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Abstract
In the early days of programming the concept of subroutines, and through this software reuse, was invented to 
spare limited hardware resources. Since then software systems have become increasingly complex and developing 
them would not have been possible without reusable software elements such as standard libraries and frameworks. 
Furthermore, other approaches commonly subsumed under the umbrella of software reuse such as product lines 
and design patterns have become very successful in recent years. However, there are still no software component 
markets available  that  would  make buying  software components as simple  as buying  parts in  a  do-it-yourself 
hardware  store  and  millions  of  software  fragments  are  still  lying  un(re)used  in  configuration  management 
repositories all over the world. The literature primarily blames this on the immense effort required so far to set up 
and maintain  searchable component repositories and the weak mechanisms available for retrieving components 
from them, resulting in a severe usability problem. In order to address these issues within this thesis, we developed 
a proactive component reuse recommendation system, naturally integrated into test-first development approaches, 
which is able to propose semantically appropriate, reusable components according to the specification a developer is 
just working on. We have implemented an appropriate system as a plugin for the well-known Eclipse IDE and 
demonstrated its usefulness by carrying out a case study from a popular agile development book. Furthermore, we 
present  a  precision analysis  for our  approach and  examples of how components can be retrieved based on a 
simplified semantics description in terms of standard test cases.

Zusammenfassung
Zu  Zeiten  der  ersten  Programmiersprachen  wurde  die  Idee  von  Unterprogrammen  und  damit  die  Idee  der 
Wiederverwendung von Software zur Einsparung knapper Hardware-Ressourcen erdacht. Seit dieser Zeit wurden 
Software-Systeme  immer  komplexer  und  ihre  Entwicklung  wäre  ohne  weitere  wiederverwendbare  Software-
Elemente wie Bibliotheken und Frameworks schlichtweg nicht  mehr handhabbar.  Weitere,  üblicherweise unter 
dem Begriff Software Reuse zusammengefasste Ansätze, wie z.B. Produktlinien und Entwurfsmuster waren in den 
letzten Jahren ebenfalls sehr erfolgreich,  gleichzeitig existieren allerdings noch immer keine Marktplätze, die das 
Kaufen  von Software-Komponenten  so einfach  machen  würden,  wie  den  Einkauf  von  Kleinteilen  in  einem 
Heimwerkermarkt.  Daher schlummern derzeit Millionen von nicht  (wieder)  genutzten Software-Fragmenten in 
Konfigurations-Management-Systemen  auf  der  ganzen  Welt.  Die  Fachliteratur  lastet  dies  primär  dem  hohen 
Aufwand,  der bisher für Aufbau und Instandhaltung von durchsuchbaren Komponenten-Repositories getrieben 
werden  musste,  an.  Zusammen  mit  den  ungenauen  Algorithmen,  wie  sie  bisher  zum  Durchsuchen  solcher 
Komponentenspeicher zur Verfügung stehen, macht diese Tatsache die Benutzung dieser Systeme zu kompliziert 
und  damit  unattraktiv.  Um  diese Hürde künftig  abzumildern,  entwickelten wir  in  der vorliegenden Arbeit ein 
proaktives Komponenten-Empfehlungssystem, das eng an testgetriebene Entwicklungsprozesse angelehnt ist und 
darauf aufbauend wiederverwendbare Komponenten vorschlagen kann, die genau die Funktionalität erbringen, die 
ein Entwickler gerade benötigt. Wir haben das System als Plugin für die bekannte Eclipse IDE entwickelt und seine 
Nutzbarkeit unter Beweis gestellt, in dem wir ein Beispiel aus einem bekannten Buch über agile Entwicklung damit 
nachimplementiert  haben.  Weiterhin  enthält  diese  Arbeit  eine  Analyse  der  Precision  unseres Ansatzes sowie 
zahlreiche Beispiele, wie gewöhnliche Testfälle als vereinfachte semantische Beschreibung einer Komponente und 
als Ausgangspunkt für die Suche nach wiederverwendbaren Komponenten genutzt werden können.
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1 INTRODUCTION

In the  beginning  the  Universe  was created.
This has made  a lot of people  very  angry  and  has been  widely  regarded  as a bad  move.

-- Douglas Adams

1.1 MOTIVATION

Ever since Konrad Zuse developed the first computer programming language called Plankalkül [Gil97] 
in  the  1940s  software  systems  have  been  growing  increasingly  complex.  In  the  early  days  of 
programming when computers used to fill rooms memory was highly expensive and hence programmers 
invented the concept of subroutines to conserve memory. This allowed a piece of code to be called from 
different locations without the need to store multiple copies of identical code. Software reuse was thus 
invented to better manage limited hardware resources [Cle95].  But simultaneously,  software developers 
suffered from ever increasing pressure for shorter development cycles and higher software complexity.  
The software itself, however, has been suffering from a whole range of problems such as bad quality or 
overruns of budget and time schedules. This situation became common currency during the 1960s when 
the so-called „software crisis“ (see e.g. [Dij72])  was recognized. Suddenly, a solution focussed on software 
was required. It was presented at the famous NATO conference in Garmisch in 1968 where – amongst 
other ideas – the term software engineering was coined and the need for engineering-like development of 
software was highlighted.  It was Douglas McIlroy [McI68]  who introduced a related vision that  was 
inspired from other engineering  disciplines:  the  (re-)use of pre-fabricated software parts in  order to 
promote flourishing  component marketplaces. Today,  as a matter of fact,  component-based software 
reuse is considered one of the hallmarks that would bring software engineering closer to the standard of a 
fully-fledged engineering discipline [Mil99].  However, as we will detail in this thesis, component-based 
software reuse and the required component markets still have not made their expected breakthrough.

Arguably,  software and software development have become very important for our daily  lives and our 
economy, the annual turnover of the software industry has long become a multi-billion Euro business in 
Germany alone: A world without computers, microprocessors and thus a world without software is not 
conceivable anymore. However, the years since the turn of the millennium  have also confronted the 
software industry with some unpleasant problems such as the burst of the dot-com bubble and increasing 
amounts of open source software that have become available for free over the Internet. However, some 
analysts have already seen a possible source of the revenues for software companies in that area and some 



12 - INTRODUCTION

researchers – as well as recently some companies – have recognized the potential of the Internet as the 
world's largest ever repository for reusable software. Given the annual turnover of the software industry 
even a small  quantum  jump  (in  the  physical  sense of the  word)  in  reuse technologies,  making  the 
enormous amounts of code lying on the Internet or even in version control repositories of companies 
reusable, could save the software industry millions of Euros per year.

