these complete metric spaces to the metric completion (V, d[p]).
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In general the function "d maps from the metrie eompletion ofD to the metrie eompletion

of Ch(D) respective Idl(D) :

'~d: D ---+ Ch(D) ~ Idl(D) (2)

'~d is an isometrie embedding. We try to eharaderize the situation when either Ch(D) 01'

Idl(D) is a eomplete metrie spaee and '~d is surjective.

Starting with a finite length p on a pointed fb-epo (D,~) theorem 2.1 claims that

the ideal eompletion is a eomplete metrie spaee. Coneerning the ehain eompletion as

eomplete metrie spaee we needed an additional eondition in theorem 2.3. Thus weobtain

the situation:

'~d: D ---+ Ch(D) ~ Idl(D). (3)

If (I dl(D), d;) is isometrie to (D, d[p] the ideal eompletion I dl(D) eoineides with the metrie

eompletion of Ch(D).

Starting with a finite weight p on a pointed poset (D, ~) both ideal and ehain eompletion
are eomplete metrie spaees. Thus we have:

'~d: D ---+ Ch(D) ~ Idl(D).

If (Idl(D), d~) is isometrie to (D, d[p]) ideal eompletion and ehain eompletion eoineide.

Coneerning isometry between ideal eompletion and metrie eompletion [MCB94] gives

the following eondition:

Lemma 2.6 (A condition on isometry in the case of ideal completion)

Let p be a finite length on a pointed poset (D,~) such that:

• (Idl(D), d;) is a complete metric space .

• For alt I E Idl(D), n E [N : The set I[n] := {x E I I p(x) ~ n} is finite.

Then '~d: D ---+ Idl(D) is an 'lsometry.

The assumptions of this lemma are rat her restridive. They reduce the ideal completion

to the ehain eompletion:

Lemma 2.7 (Consequence of the isometry condition)

Under the ass1J.mptions of lemma 2.6 holds: Chain completion and ideal completion of.

(D,~) coincide, i.e. Ch(D) = Idl(D).
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Proof: Let 1E 1dl(7J). Then 1is especially an ideal in 7J. As pis a finite length on 7J we

have 1= U l[n]. By assumption the sets l[n] are finite. Thus 1is countable. This implies

with lemma 2.2 that 1E Ch(7J). •

It should be mentioned that lemma 2.7 is not a "natural" consequence of isometry.

Equations (2) and (3) show that in general isometry between 7J and 1dl (7J) concerns only

the metric completion of Ch(7J) - not Ch(7J) itself.

Using lemma 2.6, lemma 2.7 and theorem 2.1 respective theorem 2.4 we summerize -

following and completing two theorems of [MCB94] - for the ideal completion:

Theorem 2.8 (Isometry starting with a length in the case of ideal completion)

Let (7J, [;;;) be 0, pointed fb-cpo with 0, finite length p such that for all 1 E 1dl(7J), nEIN

holds: The setl[n]:= {x E 1Ip(x) ~ n} isfinite. Then1dl(7J) = Ch(7J) , especially

Ch(7J) = Ch(7J), a:nd I~d : (7J, d[p]) ---+ (Idl(7J), dt) is an isometry.

Theorem 2.9 (Isometry starting with a weight in the case of ideal completion)

Let p be 0, finite weight on 0, pointed poset (7J, [;;;)such that for all 1E 1dl(7J), nEIN holds:

The set 1[n] := {x E IIp(x) ~ n} is finite. Then 1dl(7J) = Ch(7J) and I~cl: (7J,d[p])---+

(Idl(7J), dt) is an isometry.

Theorem 2.9 confirms our result concerning the domain 7J of finite strings over some

alphabet A from section 1.3.1 in a new way. We proved there that 1dl(7J) = Ch(7J) even

if A is not countable. As the n-cut of an ideal in 7J is a finite set 1dl (7J) suffices the

requirements of theorem 2.9 and we get: Idl(7J) = Ch(7J).

