
Semantic Component Retrieval
in Software Engineering

Inauguraldissertation
zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften der
Universität Mannheim

vorgelegt von
Diplom-Informatiker Oliver Hummel

aus Neustadt an der Weinstraße

Mannheim, 2008

Dekan: Prof. Dr. Matthias Krause, Universität Mannheim
Referent: Prof. Dr. Colin Atkinson, Universität Mannheim
Korreferent: Prof. Dr. Ivica Crnkovic, Mälardalen University

Tag der mündlichen Prüfung: 11.03.2008

4 -

Abstract
In the early days of programming the concept of subroutines, and through this software reuse, was invented to
spare limited hardware resources. Since then software systems have become increasingly complex and developing
them would not have been possible without reusable software elements such as standard libraries and frameworks.
Furthermore, other approaches commonly subsumed under the umbrella of software reuse such as product lines
and design patterns have become very successful in recent years. However, there are still no software component
markets available that would make buying software components as simple as buying parts in a do-it-yourself
hardware store and millions of software fragments are still lying un(re)used in configuration management
repositories all over the world. The literature primarily blames this on the immense effort required so far to set up
and maintain searchable component repositories and the weak mechanisms available for retrieving components
from them, resulting in a severe usability problem. In order to address these issues within this thesis, we developed
a proactive component reuse recommendation system, naturally integrated into test-first development approaches,
which is able to propose semantically appropriate, reusable components according to the specification a developer is
just working on. We have implemented an appropriate system as a plugin for the well-known Eclipse IDE and
demonstrated its usefulness by carrying out a case study from a popular agile development book. Furthermore, we
present a precision analysis for our approach and examples of how components can be retrieved based on a
simplified semantics description in terms of standard test cases.

Zusammenfassung
Zu Zeiten der ersten Programmiersprachen wurde die Idee von Unterprogrammen und damit die Idee der
Wiederverwendung von Software zur Einsparung knapper Hardware-Ressourcen erdacht. Seit dieser Zeit wurden
Software-Systeme immer komplexer und ihre Entwicklung wäre ohne weitere wiederverwendbare Software-
Elemente wie Bibliotheken und Frameworks schlichtweg nicht mehr handhabbar. Weitere, üblicherweise unter
dem Begriff Software Reuse zusammengefasste Ansätze, wie z.B. Produktlinien und Entwurfsmuster waren in den
letzten Jahren ebenfalls sehr erfolgreich, gleichzeitig existieren allerdings noch immer keine Marktplätze, die das
Kaufen von Software-Komponenten so einfach machen würden, wie den Einkauf von Kleinteilen in einem
Heimwerkermarkt. Daher schlummern derzeit Millionen von nicht (wieder) genutzten Software-Fragmenten in
Konfigurations-Management-Systemen auf der ganzen Welt. Die Fachliteratur lastet dies primär dem hohen
Aufwand, der bisher für Aufbau und Instandhaltung von durchsuchbaren Komponenten-Repositories getrieben
werden musste, an. Zusammen mit den ungenauen Algorithmen, wie sie bisher zum Durchsuchen solcher
Komponentenspeicher zur Verfügung stehen, macht diese Tatsache die Benutzung dieser Systeme zu kompliziert
und damit unattraktiv. Um diese Hürde künftig abzumildern, entwickelten wir in der vorliegenden Arbeit ein
proaktives Komponenten-Empfehlungssystem, das eng an testgetriebene Entwicklungsprozesse angelehnt ist und
darauf aufbauend wiederverwendbare Komponenten vorschlagen kann, die genau die Funktionalität erbringen, die
ein Entwickler gerade benötigt. Wir haben das System als Plugin für die bekannte Eclipse IDE entwickelt und seine
Nutzbarkeit unter Beweis gestellt, in dem wir ein Beispiel aus einem bekannten Buch über agile Entwicklung damit
nachimplementiert haben. Weiterhin enthält diese Arbeit eine Analyse der Precision unseres Ansatzes sowie
zahlreiche Beispiele, wie gewöhnliche Testfälle als vereinfachte semantische Beschreibung einer Komponente und
als Ausgangspunkt für die Suche nach wiederverwendbaren Komponenten genutzt werden können.

 - 5

Thank you...
... to my parents Bärbel and Robert Hummel for life (and so much more)...

... to Konrad Zuse for the computer...

... to Peter Luffy for teaching me my first program...

... to Stephan Baumann where it all got started...

... to Colin Atkinson for his faith and support...

... to my colleagues for discussions and distraction...

... to my students for their commitment...

... to Ivica Crnkovic for coming from Sweden to report on this...

... and to myself for all the rest.1

1 Actually, I don't know whom to thank for the universe. So, if you should find out, please let me know.

6 -

CONTENT

1 INTRODUCTION...11
1.1 Motivation...11
1.2 Research Objective...12

1.2.1 Out of scope...15
1.3 Research Strategy..15
1.4 Outline...17

2 FOUNDATIONS...19
2.1 Software Engineering Basics...19
2.2 Software Development Processes...20

2.2.1 Traditional Process Models..21
2.2.2 Today's Best Practice Processes..24
2.2.3 Agile Development..25

2.3 Software Verification and Validation..27
2.3.1 Software Testing...27

2.4 Software Components..29
2.4.1 Component-Based Development..31
2.4.2 Component Technologies and Service-Oriented Architectures..33
2.4.3 Semantic Web (Services)...36

2.5 Software Reuse..38
2.5.1 The Reuse Landscape..39
2.5.2 Success and Failure Factors for Reuse...41
2.5.3 Reuse Metrics...43

2.6 Component-based Reuse...45

3 COMPONENT RETRIEVAL SO FAR..49
3.1 Software Component Repositories..50

3.1.1 Component Representation Methods...50
3.1.2 The Repository Problem...51
3.1.3 Usability..52

8 - CONTENT

3.2 Component Retrieval Techniques...53
3.2.1 Information Retrieval..53
3.2.2 Foundations of Search Engines..55
3.2.3 Component Retrieval Approaches...56
3.2.4 Information Retrieval Methods...58
3.2.5 Descriptive Methods..59
3.2.6 Denotational Semantics Methods..60
3.2.7 Operational Methods..61
3.2.8 Structural Methods..62
3.2.9 Topological Methods or Ranking Approaches..62
3.2.10 Discussion of Classification..63
3.2.11 Retrieval Techniques in Use Today..65

3.3 Semantics in Reuse Approaches...66

4 THE INTERNET AS A REUSE REPOSITORY..69
4.1 Estimated Potential..70

4.1.1 Specialized Search Engines on the Web..73
4.2 Precise Retrieval with General-style Search Engines...75

4.2.1 (Meta-)searching With Google Codesearch...76
4.2.2 Limitations..77

4.3 The Build-Up of Merobase.com..78
4.3.1 Crawling and Index Structure..78

4.4 The Content of Merobase...80
4.5 Sharing Components over the Web..83

5 SEMANTIC COMPONENT SEARCHING...85
5.1 Use Cases for Component Search Engines...86

5.1.1 Speculative and Open Source Searches...87
5.1.2 Definitive Searches...89
5.1.3 Java Library Searches...91
5.1.4 Further Optimization Options..92
5.1.5 Design Recommendations based on Search Results..93

5.2 Specification-Based Retrieval With Extreme Harvesting...94
5.2.1 Process Overview..95
5.2.2 Component Searching – a Hybrid Approach..96

5.3 Component Evaluation...97
5.3.1 Linguistic Conformance..98
5.3.2 Signature Matches in Java...99

5.4 Result Adaptation...101
5.4.1 GoF Adapters...101
5.4.2 Limitations of the GoF Adapters...102
5.4.3 Parameter Permutator...104

5.5 Dependency Resolution..107
5.6 Class Ensembles..108
5.7 Implementation..110

5.7.1 Eclipse Plugin...110
5.7.2 Server-Side Implementation...113

CONTENT - 9

6 PROCESS INTEGRATION...115
6.1 Reuse in Test-Driven Processes..116

6.1.1 An Extreme Programming Example...117
6.1.2 Extreme Reuse..119

6.2 Component-Driven Design with KobrA...121
6.2.1 Supporting Software Design With Interface Recommendations..124

6.3 General Design Guidelines for Successful Reuse..124

7 EVALUATION...127
7.1 Evaluation Approaches So Far..127
7.2 Proof of Concept..129
7.3 Semantic Retrieval..131
7.4 Precision Analysis...133

7.4.1 Evaluating Open Source Searches...134
7.4.2 Comparison of Retrieval Techniques..135

7.5 Case Study...142

8 RELATED WORK..147
8.1 Component Search on the Internet...147

8.1.1 Agora...148
8.1.2 Web-Based Component & Code Search..149
8.1.3 Web 2.0 Technologies..151

8.2 Other Reuse Tools...152
8.2.1 CodeBroker..152
8.2.2 RASCAL...152
8.2.3 CodeGenie..153
8.2.4 And More...153

8.3 Result Ranking..154

9 EPILOGUE..159
9.1 Summary..159

9.1.1 Contributions...160
9.2 Future Work..161
9.3 Concluding Vision...162

10 REFERENCES..165

LIST OF FIGURES..181

LIST OF TABLES...183

APPENDIX A: TEST CASES...185

10 - CONTENT

1 INTRODUCTION

In the beginning the Universe was created.
This has made a lot of people very angry and has been widely regarded as a bad move.

-- Douglas Adams

1.1 MOTIVATION

Ever since Konrad Zuse developed the first computer programming language called Plankalkül [Gil97]
in the 1940s software systems have been growing increasingly complex. In the early days of
programming when computers used to fill rooms memory was highly expensive and hence programmers
invented the concept of subroutines to conserve memory. This allowed a piece of code to be called from
different locations without the need to store multiple copies of identical code. Software reuse was thus
invented to better manage limited hardware resources [Cle95]. But simultaneously, software developers
suffered from ever increasing pressure for shorter development cycles and higher software complexity.
The software itself, however, has been suffering from a whole range of problems such as bad quality or
overruns of budget and time schedules. This situation became common currency during the 1960s when
the so-called „software crisis“ (see e.g. [Dij72]) was recognized. Suddenly, a solution focussed on software
was required. It was presented at the famous NATO conference in Garmisch in 1968 where – amongst
other ideas – the term software engineering was coined and the need for engineering-like development of
software was highlighted. It was Douglas McIlroy [McI68] who introduced a related vision that was
inspired from other engineering disciplines: the (re-)use of pre-fabricated software parts in order to
promote flourishing component marketplaces. Today, as a matter of fact, component-based software
reuse is considered one of the hallmarks that would bring software engineering closer to the standard of a
fully-fledged engineering discipline [Mil99]. However, as we will detail in this thesis, component-based
software reuse and the required component markets still have not made their expected breakthrough.

Arguably, software and software development have become very important for our daily lives and our
economy, the annual turnover of the software industry has long become a multi-billion Euro business in
Germany alone: A world without computers, microprocessors and thus a world without software is not
conceivable anymore. However, the years since the turn of the millennium have also confronted the
software industry with some unpleasant problems such as the burst of the dot-com bubble and increasing
amounts of open source software that have become available for free over the Internet. However, some
analysts have already seen a possible source of the revenues for software companies in that area and some

12 - INTRODUCTION

researchers – as well as recently some companies – have recognized the potential of the Internet as the
world's largest ever repository for reusable software. Given the annual turnover of the software industry
even a small quantum jump (in the physical sense of the word) in reuse technologies, making the
enormous amounts of code lying on the Internet or even in version control repositories of companies
reusable, could save the software industry millions of Euros per year.

Unfortunately, the Internet itself is at first an amorphous mass of bits and bytes and the challenge that
remains (not only for reuse technologies) is to find and utilize the information that really counts for the
users (i.e. in our context the reusable components for the developers) in the large amount of data
distributed over the Internet. In other words, a component search engine must understand the semantics
or the meaning of components to satisfy the needs of developers well enough to make this valuable
knowledge accessible. It seems odd at first glance that this is still regarded as a problem given that
component-based reuse during the 1990s was as hot a topic as web search engines have become recently.
One should assume that the foundations developed within these two areas should be sufficient to deal
with the millions of software assets available today. However, this was obviously not the case when the
research for this thesis was started since no means to search for a specific component in a version control
system were available, not to mention a way to finally find a component offering specific functionality
over the Internet. Even on the World-Wide Web, which contains thousands of online shops and thus
should be the first choice for so-called component markets, components have so far been hard to find.
Only very recently have a number of source-code search engines emerged that try to improve this
situation. However, neither the research results of the 1990s nor this code search engines of the first
generation are able to provide a search capability that deserves the label semantic component retrieval as
we will define it below.

1.2 RESEARCH OBJECTIVE

In principle, almost all assets produced during a software development process, like for instance domain
knowledge, requirements, design and source code, have the potential of being reused and accordingly,
reuse has become an umbrella concept for many different techniques that all aim at the target of
“creating software systems from existing software rather than building software systems from scratch “ as
defined by [Kru92]. Scholars such as Dijkstra and Parnas first realized certain aspects of McIlroy's
original vision with concepts such as structured programming [Dij70] and information hiding [Par72].
The development of object-orientation [Dah66] later integrated these ideas into the current generation
of programming languages. However, software reuse in the original sense that a developer can buy a
component that matches the requirements of his design was still a long way from realization when this
thesis was started in 2004. The following paragraphs present more details on why we believe this topic
has been (and still is) worth studying although other researchers have been working on it for almost four
decades. They already produced a comprehensive range of component retrieval techniques during the
1980s and 1990s (see e.g. [Mil98] & [Luc04]), but the lack of practical applications of these techniques
for publicly usable (and useful) component and service repositories is compelling evidence for the lack of
theoretical knowledge in this area and hence a good rationale to investigate it more closely.

RESEARCH OBJECTIVE - 13

Generally, strong evidence for the effectiveness of various reuse approaches have been presented in a
number of publications (e.g. [Len87], [Gri93] & [Iso92]) and reuse established itself as an umbrella term
for various concepts that range from reusing small snippets of code via components in the “traditional
sense” to architecture-centric reuse where domain knowledge is reused in software product lines [Cle02].
In fact the latter area has received the main interest of the reuse community in recent years, while the
“classical” component-based reuse seems to have fallen out of fashion after the mid 1990s. Although
there was a lot of research into setting up software repositories and retrieving assets from them during the
early 1980s until the mid 1990s, no functioning solution was developed that is still in use today. This is
interesting, since well-known experts in this field such as Poulin claimed that the “reuse library problem”
has been solved [Pou99b], but also argued that reuse repositories would become unmanageable by
humans once they exceed a critical threshold (of about 250 components). However, Poulin obviously
based these claims only on his experience and intuition, and although he was perhaps right at the time,
today there are already libraries that contain thousands of assets (like the Java standard library) or
repositories with hundreds of thousands of assets (like the version management repositories of large
software companies) or even millions of assets (like the repository of the popular open-source hosting site
Sourceforge.net). While ever growing hardware resources and improved version control systems have
made it possible to store this large amount of software, no accompanying theory has been able to provide
practitioners with guidelines on how to set-up or maintain such repositories for the purpose of searching
and reusing their contents, although they are certainly required for such a mass of data [Fra05].
Consequently, the repository problem [Sea99], the representation problem [Fra94] and the retrieval
problem [Mil98] identified in the reuse literature about ten years ago were still wide open, when the
research for this dissertation was started.

Practically, all scientific work dealing with software component retrieval to date has suffered from the
problem of setting up a component collection larger than a few dozens or hundreds of components.
Until recently, there simply was not a larger number of components available to researchers since
industry typically showed little interest in sharing their assets with external scientists. Consequently, the
results published in older publications deal with repository sizes of around one hundred components and
could merely demonstrate that the underlying concepts might work (take for example [Fra94] &
[Pod93]) in practice. But there is no experience nor knowledge about how to effectively reuse the
material stored in repositories that are some orders of magnitude larger. This is motivation enough to
wonder how the recent influences of, for example, the massive amount of open-source code [Ray97]
publicly available on the Internet could promote software reuse research as well as practice. Furthermore,
a whole range of other technologies that could have a bearing on for software component retrieval have
improved in recent years, such as for instance, higher bandwidth Internet connections, increasing
processing power, the Unified Modelling Language (UML) and the quality of integrated development
environments. All of these changes have taken place after the first wave of reuse approaches was
published up to the late 1990s and hence the integration of these new developments has the potential to
significantly improve the practice of reuse provided that “semantic” component retrieval techniques can
be made available to developers.

Thus, the first objective of this thesis is to provide a thorough investigation of the state of the art in
component-based software reuse and where it might have potential for improvement by taking new and

14 - INTRODUCTION

enhanced technologies (like those mentioned above) into account. Furthermore, we want to provide the
foundations for software engineers to be able to exploit the large amount of software components lying
in numerous repositories all over the world and turn it into a very large resource for component- (or
service-) based software reuse. This goal can be broken down into a number of high-level sub-goals
which are nicely subsumed by the following quote taken from [McC97]:

“Although the idea of software reuse is simple and obvious, its implementation is not. The practice of
software reuse often requires a change in the corporate culture, software process, software tool set and
software skill set; as well as, of course, something to reuse.”

Three key research areas in which new developments are required to improve the state of the art and to
provide a holistic approach that better supports component-based software reuse and component
markets can be identified in the quote above:

1. Something to reuse
2. Software tool set
3. Software process

In other words, this thesis aims to improve the theory and state-of-the-art concerning the discovery and
utilization of large amounts of software components (solving the repository problem), the creation of
tools to support efficient storage (solving the representation problem) and the creation of techniques and
algorithms to facilitate their effective retrieval (solving the retrieval problem). To make these
developments directly useful to developers, a further goal is to integrate them tightly into well-known
development processes. In short, the goal is to automate as many of the steps in the so-called reuse
success chain as proposed by [Fra96] as possible.

Figure 1.1: The reuse success chain [Fra96].

A special emphasis of our effort, however, is put – as suggested by the title of this thesis – on the retrieval
of components by developing techniques that deserve the label semantic component retrieval. Since the
term semantics is defined as “the study of meanings “ by Merriam-Webster's dictionary, we interpret
semantic component retrieval as meaning the delivery of results (i.e. components) that have the meaning
(i.e. fulfil the purpose) intended by the submitter of the query. However, the main problem in this
context is the so-called conceptual gap (as e.g. discussed by Larman [Lar05]) lying between a concept in a
developer's mind and the actual representation of that concept in a software system or a component in a
repository as discussed by [Fis91]. Thus an important contribution of the thesis is to shrink this gap and

RESEARCH OBJECTIVE - 15

to develop easy to use, context-sensitive component search algorithms that deliver results coming as
closely as possible to meeting a developer's real desires.

1.2.1 OUT OF SCOPE

However, a well organized and searchable component repository is not only useful for component-based
reuse in the traditional sense. Other applications such as improving software testing or software cost
estimation and detecting plagiarism are alternative possible uses of this work and some of them we
already discussed elsewhere [Hum06c]. However, since reuse is already a very complex topic in its own
right, our main focus will be component-based software reuse and we will not elaborate on the areas just
mentioned within the scope of this thesis. We will merely give some pointers to our further work when
appropriate.

Furthermore, one would be able to identify another research area from Carma McClure's quote, namely
the change in corporate culture, as a fourth point, but this is out of scope for this thesis as our focus is
clearly on technical and not on managerial concerns and industrial practices as discussed e.g. in [Gri94].
Additionally, since reuse has become an umbrella term for a large collection of many different ideas,
approaches and concepts it is also important to clarify that everything outside the technical improvement
of software development through efficient component repositories is also out of scope for this thesis.
This includes the above mentioned domain engineering and product line approaches that have been
successful in practice [Cle02], as well as design patterns [GoF95], which are generally regarded as
another successful attempt to provide software developers with guidelines to reuse design experience.

There are even further interesting areas in the field of software reuse such as generative programming
[Cza00], software factories [Gre03] or the reuse of general software development knowledge [Bas88] that
will not be considered in our work. We will only mention foundations from related areas if they are
necessary for the understanding of this dissertation and refer the reader to the relevant literature for
further details in those cases.

1.3 RESEARCH STRATEGY

Computer science has its roots in various disciplines like mathematics and electrical engineering and the
natural sciences. Software engineering as a profession which deals with the construction of software is
generally regarded as an engineering discipline [Som06]. On the other hand, it also has a scientific facet
represented by software engineering research. While the mathematical approach of constructing and
proving models is only of limited use for theoretical branches of computer science the growing influence
of natural sciences has made empiricism very popular in software engineering [Bas86] in recent years.
This paradigm is generally based on a positivist research approach which considers principles and
methods of natural sciences as applicable for sciences largely influenced by human behaviour. Positivists
usually start by identifying an existing problem in an area under research based on practical observations.
Literature studies provide the basis to identify interesting variables and to construct a theoretical
framework within which experiments can be performed. Such experiments are used to underpin or to
reject the hypotheses that can be formulated with the help of the defined framework. Experiments are
statistically evaluated and the outcome is used to answer the research questions and to derive principles

16 - INTRODUCTION

or laws. According to [Bla82] such a research process“is the application of scientific method to the complex
task of discovering answers (solutions) to questions” which can be summarized as follows for social and
natural – i.e. for empirically grounded – sciences:

1. choosing the research problem(s)
2. stating hypotheses
3. formulating the research design
4. gathering data
5. analysing data
6. interpreting the results so as to test hypotheses

However, although empirical research in software engineering has made a lot of progress in recent years
it is not always regarded as fully sufficient. Many experiments in software engineering research involve
humans and hence introduce variables in the experimental setting that are not fully controllable. For
instance, natural scientists typically are able to control variables such as temperature or humidity but it is
not possible for computer scientists to change the experience or age of their subjects so that methods
from the social sciences have to be used to mitigate negative effects induced by humans on empirical
experiments in software engineering.

Another limitation of empirical software engineering research has been raised by the advocates of the so-
called design science. They argue that a pure positivist approach is not sufficient since computer science
still remains an engineering discipline and finding creative solutions for identified problems should be
regarded as a research paradigm on its own right since they often have to pave the way for follow up
behavioural science. In other words, as described by Nunamaker and Chen [Nun90] many important
developments in the history of research have been made out of creativity or necessity without any
empirical research. The authors mention structured programming as well as analysis and design as
examples from the area of software engineering. Another example is the development of CASE
(computer aided software engineering) tools. In these areas, the development came first and the
empirical studies proving their effectiveness followed some years later. Consequently, the authors realize
that problems exist where empirical or mathematical solutions are not sufficient to show the success of a
research approach. Since software reuse is an area that has not made any significant progress in the last
decade and above all the construction of a usable CASE tool is one of the main goals of this dissertation
we decided to follow the research process recommended by Nunamaker and Chen. It can be summarized
as follows:

1. Construct a conceptual framework
2. Develop a system architecture
3. Analyse and design the system
4. Build the system
5. Observe and evaluate the system

The following quote from Nunamaker's article supports our decision:

“An ideal research problem is one that is new, creative, and important in the field. When the proposed
solution of the research problem cannot be proven mathematically and tested empirically, or if it

RESEARCH STRATEGY - 17

proposes a new way of doing things, researchers have to develop a system to demonstrate the validity of
the solution, based on the suggested new methods, techniques, or design. Once the system has been built,
researchers can study its performance and the phenomena related to its use to gain insights into the
research problem.“

Our research problem is the effective retrieval of software components to support software development.
Due to the previous lack of usable component collections it was neither possible to test the performance
of such systems empirically, nor to prove anything mathematically. We propose a combination of
existing techniques to make existing component collections usable for component retrieval and hence
had to develop a system that is able to demonstrate the usefulness of this concept. Only after this was
defined were we able to observe and evaluate our system. This process is also reflected in the structure of
this thesis which is described in more detail in the next subsection.

1.4 OUTLINE

The first chapter of this thesis has already explained the necessity for component-based software reuse
approaches and identified some severe problems that could not have been solved in the past. In the
preceding subsection, we explained what is in the scope of our work and, furthermore, we defined the
research approach we want to follow. This choice already widely determined the further structure of the
thesis. The succeeding chapter starts with some foundations on software engineering and software
development processes since their understanding is required to appreciate the context of the work. After
that we explain the current state of component-based software development and software reuse. We
provide some more detail on common reuse approaches and their relations with each other before we
discuss important aspects such as success factors for reuse, reuse metrics and the foundations of
component-based development at the end of the second chapter.

Chapter three illuminates the state of the art of component-based reuse with a special focus on software
component repositories and retrieval techniques. Finally, it discusses the idea of semantic component
retrieval and outlines a number of conceivable use cases for semantic component searches. Since a lack of
components has always stopped researchers from working with large repositories in the past, we have
turned our attention towards using the Internet as a component repository. Due to the wide availability
of open source software and web search engines we found it to be a feasible source for this purpose. This
is described in chapter four. We explain how it is possible to use common web search engines such as
Google or Yahoo for well targeted component searches although the prevailing opinion at this time was
that this would not be possible at all. However, since the big search engines do not open up their indices
for unlimited automated access this approach is only usable to conduct research, but not for practical
usage in a production environment. Thus we discuss the creation of our own index of software
components and web services in subsequent parts of this chapter.

Chapter five turns its attention to semantic retrieval techniques for software components. We first define
our understanding of semantic component retrieval as delivering results with the behaviour the developer
expects in a given context and we derive a number of use cases for component search engines from that
statement. We then discuss how we implemented search algorithms for these use cases. In section 5.2 we

18 - INTRODUCTION

elaborate our vision of a specification-based component retrieval approach called Extreme Harvesting
which is based on a syntactic description of a required component enriched with an approximate
semantic description in the form of a test case. In the sequel to chapter five we discuss our
implementation of Extreme Harvesting and other contributions to the state of the art that were necessary
to solve the problems that occurred during the implementation of this concept. After that we
demonstrate in chapter six that Extreme Harvesting fits smoothly into test-driven development processes
due to its roots in the test-driven paradigm of Extreme Programming [Bec99]. We also discuss how it
could satisfy the specification-based reuse approach defined in the KobrA method [Atk02] with some
minor adaptations. A description of the tool we developed and the general applicability of our approach
round off this chapter.

Chapter seven concentrates on the evaluation of our ideas and starts with a brief survey of attempts to
evaluate previous reuse approaches. We then demonstrate the feasibility of Extreme Harvesting with an
early proof of concept implementation before we present the results of a precision analysis for various
retrieval techniques and Extreme Harvesting. Afterwards, in chapter eight we present the most important
related work that has been carried out by other researchers in the period of time during which we were
working on this dissertation. Finally, chapter nine summarizes the work we performed and highlights
our most important contributions. We finish it with suggestions for future work and a vision for
interactive component markets that could materialize within the next few years based on the results of
our work. Finally, chapter ten contains the lists of references, figures and tables.

2 FOUNDATIONS

The nice thing about standards is that there are so many to choose from.
-- Andrew S. Tannenbaum

As this thesis aims to leverage component-based reuse for modern software development, before we can
introduce the foundations of software reuse we must first define its relationship to today’s common
practices of software development and explain some relevant concepts and terms. Readers familiar with
the basic principles of software engineering can skip the first part of this chapter and continue reading
from section 2.4 where we introduce and discuss the idea of software components. Afterwards we
provide an introduction on software reuse which starts in section 2.5 on page 38.

2.1 SOFTWARE ENGINEERING BASICS

Software engineering is typically concerned with the development of a system, i.e. the product . As
defined by Endres and Rombach [End03], “a product is a system, consisting of hardware, software, or both,
to be used by people other than the developers” . A product is the result of a project which “is an
organizational effort over a limited period of time, staffed by people and equipped with other resources
required to produce a certain result”. The chances of successfully completing a project are raised by
following a process. The literature, e.g. [Som06], defines a software process as “a structured set of activities
required for the development of a system” . Furthermore, a software process model is an abstract
representation of a process. It presents a simple description of a process from some particular perspective.
A development method is more comprehensive than a process and includes a description of the
development activities to be performed as well as a description of the assets to be developed.

Another important ingredient of today's software development approaches, as in other engineering
disciplines, is an abstract (graphical) representation of complex designs. It took researchers and
practitioners almost thirty years from the “invention” of software engineering at the famous NATO
conference in Garmisch in 1968 until the late 1990s to establish the Unified Modelling Language
(UML, as of 2006 available in version 2.0 [OMG04]) as a commonly accepted graphical notation for
software systems. Moreover, to quote the KobrA book [Atk02], "the Unified Modelling Language (UML)

20 - FOUNDATIONS

is currently the leading notation for modelling architecture and design level information in a graphical form ".
Since there is no rival on the horizon, the UML will probably remain the leading graphical software
notation in the foreseeable future.

Basically, the UML offers elements for describing various aspects of a software system such as class
diagrams describing the structural view of a system and interaction diagrams showing how objects
communicate with each other. It is supported by the Object Constraint Language (OCL, see [War03])
which provides a semi-formal language for enhancing the precision of models and describing the
semantics of a system's functionality. UML also contains component-diagrams that can be used to
describe the required and provided interfaces of components (these will described in more detail later).
Since the UML is the quasi standard for software blueprints today we will use UML diagrams where
appropriate to better illustrate our ideas or to depict examples. We require a basic understanding of
UML from the reader. Easy to read introductions to the UML and the OCL can be found in [Fow03]
and [War03] respectively.

2.2 SOFTWARE DEVELOPMENT PROCESSES

This section briefly describes common ways of developing software today. It highlights development
processes that either have been of some importance for the field as a whole in the last four decades or are
of high relevance for this thesis. Although the older sequential software development models are now
generally recognized as being insufficient in practice, teaching in software engineering usually starts with
simple software development approaches such the waterfall model. We want to keep this tradition and
also introduce the models in chronological order.

However, before we can actually go into the description of the models we have to define some further
terms. Although the waterfall model still appears as a model in most modern software engineering
literature it is not a software process model in the sense that it gives concrete guidelines on what to do
when in a development process (as defined in the last section). Consequently, [Sca02] characterizes it as a
life- cycle model , i.e. a model that depicts only a coarse-grained scheme that could be used for
management purposes. In contrast to a life-cycle model, a process model has a much higher
descriptiveness and can be used as a technical recipe for building software. Nowadays, developers can
choose from a variety of established development processes. There is a good reason for this as there are a
lot of factors that influence the success of a software project (such as developer experience in a domain,
clarity of requirements, safety requirements, size of the system etc.) and only one kind of development
process would never be optimal for every type of problem. There is therefore a wide range of different
approaches, which can be arranged into three broad groups – namely into sequential, iterative and agile
development approaches.

Independent from the chosen development process, a software's life-cycle typically comprises five groups
of activities that have to be carried out to get from the initial idea to a working system:

SOFTWARE DEVELOPMENT PROCESSES - 21

 analysis
 design
 coding
 testing and integration
 operation and maintenance

Since most modern development approaches allow a to carry out some of these activities in a different
order or concurrently, we deliberately omitted a numbering of them in the bullet list above. The
following subsections will explain the arrangement of these activities in common development processes
and will give some concrete examples on how they might be applied in practice. However, it is beyond
the scope of this thesis to explain all these activities in detail. A lot of good books are available on each
these activities such as the ones from Coad and Yourdon for object-oriented analysis [Coa90] and object-
oriented design [Coa91], from Eckel for programming in Java [Eck06], from Beizer on testing [Bei90] or
for maintenance [Lie80]. Textbooks [Som06] that try to cover all aspects of modern software
engineering are also available as well as good books (e.g. [Lar05]) on practical, individual processes that
explain how to apply these activities together.

2.2.1 TRADITIONAL PROCESS MODELS

This subsection gives a brief introduction into “classic” software development models such as the
waterfall model.

SEQUENTIAL MODELS

The waterfall model (see e.g. [Boe76], [Som06]) is the classic representation of a software system's life-
cycle which attempts to discretize the activities of software development. It is printed in nearly every
book on software development and comprises a structured set of activities that proceed in a sequential
order, each of which must be completed before the next one can start. Its first appearance [Roy70] dates
back to 1970, and Royce had already suggested to apply the model iteratively at that time. However, this
is no longer widely known and has given the model a rather bad name. Anyway, the waterfall model (as
we said above some regard it only as a “life-cycle” model) is widely recognized as being poor in terms of
descriptiveness and process guidance and is often considered as being too rigid for real life usage e.g. due
to changing requirements. The figure below shows the typical representation of the model as attributed
to Royce:

22 - FOUNDATIONS

Figure 2.1: Classical waterfall model [Roy70].

The assets shown in the figure are produced in a strictly sequential manner, i.e. before system design and
specification can start all requirements must have been written. Only small feedback cycles (indicated by
the dotted arrows) are allowed e.g. for the correction of errors in earlier stages. For the actual creation of
systems with a waterfall-style approach the initial system specification is developed through stepwise
refinement into the final system. But as hinted above, there are no concrete guidelines on what activities
should be used to develop the system. Furthermore, the waterfall model requires a kind of unnatural
system development process since the requirements of a system tend to be unclear at the beginning of the
process or tend to change after they have been written down.

The V model [Boe84] traces back to an idea of Boehm and obtained its name from the typical "V
form" (see figure 2.2) that is used to characterize the ordering of the activities in the process. The V
model is of particular importance in Germany as it is the compulsory model when software is to be
developed for the federal administration. In principle, it is merely a waterfall model with an elaborated
view of the verification and validation activities.

Figure 2.2: V Model of Software Engineering.

User's
expectations

User
requirements

Requirements
specification

System design

Component
specifications

Component
design

Component
implementation

Executable
components

Executable
system

Usable system

Deployed
system

Component testing

System testing

Acceptance test

System operation

Integration testing

Feasibility study

Requirements
analysis &

specification

Design &
specification

Coding &
module testing

Integration &
system testing

Delivery &
 maintenance

SOFTWARE DEVELOPMENT PROCESSES - 23

Validation (“Are we building the right system?” [Boe84]) in this model takes place in the horizontal
direction, i.e. the products on the right are tested against the documents or requirements on the left.
Verification (“Are we building the system right?” [Boe84]), however, takes place vertically similarly to
the waterfall model where one development product pn is verified against the pn-1, i.e. the one before.
Since its first version in 1986, two updated versions of the V model have been published by the German
government, namely the “V-Modell 97” [VMo97] and the “V-Modell XT” [Bro05] where XT stands for
“Extreme Tailoring”. The main focus of the latter, as the name suggests, is to provide a collection of
building blocks that can be combined into a process model tailored to a project's needs.

ITERATIVE MODELS

Over time a lot of proposals for iterative models have been made. Initially, even the original proposal of
the waterfall model intended to progress through the waterfall, iteratively. However, Boehm's spiral
model [Boe88] is regarded as the archetype of iterative process models although it is not a process model
in the common understanding of the term. It is rather a kind of “meta process model” that incorporates
risk observations. Other models should be used inside the spiral for the actual software development.
The most notable fact about this model is that it integrates iterations for the first time and hence can be
seen as the predecessor of modern iterative approaches such as the Rational Unified Process (RUP)
[Kru00], explained in more detail in the next subsection. The spiral in this model is separated into four
quadrants that are passed through in every spiral loop. During the first quadrant (the upper left one), the
objectives, alternatives and constraints of the next development step are determined and during the
second the risks arising for these objectives are evaluated and dealt with. The third quadrant typically is
concerned with the actual development steps like collecting requirements, creating a software design,
actually coding or testing the software. The fourth quadrant is used to plan the next loop through the
cycle.

Figure 2.3: Boehm's original figure of the spiral model as in
[Boe88].

24 - FOUNDATIONS

2.2.2 TODAY'S BEST PRACTICE PROCESSES

The process models mentioned before are an important foundation for software development processes
in use today, but are typically not ready to be used out of the box. As we later want to discuss
component reuse in the context of modern software development we now give a brief overview of the
development processes most used in practice today.

RATIONAL UNIFIED PROCESS

The Rational Unified Process (RUP) [Kru00] is today's de facto standard for UML-based system
development in many organisations around the world. It was originally developed by Rational as a
process to complement the UML. The general idea of the RUP is an iterative development approach that
is illustrated in figure 2.4. At first glance, the iteration is not as obvious as in the spiral model, but the
idea is still simple. The development span of a project is separated into four phases called inception,
elaboration, construction and transition which follow each other sequentially as shown at the top of the
figure (i.e. time flows from the left to the right in the figure). Although this might imply some similarity
to the waterfall model it is important to note that this is not the case as the common workflows (or
activities) listed on the left are repeatedly passed through. Each of the four phases is subdivided into
iterations which are “timeboxed” and usually have a duration between 3 to 6 weeks. The coloured bulges
in the central area of the figure represent the effort that is spend on a certain activity over time. For
instance, at the beginning a lot of effort is put into business modelling and rough requirements
elicitation – that is, most of the requirements are collected and assigned a priority and/or risk. Then they
can be allocated to iterations, typically high priority/risk requirements are allocated to early iterations
and hence, as the figure makes apparent, the design and implementation of important functionality can
already start in the inception phase.

Figure 2.4: Graphical representation of the Rational Unified Process (from
IBM website).

SOFTWARE DEVELOPMENT PROCESSES - 25

2.2.3 AGILE DEVELOPMENT

Agile approaches [Coc01] comprise a number of iterative methodologies that were first introduced as
light-weight methodologies and share some important ideas with the RUP. Consequently, in practice
many companies use the best elements from both and apply something like an agile RUP as is proposed
by [Lar05]. In contrast to so-called heavy-weight, traditional methodologies, agile methods are supposed
to be a compromise between too much process and no process at all. The mantra of agile development
proponents is to have “just enough” process. Hence, agile methods are typically not very predictive in
terms of cost or effort estimation, but highly adaptive and that is exactly what they are intended to be.
Agile development methods are typically used for small- and medium-sized projects where it is difficult
to determine all requirements at the start. The so-called agile manifesto [Fow01] is commonly accepted
as the original definition of agile development and contains the following principles:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

The manifesto was signed in 2001 by 17 prominent developers from the agile development field,
including for example Kent Beck, Alistair Cockburn and Martin Fowler. Agile processes obviously work
for many projects limited in size and effort, but critical observers have always pointed out that agile
development is only a collection of best practices used to impose a little bit of structure on chaotic
projects. Although this is certainly not said without any reason, we believe there is a rationale for the use
of agile processes in certain projects with unclear and rapidly changing requirements for example.

Most agile approaches also include a recent trend in software engineering, namely the test-driven
development approach. We describe this further in the following subsection because it has an important
bearing on our component retrieval approach.

TEST-DRIVEN DEVELOPMENT

One of the most important hallmarks of Extreme Programming (XP, [Bec99]) and other agile methods
is the so-called test-first or test-driven development approach (TDD, [Bec03]) which, to some extent,
turns traditional development processes (like the waterfall model) upside down and creates test code
immediately before production code rather than afterwards as was traditionally the case. The following
activity diagram illustrates the typical flow of a TDD process:

26 - FOUNDATIONS

Figure 2.5: Activities in a TDD process
(source: [Amb03]).

As the name already indicates, the first step is to create a test for the unit (class) under development.
Then the test is run and its failure is checked. The unit under test is then developed with the aim to
make it pass the test. Therefore “the simplest solution that might work” [Bec03] is usually implemented.
After implementing the functionality, it is tested again. If it still fails, the production code has to be
reworked and retested. Alternatively, it is possible to enhance the test cases according to the principle of
triangulation [Bec03] or to continue with the development of other unit tests that cover new
functionality. In a nutshell, this basic development cycle is also known as “design a little, test a little,
program a little”, a maxim that originated from Extreme Programming.

The literature (e.g. [Lar05], [Bec99], [Amb03]) lists the following key advantages of such a process
incorporating TDD:

 The tests get written at all
 Programmer satisfaction
 Clarification of interface and behaviour, i.e. low level design
 Repeatable verification
 Helpful documentation

SOFTWARE DEVELOPMENT PROCESSES - 27

Some authors even advocate the early creation of tests after initial design work and before code is
implemented in more heavyweight processes, such as Larman [Lar05] for the Unified Process. We regard
this approach as very helpful since it allows – as we shall see later – a simple integration of our
specification-based reuse approach.

2.3 SOFTWARE VERIFICATION AND VALIDATION

Test-driven development planes the main emphasis of quality assurance on software testing. Of course,
this is important in general, but software quality assurance is typically a much broader activity and not
only involves product-related quality during development, but also organizational ones such as process
control etc. Certification of companies according to CMMI [Chr03] is one example of the latter, but
this topic is so large that we have to limit our attention to the former at this point. Software testing is
normally performed as a part of software verification and validation (V&V) activities. It was Barry
Boehm [Boe84] who made the famous statement that verification is about “am I building the product
right” and validation is about “am I building the right product” . Software testing is a dynamic V&V
technique, while e.g. software inspections are a static V&V technique. Since the notion of testing is
important for this thesis, we will briefly explain its most important aspects in the following subsection.
For more detailed insights on software inspections, we have to refer the reader to the literature. [Gil93]
provides interesting material on inspections in general while for instance Basili et al. [Bas96] have
published an interesting piece of work that is regarded as improving software inspections and also
demonstrates how empirical software engineering research can be conducted effectively.

2.3.1 SOFTWARE TESTING

Software testing [Bei90] is the process of evaluating whether a software is fit for the required purpose.
The general idea is to provide a program (or an operation) with a set of input and expected output values
and to compare the latter with the actual values delivered by program execution. Unfortunately, as
Dijkstra pointed out in [Dij72] “program testing can be used to show the presence of bugs, but never their
absence” , testing can neither be used to prove the correctness nor the completeness of a program.
Theoretically, it is possible to exhaustively test a program by comparing the result for every possible
combination of input values with the expected output value. However, this so-called exhaustive testing
would not only require large amounts of computation even for small pieces of software, but it also relies
on the availability of a so-called oracle that is able to predict the correct output for every possible
combination of input values. Obviously, if such an automated oracle existed, there would be no need to
implement the system itself.

Hence, in practice a variety of techniques are used to choose representative candidates from the input
space to shrink the testing effort to a bearable amount. We distinguish between two basic purposes of
software testing, namely defect testing for discovering bugs in a software system and reliability testing for
assuring a required level of reliability. We limit ourselves to defect testing at this point as the underlying
statistical models for reliability estimation are too complex to be discussed here. Defect testing has
traditionally been used at different stages during software development. Although not necessarily bound
to it, the V model presented in section 2.2.1 gives a good overview of the various levels of testing that are

28 - FOUNDATIONS

typically performed. More detailed information can also be found in [Som06] and the more specialized
testing literature named above. So-called unit testing has the smallest granularity and typically provides
test cases on the method level. When classes and components are assembled to larger functional units
integration testing is performed to guarantee the proper interplay of the different parts. System testing is
performed to validate the whole system before it is delivered to the customer and acceptance testing is
finally performed by the customer to check whether the system fulfils his/her requirements. Testing on
the unit level will be required later in this thesis so we briefly explain the two feasible approaches in the
following subsections.

BLACK-BOX TESTING

Black-box (or functional) testing [Bei95] is perhaps the more intuitive testing technique. It is practised
for instance in electrical engineering as well. A component is regarded as a black-box, i.e. only through
its interface (or its connectors in electrical engineering). It therefore assumes that a specification of the
component is available, but no details about its internal implementation. The component is tested by
sending input values into the black-box and observing the output values that are returned. Those can be
compared with the values expected, according to the specification. Since the internal structure is not
available, and cannot be evaluated or used to derive test cases other strategies must be used to validate a
black-box component. Black-box testing typically utilizes equivalence partitioning and boundary value
analysis. The former is used to reduce the number of test cases to a manageable amount some it is
obviously not possible to test for instance the 264 possible input values of a simple operation such as
add(int,int):int. Hence a tester tries to cover at least each equivalence partition (like positive and
negative numbers and zero for this example) with some meaningful samples. This is where boundary
value analysis comes into play as it is commonly accepted that boundary values at the edges of
equivalence partitions are places where faults most frequently occur. Obviously, black-box testing makes
most sense with binary components or services where access to the source code is not possible. The more
flexible approach of white-box testing (see next paragraph) can only be used when the source code is
available.

WHITE-BOX TESTING

White-box testing (also known as structural testing, [Mye02]) needs access to the internal structure of
components, i.e. the source code has to be available. Using this information, test cases can be tailored to
fulfil a given code coverage criterion such as, for example, attempting to execute every statement. This is
called statement coverage, the most simple coverage criterion, which for 100% coverage requires that a
test case traverses each statement in the code at least once. However, it is somewhat fragile as the
following simple Java example demonstrates:

String s = null;
if (some condition)
 s = ”SWT”;
System.out.println(s.length());

SOFTWARE VERIFICATION AND VALIDATION - 29

A test case that would carry out the example and set the condition to true would reach a statement
coverage of 100%, but if the condition would once be evaluated to false in the real program, the
println statement would cause a null pointer exception. The so-called branch (or condition) coverage
avoids this pitfall as it requires that every condition is evaluated to true and to false. But even branch
coverage does not guarantee that all possible errors will he disclosed and thus various other extensions
(such as Multiple Condition Coverage [Mye02]) have been proposed. Ultimately, only the so-called path
coverage criterion guarantees that really all possible paths through a program have been covered.
Unfortunately, every pass through a loop is regarded as a path in its own right and consequently the
number of paths can quickly become large and non-testable in practice. A simpler approximation has
been introduced for the practical usage of this technique that only requires to cover every independent
path in a program. The number of independent paths and therewith the minimum number of test cases
required to cover all independent paths in a program is determined by its cyclomatic complexity
[McC76] and is calculated by adding one to the number of branches in the code. The cyclomatic
complexity is also a well-known code metric indicating the complexity of a piece of code.

2.4 SOFTWARE COMPONENTS

Interestingly, all the development approaches discussed above were initially focused on development
from scratch and thus none of them is concerned about concrete guidelines for reusing pre-produced
software parts. Approaches for componentization of software that go beyond the usual “divide and
conquer” aspects of architectural and object-oriented design are not considered. Others have recognized
these weaknesses and have proposed approaches that try to address this problem. For instance, [Moh04]
tried to incorporate reuse into the RUP. However, the applicability of these ideas is rather limited
without appropriate tool support and even the more specialized approaches that we discuss below are not
yet for practical use out of the box at the time of writing.

It was in 1972 when Parnas [Par72] first wrote about managing the complexity of software systems by
decomposing them into modules to simplify maintenance and development as well as to foster
reusability. Since then, programming languages have made considerable progress and object-oriented
languages today seem to provide all the necessary mechanism for the componentization of software.
Moreover, component technologies such as J2EE, .NET, CORBA and Web Services are now widely
available and the underlying languages are based on decades of experience with object-orientation (since
[Dah66]) and information hiding [Par72]. However, although quite a number of definitions for
“software component” have been proposed in recent years, there is often confusion about what this term
means, especially in relation to the term “object”. This might be stem from the fact that even the
modern component technologies mentioned above do not fully comply with the common definitions for
components presented below.