Unfortunately, the Internet itself is at first an amorphous mass of bits and bytes and the challenge that 
remains (not only for reuse technologies) is to find and utilize the information that really counts for the 
users (i.e.  in  our  context the  reusable components for the  developers)  in  the  large  amount  of data 
distributed over the Internet. In other words, a component search engine must understand the semantics 
or the meaning  of components to satisfy the needs of developers well  enough to make this valuable 
knowledge accessible.  It  seems odd at  first glance that  this  is still  regarded as a problem given that 
component-based reuse during the 1990s was as hot a topic as web search engines have become recently. 
One should assume that the foundations developed within these two areas should be sufficient to deal 
with the millions of software assets available today. However, this was obviously not the case when the 
research for this thesis was started since no means to search for a specific component in a version control 
system were available, not to mention a way to finally find a component offering specific functionality 
over the Internet. Even on the World-Wide Web, which contains thousands of online shops and thus 
should be the first choice for so-called component markets, components have so far been hard to find. 
Only  very recently  have a  number  of source-code search engines emerged that  try  to  improve this 
situation.  However, neither the research results of the 1990s nor this code search engines of the first 
generation are able to provide a search capability that deserves the label semantic component retrieval as 
we will define it below.

1.2 RESEARCH OBJECTIVE

In principle, almost all assets produced during a software development process, like for instance domain 
knowledge, requirements, design and source code, have the potential  of being reused and accordingly,  
reuse has become an  umbrella  concept  for many  different  techniques  that  all  aim  at  the  target  of 
“creating  software  systems  from  existing  software  rather  than  building  software  systems  from  scratch “ as 
defined  by  [Kru92].  Scholars such as Dijkstra  and  Parnas first  realized certain  aspects of McIlroy's 
original vision with concepts such as structured programming [Dij70]  and information hiding [Par72].  
The development of object-orientation [Dah66]  later integrated these ideas into the current generation 
of programming languages. However, software reuse in  the original  sense that  a developer can buy a 
component that matches the requirements of his design was still a long way from realization when this 
thesis was started in 2004.  The following paragraphs present more details on why we believe this topic 
has been (and still is) worth studying although other researchers have been working on it for almost four 
decades. They already produced a comprehensive range of component retrieval techniques during the 
1980s and 1990s (see e.g. [Mil98]  & [Luc04]),  but the lack of practical applications of these techniques 
for publicly usable (and useful) component and service repositories is compelling evidence for the lack of 
theoretical knowledge in this area and hence a good rationale to investigate it more closely.
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Generally,  strong evidence for the effectiveness of various reuse approaches have been presented in  a 
number of publications (e.g. [Len87],  [Gri93] & [Iso92]) and reuse established itself as an umbrella term 
for various concepts that range from reusing small snippets of code via components in the “traditional 
sense” to architecture-centric reuse where domain knowledge is reused in software product lines [Cle02].  
In fact the latter area has received the main interest of the reuse community  in recent years, while the 
“classical” component-based reuse seems to have fallen out of fashion after the mid  1990s.  Although 
there was a lot of research into setting up software repositories and retrieving assets from them during the 
early 1980s until the mid 1990s, no functioning solution was developed that is still in use today. This is 
interesting, since well-known experts in this field such as Poulin claimed that the “reuse  library  problem”  
has been solved [Pou99b],  but  also argued  that  reuse repositories would  become unmanageable  by 
humans once they exceed a critical threshold (of about 250  components).  However, Poulin  obviously 
based these claims only on his experience and intuition, and although he was perhaps right at the time, 
today  there are already  libraries that  contain  thousands of assets (like  the  Java standard  library)  or 
repositories with  hundreds of thousands of assets (like  the version management  repositories of large 
software companies) or even millions of assets (like the repository of the popular open-source hosting site 
Sourceforge.net).  While  ever growing hardware resources and improved version control systems have 
made it possible to store this large amount of software, no accompanying theory has been able to provide 
practitioners with guidelines on how to set-up or maintain such repositories for the purpose of searching 
and  reusing  their  contents,  although  they  are  certainly  required  for such  a  mass of data  [Fra05].  
Consequently,  the repository  problem [Sea99],  the representation  problem [Fra94]  and  the retrieval 
problem [Mil98]  identified in the reuse literature about ten years ago were still  wide open, when the 
research for this dissertation was started.

Practically,  all  scientific work dealing with software component retrieval to date has suffered from the 
problem of setting up a component collection larger than a few dozens or hundreds of components. 
Until  recently,  there  simply  was not  a  larger  number  of components available  to  researchers since 
industry typically showed little interest in sharing their assets with external scientists. Consequently,  the 
results published in older publications deal with repository sizes of around one hundred components and 
could  merely  demonstrate  that  the  underlying  concepts  might  work  (take  for  example  [Fra94]  &  
[Pod93])  in  practice.  But  there is  no experience nor  knowledge about  how to effectively  reuse the 
material stored in repositories that are some orders of magnitude larger. This is motivation enough to 
wonder how the recent influences of, for example,  the massive amount  of open-source code [Ray97]  
publicly available on the Internet could promote software reuse research as well as practice. Furthermore, 
a whole range of other technologies that could have a bearing on for software component retrieval have 
improved  in  recent  years,  such  as for  instance,  higher  bandwidth  Internet  connections,  increasing 
processing power, the Unified Modelling Language (UML)  and the quality  of integrated development 
environments.  All  of these changes have taken  place  after  the  first  wave of reuse approaches was 
published up to the late 1990s and hence the integration of these new developments has the potential to 
significantly improve the practice of reuse provided that “semantic” component retrieval techniques can 
be made available to developers.

Thus, the first objective of this thesis is to provide a thorough investigation of the state of the art in 
component-based software reuse and where it might have potential for improvement by taking new and 
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enhanced technologies (like those mentioned above) into account. Furthermore, we want to provide the 
foundations for software engineers to be able to exploit the large amount of software components lying 
in numerous repositories all  over the world and turn it  into a very large resource for component- (or 
service-)  based software reuse. This goal can be broken down into a number of high-level sub-goals 
which are nicely subsumed by the following quote taken from [McC97]:

“Although  the  idea  of  software  reuse  is simple  and  obvious,  its implementation  is not.  The  practice  of  
software  reuse  often  requires  a change  in  the  corporate  culture,  software  process,  software  tool  set  and  
software  skill set; as well  as, of course,  something  to reuse.”

Three key research areas in which new developments are required to improve the state of the art and to 
provide  a  holistic  approach  that  better  supports  component-based  software  reuse  and  component 
markets can be identified in the quote above:

1. Something to reuse
2. Software tool set
3. Software process

In other words, this thesis aims to improve the theory and state-of-the-art concerning the discovery and 
utilization of large amounts of software components (solving the repository problem),  the creation of 
tools to support efficient storage (solving the representation problem) and the creation of techniques and 
algorithms  to  facilitate  their  effective  retrieval  (solving  the  retrieval  problem).  To  make  these 
developments directly useful to developers, a further goal is to integrate them tightly  into well-known 
development processes. In short,  the goal is to automate as many  of the steps in  the so-called reuse 
success chain as proposed by [Fra96] as possible.

Figure 1.1: The reuse success chain [Fra96].

A special emphasis of our effort, however, is put – as suggested by the title of this thesis – on the retrieval 
of components by developing techniques that deserve the label  semantic  component  retrieval.  Since the 
term  semantics  is  defined  as  “the  study  of  meanings “ by  Merriam-Webster's  dictionary,  we interpret 
semantic component retrieval as meaning the delivery of results (i.e. components) that have the meaning 
(i.e.  fulfil  the purpose) intended by the submitter of the query.  However, the main  problem in  this 
context is the so-called conceptual  gap  (as e.g. discussed by Larman [Lar05])  lying between a concept in a 
developer's mind and the actual representation of that concept in a software system or a component in a 
repository as discussed by [Fis91].  Thus an important contribution of the thesis is to shrink this gap and 
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to develop easy to use,  context-sensitive component  search algorithms that  deliver results coming  as 
closely as possible to meeting a developer's real desires.