In the case of the chain completion we give the following condition on isometry:

Lemma 2.10 (A condition on isometry in the case of chain completion)

Let p be 0, finite length on 0, pointed poset (7J, [;;;) such that:

• (Ch(7J), d;) is 0, complete mctric space .

• For all C E Ch(7J), nEIN: The set C[n] := {x E CI p(x) ~ n} is finite.

Then I~cl : 7J ---+ Ch(7J) is an isometry.

Proof: (OutlineÖ) Let C E Ch(7J). Then there exists an w-chain (Ci) ~ D such that

C = U l~cl(Ci). We construct a subsequence (cD of (Ci)' For x E C we define ind(x) :=

min{k E INIx [;;;cd. For nEIN let n11,rn(n) := max{ind(x) Ix E C[n]}. As by assumption

the sets C[n] are finite for all nEIN this maximum exists. With this notions we define:

6This prao£ is a variation o£ the proo£ o£ lemma 2.6 which can be £ound in [MCB94).
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Vi EIN: c~ := Cnum(i)' For this chain holds "<1(c~)

sequence in V and I'd(limi--+CXJcD = c.
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C[i]. Furthermore (c~) is a Cauchy

•
Using lemma 2.10 and theorem 2.3 respeetive theorem 2.5 we summerize for the chain

completion:

Theorem 2.11 (Isometry starting with a length in the case of chain completion)

Let (V,~) be a pointed fb-cpo with a finite length p such that for alt C E Ch(V), nEIN

holds: The set C[n] := {c E CI p(c) ~ n} is finite. Then "<1 : (V, d[p)) ---+ (Ch(V), dt) is an

isometry.

Theorem 2.12 (Isometry starting with a weight in the case of chain completion)

Let p be a finite weight on a pointed poset (V,~) such that for alt C E Ch(V), nEIN

holds: The setC[n]:= {cE Clp(c) ~ n} isfinite. Then 1'<1: (V,d[p)) ---+ (Ch(V),dt) is an
isometry.

We conclude this section with two examples. The first continues section 1.3.1 on iso-

morphism classes of plain trees. It demonstrates that metric, chain and ideal completion

may be different concepts even when we start with a finite weight on a pointed poset. The

second example illustrates theorem 2.11. We establish for a special kind of concurrent

alphabets an isometry for the domain V of Mazurkiewicz traces between V and Ch(V).

2.4.1 Example: Isomorphism classes of plain trees - Part 11

Consider the poset V := {T E TREE(fR) ITfinitely branching and height(T) ~ I} from

section 1.3.1 equipped with the there introduced partial order ~ and the height as length

p.

We already know that Ch(V) I Idl(V). As pis a finite weight we conclude with theorem

2.5 that Ch(V) = Ch(V) and with theorem 2.4 that Idl(V) = Idl(V). d[p] is a discrete

metric on V therefore we gain V = V.

The funetion I'd : V ---+ Ch(V) is not surjective - for example there is no isomorphism

class 5 of finite branching plain trees with "d(5) = UnEN l'd(L:;~l i.T.lJ Thus we have

the situatation that V, Ch(V) and Idl(V) are all complete metric spaces which are not

isometric. Therefore we may conclude that in general neither far I E Ch(V) nor for

I E Idl(V) holds that I[n] is a finite set for all n E [N.

2.4.2 Example: Mazurkiewicz traces - Part 11

Let (A, Ind) be a concurrent alphabet where Ind is a finite set. We claim that Mazurkiewicz

traces on such a concurrent alphabet fulfill the requirements of theorem 2.11. We already
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know from part I that Mazurkiewicz traces form a tb-epo. Thus it remains to prove that for

all CE Ch(MT(A,Ind)) and 71, E IN the set C[n] is finite - independent of the eardinality

of the alphabet A.
Let C E Ch(MT(A, Ind)), 71, E IN. Then there exist an w-chain (Ci) ~ MT(A, Ind) sueh

that C = U /-d(Ci). Let for 0 :s; ) :s; 71,

Rj := {x E C I p( x) =n.
With this not ion holds C[n] = Ujl=O Rj. Thus C[n] is a finite set iff for all) the sets Rj are

finite. We prove this by induetion on ,j.