Probably the most popular definition of the term “component” can be found in [Szy02] and originates
from a workshop of the 1996 European Conference on Object-Oriented Programming:

30 - FOUNDATIONS

“A software component is a unit of composition with contractually specified interfaces and explicit
context dependencies only. A software component can be deployed independently and is subject to
composition by third parties.”

Certainly, this definition gives a kind of lower bound for components, and object abstractions
commonly used in modern programming languages are supposed to fulfil this definition. They exhibit
their public operations to the outside and can be displaced to another environment. However, none of
the common programming languages support objects which fully expose their required interfaces. For
example, required libraries are usually hidden in the component's implementation. But this is not an
argument against treating objects as components since Enterprise Java Beans (EJB) for example are
widely accepted as a typical incarnation of components although they often comprise just one object.
And even Syzperski himself makes somewhat contradictory statements when he argues on the one hand
without direct relation to the above definition that objects cannot be considered as components ([Szy02]
on page 38) and claims on the other hand on page 285 that “a (Java) bean is really a component” . Since a
bean is nothing but a (simple) Java class, there is obviously a problem with these statements. The Object
Management Group (OMG) provides another similar definition in [OMG03] which avoids the above-
mentioned problem with the required interfaces and thus also accepts objects as components:

"A component represents a modular, deployable and replaceable part of a system that encapsulates
implementation and exposes a set of interfaces."

Apparently, these two definitions are very similar, but also both raise another question: What is not a
component? For this thesis we take the view that objects in modern programming languages comply
with these definitions. Even a static method can be acceptable as a component since it could be removed
from the surrounding object and placed elsewhere. Having outlined the minimum requirements for a
component, one might wonder whether there is also an upper bound for this concept? Nowadays most
component-based development approaches such as KobrA [Atk02] express the opinion that “one man's
system could be another man's component” and compose components hierarchically into larger components
which hide their implementations behind their interfaces as we shall see in the next subsection. Thus,
they accept that there is no general upper bound for this concept. The problem in implementing this
with today's object-oriented programming languages is, however, that objects are typically grouped in
packages which cannot have an interface on their own. They just act as a simple container and are thus
not a component in the proper sense. However, for example in Java it is possible to mimic a
component's behaviour to a certain extend with the use of inner classes. Although hierarchical
composition of inner classes is possible in Java it requires invasive changes of the source code and thus is
no longer consistent with the intent of the definition. This issue currently makes it difficult if not
impossible to find components according to a KobrA specification beyond the class level.

One other fact that should be intuitively clear in this context is the more comprehensive a component
becomes, the more difficult it becomes to deploy it in a different environment without any modifications
or to find a matching component in a repository in the first place. Taking these issue into account, a
third definition, originating from Ralf Reussner and cited after [Kra03], becomes worth mentioning in
this context:

SOFTWARE COMPONENTS - 31

“A software component is an artefact of the software development process and can be deployed in several
contexts by third parties without being manually modified.”

In our opinion this definition is very useful since it brings in the aspect of not being manually modified.
We believe that this should and will become a very important feature in supporting component markets
of the future. As soon as a developer can buy a component that will automatically made fit into his
system the incentive to use such a component is much higher than if he has to create adopters or glue
code by hand. This definition is certainly closely related to the term “reusability”, which is defined in
[McC97] as “the extent to which a software component can be used with or without changes in multiple
software systems, versions or implementations”. In other words, if it requires no effort to reuse a component
in various systems its reusability is the highest. However, according to this definition a higher reusability
can also be achieved by sophisticated tool support.

2.4.1 COMPONENT-BASED DEVELOPMENT

Given the size of today's software systems a “divide and conquer” approach is an absolute necessity in
order to distribute the development effort amongst numerous developers (sometimes numbering in the
hundreds). Consequently, almost all modern development approaches contain guidelines and activities
for architectural decomposition that maximizes cohesion and minimizes coupling of a system's parts.
These parts might be called objects, components, packages or units, but in general they can all be
subsumed under the common notion of “component” just introduced. Given the number of modern
development approaches available today – many of which are even called component-oriented – one
would assume that these processes contain guidelines on when and how to acquire components instead
of developing them from scratch. However, this is not the case. Whether it be the RUP [Kru00] or
KobrA [Atk02], none of these methods provides concrete guidelines on how to reuse components or
where to find them.

We have chosen KobrA (abbreviation for: KOmponentenBasieRte Anwendungsentwicklung which is
German for component-based application development) to explain in more detail the principle concepts
in component-based development. We explain KobrA here as a state of the art development method that
contains an explicit focus on component-based development and thus could smoothly host the reuse
approach which is developed later in this thesis without any major modifications. We will explain the
integration and application of our Extreme Harvesting approach in KobrA later in section 6.2. KobrA
was initially developed at the Fraunhofer IESE in Kaiserslautern, Germany, and is comprehensively
documented in the “KobrA book” [Atk02]. KobrA's primary goal is to facilitate the development of
more cost effective and higher quality software systems through a component-based, reuse-oriented
paradigm based on the UML [OMG04]. The developers of KobrA adapted best practice ideas from
other development methodologies like Fusion [Col94] to develop a comprehensive method that fulfils
four basic objectives, namely to be a simple, systematic, scalable and practical approach. A condensed
and updated description of KobrA was published in the context of the Common Component Modelling
Example (COCOME, [Atk07]).

The KobrA methodology is focused on the analysis and design phases of development and if a system is
developed from scratch it applies a top-down development approach. Starting with an abstract

32 - FOUNDATIONS

description of the whole system, it is recursively decomposed until the level of plain data objects is
reached. A complete model driven description of a system is created in KobrA by hierarchically
organizing the models of the individual components which it contains. The position of a component in
the hierarchy is determined by the logical containment structure. Every (behaviour-rich) object in KobrA
is regarded as a KobrA component (so-called “Komponent”) according to the so-called principle of
uniformity. The basic idea governing the use of the UML in KobrA is that individual diagrams should
focus on the description of the properties of an individual component and only those diagrams should be
produced that are really needed. The former is known as the principle of locality, the latter as the
principle of parsimony. Fig. 2.6 shows how a rich business component is modelled in KobrA by means
of a suite of tightly related UML diagrams. We explain in section 6.2 how reusable components can be
considered in a KobrA-based process. The following figure shows the various views that are to create to
describe a KobrA component.

Figure 2.6: KobrA's component model [Atk02].

The specification diagrams collectively define the externally visible properties of the component, and
thus in a general sense can be viewed as representing its interface. This is called the principle of
encapsulation which is based on the information hiding principle proposed by Parnas [Par72]. The
structural diagram (UML class diagrams) describes the types which the component manipulates, the
other components with which it interacts and the list of services and attributes which it exports. The
functional model provides a declarative description (i.e. contracts) of each of the services or operations
supported by the component in terms of pre and post conditions. Finally, the behavioural model
describes the externally visible states exhibited by the component, typically described with UML
statecharts. The decision model shown in the figure is used to support various configurations for product
line engineering.

SOFTWARE COMPONENTS - 33

The realization diagrams collectively define how a component realizes its specifications in terms of
interactions with other components and objects. This can include externally acquired server components,
or subcomponents which the component creates and manages itself. The realization diagrams collectively
describe the architecture and/or design of the component. The structural diagram is a refinement of the
specification structural diagram which includes the additional types and roles needed to realize the
component. The interaction diagrams document how each operation of the component is realized in
terms of interactions with other components and objects. Finally, the activity diagrams document the
algorithms by which the operations are realized.

2.4.2 COMPONENT TECHNOLOGIES AND SERVICE-ORIENTED ARCHITECTURES

Today's component technologies are not only a means to package functionality they also provide support
for inter-process and even inter-machine communications between components, commonly known as
middleware. Basically all component technologies and models available today operate according to the
client-server principle. This is similar to object technology where the object that offers a service is
regarded as the server and the one that requests a service is seen as the client. According to [Wei01] a
component model is the basic prerequisite for a component-oriented system and the crucial difference
between components and objects is that the former conform to a component model. They require a
component model to define “standards for component implementation, naming, interoperability,
customization, composition, evolution and deployment ”. However, we find it difficult to follow this
argument since these features should certainly also exist in a sophisticated object-oriented environment.
Basically, three technology standards have been competing in this area in recent years. Both big
programming platform vendors (i.e. Microsoft and Sun) provide their own standard to support
componentization and communication of different processes running perhaps on physically different
machines. Microsoft's approach became known as COM [Box97] and has been transferred into the
.NET framework while Sun extended the idea of Java Beans and remote method invocation (RMI) in
standard Java towards Enterprise Java Beans (EJB, [Sun01]) in the Java Enterprise Edition. The Object
Management Group (OMG) as the third big player in object technology contributed a platform
independent component technology named CORBA [OMG00]. Bindings for CORBA have become
available for all major programming languages. With the recently developed web service standards a
fourth player has entered the stage that can be considered a component technology as well. This also
brought a new development paradigm, namely the service-oriented architecture (SOA), which is
supposed to extend component-based development. Without doubt, web services have added a great
simplification to distributed cross-platform computing, but in terms of componentization we regard
them as a step back towards the object-oriented or perhaps even procedural development paradigms.

CORBA
CORBA, the OMG's Common Object Request Broker [OMG00], is not a language or a platform itself.
This is demonstrated by the abstract so-called Interface Definition Language (IDL) which can only be
used to describe interfaces for components in CORBA but does not offer the possibility to implement
any functionality. CORBA's main purpose is to enable the development of distributed systems across
platforms. Thus CORBA requires the use of so-called mappings that connect elements from the IDL to
elements in concrete programming languages. This basic principle of operation is identical to other

34 - FOUNDATIONS

distributed object technologies and web services, of course. On the client side the definition of the
server's interface must be available and a so-called stub is created. The stub is a facade that forwards
invocations to the underlying middleware, the Object Request Broker (ORB) in the case of CORBA,
which transmits calls over the network. On the server side another ORB instance receives the requests
and forwards them to the implementation of the server code. The IDL basically offers the same concepts
as most other modern object-oriented programming languages, namely modules for grouping and
scoping and interfaces that define the functionality available. Thus, the mapping of complex (KobrA)
components to CORBA is difficult. Only recently did the CORBA Component Model (CCM,
[Wan01]) present a UML profile for CORBA components that is supposed to address this weakness and
some other limitations contained in the original CORBA standard. However, since the latter was
developed for UML 1.5 it became outdated with the introduction of the component diagrams in UML
2.0. To our knowledge an update of the CCM to UML 2.0 was still an open issue at the time of writing.

EJB
Sun's Java 2 Enterprise Edition and the associated Enterprise Java Beans (EJBs) are available in version 3
[Sun06] and have grown into a full enterprise application framework that supports packaging and
remote execution of components as well as persistence mechanisms. This, however, requires an
application server since EJBs are normal Java classes and their special features can only be used inside
such a container. While the EJB versions prior to 3 included a so-called XML-based deployment
descriptor that defined the interfaces of an EJB, the current version of the EJB specification has moved
away from that concept and tried to simplify their description. EJBs now have become “plain old Java
objects” (POJOs) and their interfaces are described accordingly with plain old Java interfaces and not in
an XML file anymore.

.NET
Microsoft's Component Object Model (COM) was developed during the 1990s and recently became
part of the .NET framework. Its prime target platform is of course Windows, but there are
implementations for other platforms as well (such as Mono open source project for Linux). COM is
designed to create objects and to communicate with other processes beyond the boundaries of various
Microsoft programming languages. This has been made possible by a binary format that must be shared
by all supporting languages. A large range of other technologies are connected with COM and often
COM is seen as an umbrella term for them. Examples include the Distributed Component Object
Model (DCOM) and OLE (for Object Linking and Embedding) and ActiveX controls that all offer a
way to reuse chunks of functionality. COM applications are built from COM-aware components that
expose interfaces with globally unique interface IDs and versioning information. This is one of the main
advantages over Sun's EJB model which does not provide a versioning mechanism or support for unique
identification (only hierarchical packaging based on Internet domain names is recommended by Sun).

WEB SERVICES
With the recent advent of web services the idea of service oriented architecture (SOA) became popular.
We use the term SOA as a slightly more general synonym for the term web service architecture that can
also be found in the literature. The World Wide Web Consortium (W3C) defines web services as a
"software system to support interoperable machine- to-machine interaction over a network" [W3C04]. This is

SOFTWARE COMPONENTS - 35

by no means a new idea. The underlying concept of remote procedure calls (RPC) is about 30 years old
and nowadays integrated in almost every modern programming language (e.g. RMI on java-based
platforms). Before web services became available each platform had its own proprietary way for
managing RPCs and interoperability between different platforms was difficult to achieve. Even the
CORBA initiative of the OMG was not able to really relieve this problem since different CORBA
implementations were sometimes not able to work with each other smoothly.

On the contrary, a web services architecture reorganizes a system and its infrastructure into a set of
loosely coupled, cooperating services and requires the use of three core well-defined standards, described
in the following, to achieve this goal of interoperability. To quote the W3C [W3C04] another time:

“Web services can be generally defined as loosely coupled, reusable software components that
semantically encapsulate discrete functionality and are distributed and programmatically accessible
over standard Internet protocols.”

This definition makes the close relationship between components and services clear and thus we regard
the latter simply as a descendant of the former and try to investigate both whenever possible in this
dissertation. However, the long-term vision of SOAs is to automate service selection (and therewith
service reuse) to the greatest extent possible, and the semantic web community [Ber01] for example has
already made some valuable – although widely theoretical – progress towards this goal as we will briefly
discuss in section 2.4.3. The general vision is captured by the famous UDDI triangle shown in the
following figure:

Service
Provider

Service
Broker

(Repository)

Service
Requestor

publish bind

find
Figure 2.7: Web service brokerage architecture.

The figure illustrates the three players in a basic service-oriented architecture scenario. The service
provider offers a service and registers it with the service broker where it can be discovered by the service
requester who wants to use a service. It is easy to recognize the similarity to the scenario of retrieving a
component from a repository. The main difference at this point is that within a SOA-based system the
access to a service (i.e. a functionality) is mediated directly while a component repository only offers
components that normally have to be downloaded, if necessary compiled and deployed before they can
be used.

UDDI
The abstract structure in figure 2.7 illustrates the basic idea behind the architecture of UDDI, an
industry initiative for the Universal Description, Discovery and Integration of software services
[New02]. The register of a business in a UDDI repository consists of three separate elements called

36 - FOUNDATIONS

white, yellow and green pages. The white pages contain things such as the address and contact
information for the service offered, the yellow pages contain a categorization of the service according to
standard taxonomies and the green pages, which are the most interesting from a technical point of view,
contain the information about how a service can be invoked over the Internet. In principle, UDDI is
supposed to contain all elements necessary for successful brokerage operations allowing users to find, pay
for and access a service. However, this has not been borne out in practice. A prime example for the
shortcomings of the UDDI model was provided by the surprising shut-down of the so-called Universal
Business Registry (UBR), which we discuss in section 4.1.1.

WSDL
The Web Service Description Language (WSDL, [New02]) is used to describe the syntactic interface of
web services in an abstract way. Hence, it reveals the same information about a web service's functions as
for example a Java class does about its public methods. Based on XML [New02], WSDL also provides
the information necessary to communicate with a web service, i.e. the message formats expected by the
service and the protocol bindings used to exchange the messages. For actually calling a service SOAP,
described in the next paragraph, can be used. One drawback of WSDL is that it does not contain
semantic information that would fit into the vision of the semantic web [Ber01]. However, several
enhancements have been already proposed to bridge this gap, probably the most well-known of which is
Web Ontology Language (OWL, [Ant04]) and it descendant OWL-S for the semantic mark-up of
services.

SOAP
After discovering a service via UDDI and exploring its description with WSDL, SOAP [New02] is the
means to finally access the service over standard Internet protocols like HTTP or SMTP, which is why it
works far better within firewalls than the competing protocols of CORBA, RMI or DCOM. SOAP
(formerly an acronym for Simple Object Access Protocol) is XML-based and used to send the messages,
i.e. typically the parameters and return values of a remote procedure, defined in the WSDL file.

According to a recent survey of Hurwitz and Associates [Bar06], the main expectations driving
investment into SOA are reuse and interoperability. While the latter has started to take off, the former
still has not, which is not least demonstrated by the above mentioned failure of the UBR. This may
sound surprising, since the UDDI is a fairly sophisticated service model and has been a part of the
approach from the beginning, but as we will show in the following subsections there are more factors
influencing reuse than just the availability of basic tool support.

2.4.3 SEMANTIC WEB (SERVICES)
Proposed by Sir Tim Berners-Lee et al. in their famous Scientific American article [Ber01] the semantic
web is proposed as an extension that makes the current World Wide Web understandable for computers.
It is closely related with numerous concepts of information retrieval and artificial intelligence and hence
is briefly discussed in this section. The basic idea of the Semantic Web is to annotate web pages (and the
natural language contained in them) with machine processable information. Today a variety of languages
mostly based on XML and other techniques is under discussion for this purpose as shown in the well
known layer cake diagram depicting the architecture of the Semantic Web below.

SOFTWARE COMPONENTS - 37

Figure 2.8: W3C's Semantic Web layer cake diagram.

Of interest for the remainder of this subsection are the Resource Description Format (RDF [Las99]) and
the Web Ontology Language (OWL [Ant04]). RDF is a simple language for representing objects and
their relationships in “sentences” comprising subject - predicate - object triplets. RDF Schema [Bri03]
adds the vocabulary for describing properties and classes and thus the capability to describe ontologies.
However, for this purpose normally OWL is used since it is more expressive and adds formal semantics.

However, explaining all these ideas in more detail would go far beyond the scope of this thesis and thus
we refer the reader to the literature [Fen05] and merely briefly explain at this point how ontologies are
supposed to support reuse in the context of the so-called semantic web services [Car05]. A common
ontology is probably the most important factor for a successful introduction of semantic web services.
The literature (e.g. the two books we mentioned above) typically describes an ontology as a static data
model for knowledge representation, which contains concepts and their relationships within the world or
just a specific domain. Therefore it typically contains concepts with attributes and relations between
them. In the terms of software engineering it is certainly not wrong to describe an ontology as an
inheritance hierarchy, although this term might not be totally sufficient. However, it cannot be denied
that there is a certain similarity between the applications of OWL and UML class diagrams and one
might raise the question of how far these two might be representable by each other. More details on this
interesting question can be found in [Kik05].

Semantic web services typically use ontologies for composing systems out of more fine-grained services.
In other words they aim to implement exactly the component reuse idea of McIlroy [McI68] for services
with very little human interaction. In order to discover and match usable web services for a given
purpose, typically the parameters and return values of a service are described with the help of the
ontology. In theory, the main advantage is that it is possible to reason about such an ontology and thus
to find not only direct matches, but matches with a different structure or those that require a

38 - FOUNDATIONS

combination of some smaller services to deliver the required functionality, as well. However, we are still
not aware of any practical application of these ideas and it seems that semantic web services share exactly
the same problems as components, namely the repository problem (i.e. collecting enough semantically
enriched services), the representation problem (i.e. find one suitable ontology (language) that is
understood and used by everybody) and a combination of the retrieval and usability problem (i.e. how to
formulate a query in a user friendly way). We will discuss this in more detail in chapter 3. The latter
problem is a general problem of ontologies though. Either they are not complete i.e. not all necessary
concepts of a domain are modelled in the ontology or they are so complex that it is almost impossible to
find the right concept within the ontology. Thus, it will be interesting to see in the future if and when
these ideas will materialize into usable products. It is already interesting that articles have been published
recently warning that the research community is loosing sight of the main goal of semantic web services,
namely the automated discovery and integration [Shi07].

2.5 SOFTWARE REUSE

We already pointed out in the introduction that the idea of software reuse is as old as software
engineering itself. Although it is also a rather simple idea, a lot of different definitions of this term have
been proposed over the years. To pin down the common element of most reuse definitions in the
literature we present Krueger's well-known definition [Kru92] at this point since most others are very
similar to this:

“Software reuse is the process of creating software systems from existing software rather than building
software systems from scratch.”

This means that, in general, it is imaginable that assets from all phases of the software development
process can be reused. [Fra96] provides the following table of potentially reusable artefacts from software
projects:

1. architectures 6. estimates (templates)

2. source code 7. human interfaces

3. data 8. plans

4. designs 9. requirements

5. documentation 10. test cases
Table 2.1: Potentially reusable aspects of software projects according to [Fra96].

In accordance with this table from [Bas88] we see a reuse potential for all assets associated with a
software project. For example we are aware of approaches for reusing software requirements [Lam98],
domain knowledge [Pri91b] or even large parts of software systems in so-called product lines [Cle02].
Mili et al., however, determine in [Mil02] that reuse traditionally meant the reuse of code fragments and
components. Interestingly, this was a hot topic in the research community during the 1980s and 1990s
and even some success stories were highlighted at this time (e.g. [Len87]), but these systems never
became practically useful and have become outdated by the size of today's standard libraries. Hence it is

SOFTWARE REUSE - 39

no surprise that mainstream interest has turned towards more successful approaches such as product lines
and design patterns [GoF95]. It seems plausible that similar to fault discovery, the earlier in the
development process an asset and its successors can be reused, the more benefit can be derived from it.
The practical success of the more architecture-centric reuse approaches such as the just mentioned
product-line engineering certainly seems to provide initial confirmation of this claim. On the other
hand, to date, it has not been investigated whether the reuse of software requirements will lead to any
benefit or how such an approach could be technically implemented. Requirements on custom made
software vary significantly from customer to customer and given the statements in many older
publications (such as Krueger [Kru92]) that abstraction is one important prerequisite for reuse, it is
questionable whether the requirements on software are a good basis for a reuse approach. Consequently,
Krueger saw the lack of good abstractions at that time as one explanation for the lack of successful reuse
programs. Even today, ten years after the UML was introduced, abstraction mechanisms for handy
software pieces are still an active area of research.

The expected benefits of reusing software assets and knowledge [Bas91] are quite obvious and can
already be found in many textbooks about software engineering, although there are few practical
confirmations of this claim. Sommerville [Som06] for example, like many others, draws comparisons
with other engineering disciplines and points out that mechanical and electrical engineering projects base
their designs largely on reusable components that have been extensively tested in other systems. This
approach looks appealing for software, too – plugging software together from prefabricated parts to
produce working systems of higher quality in shorter periods of time without inventing the wheel over
and over again. Moreover, since software engineering has successfully adopted ideas such as design
patterns [GoF95] or separation of concerns [Kic97] from other engineering fields, component reuse
should be transferable to software engineering as well. At face value, the theory sounds very appealing:
There are thousands of reusable functions in software libraries, thousands of objects and components in
software repositories and at least hundreds of software product lines in large companies around the
world. How could there still be a problem?

2.5.1 THE REUSE LANDSCAPE

In order to classify component retrieval approaches and their place in the family of reuse approaches we
briefly discuss some important concepts in the following paragraphs. These high-level descriptions are
widely based on the classic textbook by Sommerville [Som06] complemented with pointers to the
original publications or our own observations where appropriate.

Naturally, the classical component-based reuse approach also has its place within this classification.
Sommerville identifies three different granularities of reusable software units, in order of decreasing
benefit and complexity:

40 - FOUNDATIONS

1. System or application reuse
2. Component reuse
3. Object and function reuse

A more detailed consideration of these concepts reveals that all three are more or less in common practice
these days and many successful examples of their use can be found. Functions are in fact the smallest
units that it is conceivable to reuse with today‘s technology, since they just about fulfil the definition of a
component given by Szyperski [Szy02] (we already discussed this issue in section 2.4). And of course,
function reuse has been done for many decades as evidenced by libraries like the C standard library or
the Java class Math. However, other APIs offered by the Java Development Kit (JDK) for instance, go
one step further. They contain all kinds of reusable packages like Java-3D etc., which do not fit the level
of object reuse any more. However, they are not components in the classical sense and thus show the
limitations of this classification and demand an extension, which we will introduce below. Complete
applications or at least parts of them have been reused, which is typically captured under the term
“commercial off the shelf” reuse discussed in the next paragraph. Our own slightly more detailed
classification which has been inspired from a presentation of Morisio in 2006, comprises the following
levels, also ordered according to decreasing complexity:

1. Commercial off the shelf – reuse of whole applications
2. Component-based reuse – aiming on components in the sense of KobrA
3. (Object) repository-based reuse – search and retrieval from a dedicated repository
4. Library-based reuse – browsing in class and function libraries
5. Code reuse – [Kru92] called this code scavenging

When we talk about the reuse of commercial off the shelf (or COTS, see e.g. [Voa98]) components, we
typically mean whole (end-user) applications such as typical desktop software, database systems etc.,
which are normally used “as is” out of the box. It often seems difficult to include such applications in
custom built applications since they are typically not adaptable and their APIs are sometimes not even
documented at all so that they have to be glued into the system with scripting languages, for example.
[Wei01] call this a “lack of granularity” which leads to attempts to factor out the more fine-grained
elements (i.e. components) from these applications to increase reusability. Another term that we briefly
need to mention is the term business component which is another term that has only vaguely defined
semantics. It is generally defined as a software component that offers functionality for a business domain,
see e.g. [Car01] or [Tur02] in the German business computing community. Thus they can be viewed as
a specialization of the general term component as defined above. Similar to testing, we talk about black
box reuse if only the specification of a component or a service is available and its implementation is
hidden, unmodifiable behind its interface. Likewise, white box reuse reuse occurs when the internals (i.e.
normally the source code) of a component are available and can be altered. Furthermore, the idea of glass
box reuse has been introduced by [Nea96], meaning that developers are able to behold the source or
interface of a component, but only use it to learn from it and not to modify it.

SOFTWARE REUSE - 41

2.5.2 SUCCESS AND FAILURE FACTORS FOR REUSE

Contrary to the visions of McIlroy and others, software reuse is still at a rather rudimentary level and it is
not possible to buy components in the same way that you can by for example screws from a do-it-
yourself store. As long as there have been publications about reuse there have been publications asking
why reuse has not worked properly in practice. Some authors speculate about the reasons and justify
them with personal observations [Puo99], others conducted surveys [Fra95] and finally there are some
that have performed mature failure mode analyses [Mor02]. Interestingly enough, is difficult to find two
publications that agree with one another on the reasons for the low level of component reuse in practice.
Consider, for example, the paper by Frakes and Fox in which they asked “sixteen questions about
reuse” [Fra95] and let us use it as the starting point for a brief review of success and failure factors. In the
early 1990s the authors conducted a survey with 113 software professionals from 29 (mainly US-based)
organisations. They readily admit that this is not a good random sample , but nevertheless it can give at
least some hints about factors influencing reuse levels at that time. However, it is important to mention
that reuse in this survey was regarded as a very generic concept and thus certainly more research is
necessary to take into account today's state of the art tools such as software search engines and proactive
recommendation tools, for instance. The following figure summarizes the results of Frakes and Fox and
is taken from their article:

Figure 2.9: Overview of which factors affect reuse levels and which do not.

42 - FOUNDATIONS

As depicted in the figure, the survey identified in only five reasons recognized as influencing reuse in a
general way. Training for reuse seems to be an important factor on reuse. This is plausible since
developers who are not aware of reuse possibilities will probably not reuse, and in a more general sense is
acknowledged by other publications like [Mor02] and [Is092] who recommend a top management
commitment and thus a reuse-friendly environment for companies. The perceived economic feasibility is
also a plausible obstacle to reuse, but is perhaps overvalued in this survey since no developer would claim
the contrary in a questionnaire. It is also interesting that [Fra95] identify the use of a common software
process as a factor affecting reuse since even today there is practically no widely-used development
process well-suited for component reuse. However, [Mor02] sees processes adapted for reuse as one
decisive success factor. The type of industry is also recognized as a success factor by [Fra95]. This is
clearly covered by [Mor02] who found that the type of software under production influences reuse levels
considerably.

The programming language, on the other hand, does not seem to influence reuse levels a lot. This is an
opinion which is backed up by our observations that all modern (object-oriented) programming
languages supporting information hiding provide more or less the same levels of support for reusability.
However, older research has often been carried out with functional languages (as in [Zar95]) that are free
of side-effects and built upon a strict type system. This might be an additional indicator for enhanced
support for reuse from this family of languages since we are only aware of one substantial work that tried
to transfer this knowledge into the object-oriented domain [Str94]. We can conclude that functional
languages might be better suited for reuse, but since they are not in wide-spread use today this advantage
is quickly outweighed by the small number of reusable components available. In general, it is assumed
that the higher the degree of abstraction supported by a programming language the better its support for
reuse [Fra95]. This seems to be acknowledged by the fact that object-oriented programs are generally
much more reusable than equivalent programs in procedural or even in assembly languages. However,
the recent MDA approach [Bas03] still has to substantiate this claim for the even more abstract model
level.

While [Fra95] does not recognize repositories as an affecting factor, [Mor02] argue that although having
a repository is not sufficient for a successful reuse program, but an effective repository is nevertheless
usually required. This makes sense given the demand for high quality assets that is seen as affecting reuse
by [Fra95]. The latter paper also rules out CASE tools as an influencing factor, which is certainly
plausible as there were no CASE tools with tight reuse integration as recommended by [Ye01] at the
time of their survey (and hardly anything we would call a CASE tool from today's point of view). Both
publications agree again when they exclude an organisation's size and incentives (i.e. rewards) as factors
influencing reuse. The latter is covered by other findings [Fra96b] that developers are generally
motivated to do a good job and choose the option (i.e. reuse or no reuse) that is perceived as the more
promising. This might also explain why quality concerns about reusable assets were also ruled out. As
soon as no good reusable software is available developer build their systems from scratch and vice versa.
This is also closely related to the so-called not invented here (NIH) syndrome, which is often mentioned
in the literature (e.g. [Gri93], [Faf94]) and normally used as a generic term for various other human
factors for why developers might avoid reusing components (such as the steep learning curve needed to
understand acquired components or concerns about their quality). While [Fra95] did not perceive

SOFTWARE REUSE - 43

developer experience as important for reuse, [Des06] observe from their recent survey that “reuse works
better among novice than expert developers”. Potential legal problems and reuse measurement are also not
widely seen as influencing reuse levels. However, especially the former might change in the near future
due to the large amount of reusable open source software with many forms of open source licenses and
sometimes subtle legal issues to consider.

According to e.g. [Fra96b] many developers do not reuse because they do not even try. Any of the
reasons discussed in other parts of this section might influence this decision, but it is apparent that a
developer's motivation to reuse might decrease drastically once he has tried to reuse a few times and was
not able to find suitable items, an opinion which is also backed up by the well-known and astonishingly
simple observation by Prieto-Diaz [Pri87]: “To reuse a component you first have to find it”. [Fra96b]
presented the following chain of actions that underlines this presumption. This can be viewed as a list of
things that can fail during the process of reusing a component. This process is described as follows:

1. No Attempt to Reuse at All
2. Part does not exist
3. Part is not available
4. Part is not found
5. Part is not understood
6. Part is not valid
7. Part cannot be integrated

Understandably, the further a developer gets in this process the more time he probably will have invested
into finding and adapting a component and the more frustrated he is likely to become if his endeavours
finally fail. If this happens to a particular developer more than once or twice his motivation to try to
reuse in the future is likely to be significantly reduced.

In this subsection we have presented and discussed a large number of factors that might affect reuse or
that usually influence the attitude of developers towards reuse. Given the fact that most papers in this
area to date are either based on rather weak empirical numbers or no empirical observations at all, there
is still a lot of debate on which factors influence reuse levels and which not. In almost all cases one can
find papers that hold one view or the other. The only thing that there is general agreement about is the
fact that developers are likely to reuse only when they are aware of the possibilities and regard it as more
cost effective than building software form scratch. From this we believe it is safe to conclude that
developers will reuse software if there are tools available that effectively support them in finding and
integrating reusable assets. Or in other words, components will be reused only if the effort to integrate
them is smaller than the effort to develop the functionality from scratch [Pri87].

2.5.3 REUSE METRICS

The success of all new ideas and methods needed to be evaluated in practice and consequently the reuse
community has been thinking of metrics to measure the degree of reuse in a system. Frakes [Fra96]
defines a metric as "a quantitative indicator of an attribute of a thing" . According to this publication, a
model should also capture the relationship between particular metrics. Probably the most important
metric for a software asset in this context is its reusability if it is built from scratch (or for reuse) and the

44 - FOUNDATIONS

amount of reuse if it is built with reuse [Sam97]. While the latter is relatively simple to calculate by the
number of reused lines of code divided by the total lines of code (as long as we do not care about (re-)
used elements from frameworks etc.), reusability is much harder to assess. For white box reuse this
obviously seems to be related to source code complexity metrics such as Halstead's program volume
[Hal77] or McCabe's cyclomatic complexity [McC77] as suggested e.g. by [Cal91] who developed a
basic reusability model, but to date it is not clear what the relation is. The reusability of black box
components is probably mainly influenced by their interface and documentation, but again at the time
of writing there is a clear lack of understanding of how the interface of a reusable component would look
compared to a not so reusable component, for instance.

Figure 2.10 provides a schematic overview of the two metrics mentioned above and four other
conventional metrics related to reuse as proposed by [Fra96]:

Figure 2.10: Categorization of reuse metrics and according models from [Fra96].

Cost-benefit models cover the economic aspects of reuse including benefit analysis and productivity pay-
off. The maturity assessment metrics are about estimating the maturity of a reuse approach. Failure
mode analysis is commonly used to find elements that impede reuse in an organization and to compare
their severity. As already mentioned above, reusability assessment is used to estimate the likelihood that a
given artefact is reusable. Finally reuse library metrics cover the data that accrues when a reuse repository
is used.

At the end of the day, as mentioned above, reuse has to pay off, i.e. developing with reusable assets has to
be more effective then developing from scratch [Pri87]. “More effective” usually means cheaper, faster,
better (i.e. with less errors) or two or even all three of them. Gaffney and Durek [Gaf89] proposed a
simple economic model to make this tangible through the following equation:

C=1 1−RRb or C=1Rb−1

where C is the relative cost of developing a software product (i.e. C = 1 for a software component
developed completely from scratch). R denotes the proportion of reused code and b is the relative cost
(e.g. for searching and adapting) of the reused code portion. If C is smaller than 1 reuse is considered to

SOFTWARE REUSE - 45

be more cost effective than developing from scratch. This model is obviously also applicable to the
development time and the number of errors in a system and can be extended to

C=1−R1b E
n
R or C=bE

n
−1R1

when we incorporate the development effort E (typically > 1 since creating a reusable component is
expected to be more expensive) for a reusable component. n denotes the number of uses over which the
cost of the reusable component are amortized. [Mil02] have collected a number of results from the
literature that indicate the relative cost of developing an asset for reuse as being between 1.10 and 2.0
times as high as for the same asset not optimized for reusability.

Interestingly, at the time of writing there are still no such numbers for developing a system with reusable
components. This might be another hint that so far no sufficiently usable reuse systems have been
developed. Thus, as with most models in software engineering, the central problem with the reuse
metrics introduced in this section is still the difficulty of applying them in practice as predictive models.
Due to a lack of empirical data and sometimes even due to a lack of understanding and clear definitions
no values are so far available to use in these formulas.

2.6 COMPONENT-BASED REUSE

The idea of component-based reuse has been around for almost four decades and thus it might be
surprising that the literature contains very little information about how to apply it to software
development in practice. Today, however, virtually every software development project contains reuse in
one form or the other. Every high-level programming language is shipped with standard libraries that
offer important functionality for use out of the box. Mature frameworks exist for many purposes and
developers take them for granted in their everyday work. Interestingly, most standard libraries and
frameworks have become larger than even the most sophisticated software repositories developed even up
to 10 years ago. Even generic data types such as a List that were examples for sophisticated reuse about
ten years ago, can be parametrized to hold integers, floats or any other required type and are contained in
programming languages such as Java by default today. However, this was still of interest to the reuse
community about one and a half decade ago [Bas91]. Even “real reuse” occurs frequently in many
projects when developers use general web search engines or the new code search engines to find source
code snippets that could help them solve a problem. This so-called code scavenging [Kru92], however, is
discouraged by the anti-pattern book [Bro98], for example, since it is supposed to degrade the design of
a system in the long run. This begs the question whether there is a distinction between “good reuse” and
“bad reuse” and how the former should be incorporated into a development process without
compromising the final product?

Sommerville provides a first abstract summary of what a reuse-oriented and component-based
development process could look like in his well-known textbook. This is shown in the following figure:

46 - FOUNDATIONS

Figure 2.11: A simple component-based software development process as
proposed by [Som06].

This approach is based on classic sequential process models such as the V model. While the initial
requirements specification is no impacted by the component-based reuse approach the next step is. After
the requirements have been specified, in a reuse-oriented process the set of available components is
searched and the potentially most useful candidates are selected. Due to the complexity of software
components there will typically be no complete match and hence it makes sense to consider slight
adaptations of the requirements in the next step. As changed requirements can in turn have effects on the
candidate components the component search and analysis phase may need to be performed again. Once
an acceptable combination of requirements and available components has been found a system design is
created that includes the interfaces of the candidate components as well as any necessary glue code and
parts that have to be developed from scratch. Once the design is finished missing parts of the system can
be developed and integrated with the available components. Finally, system validation can be performed
in the usual way.

In addition to this general description, dedicated component-based development methods such as KobrA
[Atk02] offer a more idealistic approach, which takes effect later in the development process and is based
on the availability of a large repository of candidate components. KobrA proposes component search and
retrieval based on the specification of a component. As described earlier, KobrA specifies a component as
a black box and merely describes its externally visible features such as a syntactic and semantic interface
description. Based on the initial description KobrA includes an iterative negotiation process for adapting
the originally required interface with the one actually offered by the candidate component if no direct
match is achievable. The general idea is shown in the following sketch:

Figure 2.12: KobrA's reuse model [Atk02].

COMPONENT-BASED REUSE - 47

The desired specification, which is shown in the upper part of the figure, is taken from an arbitrary
component in KobrA's containment tree. Once a candidate that is “reasonably close” to this specification
has been found it is compared with the desired one. If there is no direct match (and this is assumed to be
the case most of the time) the negotiation process is initiated, i.e. either the desired specification, the
candidate's offered specification or both have to be changed. In practice this could also mean that the
creation of so-called glue code might become necessary, which could be a wrapper (or adapter [GoF95])
that is put between the desired specification and the candidate component. The following figure from
Ostertag [Ost92] shows the component selection process in the context of a reuse library.

Figure 2.13: Component reuse in the context of a component library as
envisaged by [Ost92].

Starting from the target specification a description (see section 3.1.1 for more detail) of the target in
terms of the reuse library must be derived before the retrieval process (section 3.1.2) can be initialized
and candidate components can be retrieved from the library. The retrieved candidates typically do not
directly match and thus have to be adapted to yield the target component that fulfils the target
specification. Ostertag also incorporated a feedback cycle which includes the newly created target adapter
in the reuse library for future use.

In principle such a specification-driven component selection process can be included in almost every
development process that includes a mechanism for dividing a system into parts (or components or units
etc.). However, the literature contains very little information on this topic to date and especially on how
to deal with the effects that candidates might have if they do not exactly match. Currently, we are only
aware of the work of Crnkovic et al. [Crn06] who elaborated on the idea of changing requirements and
design according to the candidate components available. They proposed the following extension of a
waterfall-like development process with regard to component reuse which shows the principle ideas from
figure and figure 2.12 in more detail:

48 - FOUNDATIONS

Figure 2.14: Waterfall-based reuse model [Crn06].

Because of the impact that existing components might have on the requirements the authors also
advocate the consideration of reusable components already in analysis and design phases. The whole
system development process is a constant trade-off between whether existing components are close
enough to the requirements to be integrated economically. However, no guidelines are provided that
explain how components can best be searched, and it should be clear that a pure specification-based
retrieval as advocated by KobrA is not sufficient in this context. Rather, it might be desirable to have a
more text-oriented approach that is able to find good candidates for a given requirement and to derive a
kind of an “averaged” design from them.

3 COMPONENT RETRIEVAL

 SO FAR

Good artists copy, great artists steal.
-- Pablo Picasso

From the overview of software reuse in the previous chapter it should be clear that neither component
retrieval nor software reuse are new ideas and most of the underlying concepts are rather well
understood. This chapter is intended to give an overview of what has been done in the area of
component retrieval to date and to introduce our understanding of semantic component retrieval. In
principle, component retrieval requires three prerequisites, namely a component repository where
software assets can be stored, a representation format which is able to describe the assets concisely and a
retrieval mechanism which is able to discover assets in the repository. These have been well characterized
in the literature. The first problem is the so-called software repository problem [Sea99] which is about
effectively collecting and storing a large number of software assets in a repository. The next problem has
been called the representation problem by [Fra94] and deals with the issue of how best to represent
software assets in a component repository. Finally, there is the component retrieval problem identified by
[Mil98] which deals with the issue of finding the most suitable component retrieval techniques.

Previous researchers have proposed a variety of solutions for all three problems, but because of technical
limitations none of them was particularly convincing in practice. Very recently, however, several
fundamental technology developments have occurred which have the potential to radically improve this
situation. These include the emergence of faster computers and larger storage devices, the wide
availability of broadband Internet connections and the maturing of search-related open source tools such
as the Lucene search engine2 and the accompanying web crawler, Nutch. As we shall show in this thesis,
these have opened the opportunity to create large-scale software repositories with improved search
precision. Before we explain our approach for applying these technologies to support improved semantic
search in chapter 4, in the remainder of this chapter we summarize the current state of the art in
component retrieval.

2lucene.apache.org

50 - COMPONENT RETRIEVAL SO FAR

3.1 SOFTWARE COMPONENT REPOSITORIES

As mentioned before, until recently, reuse repository systems suffered from three main problems, namely
the repository problem, the representation problem and the retrieval problem. Typically, a search request
to a (component) search engine starts with the user formulating a query that describes what he/she is
looking for. The engine then transforms the query to its internal representation and tries to find
“matching” results. In order to be included in the result set a candidate component has to fulfil the so-
called matching criterion. Ideally, a search engine automatically ranks the results according to the
closeness of the match, in other words it delivers the better matches first. However, fulfilling the
matching criterion of the engine does not necessarily mean that a candidate component also fulfils the
relevance criterion of the user [Mil98]. This is largely influenced by the latent conceptual gap [Lar05]
between the concept the user has in mind and the actual software object as well as by the quality of the
representation method and the retrieval algorithm [Fis91]. Thus, before this search process can be
successfully applied, there clearly has to be a software repository that must be filled with an abstract
representation of a set of components. Obviously, all three problems mentioned are closely linked
together and a clever solution for the representation problem is a prerequisite for satisfactorily solving the
repository problem and the retrieval problem as well.

3.1.1 COMPONENT REPRESENTATION METHODS

How to logically store software assets in a library is an aspect of software reuse that has often been
neglected in the literature despite the fact that a repository’s component representation format
determines the possible ways in which it can be searched. Even Mili et al., who presented a highly
influential survey on “storage and retrieval of reusable assets” [Mil98], admit at the beginning of their
article that there is little that can be said about the logical storage structure used in software libraries
since the most commonly used structure is “no structure at all”. As it is practically impossible to define an
isomorphic mapping from software to its functionality it makes sense to simply store software assets “side
by side” (using Mili et al.'s terminology) in some kind of database. An obvious extension of this approach
is the storage of additional information (i.e. metadata) about a component that should ideally be
extracted by a tool without human interaction. Information about the programming language or
signatures of a component's interface are good examples of metadata that would allow more specific and
faster searches in the collected data pool.

In their survey Frakes and Pole [Fra94] identified four basic representation methods. These are briefly
explained in the following. Enumerated classification originates from library science and separates an area
into mutually exclusive, typically hierarchical classes to create a taxonomy. Ontologies in the semantic
web community [Ber01] might be considered a modern form of this approach. Typical problems with
such an approach are the completeness of the taxonomy and the associated complexity that makes it
difficult for humans to handle. Take for example the United Nations Standard Products and Services
Code (UNSPSC), a common taxonomy targeting e-commerce products and services. It contains more
than 18,000 entries and therefore far more than the prototype component repositories in the 1990s (and
even some of today). Faceted classification [Pri91] and the slightly more general attribute value
classification approaches are very similar and use a number of facets (resp. attributes) to describe an asset.

SOFTWARE COMPONENT REPOSITORIES - 51

Each facet comprises a finite set of terms that can be chosen to describe the asset (e.g the programming
language could be a facet). Each individual component has one of the allowable facet values for each
distinct facet. In contrast, an attribute – such as the name of a component – can contain any arbitrary
value. Finally, free text indexing approaches index textual information from an asset, i.e. the component
or its documentation. It is surprising that most approaches in the past tried to use these methods
separately form each other since today's web search engines, for instance, show that they can be easily
and effectively used together. Thus, we believe it makes a lot of sense to use these approaches together to
support searches on components. In fact, one of the research contributions of this thesis can be
interpreted as an attempt to combine them in a optimal way, as described in chapter 5.

3.1.2 THE REPOSITORY PROBLEM

Relational database management systems have been around for quite a long time and are naturally suited
for supporting the faceted and attribute value classification. However, only recent open source search
engines such as Lucene are specialized on free text indexing and searching. Obviously, a combination of
these both approaches would be useful, although, this is a non-trivial undertaking since a database
normally lacks free text search capabilities whereas Lucene lacks relational data storage capabilities and
thus up until now no solution has been published for this challenge. We will present possible solutions
to this problem later in this thesis. Luckily, today's (software and) hardware systems are powerful enough
to store large component indices of ten million or more components and carry out searches on them
within less than five seconds as we will demonstrate later in this thesis. Thus, the repository problem in
the sense of storing and quickly querying large component collections has been largely solved by the
storage and processing capacities of modern computers.

Until recently, this was only one a minor problem anyway because there were not enough reusable assets
to present a serious storage or searching challenge. Nevertheless, the question for the ideal size of a
component repository has been another controversially discussed issue that has still not been resolved to
date. Intuitively, it seems obvious that the larger a repository, the more useful it is for its users. However,
some publications claim there is an upper limit on the ideal size although the goal of researchers has
always been to create the largest possible component repositories. During the 1990s articles were
published claiming the optimal size for a repository is somewhere between 30 and 250 [Pou99b]
components and larger collections would unavoidably lead to degenerated content (e.g. out of date
versions and descriptions etc.) in the repository. That opinion is interesting from today's point of view
and can only be understood in the context of the relatively weak automated indexing systems that existed
at the time. As a result, practical repositories had to be classified by domain experts as for example
recommended by [Cal91]. Indeed, most successful implementations of component repositories at that
time such as [Len87] or [Pri91] were around this size and can be regarded as manually built, centralized
systems. Ironically, 30 or even 250 components would have been easy to browse manually or with the
support of a simple keyword matcher and thus intensive research on retrieval mechanisms would have
been superfluous. Perhaps this is the rationale for the claim in [Pou99b] that the retrieval problem could
be seen as having been solved?