1.2.1 OUT OF SCOPE

However, a well organized and searchable component repository is not only useful for component-based 
reuse in  the traditional  sense. Other applications such as improving software testing or software cost 
estimation  and detecting  plagiarism are alternative possible uses of this  work and  some of them we 
already discussed elsewhere [Hum06c].  However, since reuse is already a very complex topic in its own 
right, our main focus will be component-based software reuse and we will not elaborate on the areas just 
mentioned within the scope of this thesis. We will merely give some pointers to our further work when 
appropriate.

Furthermore, one would be able to identify another research area from Carma McClure's quote, namely 
the change in corporate culture, as a fourth point,  but this is out of scope for this thesis as our focus is 
clearly on technical and not on managerial concerns and industrial practices as discussed e.g. in [Gri94].  
Additionally,  since reuse has become an umbrella  term for a large collection of many different ideas, 
approaches and concepts it is also important to clarify that everything outside the technical improvement 
of software development through efficient component repositories is also out of scope for this thesis. 
This includes the above mentioned domain  engineering and product line approaches that  have been 
successful  in  practice  [Cle02],  as well  as design  patterns [GoF95],  which  are generally  regarded  as 
another successful attempt to provide software developers with guidelines to reuse design experience.

There are even further interesting areas in the field of software reuse such as generative programming 
[Cza00],  software factories [Gre03] or the reuse of general software development knowledge [Bas88] that 
will  not be considered in  our work.  We will  only mention foundations from related areas if they are 
necessary for the understanding  of this dissertation and refer the reader to the relevant literature for 
further details in those cases.

1.3 RESEARCH STRATEGY

Computer science has its roots in various disciplines like mathematics and electrical engineering and the 
natural sciences. Software engineering as a profession which deals with the construction of software is 
generally regarded as an engineering discipline [Som06].  On the other hand, it also has a scientific facet 
represented by  software engineering  research.  While  the mathematical  approach of constructing  and 
proving models is only of limited use for theoretical branches of computer science the growing influence 
of natural sciences has made empiricism very popular in software engineering [Bas86]  in recent years. 
This  paradigm  is  generally  based on  a  positivist  research  approach  which  considers principles  and 
methods of natural sciences as applicable for sciences largely influenced by human behaviour. Positivists 
usually start by identifying an existing problem in an area under research based on practical observations. 
Literature  studies  provide  the  basis  to  identify  interesting  variables  and  to  construct  a  theoretical 
framework within which experiments can be performed. Such experiments are used to underpin or to 
reject the hypotheses that can be formulated with the help of the defined framework. Experiments are 
statistically evaluated and the outcome is used to answer the research questions and to derive principles 
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or laws. According to [Bla82]  such a research process“is the  application  of  scientific  method  to the  complex  
task of  discovering  answers  (solutions)  to  questions” which can be summarized as follows for social and 
natural – i.e. for empirically grounded – sciences:

1. choosing the research problem(s)
2. stating hypotheses
3. formulating the research design
4. gathering data
5. analysing data
6. interpreting the results so as to test hypotheses

However, although empirical research in software engineering has made a lot of progress in recent years 
it  is not always regarded as fully sufficient.  Many  experiments in software engineering research involve 
humans and hence introduce variables in  the experimental  setting that are not fully  controllable.  For 
instance, natural scientists typically are able to control variables such as temperature or humidity but it is 
not possible for computer scientists to change the experience or age of their subjects so that methods 
from the social sciences have to be used to mitigate negative effects induced by humans on empirical 
experiments in software engineering.

Another limitation of empirical software engineering research has been raised by the advocates of the so-
called design science. They argue that a pure positivist approach is not sufficient since computer science 
still  remains an engineering discipline and finding creative solutions for identified problems should be 
regarded as a research paradigm on its own right since they often have to pave the way for follow up 
behavioural science. In other words, as described by Nunamaker and Chen [Nun90]  many important 
developments in  the  history  of research have been made out  of creativity  or necessity  without  any 
empirical  research.  The  authors mention  structured  programming  as well  as analysis  and  design  as 
examples  from  the  area  of  software  engineering.  Another  example  is  the  development  of  CASE 
(computer  aided  software  engineering)  tools.  In  these  areas,  the  development  came  first  and  the 
empirical studies proving their effectiveness followed some years later. Consequently,  the authors realize 
that problems exist where empirical or mathematical solutions are not sufficient to show the success of a 
research approach. Since software reuse is an area that has not made any significant progress in the last 
decade and above all the construction of a usable CASE tool is one of the main goals of this dissertation 
we decided to follow the research process recommended by Nunamaker and Chen. It can be summarized 
as follows:

1. Construct a conceptual framework
2. Develop a system architecture
3. Analyse and design the system
4. Build the system
5. Observe and evaluate the system

The following quote from Nunamaker's article supports our decision:

“An ideal  research  problem  is one  that  is new,  creative,  and  important  in  the  field.  When  the  proposed  
solution  of  the  research  problem  cannot  be  proven  mathematically  and  tested  empirically,  or  if  it  
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proposes a new  way  of  doing  things,  researchers  have  to develop  a system  to  demonstrate  the  validity  of  
the  solution,  based  on  the  suggested  new  methods,  techniques,  or design.  Once  the  system  has been  built,  
researchers  can  study  its  performance  and  the  phenomena  related  to  its  use  to  gain  insights  into  the  
research  problem.“

Our research problem is the effective retrieval of software components to support software development. 
Due to the previous lack of usable component collections it was neither possible to test the performance 
of such systems empirically,  nor  to  prove anything  mathematically.  We  propose a  combination  of 
existing techniques to make existing component collections usable for component retrieval and hence 
had to develop a system that is able to demonstrate the usefulness of this concept. Only after this was 
defined were we able to observe and evaluate our system. This process is also reflected in the structure of 
this thesis which is described in more detail in the next subsection.

1.4 OUTLINE

The first chapter of this thesis has already explained the necessity for component-based software reuse 
approaches and identified some severe problems that  could not have been solved in  the past.  In the 
preceding subsection, we explained what is in the scope of our work and, furthermore, we defined the 
research approach we want to follow. This choice already widely determined the further structure of the 
thesis.  The  succeeding  chapter  starts  with  some foundations  on  software engineering  and  software 
development processes since their understanding is required to appreciate the context of the work. After 
that  we explain  the current  state of component-based software development  and software reuse. We 
provide some more detail  on common reuse approaches and their relations with each other before we 
discuss important  aspects  such  as  success factors  for  reuse,  reuse  metrics  and  the  foundations  of 
component-based development at the end of the second chapter.