Far the basis of the induetion let) = O.The only element in MT(A,Ind) with length

o is the equivalenee dass of the empty word E whieh is simultaneous the bottom element

of the partial order. Thus we have Ro = {[E]} and the basis holds.
For the induction step ".j -t) + 1" we differentiate two situtations: If the set Rj+] is

empty we are done. If Rj+J is not empty we find an element 11,= [11,] 'U2 .•. 11,j11,j+]] E Rj+] .

As C[n] is leftdosed there exists a "eorresponding" element 11,' E Rj with 11,' = [11,]11,2' •. 11,j].

By the induetion hypothesis the set Rj is finite. We claim that there are only finitely many

ehoiees on 11,j+] and that therefore the set Rj+] is finite.

Let v := [11,]11,2 ••• 11,j11,}+]] with 11,}+] E A be an element of Rj+]. Using the fact that 11,

and v both are elements of C we get that there exists mEIN sueh that 11, ~ Cm and v ~ Cm.

Thus there exist w,w' E A~ with [11,]11.2" .Uj'Uj+]W] = Cm and [11.]11'2" .11.j11.}+1W'] = Cm. We

eondude [U111,2 ... UjUj+1 11)] = [11,111,2 ... 11,j11,}+]W'] and7 [Uj+1 W] = [U}+] W']. If Uj+1 ~ 7f1 (Ind)

then 11,j+] = 11,}+1 and thllS U = V. If Uj+1 E 7f] (Ind) then U}+] E 7f1 (Ind) and thereare only,.

finitely many ehoiees for 11,}+1' ThllS the set Rj+1 is finite.

We eondude this seetion with a survey on reslllts eoncerning metrie, ehain and ideal

eompletion of Mazurkiewicz traces MT(A, Ind) on a eoneurrent alphabet (A, Ind).

(Kwi91] showed:

• (MT(A, Ind),~) is an tb-epo .

• If Ais finite then (Idl(MT(A,Ind)),d;) is isometrie to (MT(A,Ind),d[p]) .

• If Ais countable then (Idl(MT(A,Ind)),d;) is a eomplete metrie spaee.

• If A is infinite then an example shows that (I dl (MT( A,I nd) ), d;) must not be

isometrie to (MT(A, Ind), d[p]).

(MCB94] proved:.

7_ with proposition 2.2.5 of [Maz89] -
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Figure 4: Extension of a monotone funetion f to a continuous funetion fr

30

• (Idl(MT(A, Ind)), d;) is a complete metric space - independent of the cardinal-

ity of the alphabet A.

Our results are:

• There is an example with Ch(MT(A,Ind)) -I- Idl(MT(A,Ind)) - see seetion

2.3.2.

• (Ch(MT(A, Ind)), dt) is a complete metric space - see seetion 2.3.2.

• If Ind is finite then (Ch(MT(A,Ind)), dt) is isometrie to (MT(A,Ind), d[p]) -

independent of the cardinality of the alphabet A.

3 Denotational semantics on the different completions

This chapter is devoted to the application of our studies in denotational semanties. We

begin with a disCllssion of different extensions of funetions, whether they "coincide" and

have "the same" fixed points. Finally we present two consistency results for a CCS-like

language £ : We model the finite part of £ in D. Under some conditions we can show

that the sematics of "fu11"£ defined by struetural induetion on D 01' on Ch(D) respeetive

I dl (D) are consistent.

3.1 Canonical extensions of functions

Up to now we studied the relation between metric and order theoretical completions

on the level of elements of a set, i.e. whether there is some sort of embedding or- the

same question from another point - whether the desired sets fulfill a special completeness

property.