However, other researchers realized that the ever growing amount of reusable material on the early
World-Wide Web provided an opportunity to automatically populate component repositories and tried

52 - COMPONENT RETRIEVAL SO FAR

to develop search engines that automatically crawled for content on the web. The first attempt was
initiated by the Software Institute (SEI) that developed the so-called Agora [Sea98] system in the late
1990s (see section 8.1.1 for a more detailed description). The idea was to avoid the huge upfront
investment associated with centralized and manually filled repositories by filling them with components
found by crawling the web. However, this attempt was unsuccessful due to a lack of hardware resources
available for crawling and component analysis at that time. However, the situation has become even
“worse” since large companies sometimes have hundreds of thousands of files in their version control
repositories, but are typically not even able to perform simple text based searches over these resources let
alone perform sophisticated semantic searches. With the advent of the open source movement a need for
component search engines similar to common web search engines arose. And finally the standard
libraries of common programming languages (such as Java) grew to several thousand components, not
mentioning the large number of supporting frameworks containing tens of thousands of classes. This
number can barely be handled by catalogue-based approaches as evidenced by the early Yahoo web
portal. Such a large number of resources can only be managed by fully automated crawling technology
and a sophisticated search solution as promoted by Google for about ten years now. Since the number of
components in standard libraries and frameworks is already far beyond the above mentioned threshold
for a centralized component collection, it is natural that there are already efforts under way to support
developers in this “API jungle” in the form of “recommendation tools”, e.g. [Man05] or [McC07].
However, the heart of our problem is the large amount of open source software available on the Internet
and in version control repositories of large companies. Although a large number of almost all kinds of
systems has already been developed and published somewhere, it was virtually impossible to find a
component that matched a specified design when the research for this thesis was started in 2004. The
component repository systems of that time were neither able to index nor search such a massive amount
of files. The recent commercial interest in code and component search engines shows that there has been
(and still is) a growing need for better searches over components as well as for larger and more
sophisticated component repositories.

3.1.3 USABILITY

Another important factor in the acceptance of a reuse system clearly is its usability [YeF05] and whether
a developer has the feeling of receiving useful support or being bothered by a complicated reuse system
that distracts him from his work [Fra95]. However, advances in hardware as well as the rise of platform-
independent, integrated development frameworks such as Eclipse as quasi standards have opened up the
prospect of proactive recommendation systems that constantly issue queries to component repositories in
the background transparently for the developer. This contrasts with the traditional reactive approach
where the developer has to trigger a search manually and consciously. The first examples of this kind of
system were simple and context-free like Owen's [Owe86] “Did You Know system” (and not related to
software reuse), descendants of which are integrated in many end-user products today. However, since
the relevance of the delivered information in most cases was questionable context-sensitive systems were
developed. Ye popularized a proactive component retrieval approach in his Ph.D. thesis [Ye01] where he
developed CodeBroker, a recommendation system integrated in Emacs, a popular editor for the Linux
operating system. CodeBroker suggests components based on names and comments extracted from the
code a developer is typing. However, this system requires so-called “active commenting” in order to

SOFTWARE COMPONENT REPOSITORIES - 53

create meaningful queries. McCarey et al. [McC07] recently presented a similar system called RASCAL
for the Eclipse environment which aims to recommend useful method calls to a developer. More details
about these two systems can be found in the section on related work. Although there has not been much
discussion on this topic there seems to be a general consensus in the reuse community that a modern
reuse system should be proactive and generate queries without any direction from the developer.

3.2 COMPONENT RETRIEVAL TECHNIQUES

Over the decades many different techniques have been proposed for retrieving assets from a software
repository. Mili et al. proposed a classification of retrieval methods in [Mil98] which later made its way
into the comprehensive reuse book [Mil02] by the same authors. According to this classification, we
introduce the component retrieval techniques in order of increasing technological sophistication. This is
to a large degree, identical to their chronological order of appearance. The given classification is not the
only one in this area, and although it is not perfect from today's point of view it is by far the most
comprehensive and is intended to provide a framework for discussion in this thesis. Additionally, to fully
understand the ideas discussed in this thesis (and in this chapter) a number of general concepts from
information retrieval and related disciplines are required.

3.2.1 INFORMATION RETRIEVAL

A large part of this thesis is about finding information that matches a user's need. Thus, it is necessary to
introduce some foundations of information retrieval which is defined by Manning et al. [Man07] as
follows:

“Information retrieval (IR) is finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually on local computer servers
or on the internet).”

It is interesting to mention that IR explicitly focuses on large collections and thus it is questionable
whether the small component repositories of the 1990s discussed above deserve to be viewed as
“component retrieval systems”. Information retrieval approaches usually index the terms found in a set of
documents in a so-called term-document-matrix, i.e. they store the number of occurrences of each term
per document. A nice overview of this topic is e.g. given by [Bae99]. A single document is represented as
a vector, the so-called term-document-vector [Sal75], with one dimension per term (going out from all
documents). Two documents can be compared with each other using vector similarity measures such as
the cosine measure. In their simplest form the approaches merely use a boolean value for each term to
indicate whether it is present in a given document or not. More sophisticated approaches store the
number of occurrences for each term per document (so-called term frequency) or even multiply this
value with the inverse number of occurrences over all documents (which is called inverse document
frequency). This yields the so-called TFIDF (term frequency inverse document frequency).

These approaches purely operate on textual information and try to “interpret” their meaning with
heuristics to deliver the information that a human would expect to receive for a given query. However,
they are not able to recognize semantic relations between terms as recognized by a human. Furthermore,

54 - COMPONENT RETRIEVAL SO FAR

problems usually arise when variant spellings, typos, synonyms (different words with the same meaning)
or homonyms (identical word with different meanings) come into play. Various solutions have been
proposed to cope with these problems, the use of stemming algorithms [Por06] to reduce words to their
stem or the use of thesauri such as WordNet [Mil90] are some examples. Even techniques that are
supposed to recognize semantic relations in free text have been developed [Dee90]. To compare retrieval
techniques in IR, the concepts of recall and precision (see next paragraph) are typically used on a given
and well-known reference collection. Approaches available today are able to achieve good results on
collections of up to a few hundred thousand documents, but run into problems, such as a lack of
precision or ever growing performance challenges, when the collections grow larger. As a result, it is
difficult to implement the above approaches efficiently for web search engines for example, which often
have to cope with billions of documents. We will discuss this issue more fully in the next subsection.

Recall and precision are accepted as the standard measures for the efficiency of retrieval mechanisms.
Recall is defined as the proportion of all relevant documents that have been retrieved from a collection
according for a given query and precision is the proportion of all retrieved documents that are relevant to
that query. This definition makes one important assumption, namely, that the proportion of relevant
documents in the collection is known a priori, an assumption which is unfortunately no longer valid for
queries in web search engines [Lew06]. A formal description of the concepts is provided by [Bae99] for
example. If R is the set of relevant documents in the collection of documents that should be queried,
then |R| is the number of documents in this set. Likewise if a retrieval system generates a set A as the
answer to a user's request, then |A| is the number of documents in A. RA is defined as the intersection of
R and A - i.e. the intersection of all documents that are relevant and returned from the system and |RA|
is the size of the intersection. The following figure, adapted from [Bae99], clarifies this graphically:

Figure 3.1: Illustration of recall and precision [Hum03].

Based on these definitions, recall can be written as |RA| / |R| and precision as |RA| / |A|. Typically the
user does not receive all documents that are considered relevant in one fell swoop, but in an iterative
manner, one after the other, ranked by the degree of relevance. Hence recall and precision depend on
how many of the most relevant documents are considered in their calculation. To depict the retrieval
efficiency of an algorithm graphically so-called precision versus recall figures can be used.

COMPONENT RETRIEVAL TECHNIQUES - 55

Figure 3.2: Recall versus precision curves comparing three different
retrieval algorithms [Hum03].

The recall on the x axis is typically shown for eleven standard recall levels (0%, 10%, 20%, ..., 100%,
interpolated if necessary) versus the precision on the y axis. Thus, the larger the area below the curve the
better the retrieval algorithm. More details can again be found in [Bae99], for instance.

3.2.2 FOUNDATIONS OF SEARCH ENGINES

Since we will later rely heavily on search engines for component discovery we have to introduce some
fundamentals of how search engines work. Before the advent of the World Wide Web search engines
were not widely known. A few such systems existed in public libraries where they helped users to search
for books according to keywords etc., but in general these systems developed by the information retrieval
community did not make it into public awareness. The web, however, changed this situation
fundamentally. Search and retrieval became vital to navigate around the large amount of unstructured
data on the web. The first search engines (such as early Yahoo) relied on the catalogue principle and tried
to manually categorize websites into a hierarchically organized collection. However, with the rapid
growth of the web, this approach quickly lost ground against the “brute-force” crawl approach that
Google and others have been using since the late 1990s. The basis for such an approach is, of course, an
index of webpages, but a term-document-matrix as described above would require far too much
resources. Thus, (web) search engines today rely on a so-called inverse index. In this approach it is not a
list of terms for each document that is administered but rather a list of pointers to the documents in
which each term appears. Although this principle does not allow sophisticated document comparisons
like the application of the cosine measure, it has some significant advantages. The most important one is
that for each potential search term there is immediate access to a list of documents containing it.
Furthermore, this approach requires less data to be stored and can easily be distributed over multiple
machines.

However, this idea was not very new and was not the reason for Google's rapid growth in popularity. It
was the famous Pagerank algorithm [Pag98] that was responsible for Google's initial success. The
motivation for Pagerank was to deliver the most important (and presumably the most relevant) websites
for a query first. And the idea for a measure of popularity of websites in Pagerank is as simple as it is
brilliant – just count the number of links that point to a site. The more pages with a high Pagerank
pointing to a site the higher the site will be ranked. The calculation of “pageranks” for a considerable
amount of websites is an iterative process, of course, but the values typically converge after three or four

56 - COMPONENT RETRIEVAL SO FAR

iterations. Together with a few more tricks such as giving more weight to pages that contain the search
keywords in the URL, title or headings, Pagerank was the foundation for Google's success. The Pagerank
algorithm has already been adapted for use with software components by [Ino05] and a more detailed
description of the calculation can be found in section 8.3.

As the main public search engines do not readily provide information about such things as their index
size, there are few scientific publications on this topic and many of the estimates available on the web are
only rough guesses. However, for the purpose of this thesis it is possible to get a coarse impression of the
size and the capabilities of the main web search engines. As of 2005, it is estimated (or speculated) on
websites about search engines3 that the major players like Google and Yahoo are able to index about 200
million pages per day which is about 1 to 2 percent of their estimated total index of around 10 to 20
billion pages. Assuming that the time for re-indexing is uniformly distributed for all pages this would
mean that a page is re-indexed every 50 to 100 days. This is, of course, a rather long duration that would
quickly lead to outdated indexes for pages that are frequently changed. This problem is recognized by the
search engines as well, which is why they try to index pages that change often (e.g. websites of
newspapers) more frequently. But even for the big players in the search business it is not realistic to
create an index on a daily basis. This is an idea that Grub4 tried to implement around the year 2003. In
the tradition of SETI@home5 that distributes the analysis of radio telescope data to volunteers that
donate spare cycles of their computers, Grub distributed the indexing of the web to the computers of
volunteers. However, the project had to be cancelled due to lacking resources.

3.2.3 COMPONENT RETRIEVAL APPROACHES

As stated by Mili et al., a retrieval process typically involves two criteria because a candidate component
can fulfil the matching condition of one specific retrieval technique, but may not necessarily match a
user’s relevance criterion. For example, a keyword-based technique might retrieve 20 components
matching the term “customer” but only 2 of them might actually fulfil the user’s requirements for a
customer object (perhaps the other 18 only have a reference to a customer object etc.) and thereby fulfil
his relevance criterion. The authors divided the existing component retrieval techniques into the six
classes shown below. We briefly summarize these techniques and the results of their assessment at this
point and provide a more detailed overview of the retrieval methods later in this section:

1. Information retrieval methods
2. Descriptive methods
3. Operational semantics methods
4. Denotational semantics methods
5. Structural methods
6. Topological methods6

3 such as searchenginewatch.com
4 grub.org
5 setiathome.ssl.berkeley.edu
6 From today's point of view we prefer to view this as an approach for the ranking of search results.

COMPONENT RETRIEVAL TECHNIQUES - 57

Since component retrieval is a form of information retrieval it makes sense to reuse methods from the
latter area to perform simple textual analyses on software assets. Descriptive methods go one step further
and rely on an additional textual description of the asset like a set of keyword or facet [Pri91] definitions.
Operational semantic methods rely on the execution or so-called sampling [Pod93] of the assets.
Denotational semantics methods use signatures (see e.g. [Zar95] and [Rit89]) or specifications [Zar97]
of assets while topological methods try to minimize the distance between the requirements and available
assets based on a syntactic or semantic measure. Today, we would characterize these methods as a way to
rank the results of a query. Finally, structural methods do not deal with the code of the assets directly,
but with program patterns or designs. Overlap between these classifications can appear at various places,
e.g. between (3), (4) and (6) as the behaviour sampling of components typically needs a specific signature
or structure to work on. The authors provide the following table for each of the assessed groups
according to a scheme with five discrete rates ranging from very low (VL), low (L) through medium (M)
to high (H) and very high (VH). Unknown rates are denoted with (U).

Recall and precision have already been introduced as the two most important measures from information
retrieval. The coverage ratio describes the average number of assets visited per query over the total
number of assets in the library. Time complexity refers to an O(N) measure for computation steps per
query. In other words, low time complexity stands for a linear correlation, medium for polynomial and
so on. Logical complexity refers to the power of the retrieval method in terms of predicates. In this
context, very high means that second order predicates are possible. Finally, the meaning of automation
potential should be obvious. The meaning of investment and operation cost should also be obvious,
while pervasiveness reflects how widely a method is used in research and practice and the state of
development ranges from a speculative idea to a fully supported industrial product. Again, the difficulty
of use should be obvious while transparency describes the amount of knowledge a user of a method must
have about the internals of the retrieval algorithm.

Method Technical Managerial Human

Pr
ec

isi
on

R
ec

al
l

C
ov

er
ag

e
R

at
io

T
im

e
co

m
pl

ia
nc

e

Lo
gi

ca
l c

om
pl

ia
nc

e

Au
to

m
at

io
n

Po
te

nt
ia

l

In
ve

nt
or

y
co

st

O
pe

ra
tio

n
co

st

Pe
rv

as
iv

en
es

s
D

ev
el

op
m

en
t s

ta
te

D
iff

ic
ul

ty
 o

f u
se

T
ra

ns
pa

re
nc

y

Information Retrieval M H L L M H VL L H H M H
Descriptive H H VH VL L VH H H H H VL VH
Operational SemanticsVH H H M M VH L M M M L VH
Denotational SemanticsVH H H VH VH M H H L L M M
Topological U U VH H M H VH VH L L VH VH
Structural VH VH VH VL L VH L L L L VL VL

Table 3.1: Assessment of retrieval methods according to [Mil98].

58 - COMPONENT RETRIEVAL SO FAR

The authors conclude their survey with the following sobering statement:

“Despite several years of active research, the storage and retrieval of software assets in general and
programs in particular remains an open problem. While there is a wide range of solutions to this
problem (...) no solution offers the right combination of efficiency, accuracy, user- friendliness and
generality to afford us a breakthrough in the practice of software reuse.”

In other words, where a technique offers sufficient precision it is usually too time consuming or too
difficult to use or the other way round (i.e. easy to use but too many false positives or too few real
positives at all). Hence, we believe a practical component retrieval engine requires a carefully chosen
combination of various techniques from the above list (see section 5.2). To enable the reader to better
understand the hybrid approach we propose later, we explain the existing techniques in the following
subsections in more detail.

3.2.4 INFORMATION RETRIEVAL METHODS

The field of information retrieval (IR, [Bae99]) is much more mature and better understood than the
field of software component retrieval. For example, the vector space model explained above, which is one
of the most seminal retrieval techniques in this field, was originally proposed in 1975 by [Sal75]. The
indexing process for such a system can be fully automated and enables the system to easily retrieve the
most relevant documents for a query (which is represented as a vector as well) by calculating the cosine
between two vectors. As stated above, since information retrieval is about finding information in libraries
and software reuse is about finding software in software libraries it was obvious that ideas from the
former could be helpful in the latter field. Moreover, it is clear that information retrieval methods can
work by performing some kind of textual analysis of the text associated with software assets. These
natural language elements can come from comments in source units themselves or text in analysis
documents and user manuals. The latter, however, are not well suited for software retrieval since they are
a relatively imprecise description of the source code. As [Mil98] ironically states, "if traditional
information retrieval methods were adequate in dealing with software assets, there would be little incentive to
investigate other methods". Although not optimal for software reuse, research has shown it is indeed
possible to regard software components or related documentation simply as documents containing
information, even though this has serious drawbacks for precision and recall. This results from the fact
that IR methods only extract textual information from the source code and use neither the syntactical
nor the semantic information contained in it.

Nevertheless, IR methods have widely been used in various systems in the past due to their simplicity
and the large degree of automation that is possible during the indexing process. Frakes and Nejmeh
[Fra87] for instance presented a system that relied on extracting natural language information from
header comments in C files. An important prerequisite for this method is of course the adherence to a
coding standard and the user's familiarity with the behaviour of the retrieval system. More examples are
given in [Mil98] where even a hypertext-based system was proposed by [Pou95] is reviewed. Two more
problems arise in the context of text analysis – namely the synonymy and polysemy problems, the former
arising from the fact that different words can have the same meaning while the latter describes the fact
that one word can have different meanings. The so-called Latent Semantic Analysis (LSA, [Dee90]) tries

COMPONENT RETRIEVAL TECHNIQUES - 59

to extract concepts rather than just terms to damp these effects. This approach was used for instance in
Ye's CodeBroker system [Ye01], but on a fairly small repository of a few hundred components. Although
informal evaluations have provided good results, we do not believe the system would scale up since LSA
is computationally very expensive and attaining an acceptable level of precision in the context of
component retrieval requires so-called “active commenting”, i.e. additional information that a developer
has to provide. A more detailed discussion of Ye's system can be found in section 8.2.1.

3.2.5 DESCRIPTIVE METHODS

Similar to information retrieval methods, descriptive methods do not use the actual source code of a
component, but additional metadata, i.e. typically a structured list of descriptive keywords. Mili et al.
[Mil98] denote such descriptive methods as a subset of the information retrieval methods, but they give
them their own category due to the high use of this approach in practice and literature. It is apparent
that this approach is simpler to implement than the IR methods before since the component descriptions
and searches typically only consist of terms from a controlled vocabulary. However, the indexing of
components involves much more effort since this task is often difficult to automate and hence normally
has to be performed by a human administrator. This implies a kind of natural upper bound for a
repository using a descriptive method as it is not practicable to index millions of components in this way.
Moreover, the administrator and the users of the repository have to have the same background or at least
the same understanding of the vocabulary used to describe the components. In the best case this can
simplify the retrieval of components, but in the worst case, new users have to become familiar with the
description scheme before they are able to use the repository. Interestingly, websites such as del.icio.us
have recently gained much attention with an approach called tagging where users can assign arbitrary
keywords to websites and classify them therewith. Although, the vocabulary is not controlled this
approach seems to work quite well as it can be used without learning the vocabulary in advance.
However, a first project using Web 2.0 tagging for component retrieval reported rather disappointing
results [Van06] compared with keyword-based retrieval.

The work of Ruben Prieto-Diaz, called faceted classification [Pri91], is a well-known example of the use
of a descriptive approach. It was inspired from library science where systems like the Dewey Decimal
[Cha94] provide an enumeration scheme with a finite list of predefined classes. This idea is very similar
to the concept of ontologies [Ber01] nowadays proposed by the Semantic Web community. However,
Prieto-Diaz argues that it is not always easy to select the class that describes a component best and hence
relies on a faceted scheme of the kind used in library science since the late 1930. The term “faceted” in
this context simply means that there is more than one way of classifying a component, for instance, as in
Prieto-Diaz's example where a component might be described by several facets like design, program,
structure, system etc. Other more practical facets might be the underlying component technology or the
domain and so on. Such facets enable a much more concrete description of components and in Prieto-
Diaz's system they are supported by a semantic network that defines a distance measure within a facet to
enable (the most) similar components to be “recommended” when no direct match is possible.

60 - COMPONENT RETRIEVAL SO FAR

3.2.6 DENOTATIONAL SEMANTICS METHODS

Mili et al. [Mil98] subsume both signature-based and formal specification-based retrieval methods under
the notion of denotational methods. However, they had to accept that there is some debate on whether
or not this is appropriate and argue that the former is only a subset of the latter. The denotational
methods form the group of retrieval methods which is most appropriate for a design-based retrieval of
software components as proposed for example by [Atk02]. Since the description of a software
component typically consists of a syntactical description of its interface and a functional contract
specification (cf. [Mey92]) it is natural to use these features to store component descriptions in a
repository. However, this approach carries one inherent problem, namely that it is very difficult to
formulate formal descriptions of components for queries and that an automated examination of the
adherence to a formal specification is not possible due to the halting problem. Since this topic is closely
related with theorem proving it is not surprising that denotational methods are most suitable for
functional programming languages.

Signature matching, on the contrary, was considered the key to reuse by Zaremski and Wing in their
eponymous paper [Zar93] from 1993. It is in fact an important prerequisite for both specification
matching as well as for operational semantics methods, which we will discuss in the next subsection.
Rittri was the first to suggest the use of signature matching for component retrieval in [Rit89]. As the
name implies, signature matching originally focused on the signatures of functions. The author used the
functional programming language ML for his research. The underlying idea of signature matching is to
scan a component library for functions that have the same signature as the user's query, but to fully
ignore function names. An exact match is achieved when the input parameter types and the return type
of two functions match exactly without observance of the parameter names. [Zar95] defined a number of
relaxed matches like permuted parameter order or even matches containing sub- or supertypes. However,
to our knowledge only one publication [Str94] has tried to transfer these findings to an object-oriented
language (Ada). This was not a simple undertaking since there is no sound type theory of he kind found
in functional languages that would allow the definition of type isomorphisms.

Over the years many well-known approaches for the matching of formal specifications have been
proposed. For example, [Per93] proposed a system containing predicates for functional features and
interface descriptions while [Moi92] use algebraic specifications to describe the signatures and axioms of
reusable components. On the other hand, [Jen95] introduced a system based on the formal specification
of components and queries while Zaremski and Wing complemented their signature matching approach
with work on specification matching [Zar97] where they use pre- and postconditions to describe
components. However, the theorem proving required for assessing whether a component matches a
query quickly became a bottleneck for practical implementations and the authors consequently tried to
minimize the effort involved. [Pen99] proposed domain specific knowledge bases as a solution while
[Fis91] introduced a stepwise filtering process to limit the amount of processing required. However,
from today's vantage point these approaches all have limited usability since they require a human to
create the specifications for each of the components in a library, a task certainly not feasible on today's
libraries with millions of components.

COMPONENT RETRIEVAL TECHNIQUES - 61

3.2.7 OPERATIONAL METHODS

As the name indicates, this approach is based on the simple observation that software components have a
dimension that other (i.e. typically purely textual) retrieval artefacts do not share: they can be executed
and their reaction to given input stimuli can be evaluated. In other words, the component's behaviour is
directly observable and does not have to be hidden behind some abstract description. The underlying
idea is quite simple, the signature of the desired component is entered into the retrieval system together
with some input/output pairs to be used for assessing the components. Each component in the
repository is executed with the given input values and the output is compared with the expected output
that has been fed into the system. Although appealing in theory, the approach has some practical
limitations. First and foremost, components must be executable and although this sounds trivial, it
sometimes is a serious problem to execute an individual class of a large project (such as Eclipse7).
Moreover, side effects, non-termination, abstract data types and additional files that might be necessary
to process results can cause further severe problems. Altogether, operational methods have essentially
only been considered for functional languages where a sound type theory is available and signature
matching [Zar95] is much better understood.

However, the first operational retrieval method, called Behaviour Sampling, was proposed by Podgurski
and Pierce [Pod93] for simple C functions (i.e. functions that are free of side effects and only use simple
variables) in the early 1990s. The main focus of their work was to estimate how precisely the approach
worked for small sets of input samples, and four random samples were found to be sufficient in most of
their experiments. Twelve random samples are considered to be the absolute maximum necessary for
receiving unique results by the authors. However, as [Mye02] states, for software testing random value
selection is a rather ineffective way of sampling the behaviour of components. Furthermore, the authors
already realized that abstract data types must be broken down into their primitive parameters, a strategy
that is known from algebraic specification.

Hall [Hal93] used user-selected samples (what we would today call test cases) to generalize the above
approach and was able to retrieve not only simple components, but also composite components
composed from other elements in the library. Complex data types could be retrieved through the use of
constructors that merely contained simple variables. However his system neither supported
polymorphism nor the isomorphism of signatures and is based on a functional language (Lisp). [Cho96]
used finite state automata to model the behaviour of object abstractions, an approach that required a lot
of manual effort since it could not be automated. Moreover, the use of internal attributes violates the
information hiding principle and made it necessary to anticipate the implementation of a desired
component in a query. [Atk95] defined a theoretical framework in Object Z that enabled a partial
ordering of components in a lattice structure that in turn enabled component retrieval based on the most
similar behaviour if no exact match could be found. However, no practical implementation of this idea
was published at the time of writing.

7eclipse.org

62 - COMPONENT RETRIEVAL SO FAR

3.2.8 STRUCTURAL METHODS

The retrieval methods introduced so far all try to approximate the functionality of a component in some
way. Thus, the functional properties of a component are the matching criterion. The few techniques that
fall into this category, however, have chosen a different way, namely similarity of the internal structure of
a candidate to the component under consideration. [Mil98] argue that this technique is best suited to
situations in which components have to be modified anyway after retrieval. In such a case it makes sense
to look for a component whose structure is as close as possible to the structure of the desired component
(look-alike instead of act-alike). Although this is the case with the other approaches as well, structural
methods are supposed to be more suited in this regard. Mili et al. further argue that structural methods
are especially well suited for white box reuse where the internal structure of components is available.

However, structural approaches have rarely made any impact on the practice of software reuse. Mili et al.
have obviously also struggled to find meaningful examples for this category. There are only two main
examples of attempts to apply these approaches in practice. One is the idea of programming clichés
introduced by Rich et al. [Ric78] in the context of their Programmer's Apprentice project. Such clichés
are somewhat similar to today's well-known Gang of Four design patterns [GoF95] although they are on
the smaller level of idioms according to the pattern classification of Buschmann et al. [Bus96]. Structure
is the basic selection criterion for clichés since they can be instantiated for a range of varying functions.
The approach of [Pau94] is the only true structure-based retrieval approach published to date. Since
structural matching requires the expected structure of the component under development to be defined,
and this would normally be equal to programming the component, the authors define a higher-level
language which is supposed to specify queries in a more abstract way. However, the authors see the main
use of their approach in the context of program understanding and re-engineering which is perhaps why
it would be difficult apply in a reuse context where one would have to anticipate the internal structure of
the desired component.

3.2.9 TOPOLOGICAL METHODS OR RANKING APPROACHES

Topological methods rely on an underlying distance measure to find the component closest to a query.
Consequently, it is obviously possible to not only deliver the closest result, but perhaps the ten closest
results ordered according in the same way that WWW search engines select their search result today.
Hence we prefer to view topological methods as essentially a tool that ranks the results of a query. In
other words, topological methods must be built on top of at least one retrieval technique from the
categories above that can be measured in some concrete way. For some, such as the information retrieval
approaches, this appears to be straightforward since the frequency of terms could be counted, for
example. But even for the signature of a component it is possible to define a distance measure such as the
number of steps necessary to transform one signature into another (cf. [Kra03]). Unfortunately, this
would be very expensive to implement in a search engine since, in principle, the distance from each
query to each entry in an index would have to be calculated in each search.

Girardi and Ibrahim [Gir94] developed a system which is often misinterpreted as a way of extracting
linguistic, syntactic and semantic information from reusable artefacts and their documentation in order
to deliver components that are as close as possible to user requests. However, they merely experimented

COMPONENT RETRIEVAL TECHNIQUES - 63

with the extraction of syntax and semantics from textual information and not from source or binary
artefacts. Thus, they applied a purely textual information retrieval approach where they calculated a
distance between query and candidates. The authors evaluated their system on an index composed of a
few hundred Unix commands. For their natural language queries they reported an average recall of about
0.99 and an average precision of nearly 0.90 based on twenty queries using the index created from the
“man pages” of the Unix commands.

Mili et al. list a few other approaches that operate on different underlying distance metrics, but adhere to
the same principle. The term “ranking”, however, is not used in this publication. The idea of ranking the
results of component searches was, to our knowledge, first introduced with the work of [Ino05] (a more
detailed description of their work is provided in section 8.3) that realized that a simple search and
retrieval approach is no longer sufficient for “larger” repositories. They were inspired by Google's
Pagerank algorithm [Pag98] and based their ranking not on the closeness of the query to the candidates
(they only use a simple keyword matching for this), but on the popularity of the candidates. In other
words, during the creation of its index, their system extracts how many classes use another class and the
more popular a class the higher it is ranked in the set of results. A similar approach is used in the
Sourcerer project [Baj06] from UC Irvine. The disadvantage of such an approach, however, is that it will
only work with known collections in which a naming scheme is applied and no duplicates or similar (e.g.
older) versions can appear. Currently, it seems unlikely that this will ever work with data from the web
or from unknown open source collections.

3.2.10 DISCUSSION OF CLASSIFICATION

The classification of Mili et al. is certainly a valuable tool to distinguish the various groups of reuse
techniques. However, in our view its focus on reuse techniques is its main weakness in the context of
component-based reuse. The authors created a generic scheme applicable for all software assets that
might be reusable during the development process. Thus, it is not very descriptive from the point of view
of components. More specifically, it combines some issues that should be separated in one group (e.g. it
combines syntactical and semantic aspects into denotational techniques) and separates some issues that
should be combined into different groups (e.g. the distinction between structural issues and syntactical
issues in the denotational techniques).

Consequently, we suggest a more component-oriented classification, ideally inspired by modern
component-development approaches such as KobrA [Atk02]. As we pointed out in section 2.4.1. KobrA
defines a black box view on a component, called a specification, which typically comprises three views of
the component, namely a structural, a functional and a behavioural view. While the structural view
captures the syntactical aspects of a component and its environment in UML class diagrams, the latter
two perspectives contain semantics information in terms of operation specifications and the externally
visible states of the component. KobrA also strives to offer a concise but minimal description for
components. Given this model, we believe it makes sense to classify component retrieval techniques in a
similarly way and propose the following groups:

64 - COMPONENT RETRIEVAL SO FAR

1. structural (or syntactical)
2. functional semantics
3. linguistic

The structural techniques comprises all approaches that try to match components based on their
structural properties, this includes pattern-based approaches [Ric78], signature-based retrieval [Zar95] as
well as more recent attempts to perform retrieval based on UML class diagrams [Llo04]. The group of
semantic techniques includes everything that deals with descriptions of the functionality of components
and their behaviour. This includes static (e.g. specification matching [Zar97]) as well as dynamic
techniques (such as behaviour sampling [Pod93]). Although the linguistic aspect is not mentioned in the
development context of KobrA it has to appear in the retrieval-oriented context of this thesis. Although
all component descriptions contain names and other linguistic elements these do not guarantee any
behaviour and can totally be free of meaning (e.g. “sdfsdfsd” would be a valid name for a class).
However, in an object-oriented system they normally give valuable hints for the purpose of objects. The
groups of retrieval techniques mentioned above thus are orthogonal and capture different aspects of
components. None of them would be sufficient to describe a component fully on its own. For example,
as a recent publication [Kra03] has shown the interface of components holds some information about its
functionality, but is not sufficient alone because it does describe the full functional semantics.

Although the three perspectives from above cover the functional aspects of a component, they do not
include the non-functional quality aspects. These were not explicitly considered by Mili et al. Either, but
are also important and can be used for the ordering of components within a result set. Given the
different approaches currently known, we propose to classify approaches for ranking components into
the following groups –

1. quality of service
2. popularity
3. distance to the query

The first two groups can normally be applied independently from the query and thus can be calculated
at index creation time. Since they do not influence how well a component matches a query they should
only be applied on groups of results which have the same degree of match to the query. The third group
is different since it ranks components according to their distance to the query. Consider, for example, a
component that has four operation signatures matching the query. It is obvious that it should be ranked
higher than another component matching only two of the signatures.

Finally, the core challenge from a reuse point of view is to find a simple and comprehensive
representation of components that allows simple query formulation for the user without the detailed
knowledge of a new query language. Up to now, the opposite has been the case. Query formulation has
largely been driven by the selected retrieval technique and hence has ranged from simple keyword
searches to the formulation of formal specifications. However, as pointed out in the introduction, these
approaches are often unnatural for developers normally working with UML diagrams or source code.

COMPONENT RETRIEVAL TECHNIQUES - 65

3.2.11 RETRIEVAL TECHNIQUES IN USE TODAY

The advent of web-based code search engines has brought some new component retrieval techniques
into focus. Thus, we briefly provide an understanding of the techniques that are in use today and that
will appear frequently in this thesis. We start with a structural retrieval technique. We will use the term
signature- based retrieval in accordance with the signature matching approach [Zar95] mentioned above.
Consider the following class diagram of a small Stack component as an example.

Stack

+push(o:Object):void
+pop():Object
+size():int

Figure 3.3: Class diagram of
exemplary Stack component.

From this information, signature-based retrieval would use the following signature for a search:

Object -> void
void -> Object
void -> int

The simplest linguistic approach still in use today is of course plain keyword matching , whose relevance
criterion is just the appearance of the required keyword somewhere in the candidate component, i.e.
typically in the source code. This would result in the following query for the above example where all
names and parameter types have been extracted from the component's interface:

stack push object void pop size int

A number of the structural techniques that have appeared recently have also been influenced by linguistic
approaches. The simplest one is the so-called name- based retrieval approach that limits keyword matching
on specific structural elements of a component, i.e. typically the method and class names:

stack push pop size

The so-called interface- based retrieval approach uses the complete interface information contained in the
UML diagram, and the search engine is expected to recognize them properly. Queries are typically
expressed in a special query language, such as the UML-like one that we developed for this thesis, –

Stack (
 push(Object):void
 pop():Object
 size():int
)

or directly as (Java) code as in the following stub:

66 - COMPONENT RETRIEVAL SO FAR

public class Stack {
 public void push(Object o) {}
 public Object pop() {}
 public int size() {}
}

Previously, specification- based retrieval meant retrieval based on a formal specification of a component
such as the following excerpt of a Larch/ML specification for a Stack presented in [Zar97].

Figure 3.4: Formal specification of a stack
in Larch/ML as given in [Zar97].

However, since we intend to use this term for retrieval based on a (KobrA) specification of a component
as defined in the last subsection, we prefer to call the former formal- specification- based retrieval to
distinguish the two.

3.3 SEMANTICS IN REUSE APPROACHES

Few if any of the retrieval techniques developed to date have fulfilled their requirement. As has been
explained during this chapter, most attempts have only been prototypical implementations which have
demonstrated features in carefully controlled environments “in vitro” and never “in the wild” (or “in
vivo”). Furthermore, none of these approaches could really be called “semantic”. Semantics, defined as
“the study of meanings” by Merriam Webster's dictionary, is a term that is connected with components in
a variety of ways. There is a textual semantics dimension related to the meaning of names in source code
and perhaps also in the documentation of components. As shown above, this is typically used by
approaches based on classic information retrieval techniques. Unfortunately, names or text in a
component do not necessarily determine any of the behaviour or the functionality of a component
although one fundamental rule in object-oriented design is to keep the so-called “conceptual gap”
between an object in the real world and its software representation as small as possible [Lar05]. Assumed
that this rule is adhered to, it is likely that the textual semantics are helpful in getting a first idea of the

SEMANTICS IN REUSE APPROACHES - 67

domain a component is used in. However, it is also likely that in large repositories such an approach
alone will not be precise enough as our results shall indicate later in this thesis.

This is one of the reasons why the semantic web community has been trying to enrich for example web
pages and web services with ontologies that can be used for reasoning within service repositories for
automated discovery, matching, and composition. However, practically usable implementations are still
a long way off and some concerns that the research has lost its focus and is drifting away from this goal
have been raised [Shi07]. The main problems arising in this context are the complexity of the ontologies
created and the problem of automatically matching different ontologies with each other. Furthermore,
there have been attempts to use the formal semantics of components for retrieval [Zar97], but these are
typically too complicated to use. The idea is based on the design by contract approach [Mey90] and uses
pre- and postconditions to capture the behaviour of operations. However, formal methods are not very
popular amongst developers since their use is typically as complex as programming the actual solution.
Additionally, a concrete mapping from functionality to formal description must be developed by hand
for each component appearing in a repository and there is not even a chance to automatically check
whether a component adheres to its formal specification due to the halting problem. The above
mentioned operational semantics methods [Pod93] have tried to circumvent this problem by directly
observing the behaviour of simple components, stimulated with a few random values. In our opinion,
this is a promising approach. However, as we discussed above has not been sufficiently developed and
investigated for modern programming languages.

For the purpose of our dissertation we define semantic component retrieval as the ability of a search
engine to deliver the components that have the lowest conceptual gap to the software object that a
developer has in mind. While this might at first sight might appear to require mind-reading, it actually
means nothing more than optimizing a retrieval system for various conceivable component search use
cases under different circumstances. Since there has to date been no description of such use cases in the
literature we shall identify and explain the use cases in chapter 5 where we describe the core of our
semantic search approach.

68 - COMPONENT RETRIEVAL SO FAR

4 THE INTERNET AS A REUSE
REPOSITORY

Getting information off the Internet is like taking a drink from a fire hydrant.
-- Mitchell Kapor, Lotus Corporation

The main technical obstacles to widespread, systematic reuse have remained the same ever since the idea
was first put forward – how and where to find components suitable for a particular need in a particular
context. One obvious approach is to create a component repository which component suppliers and
consumers can use to match their needs and services through universally agreed categorization and
description rules, as described in the vision for UDDI in section 2.4.2. However, while there have been
serious efforts to create practical component repositories along these lines, as Seacord concludes [Sea99],
there will not be a “useful solution to the software repository problem without education and direction from a
central group advocating the establishment of these software engineering repositories”. Still, from today's
vantage point, it seems unlikely that such a centralized approach will ever make a significant impact on
commercial reuse levels any time soon. This view was reinforced d by the quiet shut-down of the UDDI
business registry (UBR) in early 2006. The UBR was set up with huge upfront investment by IBM, SAP
and Microsoft as a showcase for a worldwide service repository. However, as our investigations [Hum06]
shortly before the shut-down revealed, it contained very little usable material and the effort put into its
creation never paid off.

Right now, it is difficult to judge whether the similarities between evolution component/service search
engines and general web search engines are merely coincidence, but it is interesting to note that Yahoo
(like the UBR) also started as a browsing-oriented catalogue of web pages which relied on the entries of
users. Obviously, the web grew too fast and Yahoo finally also switched to a crawling-based approach.
Therefore, we conclude that the most promising way of promoting component-based reuse in the
foreseeable future is to find better ways of automatically using the largest and most widely accessible
knowledge and software base in the world today: the Internet. Indeed, the arrangement of data on the
Internet is obviously the antithesis of a strictly organized repository. Information on the World Wide
Web (WWW) is organized in a large variety of different ways, with no central control or standardization
other than at the protocol level. The WWW is the part of the Internet determined by the use of the

70 - THE INTERNET AS A REUSE REPOSITORY

Hypertext Transfer Protocol (HTTP) and has made its way from an underestimated research project
[Ber99] into our everyday life bringing along three major advantages as an information resource:

1. it vastly overwhelms any other repository in terms of scale and content
2. it is freely available and
3. it is the focus of the most advanced searching tools available today – namely web search
 engines such as Google etc.

Thus, it makes sense to consider the use of the Internet as a source for reusable components, especially
since many of the techniques that haven proven successful in this disorganized environment should be
applicable in the context of company internal projects as well. Still, as mentioned before, keyword-based
searching is the preferred way to find information on the Web today. Search engines like Google, Yahoo,
Lycos and others are currently the most sophisticated tools used to find information on the web. Recent
estimates such as that from [Gul05] give 11.5 billion indexable pages as a lower bound for the size of the
Web in 2005. Google, for instance, claimed at that time to have more than 8 billion pages indexed. It is
likely that amongst those is a large number of source files and Java applets from the web and even the
CVS and SVN servers of a lot of open source repositories are accessible through the Internet.

When work on this thesis was started in 2004, the idea of using the Internet as a reuse repository was
already more than five years old. In the late 1990s the Software Engineering Institute (SEI) had tried to
crawl the web for reusable Java applets using special queries to a mainstream search engine. However, the
experience with their so-called Agora project [Sea98] was disappointing since their system was not able to
effectively process the amount of data created by that endeavour. More information on this project can
be found in section 8.1.1. Fortunately, times have changed since then and in the last five years the
technological environment has become much more favourable. As we shall explain in this chapter, the
Internet has indeed become a valuable source for software components. In the following, we try to assess
the theoretical potential of the Internet as a reuse repository and to estimate the number of source (and
binary) files available from it. Furthermore, we discuss, how general style search engines can be used for
targeted source code searches and what material we were able to find for the Merobase search engine that
demonstrated that it is possible to gather and populate a dedicated component search engine with
content found on the Internet. We round this chapter off with a discussion of the difficulties involved in
publishing components on the Internet in order to make them findable.

4.1 ESTIMATED POTENTIAL

One way of estimating the number of available files on the web is of course to use web search engines to
search for appropriate files. We developed some simple heuristics that enabled us to yield very precise
results for most programming languages, at least from the two biggest search engines Google and Yahoo.
Interestingly, [Yao04] still denied the feasibility of such an undertaking in 2004. Our basic idea is to use
some undocumented features of the filetype filters of the two identified search engines to constrain
searches to files in a desired programming language. For example, it is possible to restrict searches to Java
files with filetype:java in Google queries and with originurlextension:java in Yahoo queries. Adding for
example “class stack” to such a query will deliver stack components with a surprisingly high precision.

ESTIMATED POTENTIAL - 71

Further heuristics to search for operations etc. are presented in the next subsection. The heuristics can
also be used to estimate the number of files in a given programming language that are indexed by
mainstream search engines and hence allow to estimate at least a lower bound for the total number of
such files available on the web. To illustrate the magnitude of the accessible code resources on the web,
table 4.1 shows the numbers of Java files that could be retrieved using the Google and Yahoo search
engines during our experiments over the last years. Two sets of values are shown for the Google entries –
the first giving the number obtained using the regular human HTML interface and the second
(bracketed) giving the number obtained using the web service API for automated access. Unfortunately,
the latter delivers only a fifth of the results available using the former and is no longer supported. This,
of course, makes it less appealing to use the Google API for issuing such metasearches.

Month Google (Web API) Yahoo

08/2004 300,000 -

01/2005 640,000 -

06/2005 950,000 (220,000) 280,000

08/2005 970,000 (220,000)
1,510,000 (367,000)

2,200,000

11/2005 2,210,000 (190,000)
4,540,000 (410,000)

2,200,000

03/2007 1,350,000 470,000

06/2007 2,900,000 680,000

11/2007 1,300,000 1,000,000

Table 4.1: Number of Java files indexed by search engines on the web.

The italicized values in the fourth and fifth row stem from the query “filetype:java” class OR – class that –
strangely enough – delivered significantly more results for Google than just filetype:java class. One
would assume that a search with “filetype:java” -class would only deliver Java interfaces and no classes but
actually, this is not the case. Manual inspections revealed a high percentage of class files. One
explanation for this strange result may be that Google does not completely index some files.
Furthermore, Google obviously changed its system in 2007 so that a plain search for filetype:java started
to deliver results without further search terms (which did not happen before). The numbers in the table
represent the mean value of samples per month whereas individual values can vary even from one request
to the next within just a few minutes. However, the growth trend illustrated by the numbers is
unmistakable even though the numbers also show the sustained effort of Google and Yahoo to clean
their indices from files not containing natural language. In August 2005, similar requests for various C-
style languages (filetypes: c, cpp and cs) revealed a total of about 1.6 million source files in Google’s
index, and 2.7 million from Yahoo.

72 - THE INTERNET AS A REUSE REPOSITORY

The overlap between Google and Yahoo seems to be rather low - it is typically below 20%. For example,
only 5 out of 24 results for the isLeapYear example used in chapter 7 were the same and in the first
250 results of each engine for the Matrix example from the same chapter, only 47 out of 500 overlap.
This observation tallies with other reports for general HTML searches as those described in [Dog05] for
example. Additionally, it is interesting to observe that both search engines were apparently surprised by
the massive growth of open source software on the web in 2004 and 2005. At that time, both engines
also indexed source code from the WebCVS (or -SVN) interfaces of the large open source hosting sites,
but as of 2007 both engines have obviously removed these files from their indices. This is not surprising
since indexing source code is not the goal of commercial search engines as Peter Norvig (head of search
quality department) from Google confirmed in a private e-mail conversation in 2005. The observable
decrease in the number of Java files on Google by about three million Java files after that operation
corresponds pretty well with the amount of files that our own crawling efforts for the open source hosters
delivered in 2006 (cf. table 4.6). In summary, we estimate that about 3 million Java source and about 2
million C, C++ and C# files (without WebCVS/WebSVN) are available on the open web at the time of
writing. Additionally, at least 3 million Java and 2 million C language source files are available in open
source repositories. Due to the rapid growth of both the web and the open source community, it is likely
that these numbers will grow steadily in the next few years, even if the millions of code snippets
embedded in an uncountable number of web pages are not taken into account. However, the large
number of exact or near duplicates (some files appear more than a dozen times in our index) makes it
even harder to find a good estimate of reusable components on the web. Although the exact number of
software components is indeterminable and in constant flux, the following fact is clear – the number of
components available through the Internet exceeds every pre-millennial component repository reported
in the literature by at least three orders of magnitude.