Chapter three illuminates the state of the art of component-based reuse with a special focus on software 
component repositories and retrieval techniques. Finally,  it  discusses the idea of semantic component 
retrieval and outlines a number of conceivable use cases for semantic component searches. Since a lack of 
components has always stopped researchers from working with large repositories in  the past,  we have 
turned our attention towards using the Internet as a component repository. Due to the wide availability  
of open source software and web search engines we found it to be a feasible source for this purpose. This 
is described in chapter four. We explain how it is possible to use common web search engines such as 
Google or Yahoo for well targeted component searches although the prevailing opinion at this time was 
that this would not be possible at all. However, since the big search engines do not open up their indices 
for unlimited automated access this approach is only usable to conduct research, but not for practical 
usage  in  a  production  environment.  Thus  we  discuss the  creation  of  our  own  index  of  software 
components and web services in subsequent parts of this chapter.

Chapter five turns its attention to semantic retrieval techniques for software components. We first define 
our understanding of semantic component retrieval as delivering results with the behaviour the developer 
expects in a given context and we derive a number of use cases for component search engines from that 
statement. We then discuss how we implemented search algorithms for these use cases. In section 5.2 we 
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elaborate our vision of a specification-based component retrieval approach called Extreme Harvesting 
which  is  based on  a  syntactic  description  of a  required  component  enriched  with  an  approximate 
semantic  description  in  the  form  of  a  test  case.  In  the  sequel  to  chapter  five  we  discuss  our 
implementation of Extreme Harvesting and other contributions to the state of the art that were necessary 
to  solve  the  problems  that  occurred  during  the  implementation  of  this  concept.  After  that  we 
demonstrate in chapter six that Extreme Harvesting fits smoothly into test-driven development processes 
due to its roots in the test-driven paradigm of Extreme Programming [Bec99].  We also discuss how it 
could satisfy the specification-based reuse approach defined in the KobrA method [Atk02]  with some 
minor adaptations. A description of the tool we developed and the general applicability of our approach 
round off this chapter.

Chapter seven concentrates on the evaluation of our ideas and starts with a brief survey of attempts to 
evaluate previous reuse approaches. We then demonstrate the feasibility of Extreme Harvesting with an 
early proof of concept implementation before we present the results of a precision analysis for various 
retrieval techniques and Extreme Harvesting. Afterwards, in chapter eight we present the most important 
related work that has been carried out by other researchers in the period of time during which we were 
working on this dissertation.  Finally,  chapter nine summarizes the work we performed and highlights 
our  most  important  contributions.  We  finish  it  with  suggestions for future  work  and  a  vision  for 
interactive component markets that could materialize within the next few years based on the results of 
our work. Finally, chapter ten contains the lists of references, figures and tables.



2 FOUNDATIONS

The  nice  thing  about  standards is that  there  are  so many  to choose  from.
-- Andrew S. Tannenbaum

As this thesis aims to leverage component-based reuse for modern software development, before we can 
introduce the foundations of software reuse we must first define its relationship to today’s common 
practices of software development and explain some relevant concepts and terms. Readers familiar with 
the basic principles of software engineering can skip the first part of this chapter and continue reading 
from section  2.4 where we introduce  and  discuss the  idea  of software components.  Afterwards we 
provide an introduction on software reuse which starts in section 2.5 on page 38.

2.1 SOFTWARE ENGINEERING BASICS

Software engineering  is  typically  concerned  with  the  development  of a  system,  i.e.  the  product .  As 
defined by Endres and Rombach [End03],  “a product  is a system,  consisting  of  hardware,  software,  or both,  
to  be  used  by  people  other  than  the  developers” .  A product  is  the  result  of  a  project  which  “is  an  
organizational  effort  over  a  limited  period  of  time,  staffed  by  people  and  equipped  with  other  resources  
required  to  produce  a  certain  result”.  The  chances of successfully  completing  a  project  are raised by 
following a process. The literature, e.g. [Som06],  defines a software process as “a structured  set of  activities  
required  for  the  development  of  a  system” .  Furthermore,  a  software  process  model  is  an  abstract 
representation of a process. It presents a simple description of a process from some particular perspective. 
A development  method  is  more  comprehensive  than  a  process and  includes  a  description  of  the 
development activities to be performed as well as a description of the assets to be developed.

Another  important  ingredient  of today's  software development  approaches,  as in  other  engineering 
disciplines,  is  an  abstract  (graphical)  representation  of  complex  designs.  It  took  researchers  and 
practitioners almost thirty  years from the “invention” of software engineering  at  the famous NATO 
conference in  Garmisch in  1968  until  the  late  1990s  to establish the  Unified  Modelling  Language 
(UML,  as of 2006  available in version 2.0  [OMG04])  as a commonly accepted graphical notation for 
software systems. Moreover, to quote the KobrA book [Atk02],  "the  Unified  Modelling  Language  (UML)  
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is currently  the  leading  notation  for  modelling  architecture  and  design  level  information  in  a graphical  form ". 
Since there is no rival on the horizon, the UML  will  probably remain the leading graphical  software 
notation in the foreseeable future. 

Basically,  the UML  offers elements for describing  various aspects of a  software system such as class 
diagrams describing  the  structural  view of a  system and  interaction  diagrams showing  how objects 
communicate with each other. It is supported by the Object Constraint Language (OCL, see [War03])  
which  provides a  semi-formal  language  for  enhancing  the  precision  of  models  and  describing  the 
semantics of a  system's  functionality.  UML  also contains  component-diagrams that  can be used to 
describe the required and provided interfaces of components (these will described in more detail later).  
Since the UML is the quasi standard for software blueprints today we will  use UML diagrams where 
appropriate to better illustrate our ideas or to depict  examples. We  require a basic understanding  of 
UML from the reader. Easy to read introductions to the UML and the OCL can be found in [Fow03] 
and [War03] respectively.

2.2 SOFTWARE DEVELOPMENT PROCESSES

This section briefly  describes common ways of developing software today.  It highlights development 
processes that either have been of some importance for the field as a whole in the last four decades or are 
of high relevance for this thesis. Although the older sequential  software development models are now 
generally recognized as being insufficient in practice, teaching in software engineering usually starts with 
simple software development approaches such the waterfall model. We want to keep this tradition and 
also introduce the models in chronological order. 

However, before we can actually  go into the description of the models we have to define some further 
terms.  Although  the  waterfall  model  still  appears as a  model  in  most modern software engineering 
literature it  is not a  software  process  model  in the sense that it  gives concrete guidelines on what to do 
when in a development process (as defined in the last section). Consequently, [Sca02] characterizes it as a 
life- cycle  model ,  i.e.  a  model  that  depicts  only  a  coarse-grained  scheme  that  could  be  used  for 
management  purposes.  In  contrast  to  a  life-cycle  model,  a  process  model  has  a  much  higher 
descriptiveness and can be used as a technical  recipe for building software. Nowadays, developers can 
choose from a variety of established development processes. There is a good reason for this as there are a 
lot of factors that influence the success of a software project (such as developer experience in a domain, 
clarity of requirements, safety requirements, size of the system etc.) and only one kind of development 
process would never be optimal for every type of problem. There is therefore a wide range of different 
approaches, which can be arranged into three broad groups – namely into sequential, iterative and agile 
development approaches.