Now we turn our discussion to funetions and their extensions. Let f : D -+ D be

a funetion which is monotone with respeet to ~ and non-distance-increasing/contraeting
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with respect to d[p]. Then there are canonical extenstions of f on D, Ch(D) and Idl(D).

The quest ions is: How are these different extensions related?

First we compile some results on standard techniques to extend a monotone function

f : D -+ E to a continuous function P : I(D) -+ I(E) where (D, ~v) and (E, ~E) are

posets and I is some completion operator. Figure 4 shows the general situtation. The first

result of the following theorem concerns the choice I = Chain and is due to [Kni]. With

theorem 1.9 we "translate" it for the case I = Ch. The situation I = Idl is studied for

example in [AJ92].

Theorem 3.1 (Continuous extension of a monotone funetion)

Let (D, ~v), (E, ~d be poscts, let f :D -+ E be a monotone funetion.

Chain(E)

[(f(C;))iEN]

1. Let ~~ : D -+ Chain(D), I,~ : E -+ Chain(E) be the canonica.l embeddings of D zn

Chain(D) respective E in Chain(E). Then

eh' {Chain(D) -+.f.-' ß1H :

[( ciLEN] f--t

. t' f t' . h {ClwiTl D - £ (zs an w c-con .zrl.11.ous. unc .zon wzt . . 0 1'0 - 1'00 ..

2. Let 1,;( : D -+ Ch(D), r~ : E -+ Ch(E) be the canonical embeddings of D in Ch(D)

respective E in Ch(E). Then

-+ Ch(E)

UiEN 1,~(f(Ci))

Ch(D) .

UiEN r;( (Ci) f--t
/''', : {

. . f . . h {Ch D - £ (zsan w c-contznuous . unctzon wzt . . 0 rr/ - rcl o ..

3. Let 1,;( : D -+ Idl(D), I,~ : E -+ Idl(E) be the ca.nonical embeddings of D in Idl(D)

respective E in I dl (E). Then

/'" { I dl(D)

I

-+ I dl(E)

f--t I,~ (f (1))

. d . f . . h {lell V - £ (zs a -contznuous unctzon 'Wzt . . O/,cl - I'r/0 .•

4. The extensions fCh and Fr/I coincide on Ch(D), i.e. fCh = .t(J/J,(V)'

Proof: Above we gave references for the first three items. Thus it remains to prove that

fCh = .t((!~(V)' Let C = U 1,;((Ci) E Ch(D). We have to show that U ~~(f(Ci)) = 1,~(f(C)).

Let x E U 1.~(f(Ci))' Then there exists .i E INsuch that x ~£ f(Ci)' As Ci E C we get

x E 1,~(f(C)) and therefore U r~(f(ci)) ~ ~~(f(C)).
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v f
V

1/
'd 1 Ld

I(V)
P

• I(V)

Figure 5: The commuting diagram in the case of a finite weight, I E {I dl, Ch}

Let x E I,~(.f(C)). Then there exist y E f(C) with x ~£ y. Furthermore there exists i E [N

such that y ~£ f (Ci). Transitivity gives us x ~£ f (Ci) and we may conclude x E U L~(f (Ci)).
Therefore we get L~(.f (C)) ~ U I,~ (.f (Ci)). •

Let (V,~) be aposet with finite length p. Let f : V -+ V be a function which is

monotone with respect to ~ and non-distance-increasing with resped to d[p]. We study

the relation between its canonical extension

-+ V
f(x) := lim,,-+oof(xn)

- {Vf:
x = limn-+ooXn H

concerning the metric completion V and the continuous extensions fCh respective fIdl

concerning the order theoretical completions Ch(V) respective Idl(V).

In the case that pis a finite weight we get the expeded result of a commllting diagram,

see figure 5. If pis jllSt a finite lenght this relation does not hold in general: [MCB94] gives

a counterexample for both, Ch(V) and Idl(V).