Google and Yahoo might also be helpful for the web service community since they are also able to
retrieve WSDL files. As the next table illustrates, the number of files is high compared to the values for
the former UBR presented in [Hum06], but more a detailed validation has shown that most of these
WSDL files are not backed up by a working implementation of a service.

Search Engine API Claimed no. of
links to WSDL
files

No. of actual links
to valid WSDL files

Google yes 9000 (1700) 794 out of first 1000

Yahoo yes 13400 (1900) 425 out of first 1000

Table 4.2: Number of WSDL files delivered from search engines.

The values in brackets show the number of results returned through the APIs. This indicates that the
search results could be better if the artificial limitation on automated queries were removed. Both search
engine APIs allow automated access to only the first 1,000 results returned in response to a manual
query. This is usually not a problem when searching for a specific functional component since the
number of retrieved candidates for a specific query rarely exceeds a few hundred.

ESTIMATED POTENTIAL - 73

Given the total numbers presented in this section, we can estimate that roughly 1/1,000 of the pages
indexed by the two big search engines were source files in August 2005. After the exclusion of CVS and
SVN content this number seems to have dropped to about 1/10,000.

4.1.1 SPECIALIZED SEARCH ENGINES ON THE WEB

As of 2004 when work on this dissertation was started, no specialized code or component search engine
were available on the web as we have already pointed out above. But since then the situation has changed
considerably and four serious commercial projects emerged. In order of appearance these are:

1. koders.com, started in late 2004 by a development company in California. Koders was the first
code search engine on the market, focusing on components from public CVS servers.

2. krugle.com, backed up by several million dollars of venture capital, Krugle started in late 2005
with a beta version but needed until June 2006 to offer public access for everybody.

3. Merobase.com is the search engine that emerged from this dissertation and went live in July
2006.

4. google.com/codesearch. Google followed with its code search engine in fall 2006.

In contrast to general web search engines the named sites are specialized for source code searches. Hence,
they all offer the opportunity to limit searches to a specific programming language, and they all fulfil
another important requirement for being accessible by external tools – namely they provide an API for
programmatic access. The APIs are based on Amazon’s Opensearch format [Cli07] which in turn is
based on RSS. When estimating the size of their repositories by counting the number of Java classes (by
searching for the terms “class” or “interface” in Java files) we found the last three engines having more
than 10 million components in various languages in their indices as of November 2007. We will give a
comprehensive overview of known code search engines and their content when discussing related work
in section 8.1.2. More details on the content indexed in the Merobase search engine can be found in
section 4.4. In section 4.3 we provide more details on its capabilities and on, the different types of
components that it contains and other interesting facts learned during its construction. In a nutshell, we
currently have about 4 million Java source files indexed in Merobase, 3 million originating from open
source hosters and about 1 million from the World-Wide Web.

Since one of the reasons for the recent excitement around web service technology was its search
capabilities (UDDI [New02] was supposed to bring together service providers and service requesters) we
continue our overview with an analysis of web services repositories and the services that they offer for
third-party (re-)use. UDDI used to be (and sometimes still is) advertised as a flexible brokering
technology that allows component developers to “publish” their software as services, and potential
component users to automatically find suitable services via formalized syntactic descriptions of their
requirements (in the form of WSDL documents). Even semantic composition capabilities for web
services are becoming available (e.g. with the help of OWL [Ant04]). Since so much industry investment
had been pumped into the UDDI Business Registry (UBR), one would have expected a sizeable index of
services to be available. However, as table 4.3 demonstrates, the UBR (and other service repositories)
failed to reach a critical mass of entries and a large proportion of the entries contained in the repository
were out of date. Many entries did not even point to valid WSDL descriptions and of those that did,

74 - THE INTERNET AS A REUSE REPOSITORY

only a small proportion were actually backed up by working implementations. The UBR’s shut-down in
early 2006 was a logical consequence.

Search Method API Claimed number of links to
WSDL files

No of actual links to
valid WSDL files

UDDI Business Registry8 yes 770 400

BindingPoint.com8 no 3900 1270 (validated)

Webservicelist.com no 250 unknown

XMethods.com yes 440 unknown

Salcentral.com8 yes ~800 all (validated)

Table 4.3: Number of WSDL files within reach at various websites (July 2005).

However, the main problem with the UBR's concept in our opinion was not a technical one, but the
overhead involved in the manual creation and maintenance of the repository. The effort involved in
entering a complete service profile into the UBR should not be underestimated. In addition, the effort
involved in updating or removing the (possible many) entries when a server was moved or closed down
should also be taken into account. In theory, this should have been taken over by the publisher who
entered a service in the UBR, but this is often forgotten in practice. Interestingly, the UBR followed
exactly the three-phase reuse progression (empty, filled with little content or filled with a lot unusable
content) that Poulin reported in [Pou95] from his practical experience at IBM (although we would argue
that the UBR actually never reached the third phase). In general, we can only speculate about the reasons
for the disappointing performance of such repositories. One feasible explanation is the simple fact that
there were not many services available at that time. We were able to discover about 3,000 working
services in 2006 for Merobase and only recently another web service search engine (seekda.com) that
emerged from an EU-funded project has been able to collect more than 10,000 publicly available web
service endpoints. Our efforts in late 2007 also led to about 12,000 such service endpoints.

In addition to these code and web service search engines, there have been numerous attempts to establish
commercial component “marketplaces” in recent years. However, these have also had only limited
success. Two of the most well known, ComponentSource.com and Flashline.com, had to merge in 2005.
Moreover, the UDDI Business Registry (UBR), the high profile industry repository for web services
contained very little useful material (as we will show later) and was finally shut down in January 2006 9.
Likewise, most other initiatives have had very limited impact. These approaches have essentially all been
based on a standard “e-retail” model in which components are offered in an informal catalogue-like style
as if they were mainstream consumer products. Trying to discover a component at ComponentSource is
therefore still much like browsing for a book on Amazon. It is a very informal, unpredictable process
with a highly uncertain outcome. Of course, searching tools are provided, but these are very simple,

8 As of 2007 this website is no longer available.
9 The official rationale is that the UBR has been successful as a proof of concept, though.

ESTIMATED POTENTIAL - 75

typically text-based technologies that essentially look for keywords in a component’s documentation.
They are still far away from a semantic matching or at least a matching based on the signatures (i.e. the
parameters of methods) or the full interface (i.e. parameters and names of methods) of classes.

4.2 PRECISE RETRIEVAL WITH GENERAL-STYLE SEARCH ENGINES

Although there is a number of specialized code search engines around, “metasearching” general search
engines can be an appealing option to find software components on the web. No special infrastructure
involving potentially thousands of computers is necessary to answer queries, for instance. It is sufficient
to offer a more specialized user interface and to send the actual query to one of the large general search
engines. There are probably hundreds of thousands of developers that use the web on a daily basis to
collect reusable source snippets or to draw inspiration from open-source software and who would
welcome such a search engine. But, “abusing” general-style search engines like Google for software
component searches is not simple and some researchers like Yao [Yao04] doubted that this would be
possible at all while others tried it in an unsanctioned way [Ino05]. However, researchers from various
areas have been using queries enriched with special keywords on general-style search engines for many
years. For instance, we have been using this approach with Google to extract information on music
perception in 2003 [Bau05] from music related websites and [Ino05], as just mentioned, enriched
searches with the terms “java” and “source” to limit results to these kinds of files.

However, although queries of this form deliver pages that may well contain information on the topic
desired, the hit ratio for actual source code is still rather low. Fortunately, as briefly indicated above, a
better way is of doing this is provided by at least Google and Yahoo. After studying the advanced features
of today's two most important search engines, we were able to develop some simple heuristics that can be
used to limit searches to a specific programming language [Hum04] and even to retrieve classes or
methods with a high precision. Both engines offer a filter that limits searches based on the “filetype” of a
web page. Officially, types like pdf or doc are supported that contain textual information that might be
interesting for people to read. Unofficially, however, file extensions of common programming languages
like java, c, or cpp are also supported although in some cases the filter does not work perfectly (e.g. for
links to CVS pages that end on “.java” but contain HTML content). But in general, the pureness of the
results is larger than 95%. The following examples show how to use this feature to estimate the number
of java files within the indices of Google and Yahoo:

Google: filetype:java
Yahoo: originurlextension:java

Both forms are simple, but unfortunately most of the commercial search engines limit the number of
results a user can access to avoid too high a processing load and the undesirable “exploitation” of their
indices. Google and Yahoo display the estimated total number of hits although only the first 1000 results
can actually be accessed. However, whenever an API for automated access is available, such exploitation
cannot be totally avoided since it is possible to enrich search requests with further terms from a
dictionary to get more results as Seacord has already demonstrated with Agora [Sea98], the SEI's

76 - THE INTERNET AS A REUSE REPOSITORY

software retrieval engine (see also section 8.1.1). Hence, the number of requests that can be issued via the
search engine's API is typically also limited to a few thousand requests per day.

Going back to our heuristics, a simple “speculative” search for a stack component might look as follows:

Google: filetype:java stack
Yahoo: originurlextension:java stack

The drawback of this approach is that any source file that somewhere contains the term “stack” will be
retrieved no matter whether it appears in the component's name, in identifier names, strings or
documentation. Hence, a better heuristic to limit searches to a specific class, i.e. a stack in this case, has
the following form:

Google: filetype:java “class stack”
Yahoo: originurlextension:java “class stack”

To attain even higher precision it is necessary to search for operation signatures as well. However, this is
difficult in this context since methods in Java have no keyword that could be used to filter the results.
The simplest possible heuristic in this case is to add the method names and perhaps the parameter types
as follows:

Google: filetype:java “class stack” “void push int” “int pop”
Yahoo: originurlextension:java “class stack” “void push int” “int pop”

This is possible since special characters like brackets etc. are ignored by the search engines. Suppose we
are looking for a method that has more than one parameter. It is highly unlikely that we would find
anything if we have to specify the parameter names since in Java, these are listed between the types.
However, Google (and recently also Yahoo) have limited support for the asterix character as wildcard
and hence support the following kind of query:

Google: filetype:java “int add int * int” “int sub int * int”
Yahoo: originurlextension:java “int add int * int” “int sub int * int”

These simple examples show how, given a precise knowledge of the required interface, ordinary search
engines can be used to discover source code components with a very high precision. Of course, the recall
tends to decrease the more operation signatures are added as more and more signatures and their orders
have to be anticipated correctly. However, our initial prototypes have shown that this approach is well
applicable to reduce the number of candidates to a reasonable amount, which can be processed further
afterwards.

4.2.1 (META-)SEARCHING WITH GOOGLE CODESEARCH

More than two years after our initial experiments with the general version of Google's search engine the
company released its own dedicated code search engine. Compared with other engines that were around
in late 2006, its interface looked rather premature. However, it offers an API for programmatic access
and possesses one of the largest indices of code currently available. This makes it interesting for

PRECISE RETRIEVAL WITH GENERAL-STYLE SEARCH ENGINES - 77

metasearches. Although it does not support any kind of interface-driven searches, it was the first code
search engine to support regular expression (“regex”) searches. This enables a more efficient filtering
process since regex are more powerful than the primitive wildcard character mentioned above. Hence, we
developed some regular expressions that are able to describe the signature of components in Java-style
programming languages. The general idea is similar to the one presented above, keywords like method
names or parameter types and other fixed elements like brackets are extracted from a component's
signature and other variable elements that are required for a text-based search on Google Codesearch
(like e.g. the parameter names) are replaced by regex constructs. For example, a parameter name in a
method signature could be replaced by the following regular expression: [a-zA-z0-9]+

This means that a parameter name must contain at least one upper- or lower-case char or a number. This
technique can be applied for all signatures in a component and can mimic, to a reasonable extent,
signature matching [Zar95] in specialized search engines. Take for example the following regex query
that could be derived from a Customer object with getAddress and setAddress methods:

(class\s+Customer[\s+|{]|(program|unit)\s+Customer)

(String\s+getAddress\s*\(\s*\))|((procedure|function|def)\s
+getAddress\s*\(\)\s*:?\s*String)

(void\s+setAddress\s*\(\s*String\s+[a-zA-z0-9_\$]+\s*\))|((procedure|
function|def)\s+setAddress\s*\(\s*[a-zA-z0-9_\$]+\s*:?\s*String\s*\)\
s*:?\s*void)

However, as becomes apparent by this example, regex can quickly become complicated and even
experienced regex users are likely to make errors in defining such expressions, especially when they have
to be formulated in Google's small query box without any syntax highlighting. Thus we created a little
tool which is able to derive such regex queries from Java and C# code as well as from UML-like interface
descriptions. However, is important to remember that even regular expression searches are still very
limited compared to signature matching. In particular, since it is not possible to ignore the parameter
order, signature- and interface-based searches are still not possible.

4.2.2 LIMITATIONS

It should have become clear in the recent subsections that mainstream search engines and most of the
“first-generation” keyword-based search engines are not optimized for the kind of component retrieval
we require for delivering components based on a (KobrA) specification. If this was the case, there would
be no need to work on better retrieval solutions. Furthermore, as we discussed above, the mainstream
search engines obviously have been trying to remove source code from their indices. Steele [Ste01]
explains that the web is simply becoming too large to index all its content deeply enough, so there is a
need for specialized or so-called “vertical” search engines. WebCVS systems, which require a large
number of package hierarchy levels to be navigated to find code are a good example of this. Other
limitations of general search engines like a user interface that is optimized on keywords and not on
component descriptions or the retrieval and ranking algorithms (like Google's Pagerank [Pag98]) that are
optimized for prose text make component retrieval too complicated for serious software development.
Even with the tricks described above, the signature and interface matching capabilities with regular

78 - THE INTERNET AS A REUSE REPOSITORY

search engines are limited. For example, it is not possible to match signatures in orders different to the
one defined in a query. This is a serious limitation which can only be circumvented by adding all
possible permutations for all parameter orders disjunctively, an approach that quickly takes queries
beyond the maximum supported length.

Some other problems are not as obvious, but nevertheless make the use of these engines impractical to
use for serious software engineering. For instance, Google and Yahoo both used to offer a Java-based API
for automated access to their indices, but both were very unreliable and often delivered only cut-down
versions of the actual result set. Apparently, neither is supported any more and have recently been
replaced by other technologies. Moreover, since the filetypes of the programming languages are not
officially supported there is no guarantee that they will be supported in the future nor that they will work
reliably. Furthermore, some file extensions like “cs” are not limited to C# source files but also for other
kinds of files and hence undesirable files might frequently be included in result sets. Additionally, it
looks as if the filters only consider the file extension or even worse only the last characters of the URL for
their decision about the type, which has the consequence that sometimes HTML files and other types
slip through. These problems triggered the decision to build our own vertical search engine we describe
in the next section.

4.3 THE BUILD-UP OF MEROBASE.COM

When we started the investigations of the web as a source for reusable software, we focussed on retrieving
code using mainstream search engines. As we have shown in the previous part of this chapter, this
approach works reasonably well for scientific purposes, but has significant drawbacks once a reliable tool
is required. The main problem is that the two big players, Google and Yahoo, artificially limit the
number of results they deliver for a search and additionally only offer a limited number of queries per
day. This makes it impossible to use a tool is based on these two engines in a serious software production
environment. Furthermore, the frequent changes of their content as discussed in section 4.1 also limited
their usefulness for scientific comparisons. Hence, the collection of our own component base and the
development of an own search engine was a natural next step.

4.3.1 CRAWLING AND INDEX STRUCTURE

With the recent advent of nutch and Lucene [Hat04], two powerful open source tools for the creation of
search engines have become available. Although it would be feasible to store the crawl results in a
relational database, Lucene offers some significant advantages. The most important benefit is that it
offers a very fast full-text search capability, which is vital for all search engines as understood today (and
for the implementation of information retrieval approaches for component searches). Since Lucene
supports values to be stored in different fields it allows faceted, attribute value and even catalogue-based
retrieval approaches (as we discussed in section 3.1.1) to be implemented. The drawback is that these
fields are not relational as in a database and thus relational searches are not directly feasible. However,
below we discuss how it is possible to overcome this problem to a certain extent with a special index
structure. To solve the representation problem for the components in our index and to increase the
realm of potential searches we combined all four representation methods described in the literature (and
explained in section 3.1.1). The following table gives an overview of some of the most important fields

THE BUILD-UP OF MEROBASE.COM - 79

in our index and the data (or metadata) stored in them. It is important to mention that the content of all
fields can be extracted automatically so that no human interaction is necessary.

Field Representation Method Content
content free-text source code

name attribute value component names

method attribute value method names

url attribute value component's URL

lang faceted component's programming language

kind faceted special kind of component, e.g. application or test case

methodSignature attribute value full signature of methods

namespace enumerated a component's namespace
Table 4.4: Exemplary fields contained in the Merobase index.

These fields are contained in each Lucene document, representing an individual component (which is
typically a class). One specific field can be added several times to a document, i.e. a component can
contain a number of methods with each of their names stored in a method field. In principle, on all of
these fields the full Lucene query syntax (as e.g. described in [Hat04]) with wildcards, range queries etc.
is applicable as a long as the fields can be tokenized. However, one of Lucene's limitations becomes
apparent at this point. Since no relational connections between fields are feasible, it is not possible to
relate a parameter to a method signature. Interface-based retrieval, however, requires the ability to search
for the exact signature of a method, including name, parameters and return type. Thus, we were forced
to concatenate and store them in one field which is not tokenized to enable such exact matches. In turn,
this means that only exact matches are possible with this structure and different parameter orders cannot
not be searched. However, by sorting the parameters alphabetically it is possible to also identify different
orders of method parameters. We had to develop a number of further innovative solutions to fully
implement all semantic search use cases which we will discuss in the next chapter. The associated
extensions of our Lucene structure will also be discussed there.

The creation of the index using the nutch web crawler suite is straightforward. It includes powerful tools
for traversing and managing links as well as for the interpretation of robots.txt files (which may restrict
the access of search engines to websites) directly out of the box. However, as we pointed out earlier, we
estimate that only about 1 of 10,000 documents on the web contains a source file interesting for us and
thus a blind crawl would require far too much effort. Hence we fed the nutch engine with seed pages
containing links to popular web service or component catalogues, for example. Another promising
technique to find appropriate input is to “metasearch” general-style search engines as described above,
which was also used by e.g. [Sea98]. Once an initial list of source files is found, it is useful to trim the
URLs within them to find lists of further source files in higher directory levels. Luckily, the crawling of
CVS and SVN repositories is simpler (once a functioning CVS and SVN client is available for
integration into the crawler) and the access to one server often provides thousands of files in one pass (cf.
table 4.6). Unfortunately, downloading files from CVS or SVN has a large overhead due to the lengthy
login procedure required. For this reason we decided to cache the crawled content (which is about 120

80 - THE INTERNET AS A REUSE REPOSITORY

GB) of these repositories locally in order to guarantee fast access to the source code. In principle, this
would make sense for http-based files as well in order to avoid dead links, but we have not implemented
this so far.

4.4 THE CONTENT OF MEROBASE

Given the large variety of assets that mainstream search engines are expected to index, it is clear that
there is room for more specialized search services. Recently, this idea became popular under the name of
so-called vertical search engines. While general or horizontal search engines cover a wide range of assets
only shallowly, a vertical search engine is supposed to build a much deeper index on a smaller area of
interest. Our software component search engine has grown to one of the largest source code and
component collections available on the web. The following table gives an overview of its contents in
summer 2007:

Programming Language No. of Files Percentage
Java 8,011,883 79.566%

 Source 3,927,475 49.021%

 Binary 4,084,408 50.979%

C# 207,092 2.057%

C 1,399,455 13.898%

WSDL 3,228 0.032%

.NET assemblies 447,801 4.447%

Total 10,069,459 100%
Table 4.5: Number of components/services indexed in Merobase in summer 2007.

Since we focused our initial crawling on Java, the numbers shown are certainly not representative of the
distribution of files on the Internet. We not only indexed files available via HTTP, but also files stored
in the CVS and Subversion (SVN) repositories of large open source hosters. While more than one
million files (to be exact: 1,279,362) have been found on the open web via extensive crawling, by far the
largest number of files has been retrieved from the various CVS servers as shown in the following table:

Hoster CVS SVN total
java.net 3,159,151 0 3,159,151
sourceforge.net 2,193,030 208,083 2,401,113
apache.org 0 666,808 666,808
googlecode.com 0 348,584 348,584
eclipse.org 325,119 0 325,119
netbeans.org 31,275 0 31,275
tigris.org 13,159 9,711 22,870
savannah.nongnu.org 13,653 0 13,653

THE CONTENT OF MEROBASE - 81

Hoster CVS SVN total
savannah.gnu.org 9,425 0 9,425
gna.org 1,886 1,224 3,110
Table 4.6: Overview of components found in version control repositories.

Since we have focused our research efforts on the Java programming language we present some more
detailed analyses of the distribution of files in this language below. As the goal was to deliver working
(i.e. executable) components, another interesting number is the percentage of Java interfaces contained
in our index. Java 5 also introduced the concept of a so-called enum(eration). However, this is clearly
not very widely used so far since not a single enum is contained in our index as table 4.7 demonstrates
below.

Type Occurrences Percentage
class 7,036,451 87.83%
enum 0 0.00%
interface 975,432 12.17%
total 8,011,883 100.00%

Table 4.7: Percentage of interfaces contained in all Java files.

The open source movement [Ray97] has certainly been the main trigger that has enabled the creation of
large-scale component search engines. However, some open source licenses such as the General Public
License (GPL) can become problematic for their users if they want to reuse material in proprietary
projects since GPL-like licenses require the disclosure of new code that uses the original code. This can
become dangerous for proprietary commercial projects that accidentally (or on purpose) used GPL’ed
material. Consequently, it is a requirement for a code search engine to be able to search for a specific
open search license or even better to exclude a group of licenses. To implement this requirement, we
developed a regular expression-based recognition feature for open source licenses, which enabled us to
construct the following statistics about the usage of open source licenses in our index. Since binary files
do not contain this information, these numbers are based on the roughly 4 million Java source files in
our index. In total we searched for 102 open source licenses gathered from various websites (such as
opensource.org) and discovered components using 34 of them in our index. The following table contains
the ten most popular licenses. Since the bulk of our indexed source files originates from designated open
source hosting sites, one might assume that most of these files are annotated with an appropriate open
source license. However, as the results of our analysis show, this is not the case as almost three quarters of
all files do not contain a dedicated open source license.

License Occurrence Percentage
no license 2,880,932 73.35%
GNU General Public License 464,353 11.82%
Apache License, Version 2.0 209,878 5.34%
GNU Lesser General Public License 134,619 3.43%
Eclipse Public License v1.0 128,579 3.27%
Common Public License 42,147 1.07%

82 - THE INTERNET AS A REUSE REPOSITORY

License Occurrence Percentage
BSD License 14,587 0.37%
Mozilla Public License Version 1.1 10,151 0.26%
Academic Free License 5,928 0.15%
Open Software License 5,919 0.15%
Sun Public License 4,756 0.12%
others 25,626 0.65%

Table 4.8: Open source licenses recognized for Java source files.

In order to execute and test components (for example, to support our Extreme Harvesting approach, see
section 5.2) it is also interesting to know which classes can cause problems when executed remotely on a
server – that is, when the Java sandbox would block file or network access and thus raise a
SecurityException. We found that the following numbers of source files use classes from major Java IO
packages:

Package Occurrences
io 868,014
net 221,144
nio 18,102

Table 4.9: Number of classes using IO-Packages.

The usage of a graphical user interface (GUI) can cause similar problems as it requires access to a display
and normally also user interaction, which is typically not available for remotely executed test cases. Thus,
we investigated how many source classes can be executed without the necessity of requiring a display.
The following table summarizes the usage of GUI frameworks found in our index:

Package Occurrences
swing 417,475
awt 687,980
swt 69,306

Table 4.10: Overview of GUI frameworks used.

Since the SWT framework was introduced with Eclipse, we found about 32,000 source files from within
one of the many Eclipse packages, but only about 37,000 classes outside the direct environment of
Eclipse use the SWT. It is important to mention that these numbers are not independent since, for
example, a component that uses Swing GUI elements typically also requires listener classes from the
older AWT framework or, of course, can use file I/O as well.

Java has grown to a language with a large number of different target platforms (J2SE, J2EE, J2ME) and
thus we were curious to find out how these are represented in our index. Unfortunately, it is not possible
to determine directly which edition of Java a class is intended to be used with since all three share a
number of libraries. However, we were able to recognize a number of special component types such as
applets or applications (classes containing a main method) etc. as shown in the following table:

THE CONTENT OF MEROBASE - 83

Type Occurences Percentage
Application 508,466 6.35%
Test Case 123,881 1.55%
Applet 91,224 1.14%
Servlet 18,311 0.23%
EJB 3,786 0.05%
MIDlet 1,660 0.02%
All Java 8,011,883

Table 4.11: Distribution of special component types in the Merobase index.

452,295 source files contain a main method and thus can potentially be executed standalone in J2SE
after compilation. In contrast, only 56,171 binary classes contain a main method. We speculate that this
difference is due to the fact that most of our binaries classes originate from JAR libraries that typically
only have one or a few entry points. As we pointed out earlier, we believe that a lot of files from our open
web crawls are simple (teaching) examples that typically need to be executable and hence the ratio of files
containing a main method is much higher here. The relatively large number of JUnit test cases indicates
a high level of acceptance of this framework in the Java community. The small amount of Enterprise
Java Beans (EJB) demonstrates again how difficult it still is to find reusable business components.

4.5 SHARING COMPONENTS OVER THE WEB

As shown in the previous part of this chapter, developers today have various opportunities to find
reusable material on the web. However, it is still nearly impossible to publish reusable material in a
targeted fashion for others. To be more precise, it is simple to publish material on the web, but hard to
make it findable for others in a controlled manner. In principle, there are three ways in which
components can be shared via the Internet:

1. Creating an open source project on Sourceforge or a similar site
2. Publishing components on a website and registering them with a search engine
3. Sharing files on a Peer-to-Peer network

However, all three possibilities are introduce uncertainties. New open source projects on Sourceforge
(and similar sites) have to be manually approved, which induces a delay of perhaps a few days in the best
case and a rejection in the worst case. Thus there is a high administrative overhead involved in making a
project available online. Furthermore, the publication of a project on an open source hosting site does
not necessarily mean that files will be quickly accessible through mainstream search engines. A project
that we made publicly available in 2005 was, after months, indexed neither by Google nor by Yahoo.
Only Google was able to retrieve the link to the project's homepage. After 6 months, Yahoo also
delivered the homepage, but neither of them indexed the sources which are linked to directly from the
project's homepage. As mentioned before, Google has obviously started to remove source files from its
index. On the other hand, vertical search engines such as Koders and Krugle are known to update their
indices only at very irregular intervals. As of 2007, our project was only findable via Krugle, who
officially partnered with Sourceforge for code searches in 2006 (and thus should have privileged access to

84 - THE INTERNET AS A REUSE REPOSITORY

the repository servers) and was not discoverable in Google Codesearch, Koders nor in Merobase. Thus, it
is still highly unpredictable whether and when an uploaded project will be findable on the Internet.

We experimented with the second option by manually placing the aforementioned project on a .com and
a university webpage and submitted the URLs to Google, Yahoo and MSN in November 2005 to check
whether and when the search engines would be able to retrieve source code from the project. The results
were also disappointing since it took about one month until at least the starting page and some of the
linked source files became available. However, they were only sometimes reachable and not on a regular
basis. This experience with mainstream search engines for non human readable files was recently
acknowledged by the web service community where [Son07] reported similar behaviour for WSDL files.
These observations make it clear that contributing components to the ubiquitous repository World Wide
Web in a controlled fashion is not practical at present.

For the third option, we also investigated whether the common peer-to-peer (P2P) platform Gnutella is
useful for component distribution, as P2P systems typically are a place where all kinds of files can easily
be shared with almost no effort. Such peer-to-peer systems (P2P), which formerly started out with the
famous Napster and were very successful in the late 1990s, are an appealing approach for solving the
software repository problem. However, the results in 2005 were not encouraging. P2P systems like
Gnutella (having almost 2 million users at that time according to [Men05]) are not suitable for source
code searches at all. Although we were able to limit searches to a desired programming language with
special search terms (like "class") and special filter settings (".java" or ".jar"), the results were not usable.
Our investigations in December 2005 revealed only about 2,500 Java source files and about 1,100 JAR
files on the Gnutella network. But, since P2P systems simply search in the name and not in the content
of files they offer only the most simplistic search support and hence do not offer much incentive for
developers to use P2P systems for this purpose.

The investigations in this subsection show that as of 2007 a well aimed sharing of open source
components through search engines is still very difficult. Not to mention the attempt to make
commercial binary components searchable over the Internet. Thus, there is no doubt that there is still
plenty of room for a dedicated component storage solution that combines version control repositories
with search for open source software and for a specialized, trusted brokerage solution as we will sketch it
in section 9.3 with respect to commercial components.

5 SEMANTIC COMPONENT
SEARCHING

Don't mind Pierce and Hunnicutt, they're both first rate surgeons.
Sure, they'll show up to role call in their bathrobes.

They keep a still in their tent. Once they ran all my underwear up the flagpole.
But I want you to understand it's an honour to serve with these men.

-- Major Margaret Houlihan, M.A.S.H.

In the last two chapters we discussed the state of the art in component retrieval and presented a potential
solution to the repository problem. However, the explosion in the number of searchable components
available on the Internet and in companies' repositories makes the retrieval problem even more pressing.
In the past, when component repositories used to contain a few hundred elements, simple browsing-
based retrieval techniques worked reasonably well, although they were certainly not perfect. But today's
repositories which are more than a thousand times larger impose new challenges on retrieval techniques
in terms of precision. Let us illustrate this by means of signature matching [Zar95], a well-known and
understood retrieval technique from the 1990s. When we apply it to our Merobase index and search for
a Stack component with methods for pushing and popping integers, we receive more than 40,000
results of which only about one hundred are likely to deliver the required functionality. Thus, browsing
through the results to find components that are actually Stacks is similar to finding a needle in a
haystack.

Furthermore, with the experience, we gathered during the development and operation of Merobase we
realized that previous component retrieval approaches were somewhat unspecific about the use cases
which they expected the system to support. In other words, they had no idea how people would use such
a retrieval system in practice since none of these systems ever made it into practical use. This, in turn,
makes it very difficult to optimize a search engine towards semantic component retrieval, which we
defined earlier in this thesis as the task of delivering candidate components that best fulfil the purpose a
developer has in mind. Through the development of Merobase we were able to observe user behaviour
and, combining this with our own experience from using the system, we were able to derive a number of
requirements that today's large-scale component search engines should support. We introduce them in
the next section before explaining how it is possible to define search algorithms that they deserve to be
regarded as semantic component retrieval approaches.

86 - SEMANTIC COMPONENT SEARCHING

5.1 USE CASES FOR COMPONENT SEARCH ENGINES

Depending on the point of time in the development process at which a search is performed, more or less
information about the desired component is known. Early in the process, when perhaps just a very coarse
assignment of responsibilities has been performed, a component search engine is more likely to be used
to provide the user with an impression of what of components are around in the repository. Neither a
detailed syntactical description nor a description of the semantics is likely to be available for the
component under discussion. The other extreme occurs much later in the development process after the
design for a component under discussion has been finished. At this point, the developer is likely to have
a clear mental picture and ideally a complete specification of the component desired. Thus, in this
scenario a search engine needs to deliver very precise results, which should be usable without too much
adaptation effort. However, after implementing our Merobase search engine, we realized that developers
could have a third and even a fourth reason for using a component search engine. The third use case
occurs when a developer wishes to find the source code of a very concrete class from some open source
system, e.g. he/she might want to comprehend the internal flow in the component before using it. A
search engine which is able to deliver the required files quickly is likely to save a lot of effort that
otherwise would have to be invested into locating and downloading the appropriate source package and
finding the appropriate file. The fourth use case we identified in the context of component search
engines is similar to the third one and deals with finding the library that contains a specific class. In the
context of Java, such libraries are often JAR files. The following table summarizes these different usage
modes. We explain each of them in more detail later where necessary.

Use Case Description Useful for...
1) speculative searches the search engine is used to get an impression of

what is available and what might be a good
design for a component

Design & coding

2) definitive searches a component fulfilling a given specification is
wanted

Coding and testing

3) concrete open source searches the source code of a specific class from a
concrete open source system is required e.g. to
better understand how it is used

Coding

4) library searches the user looks for the library containing a
specific class, e.g. triggered by a
ClassNotFoundException

Coding,
testing/deployment

Table 5.1: Use cases for component search engines.

For the sake of completeness we should briefly mention textual searches at this point. although they can
neither be called semantic in the sense of this thesis and no longer present any serious challenges. There
exist open source search frameworks such as Lucene [Hat04] and others which specialized on this kind of
search and provide impressive performance. For example, Lucene can typically search an index of
millions of documents in less than five seconds. Since it has developed into a full-grown text search
engine over the last years and is optimized for this task, Lucene is the optimal choice for supporting
textual searches. By “textual search” we mean searches for a specific string of text within the subject

USE CASES FOR COMPONENT SEARCH ENGINES - 87

artefacts. Such a query might be useful in our context to find out how a specific class is used, for
example. Like most search engines, Lucene allows a search to be constrained to specific fields by placing
a string in double quotes. Thus, the query “new BufferedReader” would, for example, deliver source
code that instantiates a BufferedReader. Adding the lang:java constraint would only return results in
the Java programming language. By default, Lucene searches in the content field, although it is always
possible to define other fields that should be searched as just shown with the constraint. This search
mode is extremely simple to implement since the expected result can be found one for one within the
source code. Furthermore, Lucene even offers support for wildcards and a number of other interesting
features. Details can be found in [Hat04]. The other use cases are much more interesting from a
scientific point of view since they require special extensions of Lucene's concepts and thus will be
described in more detail in the following.

5.1.1 SPECULATIVE AND OPEN SOURCE SEARCHES

At first sight, speculative and open source searches seem rather contrary. However, since the same
heuristics are applicable in both cases to optimize the search algorithm, we will discuss them together in
this section. Before going into more detail about the implementation, we have to distinguish between
speculative searches and textual searches. We realized that the simple keyword-matching of Lucene's
algorithm introduced in the subsection before is typically not sufficient to provide meaningful results for
developers. Since speculative searches are typically used to get an impression of what is available in a
repository, a developer who searches for Stack is likely to be interested in an implementation of a Stack
and not in components where Stack appears somewhere in the source code because it is, for example,
used there etc. This is similar to the optimizations of modern web search engines, especially Google, to
deliver “meaningful” results. The Google website10 states that “Google tries to find pages that are both
reputable and relevant” . Reputable sites are delivered from the well-known Pagerank algorithm which was
published in [Pag98] when Google was more of an academic research project than a commercially
oriented company. However, Pagerank is one reason for Google's success. Finding the most relevant
results for a query is at least as important as ranking the most reputable sites first. Google does this by
paying particular attention to some special elements of web pages, such as headlines or the title of pages.
We have found that a similar idea is applicable to software components as well. The key in doing so
successfully is to identify the elements that deserve the accentuation.

Consider the following simple example for a better understanding. When someone types the query
“eclipse astparser”, he or she is likely to be interested in that specific class from the Eclipse project.
Hence, the indexed versions of the ASTParser class should be returned first, simply due to their
relevance for this query. However, when we started to assess the performance of our early Merobase
prototypes, we quickly realized that a simple keyword-matching approach is not enough to deliver
semantically relevant information for such a query. Similarly, suppose the user types “stack” as a
speculative query. What is he or she most likely to be looking for? We believe it is components delivering
the LIFO functionality of the well known Stack abstract data type. However, purely text-based searches
deliver all results that contain the text “stack“ somewhere in the source code, even if they have not even
the slightest resemblance to this abstraction.

10 http://www.google.com/librariancenter/articles/0512_01.html

88 - SEMANTIC COMPONENT SEARCHING

However, since these two main usage scenarios are not supported by the standard Lucene approach, an
important contribution of this thesis is development of query algorithms to support these use cases. As
they have similar requirements they can both be supported by the same basic techniques. The basic idea
is to transfer the above mentioned techniques, applied in mainstream search engines, to our component
search engine. Thus, we experimented with expanding our queries to selected metadata fields in our
index and assigned them different weights to emphasize their relative importance. The general formula
for the relevance R of a document under consideration is as follows:

R=∑
n=1

k

wn⋅r n

Whereby rn is the relevance for each field as delivered by Lucene, w n is the weight assigned to each field
and k is the number of fields used. This, of course, can be normalized to a value between 0 and 1 by:

R=
∑
n=1

k

wn⋅r n

k⋅∑
n=1

k

wn

In our early prototypes we had to write a specific search routine to perform this weighting, but in more
recent versions Lucene added a special QueryParser making it possible to search over more than one
field and to attach different weights to them. We experimented with various values and found that the
following configuration works equally well for both speculative and open source searches:

n Field Weight wn

1 name 5

2 namespace 3

3 interface 4

4 project 4

5 method 1

6 content 0.5

7 url 4
Table 5.2: Fields and weights used for improved ranking within speculative and open source searches.

The general rationale behind the choice for the fields and the associated weight values shown is that
classes in object-oriented programming are supposed to be abstractions of domain objects. However,
depending on the individual developer and the task he or she has to deal with, functionality can be
implemented on various levels within a system and thus it also makes sense to assign high weights to the
namespace or the whole project. The interface field indicates the name of implemented interfaces and
thus is also a good source of information as well as the project name. However, sometimes simple
functionality is implemented in just one method. The content itself should not be totally left out since
some helpful terms might be hidden in the source or in a comment. The URL is also helpful to ensure

USE CASES FOR COMPONENT SEARCH ENGINES - 89

that relevant open source classes are ranked highly since the namespace and the name are both normally
included in the URL. As our evaluation in chapter 7 demonstrates, the shown combination of weights
works well for both use cases.

5.1.2 DEFINITIVE SEARCHES

Definitive searches are the counterpart to speculative searches and are typically used when a concrete
specification for a component has already been defined, typically as part of the overall design of a system
(e.g. as recommended by [Atk02]). Since definitive (or specification-based) queries require the search
engine to “understand” the syntax – and in the ideal case also the semantics – of programming languages
they are more expensive to implement than simple keyword-based algorithms. To be able to understand
the syntactical structure of a program, typically a parser is required for each supported language in order
to extract the required information during index creation. Assessing whether a component is semantically
appropriate for the purpose at hand is even more complicated and at the time of writing has not been
supported by any publicly available component search engine. Since the semantic matching of
components is the major contribution of this thesis, we leave this aspect aside at this point and discuss it
in more detail in section 5.2 et seq.

The next challenge to support syntactical definitive searches, is to find an appropriate representation
format: a simple approximation for full syntactic searches would of course be a name-based search (as e.g.
offered by Krugle and Koders) where only class and method names are saved in appropriate fields that
can easily be stored in databases as well as in an Lucene index. Storing the complete interface
information is more complicated, however. It either requires a relational database schema with quite a
number of join operations for searches or some heuristics to store this in Lucene appropriately. Since
Lucene is required for keyword-matching, a combination of both approaches seems to be the most
powerful option. However, we believe this is not practically implementable for a variety of reasons. The
biggest issues we see in the combination of both approaches is the overhead involved in storing the
indexed information twice and the problems in merging results from two different searches together and
ranking them. Thus, in the context of this thesis we implemented the pure Lucene version as described
in the following.

The overall structure of our index has already been described in subsection 4.3.1 and basically comprises
a field called content , storing the textual content (i.e. normally the source code) of a component, and a
number of other fields containing metadata about the component. While most fields such as the class
name or method names are rather simple, storing a method signature is not that simple with Lucene as it
lacks the ability to store relationships between the fields. Our solution is to concatenate method names,
parameter types and return values into a single field as shown in the following example. Supposed a
component has a method random accepting two parameters of type int and returning one int. This
would be mapped to the following entry in the method field

mn:random_rt:int_pt:int_pt:int

This field must be indexed directly (i.e. not tokenized as explained in 4.3.1) because otherwise Lucene
would not be able to recognize it correctly. Furthermore, the parameter types have to be sorted

90 - SEMANTIC COMPONENT SEARCHING

alphabetically since we want to recognize permuted parameter orders as well. It is obvious that search
requests in Java or the UML-like query language have to be translated into this format by an appropriate
parser before searches can be carried out. Unfortunately, wildcard searches on these structures are not
possible due to internal restrictions of Lucene. However, it is possible to enable at least a pure signature
matching [Zar95] for the operations by storing a second, largely identical field that does not contain the
method name, but only the parameter and return types. In the case of the random method, this would
have the form:

rt:int_pt:int_pt:int

Another problem that could occur in this context is when a given signature is required more than once in
one class since it is not possible to specify the number of required appearances for Lucene. However, it is
feasible to circumvent the problem by preceding each signature with a counter of the number of times it
appears in the component, i.e.

1_rt:int_pt:int_pt:int
2_rt:int_pt:int_pt:int

This makes it possible to search for classes that contain the required signature once as well as twice, or
any other number of times. However, as soon as parameters or return values contain object types we
again face the problem of identifier choices. Thus, for example, a LifoBuffer could be regarded as
equivalent to a Stack on a purely textual basis (and in Lucene queries) if it appears as a parameter or
return type. The only way to mitigate this problem is to replace the name of the current class with “this”
if it occurs as a parameter or return type. Let us illustrate this problem with a little example. Suppose we
are searching for a class Matrix containing a method with the following signature –

multiply(Matrix):Matrix

which would be mapped to –

rt:matrix_pt:matrix

in our Lucene representation. Unfortunately, based on this structure, Lucene would not be able to match
this to a class with a method with a signature that is identical except for the class name (e.g.
MyMatrixImplementation rather than Matrix). However, if all types that are identical to the class
name itself are replaced by “this”, i.e. as

rt:this_pt:this

Lucene could at least recognize this as a potential candidate and the search engine tool would be able to
test it for semantic equivalence as shown e.g. in table 7.3 in section 7.3. These workarounds are
especially useful when implementing so-called multilevel searches, which we will describe in the
following. It is intuitively clear that the more complex a component design becomes the less components
are likely to match it completely [Sam97] and thus the recall decreases quickly with the size of
component. Thus, we have developed some heuristics that relax the search criteria in multiple steps if an

USE CASES FOR COMPONENT SEARCH ENGINES - 91

insufficient number of components is found by the basic matching algorithm. The following table
presents some examples of reasonable “relaxed search” heuristics. The dollar sign used in some places
indicates either an OR separator or a wildcard.

Level Approach Example
0) Original syntax ShoppingCart(

 addItem(Item, int):void;
 total():double;
)

1) Split class name ShoppingCart
 -> ShoppingCart$Shopping$Cart

2) Class name is merely desired ShoppingCart
 -> ShoppingCart$

3) Ignore method names addItem(Item,int):void;
 -> $(Item,int):void;

Table 5.3: Multi-level searching for specification-based searches.

Various other combinations of relaxed searches are also imaginable. However, the strategy shown above
should be sufficient for a large index since the number of results normally increases quickly with each
level. Even if this is not the case, it normally does not make sense to add too many relaxation levels since
each level requires a completely new search, which usually requires around 3 seconds time. Fortunately,
Lucene ranks components fulfilling more search criteria higher in the result list so that results that are
likely to be closer to the original request are presented automatically first.

However, this approach still suffers from a number of limitations. The first one is obviously that searches
are restricted to the syntactical information in a component's interface, which may contain misleading
linguistic information in class and method names as well as in parameter and return type names. This
introduces all the usual problems known from information retrieval [Fur87] such as the recognition of
synonyms (i.e. different words with the same meaning), homonyms (same words with different meaning)
or even hypernyms (one term is a generic term for another). The information retrieval community has
tried to tackle this problem in two main ways. First, it has created large dictionaries, such as WordNet
[Mil90], which make it it possible to look up synonym and homonym information. Second, they have
developed techniques like Latent Semantic Analysis (LSA) that analyse the complete content of the
searchable artefacts [Dee90]. Since these are applicable for speculative searches as well as definitive
searches, we discuss them in a separate subsection (cf. 5.1.4).

5.1.3 JAVA LIBRARY SEARCHES

Since Java does not disclose the required interface of classes or JAR files, it is typical for Java execution
environments to create so-called ClassNotFoundExceptions when binary components are to be
integrated into a system or appropriate error messages when a source code is to be compiled. Usually, the
only information a developer gets in this context is the name of the missing class and the namespace, i.e.
the package, it belongs to. Developers used to have to waste a lot of time guessing, browsing and
searching to find the appropriate JAR file containing the required class. Since our search engine has
indexed more than 4 million binary Java files from a large number of JAR files, we are able to find the

92 - SEMANTIC COMPONENT SEARCHING

library containing a specific class by proving some additional constraints on a search. For example, a
search for the class org.apache.lucene.search.Query has the following form on Merobase:

namespace:org.apache.lucene.search name:Query

Thus, a simple field-based, keyword-matching approach can be used for this task. Depending on
whether the binary or the source version of the class should be retrieved, the query can either be
extended by the constraint form:binary or by the constraint form:source. The default case delivers both
variants. Table 8.2 shows a comparison of our data content with some other public search engines
regarding their support for this specialized task later.

5.1.4 FURTHER OPTIMIZATION OPTIONS

Intuitively, it is clear that the more complex the specification of a component becomes the smaller the
amount of delivered reuse candidates gets [Sam97]. Since similar problems are well-known in the IR
community, a number of solutions are already present there which we have also adopted to increase the
recall of our system. A simple technique to increase the recall of keyword-based searches is to search for
synonyms of the desired keywords as well. This is subsumed under various techniques for query
expansion as discussed in [Bae99]. While there are statistical ways of automatically creating thesauri of
terms via co-occurrence matrices, the process to create such a matrix is very computation-intensive and
thus currently only an interesting option for future research. Latent Semantic Indexing (LSI) is another
well-known information retrieval technique developed by [Dee90], which is based on the co-occurrence
of terms and is supposed to mitigate these problems. It is based on correlation analysis of term document
vectors and thus is expected to extract concepts out of documents rather than just plain terms. Thus, it is
able to create an “understanding” of what the documents are about and synonyms, for instance, are
automatically understood correctly. In the context of this dissertation, we have experimented with this
approach for our component searches (details can be found in [Gru06]). However, our results seem to
confirm the results of [Ye01] who found that LSI only functions reasonably in the component retrieval
context if additional text (i.e. in Ye's case comments) is available. In other words, LSI usually works
better if developers enter small stories, describing the functionality they need, rather than just a class
name. However, in our trials [Gru07] it was so hard to achieve acceptable precision, due to the large
amount of noise usually delivered, that we did not investigate LSI further.