Independent from the chosen development process, a software's life-cycle typically comprises five groups 
of activities that have to be carried out to get from the initial idea to a working system:
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 analysis
 design
 coding
 testing and integration
 operation and maintenance

Since most modern development approaches allow a to carry out some of these activities in a different 
order  or  concurrently,  we deliberately  omitted  a  numbering  of them  in  the  bullet  list  above.  The 
following subsections will explain the arrangement of these activities in common development processes 
and will give some concrete examples on how they might be applied in practice. However, it is beyond 
the scope of this thesis to explain all these activities in detail.  A lot of good books are available on each 
these activities such as the ones from Coad and Yourdon for object-oriented analysis [Coa90] and object-
oriented design [Coa91],  from Eckel for programming in Java [Eck06], from Beizer on testing [Bei90] or 
for  maintenance  [Lie80].  Textbooks  [Som06]  that  try  to  cover  all  aspects  of  modern  software 
engineering are also available as well as good books (e.g. [Lar05])  on practical, individual processes that 
explain how to apply these activities together.

2.2.1 TRADITIONAL PROCESS MODELS

This  subsection  gives a  brief  introduction  into  “classic” software  development  models  such  as the 
waterfall model. 

SEQUENTIAL MODELS

The waterfall model (see e.g. [Boe76],  [Som06])  is the classic representation of a software system's life-
cycle which attempts to discretize the activities of software development.  It is printed in  nearly  every 
book on software development and comprises a structured set of activities that proceed in a sequential  
order, each of which must be completed before the next one can start. Its first appearance [Roy70]  dates 
back to 1970, and Royce had already suggested to apply the model iteratively at that time. However, this 
is no longer widely known and has given the model a rather bad name. Anyway, the waterfall model (as 
we said above some regard it only as a “life-cycle” model) is widely recognized as being poor in terms of 
descriptiveness and process guidance and is often considered as being too rigid for real life usage e.g. due 
to changing requirements. The figure below shows the typical representation of the model as attributed 
to Royce:
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Figure 2.1: Classical waterfall model [Roy70].

The assets shown in the figure are produced in a strictly sequential manner, i.e. before system design and 
specification can start all requirements must have been written. Only small feedback cycles (indicated by 
the dotted arrows) are allowed e.g. for the correction of errors in earlier stages. For the actual creation of 
systems with  a waterfall-style  approach the initial  system specification is developed through stepwise 
refinement into the final system. But as hinted above, there are no concrete guidelines on what activities 
should be used to develop the system. Furthermore, the waterfall model requires a kind of unnatural 
system development process since the requirements of a system tend to be unclear at the beginning of the 
process or tend to change after they have been written down.

The  V  model [Boe84]  traces back to an idea of Boehm and obtained its name from the typical  "V 
form" (see figure  2.2)  that  is used to characterize the ordering of the activities in  the process. The V 
model is of particular importance in  Germany as it  is the compulsory model when software is to be 
developed for the federal administration. In principle, it is merely a waterfall model with an elaborated 
view of the verification and validation activities.

Figure 2.2: V Model of Software Engineering.
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Validation (“Are we building  the right system?” [Boe84])  in  this model takes place in  the horizontal 
direction,  i.e.  the products on the right are tested against the documents or requirements on the left.  
Verification (“Are we building the system right?” [Boe84]),  however, takes place vertically  similarly  to 
the waterfall model where one development product pn is verified against the pn-1,  i.e.  the one before. 
Since its first version in 1986, two updated versions of the V model have been published by the German 
government, namely the “V-Modell 97” [VMo97]  and the “V-Modell XT” [Bro05] where XT stands for 
“Extreme Tailoring”. The main focus of the latter,  as the name suggests, is to provide a collection of 
building blocks that can be combined into a process model tailored to a project's needs.

ITERATIVE MODELS

Over time a lot of proposals for iterative models have been made. Initially,  even the original proposal of 
the waterfall  model  intended  to progress through the waterfall,  iteratively.  However,  Boehm's  spiral 
model [Boe88] is regarded as the archetype of iterative process models although it is not a process model 
in the common understanding of the term. It is rather a kind of “meta process model” that incorporates 
risk observations. Other models should be used inside the spiral for the actual  software development.  
The most notable fact about this model is that it integrates iterations for the first time and hence can be 
seen as the predecessor of modern iterative approaches such as the Rational  Unified  Process (RUP)  
[Kru00],  explained in more detail in the next subsection. The spiral in this model is separated into four 
quadrants that are passed through in every spiral loop. During the first quadrant (the upper left one), the 
objectives, alternatives and  constraints of the next development  step are determined  and  during  the 
second the risks arising for these objectives are evaluated and dealt with. The third quadrant typically is 
concerned with the actual  development steps like collecting requirements, creating a software design, 
actually coding or testing the software. The fourth quadrant is used to plan the next loop through the 
cycle.

Figure 2.3: Boehm's original figure of the spiral model as in 
[Boe88].
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2.2.2 TODAY'S BEST PRACTICE PROCESSES

The process models mentioned before are an important foundation for software development processes 
in  use today,  but  are  typically  not  ready  to  be used out  of the  box.  As we later  want  to  discuss 
component reuse in the context of modern software development we now give a brief overview of the 
development processes most used in practice today.

RATIONAL UNIFIED PROCESS

The  Rational  Unified  Process (RUP)  [Kru00]  is  today's  de  facto standard  for UML-based system 
development  in  many  organisations around  the world.  It  was originally  developed by  Rational  as a 
process to complement the UML. The general idea of the RUP is an iterative development approach that 
is illustrated in figure 2.4. At first glance, the iteration is not as obvious as in the spiral model, but the 
idea is still  simple.  The development span of a project is separated into four phases called inception, 
elaboration, construction and transition which follow each other sequentially as shown at the top of the 
figure (i.e. time flows from the left to the right in the figure). Although this might imply some similarity  
to the waterfall  model it  is important to note that this is not the case as the common workflows (or 
activities) listed on the left are repeatedly  passed through.  Each of the four phases is subdivided into 
iterations which are “timeboxed” and usually have a duration between 3 to 6 weeks. The coloured bulges 
in  the central area of the figure represent the effort that is spend on a certain activity  over time.  For 
instance,  at  the  beginning  a  lot  of  effort  is  put  into  business modelling  and  rough  requirements 
elicitation – that is, most of the requirements are collected and assigned a priority and/or risk. Then they 
can be allocated to iterations, typically  high priority/risk requirements are allocated to early iterations 
and hence, as the figure makes apparent, the design and implementation of important functionality can 
already start in the inception phase.