If the canonical extension f of f is contracting it has by Banach's fixed point theorem an

llnique fixed point fixa) E V. On the other hand both fCh and Fdl have aleast fixed point

lfp(.fCh) E Ch(V) respective Ifp(.fIdl) E Idl(V) by Tarski's fixed point theorem. Concerning

these different fixed points we can establish llnder certain circllmstances that

I'd(fixa)) = lfp(P), I E {Ch,Idl} (4)

for both, pa lenght and pa weight.

First we present the reslllts in the case that pis a finite weight. Far the ideal completion

we cite [MCB94]:

Lemma 3.2 (Relation between fand Fdl if p is a finite weight)

Let p be a finite weight on a pointed poset (V, ~). Then by theorem 2.4 (Idl(D),d~) is

a complete metric space. If f : V -+ V is monotone and non-distance-increasing then
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- -f - f 1dl - fi 5 F: th f 1dl . d' t . . If f . t t .I'dO. -. 0 I'd, see ,g1l.re . 1I.r, ,erm.ore . 1,S 71.071.- .1,S.ance-1,ncreas1,ng. . . 1,S con .rac .1,ng

th 1 f 1dl . t t .. ,en a ,so. . 1,S con .rac .1,ng.

Part 4 of theorem 3.1 allows us to use lemma 3.2 to formulate an analog result far the

chain completion. As fCh = .f(~!f,(D) we may conclude:

Lemma 3.3 (Relation between 7 and fCh if p is a finite weight)

Let p be a finite weight on a point cd poset (V, ~). Then by theorem 2.5 (Ch(V), dt) 1,S

a complete metric space. If f : V ~ V is monotone and non-distance-increasing then

l'dO7 = fChOI'd, see fig1J.re 5. F:nrthermore fCh is non-distance-increasing. If f is contracting

th 1 fCh' t t'. ,en a so , 1,s con .rac ,1,ng.

If pis just a finite lenght [MCB94] shows by an example that in general flrll is not non-

distance-increasing for a monotone and non-distance-increasing function .f. As the chosen
domain V is countable in this example it is also a counterexamble for fCh. Nevertheless

[MCB94] gives a positive result concerning contracting functions:

Lemma 3.4 (Relation between fixa) and l/p(fldl) if p is a finite lenght)

Let p be a finite lenght on a pointed poset (V, ~) s1J.ch that (I dl (D), d;) is a complete metric

space. Let f : V ~ V be a monotone and contracting f1J.nction. Then 7 is contracting with

contracting constant t and I'd(fixa)) = lfp(f Idl).

For the chain completion we formulate without an explicit proof an analog lemma. The

proof for the above lemma 3.4 in [MCB94] can be used word by word for our claim. As

in the case of a finite length we do not know whether the ideal completion 01' the chain.

completion are in general complete metric spaces the relation between lemma 3.4 and 3.5

is different from those between lemma 3.2 and 3.4.

Lemma 3.5 (Relation between fixa) and l/p(fCh) if p is a lenght)

Let p be a finite lenght on a pointed poset (V,~) s1J.ch that (Ch(D), d~) is a complete metric

space. Let f : V ~ V be a monotone and contracting f1J.nction. Then 7 is contracting with'

contracting constant t and /,(Jfixa)) = lfp(fCh),

Lemma 3.4 and 3.5 concern not only the ca..<;eof a finite length. As a weight is a lenght

they provide especially a proof of equation (4).

3.2 The consistency of denotational semantics

Most .of this section is completely due to [MCB94] - sometimes word for word. We follow

their definitions of the language £, and its denotational semantics on the metric completion
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and on the ideal completion. New is the straight forward definition of a denotational

sematic on the chain completion and - of course - the theorem of consistency concerning

the chain completion.