Manually collected thesauri for English, such as WordNet [Mil90], are also freely available on the web
and we have also experimented with their use for query expansion in the context of component
searching. However, our experiments have shown that this is also not very promising. First of all,
programmers often tend to use descriptive names for classes and operations which are assembled from
various terms which are typically not contained in a dictionary as a whole. The Java coding guidelines
promote the use of the so-called “camel case” identifiers (e.g. isCourseToBeScheduled) for this
purpose, i.e. an upper case letter should be used for each new word that is attached to another one. As we
have already discussed, it is indeed possible to decompose such constructs and use them for relaxed
searches if the composite term could not be found. However, the decomposition of the camel case
typically yields a number of new terms to be searched for. However, these do not necessarily describe the
original concept any more and might add a lot of noise to the search results, even if

USE CASES FOR COMPONENT SEARCH ENGINES - 93

“stopwords” [Bae99], such as “is” and “be” in the above example, were filtered out. Another problem
that limits the applicability of thesauri for component searches is the fact that they often contain a large
number of terms related to a concept that are usually not very helpful for discovering similar
components. Consider, for example, a query for the term stack in WordNet that delivers the following
list of synonyms:

• batch, deal, flock, good deal, great deal, hatful, heap, lot, mass, mess, mickle, mint, mountain,
muckle, passel, peck, pile, plenty, pot, quite a little, raft, sight, slew, spate, stack, tidy sum, wad

• push-down list, push-down stack, stack
• smokestack, stack
• push-down storage, push-down store, stack

Although this list includes a separation of contexts for the synonyms, it is impossible to tell without
human intervention which of the four categories is the most useful for a given context. Furthermore,
even if this were possible, a potential number of twenty or more synonyms would still not be very helpful
for directed component searches. Thus, we decided not to pursue this approach further in this
dissertation and only included a manually collected list of a few dozen synonyms which often appears in
the context of programming.

5.1.5 DESIGN RECOMMENDATIONS BASED ON SEARCH RESULTS

In recent years, online shops have popularized so-called collaborative filtering systems that recommend
potentially interesting items to customers (“people who bought that book also were interested in ...”). Such
systems typically require a list of users that have purchased a number of items and from this data pool
recommendations can be derived for similar users. In general, there are two feasible approaches to
implement such an algorithm [Bae99], namely user-based algorithms that cluster similar users together
and item-based algorithms that maintain a matrix with item-item pairs containing information about
how often two users bought these two items.

These techniques have not only been applied to shopping sites on the web, but also to software reuse
problems already. [McC07] uses such an algorithm to recommend Java Swing method invocations based
on the analysis of a few thousand Java classes. A class is regarded as a user by their system and the
method invocations are the items he is interested in. However, at the time of writing it is not clear
whether that approach is generalizable to multiple domains and to larger data collections. Hence we have
used a slightly different approach in our search engine. We have found it feasible to extract the first n
search results for a query and to derive an interface recommendation based on this information. The idea
is to utilize the method signatures of these results to calculate the optimal average class interface in that
context. We do this by counting how often a given method signature appears amongst the top n results
and return the most popular signatures or all signatures that appear more often than a given threshold as
the average of the n classes. A simple algorithm that delivers usable results is described by the following
piece of pseudo code:

94 - SEMANTIC COMPONENT SEARCHING

for the first n results
for each signature of the current result

if signature is stored in hashtable of signatures
increase number of occurrences

else
store signature in hashtable

next signature
next result
for each signature in the hashtable

if number of occurrences > threshold
add signature to result

endif
next signature

This algorithm works reasonable fast (i.e. typically a response time of less than a second is required since
the recommendation has to be created on the fly when a search is run) and well for n = 100 and a
threshold of appearances of 20% of the components. Consider, as an example, a speculative search for a
“stack” component for which this algorithm recommends the following interface:

public class Stack{
boolean isEmpty() {}
Object pop() {}
void push(Object arg1) {}
Object top() {}

}

It should be obvious that common abstractions such as Stack deliver better results than a search for e.g.
“public” would, but that is in the nature of things. Unfortunately, in its current implementation the
algorithm is merely able to recognize identical method signatures and thus is rather limited. Although we
have implemented a more sophisticated analysis of signatures and method names, it is too time
consuming in the context of a component search engine since it can require more than 10 seconds. This
time might be acceptable for transparent proactive searches that are triggered in an IDE without
knowledge of the user or for future research, but at present it is certainly too long for a web-based search
engine.

5.2 SPECIFICATION-BASED RETRIEVAL WITH EXTREME HARVESTING

Probably the most important contribution of this thesis is the development of a specification-based reuse
approach that is convincing in its ease of use as well and uses the vast amount of (open source) software
on the World Wide Web as a component repository. Nevertheless, our approach is neither limited to
open source software nor reliant upon the web, i.e. it can also be used in proprietary CVS repositories,
for instance. Although the syntactical definitive searches, which we introduced in section 5.1.2, come
much closer to this goal than previous retrieval techniques as we will see in the evaluation of our work in

SPECIFICATION-BASED RETRIEVAL WITH EXTREME HARVESTING - 95

chapter 7 their precision is generally still below 50 percent or less and the recall can also decrease rapidly
for more complex queries. Thus, it is desirable to further extend the search techniques introduced so far.

The literature identifies only two approaches capable of guaranteeing a precision of 100 percent or at
least close to this optimum, namely formal semantics based (cf. e.g. [Zar97] or [Fis91]) and operational
approaches. The main problem with the former is that it is difficult to apply and that the semantics of all
components have to be specified manually, a task that is certainly too expensive for large numbers of
components. Most approaches of the latter category are based on behaviour sampling [Pod93] where
random samples of the input space are used to identify functions to deliver the expected results.
However, while this was doable for small test collections of about 100 C functions, it is certainly not
feasible for millions of components in a practical amount of time. Thus, for this thesis we extended our
syntax-driven retrieval techniques from the previous part of this chapter with ideas inspired by behaviour
sampling. We have found that it is possible to use the fast and relatively cheap interface-driven retrieval
approach as a filtering process before using an expensive operational retrieval approach. Moreover, we
have discovered that Extreme Programming (XP, [Bec99]) offers the optimal context (with its maxim
“design a little, test a little, code a little”) for such a search approach since it creates an operational
semantic description of all units under development. With a slight change, we can adapt XP's guiding
principle to become “design a little, test a little, reuse a little” and our approach can be integrated easily
into any test-driven development process and even transparently into development environments and
tools. Due to its natural relationship to Extreme Programming we have called our approach Extreme
Harvesting.

5.2.1 PROCESS OVERVIEW

The figure below provides a schematic summary of the main steps involved in the practical
implementation of our approach as initially introduced in [Hum04]. Only the steps (a) and (b) need to
be performed manually as part of the software design process. Steps (c) to (f) can be processed
automatically by a tool.

96 - SEMANTIC COMPONENT SEARCHING

Figure 5.1: Schematic description of Extreme Harvesting process.

The steps shown in the figure have the following meaning:

a) define syntactic signature of desired component
b) define semantics of desired component in terms of test cases
c) search for candidate components using an arbitrary search engine with a search

term derived from (a)
d) find source units which have the exact signature defined in (a)
e) filter out components which are not valid (i.e. not compilable) source units,

if necessary, try to find any other units upon which the matching component relies
for execution

f) establish which components are semantically acceptable (or closest to the
requirements) by applying the tests defined in (b)

It is important to note that the search step (c) does not necessarily need to be carried out with the help of
Google or another general-style web search engine. A specialized engine or a proprietary repository can
be plugged in at this point as well. In fact, the use of our Merobase repository with its optimized
capabilities for interface-driven searches makes step (d) widely superfluous in the best case. Another
recent development in the context of this dissertation [Kru07] makes it even possible to renounce step
(a) and to automatically extract the interface of the unit under test from the test case and thus deserves
the label test-driven reuse . We will provide a more detailed explanation of the steps in the harvesting
process below.

5.2.2 COMPONENT SEARCHING – A HYBRID APPROACH

Based on the lessons learned from previous approaches in section 3.2, we have created Extreme
Harvesting as a new hybrid semantics-driven search and retrieval approach by integrating some of the

c) Web Searcha) Software Design

d) Signatures Matching?

e) Compile

b) Test Cases

f) Test

Stack

+push(o:Object):void
+pop():Object

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

c) Web Searcha) Software Design

d) Signatures Matching?

e) Compile

b) Test Cases

f) Test

Stack

+push(o:Object):void
+pop():Object

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

Stack stack1 = new Stack();
stack1.push("Lassie");
stack1.push("Flipper");
assertTrue(((String)stack1.pop())

.equals("Flipper"));
assertTrue(((String)stack1.pop())

.equals("Lassie"));

SPECIFICATION-BASED RETRIEVAL WITH EXTREME HARVESTING - 97

techniques outlined there. As stated in [Mil98], a retrieval process typically involves two criteria as a
candidate component may fulfil the matching condition of one specific retrieval technique, but may not
necessarily match a user’s relevance criterion (recall the “conceptual gap problem”). For example, an
information retrieval-based technique might retrieve 20 components matching the term “customer” but
only two of them might actually fulfil the user’s requirements and thereby his relevance criterion. In
other words, a single matching criterion is typically too weak to guarantee satisfactory precision. Hence,
applying more than one matching criterion can essentially be understood as a filtering process that
iteratively reduces the number of components in the result set until only acceptable components are left.
In the first version of the harvesting tool, we applied three filtering stages, namely linguistic, syntactic
and semantic filtering, as shown in the sketch below:

Figure 5.2: Search space reduction.

The cost of applying these filtering steps grows in the order they are introduced. For this reason the
combination of the three steps is the only practical way to retrieve components semantically from the
web or a large-scale software repository (without dedicated support for interface-based searches). In
theory, other combinations of retrieval techniques are also imaginable, but ultimately it is always a trade-
off between the effort at index creation time and the time required to repsond to a query. Since we were
able to store the interfaces of components in a later version of our Merobase index, we are able to omit
one filtering step and retrieve tested results more quickly since. It would also be conceivable to even
perform the compilation of components at crawl time and store dependencies and binary files to reduce
the testing time even further, but this would require an amount of effort at crawl time that has not been
viable so far.

5.3 COMPONENT EVALUATION

For general search engines it is normally sufficient if they deliver results that are reasonably close to what
the user expects. However, component search engines are usually expected to deliver a much higher
precision since even if only small adaptations to component are necessary to reuse them, this can become
very expensive. Thus various heuristics are discussed in section 4.3 that are intended to deliver results
much closer to a specification than plain keyword-based searches (which is confirmed by our evaluation
in chapter 7). However, the Extreme Harvesting approach, as we have just explained it, requires even

set of components
available on the Web

relevant components

syntactically matching candidates

linguistically matching candidates

semantically matching candidates

98 - SEMANTIC COMPONENT SEARCHING

more sophisticated techniques to determine the “distance” between a query and a candidate component
and ultimately also the possibility of adapting the candidate for execution. In other words, to be usable
for the purpose at hand a component must ultimately fulfil a given specification and the software reuse
community has been working on a measure of the degree of conformance of two components (or a query
and a component) for many years.

This, however, is not as simple as it may sound. As we have pointed out, a component has various
dimensions that all influence the degree to which a component matches the desired specification, but
ultimately only its functional semantics are an indicator of whether or not it is fit for purpose. For
example, the signatures or names in the component can differ from the specification even if the
behaviour of the component finally fits, which makes it difficult to define a metric for the conformance
of a component, even though there have been various attempts to solve at least one or the other aspect of
this problem. For example, in her seminal work about subtyping relations [Lis93], Liskov defined a
fundamental understanding of conformance in object-oriented inheritance relationships – that is, under
what circumstances a superclass can be replaced by a subclass. However, this approach requires a
knowledge of the complete inheritance hierarchy which is rarely available in large and not organized
component collections. [Zar95] discussed signature matching for functional languages under the premise
of reuse and of course the information retrieval community has been researching the closeness of textual
documents to one another. However, a comprehensive approach for software component reuse is still
not available. Thus, in the next subsections we will explain our approach for putting the available pieces
together in order to develop a component matching and adoption mechanism applicable for Extreme
Harvesting.

5.3.1 LINGUISTIC CONFORMANCE

Although a recent study has confirmed [Ami04] that about 85% of the class names of an open source
project can be traced back to entries in the popular WordNet11 dictionary [Mil90], the so-called
“vocabulary problem” reported by Landauer et al. in [Lan87] still has to be taken into account. Simply
stated, the authors discuss the fact that different programmers tend to use different names for their
components. They report the probability of two people using the same term for a concept as being only
about 20%. [Kra03] recently conducted a similar study in the context of method signatures and found
the similarity of signatures and names based on the required functionality of around 40%. In a
conventional (older) component repository with a relatively small number of assets this led to a serious
reduction in the effectiveness of information retrieval methods, since most of the components are stored
under just one name. An obvious way to tackle this is to use synonyms as we already discussed in section
5.1.4. By storing a component with an additional alias (i.e. synonym) the recall can be doubled, in
theory. However, as Furnas et al. [Fur87] state “many aliases are needed to achieve a really good
performance ”, and this would, in turn, drastically decrease the precision. In addition, it is still not clear
how usable aliases can be discovered.

However, we expect a given piece of functionality to appear with many different interfaces and names on
the Internet since diversity is one of its major strong points and the potential number of different

11 http://wordnet.princeton.edu/

COMPONENT EVALUATION - 99

implementations is typically large - at least for relatively simple components. Ultimately, however, this
only shifts the problem to more complex components and thus it is still necessary to find good heuristics
that are able to suggest components that have the closest possible match to the query if no direct matches
are available. We have already established some simple ideas in the context of the multilevel search
approach in section 5.1.2. However, the linguistic dimension is still worthy of further investigation. As
we shall see later, a signature-driven approach to candidate selection which completely ignores methods
and parameter names is able to increase the recall significantly, although it is still too expensive for
practical use at the time of writing.

5.3.2 SIGNATURE MATCHES IN JAVA

Signature matching in its original form, as defined by [Zar95] for functional languages with firm type
hierarchies, recognizes between two functions only when they were identical in terms of the types they
used in their interfaces. To our knowledge, only [Str94] has transferred these ideas to an object-oriented
language, namely Ada. We are not aware of any work in this direction for today's common languages
such as Java or C#. However, it is rather straightforward to transfer the ideas from these older
publications to Java, for instance. In general, for a Java class it is merely necessary to take the signatures
of all its non-private methods into account to apply signature matching in a simple form. Unfortunately,
potential breaches of the information hiding principle through non-private attributes in classes pose
additional challenges to this approach. However, in our experience this issue occurs so rarely that we
have decided to disregard it for our current prototype. For the example shown in figure 5.3, signature
matching would work well to determine the counterparts of the get (signature: int x int -> double)
and the set methods (signature: int x int x double -> void), but it would fail to choose the correct
method for the add, sub and mul methods.

Figure 5.3: Example for a candidate result that requires an adapter.

The idea of relaxed signature matches that, for instance, also accept different parameter orders (as we
already used in the creation of the Lucene index) is also transferable to modern object-oriented
languages. Even the idea of relaxing parameter or return types is easily applicable for primitive types in
Java as we will show below. In principle, this is also imaginable for object types based on subtyping
relations as investigated by [Lis93], however, in practice it is difficult to fully establish the required
inheritance hierarchies as we will discuss soon. The generally applicable rule in this context is that
preconditions cannot be strengthened and postconditions cannot not be weakened in a subtype.

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(m:ints, n:int)
+Matrix(m:Matrix)
+clone():Matrix
+toString():String
+setCell(i:int, j:int, value:double):void
+getCell(i:int, j:int):double
+getDimensionVertical():int
+getDimensionHorizontal():int
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+scale(s:double):Matrix
+mult(m:Matrix):Matrix

Matrix

+Matrix(m:ints, n:int)
+Matrix(m:Matrix)
+clone():Matrix
+toString():String
+setCell(i:int, j:int, value:double):void
+getCell(i:int, j:int):double
+getDimensionVertical():int
+getDimensionHorizontal():int
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+scale(s:double):Matrix
+mult(m:Matrix):Matrix

100 - SEMANTIC COMPONENT SEARCHING

Translated to parameters in an operation signature this means that the parameter in a candidate can be
“extended”, as shown in this example where for the query –

boolean isNegative(int number)

a candidate with the signature

boolean isNegative(long number)
would also be acceptable. The inverse principle can be applied for return values. If long was expected
int would also be a feasible option. The following table shows the possibilities for the relaxation of
primitive types in Java.

Relaxed Matches for Parameters Relaxed Matches for Return Values
Expected Also Acceptable Expected Also Acceptable
char String String char
byte short, int, long long byte, short, int
short int, long int byte, short
int long short byte
float double double float
byte, short, int float float byte, short, int
byte, short, int,
long

double double byte, short, int,
long

Object all object types
Table 5.4: Possibilities for relaxed signature matches in Java.

The problem with object types in this context, however, lies in the difficulty of recognizing inheritance
hierarchies in unstructured repositories and definitively finding the appropriate superclass. Consider a
Stack class that inherits from a Vector for example. In theory, the Stack could thus replace the
Vector as a parameter. However, in practice, only in very rare cases is the Vector class referenced in a
fully qualified manner and would thus be precisely identifiable. Even if that were the case, there could
still exist a large number of different versions or variants of that specific Vector in a repository that
could have different properties. This is also a problem for signature matching in general, since, if an
object type is used in a signature, it is not normally fully qualified nor are the signatures of its methods
fully defined and available (cf. section 5.6). This is a reason why (unknown) object types can only be
treated as textual elements in a signature matching approach with all the attendant linguistic problems
discussed above.

Java 5 (also known as Java 1.5) has brought at least some relief in this context as it introduced a new
feature called “autoboxing” which frees the developers from caring about the conversion of primitive
types into the so-called wrapper types and vice versa. Another example should make clear what this is
supposed to mean. Before Java 5 the following code was required:

COMPONENT EVALUATION - 101

Integer wrapper = new Integer(42);
int primitive = wrapper.intValue();

Since the introduction of autoboxing and the reverse auto-unboxing in 1.5 Java the following two
statements are now feasible:

Integer wrapper = 42;
int primitive = wrapper;

In conclusion, signature matching for Java, as discussed above is another helpful technique to decrease
the number of potential operation matches. However, it is still not sufficient on its own due to the
peculiarities of object-oriented languages and their inability to represent the semantics of an operation.
Thus, it is practically impossible to determine whether two operations match by purely comparing their
signatures and the only viable option is to try all feasible permutations.

5.4 RESULT ADAPTATION

The adaptation of components has long been recognized as an important issue in software reuse, whether
it be in the reuse community [Mil02], as a design pattern [GoF95], or even as the topic of PhD theses
(e.g. [Gsc02]) or research papers (cf. [Mez01]). We can only briefly discuss the most important issues in
the context of this dissertation and refer the reader to the works just mentioned for more detailed
information. In our context a typical adaptation scenario occurs when a client wants to reuse an existing
component whose interface does not exactly match his/her requirements. This means that an adapter is
required as “glue code” between the client and the existing component. From the client’s point of view
the adapter is supposed to offer exactly the interface he/she expects. The existing component,on the
other hand, expects the adapter to use it in exactly the way it was designed to be used. When this is the
case, both the client and reused component can be “satisfied” without changing any of their code. The
goal of Extreme Harvesting is to fully automate this process of adapter creation so that a user does not
have be concerned with building it at all.

5.4.1 GOF ADAPTERS

Probably the most well-known discussion on adapters can be found in the famous Gang of Four (GoF)
design pattern book [GoF95] where two forms of the so-called adapter pattern are mentioned. The more
intuitive implementation of the two is probably the object adapter which is shown in figure 5.4.

Figure 5.4: Object adapter as defined by [GoF95]

102 - SEMANTIC COMPONENT SEARCHING

The Client on the left side wants to work with the component on the right side (the Adaptee). In
order to promote clean software development, the client is written against an interface. This interface is
called Target here and offers the services that the client expects. The ObjectAdapter implements this
interface. It also maintains a reference to an instance of the Adaptee. Upon a service request, the
adapter forwards all calls to the instance of the Adaptee. This means the adapter essentially “wraps” the
Adaptee and delegates incoming method invocations to it. In contrast to the object adapter pattern, the
class adapter pattern follows a slightly different approach. Instead of having a reference to an Adaptee
instance, the class adapter uses inheritance to achieve its goal. The original design of this pattern used
multiple inheritance which is not directly supported in Java. However, the basic idea remains the same,
the class adapter also forwards incoming calls to the corresponding Adaptee method. The difference is
just that this time the adapter does not maintain a reference to the Adaptee, because it has inherited all
the methods from it. A Java implementation of this pattern would have to simulate the multiple
inheritance, which is possible in a rather simple way: the target interface has to be defined as a Java
interface and not as an abstract class. The Java-version of the pattern is shown in the following UML
class diagram.

Figure 5.5: Class diagram of the class adapter.

As clarified by the figures, both patterns can easily be implemented in Java. However, they both have
their advantages and disadvantages, especially when it comes to more complex target interfaces, as we
shall briefly discuss in the following subsection.

5.4.2 LIMITATIONS OF THE GOF ADAPTERS

At a first glance, the adapter pattern seems to be the ideal candidate to use in a reuse-oriented
development and it is recommended for this purpose by the GoF. But, the two versions of the pattern
that we described above, bring along some unwanted disadvantages which hinder their usage for some
more complex interfaces. First and foremost, the class adapter requires the adapter itself to inherit from
the Adaptee class which makes it impossible in Java to inherit from any other class. This is a widely
known issue which in general makes the object adapter the preferable solution. But there exists another
issue that considerably limits the use of the two adapter. All the code that only involves primitive data
types, Strings, or Objects can indeed be reused without any problems. But, all the classes that
reference objects of their own type cannot be adapted with the above mentioned pattern variants. The
following extract from the interface of a BinaryTree will illustrate this problem.

RESULT ADAPTATION - 103

 public interface BinaryTree {
public BinaryTree(int value, BinaryTree left, BinaryTree right);
public BinaryTree getLeft();
public void setLeft(BinaryTree bt);
public BinaryTree getRight();
public void setRight(BinaryTree bt);

 }

The critical elements of the code fragment above are the methods setLeft and setRight and their
corresponding getter methods getLeft and getRight. The same problem also holds true for
constructors if they contain self-referencing parameters. The following sketch illustrates the problem
with the setter-methods more closely:

Figure 5.6: A situation in which an object adapter would fail.

As visible in the sketch, the BinaryTree’s (i.e. the adapter’s) set-method expects a parameter of type
BinaryTree which would be delivered by the client and normally be passed on directly to the
BinaryTreeAdaptee. Of course, the latter object (and its method) only know its own type and has no
knowledge of the existence of the adapter class and of the fact that a BinaryTree instance would be
delivered in this case. Thus, an incorrect parameter type would be passed to BinaryTreeAdaptee and
the adaptation would fail in this situation.

This issue is rather easy to solve, as we will show for the general case in figure 5.7. If the method
anotherRequest in our so-called ManagedAdapter is called with an instance of itself, it simply
forwards the call to the anotherSpecificRequest method and has to make sure that the
ManagedAdapter is replaced with that Adaptee instance that was created for this
ManagedAdapter. This explains why each ManagedAdapter should have a getAdaptee method as
demonstrated in the figure.

Abbildung 5.7: ManagedAdapter that overcomes the problems of the GoF adapters.

104 - SEMANTIC COMPONENT SEARCHING

More challenging, however, is a solution for the case when a return value has the type of the adapted
class (i.e. for getter-methods). We have developed the following solution for this issue. As shown in
figure 5.7, the ManagedAdapter stores all adaptees it creates in a Hashtable where Adaptee objects
are used as the key. Once an Adaptee object is returned by a method of the class Adaptee the
appropriate instance of the ManagedAdapter can be looked up in the Hashtable or a new one can
be created if there is none. However, one limitation is obvious with this solution if it is applied to Java
programs. Since one reference to a ManagedAdapter object is always stored in the Hashtable the
garbage collector would never be able to recognize such an object as unused and delete it. And since no
explicit possibility to delete objects is available in Java, an object could not be deleted. For this reason we
consider this solution only useful in the context of Extreme Harvesting where an object is only used for
testing and where programs typically run for just a few moments in an isolated virtual machine. For
practical use it seems to be better to refactor the Adaptee in order to fully adapt it to the interface of
the target. Another solution for this problem is inspired by C# where an IDisposable interface
offering a dispose method is used to delete objects. If the ManagedAdapter implements such a
method, clients that are aware of this feature would be able to delete adapter objects by calling their
dispose method.

5.4.3 PARAMETER PERMUTATOR

After explaining how potential candidates can be found and adapted for the testing process, we have to
explain how situations like the one in figure 5.3 can be resolved automatically, i.e. how the most likely
counterpart for a desired method can be found in a reuse candidate. In other words, the new challenge to
be addressed at this point is finding the “correct” way of mapping the operations of the desired
component to those of candidate components. Since the names of operations and parameters are at most
an indication of their meaning, but in practice have no impact on the semantics of the operations, all
possible type-correct permutations need to be considered. The basic idea is to execute the test case
associated with the query until a mapping for the adapter which passes all tests is discovered. One
approach to do this would be to create adapters for each potential mapping, but since for each
permutation a new adapter has to be created, compiled, and executed, a large overhead would be
involved. Thus, we have implemented a more efficient solution that uses Java’s reflection capabilities.
The idea is to compile the adapter once, but to interpose a so-called Permutator object that uses a new
mapping in each test run until all test cases are passed without error. The basic flow of this process is
shown in the following sequence diagram.

RESULT ADAPTATION - 105

Figure 5.8: Sequence diagram of the testing process.

The TestCoordinator object on the left is responsible for managing the whole testing process. It
initiates the Permutator object and lets it create all possible permutations for the method and
parameter mappings derived from the interfaces of the Adapter and Candidate objects. After that, it
starts the permutation and testing cycle by executing the TestCase, which is a normal JUnit test case.
Since the adapter is adjusted to the calls of the test case, no changes need to be made to the code of the
test case. The Adapter object, in turn, forwards the parameters and the ID of the invoked method to
the Permutator object which looks up the appropriate permutation for the current cycle and invokes
the candidate with the appropriate internal mapping. This loop is executed until either the test case is
completely passed or no further permutations are available. The former case obviously occurs for
semantically acceptable reuse candidates while the latter result indicates that the candidate is for some
reason not reusable in the given context.

The creation of the permutations in the Permutator is a two stage process. First, it is necessary to
determine whether two method signatures are identical and thus a potential mapping from a required
method to a candidate's method can be established. Once this is finished, all feasible parameter orders
have to be found for each mapping. For a better understanding of this concept consider the following
example where the method calls from a RequiredCalculator need to be mapped to the relevant calls
of the CandidateCalculator:

106 - SEMANTIC COMPONENT SEARCHING

class RequiredCalculator {
int add(int i, int j) {}
int sub(int i, int j) {}

}

class CandidateCalculator {
int something(int x, int y) {}
int sub (int a, int b) {}
int add(int x, int y) {}
int no(int a, int b, int c) {}

}

First, all feasible mappings from the methods in the RequiredCalculator to the
CandidateCalculator are established as follows:

add -> something add -> sub add -> add
sub -> something sub -> sub sub -> add

Once all method mappings are established, we can start creating all feasible parameter permutations for
each method mapping, i.e.:

add(i, j) -> something(i, j) add(i, j) -> sub(i, j)
add(i, j) -> add(i, j)
add(i, j) -> something(j, i) add(i, j) -> sub(j, i)
add(i, j) -> add(j, i)
...

The next step is to combine the mappings for add and sub without accepting mappings where a method
from the candidate is used twice, i.e. a mapping add -> add + sub -> add is to be avoided. Thus, the
following combinations remain acceptable:

add -> something + sub -> sub add -> something + sub -> add
add -> sub + sub -> something add -> sub + sub -> add
add -> add + sub -> something add -> add + sub -> sub

Of course, these mappings have to be combined with the parameter permutations and in our example
this yields four permutations per mapping, e.g.:

add(i, j) -> something(i, j) + sub(i, j) -> sub(i, j)
add(i, j) -> something(j, i) + sub(i, j) -> sub(i, j)
add(i, j) -> something(i, j) + sub(i, j) -> sub(j, i)
add(i, j) -> something(i, j) + sub(i, j) -> sub(j, i)
...

Once all potential mappings have been established, the Permutator is able to “wire” the incoming
parameters from the Adapter to the appropriate parameter in the Candidate as specified in the
current permutation.

DEPENDENCY RESOLUTION - 107

5.5 DEPENDENCY RESOLUTION

The process introduced above only functions for components that carry their whole functionality in one
class. However, software systems today are typically so large that they have to be divided into a number
of classes and modules that have dependencies on one another. However, Java and most other common
programming languages today do not make required interfaces explicit in the source code, at least not
very precisely. Consider full package imports such as java.util.*. It is neither clear which classes
from that package will be needed later during the execution of the class nor is it apparent where to obtain
the package. Java virtual machines typically search for importable classes in its classpath during
compilation and execution and would successfully find everything in the standard util package.
However, as soon as external packages come in to play, there exists no standard that would guarantee
that the package could be downloaded from a specific URL, for example. Hence, Java developers often
have to deal with missing dependencies as already discussed in the context of the search use cases in
section 5.1.3. A powerful dependency resolution approach is thus a critical element of an effective
Extreme Harvesting implementation. This is evidenced by the fact that in our Merobase index only
about 44% of all Java source classes from the open web and only about 15% of all source classes from
version control repositories could be compiled with the standard Java (J2SE) classpath. Or in other
words, about three quarters of our Java source files have dependencies that need to be resolved before a
class can even be compiled.

During the development of our harvesting solution we found the following heuristics that are helpful to
mitigate this problem. However, although these ideas are all rather straightforward they also all contain
some limitations which means that they will not always be successful and will under given circumstances
even collide with each other. In other words, these heuristics can create an inconsistent classpath which
causes the compilation to fail. If this situation occurs, there is in the end no other solution than a simple
trial and error approach that tries to compile and run each possible solution similar to the permutation
approach from before. However, such an expensive approach might not always be worthwhile in
practice. Nevertheless, the following table contains the heuristics we propose as well as a discussion of
their likely benefits and limitations.

Heuristics Advantages Limitations
Extend classpath with
common JAR files

Easily applicable for standard
libraries of other Java editions such
as J2ME or J2EE and some well-
known libraries such as Apache
commons etc.

Different required versions of the files
might impose a risk for this approach.
Furthermore, some of these libraries
might conflict with one another.
Prominent examples for Java are
loggers and XML parsers. Potentially
large libraries have to be delivered
with the classes.

Extend classpath with
libraries from project

Helpful for files from CVS/SVN if
libraries are indexed as well.

Not applicable for HTTP-based files.
Libraries must be delivered with the
class.

108 - SEMANTIC COMPONENT SEARCHING

Heuristics Advantages Limitations
Explicitly search for
libraries containing the
missing classes in an
engine such as Merobase

Promising for every class potentially
published somewhere in a library.

Creates additional load and traffic on
the search server. Candidates are not
always decisively identifiable.

Derive URLs of missing
classes from their names

Simple and easy to implement
technique especially promising for
classes that belong to the same
package as the one that was
compiled.

Often classes from different packages
or even projects are required that
might not be findable on the current
server.

Search missing classes in
Merobase

Potentially very powerful technique
that should be able to find most
dependencies.

The right candidate is hard to identify
which is why this technique can
become very complex and expensive,
especially if adaptation heuristics are
taken into account.

Create empty stubs for
missing classes

Useful for Exceptions and Interfaces
that could not be found with one of
the other methods.

The originally intended functionality
is lost.

Table 5.5: Potential heuristics for resolving missing dependencies.

As the table illustrates, we have developed a number of heuristics that come close to the dependency
resolution capabilities of a human. However, they ultimately struggle with the same problems as human
developers since it is often not clear whether the correct version of a required dependency has been
found. This issue, though, can only be solved by trial and error, but it is a major question whether the
required effort in processing and implementation time is worthwhile.

5.6 CLASS ENSEMBLES

As we explained in section 2.4, the optimal granularity for reusable component is an issue that has
probably been discussed since components were invented. And it looks as if there is no optimal answer to
this question since most mainstream component-based development approaches use a hierarchical
component model that allows recursively composed components. This is an important issue for a
practical implementation of Extreme Harvesting or any other search technique in software component
markets. While most of the examples that we have shown so far can be built with just one class, it is
obvious that this does not scale up to more complex functionality. The Blackjack component, shown
in the following figure, can be considered as a simple example of such a case. With the help of our
dependency resolution algorithms introduced above we were able to discover it with one simple test case.

CLASS ENSEMBLES - 109

Figure 5.9: Simplified class diagram of a harvested Blackjack component.

However, the literature does not contain any guidance on how to derive a query for such a component or
on how the results should be returned from search engines that are specialized on primitive components
consisting of single files. To exchange queries and results, it makes sense to use the standardized
representation of a class diagram as the query (i.e. XMI data) and return the results packaged according
to another standard such as the RAS [OMG04b]. Depending on the implementation language and the
used IDE it could also make sense to package the results as JAR files, or maybe as Eclipse or even IDE-
independent Maven (maven.apache.org) projects.

In addition to these technical issues, the question of how best to search for such class ensembles still
remains. Currently, we see two possible solution strategies. The first one would be to sequentially search
for each class described in the class diagram and to build the ensemble by collecting all the smaller ones.
This could either be done in a manual approach that implements a design such as that the above in the
usual way e.g. a test-driven development process. In other words, as e.g. recommended by [Lar05] the
least connected class of the design (in the case of the example this would be Card) is selected first, a test
case is created for it and the harvesting tool is used to search for an appropriate implementation. Then
the second least connected class (Hand in this example) is chosen and so on until the whole system is
implemented. We will present a little case study that demonstrates its power in section 7.5.

The other approach that looks promising in order to save manual labour is to speculate on the capability
of the dependency resolver. It might be able to discover required classes if test cases for the most
connected class (i.e. the one with the most dependencies) from the design are created and executed first.
Once a candidate for these test cases is found it is possible that the dependency resolver might find the
other required classes without additional manual effort. This idea was applied for the above blackjack
example and yielded two implementations from the web without further human intervention. This
comes already quite close to the approach that is envisaged in KobrA [Atk02] and would use the
specification of the upper-level component to find the complete ensemble in one go. Although we were
able to find a picture viewer, an arkanoid game and other applications based on speculative searches by
means of such a dependency resolver, one inherent problem could not be solved within this dissertation
– the problem that the component concept that is incorporated in KobrA is not implemented in today's
programming languages. We discuss this challenge in more detail in section 6.2.

 Deck

+shuffle():void
+deal():Card

Deck

+shuffle():void
+deal():Card

Card

+toString():String

Card

+toString():String

Hand

+addCard(Card)
+removeCard(Card)
+getValue():int

Hand

+addCard(Card)
+removeCard(Card)
+getValue():int

BlackjackHand

+getValue():int

BlackjackHand

+getValue():int

110 - SEMANTIC COMPONENT SEARCHING

5.7 IMPLEMENTATION

As we already pointed out at various points during this dissertation, an appropriate tool is a very
important requirement for the application of our ideas and the only vehicle to demonstrate that they are
applicable in practice. Although the overall Extreme Harvesting process is straightforward and should be
rather simple to implement, “the devil is in the details”, as is often the case. From the first standalone
prototype, through various Eclipse-based versions to the current sophisticated (and safe) client-server
implementation of Merobase, the implementation of each version had its special challenges. Whether it
be the execution of the Java compiler and the analyses of its error messages, the correct configuration of
the Java security manager, the use of Ant tasks to simplify compilation and testing, or the difficulties of
Eclipse programming (see [Jan07] for some more insights on that), many tasks often caused unexpected
difficulties due to weak documentation. However, we do not want to go into all implementation details
at this point and thus limit ourselves to the essentials in this subsection. The following figure summarizes
the current structure of our system, which is organized as a classical 4-tier-architecture (as described e.g.
in [Som06)]:

Figure 5.10: System architecture for Extreme Harvesting with Merobase.

The remainder of this chapter, covers the most important issues in the structure and implementation of
our current client-server solution depicted above. Since it is of more interest for users of our approach,
we want to discuss the ideas behind the Eclipse plugin first before turning to the backend
implementation.

5.7.1 ECLIPSE PLUGIN

Related work has given strong indications that reuse seems to work best if queries are created
automatically (or proactively) out of the developer's current working environment and reuse candidates
are recommended in an unsolicited way [YeF05] & [McC07]. Thus, we also built a proactive reuse
recommendation tool integrated in a common development IDE. Obviously, a successful
implementation of this idea would immediately avoid most of the reuse failure modes discussed in
section 2.5.2. The precondition for a successful reuse recommendation tool following this maxim,
however, is that it is able to automatically generate queries from what the developer is currently doing. In

Client Tier Web Tier Business Tier DB Tier

HSQLDB

Lucene
Index

Web Server

XML

Plugin

Browser

HTML

Entity Beans

Application
Server

(Business Logic)Struts

Queries

IMPLEMENTATION - 111

other words, such a tool should be able to trace the programming activities of a developer and
automatically send off queries at appropriate points in time. Exactly this issue was a fundamental
weakness of CodeBroker since it required its users to “actively” comment the source code they were
working on. In other words, developers had to describe the code they intended to write in natural
language before they starting to implement it. This was necessary to generate the queries for the LSI-
based [Dee90] search system driving CodeBroker. However, in our opinion, much of the advantages of a
proactive system are lost if developers have to “describe” their intentions to the system first. Since
Extreme Harvesting and Merobase were developed with this issue in mind, we were able to optimize our
plugin to avoid such problems. Our so-called component finder Eclipse plugin simply monitors the
coding work of the developer and when some specified event occurs (to be described later) the interface
of the code is extracted, and sent to Merobase as a search query. Since Merobase is able to parse (Java)
code this can happen totally transparently to the developer. Reusable components can then be presented
to the user within just a few seconds. The following figure illustrates how this functionality can be used
in practice to carry out interface-driven searches on Merobase:

Figure 5.11: Our Eclipse plugin suggesting reusable candidates
based on an interface-driven search.

As soon as a user adds a new method signature to the class he is editing in the area at the top of the
figure, the plugin recognizes the new information, sends it to Merobase and provides the user with reuse
recommendations that are likely to be useful in his context. It does not even matter that Eclipse
complains about the missing return statements inside the method bodies. Once the lower segment of the
window is populated, the user can browse the discovered components and study their code in the right
hand part of the window. If a satisfying candidate is found, a double click on the candidate or one of its
methods in the tree on the left will copy exactly the desired element to the correct place in the editor at
the top.

112 - SEMANTIC COMPONENT SEARCHING

Within the context of an agile development project that utilizes test-driven development (TDD), it is
possible to go even further. In the purest form of TDD, developers do not start their development or
design work with the class stub, instead they write a suitable test case before any production code is
written. For the Calculator example from the figure above such a test case might have the form
shown in the following figure. Thus, the key point in this variant of the process is that the class under
test (e.g. the Calculator) does not even exist, which again leads to problem reports in Eclipse:

Figure 5.12: Using Eclipse's "quick fix" function to derive a class
stub from a test case.

A test-driven development purist would now use the “quick fix” function of Eclipse and let it generate
the missing class and its methods one after the other, which might at least save some time in comparison
to the manual creation of the stub. But our plugin is able to reduce the workload even further. As soon
as the user has created a viable test case in the top window, the tool can start searching for matching
components. The list of syntactically matching components is again displayed in the bottom left-hand
window proactively after just a few seconds. However, using a test case as the search query offers another
significant advantage as it allows to fully implement semantic retrieval based on Extreme Harvesting and
thus to directly and fully test all reuse candidates in the result list using the defined test case:

Figure 5.13: Test-driven reuse proposals by the Eclipse plugin supporting Extreme
Harvesting.

IMPLEMENTATION - 113

As soon as a component is successfully tested, its name is written in bold face and green as shown in
figure 5.13. To provide this ability to deliver results as soon as they become available, the plugin
regularly polls the server every 15 seconds in order to check if new results are available (since the
underlying Opensearch protocol is based on HTTP). Often, studying the code of discovered
components gives the user more insight into the required behaviour of the component, and if none of
the initially proposed candidates is exactly suitable, he can extend the JUnit test definitions and continue
the “harvesting” process in an iterative way until either an acceptable candidate is discovered or no more
candidates are available. A simple case study using this plugin is described in section 7.5. For details on
the client-side implementation of the plugin we refer to [Jan07]. An overview of the architecture on the
server-side is given in the next subsection.

5.7.2 SERVER-SIDE IMPLEMENTATION

This subsection gives a brief insight into the system structure on the server-side. Basically, as already
indicated above (in figure 5.10), Merobase is implemented as a classical 4-tier-architecture comprising
the client tier with the web browser or the Eclipse plugin just explained and the three server-side tiers.
These comprise the web tier, the application server (JBoss), containing the business logic and the Lucene
index and finally the database that stores the EJBs. As far as the search engine functionality of Merobase
with the web front end is concerned, current dual-core servers (as of October 2007 with 2*1 GHz, 2 GB
RAM, 200 GB HDD) are easily capable of satisfying a user request in typically less than five seconds.
Merobase began as a web application that had to be used through an HTML-based interface in a web
browser in early 2006. For programmatic access to our search engine we later added an API and slightly
extended the Opensearch format [Cli07] developed by Amazon for that purpose. It delivers an XML
feed that can be parsed and processed by tools such as our Eclipse plugin.

The architecture described above is not sufficient for Extreme Harvesting, however. When large numbers
of files have to compiled and tested, significant processing power is needed and security risks caused by
the execution of unknown code are introduced. Thus, it makes sense to externalize this task to one or
more supporting machines. This, might be sufficient in terms of performance, but not in terms of
security and thus we developed a solution based on virtual private servers (VPS) as shown in the
following figure:

114 - SEMANTIC COMPONENT SEARCHING

VPS
Manager

VPSVPSVPS

Merobase
Server
Merobase
Server

Physical Server

Testing and
Load Distrib.
Service

Testing and
Load Distrib.
Service

Testing
Client

Testing
Service
Testing
Service
Testing
Service

Figure 5.14: Harvesting system architecture.

There are various open source (such as Xen developed by the university of Cambridge) or commercial
(e.g. Virtuozzo by SWSoft) solutions available that allow an arbitrary number of isolated virtual
machines to be set up on a physical server. Today, these are already in widespread use by hosting
companies that offer virtual servers to their customers. We use this approach to provide the security
needed to execute test cases and unknown code from the Internet and to provide sufficient control over
the resources of the server. Although we haven't experienced any problems with malicious code in our
experiments so far, it is likely that such attempts will occur as soon as such a service becomes publicly
available Each running VPS instance is periodically checked by the VPS Manager, and as soon as it
becomes aware of any problems (such as a system not responding anymore), it shut down the running
instance automatically and powers up a new one. Such a switch usually takes about 60 seconds until the
new VPS is fully operational.

We run a Tomcat web server on the VPS which provides a web service based interface to the testing
service to the main Merobase server. The latter, sends test cases and a list of files to test to the VPS which
then performs the compilation, dependency resolution, permutation and test case execution steps as
explained in the previous parts of this chapter by utilizing further open source tools such as JUnit and
Ant. The test results are collected on the main server and are sent back to the Eclipse plugin as soon as
this polls the server or to a user of the website by email once the specified number of results have been
tested.

6 PROCESS INTEGRATION

Organ transplants are best left to professionals.
Organ transplants are best left to professionals.
Organ transplants are best left to professionals.

...
-- Bart Simpson‘s Chalkboard

It is interesting that component-based reuse has been on everybody's lips for almost four decades, but
there is still very little theory on how to apply it in common development processes, as discussed in
section 2.6. In this chapter we thus describe how the ideas of this thesis can be used to integrate and
foster reuse in today's software development processes. Given the sheer number of software development
processes and methodologies we choose two representative examples – namely Extreme Programming
[Bec99] and KobrA [Atk02] - to demonstrate how the findings and developments of this dissertation can
be used to enhance everyday development practice. It should be straightforward from the presented
processes to integrate these results into other methodologies – such as an Agile RUP as proposed
by[Lar05] – as well.

Since the current generation of publicly accessible component repositories are almost all source code
centric and offer only basic text-search capabilities, at the present time it is difficult to use them for more
than just “code scavenging” [Kru92]. This practice involves copying and pasting of small code snippets
into the system under development and is discouraged in many publications such as for example the
Anti-Pattern Book [Bro98]. The argument against the reuse of such snippets is that it requires a lot of
effort to find appropriate snippets and their use is more likely to degenerate the design of the system
under development than to improve its quality. However, these snippets can certainly be useful if they
are used as an inspiration for how to solve a problem, rather than as a way of avoiding the programming
of the solution from scratch. With the techniques developed in this dissertation it has become possible to
increase the granularity of reusable elements up to small components which can be selected based on
their specification in the system design. However, although software reuse has been the subject of
research for almost four decades, there is still no clear picture of when and how reusable components
should be used in a development process. Even modern development methodologies contain few if any
guidelines on how to select components based on their specification. In general, since reuse candidates
will usually not match perfectly, a feedback loop is often necessary where either the design or the

116 - PROCESS INTEGRATION

candidate have to be adapted, as we have already explained in section . To our knowledge, this idea is
currently best described in [Crn06].

Our own experience with reuse repositories indicates that the best kind of component search to use in a
development process depends heavily on the point of time at which the search is performed rather than
on the nature of the process itself. The earlier the point in a system’s development process at which a
search for reusable components is performed the less design work is likely to have been carried out.
Hence, a general “speculative” search is more useful in early development phases and can feed back
valuable information about available components and their interfaces into the design process. On the
other hand, if a component search is carried out at a relatively late point in the development process, an
interface- or even a specification-based search (the latter includes a semantic description as well)
approach is required. Furthermore, if binary components or web services are to be the subject of the
search, there is no source code and thus the search has to use interface descriptions in any case.
Considering these differing requirements, a component search engine must be very flexible and none of
the first generation code search engines is able to support them all. The next subsection will discuss how
the advanced features of Extreme Harvesting can be utilized within test-driven (i.e. typically agile)
processes.