Figure 2.4: Graphical representation of the Rational Unified Process (from 
IBM website).
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2.2.3 AGILE DEVELOPMENT

Agile approaches [Coc01]  comprise a number of iterative methodologies that were first introduced as 
light-weight methodologies and share some important ideas with the RUP.  Consequently,  in  practice 
many companies use the best elements from both and apply something like an agile RUP as is proposed 
by [Lar05].  In contrast to so-called heavy-weight, traditional methodologies, agile methods are supposed 
to be a compromise between too much process and no process at all. The mantra of agile development 
proponents is to have “just enough” process. Hence, agile methods are typically  not very predictive in 
terms of cost or effort estimation, but highly adaptive and that is exactly what they are intended to be. 
Agile development methods are typically used for small- and medium-sized projects where it is difficult 
to determine all requirements at the start. The so-called agile manifesto [Fow01] is commonly accepted 
as the original definition of agile development and contains the following principles:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

The  manifesto was signed  in  2001  by  17  prominent  developers from the  agile  development  field, 
including for example Kent Beck, Alistair Cockburn and Martin Fowler. Agile processes obviously work 
for many projects limited in  size and effort,  but  critical  observers have always pointed out that  agile 
development is only  a collection of best practices used to impose a little  bit  of structure on chaotic 
projects. Although this is certainly not said without any reason, we believe there is a rationale for the use 
of agile processes in certain projects with unclear and rapidly changing requirements for example.

Most  agile  approaches also include  a  recent  trend  in  software engineering,  namely  the  test-driven 
development approach. We describe this further in the following subsection because it has an important 
bearing on our component retrieval approach.

TEST-DRIVEN DEVELOPMENT

One of the most important hallmarks of Extreme Programming (XP, [Bec99])  and other agile methods 
is the so-called test-first or test-driven development approach (TDD,  [Bec03])  which,  to some extent, 
turns traditional  development processes (like  the waterfall  model)  upside down and creates test code 
immediately before production code rather than afterwards as was traditionally the case. The following 
activity diagram illustrates the typical flow of a TDD process:
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Figure 2.5: Activities in a TDD process 
(source: [Amb03]).

As the name already indicates, the first step is to create a test for the unit  (class) under development. 
Then the test is run and its failure is checked. The unit  under test is then developed with the aim to 
make it pass the test. Therefore “the  simplest  solution  that  might  work” [Bec03]  is usually implemented. 
After implementing the functionality,  it  is tested again.  If it  still  fails,  the production code has to be 
reworked and retested. Alternatively, it is possible to enhance the test cases according to the principle of 
triangulation  [Bec03]  or  to  continue  with  the  development  of  other  unit  tests  that  cover  new 
functionality.  In a nutshell,  this basic development cycle is also known as  “design  a  little,  test  a  little,  
program  a little”, a maxim that originated from Extreme Programming.

The  literature (e.g.  [Lar05],  [Bec99],  [Amb03])  lists the following  key  advantages of such a process 
incorporating TDD:

 The tests get written at all
 Programmer satisfaction
 Clarification of interface and behaviour, i.e. low level design
 Repeatable verification 
 Helpful documentation
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Some authors even advocate the  early  creation  of tests after initial  design  work  and  before code is 
implemented in more heavyweight processes, such as Larman [Lar05] for the Unified Process. We regard 
this  approach as very  helpful  since it  allows –  as we shall  see later  –  a  simple  integration  of our 
specification-based reuse approach.

2.3 SOFTWARE VERIFICATION AND VALIDATION

Test-driven development planes the main emphasis of quality assurance on software testing. Of course, 
this is important in general, but software quality  assurance is typically a much broader activity and not 
only involves product-related quality  during development, but also organizational ones such as process 
control etc. Certification of companies according to CMMI  [Chr03]  is one example of the latter,  but 
this topic is so large that we have to limit  our attention to the former at this point.  Software testing is 
normally  performed as a  part  of software verification  and  validation  (V&V)  activities.  It  was Barry 
Boehm [Boe84]  who made the famous statement that verification is about  “am  I building  the  product  
right” and  validation  is about  “am  I  building  the  right  product” .  Software testing is a dynamic  V&V 
technique,  while  e.g.  software inspections are a static V&V technique.  Since the notion of testing is 
important for this thesis, we will briefly explain its most important aspects in the following subsection. 
For more detailed insights on software inspections, we have to refer the reader to the literature. [Gil93]  
provides interesting  material  on  inspections in  general  while  for instance  Basili  et  al.  [Bas96]  have 
published an  interesting  piece of work  that  is  regarded as improving  software inspections and  also 
demonstrates how empirical software engineering research can be conducted effectively.

2.3.1 SOFTWARE TESTING

Software testing [Bei90]  is the process of evaluating whether a software is fit for the required purpose. 
The general idea is to provide a program (or an operation) with a set of input and expected output values 
and to compare the latter  with  the actual  values delivered by  program execution.  Unfortunately,  as 
Dijkstra pointed out in [Dij72]  “program  testing  can  be  used  to  show  the  presence  of  bugs,  but  never  their  
absence” ,  testing  can  neither  be used to  prove the  correctness nor  the  completeness of a  program. 
Theoretically,  it  is possible to exhaustively  test a program by comparing the result  for every possible 
combination of input values with the expected output value. However, this so-called exhaustive testing 
would not only require large amounts of computation even for small pieces of software, but it also relies 
on the availability  of a  so-called oracle that  is  able to predict  the  correct  output  for every possible 
combination of input values. Obviously, if such an automated oracle existed, there would be no need to 
implement the system itself.

Hence, in practice a variety of techniques are used to choose representative candidates from the input 
space to shrink the testing effort to a bearable amount.  We distinguish between two basic purposes of 
software testing, namely defect testing for discovering bugs in a software system and reliability testing for 
assuring a required level of reliability.  We limit ourselves to defect testing at this point as the underlying 
statistical  models for reliability  estimation  are too complex to be discussed here.  Defect testing  has 
traditionally been used at different stages during software development. Although not necessarily bound 
to it, the V model presented in section 2.2.1 gives a good overview of the various levels of testing that are 
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typically performed. More detailed information can also be found in [Som06]  and the more specialized 
testing literature named above. So-called unit testing has the smallest granularity and typically provides 
test cases on the method level. When classes and components are assembled to larger functional units 
integration testing is performed to guarantee the proper interplay of the different parts. System testing is 
performed to validate the whole system before it is delivered to the customer and acceptance testing is 
finally performed by the customer to check whether the system fulfils his/her requirements. Testing on 
the unit level will be required later in this thesis so we briefly explain the two feasible approaches in the 
following subsections.

BLACK-BOX TESTING

Black-box (or functional) testing [Bei95]  is perhaps the more intuitive testing technique. It is practised 
for instance in electrical engineering as well. A component is regarded as a black-box, i.e. only through 
its interface (or its connectors in electrical engineering).  It therefore assumes that a specification of the 
component is available,  but no details about its internal implementation.  The component is tested by 
sending input values into the black-box and observing the output values that are returned. Those can be 
compared with the values expected, according to the specification.  Since the internal  structure is not 
available, and cannot be evaluated or used to derive test cases other strategies must be used to validate a 
black-box component.  Black-box testing typically  utilizes equivalence partitioning and boundary value 
analysis.  The former is used to reduce the number of test cases to a manageable amount  some it  is 
obviously not possible to test for instance the 264 possible input  values of a simple operation such as 
add(int,int):int.  Hence a tester tries to cover at least each equivalence partition (like positive and 
negative numbers and zero for this example) with some meaningful  samples. This is where boundary 
value  analysis  comes into  play  as  it  is  commonly  accepted  that  boundary  values  at  the  edges  of 
equivalence partitions are places where faults most frequently occur. Obviously, black-box testing makes 
most sense with binary components or services where access to the source code is not possible. The more 
flexible approach of white-box testing (see next paragraph) can only be used when the source code is 
available. 