Let (D,~) be pointed poset with a finite length p. We assume that D is a semantic

domain for nonrecursive programs. We consider a language where recursion is modelIed

by declarations, i.e. a program is a pair< s, a- >. A statement s is built from operator

symbols (like prefixing or sequential composition, nondeterministic choice, parallelism, etc.)

or process variables. A declaration a- is a fundion which assigns to each process variable x

a statement a-( x). We denote the set of all statements s by £.

For each operator symbol w in £ let Wv be a semantic operator on D which is monotone

with resped to ~ and non-distance-increasing/contrading with resped to d[pl. Let f :
£ -+ D be any fundi on. For a fixed declaration a- we may define a mapping

F : (£ -+ D) -+ (£ -+ D)

by strudllral indudion on s E £ :

• Let F(f)(a) := av for each constant symbol a ELan .

• Let F(f)(x) := f(a-(x)) for each process variable ::I; •

• Let F(f)(w(s], S2, ... , sn)) '- wv(F(f)(sd, F(f)(S2), ... ,F(f)(sn)) for each n-ary

operator symbol w in £._

Similarly we ge mappings

• Fern" : (£ -+ D) -+ (£ -+ D),

• FCh : (£ -+ Ch(D)) -+ (£ -+ Ch(D)) and

• FI dl : (£ -+ I dl (D)) -+ (£ -+ I dl (D) )

where we use the canonical extensions w, WCh respedive WIdl as semantic operators.

Since FCh and FIdl are wc-continuous we have denotational cpo semantics on Ch(D)
respective Idl(D) :

{
£ -+

McCh:
s t--+

Ch(D)
lfp(Fch)(s) {

£ -+ Idl(D)
MCIdl:

s t--+ lfp(F'dl)(S)

Under certain conditions (e.g. the guardedness of the statements a-(x) in the sense of

[Mil89]) the function Ferns is contracting and hence has a unique fixed point. In this case
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we get ametrie denotational semanties on V :
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V

fix(Fr-ms) (s)

[MCB94] gives the following eonsisteney reslllt for Mecm" and Meldl :

Theorem 3.6 (Consistency of Mecms and MeIdl)

Let p be a finite length on a pointed poset (D, [;;;)such that (I dl (V), d;) is a complefe metric

space. Then

We add a theorem for Mecnts and MeCh :

Theorem 3.7 (Consistency of Mecm" and Mech)

Let p be a finite length on a pointed poset (D, [;;;)such that (Ch(V), dt) is a complete metric

space. Then

Proof: For a proof we refer to the proof of above eited theorem 3.6 in [MCB94]. This

proof does not use any speeifie property of the ideal eompletion and holds so as well in the

ease of the ehain eompletion. •

Conclusion

In this paper we sueeessfully added the teehnique of ehain eompletion to the theory of

[MCB94] eoneerning the relation between the metrie and the ideal eompletion of a pointed

poset with finite length and its applieation in denotational semanties. We showed

1. that the usual ehain eompletion Chain(V) ean be reformulated as an isomorphie

eompletion Ch(V) whieh is a subset of the ideal eompletion Idl(V).

2. that the metrie spaee (Ch(V), dt) is eomplete under eertain eireumstanees.

3. that llnder eertain eireumstanees there is an isometry between the eomplete metrie

spaees (Ch(V), dt) and (V, d).

4. that llnder certain circllmstances the denotational semanties on the metric eompletion

and on the chain completions are consistent (see figure 6).
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Figllre 6: Consistency of denational semantics
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The following aspects seem to be worth mentioning:

Probably the most important reslllt of our work is that it is possible to "translate"

the definitions and theorems from the ideal completion to the chain completion. This

shows that the ideas of [MCB94] are of fundamental nature and not specific to the ideal

completion.

It is not our intention to claim for semantics based on chain completion. The examples

oE domains where chain and ideal completion differ are probably not the standard situation

in denotational semantics. But another approach to the ideal completion of a cOllntable

domain seems to be llseful. Knowing that ideal and chain completion coincide gives a

second description of the elements in the completed domain.
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