6.1 REUSE IN TEST-DRIVEN PROCESSES

Iterative and incremental development and software reuse are both strategies for building software
systems more cost effectively. Iterative (and especially agile) methods do this by shunning activities
which do not directly create executable code and by minimizing the risk of user dissatisfaction by means
of tight development cycles in functionality is implemented. Software reuse does this by simply reducing
the amount of new code that has to be written to create a new application. Since they both work towards
the same goal, it is natural to assume that they can easily be used together in everyday development
projects. However, this is not the case. To date, incremental development and systematic software reuse
have rarely been attempted in the same project. Moreover, there is very little, if any, mention of software
reuse in the agile development literature, and at the time of writing, there is only one published reuse
concept whose stated aim is to reinforce agile development. This is the so called “agile reuse” approach of
McCarey et al. [McC07].

The reason for this lack of integration is the perceived incompatibility of incremental approaches and
software reuse. Whereas the former explicitly eschews the creation of software documentation, the latter
is generally perceived as requiring it. And while agile methods usually regard class operations (i.e.
methods) as defining the granularity of development increments, reuse methods typically regard classes
as the smallest unit of reuse in object-oriented programming. As a third difference, reuse approaches tend
to be more successful the “more” explicit architectural knowledge is reused (as in product line
engineering), whereas agile development methods employ as little explicit architecture as possible. At first
sight, therefore, there appear to be several fundamentally irreconcilable differences between the two
approaches.

REUSE IN TEST-DRIVEN PROCESSES - 117

McCarey et al. suggest a way of promoting reuse in agile development through so-called “software
recommendation” technology. Their “agile reuse” tool, RASCAL [McC07] is an Eclipse plugin which
uses collaborative and content-based filtering techniques [Bae99] to proactively suggest method
invocations to developers. Although the concept of RASCAL fits well into the agile spirit of providing
maximum support for “productive” activities, there is nothing in the technology which specifically ties it
to agile development. The approach embodied in RASCAL can just as easily be used with any other
development methodology that produces code, including traditional heavyweight processes. Moreover,
the approach has the same fundamental weakness as other repository-based approaches – the quality of
the recommendations is only as good as the quality (i.e. the size and the precision) of the code repository
that is used to search for components. The version of the tool described in [McC07] is clearly a
prototype, but McCarey et al. do not present a strategy for solving this important problem. Moreover,
although RASCAL showed impressive performance for the limited domain of Swing invocations, it is
not clear whether this technique will work for other domains with repositories containing many more
classes that have much lower usage frequencies.

We believe the core challenge of agile reuse lies in developing a reuse strategy that complements the
principles of agile development and offers a way of promoting reuse in tandem with the key artefacts and
practices of agile methods. In other words, we need to find a way to seamlessly integrate Extreme
Harvesting into agile methodologies. Typically, tests are used as the basic measure of a unit’s semantic
acceptability. Once a code unit passes the tests defining its required behaviour, it is regarded as
“satisfactory” for the job in hand. Usually the code to satisfy the tests for a unit is implemented by hand.
However, there is no specific requirement for this to be so as we have shown in this dissertation so far.

6.1.1 AN EXTREME PROGRAMMING EXAMPLE

As mentioned above, our approach most obviously fits with agile approaches for software development,
since these normally also involve the definition of test cases prior to the attainment of implementations.
The creation of test cases to evaluate software units is one of the fundamental tenets of Extreme
Programming [Bec99] – in fact, they are usually defined before the units they are intended to check.

We assume that the reader is familiar with other fundamental principles of Extreme Programming such
as the four values of communication, simplicity, feedback and courage and the many recommended
practices. For further details we refer to [Bec99], for instance. The test-driven nature of XP requires in
particular that unit tests be written for a software unit before the code itself. These tests are used as the
primary measure for completion of the actual code. The maxim is that anything that can’t be measured
simply doesn’t exist [Bec03] and the only practical way to measure the acceptability of code is to test it.
To illustrate how test-driven development works in practice let us consider a small example. We choose
the Movie class that, together with a Customer and a Rental class, forms the initial version of the
well-known video store example in Martin Fowler’s refactoring book [Fow99]. This class is required to
offer one constructor and three methods with the following signatures:

118 - PROCESS INTEGRATION

public class Movie {
 public Movie(String title, int priceCode)
 public String getTitle()
 public int getPriceCode()
 public void setPriceCode(int priceCode)
}

Please note that we only presented the full interface of this class here in order to facilitate a better
understanding. Following the recommendations of Beck [Bec03], the XP development cycle would
normally be applied iteratively, driven by the following to-do list:

 Create object with title and price code
 Retrieve title
 Retrieve price code
 Change price code

The basic idea is to define tests to check that the constructor works correctly in tandem with the retrieval
method. This can be done by using one combined test or using a separate test for each retrieval method.
In this example we choose the latter since it is the more realistic for larger components. First a JUnit
[Bec99b] test case is created for the retrieval of the movie’s title:

public void testTitleRetrieval() {
 Movie movie = new Movie("Star Wars", 0);
 assertTrue(movie.getTitle().equals("Star Wars"));
}

In practice, test cases would probably be more elaborate (for example, they might follow the principle of
triangulation [Bec03]) but for sake of simplicity we have decided to stay with the most simple example.
This is enough to convey the core idea. In the next step, a stubbed out version of the Movie class
(similar to the signature above) with just the constructor and the getTitle method is generated (TDD
purists typically use the quick fix function of Eclipse) and is made to compile. After this, the test case
and the stub are compiled, and the test is run to verify that a red bar is obtained from JUnit. Once the
failure of the test has been checked, the stub is filled with the simplest implementation that could
possibly work, and the test is re-run until a green bar is received from JUnit. The to-do list is then
updated accordingly:

 Store title and price code
 Retrieve title
 Retrieve price code
 Change price code

The same process is then applied to the next method on the to-do list. First, a test case is defined to
check the functionality of the new method in relation to the already implemented code, a new method
stub is added to the existing version of the class and the tests are executed to check that the new one
actually fails:

REUSE IN TEST-DRIVEN PROCESSES - 119

public void testPriceRetrieval() {
 Movie movie = new Movie("Star Wars", 0);
 assertEquals(movie.getPriceCode(), 0);
}

The stub for the new method is again filled out with minimal implementation and the test is re-run until
a green bar is received from JUnit. The to-do list is then updated again accordingly:

 Store title and price code
 Retrieve title
 Retrieve price code
 Change price code

The last method of the class is then implemented in the same way and finally, the to-do list is completed.

6.1.2 EXTREME REUSE

As explained above, the basic idea behind our notion of agile or extreme reuse is to use test cases that are
developed as part of the normal activity of Extreme Programming as the basis to search for suitable
existing implementations. However, to achieve the maximum benefit of our specification-based reuse
approach, it would be necessary to define the test definitions for all methods and thus the unit's
complete interface in advance. Then, if the harvesting is successful, the only additional step would be the
invocation of our reuse tool. All additional implementation work usually involved in building a
component from scratch would thus be avoided. However, this approach suffers from some drawbacks.
First, it requires an unnatural processes from the point of view of agile developers who are used to
iteratively developing a unit under test as explained in the last subsection. Thus, the full specification-
based approach is probably more suitable for an agile version of the RUP, as recommended by [Lar05],
since the RUP recommends that a system design be created before the test cases are prepared on the basis
of UML class diagrams. We discuss this idea in more detail in the next subsection when we will present
an agile version of KobrA. The second issue arising in this context is the difficulty of anticipating the
content of the reuse repository, which has plagued all reuse approaches right from the beginning. As we
mentioned before, the more complex a component becomes, the lower the probability of finding a
reusable component that exactly matches its specification [Sam97]. Thus, all reuse approaches developed
so far include a negotiation phase where the specification is changed to conform to the retrieved
candidates and/or a glue coding phase where the components are adapted to fit into the system design
(cf. e.g. figures 2.12 and 2.14 in section 2.6).

Given our Extreme Harvesting approach and our proactive Eclipse plugin, we are able to reduce this
overhead significantly if we integrate it in a straightforward manner into a test-driven process, as
sketched in the last subsection. The general idea is to provide immediate feedback on each new test
added to the test case class. Thus, we optimized our plugin accordingly in order to support the following
process demonstrated by means of the movie example from above. The first action where our plugin can
intervene occurs when the developer is about to create the new test case, as shown in the figure below:

120 - PROCESS INTEGRATION

Figure 6.1: The Eclipse plugin recommends potentially useful
methods for MovieTest class.

The proactive search mechanism queries the Merobase index to find out whether other developers have
created a MovieTest class before. In this case there are actually 16 results available. With a little luck,
we might find a test case that corresponds well with our to-do list and could avoid the work of deriving
our own test for it. Out of these 16 results, our plugin is able to derive the most often used methods and
presents them as the first result. However, the test methods written by other developers are not
particularly useful at this point. And even a brief overview of the results presented does not reveal any
test case that would test the functionality we require. Thus, we continue to add the first test method to
our test case as designated in our to-do list which them makes it possible for our plugin to generate a
new list of recommendations. This time, it realizes that we specified functionality of another class within
the test case and thus presents a list of Movie classes that are potentially capable (based on a syntactic
analysis) of delivering the needed functionality as shown below:

Figure 6.2: The plugin presents reusable candidates that are
likely to offer the required functionality.

Just another click to trigger the testing of the presented candidates delivers the following list where
successfully tested candidates are printed in green and bold face:

REUSE IN TEST-DRIVEN PROCESSES - 121

Figure 6.3: List of results that
actually deliver the required

functionality.

This step obviously is the key of the whole test-driven reuse process. If no syntactically suitable
candidates are found, we could change the interface of the class under test. However, the probability of
finding a usable candidate would obviously be rather low and it might make more sense to focus on
programming from scratch. Since we have actually found a large number of matching candidates, we
could now take advantage of the additional information that these candidates bring along. We could
either create a Movie class and copy the required constructor and method from one of the candidates
and continue with a test case for the next requirement on our to-do list or we could choose the candidate
that seems to be closest to our to-do list and integrate it completely into our project. After all, the latter
alternative bears the risk of significant adaptation effort since it is not guaranteed that the interface of
this candidate fits into the system under development and the test cases that are to be defined for it.

Thus, we believe, it makes sense to create a hybrid version of both approaches and add one test method
at a time and let Extreme Harvesting present all candidates that successfully pass the test at each point.
As long as there are more candidates available, another test method can be added with the interface that
is desired for the system and the ones that are offered by the candidates. In this way, it is feasible to
incrementally add more and more functionality to be checked to the test case until there is either a
number of candidates that offers the full functionality or there are no more appropriate candidates. In
the former case, one of the candidates can be selected to be integrated into the system and in the latter
case, one of those candidates that was left over before the last test method was added should be chosen. It
can be integrated into the system and the additional functionality added manually.

6.2 COMPONENT-DRIVEN DESIGN WITH KOBRA

It follows from the previous discussions that the ideal methodology for use with our Extreme Harvesting
approach is one which integrates model-driven and component-based development approaches and
allows them to be applied within the context of an agile development process. Several methods claim to
do this, such as Catalysis [Sou98], UML Components [Che00] or even an agile variant of the RUP, as
described e.g. by [Lar05], although the latter has certainly weaknesses in being component-based. We
believe the method which currently offers the cleanest integration of these two paradigms is KobrA
[Atk02]. The essential difference between KobrA and other mainstream methods that claim to integrate
components and models is that in KobrA all UML diagrams (not just their contents) are organized
around the logical components in a system. Thus, components are considered in analysis and design (at
the level of the platform independent model or PIM) rather than just at the implementation (i.e. the

122 - PROCESS INTEGRATION

platform specific model or PSM) level as is often the case in other methods. KobrA uses the three
different perspectives we have depicted in figure 2.6 to specify the structure, functionality and behaviour
of a component.

As long as a KobrA component is implemented by just one class, it is relatively straightforward to
translate a KobrA component specification into a query for Merobase and Extreme Harvesting. If
appropriate UML tools (such as Omondo or Together that can be run inside Eclipse) are used, even a
proactive search on KobrA's structural specification (the interface of the class specified in a UML class
diagram) becomes feasible since the tools are able to generate class stubs usable as input for Merobase
from their class diagrams. KobrA's behavioural specification, which is typically captured in state
diagrams, can easily be turned into test cases (see e.g. [Kim99]). KobrA, in its latest version, aims to
capture the functional specification of a component in OCL [War03]. Although at present it is not
feasible to use OCL as the semantics description for our search approach, there is research underway that
aims to executing OCL descriptions for testing (see e.g. [Bri01]) or derive test cases from them. In
summary, a KobrA specification can be turned into an Extreme Harvesting query with relatively little
effort and that should be automatable in the not so distant future. Moreover, this effort would usually
have to be performed in any case in order to to finally test the component once it is implemented.

However, as stated before, KobrA defines a hierarchical component model which is capable of
condensing a number of smaller components into a larger one. Although this is, in principle, similar to
packages in common programming languages, packages are not sufficient to implement this idea since
KobrA components can not only package other components, they are also facades [GoF95] at the same
time. Unfortunately, the latter is not possible in today's programming languages, which makes it very
difficult, if not impossible, to apply the KobrA component model to them in a simple way since
important KobrA concepts are not directly supported. Although we are not aware of any work in this
direction, we believe it should be feasible to mimic the behaviour of nested KobrA components in Java
by means of inner classes. But this idea is not thought through yet and also comes with two important
drawbacks. First of all, the composition of these Java classes to new components would involve copying
subcomponents into the source code of their parents which is fundamentally against the rule that a
component must be independently deployable and furthermore it would make this approach highly
confusing after just one or two composition levels. The second problem with this approach at the present
time is that it is not widely known, let alone widely used and thus it is not possible to find any existing
components that adhere to this principle. Unfortunately, it is also not feasible to adapt existing packages
of class ensembles into KobrA components as described in section 5.6. This would require extensive
reverse engineering to extract the structure of the facade inherently hidden in the interfaces of the classes
in the ensemble, and thus could only be carried out by a human.

Beyond these technical issues, the design-first approach just described is not the way in which product
architectures are developed in other engineering disciplines. When developing a new product in well
established domains such as automobiles or computer hardware, engineers start off with a good idea of
what kind of components are available and what kinds of architectures have been used in the past. The
process of developing a new architecture for a new product is thus a highly iterative one, with ideas for
possible architectures being developed hand in hand with the identification of possible components to
realize them. Like the agile reuse approach described above, the basic process behind component-driven

COMPONENT-DRIVEN DESIGN WITH KOBRA - 123

design in KobrA should be highly iterative, and therefore requires a tight feedback loop between the
component identification and component selection activities:

1. Model pre-existing components
2. Flesh out potential first cut design, reusing already identified components wherever possible
3. Model the interfaces of any new components required in the design
4. Search for new components matching these interface
5. If perfect matches are found for all new components, use them
6. If not, repeat from (2)

Figure 6.4: Iterative component modelling process
in KobrA.

The key ideas behind this process are illustrated in figure 6.4. The central part of the figure shows a
hierarchy of components. Each component is represented as a box whose top surface is the component
specification and whose bottom surface is the component realization. According to the KobrA
consistency rules each subcomponent’s specification must conform to the realization of the component
containing it. In other words it must conform to the containing component’s architecture. The
canonical development process is top down as indicated by the spiral arrows in the centre. However, the
left hand side of the diagram illustrates that whenever a desired component specification has been
created, it is possible to find and integrate an existing component rather than developing a new one from
scratch. And this is where Extreme Harvesting comes in. It is the job of the Extreme Harvesting engine
integrated into the development tools to find and present candidate components based on the
component specifications and the associated test cases. It is even conceivable to use an extended version
of our tool to find of components at runtime. The developer simply defines the syntactic and semantic
interfaces of the required component and the tool can search the web or a web service registry for
components that match.

But the real key advance in this process, and the reason why we refer to it as component-driven design is
that the architecture is always developed or evolved with regard to the specifications that are known to
exist and have already been defined. As in other engineering disciplines, therefore, architects have a pallet
of existing components in front of them when developing the architecture. This contrasts with the
situation today where architectures are first developed independently and then an attempt is made to

124 - PROCESS INTEGRATION

retrieve components matching those required by the architecture. In component-driven design, feedback
about the availability of components is provided as soon as a potential architecture to use them is
modelled.

Large software repositories such as the one that we created for Merobase open a lot of exciting
opportunities. One of them is the idea to derive design recommendations from commonly used elements
found in the repository, as we described in section 5.1.5. Although this idea is not limited to KobrA per
se, we will explain how to apply it in the context of component-driven design within KobrA in the
following subsection.

6.2.1 SUPPORTING SOFTWARE DESIGN WITH INTERFACE RECOMMENDATIONS

Assume that early in the design phase of a system the necessity of a stack data structure is recognized. At
this point, a developer might add a corresponding class without any further information to the system
design to refine it later. Then, design is typically driven by interactions with other objects to define the
interface of the stack component. But consider a system that would be able to (actively) recommend
commonly used operations of a stack to the developer. This certainly has the potential to ease the
development process and to reduce problems arising due to missing operation interfaces and, of course,
it makes a giant leap towards realizing the idea of grounding a design on approved solutions. Although
the current version is limited to unique classes, it is easily conceivable to extract dependencies as well and
to form more complex design recommendations from that. Furthermore, given common code and
design metrics such as fan-in and fan-out [Hen81] it should even be feasible to recognize bad designs
and to exclude them from the recommendation process. And last but not least, it seems appealing to
investigate the potential of integrating approaches that try to recognize design patterns (such as [Kel99])
to improve the quality of the derived design suggestions.

6.3 GENERAL DESIGN GUIDELINES FOR SUCCESSFUL REUSE

Endres and Rombach [End03], identify common object-oriented design guidelines like high cohesion,
low coupling and encapsulation of the implementation as the prime prerequisite for successful reuse. In
general, it seems reasonable to claim that adherence to general design guides and rules should also
increase the chances of creating a reusable component or of finding one. During the development of our
approach we collected a lot of additional informal knowledge that seems to increase the chances of
finding reusable components with Merobase and/or Extreme Harvesting. We share this experience in
this subsection in the form of small reuse idioms that are intended to simplify daily work with a reuse
system based on a large repository.

Follow naming conventions
It obviously makes sense to follow the (Java) naming guidelines such as using imperative verbs for
method names, nouns for class and attribute names etc.

Use common data types
Modern computer systems with a lot of cheap memory obviously made programming more convenient
and thus some primitive data types are still widely used. According to our experience, it makes sense to

GENERAL DESIGN GUIDELINES FOR SUCCESSFUL REUSE - 125

use double instead of float (e.g. add(double, double):double vs. add(float,
float):float = 190 vs. 67 results in Merobase), int instead of long, short or byte (results for
the add example from before: 920, 503, 20, 19) and String instead of char whenever this is feasible.

Use void whenever possible
Method calls that perform some operation on a potentially larger data structure (such as sort(int[]))
should return void and change the parameter object whenever possible to preserve memory, e.g.
quicksort(int[]):void could be found 140 times with Merobase while
quicksort(int[]):int[] delivers just 13 results.

Use exceptions
Exceptions should be part of the interface, i.e. they should be thrown by a method and not be handled
internally since different users may have different requirements for exception handling.

Combine atomic functionality
Searching for atomic functions is often more promising than searching for complex operations. For
instance, components that sort an array of integers from the largest to the smallest are rather hard to
find, but components that sort from the smallest to the largest and provide a method to reverse the array
are typically easy to find. Sometimes it might also make sense to split up classes if their cohesion is low
since this has also a negative impact on their reusability. According to our experience, reuse is currently
much more promising if it is used as a bottom-up approach putting together very small functional units.
Top-down reuse requires more sophisticated recommendation technologies, as we will briefly describe in
the next section.

Search the least- coupled elements first
A guideline which is valid for the implementation and testing of components should be taken into
account when searching for reusable components as well – namely, move from the least-coupled to the
most-coupled classes as recommended by [Lar05], for instance. Many problems disappear if this
guideline is followed, as for example demonstrated in the small case study described in section 7.5.

126 - PROCESS INTEGRATION

7 EVALUATION

Computers are magnificent tools for the realization of our dreams,
but no machine can replace the human spark of spirit, compassion, love, and understanding.

-- Louis Gerstner

Empirical evaluation in software engineering has been gaining importance for many years. It has been
recognized (e.g. by [Bas86]) as something that could bring software engineering closer to the established
standards of other engineering disciplines. In the last few years empirical evaluations in software
engineering have made significant progress by for example integrating practices from the social sciences.
However, the evaluation of software development approaches in general is still a difficult (and perhaps
hence also a widely disregarded) undertaking that requires a very high degree of effort. Reuse-based
approaches are even more problematic in this context since it is by no means a trivial issue to assess the
quality of software retrieval approaches as we will explain in the first part of this chapter. However, it is
not only the effectiveness of retrieval techniques that influence the practical usability of reuse approaches,
but also the tools, the content of the repository, the domain of application, and the underlying process,
for example. In other words, a lot of variables may influence the results and it is not always easy to
control them. Thus, basic and innovation-oriented research is certainly still justified and necessary. This
aligns with the argumentation of [Nun90] who recommend a multi-level evaluation approach to
information systems research which we adopted for this thesis as explained in section 1.3. Hence, it was
not possible to perform full empirical evaluations on the developed technology at the present time.
Instead we evaluate the approach by demonstrating its practical feasibility in smaller proof of concept
experiments and small case studies as presented below.

7.1 EVALUATION APPROACHES SO FAR

[Bae99] present two common criticisms of information retrieval (IR) research, namely the lack of a solid
formal framework and the lack of consistent testbeds and evaluation frameworks. software engineering in
general, and component retrieval in particular, are obviously open to the same criticism. The authors
argue that the first criticism is hard to address due to the inherent psychological subjectiveness associated
with information understanding by humans. Thus, only the second problem can currently be acted

128 - EVALUATION

upon. Retrieval approaches for textual information retrieval are typically compared on so-called reference
collections where queries are applied to a well-known collection of documents and the expected results
are determined by experts. However, until the so-called TREC (for Text REtrieval Conference)
collection with more than one million documents was established in the early 1990s, experimentation in
information retrieval had only used small and proprietary “proof-of-concept” test collections for nearly
thirty years. However, for the determination of the relevant result a trick had to be applied since the
collection is simply too large to be known completely by humans. The reference queries were created by
experts and the list of relevant documents was actually created by selecting only the documents that were
actually regarded as being relevant by the experts from the results delivered by various IR systems. With
this (imperfect) information it has become fairly simple to compare various information retrieval
approaches with one another and to calculate recall and precision for them in a comparable way.

Research in software reuse, however, is still many years behind. In the first place, the notion of relevance
is typically different compared to textual retrieval systems. While the latter focus on finding potentially
meaningful documents in natural language, the basis for component retrieval are typically programming
languages and their more formalized constructs. Thus, it is possible to define a much tighter definition of
relevance in the software reuse context. In the optimal case, a component is relevant if it matches the
required syntactical as well as the semantic properties to 100% and thus can directly be re-used in the
given context without any modification. While syntactic matching is essentially a question of pattern
matching, it is not guaranteed that a syntactic match also delivers relevant results in terms of
functionality. Relevance in textual information retrieval does not require an exact syntactic match,
however, as there exist various ways to express the same information with natural language. Actually, this
fact is valid for components as well, but a component will only be relevant to a developer if it adheres to
the interface defined by him. Thus, we can extend our notion of relevance to all components that deliver
the required functionality (i.e. match semantically) and can be adapted to the required interface
automatically.

Furthermore, in the component retrieval literature, there is nothing like a common reference collection
which would allow component repositories or component discovery algorithms to be evaluated. The few
evaluations known so far are all based on proprietary collections with merely a few hundred components
([Fra94], [Pod93]). To date, only [Ino05] has experimented on a significantly larger component base.
Furthermore, all three named experiments only applied one retrieval technique. Thus, they were limited
to rather imprecise queries and were not able to provide a comparison of different techniques per se. In
addition, most previous evaluation attempts suffer from serious methodological flaws that make it
difficult to transfer the results to today's conditions. The relevance criterion used from the [Ino05]
article, for instance, is not made explicit, but it is likely that it was merely the appearance of a specific
term in the source code. However, the fact that we can only assume this, together with the fact that they
used a proprietary repository, make it very difficult if not impossible to replicate their study. Other
experiments such as those performed by Ye in his Ph.D. thesis [Ye01] to demonstrate the usefulness of
his CodeBroker system suffer from additional problems. Due to the small number of components
indexed in his prototype, his experimental tasks look very much as if they were optimized for the
contents of his repository. Thus, it is very difficult to judge whether his tool would have received such
impressive appraisals in a scaled-up version in a productive environment.

PROOF OF CONCEPT - 129

7.2 PROOF OF CONCEPT

The background for our evaluation is different, however. We used the open web in our early
investigations and now possess a repository with millions of entries that we obviously can no longer
oversee manually. Moreover, older retrieval techniques are not precise enough to be used in this context.
Thus, as explained before, we combine three retrieval techniques to create our hybrid Extreme
Harvesting approach. Since we are not aware of any other similar work at the moment, we cannot
directly compare our results with other systems. Thus, the only reasonable approach for evaluating
whether our approach is at least equivalent to other approaches is to demonstrate its applicability based
on retrieval examples collected from the literature.

Another insight into the demand for component searches and thus a good source for retrieval
experiments is provided by Koders.com. Like Google’s “Zeitgeist” search statistics, Koders has started to
publish statistics about the most requested search terms for specific programming languages. For
example, one popular request to Koders in May 2005 was for an algorithm to calculate the MD5 hash-
value for a given string. The following table gives a first impression of the capability of an early Extreme
Harvesting prototype using three publicly available search engines as repositories. It shows that it is able
to handle the examples of older approaches effectively. The table presents results for various stateless
components (i.e. just operations) that contain frequently used algorithms. The first column presents the
method names that we used for the search, the second the signature that we entered into our system, the
third the number of results discovered on the web from the given search engine in each case, and the last
the literature source that provided the inspiration for the example.

Name Signature Koders Yahoo Google Source
getRandomNumber int x int: int 3 6 2 [YeF05], [Ino05]
sort int[]: void 1 12 15 Koders
reverseArray int[]: void 0 10 6 -
copyFile String: void 2 1 0 Koders
isPrime int: boolean 1 8 14 [Hal93]
sqrt double: double 2 9 5 [Pod93]
isLeapYear int: boolean 1 29 24 [YeF05]
randomString int: String 1 1 0 Koders
replace String x String: String 14 10 22 Koders
gcd int x int: int 3 68 10 [Cor01]
md5 String: String 3 1 0 Koders
quicksort String[]: void 4 3 2 [Ino05]

Table 7.1: Exemplary query results from June and July 2005.

Due to the heuristics implemented in our first prototype, results with slightly different names were
adapted to the original signature and also accepted, like getRandomInt instead of getRandomNumber
and so on. However, no parameter permutation was available at that time and hence only results
according to orderings that we guessed could successfully be tested. This first proof of concept was based
on publicly available search engines accessible over the web. Only one of them (Koders) is a so-called
vertical search engine focussing on source code searches. For the other two (Yahoo and Google) we used

130 - EVALUATION

the general search interface with the heuristics described in section 4.2. We were actually able to retrieve
useful components from them, although [Yao04] still stated at that time that this would be impossible to
do. Additionally, these results gave a first indication that our harvesting approach used with general
search engines (and the web) at that time performed at least as good as, if not better than the repositories
discussed in the literature,and thus encouraged us to pursue our ideas.

We also used this prototype to experiment with more complex and typically stateful components as
shown in the following table. Interestingly, we were not able to retrieve a single functioning web service
for any of the examples from table 7.1 above and could only find a single web service for the
CreditCardValidator example from table 7.2 presenting some more complex examples below. This
time, for the sake of clarity, we describe the interfaces in the form of UML class diagrams:

Component’s UML diagram Koders
(07/05)

Yahoo
(07/05)

Google
(07/05)

Merobase
(11/07)

Source

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree)
+height():int

0 4 7 0 [Mil98]

Stack

+push(o:Object):void
+pop():Object

6 13 33 150
[Ino05] &
similar to
[Zar95]

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

1 1 3 2 [Cza00]

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

1 1 1 0 [Vit03]

Deck

+shuffle():void
+deal():Card

Deck

+shuffle():void
+deal():Card

Card

+toString():String

Card

+toString():String

0 20 17 20 [YeF05]

Table 7.2: Exemplary query examples for more complex components.

The results demonstrate that even classes and small class ensembles are delivered by our approach with
perfect precision (as long as meaningful test cases are supplied, of course). However, it is also apparent
that anticipating the correct interface for more complex components rapidly becomes a game of chance
and the recall decreases quickly. By way of comparison with the other search engines and our early
prototype, we added our latest version of Merobase (with the simple interface-based harvesting) to this

PROOF OF CONCEPT - 131

table. Further examples used to mitigate the issue of the decreasing recall and to demonstrate the
feasibility of our signature-based, so-called “full” harvesting approach, are discussed in the next section.
The test cases used to evaluate the more complex examples in table 7.2 above and in the tables 7.3, 7.6
and 7.8 are listed in appendix A.

7.3 SEMANTIC RETRIEVAL

Earlier, we defined semantic component retrieval as the retrieval of assets the developer really needs and
have found test cases are a good vehicle to describe the required functionality. In order to achieve fast
retrieval times we use a number of heuristics to cut down the number of candidates to be tested with our
retrieval prototype. However, since we have demonstrated the feasibility of a pure test-driven retrieval
solution, which is totally independent of any (class or method) names, we want to introduce some
examples that illustrate how such a pure test-driven retrieval approach can be used to increase the recall,
without losing precision, as long as enough processing power is available. Thus, we have extended our
search engine to test all source classes from Merobase's index that contain the required signature. The
permutator solution we explained in section 5.4.3 is able to work through all feasible mappings of the
required methods to the matching methods in the candidates. For example, consider again a Stack data
structure which is expected to have the interface shown on the left hand side below. In the pure test-
driven retrieval approach, the Queue on the right hand side would be a valid candidate (since it is
possible to match each method in the Stack to a method in the Queue) and thus needs to be tested as
part of the search process:

Stack (Queue (
 push(Object)void enqueueFirst(Object):void
 pop():Object dequeue():Object
))

The above example is not that impressive at a first glance, since a signature-based mapping would be
totally sufficient in the cut down version shown. However, the Queue candidates found contain a
number of other methods such as enqueueLast(Object) or peek():Object which have the same
signature as the required one. Another, more impressive example is the Calculator class shown in the
table below. Consider its sub method which has two parameters, namely the minuend and the
subtrahend. The permutator enables our system to consider methods in which the two parameters are
contained in reverse order as well. The following table contains some further examples where this
approach works well. We present the specified interface in the first column. Columns two and three
compare the simple interface-based harvesting with the full signature-based harvesting. We show the
number of components that passed the test vs. the total number of candidates in each cell, e.g. for the
interface-based harvesting of the stack, 150 components passed the test out of 692 candidates. The small
numbers show how many candidates passed the test out of the first 10 or 100 etc.

132 - EVALUATION

Query Interface-
Based

Signature-
Based

Exemplary Result Classes
for Signature-Based
Harvesting

Stack(
 push(Object):void
 pop():Object
)

150 / 692
2 / 10

37 / 100

26 min 45 s

611 / 35,634
0 / 10
1 / 100
5 / 1000

18 h 23 min

Stack, MyStack,
ObjectStack,
Queue, Deque,
List, LinkedList,
Keller, LIFO,
Pila, ObjectPool,
LifoSet,
CircularList

Calculator(
 sub(int,int):int
 add(int,int):int
 mult(int,int):int
 div(int,int):int
)

1 / 4

19 s

22 / 23,759
0 / 100

20 h 24 min

Calculator,
CalculatorImpl,
Moclecule,
Arithmetic,
SimpleMath,
Operators

Matrix (
 Matrix(int, int)
 get(int,int): double
 set(int,int, double):void
 multiply(Matrix): Matrix
)

2 / 10

23 s

26 / 137
2 / 10
20 / 100
5 min 25 s

Matrix

ShoppingCart(
 getItemCount():int
 getBalance():double
 addItem(Product):void
 empty():void
 removeItem(Product):void
)

4 / 4

26 s

4 / 12
2/10

47 s

ShoppingCart

Spreadsheet (
 put(String,String):void
 get(String):String
)

0 / 0

3 s

4 / 22,705
0 / 1000

15 h 13 min

Sheet, Compiler,
Util

ComplexNumber (
 ComplexNumber(double,double)
 add(ComplexNumber):ComplexNumber
 getRealPart():double
 getImagineryPart():double
)

0 / 1

3 s

32 / 89
1 / 10

1 min 19 s

ComplexNumber

SEMANTIC RETRIEVAL - 133

Query Interface-
Based

Signature-
Based

Exemplary Result Classes
for Signature-Based
Harvesting

MortgageCalculator(
 setRate(double):void
 setPrincipal(double):void
 setYears(int):void
 getMontlyPayment():double
)

0 / 0

4 s

15 / 4,265
0 / 100
14 / 1000

3 h 19 min

Loan,
LoanCalculator,
Mortgage

Table 7.3: Comparison of interface-based and signature-based harvesting.

Since our current Lucene index structure delivers a candidate as soon as a required signature appears only
once, it is likely that there are actually far fewer classes in our index that contain the signature int x
int -> int four times as required by the Calculator example. Another challenge is highlighted by
the Matrix example. Since Matrix appears as a parameter and return value in the required signature,
our current index structure is not able to deliver candidates that have a different name. The increase in
results is due to the fact that we have ignored the method names. See section 5.1.2 for a more detailed
discussion on this issue. The ShoppingCart example demonstrates that our system is also capable of
testing classes that depend on other classes. However, at the time of writing, parameter permutation
could not be applied to these additional classes. Furthermore, the dependency on the Product class
makes to the chance of finding similar classes based on the signature rather small since our current
implementation requires an exact keyword match.

7.4 PRECISION ANALYSIS

As we pointed out in the section on information retrieval (cf. page 53), retrieval systems are typically
evaluated by assessing their precision (proportion of relevant documents amongst the returned
documents) and recall (proportion of returned relevant documents). These two measures are often
related approximately inversely proportional to one another. The higher the recall the lower the precision
and vice versa. Unfortunately, they both require a good knowledge of the underlying document
collection to determine their values. More specifically, to calculate the recall an experimenter needs to
know the number of relevant documents for a query and to calculate the precision he needs to be able to
judge whether a retrieved document is relevant. This issue is normally solved in information retrieval by
the use of reference collections as we explained at the beginning of this chapter.

This approach works quite nicely as long as the size of document collections remains in the order of a
few thousand. However, the web has allowed search engines to index billions of documents so that no
human expert would ever be able to determine all relevant documents for a given query. Thus,
calculating the recall is practically impossible for large (web) search engines (cf. [Lew07]). Similarly, it is
hard to estimate the precision since it is not known how many relevant results are to be expected. As
most users of web search engines, according to empirical investigations, normally investigate only the
first 20 results, it makes sense to determine the precision up to a similar reasonable cut off value (this is

134 - EVALUATION

also a rationale why a good ranking algorithm is essential for every search engine). This value is called the
top-20 precision by [Lew07]. These ideas can be directly transferred to large-scale component search
engines. [Ino05] already recognized these problems when they experimented with their ComponentRank
approach with about 150,000 components. For our Merobase engine with a total of 10 million entries
theses problems have become even greater.

The aim of the subsequent subsections, therefore, is to present reasonable evidence for the effectiveness
of our component search engine in supporting the use cases introduced in section 5.1. However, since
the library searches that we identified as use cases (and textual searches as well) are simply based on
keyword matching, which has been a standard technique for many years, we do not invest any time in
evaluating these (see e.g. [Gar06] for such an example). We rather evaluate our technology for the other
three search algorithms in the next subsections thoroughly, starting with an evaluation of open source
searches below.

7.4.1 EVALUATING OPEN SOURCE SEARCHES

The evaluation of open source searches is a relatively simple undertaking compared with the speculative
and definitive component searches, which will follow later. Remember, open source searches are
supposed to deliver the source code of a specific class from a specific open source project with as little
effort as possible for the searcher. According to our opinion, the “projectname classname” constraint is
the most appropriate way to submit this information to a search engine. We discussed the motivation
and the implementation of it in more detail on page 87 et seq. Once it is known that a specific open
source project (such as Lucene) is in the index, it is straightforward to search for a specific class within it
(e.g. QueryParser) and to determine whether the original version is contained in the top-10 results,
for example. This approach can be seen as a variant of the so-called “known item” test defined by
[Kan76]. It has been used in its original form to evaluate the performance of libraries in delivering
known books to a customer.

The following table summarizes the results of the experiment which we performed to evaluate the
precision in retrieving open source entities. We compared our optimized Merobase algorithm, with the
regular Lucene algorithm and a name-based Latent Semantic Indexing [Dee90] algorithm as described in
[Gru07] on Merobase. Furthermore, we added Koders and Krugle, two other search engines that claim
to index the most important open source repositories to our comparison as well.

Query Optimized
(Merobase)

Keyword
(Merobase)

LSI
(Merobase)

Koders Krugle

ant junittask 1 / 236 x / 47 x / ∞ x / 25 1 / 667

eclipse astparser 1 / 484 x / 360 x / ∞ x / 100 2 / 660

eclipse navigator 1 / 2,727 x / 2,562 x / ∞ x / 1,027 1 / 10

eclipse textelement 1 / 215 x / 147 x / ∞ 2 / 19 1 / 342

findbugs redundantbranch 1 / 17 1 / 8 x / ∞ 2 / 4 1 / 8

PRECISION ANALYSIS - 135

Query Optimized
(Merobase)

Keyword
(Merobase)

LSI
(Merobase)

Koders Krugle

jmaki jmakicontroller 1 / 10 1 / 4 1 / ∞ 1 / 1 1 / 7

juddi registryobject 1 / 1172 1 / 1027 x / ∞ - / 9 1 / 701

junit testcase 1 / 100,809 x / 100,280 x / ∞ x / 33,616 3 / 121,254

lucene queryparser 1 / 2248 x / 983 x / ∞ x / 530 3 / 1923

opensymphony rijndael 1 / 42 1 / 2 x / ∞ 1 / 4 1 / 4

struts submitaction 1 / 86 1 / 25 x / ∞ - / 24 1 / 115

tomcat url 1 / 2,786 x / 2,446 x / ∞ x / 850 1 / 15,561
Table 7.4: Comparison of retrieval performance for open source searches on various search engines.

In front of the slash in each cell we present the position at which the first appropriate result was ranked
by each search engine and after the slash we present the total number of delivered results. An “x” means
that the correct candidate was not amongst the top 10 results and an “-” indicates that the project was
not indexed by this engine at all. For the LSI algorithm we denoted an infinite number of results since
LSI calculates the distance of each document to the query and simply delivers the document with the
lowest distance first. There is no concrete threshold that determines whether or not a document is
relevant.

It is interesting that only the optimized algorithms of Krugle and Merobase, developed independently
and roughly at the same time as one another, reliably deliver the desired results amongst the highest
ranked candidates. The other algorithms are only able to come up with some chance hits for not
particularly well-known projects where the total number of hits is apparently much lower anyway. As
soon as a larger number of potential results is to be delivered, their performance totally breaks away. The
LSI algorithm is a special case in this context. As we also realized in other experiments, the perceived
results of the LSI algorithm in general are not bad (considering what it is supposed to do) since
candidates somehow related with the query are usually delivered first. On the other hand, however, the
results are too general since the existing more concrete results get lost within the “noise” of somehow
reasonable, but not actually relevant results.

7.4.2 COMPARISON OF RETRIEVAL TECHNIQUES

To evaluate the performance of speculative and definitive searches we started with reusing the query
examples we had collected from the literature for our proof-of-concept implementation. We performed
these interface-driven queries again and inspected the first 25 results for each query to judge whether
they offered the functionality we were expecting. Our matching criterion was that either the required
signature was completely contained (verbatim) in a candidate or was contained with only a change of
case and that the associated JUnit test cases were successfully passed. In other words, we applied our
Extreme Harvesting approach as the final criterion for determining whether or not an asset was relevant.

136 - EVALUATION

We performed two different experiments. First, we used our Extreme Harvesting prototype to evaluate
the retrieval performance of various search engines on the web as shown in table 7.5. We used, to the
best of our understanding, the most precise queries for achieving interface-based retrieval for each search
engine. We limited our comparison to the three component search engines shown in the table below
since only they offered an API for programmatic access. We evaluated how they compared with the
general web search versions of Google and Yahoo enhanced with special filetype constraints (as explained
in section 4.2) to better retrieve software components. In total, we searched for twelve functional
abstractions in the first part of the experiment.

Query Google Yahoo GCS Koders Merobase

copyFile(String, String):
void

1 / 25 2 / 25 7 / 25 0 / 25 18 / 25

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25

isLeapYear(int):boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25

isPrime(int):boolean 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25

randomNumber(int,
int):int

0 / 25 3 / 25 2 / 7 0 / 7 14 / 25

randomString(int):String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25

replace(String, String,
String):String

2 / 25 8 / 25 14 / 25 3 / 25 22 / 25

reverseArray(int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7

sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25

sqrt(double):double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25

getMinMax(int[]):int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4

Average Precision 12.8% 18.4% 32.0% 6.1% 56.1%

Standard Deviation 13.7% 19.7% 26.1% 8.1% 21.5%

Table 7.5: Comparison of code search engines performed on stateless operations.

We then calculated the mean value and the standard deviation of each engine’s precision. Furthermore,
we performed t-tests for α = 0.05 to measure the statistical difference of the results. Only the results
provided by Merobase show a significant improvement over those of other engines. Google Codesearch
(GCS) is also significantly better than Koders, but all other pairwise comparisons reveal no statistically
significant difference. It is interesting that the general versions of Google and Yahoo even seem to deliver
more precise results for code searches than the specialized engine of Koders. However, we believe that

PRECISION ANALYSIS - 137

this can be explained by the different expressiveness of the queries that can be used with the different
search engines. We will back this up with more evidence in the next paragraph where we compare
interface-driven retrieval with other methods.

For table 7.5 above we merely used simple stateless operations, but to get a better impression of the
performance of the engines when dealing with full-fledged objects, we repeated the same experiment
with the following collection. However, as we (and the literature) assume the likelihood of correctly
guessing the interface of an object decreases with its complexity and thus, not too much significance
should be placed on the results since positive matches only occur when the correct interface is found.

Query Google Yahoo GCS Koders Merobase
Account (
 deposit(double):void
 withdraw(double):void
 getBalance():double
)

1 / 21 7 / 25 8 / 25 0 / 25 6 / 25

Article (
 setId(int):void
 setName(String):void
 setPrice(double):void
 getId():int
 getName():String
 getPrice():double
)

0 / 1 0 / 2 0 / 2 0 / 0 4 / 4

Calculator (
 add(int,int):int
 subtract(int,int):int
 mult(int,int):int
 divide(int,int):int
)

0 / 2 1 / 5 0 / 0 0 / 0 1 / 4

ComplexNumber (
 add(ComplexNumber):ComplexNumber
 getRealPart():double
 getImaginaryPart():double
)

2 / 25 0 / 3 0 / 2 0 / 1 0 / 1

Customer (
 setAddress(String):void
 getAddress():String
)

3 / 25 5 / 25 1 / 25 1 / 25 13 / 25

Die (
 roll():void
 getFaceValue():int
)

7 / 25 7 / 25 3 / 3 0 / 0 2 / 4

Document (
 Document(String,String,String)
 getAuthor():String
 getTitle():String
)

0 / 25 0 / 25 0 / 21 0 / 8 0 / 25

138 - EVALUATION

Query Google Yahoo GCS Koders Merobase
Matrix (
 Matrix(int,int)
 set(int,int,double):void
 get(int,int):double
 multiply(Matrix):Matrix
)

0 / 25 0 / 25 0 / 6 0 / 25 2 / 10

Movie (
 Movie(String,int)
 getTitle():String
)

1 / 25 3 / 25 1 / 25 2 / 9 15 / 25

Sort (
 quickSort(int[]):void
)

0 / 25 3 / 25 11 / 25 0 / 25 5 / 16

Spreadsheet (
 put(String,String):void
 get(String):String
)

0 / 22 0 / 25 0 / 0 0 / 0 0 / 0

Stack (
 push(Object):void
 pop():Object
)

2 / 25 4 / 25 0 / 25 6 / 25 5 / 25

Average Precision 5.4% 11.3% 15.3% 4.2% 31.9%

Standard Deviation 8.2% 11.2% 30.4% 8.9% 29.6%

Table 7.6: Comparison of search engines with small exemplary components.

The results in table 7.6 confirm the intuitive assumption of [Sam97] that the complexity of a component
has a significant influence on its precision and recall (at least as long as no sophisticated tool support is
available as we demonstrated in section 7.3). For instance, complex components such as Matrix or
Spreadsheet are noteworthy since there are no returned candidates. Compared to the operations from
table 7.5 the overall precision values drop by nearly 20%. According to a t-test for α = 0.05 the
difference in the Merobase examples is even statistically significant. The difference between the values in
this table is thus not as clear as before. Although the results indicate that Merobase has the highest
precision again, the difference is statistically significant only to Koders and mainstream Google.
Compared with Yahoo and Google Codesearch the difference is not significant this time.

The second experiment was an academic comparison of the four retrieval techniques and the associated
representation methods as introduced in section 3.2.11. Table 7.7 presents the results of our experiment,
this time performed completely on the data pool of Merobase with various retrieval techniques. The
experimental process is identical to the one summarized in the paragraph above. We compared interface-
driven search capabilities with pure signature matching and with simple keyword-based searches in two
distinct forms. Namely, our “speculative”algorithm which tries to guess the functionality of a component
by placing special emphasis on some keywords and a name-based algorithm which is able to constrain
searches to method and class names (similar to the capabilities that Krugle and Koders offer). In addition
to the precision for the first 25 values as used before, we also show the total number of results delivered
by a retrieval technique italicized in each cell.

PRECISION ANALYSIS - 139

Query signature
matching

speculative
keyword
matching

name-
based

interface-
driven

copyFile(String, String):void 0 / 25
63,904

3 / 25
3,023

16 / 25
3,305

18 / 25
315

gcd(int,int):int 0 / 25
21,690

20 / 25
1,752

11 / 25
1,998

17 / 25
523

isLeapYear(int):boolean 0 / 25
38,967

9 / 25
467

7 / 25
563

14 / 25
280

md5(String):String 0 / 25
131,281

0 / 25
447

0 / 25
515

12 / 25
55

isPrime(int):boolean 0 / 25
38,967

4 / 25
724

5 / 25
872

5 / 25
357

randomNumber(int, int):int 0 / 25
21,690

0 / 25
553

0 / 25
607

14 / 25
31

randomString(int):String 0 / 25
120,997

4 / 25
370

6 / 25
155

5 / 25
72

replace(String, String, String):String 1 / 25
7,775

6 / 25
81,840

0 / 25
92,385

22 / 25
1473

reverseArray(int[]):int[] 0 / 25
1,848

0 / 25
90

2 / 25
93

5 / 7
7

sort(int[]):int[] 1 / 25
1,848

0 / 25
60,246

0 / 25
67,669

20 / 25
68

sqrt(double):double 0 / 25
12,285

2 / 25
25,430

4 / 25
30,583

11 / 25
258

getMinMax(int[]):int[] 1 / 25
1,848

2 / 25
289

2 / 25
298

2 / 4
4

Average Precision 1.0% 16.7% 17.7% 56.1%

Standard Deviation 1.8% 22.8% 20.1% 21.5 %

Table 7.7: Comparison of retrieval techniques on stateless operations.