WHITE-BOX TESTING

White-box testing (also known as structural testing, [Mye02])  needs access to the internal structure of 
components, i.e. the source code has to be available. Using this information, test cases can be tailored to 
fulfil a given code coverage criterion such as, for example, attempting to execute every statement. This is 
called statement coverage, the most simple coverage criterion, which for 100% coverage requires that a 
test  case traverses each statement  in  the  code at  least  once.  However,  it  is  somewhat  fragile  as the 
following simple Java example demonstrates:

String s = null;
if (some condition)
    s = ”SWT”;
System.out.println(s.length());
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A test case that  would carry out the example and set the condition  to true would reach a statement 
coverage of 100%,  but  if  the  condition  would  once be evaluated  to false in  the  real  program,  the 
println statement would cause a null pointer exception. The so-called branch (or condition) coverage 
avoids this pitfall  as it  requires that every condition is evaluated to true and to false. But even branch 
coverage does not guarantee that all  possible errors will  he disclosed and thus various other extensions 
(such as Multiple Condition Coverage [Mye02])  have been proposed. Ultimately, only the so-called path 
coverage  criterion  guarantees that  really  all  possible  paths  through  a  program  have been  covered. 
Unfortunately,  every pass through a loop is regarded as a path in  its own right and consequently  the 
number of paths can quickly become large and non-testable in practice. A simpler approximation has 
been introduced for the practical usage of this technique that only requires to cover every independent 
path in a program. The number of independent paths and therewith the minimum number of test cases 
required  to  cover all  independent  paths  in  a  program  is  determined  by  its  cyclomatic  complexity 
[McC76]  and  is  calculated  by  adding  one to the  number of branches in  the code.  The  cyclomatic 
complexity is also a well-known code metric indicating the complexity of a piece of code.

2.4 SOFTWARE COMPONENTS

Interestingly,  all  the development  approaches discussed above were initially  focused on development 
from scratch and thus none of them is concerned about concrete guidelines for reusing pre-produced 
software parts.  Approaches for componentization  of software that  go beyond the  usual  “divide and 
conquer” aspects of architectural and object-oriented design are not considered. Others have recognized 
these weaknesses and have proposed approaches that try to address this problem. For instance, [Moh04]  
tried  to incorporate reuse into  the RUP.  However,  the  applicability  of these ideas is  rather  limited 
without appropriate tool support and even the more specialized approaches that we discuss below are not 
yet for practical use out of the box at the time of writing.

It was in 1972 when Parnas [Par72]  first wrote about managing the complexity of software systems by 
decomposing  them  into  modules  to  simplify  maintenance  and  development  as  well  as  to  foster 
reusability.  Since then,  programming  languages have made considerable progress and object-oriented 
languages today  seem to provide all  the necessary mechanism for the componentization  of software. 
Moreover, component technologies such as J2EE, .NET,  CORBA and Web Services are now widely 
available and the underlying languages are based on decades of experience with object-orientation (since 
[Dah66])  and  information  hiding  [Par72].  However,  although  quite  a  number  of  definitions  for 
“software component” have been proposed in recent years, there is often confusion about what this term 
means,  especially  in  relation  to the term “object”.  This  might  be stem from the  fact that  even the 
modern component technologies mentioned above do not fully comply with the common definitions for 
components presented below.

Probably the most popular definition of the term “component” can be found in [Szy02]  and originates 
from a workshop of the 1996 European Conference on Object-Oriented Programming:
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“A software  component  is a  unit  of  composition  with  contractually  specified  interfaces  and  explicit  
context  dependencies  only.  A software  component  can  be  deployed  independently  and  is  subject  to  
composition  by third  parties.”

Certainly,  this  definition  gives  a  kind  of  lower  bound  for  components,  and  object  abstractions 
commonly used in modern programming languages are supposed to fulfil this definition.  They exhibit 
their public operations to the outside and can be displaced to another environment. However, none of 
the common programming languages support objects which fully  expose their required interfaces. For 
example,  required libraries are usually  hidden in  the component's implementation.  But this is not an 
argument  against  treating  objects as components since Enterprise Java Beans (EJB)  for example are 
widely accepted as a typical  incarnation of components although they often comprise just one object. 
And even Syzperski himself makes somewhat contradictory statements when he argues on the one hand 
without direct relation to the above definition that objects cannot be considered as components ([Szy02]  
on page 38) and claims on the other hand on page 285 that “a (Java)  bean  is really  a component” . Since a 
bean is nothing but a (simple) Java class, there is obviously a problem with these statements. The Object 
Management Group (OMG) provides another similar definition in [OMG03]  which avoids the above-
mentioned problem with the required interfaces and thus also accepts objects as components:

"A component  represents  a  modular,  deployable  and  replaceable  part  of  a  system  that  encapsulates  
implementation  and  exposes a set of interfaces."

Apparently,  these two definitions are very similar,  but also both raise another question:  What  is  not  a 
component? For this thesis we take the view that  objects in  modern programming languages comply 
with these definitions. Even a static method can be acceptable as a component since it could be removed 
from the surrounding object and placed elsewhere. Having outlined the minimum requirements for a 
component, one might wonder whether there is also an upper bound for this concept? Nowadays most 
component-based development approaches such as KobrA [Atk02]  express the opinion that  “one  man's  
system  could  be  another  man's component”  and compose components hierarchically into larger components 
which hide their implementations behind their interfaces as we shall see in the next subsection. Thus, 
they  accept that there is no general upper bound for this concept. The problem in implementing this 
with today's object-oriented programming languages is,  however, that  objects are typically  grouped in 
packages which cannot have an interface on their own. They just act as a simple container and are thus 
not  a  component  in  the  proper  sense.  However,  for  example  in  Java  it  is  possible  to  mimic  a 
component's  behaviour  to  a  certain  extend  with  the  use  of  inner  classes.  Although  hierarchical 
composition of inner classes is possible in Java it requires invasive changes of the source code and thus is 
no longer consistent  with  the intent  of the definition.  This  issue currently  makes it  difficult  if  not 
impossible to find components according to a KobrA specification beyond the class level.

One other fact that should be intuitively clear in this context is the more comprehensive a component 
becomes, the more difficult it becomes to deploy it in a different environment without any modifications 
or to find a matching component in a repository in the first place. Taking these issue into account,  a 
third definition,  originating from Ralf Reussner and cited after [Kra03], becomes worth mentioning in 
this context: 
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“A software  component  is an artefact  of the  software  development  process and  can  be  deployed  in  several  
contexts by third  parties without  being  manually  modified.”  