We also performed statistical t-tests for α = 0.05 on these results and found all pairwise comparisons
significantly different, except for speculative vs. name-based. We also ran the same experiments with the
more complex components that we used before. These results are shown in the following table.

Query signature
matching

speculative
keyword
matching

name-
based

interface-
driven

Account (
 deposit(double):void
 withdraw(double):void
 getBalance():double
)

0 / 25
12,245

6 / 25
556

5 / 25
1,104

6 / 25
93

140 - EVALUATION

Query signature
matching

speculative
keyword
matching

name-
based

interface-
driven

Article (
 setId(int):void
 setName(String):void
 setPrice(double):void
 getId():int
 getName():String
 getPrice():double
)

0 / 25
4,166

4 / 5
5

4 / 5
5

4 / 4
4

Calculator (
 add(int,int):int
 subtract(int,int):int
 mult(int,int):int
 divide(int,int):int
)

1 / 25
1,283

1 / 12
12

1 / 12
12

1 / 4
4

ComplexNumber (
 add(ComplexNumber):ComplexNumber
 getRealPart():double
 getImaginaryPart():double
)

0 / 25
1,285

0 / 1
1

0 / 1
1

0 / 1
1

Customer (
 setAddress(String):void
 getAddress():String
)

0 / 25
1,552

6 / 25
410

6 / 25
425

13 / 25
54

Die (
 roll():void
 getFaceValue():int
)

0 / 25
198,365

19 / 25
63

22 / 25
115

2 / 4
4

Document (
 Document(String,String,String)
 getAuthor():String
 getTitle():String
)

0 / 25
3,892

0 / 25
332

0 / 25
337

0 / 25
25

Matrix (
 Matrix(int,int)
 set(int,int,double):void
 get(int,int):double
 multiply(Matrix):Matrix
)

0 / 25
73

0 / 25
551

0 / 25
803

2 / 10
10

Movie (
 Movie(String,int)
 getTitle():String
)

0 / 25
11,396

12 / 25
264

10 / 25
318

15 / 25
29

Sort (
 quickSort(int[]):void
)

0 / 25
11,826

0 / 25
2,692

0 / 25
2,824

5 / 16
16

Spreadsheet (
 put(String,String):void
 get(String):String
)

0 / 25
22,153

0 / 25
244

0 / 25
295

0 / 0
0

PRECISION ANALYSIS - 141

Query signature
matching

speculative
keyword
matching

name-
based

interface-
driven

Stack (
 push(Object):void
 pop():Object
)

0 / 25
33,844

2 / 25
11,505

0 / 25
20,641

5 / 25
692

Average Precision 0.3% 22.4% 21.7% 31.9%

Standard Deviation 1.2% 29.8% 31.8% 29.6%

Table 7.8: Comparison of retrieval techniques.

The differences in this table are not significant for α = 0.05 between the last three columns (i.e.
speculative, name-based and interface-based). However, they all are significantly different from the
results for signature matching in the first column. The results for the Die example are of particular
interest – indeed, they are amazing at a first glance. The interface-based searches deliver only four
potentially matching candidates while a name-based search delivers 22 positively tested candidates that
should have the same interface, of course. The answer for this little paradox is simple. Only a few of the
results have a roll method that actually returns void. Most of the candidates return an int, which is
of course recognized and excluded by the interface-based search algorithm, but is accepted by the Java
compiler and ignored by the test case.

When combined, the above comparisons of retrieval techniques demonstrate that interface-driven
searches are usually better than plain keyword-based queries in terms of suggesting candidates that are
likely to also be semantically appropriate. However, the latter tend to lose some of their advantage when
components become more complex, which is, of course, understandable since the more information a
interface contains, the more descriptive text can be used for the weaker retrieval techniques and the less
false positives they will return. Furthermore, these results also explain why Koders tends to be even
weaker than the general versions of Google and Yahoo where interface-driven searches can be simulated
to a certain extent. Koders merely implements a very simple text-based algorithm that could not compete
with the more sophisticated approaches of the other engines.

However, despite the promising results shown in these experiments, the overall precision values remain
roughly between 30 and 60 percent and given the fact that sometimes thousands of useless candidates are
returned a further increase in the precision is urgently required. This is another clear hint to use a final
semantic assessment of the candidates as integrated in our Extreme Harvesting approach. However,
another important requirement for precise searches in the practical use of large-scale component search
engines are so-called search constraints that allow queries to be constrained to a given language or
component type as is common in most web search engines today. Otherwise, the results in the above
experiments would certainly have been worse.

To summarize, the results in this subsection support three of the assumptions that we postulated earlier
on. First of all, they underline that we are actually on the right track by combining various retrieval
techniques from the literature to increase the precision of the overall retrieval approach used on today's

142 - EVALUATION

large component collections. Second, it is also important to incorporate not only one, but a number of
representation methods (as introduced in section 3.1.1) to focus the retrieval algorithms on the right
programming language or component type, for instance. And third, the experiments have shown that the
more complex a component becomes the lower the chances for a “lucky guess” of its interface become
and the greater the need for an approach with increased recall such as that based on signature-based
harvesting as introduced in section 7.3.

7.5 CASE STUDY

Finding a good case study for a reuse system such as our Merobase Eclipse plugin is another problematic
task since on the one hand it has to be general enough to contain some reusable elements, and on the
other hand it needs to be specific enough to go beyond the level of simple data structures. Since we want
to demonstrate our approach embedded in a test-driven development context, we studied popular
literature in this area. However, this was not very helpful since some books such as [Fow99] are so
popular that that their code examples can be found on the web hundredfold. Other books such as
[Bec03] only contain extremely simple examples, or examples that are so specific they never made their
way on the web as in [Bec99]. Luckily, we finally found the book by [Wak02] that develops a simple
search system for bibliographic data as a running example. The following four classes comprise its initial
“design”.

Figure 7.1: Initial design of Wake's running example.

In the following, the system is developed in a fully test-driven manner. In other words, Wake starts with
the definition of tests and derives the interfaces of the classes from them. Since all other classes depend
on the Document class, it makes sense to define the following simple unit test for the Document class
first.

CASE STUDY - 143

public class DocumentTest extends TestCase {
 public void testDocument() {
 Document d = new Document("a", "t", "y");
 assertEquals("a", d.getAuthor());
 assertEquals("t", d.getTitle());
 assertEquals("y", d.getYear());
 }
}

In a classic TDD approach a developer would then create a Document class, add an empty constructor
with three String parameters and the three empty getter methods. Our Merobase plugin makes this
step much easier. As soon as we have created the test case shown above in a project, it suggests two
Document classes that are likely to comply with the unit test, at least syntactically. And a few moments
later, it will have tested them (remotely on the secured server environment) and found that the first
result also passes the test as shown in the following picture:

Figure 7.2: Screenshot of the Eclipse plugin recommending a Document class.

A double click on the StringDocument class copies its source code into the current project and after
renaming it to Document, removing the superfluous Document interface and commenting out a
method that relies on the Query class, our candidate is properly integrated into our project. In the
future, these steps should happen automatically, of course. The next step is executing our test case locally
on the candidate to ensure that we have integrated it correctly, which will lead to a green test result from
JUnit.

144 - EVALUATION

Wake then starts to define the semantics of the Result class with the following test case, which returns
a total of twelve syntactically matching candidates, one of which actually passes the test.

public class ResultTest extends TestCase {
 public void testEmptyResult() {
 Result r = new Result();
 assertEquals (0, r.getCount());
 }

 }

We repeat the process from above by double clicking on the result to integrate it into the project,
performing some minor manual adaptations and executing the unit test locally. Since this is passed
without problem, we can continue by adding the next unit test proposed by Wake for the ResultTest
class:

public void testResultWithTwoDocuments() {
 Document d1 = new Document("a1", "t1", "y1");
 Document d2 = new Document("a2", "t2", "y2");
 Result r = new Result(new Document[]{d1, d2});
 assertEquals (2, r.getCount());
 assertTrue(r.getItem(0) == d1);
 assertTrue(r.getItem(1) == d2);

}

To make sure the newly delivered Result and the Document classes from before are correctly
integrated, we execute the test case once more and again receive a green bar from JUnit. We are now
ready to continue with the Query class by starting with a test case as follows:

public class QueryTest extends TestCase {
 public void testSimpleQuery() {
 Query q = new Query("test");
 assertEquals("test", q.getValue());
 }
}

This results in 5 syntactically matching candidates proposed by our plugin, one of which passes the test.
We integrate it into our project as before and run the test case locally to ensure it actually works as
expected. The Searcher class is the next to be considered. Wake defines the following test case for it.

CASE STUDY - 145

public class SearcherTest extends TestCase {
 public void testEmptyCollection() {
 Searcher searcher = new Searcher();
 Result r = searcher.find(new Query("any"));
 assertEquals(0, r.getCount());
 }
}

Unfortunately, this time, the compilation service on the Merobase server is not able to resolve the various
dependencies contained in the four Searcher candidates that match syntactically and thus we have to
inspect these classes manually to assess whether or not we can use one of them. In fact, one of the classes
can be adapted with about five or six minor changes so that we finally receive a green bar for this test
case. At this point we have harvested an initial version of all four classes required for Wake's system.

Wake's example implementation in the book contains only the absolute minimum code that enables it to
pass the unit tests. However, the code harvested in our case study obviously is not some intermediate
implementation, but a more sophisticated version. Consequently, it should be able to pass the additional
test cases that Wake creates to cover the rest of his implementation. We added them to the appropriate
test classes and executed them to see whether all functionality was implemented correctly by the
harvested files. After re-adding the method that was commented out earlier in the Document class and
including two constructors that were commented out in the downloaded version of the Document and
the Result class, we were in fact able to run all JUnit test cases successfully as shown in the following
figure:

Figure 7.3: Screenshot of the final local JUnit test run.

In total, we needed only about ten minutes to find all four classes that fully implemented the
functionality defined in Wake's test cases, while programming it would have certainly taken more than
an hour. Thus, although this small case study is somewhat artificial, it demonstrates the high potential of
the approach and suggests that further analysis of its usability in industrial environment are warranted.

146 - EVALUATION

8 RELATED WORK

If I have seen further it is by standing on the shoulders of giants.
-- Isaac Newton

In earlier parts of this thesis we introduced the seminal retrieval techniques that paved the ground for our
work, and described other relevant research projects and prototypes that have been developed over the
last decade. We reported on all related work that is fundamental to the understanding of this dissertation
or that was used for the purposes of comparison. In this chapter we summarize the latest developments
in the software reuse community with a special focus on working systems that aim to component-based
software reuse. The study of the advantages and disadvantages of these systems provided many valuable
insights used in the development of Extreme Harvesting and the associated prototype. Wee are currently
not aware of any system that has the same capabilities as that developed for this dissertation: Extreme
Harvesting is to our knowledge the only practically implemented component retrieval approach that
offers support for queries with linguistic and syntactic filtering steps and a semantic assessment that
assures a high degree of component suitability, i.e. precision. On the other hand, the idea of using the
web as a source for reusable components, as documented in the next subsection, was not new when we
started our research. However, as we shall also see, where attempted it has not been developed to a
practically usable technology.

8.1 COMPONENT SEARCH ON THE INTERNET

As mentioned earlier, component search on the Internet was neglected by researchers for quite a long
time. Even in 2004, some researchers still publicly stated that a web search for components would not be
feasible at all [Yao04]. Hence, we are currently only aware of one research project that has tried to
discover components from the web with the help of a search engine. And only recently have some
commercial approaches came up trying to utilize the large amounts of source code available on the
Internet. We will present a brief outline of these developments in this section. We begin by providing a
more detailed discussion of the so-called Agora system, already mentioned a few times before.

148 - RELATED WORK

8.1.1 AGORA

Robert Seacord and his colleagues at the Software Engineering Institute (SEI) were the first researchers to
publish substantial work on utilizing the web as a source for software components. Already back in 1998,
they published their work about Agora, a system that was designed to use introspection mechanisms for
identifying and retrieving JavaBeans12 and CORBA components from the web. At that time the
AltaVista.com search engine distributed the AltaVista Search Developer's Kit, which offered search
engine capabilities like indexing and searching with a C++ API. Seacord and colleagues used this to set
up their own component repository filled by agents that crawled the web for specific component types.
The agents typically searched the web with the help of the AltaVista search engine for their respective
component type. If they discovered a suitable component, they used mechanisms such as Java
introspection to extract interface information from the component and sent it to the index server that
stored it in the index. This index was connected to a so-called query server, which in turn was connected
to a web server that was responsible for forwarding the user's queries to the query server and returning
results to the user's web browser. We would probably call this a 3-tier architecture today. Figure 8.1
depicts it graphically.

Figure 8.1: Agora's architecture, taken from [Sea98].

The figure shows three kinds of components that were planned for the system, namely JavaBeans,
CORBA and ActiveX. In practice, however, significant success could only be achieved for JavaBeans.
According to [Sea98], the retrieval of CORBA components raised a lot of problems and the developers

12The authors carelessly intermingle the terms JavaBeans and Java applets in their article and so far as
we are able to make out only worked with Java applets that are embedded in web pages.

COMPONENT SEARCH ON THE INTERNET - 149

ended up recommending that the OMG adapt CORBA significantly to make it suitable for Agora.
Similarly, the ActiveX agent never made it beyond the prototype stage.

The major drawback of the Agora idea (at least at that time) was the additional layer of complexity of the
index server that the developers imposed on their system. As they reported, filling the index server with
components was a major performance bottleneck and allowed only about 800 JavaBeans to be indexed in
24 hours, even with a cluster of crawlers. Given that around 150,000 Java applets that were available on
the web at that time through the AltaVista search engine, it would have taken more than half a year to
add all these applets to Agora's index. Unfortunately, the authors did not reveal how many applets they
had actually indexed, but some other numbers they presented indicate that it was in the order of just a
few thousand. Thus, the Agora experiment has to be regarded as a failure due to the ambitious
architecture that could not be implemented with the hard- and software resources available at that time.

8.1.2 WEB-BASED COMPONENT & CODE SEARCH

About ten years after Agora, the high potential for - component retrieval from the Internet, and thus of
this dissertation, was underlined by the fact that a large number of component search engines emerged
during the time that this dissertation work was performed. These various engines all reinforced the belief
that the repository problem could now be regarded as solved since they all collected a significant number
of components, sometimes in the millions. Details on the size of the most important search engines has
already been presented in section 4.1.1. However, most of them are still limited to rather primitive
keyword-based query algorithms and thus demonstrated that the retrieval problem still has not been
solved in general. Furthermore, since most of these engines are commercial, there is only minimal
information about their internal structure and implementation. However, since the research of this thesis
has triggered the development of Merobase, one of the most advanced component search engines
available today, we refer the reader to section 4.3 for a more detailed description of how this can be
done.

In addition to our Merobase search engine and the three other important search engines already
discussed in section 4.1.1, a large number of other code search engines has appeared on the world wide
web in the last two or three years. We surveyed them in summer 2007 and give a brief summary of their
most important features in the following table. Since interface-based driven and signature-driven
searches are obviously not that simple to support, some of the search engines introduced a new retrieval
technique allowing certain constraints to be defined on class and method names. In chapter 7, we have
called this name- based searches and also assessed their capability in comparison to the other retrieval
techniques.

URL Languages Size Java Files Sources Search Types Constraints
Merobase.com 5 (+ 43 by

GCS)
> 10 M 8 M CVS

SVN
HTTP

1) keyword
2) name-based
3) sign. matching
4) interface-based
5) spec.-based

form, type, kind,
namespace, project,
url, host, license,
lictype, name, method

krugle.com 43 > 10 M 3.5 M CVS 1) keyword language, project,

150 - RELATED WORK

URL Languages Size Java Files Sources Search Types Constraints
SVN 2) name-based filename, site, classdef,

functiondef,
functioncall,
comment, code, file
extensions

google.com/codesearch 46 > 10 M 2.5 M CVS
SVN
HTTP

1) keyword
2) regex

lang, file, package,
license

koders.com 32 > 1 M 600 k CVS
SVN

1) keyword
2) name-based

lang, licence, cdef,
mdef, idef, file

codase.com 3 < 1 M 300 k CVS 1) keyword
2) name-based
3) interface-based

lang, project

codefetch.com 22 < 100 k < 100 k Books 1) keyword lang

csourcesearch.net 2 1 M 0 CVS 1) keyword
2) name-based

various code elements

labs.oreilly.com/code 25 100 k 15 k Books 1) keyword cat, isbn, author,
pubyear, chapter

ucodit.com 2 > 100 k > 100 k SVN 1) keyword
2) name-based

-

mine8.ics.uci.edu:
8080/sourcerer2/search/i
ndex.jsp

1 250 k 250 k CVS 1) keyword
2) topological

comments

demo.spars.info 2 > 300 k 300 k CVS 1) keyword
2) name-based

-

planetsourcecode.com 11 < 100 k < 50 k uploaded 1) keyword lang, category, code
type, code difficulty
level

yahoo.com
(originfileextension:java)

all > 10 M > 500 k HTTP 1) keyword
2) name-based

url, site, title

componentsource.com 8 > 1000 > 100 proprietary 1) keyword -

Table 8.1: Overview of recent code search engines.

As the table illustrates, the vast majority of code search engines available today are still limited to
primitive keyword matching retrieval techniques. Furthermore, most of them are limited to components
from CVS or SVN repositories, with only Merobase and Google Codesearch including content from
version control repositories and the open web in their indices. We have also listed the regular versions of
Google and Yahoo as well as the component broker componentsource.com to facilitate comparison. It is
interesting to mention that – according to our experiments in section 7 – the two general style search
engines have a higher potential in terms of precision than most specialized search engines if their
undocumented features are well exploited.

COMPONENT SEARCH ON THE INTERNET - 151

In addition to the search engines just presented, there are some other even more specialized search
engines available on the web focussing on the so-called library searches we introduced in section 5.1.3.
For the sake of completeness, we present an overview of them and a comparison with Merobase in the
subsequent table.

URL JAR Files Class Files
Merobase.com n.a. 4 M

jarhoo.com 10 k 500 k

jarfinder.com n.a. 250 k

whatjar.net not functioning as of 11/2007
Table 8.2: Overview of search engines offering library searches.

As the table demonstrates our collection in Merobase is the largest collection of class files retrieved from
JAR libraries and is about eight times larger than the closest competitor.

8.1.3 WEB 2.0 TECHNOLOGIES

The recent Web 2.0 hype has also left it mark on software reuse. However, although Web 2.0 was
originally regarded as the precursor to the Semantic Web [Ber01], the term Web 2.0 in widespread use
today goes back to a definition by Tim O'Reilly [ORe05] and merely covers techniques that allow users
to influence the content available on the web, e.g. wikis, blogs, tagging etc. However, the idea that users
should be able to edit web pages (similar to what we would call a wiki today) was already contained in
Tim Berners Lee's original vision for the “Web 1.0” [Ber99]. Nevertheless, community-driven websites
based on the ideas of today's Web 2.0 have become widely available (e.g. del.icio.us etc.).

The emergence of similar community sites could be observed in the software engineering community
recently (such as planetsource.com). Sites that offer users the possibility to upload, comment and
sometimes tag source code or source code snippets can be considered as collaborative reuse or at least
knowledge sharing platforms. Even some of the main code search engines (such as Krugle) are offering
commenting capabilities at the time of writing. However, currently there is few, if any, scientific data on
how useful these “gimmicks” really are in the context of component search. We are only aware of one
paper where tagging was investigated as an additional data layer for component searches [Van07].
Interestingly, the authors describe that the high upfront effort involved in adding tags to their small
database of a few hundred classes did not lead to any significant improvements in search quality. Rather,
the search results were worse than those achieved with simple keyword-based searches. Since source code
(or components) contain much more structural information than plain web pages, we assume that it is
highly questionable whether techniques like tagging are applicable in this context. Perhaps, tagging
might be useful for component management in closed developer teams, but for open repositories we
expect tagging to experience the same problems as other linguistic approaches (see e.g. [Fur87]). The
only thing we can say for sure at this time is that Web 2.0 technologies for component reuse still require
a lot of research to determine whether they will be able to increase component search efficiency.

152 - RELATED WORK

8.2 OTHER REUSE TOOLS

Since the idea of software reuse has been around for almost four decades there have been many attempts
to create viable reuse technologies including the implementation of various reuse tools. The number of
such tools reported in the literature so date is probably in three digits. As a result, there is almost no idea
related to software reuse that has not been tried out in one tool or another. It is clearly too much to
discuss each of these tools in the scope of this thesis but below we discuss the ones whose ideas have been
most influential for this thesis and simultaneously hope to provide a reasonable overview of the state of
the art. Unfortunately, most of these tools are not available for testing today, as since they either are not
working with today technology, require complicated configuration or even worse are just not available
any more. As a consequence, it is only possible to summarize information from the literature and not to
compare these tools in action.

8.2.1 CODEBROKER

The CodeBroker system was developed by Yunwen Ye in his Ph.D. dissertation [Ye01] at the University
of Colorado. It is certainly one of the most influential and interesting works concerned with software
reuse in recent years and is documented by the numerous papers that have been published about it since
the year 2000. Just recently a summary article [YeF05] appeared in the Journal of Automated Software
Engineering. Admittedly, the main objective of Ye's work was not to develop a new reuse or retrieval
mechanism, but rather to explore a new way of presenting potential reuse candidates to developers. Ye
distinguishes two fundamentally contrary ways of getting information, the first one is information access,
which is the classical “pull” approach where a user is actively browsing or searching for information, i.e.
the system is reactive. The second approach is called information delivery and is based on "push"
technology which monitors the activities of users and offers corresponding information which it
considers useful in this context. Such systems are called proactive .

Although this proactive approach is very interesting, Ye's implementation is targeted to Emacs, a
standard Unix text-editor, and not integrated into a modern IDE such as Eclipse. Furthermore, Ye only
used a small repository with just a few hundred assets and performed no empirical evaluation. His results
can only be regarded as anecdotal since he only had five subjects that tested his system and considered it
useful. Furthermore, we believe it is very unlikely that the CodeBroker system would be able to scale up
to repositories with millions of assets since its underlying retrieval technique is based on Latent Semantic
Indexing [Dee90], which is well known to be effective in “understanding” natural language, but is also
require high processing power. A further disadvantage is the need for developers to perform so-called
“active commenting” (i.e. the developer has to explain what he wants to implement in extensive
comments) of the class under development, which is required to provide the system with enough
information to be able to find potential reuse candidates.

8.2.2 RASCAL
The most remarkable feature of RASCAL, a recommender agent for “agile reuse” developed by McCarey
et al. at the University College in Dublin [McC07], is in fact that it tries to combine reuse with agile
development, two ideas that at first sight inherently contradict each other. McCarey et al. suggest a way
of promoting reuse in agile development through so-called “software recommendation” technology,

OTHER REUSE TOOLS - 153

which is similar to CodeBroker. However, their “agile reuse” tool is an Eclipse plugin which uses
collaborative and content-based filtering techniques [Bae99] to proactively suggest method invocations
to developers. It does this by attempting to cluster Java objects according to the methods they use, just as
Amazon, for example, clusters its customers according to the books they buy. The tool monitors method
invocations in the class currently under development to predict method calls that are likely to be needed
soon and suggests them to the developer. To evaluate their system the authors experimentally predicted
invocations of the Java Swing Library in common open source systems and claim precision rates of
around 30% for this setting. Although RASCAL showed good performance for the limited domain of
Swing invocations, it is not clear whether this technique would work for other domains with many more
classes that have much lower usage frequencies and how the system will scale up in general.

8.2.3 CODEGENIE

Up until very recently we were not aware of any approach coming close to the sophistication of our
Extreme Harvesting technology. Although this is probably still the case, a group from the University of
California working on the Sourcerer search engine (which is also contained in table 8.1 and briefly
discussed in section 8.3) has presented an approach very similar to our Extreme Harvesting idea. They
have called their tool CodeGenie and refer to their approach as Test-Driven Code Search (TDCS).
Unfortunately, only an extended abstract [Lem07] and some videos on it are available so far. As far as we
can tell from that, they are following a similar approach to us as demonstrated by the following figure:

Figure 8.2: Process of a test-driven code search in CodeGenie.

CodeGenie is also an Eclipse plugin that generates a code query for Sourcerer out of a given test case. As
far as we can judge, the developer then is able to inspect the delivered candidates (that are not yet tested
automatically at that point) and to “weave” them into to the project under development. Once this has
worked out, the project can be tested in the normal Eclipse environment to see whether the candidate
fits into the project. It is also possible to “unweave” results again in order to integrate another candidate
into the project. This approach obviously still requires a lot of human intervention and has not yet
reached the degree of automation of Extreme Harvesting, but nevertheless it demonstrates the utility of
test-driven reuse from another perspective.

8.2.4 AND MORE...
Since reuse research has a tradition of almost forty years and almost each approach has been
accompanied by a prototypical implementation, there are dozens of other descriptions available in the

154 - RELATED WORK

literature. However, none of these tools has made a big impact in the reuse community or is still
available for testing today, let alone being in practical use somewhere. Most of these prototypes merely
used simple information-retrieval methods and relied on extracting textual information from the
components. Michail and Notkin [Mic99] have been worked with identifier (i.e. class and function)
names to find similar components. Di Felice and Fonzi [Fel98] and Maarek et al. [Maa91] both
developed a system which used the documentation of a component to automatically construct a reuse
repository. Scott Henninger developed CodeFinder for his Ph.D. thesis [Hen93] at the University of
Colorado in the early 1990s and used a hybrid technique. He emphasized query formulation and thus
supported queries with reformulation as also described by [Fis89] for the general retrieval system
Helgon. Inspired by [Moz84], Henninger used a retrieval algorithm based on the idea of spreading
activation in AI applications. The publications by Rittri [Rit89] and Zaremski and Wing, already
discussed in section 3.2.6, also developed prototypical systems that used signature matching for
component retrieval. Another text-based retrieval prototype called ROSA was developed by Giradi and
Ibrahim [Gir94]. Gomes et al. extended their so-called ReBuilder system with case-based reasoning based
on a WordNet dictionary to reuse design patterns [Gom03]. The group of Silvio Meira in Brazil recently
also put significant effort into the development of a reuse repository and accompanying plugin.
However, their current Maracatu system supports only faceted (i.e. components can be searched by
platform, component type and component model) and keyword-based searches. We regard the
significance of the experiments described in [Gar06] as rather low since their repository was small (<
5,000 classes) and their relevance criterion was simply – as far as we found out in personal
communication – the appearance of the search term or similar words in the delivered candidates.

Besides CodeBroker and RASCAL, which he have already explained in a separate subsection above, some
other proactive recommendation tools have been recently presented in the literature. We have already
briefly mentioned the work of Mandelin et al. [Man05] who created Prospector, an Eclipse plugin which
is able generate a chain of required method calls in order to come to a desired return type from a given
set of input parameter types. This can be particularly helpful for understanding complicated APIs such as
the one of Eclipse more quickly. Holmes et al. [Hol06] followed a similar approach when they developed
their Strathcona tool, which is also implemented as an Eclipse plugin that recommends helpful method
execution chains derived for frameworks in its index. According to the evaluations presented in the
publications, both tools perform well in this task as long as proprietary frameworks are used and it is
certainly an interesting question whether this approach could be scaled to an open component collection.
In addition to many tools surveyed in this section, a countless number of other less influential tools
exists, but can not be mentioned any more for brevity. However, some other reuse tools deserve our
attention because of their innovative ranking approaches and thus we explain them in more detail in the
next section.

8.3 RESULT RANKING

All search engines, whether for code or for normal web pages, invariably try to rank the results that
match a given query in order to offer the best results first. When potentially hundreds or even thousands
of functionally matching components can be retrieved for a query it is of particular importance to order

RESULT RANKING - 155

these candidates to provide the ones with the best quality first. Mili et al. [Mil98] categorized ranking
approaches as a topological retrieval method in their survey (explained in section 3.2.9). Unfortunately,
relatively little work has been performed in this area so far, perhaps because there is no commonly
accepted and easily obtainable notation for measuring the “distance” between components. Another
rationale for this is not surprising at all: for the relatively small repositories utilized in the past the
ranking of results was simply not necessary.

Some obvious approaches have been proposed in the literature in the past, but none of them reached a
degree of maturity that would have made it usable in practice. Our literature survey and analyses have
revealed approaches in the following three categories. As we briefly discussed in section 3.2.10
component ranking could be based on:

1. quality of service
2. popularity
3. distance to the query

Substantial work has only been performed for the second category in the context of component retrieval.
The so-called ComponentRank approach of Inoue et al. [Ino05], based on the indirect measure of usage
counting, has experienced significant attention in this area so far. The authors developed the so-called
SPARS-J system which could be seen as the first serious attempt to construct a scalable reuse repository.
SPARS-J uses a simple text-based retrieval approach and comprises about 180,000 components, i.e. Java
classes in this case. Compared to earlier works in this area, this represents major progress in terms of
repository size and has made the need for a ranking approach apparent. The authors drew some
inspiration from PageRank [Pag98], which is the Google's way of ranking web pages and developed the
ComponentRank algorithm by analogy. According to the Mili survey [Mil98] on retrieval techniques,
the underlying information retrieval approach has a rather average level of precision and the authors
argue that a ranking algorithm could remedy this issue. The idea is to rank the components according to
their popularity, i.e. components which are used often by other components should appear highest in the
list of results. Furthermore, components that have a higher ComponentRank (CR) than others have a
higher impact on the calculation of the CR of the components they use than the ones with a lower CR.
This relationship is stored in a directed (and weighted) graph as shown in figure 8.3 below.

Figure 8.3: Representation of a system as a directed graph for
ComponentRank [Ino05].

156 - RELATED WORK

A node represents a component while an edge stands for a use relation. Relations considered by SPARS-J
are:

 class inheritance
 interface implementation
 abstract class implementation
 variable declaration
 instance creation
 field access
 method invocation

A node v in the graph is assigned a non-negative weight w(v) with 0 <= w(v) <= 1. The rank of a
component is derived from its weight. The higher the weight, the higher the rank. The weight of a node
v i is calculated by summing up the weight of all incoming edges:

An edge's weight is given by the following formula:

d ij is the so-called distribution ratio, i.e. a simple factor to distribute the weight of a node to its outgoing
edges. Initially, all node weights are set to an arbitrary value and the weights are iteratively computed
until they converge. Further details about the computation can be found in [Ino05].

SPARS-J is one of the few academic reuse repositories which has an accessible prototype on the web
(http://demo.spars.info). The authors have performed evaluations of their system in which it performs
well in comparison with general search engines such as Google. However, their experimental design
contains some serious flaws since for example the relevance criterion is not made explicit and thus a
replication of this experiment is made impossible. Furthermore, ComponentRank faces another inherent
problem which is neither sufficiently investigated nor solved in their publications. While the original
PageRank is based on URLs (i.e. Uniform Resource Locators), which are unique, Java classes are not
necessarily unique. ComponentRank therefore requires a reliable mechanism to identify components
since a repository can contain copies or various versions of the same component. While this might be
possible with a few carefully selected version control repositories and source files, it becomes impossible
as soon as binary files or components from the open web or automatically crawled repositories are
included. Thus, ComponentRank is not likely to be applicable for comprehensive and diverse content of
the kind stored in Merobase. The absence of this distinction between closeness of match and ranking is
obviously another weakness of the ComponentRank algorithm, which tries to compensate for a rather
weak name-based matching by incorporating the popularity of a result. However, this approach
obviously does not overcome the problems of weak matching since even a very popular result might
simply not be the right one for a query.

RESULT RANKING - 157

The Sourcerer system [Baj06] is another academic component search engine recently developed at the
University of California in Irvine. It also has a special focus on the ranking and it tries to combine three
values for it, namely the TFIDF (term frequency inverse document frequency [Bae99], i.e. the
importance of the query term in a document) values delivered from Lucene, a so-called CodeRank value
similar to ComponentRank and some other special heuristics. Unfortunately, at the time of writing, no
detailed information was available.

158 - RELATED WORK

9 EPILOGUE

The best way to predict the future is to invent it.
-- Alan Kay

9.1 SUMMARY

The central goal of this thesis was to deliver a solution for semantic software component retrieval that
supports the vision of KobrA [Atk02] to select a component from a repository according to a given
specification. At the beginning of our work we performed a thorough investigation of the state of the art
in component- and service-based software reuse and whether and how it is integrated into mainstream
development processes. We found a vast number of approaches that focussed on the idea of reusing pre-
produced components in other development projects. However, none of them delivered a useful solution
in practice,and none of them demonstrated how a potentially functioning solution would be integrated
into common development processes. Our extensive literature survey revealed the following four major
challenges for a practically usable component reuse solution:

1. The repository problem
2. The representation problem
3. The retrieval problem
4. The usability problem

Most approaches so far only deal with one or two of these problems and consequently have never
reached a degree of maturity that would have satisfied practical demands.

Within the scope of this thesis, however, we developed a reuse system that tackles all of the above
problems. It is based on a repository of almost 10 million components, which is more than a thousand
times larger than any repositories available at the time when this thesis was started in 2004. It offers
sophisticated component descriptions based on fields that allow a high-quality (pre-)selection of reusable
candidates in typically under 5 seconds. The final assessment of fitness for purpose is performed with the
help of our new operational retrieval approach based on standard unit tests. We have integrated a client
for this repository into the well-known Eclipse development environment where it runs transparently in

160 - EPILOGUE

the background and is able to generate queries from class stubs or even directly from unit tests. In the
case of test-driven development, our system is able to propose fully tested and thus reusable candidates
about minute after a test case has been specified by the developer.

Additionally, we have found, investigated and optimized a number of further use cases to address this
issue. Finally, an evaluation of our ideas and a survey of related works published in the last four years
round off the description of the work performed in the context of this thesis. The following subsection
lists the contributions of this dissertation in more detail.

9.1.1 CONTRIBUTIONS

Based on the open issues in the area of component-based reuse which we identified in the first chapter,
this subsection presents the general contributions and steps-forward that we were able to make within
the scope of this dissertation to improve the state of the art in component-based software reuse.
Referring to the quote of Carma McClure [McC97] that we cited in the first chapter, we briefly
summarize our contributions in an abstract way before we give a more detailed discussion in the second
part of this subsection. McClure identified the following three areas where progress is necessary to come
to a practically usable reuse solution:

1. Something to reuse
We have shown that it is feasible to use the Internet or version control repositories of large
companies as a source for software components. On top of this, early trials proved that it is
indeed possible to use general web search engines to retrieve components with surprisingly good
precision. From the sources collected during these investigations we were able to build one of
the largest software repositories currently available containing more than 10 million entries and
to carry out efficient searches on it with the help of the open source text search engine Lucene.

2. Software tool set
Recent research has proposed that effective reuse tools should be seamlessly integrated into
development environments and recommend potentially reusable components pro-actively, i.e.
without requiring the developer to issue searches manually. Consequently, we have built a pro-
active plugin for the well-known Eclipse IDE that automatically extracting queries from class
stubs or even test cases under development and presents reusable candidates unprompted.
Furthermore, we have developed another recommendation algorithm which is able to derive
commonly used operations related to a search term and thus could be used to support
developers as early as during software design.

3. Software process
Most software development processes in the past did not care about reuse at all or if they did,
they only delivered very vague guidelines on how to reuse. Our thesis proposes a test-driven
reuse approach to reuse called Extreme Harvesting which is easily applicable in most agile
development methodologies and even in test-first variants of the RUP, KobrA or most other
modern development processes.

SUMMARY - 161

During our work we have identified another gap in the state of the art, namely, that the performance of
component retrieval techniques has only been weakly investigated. Thus, we were also able to make a
contribution in the area of evaluating reuse repositories:

4. Retrieval Evaluation
We have carried out a precision analysis of various component retrieval techniques based on a
component specification comprising interface and test cases. This involved 4 million Java source
components and revealed that some well established older techniques are no longer usable on
such large repositories. On the other hand, we were able to show that interface-based retrieval
could be used as a time-saving replacement for a specification-based approach such as Extreme
Harvesting.

Furthermore, we have transferred older ideas such as signature matching to Java and other modern
object-oriented languages for the first time and have defined an innovative data representation format
that allows fast interface-based component retrieval and signature matching with common text retrieval
systems such as Lucerne. To fully implement our Extreme Harvesting vision we have implemented a set
of innovative algorithms such as a parser that extracts the interface of the class under test from JUnit test
cases and a fully automated testing system that is purely signature based. In other words, it completely
ignores class and method names and furthermore is able to permute through all possible “wirings”
during the process of adapter creation until it finds a working solution. Since the classic Gang of Four
adapter pattern is not sufficient for adapters that require the adapted class itself as a parameter, we also
developed our so-called managed adapter that solves this problem and makes the automated creation of
adapters for reusable components feasible.

Thus, in summary, we have developed a specification-based reuse system based on one of the largest
reuse repositories so far in existence that is fully integrated into a modern development environment. We
have shown that it has the potential to support reuse and thus to accelerate software development. The
optimal hosting process for our approach is a test-driven development process (like most agile processes)
since, according to our results, unit tests are a perfectly good starting point for component retrieval.
Admittedly, one small limitation remains, we are not yet able to fully implement the vision of the KobrA
development method which proposes hierarchically (de-)composable components. However, this is due
to the current generation of programming languages since none of them contains sufficient for
components.

9.2 FUTURE WORK

Extreme Harvesting is a highly successful proof of concept and opens up a whole lot of further research
perspectives. We have shown that the idea is applicable for Java and web services, and see no reason why
it should not be transferable to most other common programming languages. The most challenging
question, however, is whether and how larger components or component ensembles can be retrieved. As
we pointed out in section 5.6, current programming languages only support classes and packages, but
not the concept of a component as envisaged e.g. by KobrA [Atk02]. Thus, currently, the discovery of
“super-components” as a collection of smaller components typically requires a detailed specification of
each of the smaller components until a description at the level of atomic units of the used programming

162 - EPILOGUE

language is attained. This, of course, defeats most of the benefits of component-based development, but
it is questionable whether it will become possible to reach a higher abstraction level with the current
generation of programming languages. However, it is certainly also interesting to find whether there are
any heuristics that would make it feasible to recognize cohesive component ensembles automatically.

Another part of our Extreme Harvesting approach that has the potential to be improved is the usage of
linguistic elements (such as class and method names) for the initial result population. Although the
search algorithms proposed in this thesis are very precise they are likely to be optimizable with e.g.
synonyms or hypernyms optimized on programming in the case that few or no results are found for the
initial request. However, this problem has been plaguing general information retrieval systems for years
and to our experience, naively adding synonyms as search terms quickly leads to an explosion in the
number of results and normally makes them unusable. We believe that a special thesaurus for names of
software entities and a special decomposition of composite names (e.g. IsACourseToBeScheduled) might
be more promising. However, first evaluations in this direction performed in the context of this thesis
are quite disappointing [Gru07] and rather indicate that a splitting of composite class and method names
might only become useful when combined with interface-driven searches or Extreme Harvesting. Thus,
one goal for the near future should be the discovery of the optimal mix of heuristics that delivers an
acceptable amount of tested results within a reasonable period of time.

In [Hum05c] we have already discussed the idea of using Extreme Harvesting as a source for back-to-
back testing [Vou90] and n-version programming approaches [Avi95] where different versions no longer
have to be laboriously developed but can be harvested from the web. The application of our repository to
improve effort estimation approaches such as COCOMO [Boe00] also seems to be a feasible and
interesting option.

From a practical point of view, there are other obvious ways of improving the Merobase system. We are
already working on a more responsive version of our back-end system, which is able to index changes in
a software repository in (near) real-time. A fast and syntax-aware search system as developed for this
thesis is also likely to become a valuable extension for web service composition environments as currently
promoted by SAP (Netweaver Composition Environment) and other companies. And certainly, to be
able to assess the efficiency of our approach under practical conditions, the controlled application of our
technology in an industrial setting is also desirable.

9.3 CONCLUDING VISION

Since testing still is (and will certainly remain for some time to come) the only means by which a
software component can be judged as “fit for purpose”, we believe that, together with our test-driven
reuse approach, it can become the central driver for component and service markets in the mid-term
future. Thus, our basic idea is to integrate the ability of testing components into standard software search
brokers, as we have done it with Merobase. As well as delivering components that syntactically match
users’ queries, search engines enhanced in this way will also be able to execute tests on the user's behalf.
In contrast with current testing approaches, however, a new form of “blind testing” is required to protect
the interests of component providers and users in a commercial brokerage scenario. Thus, we propose a

CONCLUDING VISION - 163

form of testing in which the user is only provided with an indication of whether a test was passed or
failed by a trusted broker, but not with the results generated by the component in the event of a failure
[Hum06b]. Furthermore, it is important that the expected result of a test submitted by the user is also
not disclosed to the component under test since it could otherwise be used to return spoofed results. The
search engines in our vision thus acts as the trusted broker or mediator between component providers
and users.

Since the overall effect is it to allow potential users to test components with minimal knowledge about
them as black boxes, we refer to the overall model as black box brokerage (BBB). From the point of view
of a component provider, a black-box broker is little different from a standard component repository
such as a UDDI repository. The difference is that the component provider must provide all the
information and content required to actually execute the component. In the case of a standard,
embeddable component, such as a source code module (e.g. class) or a non-source component (e.g. Java
Byte Code or .NET module) this means that the executable (or compilable) description must be
provided. In the case of an online service, such as a web service, this means that a suitable account must
be created and all necessary access keys provided. From the point of view of potential component users,
the only difference between a black box broker and a normal component search engine is that once a
component of interest has been identified (usually via a normal syntactic search), the user can supply one
or more test cases, which the broker will apply to the component on the user’s behalf. In the ideal case, a
search could even be test-driven as we have developed it in this thesis.

Although the idea is simple, there are some significant challenges to be overcome in its implementation
as we discussed in more detail in [Hum06b]. In a nutshell, these problems are the creation of a secure
and efficient testing environment and an adapter that is capable of mapping a user's test cases to
components with potentially different interfaces. However, these problems have already largely been
solved within our test-driven reuse approach and thus it seems feasible to integrate both these approaches
with relatively little effort. It appears feasible to offer a systems that recommends open source and even
commercial components that are guaranteed to work without violating the interests of the respective
component owners in the near future. The research conducted for this dissertation has paved the way to
create component markets that are able to offer tested components appropriate for a given task without
any additional effort for developers and without the risk to component producers of having the
functionality exploited without payment.

164 - EPILOGUE

10 REFERENCES

Half of knowledge is to know where to find it.
-- Michel de Montaigne

[Abt98] Abts, C., B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer, R. Selby,
and B. Steece, “COCOMO II model definition manual”, Tech. Rep., Center for Software
Engineering, USC, 1998, http://sunset.usc.edu/COCOMOII/cocomox.html#downloads.

[Ami04] Amin, R., M. Ó Cinnéide and T. Veale: “LASER: A Lexical Approach to Analogy in
Software Reuse”, Proceedings of the International Workshop on Mining Software
Repositories, Edinburgh, 2004.

[Amb03] Ambler, S.W.: Agile Database Techniques - Effective Strategies for the Agile Software
Developer, Wiley, 2003.

[Ant04] Antoniou, G. and F. van Hamelen: “Web Ontology Language: OWL”, in S. Staab and R.
Studer (eds.): Handbook on Ontologies, Springer, 2004.

[Atk95] Atkinson, S. and R. Duke: “A Methodology for Behavioural Retrieval from Class
Libraries”, Australian Computer Science Communications, Vol. 17, Iss. 1, 1995.

[Atk02] Atkinson, C., J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wüst, J. Zettel: Component-based Product Line Engineering with UML,
Addison Wesley, 2002.

[Atk04] Atkinson, C. and O. Hummel: “Towards a Methodology for Component-Driven Design”,
Proccedings of the International Workshop on Rapid Integration of Software Engineering
Techniques (appeared in LNCS 3475), 2004.

[Atk07] Atkinson, C., D. Brenner, P. Bostan, G. Falcone, M. Gutheil, O. Hummel, M. Juhasz and
D. Stoll: “Modeling Components and Component-Based Systems in KobrA”, in A.

166 - REFERENCES

Rausch, R. Reussner, R. Mirandola, F. Plasil (eds.): The Common Component Modeling
Example: Comparing Software Component Models, Springer, 2007.

[Avi95] Avizienis, A: “The Methodology of N-Version Programming“ in Software Fault Tolerance,
John Wiley & Sons, 1995.

[Bae99] Baeza-Yates R. and B. Ribeiro-Neto: Modern Information Retrieval, Addison-Wesley,
1999.

[Baj06] Bajracharya, S., T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C. Lopes: “Sourcerer:
a search engine for open source code supporting structure-based search“, Proceeding of the
Conference on Object Oriented Programming Systems Languages and Applications, 2006.

[Bar06] Baroudi, C. and F. Halper: “SOA Implementation Satisfaction”, Technical Report,
Hurwitz and Associates, 2006.

[Bas86] Basili, V.R., R.W. Selby, D.H. Hutchens: “Experimentation in Software Engineering”,
IEEE Transactions on Software Engineering, Vol. 12, Iss. 7, 1986.

[Bas88] Basili, V.R., D. Rombach: “Towards a Comprehensive Framework for Reuse: A reuse-
enabling software evolution environment“, Proceedings of the NASA Goddard Flight
Center Software Engineering Workshop, 1988.

[Bas91] Basili, V.R., D. Rombach: “Support for Comprehensive Reuse”, Technical Report CS-
TR-2606, University of Maryland, 1991.

[Bas96] Basili, V.R., S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, M.V.
Zelkowitz: “The Empirical Investigation of Perspective-Based Reading”, Journal of
Empirical Software Engineering, Vol. 1, Iss 2, 1996.

[Bas03] Bast, W., A.G. Kleppe and J.B. Warmer: MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison-Wesley, 2003.

[Bau05] Baumann, S. and O. Hummel: “Enhancing Music Recommendation Algorithms Using
Cultural Metadata”, Journal of New Music Research, Vol. 34, Iss. 2, 2005.

[Bec99] Beck, K.: Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Bec99b] Beck, K. and E. Gamma: “JUnit: A Cook's Tour”, JavaReport, Iss. 8, 1999.

[Bec03] Beck, K.: Test-Driven Development by Example, Addison-Wesley, 2003.

[Bei90] Beizer, B: Software Testing Techniques, International Thomson Press, 1990.

[Bei95] Beizer, B.: Black-Box-Testing: Techniques for Functional Testing of Software and Systems,
Wiley, 1995.

[Ber99] Berners-Lee, T. : Weaving the Web, Texere Publishing, 1999.

REFERENCES - 167

[Ber01] Berners-Lee, T., J. Hendler, O. Lassila: “The Semantic Web”, Scientific American, Vol.
284, Iss. 5, 2001.

[Bla82] Blalock, A.B. and H.M. Blalock: Introduction to Social Research, second edition, Prentice
Hall, 1982.

[Boe76] Boehm, B.W.: “Software Engineering”, IEEE Transactions on Computers, 1976.

[Boe84] Boehm, B.: “Verifying and validating software requirements and design specifications”,
IEEE Software, Vol. 1 (1), 1984.

[Boe88] Boehm, B.W.: “A Spiral Model of Software Development and Enhancement”, IEEE
Computer Vol 21, Iss. 5, 1988.

[Boe00] Boehm, B.W., B. Steece and R. Madachy: Software Cost Estimation with Cocomo II,
Prentice Hall, 2000.

[Boo87] Booch, G.: Software Components with Ada: Structures, Tools and Subsystems, Benjamin-
Cummings, 1987.

[Box97] Box, D.: Essential COM: The Component Object Model, Addison-Wesley, 1997.

[Bri01] Briand, L. and Y. Labiche: “An UML-Based Approach to System Testing”, Proceedings of
the International Conference on Modeling Languages, Concepts and Tools, 2001.

[Bri03] Brickley, D. and R. Guha: RDF Vocabulary Description Language 1.0: RDF Schema,
W3C, 2003.

[Bro87] Brooks, F. P., “No Silver Bullet - Essence and Accident in Software Engineering”,
Computer 20, April 1987.

[Bro98] Brown, W.J., R.C. Malveau and H. McCormick: Anti-Patterns. Refactoring Software,
Architecture and Projects in Crisis, Wiley, 1998.

[Bro02] Brown, A.W. and G. Booch: “Reusing Open-Source Software and Practices: The Impact of
Open-Source Software on Commercial Vendors”, C. Gacek (Ed.): LNCS 2319, Springer,
2002.

[Bro05] Broy, M. and A. Rausch: “Das neue V-Modell XT” (in german), Informatik Spektrum,
Vol. 28, Iss. 3, 2005.

[Bus96] Buschmann, F., R. Meunier, H. Rohnert, H., P. Sommerlad and M. Stal: Pattern-Oriented
Software Architcture, Wiley, 1996.

[Cal91] Caldiera, G. and V.R. Basili: “Identifying and Qualifiying Reusable Software
Components”, IEEE Computer, Vol. 24, Iss. 2, 1991.

[Car05] Cardoso, J. and A. Shet: “Introduction to Semantic Web Services and Web Process
Composition“, LNCS 3387, Springer, 2005.

168 - REFERENCES

[Car01] Carey, J. and B. Carlson: “Business components”, Component-based Software
Engineering: Putting the Pieces Together, G.T. Heinemann and W.T. Councill (eds.),
Addison-Wesley, 2001.

[Cha94] Chan, L.M.: Dewey Decimal Classification, Forest Press, 1994.

[Che00] Cheesman, J and J. Daniels: UML Components: A Simple Process for Specifying
Component-Based Software, Addison-Wesley, 2000.

[Cho96] Chou, S.C., J.Y. Chen and C.G. Chung: “A Behavior-Based Classification and Retrieval
Technique for Object-Oriented Specification Reuse”, Journal for Software Practice and
Experience, Vol. 26, Iss. 7, 1996.

[Chr03] Chrissis, M.B., M. Konrad and S. Shrum: CMMI. Guidelines for Process Integration and
Product Improvement, Addison-Wesley, 2003.

[Cle95] Clements, P.: “From Subroutines to Subsystems: Component-Based Software
Development”, The American Programmer, Vol. 8, Iss. 11, 1995.

[Cle02] Clements, P. and L. Northrop: Software Product Lines: Practices and Patterns, Addison-
Wesley, 2002.

[Cli07] Clinton, D.: OpenSearch Specifications, 1.1, Draft 3, A9.com, 2007.

[Coa90] Coad, P. and E. Yourdon: Object-Oriented Analysis, second edition, Prentice Hall, 1990.

[Coa91] Coad, P. and E. Yourdon: Object-Oriented Design, Prentice Hall, 1991.

[Coc01] Cockburn, A.: Agile Software Development, Addison Wesley, 2001.

[Col94] Coleman, D., P. Arnold, S. Bodoff, C Dollin, H. Gilchrist, F. Hayes and P. Jeremaes:
“Object-Oriented Development: The Fusion Method”, Prentice-Hall, 1994.

[Cor01] Cormen, T., C. Leiserson, R. Rivest, C. Stein: Introduction to Algorithms, 2nd Edition,
MIT Press, 2001.

[Crn06] Crnkovic, I., M. Chaudron and S. Larsso: “Component-based Development Process and
Component Lifecycle”, Proceedings of the International Conference on Software
Engineering Advances, 2006.

[Cza00] Czarnecki, K., U.W. Eisenecker: Generative Programming, Springer, 2000.

[Dah66] Dahl, O.J. and K. Nygaard: “SIMULA: an ALGOL-based simulation language”,
Communications of the ACM, Vol. 9, Iss. 9, 1966.

[Dav95] Davey, N., P. Barson, S.D.H. Field, R. J. Frank, D.S.W. Tansley: “The Development of a
Software Clone Detector”. International Journal of Applied Software Technology, Volume
1 Number 3/4, 1995.

REFERENCES - 169

[Dee90] Deerwester, S., S.T. Dumais, G. W. Furnas, T.K. Landauer and R. Harshman: “Indexing
by Latent Semantic Analysis“, Jorunal of the American Society for Information Science,
Vol. 41, Iss. 6, 1990.

[Des06] Desouza, K.C., Y. Awazu, A. Tiwana: “Four Dynamics for bringing use back into softwre
reuse”, Communications of the ACM, Vol. 49, Iss. 1, 2006.

[Dij70] Dijkstra, E.W.: Notes on Structured Programming, Technological University Eindhoven,
1970.

[Dij72] Dijkstra, E.W.: “The Humble Programmer”, Communications of the ACM, Vol. 15, Iss.
10, 1972.

[Dog05] Dogpile.com: “Different Engines, Different Results”, Technical Report:
http://com-paresearchengines.dogpile.com/OverlapAnalysis.pdf (accessed 09/08/2005).

[Eck06] Eckel, B.: Thinking in Java, Prentice Hall, 2006.

[Enc02] Marciniak, J.J.: Encyclopedia of Software Engineering, Second Edition, Wiley, 2002.

[End03] Endres, A. and D. Rombach: A Handbook of Software and Systems Engineering, Empirical
Observations, Laws, and Theories, Person Education, 2003.

[Faf94] Fafchamps, D.: “Organizational Factors and Reuse”, IEEE Software Vol. 11, Iss. 5, 1994.

[Fel98] Di Felice, P. and G. Fonzi: “How to write Comments suitable for Automatic Software
Indexing”, Journal for Systems and Software, Vol. 42, Iss. 1, 1998.

[Fen05] Fensel, D., J. Hendler, H. Lieberman, W. Wahlster (eds.): Spinning the Semantic Web:
Bringing the World Wide Web to its Full Potential, MIT Press, 2005.

[Fis89] Fischer, G. and H. Nieper-Lemke: “Helgon: Extending the Retrieval by Reformulation
Paradigm”, Proceedings of the International Conference on Human Factors in Computing
Systems, 1989.

[Fis91] Fischer, G., S. Henninger and D. Redmiles: “Cognitive Tools for Locating and
Comprehending Software Objects for Reuse”, Proceedings of the International Conference
on Software Reuse, 1991.

[Fis98] Fischer, G.: “Seeding, Evolutionary Growth and Reseeding: Constructing, Capturing and
Evolving Knowledge in Domain-Oriented Design Environments”, Journal of Automated
Software Engineering, Vol. 5, Iss. 4, 1998.

[Fow99] Fowler, M.: Refactoring, Addison-Wesley, 1999.

[Fow01] Fowler, M. and J. Highsmith: “The Agile Manifesto”, Journal for Software Development,
Vol. 9, Iss. 8, 2001.

170 - REFERENCES

[Fow03] Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language,
Addison-Wesley, 2003.

[Fra87] Frakes, W.B. and B.A. Nejmeh: “An Information System for Software Reuse”, in W. Tracz
(ed.): Software Reuse: Emerging Technology, Computer Society Press, 1987.

[Fra94] Frakes, W.B. and T.P. Pole: “An Empirical Study of Representation Methods for Reusable
Software Components”, IEEE Transactions on Software Engineering Vol. 20, Iss. 8, 1994.

[Fra95] Frakes, W.B. and C.J. Fox: “Sixteen Questions about Software Reuse”, Communications of
the ACM, Vol 38 Issue 6, 1995.

[Fra96] Frakes, W.B. and C. Terry: “Software Reuse: Metrics and Models”, ACM Computing
Surveys, Vol. 28, No. 2, 1996.

[Fra96b] Frakes, W.B. and C.J. Fox: “Quality Improvement Using a Software Reuse Failure Modes
Model“, IEEE Transactions on Software Engineering Vol. 22, Iss. 4, 1996.

[Fra05] Frakes, W.B. and K. Kang: “Software Reuse Research: Status and Future”, IEEE
Transactions on Software Eng., Vol. 31, No. 7, 2005.

[Fur87] Furnas, G.W., T.K. Landauer, L.M. Gomez and S.T. Dumais: “The Vocabulary in
Human-System Communication”, Communications of the ACM, Vol. 30, Iss. 11, 1987.

[Gaf89] Gaffney, J.E. and T.A. Durek: “Software Reuse – Key to Enhanced Productivity: Some
Quantitative Models”, Information and Software Technology, Vol 31, Iss. 5, 1989.

[Gar06] Garcia, V. C., D. Lucrédio, F.A. Durão, E.C.R. Santos, E.S. Almeida, R.P. Fortes, S.R.L.
Meira: “From Specification to the Experimentation: A Software Component Search Engine
Architecture“, Proceedings of the International Symposium on Component-Based Software
Engineering (CBSE), 2006.

[Gil93] Gilb, T., D. Graham, S. Finzi: Software Inspections, Addison Wesley, 1993.

[Gil97] Giloi, W.: “Konrad Zuse's Plankalkül: The First High-Level 'non von Neumann'
Programming Language”, IEEE Annals of the History of Computing, Vol. 19, Iss. 2, 1997.

[Gir94] Girardi, M.R. and B. Ibrahim: “A Similarity Measure for Retrieving Software Artifacts”,
Proceedings of the International Conference on Software Engineering and Knowledge
Engineering, 1994.

[GoF95] Gamma, E., R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[Gom03] Gomes, P., F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. Ferreira and C. Bento: “Selection
and Reuse of Software Design Patterns using CBR and WordNet”, Proceedings of the
International Conference on Software Engineering and Knowledge Engineering, 2003.

REFERENCES - 171

[Gre03] Greenfield, J. and K. Short: “Software Factories: Assembling Applications with Patterns,
Models, Frameworks and Tools”, ACM Press, 2003.

[Gri93] Griss, M.: “Software Reuse: From Library To Factory”, IBM Systems Journal, Vol. 32, Iss.
4, 1993.

[Gri94] Griss, M., J. Favaro and P. Walton, “Managerial and Organisational Issues: Starting and
Running a Software Reuse Program”, Software Reusability, W. Schaefer, R. Prieto-Diaz
and M. Matsumoto (eds.), Horwood, New York, 1994.

[Gru07] Grunert, M.: “Semantic Component Search Using Latent Semantic Indexing“, Diploma
Thesis, University of Mannheim, 2007.

[Gsc02] Gschwind, T.: “Adoption and Composition Techniques for Component-Based Software
Engineering”, Ph.D. Thesis, Technical University of Vienna, 2002.

[Gul05] Gulli, A. and A. Signorini: “The Indexable Web is more than 11.5 Billion Pages”,
Proceedings of the International World Wide Web Conference, 2005.

[Hal93] Hall, R. J.: “Generalized Behavior-Based Retrieval”, Proceedings of the International
Conference on Software Engineering, Baltimore, United States, 1993.

[Hal77] Halstead, M.H.: Elements of Software Science, Elsevier, 1977.

[Ham02] Hamlet, R.: “Random Testing”, Encyclopedia of Software Engineering, Wiley, Second
Edition, 2002.

[Hat04] Hatcher, E. and O. Gospodnetic: Lucene in Action, Manning, 2004.

[Hen81] Henry, S. and D. Kafura: “Software Structure Metrics Based on Information Flow”, IEEE
Transactions on Software Engineering, Vol. 7, Iss. 5, 1981.

[Hen93] Henninger, S.: “Locating Relevant Examples for Example-Based Software Design”, Ph.D.
Dissertation, Department of Computer Science, University of Colorado, USA, 1993.

[Hol06] Holmes, R., R.J. Walker and G.C. Murphy: “Approximate structural context matching: An
approach for recommending relevant examples“, IEEE Transactions on Software
Engineering, Vol. 32, Iss. 12, 2006.

[Hum03] Hummel, O.: “Ermittlung von Musikähnlichkeit auf Basis von Community Features” (in
German), Master's Thesis, Technical University of Kaiserslautern, 2003.

[Hum04] Hummel, O. and C. Atkinson: “Extreme Harvesting: Test Driven Discovery and Reuse of
Software Components”, Proceedings of the International Conference on Information
Reuse and Integration (IEEE-IRI), Las Vegas, USA, 2004.

[Hum05a] Hummel, O. and C. Atkinson: “Automated Harvesting of Test Oracles for Reliability
Testing”, Proceedings of the First International Workshop on Testing and Quality

172 - REFERENCES

Assurance for Component-Based Systems (TQACBS in Conjunction with COMPSAC),
Edinburgh, Scotland, 2005.

[Hum05c] Hummel, O., C. Atkinson, D. Brenner and S. Keklik: “Improving Testing Efficiency
through Component Harvesting”, Proceedings of the Brazilian Workshop on Component
Based Development, 2006.

[Hum06] Hummel, O. and C. Atkinson: “Using the Web as a Reuse Repository”, Proceedings of the
International Conference on Software Reuse, 2006.

[Hum06b] Hummel, O., P. Bostan and C. Atkinson: “Towards the Automated Selling of Web
Services over the Internet”, Proceedings of the International Workshop for Technology,
Economy, Social and Legal Aspects of Virtual Goods, 2006.

[Hum06c] Hummel, O., C. Atkinson, D. Brenner and S. Keklik: "Improving Testing Efficiency
through Component Harvesting", in Proceedings of the Brazilian Workshop on
Component Based Development, 2006.

[IEE83] IEEE: Glossary of Software Engineering Terminology, ANSI/IEEE Std. 729-1983.

[Ino05] Inoue, K., R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita, S. Kusumoto.:
"Ranking Significance of Software Components Based on Use Relations", IEEE
Transactions on Software Eng., Vol. 31, No. 3, 2005.

[Iso92] Isoda, S.: “Experience report on software reuse project: its structure, activities, and
statistical results“, Proceedings of the International Conference on Software Engineering,
1992.

[Jan07] Janjic, W.: “Realizing High-Precision Component Recommendations for Software
Development Environments ”, Diploma Thesis, University of Mannheim, 2007.

[Jen95] Jeng, J.J. and B.H.C. Cheng: “Specification matching for software reuse: a foundation“,
ACM SIGSOFT Software Engineering Notes, Vol. 20, 1995.

[Kal03] Kalfoglou, Y. and M. Schorlemmer: “Ontology Mapping: the state of the art”, The
Knowledge Engineering Review, Vol. 18, Iss. 1, 2003.

[Kan76] Kantor, P.B.: “Availability Analysis”, Journal of the American Society for Information
Science, Vol. 27, 1976.

[Kel99] Keller, R.K., R. Schauer, S. Robitaille and P. Pagé: “Pattern-based Reverse Engineering of
Design Components”, Proceedings of the International Conference on Software
Engineering, 1999.

[Kik05] Kiko, K.: “Towards a Unified Knowledge Representation Framework”, Diploma Thesis,
University of Mannheim, 2005.

REFERENCES - 173

[Kic97] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M. Loingtier and J. Irwin:
"Aspect-Oriented Programming", Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland, 1997.

[Kim99] Kim, Y.G.; H.S. Hong, D.H. Bae and S.D. Cha: “Test cases generation from UML state
diagrams“, IEE Proceedings Software, Vol. 146, Iss. 4, 1999.

[Kni86] Knight, J.C. and N.G. Leveson: “An Experimental Evaluation of the Assumption of
Independece in Multi-Version Programming”, IEEE Transaction on Software Engineering,
Vol. 12, Iss. 1, 1986.

[Kra03] Kratz, B.: “Empirical Research on the Relationship between Functionality and Interfaces of
Software Components”, Master's Thesis, Tilburg Universtiy, 2003.

[Kru92] Krueger, C.W.: “Software Reuse”, ACM Computing Surveys, Vol. 24, Iss. 2, 1992.

[Kru00] Kruchten, P.: “The Rational Unified Process - An Introduction”, 2nd edition, Addison
Wesley, 2000.

[Kru01] Kruchten, P.: “The Nature of Software: What's so Special about Software Engineering?”,
The Rational Edge, October 2001.

[Kru07] Krug, M.: “FAST: An Eclipse Plug-In for Test-Driven Reuse”, Diploma Thesis, University
of Mannheim, 2007.

[Lam98] Lam, W.: “A Case Study of Requirements Reuse through Product Families”, Annals of
Software Engineering, Vol. 5, 1998.

[Lan87] Landauer, G. W., T. K. Furnas, L. M. Gomez, S. T. Dumais: “The Vocabulary Problem in
Human-System Communication”, Communications of the ACM, Vol. 30, Iss. 11, 1987.

[Lap96] Laprie, J.C. and K. Kanoun: “Software Reliability and System Reliability”, in M. Lyu (Ed.):
Handbook of Software Reliability Engineering, McGraw-Hill, 1996.

[Lar05] Larman, C.: Applying UML and Patterns - An Introduction to Object-Oriented Analysis
and Design and Iterative Development, 3rd edition, Prentice Hall, 2005.

[Las99] Lassila, O., R.R. Swick and others: Resource Description Framework (RDF) Model and
Syntax Specification, W3C, 1999.

[Lem07] Lems, O.A.L., S. Bacjracharya and J.Ossher: “CodeGenie: a Tool for Test-Driven Source
Code Search“, Extended Abstract in Proceedings of the International Conference on
Object-Oriented Programming, Systems, Lanugages and Applications, 2007.

[Len87] Lenz, M., H. Schmid, P.W. Wolf: “Software Reuse through Building Blocks”, in W. Tracz
(ed.): Software Reuse: Emerging Technology, Computer Society Press, 1987.

174 - REFERENCES

[Lew07] Lewandowski, D.; Höchstötter, N.: ”Qualitätsmessung bei Suchmaschinen – System- und
Nutzerbezogene Evaluationsmaße” (in German), Informatik-Spektrum, Vol. 30, Iss. 3,
2007.

[Lie80] Lientz, B.P. and E.B. Swanson: Software Maintenance Management, Addison-Wesley,
1980.

[Lis93] Liskov, B. and J.M. Wing: “Family Values: A Semantic Notion of Subtyping”, Technical
Report 562, Massachusetts Institute of Technology, 1993.

[Llo04] Llorens, J., M. Fuentes and J. Morato: “UML Retrieval and Reuse Using XMI”,
Proceedings of IASTED Conference on Software Engineering, 2004.

[Luc04] Lucredio, D., A.F. Prado, E.S. de Almeida: “A Survey of Component Search and
Retrieval”, Proceedings of the Euromicro Conference, 2004.

[Maa91] Maarek, Y.S., D.M. Berry and G.E. Kaiser: “An Information Retrieval Approach for
automatically constructing Software Libraries”, IEEE Transactions on Software
Engineering, Vol. 17, Iss. 8, 1999.

[Mad01] Madhavan, J., P. Bernstein and E. Rahm: “Generic Schema Matching with Cupid”,
Proccedings of the 27th Conference on Very Large Scale Databases (VLDB), Roma (Italy),
2001.

[Man05] Mandelin, D. L. Xu, R. Bodik and D. Kimelman: “Jungloid mining: helping to navigate
the API jungle”, Proceedings of the Conference on Programming Language Design and
Implementation, 2005.

[Man07] Manning, C.D. and P. Raghavan and H. Schütze: Introduction to Information Retrieval
Cambridge University Press, 2007.

[McC76] McCabe, T.J.: “A Complexity Measure“, IEEE Transactions on Soflware Engineering, Vol.
2, Iss. 4, 1976.

[McC07] McCarey, F., M. O' Cinneide and N. Kushmerick: “Knowledge Reuse for Software
Reuse”, Journal for Web Intelligence and Agent Systems, Vol. 1, Iss. 1, 2007.

[McC97] McClure, C.: Software Reuse Techniques: Adding Reuse to the System Development
Process, Prentice Hall, 1997.

[McI68] McIlroy, D.: “Mass-Produced Software Components”, Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmisch, Germany, 1968.

[Men05] Mennecke, T.: “eDonkey2000 Nearly Double the Size of FastTrack“,
http://www.slyck.com/news.php?story=814, 2005.

[Mey92] Meyer, B.: “Applying Design by Contract”, IEEE Computer, Vol. 25, Iss. 10, 1992.

REFERENCES - 175

[Mez01] Mezini, M., L. Seiter and K. Lieberherr: “Component Integration with Pluggable
Composite Adapters”, in M. Aksit: Software Architectures and Component Technology,
Kluwer, 2001.

[Mic99] Michail, A. and D. Notkin: “Assessing Software Libraries by Browsing similar Classes,
Functions and Relationships”, Proceedings of the International Conference on Software
Engineering, 1999.

[Mil90] Miller, G.A., R. Beckwith, C. Fellbaum, D. Gross, K. Miller: “Introduction to Wordnet:
An On-Line Lexical Database”, CSL Report 43, Princeton University, 1990, revised 1993.

[Mil98] Mili, A., R. Mili and R. Mittermeir: “A Survey of Software Reuse Libraries”, Annals of
Software Engineering 5, 1998.

[Mil99] Mili, A., S. Yacoub, E. Addy and H. Mili: “Toward an Engineering Discipline of Software
Reuse”, IEEE Software, Vol. 16, No. 5, 1999.

[Mil02] Mili, H., A. Mili, S. Yacoub and E. Addy: Reuse-Based Software Engineering –
Techniques, Organisations and Controls, Wiley, 2002.

[Moh04] Mohagheghi, P: “The Impact of Software Reuse and Incremental Development on the
Quality of Large Systems”, Ph.D. Dissertation, Norwegian University of Science and
Technology.

[Moi92] Moineau, T. and M.C. Gaudel: “Software Reusability through Formal Specifications”, in
Proceedings of a Workshop on Methods and Tools for Software Reuse, 1992.

[Mor02] Morisio, M., M. Ezran and C. Tully: “Success and Failure Factors in Software Reuse”,
IEEE Transactions on Software Engineering, Vol. 26, Iss. 4, 2002.

[Moz84] Mozer, M.C.: “Inductive Information Retrieval using Parallel Distributed Computation”,
Technical Report No. 8406, Institute for Cognitive Science, San Diego, 1984.

[Mye02] Myers, G.J.: The Art of Software Testing, 2nd edition, Wiley, 2002.

[Nea96] Neal, L.: “Support for Software Design, Development and Reuse through an Example-
Based Environment”, in G. Szwillus & L. Neal (eds.), Structure-Based Editors and
Environments, Academic Press, San Diego, 1996.

[New02] Newcomer, E.: Understanding Web Services, XML, WSDL, SOAP and UDDI, Addison-
Wesley, 2002.

[Nun90] Nunamaker, J.F., M. Chen: “Systems Development in Information Systems Research”,
Proceedings of the International Conference on Systems Sciences, 1990.

[OMG00] OMG: The Common Object Request Broker: Architecture and Specification, Version 2.4,
Object Management Group, 2000.

176 - REFERENCES

[OMG03] OMG: Unified Modelling Language Specification, Version 1.5, Object Management
Group, 2003.

[OMG04] OMG: Unified Modelling Language Specification, Version 2.0, Object Management
Group, 2004.

[OMG04b] OMG: Reusable Asset Specification, Object Management Group, 2004.

[ORe05] O'Reilly, T.: “What is Web 2.0”, O'Reilly Media, http://www.
oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html, last accessed
11/07.

[Ost92] Ostertag, E.J.: “A Classification System for Software Reuse”, Ph.D. Dissertation, University
of Maryland, 1992.

[Owe86] Owen, D.: “Answers First, Then Questions”, in D. A. Norman and S. W. Draper, (eds.),
User Centered System Design, New Perspectives on Human-Computer Interaction,
Erlbaum, 1986.

[Pag98] Page, L., S. Brin, R. Motwani, T. Winograd: “The Pagerank Algorithm: Bringing Order to
the Web”, Proceedings of the International Conference on the World Wide Web, 1998.

[Par72] Parnas, D.L.: “On the Criteria to be Used in Decomposing Systems into Modules”,
Communications of the ACM Vol. 15, No. 12, 1972.

[Pau94] Paul, S. and A. Prakash: “A Framework for Source Code Search Using Program Patterns,”
IEEE Transactions on Software Engineering, Vol. 20, Iss. 6, 1994.

[Pen99] Penix, J. and P. Alexander: “Efficient Specification-Based Component Retrieval“, Journal
for Automated Software Engineering, Vol. 6, Iss. 2, 1999.

[Per93] Perry, D. and S. Popovich: “Inquire: Predicate-Based Use and Reuse”, Proceedings of the
Knowledge-Based Software Engineering Conference, 1993.

[Pod93] Podgurski, A., L. Pierce: “Retrieving Reusable Software by Sampling Behavior”, ACM
Transactions on Software Engineering and Methodology, Vol. 2, Iss. 3, 1993.

[Por06] Porter, M.F.: “An Algorithm for Suffix Stripping”, Information Systems, Vol. 40, Iss. 3,
2006.

[Pou95] Poulin, J. and K.J. Werkman: “Melding structured abstracts and World Wide Web for
retrieval of reusable components“, Proceedings of the Symposium on Software Reusability,
1995.

[Pou99] Poulin, J.: “The Foundation of Reuse”, position paper in proceedings of the 9th Annual
Workshop on Software Reuse, Austin, USA, 1999.

REFERENCES - 177

[Pou99b] Poulin, J.: “Reuse: Been There, Done That.”, Communications of the ACM, Vol. 42, Iss.
5, 1999.

[Pri87] Prieto-Díaz, R. and P. Freeman: “Classifying Software for Reusability”, IEEE Software,
Vol. 4, Iss. 1, 1987.

[Pri91] Prieto-Díaz, R.: “Implementing faceted classification for software reuse” Communications
of the ACM, Volume 34, Issue 5, 1991.

[Pri91b] Prieto-Díaz, R. and G. Arango: Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, 1991.

[Ray97] Raymond, E.: “The Cathedral and the Bazar”, First Monday Vol. 3, Iss. 3, 1998:
http://www.firstmonday.dk/issues/issue3_3/raymond, last accessed 12/05.

[Ric78] Rich, C. and H.E. Schrobe: “An Initial Report on Lisp’s Programmer’s Apprentice,” IEEE
Trans-actions on Software Engineering Vol. 4, Iss. 11, 1978.

[Rit89] Rittri, M.: “Using Types as Search Keys in Function Libraries”, Journal of Functional
Programming, Vol. 1, Iss. 1, 1989.

[Roy70] Royce, W. W.: “Managing the Development of Large Software Systems”, Proceedings of
the 9th. International Conference of Software Engineering, 1970.

[Sal75] Salton, G., A. Wong and C.S. Yang: “A vector space model for automatic indexing”,
Communications of the ACM, Vol. 18, 1975.

[Sca02] Scacchi , W.: “Process Models in Software Engineering”, J.J. Marciniak (Ed.):
Encyclopedia of Software Engineering, Second Edition, Wiley, 2002.

[Sam97] Sametinger, J.: Software Engineering with Reusable Components, Springer, 1997.

[Sch99] Schmidt, D.: “Why Software Reuse has Failed and How to Make it Work for You”, C++
Report, Vol 11, Iss. 1, 1999.

[Sea98] Seacord, R.C., S.A. Hissam and K.C. Wallnau: “AGORA: a search engine for software
components”, IEEE Internet Computing, Vol. 2, Iss. 6, 1998.

[Sea99] Seacord, R.: “Software Engineering Component Repositories”, Proceedings of the
International Workshop on Component-Based Software Engineering, 1999.

[Shi07] Shi, X.: “Semantic Web Services: An Unfulfilled Promise”, IEEE IT Professional, August
2007.

[Som06] Sommerville, I.: Software Engineering, Addison-Wesley, 8th Edition, 2006.

[Son07] Song, H., D. Cheng, D., A. Messer and S. Kalasapur: “Web Service Discovery Using
General-Purpose Search Engines“, Proceedings of the International Conference on Web
Services, 2007.

178 - REFERENCES

[Sou98] D'Souza, D.F. and A.C. Wills: Object, Components and Frameworks with UML: The
Catalysis Approach, Addison-Wesley, 1998.

[Ste01] Steele, R.: “Techniques for Specialized Search Engines”, Proceedings of the Conference on
Internet Computing, 2001.

[Str94] Stringer-Calvert, D.W.J.: “Signature Matching for Ada Software Reuse”, Master’s Thesis,
University of York, 1994.

[Sun01] Sun: EJB 2.0 Specification, Sun, 2001.

[Sun06] Sun: EJB 3.0 Specification, Sun, 2006.

[SWE04] Abran, A., J.W. Moore, P. Bourque, R. Dupuis (Eds.): Guide to the Software Engineering
Body of Knowledge: SWEBOK, IEEE Computer Society, 2004.

[Szy02] Szyperski, C.: Component Software, Addison-Wesley, 2nd Edition, 2002.

[Tur02] Turowski, K. (ed.): Vereinheitlichte Spezifikation von Fachkomponenten: Memorandum
des Arbeitskreises komponentenorientierte betriebliche Anwendungssysteme (in german),
Universität Augsburg, 2002.

[Van07] Vanderlei, T.A., F.A. Durao, A.C. Martins, V.C. Garcia, E.S. Almeida and S. Meira: “A
Cooperative Classification Mechanism for Search and Retrieval of Software Components”,
Proceedings of the ACM Symposium on Applied Computing, 2007.

[Vit03] Vitharana, P., F. Zahedi and F. Jain,: “Knowledge-Based Repository Scheme for Storing
and Retrieving Business Components”, IEEE Transactions on Software Engineering, Vol.
29, Iss. 7, 2003.

[Voa98] Voas, J.M.: “The Challenges of Using COTS Software in Component-Based
Development”, IEEE Computer, Vol. 31, Iss. 6, 1998.

[Vou90] Vouk, M.A.: “Back-to-Back Testing”, Information and Software Technology, Vol. 32 (1),
1990.

[VMo97] Bundesrepublik Deutschland: Entwicklungsstandard für IT-Systeme des Bundes (in
german), 1997.

[W3C04] Booth, D., H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D. Orchard:
“Web Services Architecture”, World Wide Web Consortium, 2004.

[Wak02] Wake, W.C.: Extreme Programming Explored, Addison-Wesley, 2002.

[Wan01] Wang, N., D.C. Schmidt and C. O'Ryan: “Overview of the CORBA component model”,
in G.T. Heinemann and W.T. Councill (eds.): Component-based Software Engineering:
Putting the Pieces Together, Addison-Wesley, 2001.

REFERENCES - 179

[War03] Warmer, J. and A. Kleppe: The Object Constraint Language: Getting Your Models Ready
for MDA, second edition, Addison-Wesley, 2003.

[Wei01] Weinreich, R. and J. Sametinger: “Component models and component services:concepts
and principles”, in G.T. Heinemann and W.T. Councill (eds.): Component-based
Software Engineering: Putting the Pieces Together, Addison-Wesley, 2001.

[Yao04] Yao, H., L. Etzkorn: “Towards a Semantic-based Approach for Software Reusable
Component Classification and Retrieval”, Proceedings of the 42nd annual Southeast
Regional Conference, Huntsville, USA, 2004.

[Ye01] Ye, Y.: “Supporting Component-Based Software Development with Active Component
Repository Systems”, Ph.D. Dissertation, University of Colorado, 2001.

[YeF05] Ye, Y., G. Fischer: “Reuse-Conducive Development Environments”, Journal of Automated
Software Engineering, Vol. 12, No. 2, Kluwer, 2005.

[Zar93] Zaremski, A.M., J.M. Wing: “Signature Matching: A Key to Reuse”, Proceedings of the
Symposium on Foundations of Software Engineering, 1993.

[Zar95] Zaremski, A.M., J.M. Wing: “Signature Matching: A Tool for Using Software Libraries”,
ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 2, 1995.

[Zar97] Zaremski, A.M., J.M. Wing: “Specification Matching of Software Components”, ACM
Transactions on Software Engineering and Methodology, Vol. 6, No. 4, 1997.

180 - REFERENCES

LIST OF FIGURES

Figure 1.1: The reuse success chain [Fra96]..14

Figure 2.1: Classical waterfall model [Roy70]. ...22
Figure 2.2: V Model of Software Engineering..22
Figure 2.3: Boehm's original figure of the spiral model as in [Boe88]..23
Figure 2.4: Graphical representation of the Rational Unified Process (from IBM website)..24
Figure 2.5: Activities in a TDD process (source: [Amb03])...26
Figure 2.6: KobrA's component model [Atk02]. ..32
Figure 2.7: Web service brokerage architecture..35
Figure 2.8: W3C's Semantic Web layer cake diagram. ..37
Figure 2.9: Overview of which factors affect reuse levels and which do not..41
Figure 2.10: Categorization of reuse metrics and according models from [Fra96]...44
Figure 2.11: A simple component-based software development process as proposed by [Som06].46
Figure 2.12: KobrA's reuse model [Atk02]. ..46
Figure 2.13: Component reuse in the context of a component library as envisaged by [Ost92].47
Figure 2.14: Waterfall-based reuse model [Crn06]. ...48

Figure 3.1: Illustration of recall and precision [Hum03]. ...54
Figure 3.2: Recall versus precision curves comparing three different retrieval algorithms [Hum03].55
Figure 3.3: Class diagram of exemplary Stack component...65
Figure 3.4: Formal specification of a stack in Larch/ML as given in [Zar97]..66

Figure 5.1: Schematic description of Extreme Harvesting process..96
Figure 5.2: Search space reduction...97
Figure 5.3: Example for a candidate result that requires an adapter..99
Figure 5.4: Object adapter as defined by [GoF95]..101
Figure 5.5: Class diagram of the class adapter..102
Figure 5.6: A situation in which an object adapter would fail...103
Figure 5.7: ManagedAdapter that overcomes the problems of the GoF adapters...103
Figure 5.8: Sequence diagram of the testing process...105
Figure 5.9: Simplified class diagram of a harvested Blackjack component..109
Figure 5.10: System architecture for Extreme Harvesting with Merobase...110
Figure 5.11: Our Eclipse plugin suggesting reusable candidates based on an interface-driven search.......................111
Figure 5.12: Using Eclipse's "quick fix" function to derive a class stub from a test case...112

182 - LIST OF FIGURES

Figure 5.13: Test-driven reuse proposals by the Eclipse plugin supporting Extreme Harvesting...............................112
Figure 5.14: Harvesting system architecture...114

Figure 6.1: The Eclipse plugin recommends potentially useful methods for MovieTest class....................................120
Figure 6.2: The plugin presents reusable candidates that are likely to offer the required functionality....................120
Figure 6.3: List of results that actually deliver the required functionality..121
Figure 6.4: Iterative component modelling process in KobrA...123

Figure 7.1: Initial design of Wake's running example...142
Figure 7.2: Screenshot of the Eclipse plugin recommending a Document class...143
Figure 7.3: Screenshot of the final local JUnit test run...145

Figure 8.1: Agora's architecture, taken from [Sea98]..148
Figure 8.2: Process of a test-driven code search in CodeGenie..153
Figure 8.3: Representation of a system as a directed graph for ComponentRank [Ino05]..155

LIST OF TABLES

Table 2.1: Potentially reusable aspects of software projects according to [Fra96]...38

Table 3.1: Assessment of retrieval methods according to [Mil98]. ..57

Table 4.1: Number of Java files indexed by search engines on the web..71
Table 4.2: Number of WSDL files delivered from search engines..72
Table 4.3: Number of WSDL files within reach at various websites (July 2005)...74
Table 4.4: Exemplary fields contained in the Merobase index...79
Table 4.5: Number of components/services indexed in Merobase in summer 2007..80
Table 4.6: Overview of components found in version control repositories..81
Table 4.7: Percentage of interfaces contained in all Java files...81
Table 4.8: Open source licenses recognized for Java source files...82
Table 4.9: Number of classes using IO-Packages...82
Table 4.10: Overview of GUI frameworks used...82
Table 4.11: Distribution of special component types in the Merobase index...83

Table 5.1: Use cases for component search engines...86
Table 5.2: Fields and weights used for improved ranking within speculative and open source searches.....................88
Table 5.3: Multi-level searching for specification-based searches..91
Table 5.4: Possibilities for relaxed signature matches in Java...100
Table 5.5: Potential heuristics for resolving missing dependencies...108

Table 7.1: Exemplary query results from June and July 2005...129
Table 7.2: Exemplary query examples for more complex components...130
Table 7.3: Comparison of interface-based and signature-based harvesting..133
Table 7.4: Comparison of retrieval performance for open source searches on various search engines.......................135
Table 7.5: Comparison of code search engines performed on stateless operations...136
Table 7.6: Comparison of search engines with small exemplary components...138
Table 7.7: Comparison of retrieval techniques on stateless operations...139
Table 7.8: Comparison of retrieval techniques...141

Table 8.1: Overview of recent code search engines..150
Table 8.2: Overview of search engines offering library searches..151

184 - LIST OF TABLES

APPENDIX A: TEST CASES

This appendix contains the JUnit [Bec99b] test cases, used to perform the semantic evaluation of the
examples in tables 7.2, 7.3, 7.6 and 7.8, in alphabetical order.

public class AccountTest extends TestCase
public void testDeposit()
{

Account a = new Account();
a.deposit(32.33);
assertEquals(32.33, a.getBalance(), 0.005);

}

public void testWithdrawal()
{

Account a = new Account();
a.deposit(32.33);
a.withdraw(20.20);
assertEquals(12.13, a.getBalance(), 0.005);

}
}

public class ArticleTest extends TestCase {
public void testArticle() {

Article art = new Article();
art.setId(12345);
art.setName("Navigator");
art.setPrice(299.99);
assertEquals(art.getId(), 12345);
assertEquals(art.getName(), "Navigator");
assertEquals(art.getPrice(), 299.99);

}
}

public class BinaryTreeTest extends TestCase {
public void testTree() throws Throwable {

BinaryTree bt = new BinaryTree(42);
assertTrue(bt.contains(42));

}
}

186 - APPENDIX A: TEST CASES

public class CalculatorTest extends TestCase {
private Calculator c;

public void setUp() {
c = new Calculator();

}

public void testSub() {
Calculator c = new Calculator();
assertEquals(-1, c.sub(4,5));

}

public void testAdd() {
Calculator c = new Calculator();
assertEquals(9, c.add(4,5));

}

public void testMul() {
Calculator c = new Calculator();
assertEquals(20, c.mul(4,5));

}

public void testDiv() {
Calculator c = new Calculator();
assertEquals(3, c.div(9,3));

}
}

public class ComplexNumberTest extends TestCase {
public void testAdd() {

ComplexNumber z1 = new ComplexNumber(1.0, 1.0);
ComplexNumber z2 = new ComplexNumber(1.0, 1.0);
ComplexNumber z3 = z1.add(z2);
assertEquals(2.0, z3.getRealPart());
assertEquals(2.0, z3.getImaginaryPart());

}
}

[http://www.cafeaulait.org
/slides/ad2006/testdriven/Test_Driven_Development_with_JUnit.html]

public class CreditCardValidatorTest extends TestCase {
public void testCardNumber() {

CreditCardValidator ccv = new CreditCardValidator();
assertTrue(ccv.isValid("4123456789012349"));
assertFalse(ccv.isValid("0000"));

}
}

public class CustomerTest extends TestCase {
public void testCustomer() {

Customer c = new Customer();
c.setAddress("Baker Street 210");

APPENDIX A: TEST CASES - 187

assertEquals(c.getAddress(), "Baker Street 210");
}

}

public class DeckTest extends TestCase {
public void testAll() throws Throwable {

Deck deck = new Deck();

Card card1 = deck.dealCard();
Card card2 = deck.dealCard();
assertTrue(card1 != card2);

deck.shuffle();
Card card3 = deck.dealCard();
assertTrue(card1 != card3 || card2 != card3);

assertTrue(card1.toString().endsWith("Spades")
|| card1.toString().endsWith("Clubs")
|| card1.toString().endsWith("Hearts")
|| card1.toString().endsWith("Diamonds"));

 }
}

public class DieTest extends TestCase {
public void testRoll() {

Die die = new Die();
for (int i = 0; i < 100; i++) {

die.roll();
boolean result = die.getFaceValue() > 0

&& die.getFaceValue() <= 6;
 assertTrue("Face value out of range", result);

}
}

public void testRandom() {
Die die1 = new Die();
int [] count = new int [7];
for (int i = 0; i < 12000; i++) {

die1.roll();
count[die1.getFaceValue()]++;

}
for (int i = 1; i <= 6; i++) {

assertTrue("Non-random outcome "+i+" = "+count[i],
count[i] > 1900 && count[i] < 2100);

}
}

}

[http://www.cs.vassar.edu/~cs335/Testing/DieTest.java]

public class DocumentTest extends TestCase {
public void testDocument() {

Document d = new Document("a", "t", "y");

188 - APPENDIX A: TEST CASES

assertEquals("a", d.getAuthor());
assertEquals("t", d.getTitle());

}
}

[Wak02]

public class MatrixTest extends TestCase {
Matrix matrix, matrix2, matrix3;

 public void testMatrix() throws Throwable {
 matrix = new Matrix(2, 2);

matrix2 = new Matrix(2, 3);
matrix3 = new Matrix(3, 2);

matrix.set(0, 1, 42.0);
assertEquals(matrix.get(0, 1), 42.0);

matrix3.set(0, 0, 1.0);
matrix3.set(0, 1, 2.0);
matrix3.set(1, 0, 2.0);
matrix3.set(1, 1, 3.0);
matrix3.set(2, 0, 1.0);
matrix3.set(2, 1, 4.0);

matrix2.set(0, 0, 1.0);
matrix2.set(0, 1, 2.0);
matrix2.set(0, 2, 3.0);
matrix2.set(1, 0, 3.0);
matrix2.set(1, 1, 2.0);
matrix2.set(1, 2, 1.0);

matrix2 = matrix3.multiply(matrix2);
assertEquals(matrix2.get(0, 0), 7.0, 0.1);
assertEquals(matrix2.get(1, 1), 10.0, 0.1);
assertEquals(matrix2.get(2, 1), 10.0);
assertEquals(matrix2.get(2, 0), 13.0);

 }
}

public class MortgageCalculatorTest extends TestCase {
public void testMortgage() {

MortgageCalculator mc = new MortgageCalculator();
mc.setRate(6.0);
mc.setYears(1);
mc.setPrincipal(100.0);
assertEquals(8.61, mc.getMonthlyPayment(),0.5);

}
}

public class MovieTest extends TestCase {
public void testTitleRetrieval() {

Movie movie = new Movie("Star Wars", 0);
assertEquals(movie.getTitle(), "Star Wars");

APPENDIX A: TEST CASES - 189

}
}

[Fow99]

public class ShoppingCartTest extends TestCase {
private ShoppingCart cart;
private Product book1;

protected void setUp() {
cart = new ShoppingCart();
book1 = new Product("Pragmatic Unit Testing", 29.95);
cart.addItem(book1);

 }

public void testEmpty() {
cart.empty();
assertEquals(0, cart.getItemCount());

}

public void testAddItem() {
Product book2 = new Product("Pragmatic Project Automation", 29.95);
cart.addItem(book2);
double expectedBalance = book1.getPrice() + book2.getPrice();

assertEquals(expectedBalance, cart.getBalance(), 0.0);
assertEquals(2, cart.getItemCount());

 }

 public void testRemoveItem() {
cart.removeItem(book1);
assertEquals(0, cart.getItemCount());

 }
}

[http://clarkware.com/articles/JUnitPrimer.html]

public class SortTest extends TestCase {
public void testSort() {

int[] odd = {8, 2, 3, 1, 24, 13, 5, 4};
int[] sorted = {1, 2, 3, 4, 5, 8, 13, 24};
Sort s = new Sort();
s.quickSort(odd);
for (int i=0;i<odd.length;i++)

assertEquals(odd[i], sorted[i]);
}

}

public class SpreadsheetTest extends TestCase {
public void testCellReference() {

Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "=A1");
assertEquals("5", sheet.get("A2"));

190 - APPENDIX A: TEST CASES

}

public void testCellChangePropagates() {
Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "=A1");
sheet.put("A1", "10");
assertEquals("10", sheet.get("A2"));

}

public void testFormulaCalculation() {
Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "2");
sheet.put("B1", "=A1*(A1-A2)+A2/3");
assertEquals("15", sheet.get("B1"));

}
}

[http://today.java.net/lpt/a/69]

public class StackTest extends TestCase {
public void testAll() throws Throwable {

Stack stack = new Stack();
stack.push((Object)"Lassie");
stack.push((Object)"Fury");
stack.pop();
stack.push((Object)"Flipper");
stack.push((Object)"Fury");

assertEquals(stack.pop(), (Object)"Fury");
assertEquals(stack.pop(), (Object)"Flipper");
assertEquals(stack.pop(), (Object)"Lassie");

}
}

APPENDIX A: TEST CASES - 191

It‘s not the pace of life that concerns me, it‘s the sudden stop at the end.

-- Unknown