In our opinion this definition is very useful since it brings in the aspect of not being manually modified.  
We believe that this should and will become a very important feature in supporting component markets 
of the future.  As soon as a developer can buy a component that  will  automatically  made fit  into his 
system the incentive to use such a component is much higher than if he has to create adopters or glue 
code by hand.  This definition is certainly  closely related to the term “reusability”, which is defined in 
[McC97]  as “the  extent  to  which  a  software  component  can  be  used  with  or  without  changes  in  multiple  
software  systems,  versions or implementations”. In other words, if it requires no effort to reuse a component 
in various systems its reusability is the highest. However, according to this definition a higher reusability  
can also be achieved by sophisticated tool support.

2.4.1 COMPONENT-BASED DEVELOPMENT

Given the size of today's software systems a “divide and conquer” approach is an absolute necessity in 
order to distribute the development effort amongst numerous developers (sometimes numbering in the 
hundreds).  Consequently,  almost all  modern development approaches contain guidelines and activities 
for architectural  decomposition that  maximizes cohesion and minimizes coupling of a system's parts. 
These parts might  be called  objects,  components,  packages or units,  but  in  general  they  can all  be 
subsumed under the common notion of “component” just introduced. Given the number of modern 
development approaches available today – many of which are even called component-oriented – one 
would assume that these processes contain guidelines on when and how to acquire components instead 
of developing them from scratch.  However, this is not the case. Whether it  be the RUP [Kru00]  or 
KobrA [Atk02],  none of these methods provides concrete guidelines on how to reuse components or 
where to find them.

We  have chosen  KobrA (abbreviation for:  KOmponentenBasieRte  Anwendungsentwicklung  which is 
German for component-based application development) to explain in more detail the principle concepts 
in component-based development. We explain KobrA here as a state of the art development method that 
contains an explicit  focus on component-based development and thus could smoothly host the reuse 
approach which is developed later in this thesis without any major modifications. We will  explain the 
integration and application of our Extreme Harvesting approach in KobrA later in section 6.2. KobrA 
was initially  developed at  the Fraunhofer IESE in  Kaiserslautern,  Germany,  and  is  comprehensively 
documented in  the “KobrA book” [Atk02].  KobrA's primary  goal is to facilitate the development of 
more cost effective and  higher  quality  software systems through  a  component-based,  reuse-oriented 
paradigm based on the UML  [OMG04].  The developers of KobrA adapted best practice ideas from 
other development methodologies like Fusion [Col94]  to develop a comprehensive method that fulfils 
four basic objectives, namely to be a simple, systematic,  scalable and practical approach. A condensed 
and updated description of KobrA was published in the context of the Common Component Modelling 
Example (COCOME, [Atk07]).

The KobrA methodology is focused on the analysis and design phases of development and if a system is 
developed  from  scratch  it  applies  a  top-down  development  approach.  Starting  with  an  abstract 
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description  of the whole system,  it  is recursively  decomposed until  the level of plain  data  objects is 
reached.  A complete  model  driven  description  of  a  system  is  created  in  KobrA by  hierarchically 
organizing the models of the individual components which it contains. The position of a component in 
the hierarchy is determined by the logical containment structure. Every (behaviour-rich) object in KobrA 
is  regarded as a  KobrA component  (so-called  “Komponent”)  according  to the  so-called  principle  of 
uniformity.  The basic idea governing the use of the UML in KobrA is that individual diagrams should 
focus on the description of the properties of an individual component and only those diagrams should be 
produced that  are really  needed.  The former is  known as the principle  of locality,  the latter  as the 
principle of parsimony. Fig.  2.6 shows how a rich business component is modelled in KobrA by means 
of a suite of tightly related UML diagrams. We explain in section 6.2 how reusable components can be 
considered in a KobrA-based process. The following figure shows the various views that are to create to 
describe a KobrA component.

Figure 2.6: KobrA's component model [Atk02].

The specification diagrams collectively  define the externally  visible properties of the component,  and 
thus  in  a  general  sense can  be viewed as representing  its  interface.  This  is  called  the  principle  of 
encapsulation  which  is based on the information  hiding  principle  proposed by  Parnas [Par72].  The 
structural  diagram (UML  class diagrams) describes the types which the component manipulates,  the 
other components with which it  interacts and the list of services and attributes which it  exports. The 
functional model provides a declarative description (i.e.  contracts) of each of the services or operations 
supported  by  the  component  in  terms of pre and  post  conditions.  Finally,  the  behavioural  model 
describes  the  externally  visible  states  exhibited  by  the  component,  typically  described  with  UML 
statecharts. The decision model shown in the figure is used to support various configurations for product 
line engineering.
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The  realization  diagrams collectively  define  how a  component  realizes its  specifications in  terms of 
interactions with other components and objects. This can include externally acquired server components, 
or subcomponents which the component creates and manages itself. The realization diagrams collectively 
describe the architecture and/or design of the component. The structural diagram is a refinement of the 
specification  structural  diagram which  includes the  additional  types and  roles needed to realize the 
component.  The interaction diagrams document how each operation of the component is realized in 
terms of interactions with other components and objects. Finally,  the activity  diagrams document the 
algorithms by which the operations are realized.

2.4.2 COMPONENT TECHNOLOGIES AND SERVICE-ORIENTED ARCHITECTURES

Today's component technologies are not only a means to package functionality they also provide support 
for inter-process and even inter-machine communications between components, commonly known as 
middleware. Basically all component technologies and models available today operate according to the 
client-server principle.  This  is  similar  to  object  technology  where the  object  that  offers a  service is 
regarded as the server and the one that requests a service is seen as the client.  According to [Wei01]  a 
component model is the basic prerequisite for a component-oriented system and the crucial difference 
between components and objects is that  the former conform to a component model.  They require a 
component  model  to  define  “standards  for  component  implementation,  naming,  interoperability,  
customization,  composition,  evolution  and  deployment ”.  However,  we  find  it  difficult  to  follow  this 
argument since these features should certainly also exist in a sophisticated object-oriented environment.  
Basically,  three  technology  standards  have  been  competing  in  this  area  in  recent  years.  Both  big 
programming  platform  vendors  (i.e.  Microsoft  and  Sun)  provide  their  own  standard  to  support 
componentization and communication  of different processes running  perhaps on physically  different 
machines.  Microsoft's approach became known as COM  [Box97]  and has been transferred into the 
.NET framework while Sun extended the idea of Java Beans and remote method invocation (RMI)  in 
standard Java towards Enterprise Java Beans (EJB, [Sun01])  in the Java Enterprise Edition. The Object 
Management  Group  (OMG)  as the  third  big  player  in  object  technology  contributed  a  platform 
independent  component technology named CORBA [OMG00].  Bindings for CORBA have become 
available for all  major programming  languages.  With  the recently  developed web service standards a 
fourth player has entered the stage that can be considered a component technology as well.  This also 
brought  a  new  development  paradigm,  namely  the  service-oriented  architecture  (SOA),  which  is 
supposed to extend component-based development.  Without  doubt,  web services have added a great 
simplification  to distributed cross-platform computing,  but  in  terms of componentization  we regard 
them as a step back towards the object-oriented or perhaps even procedural development paradigms.

CORBA
CORBA, the OMG's Common Object Request Broker [OMG00],  is not a language or a platform itself. 
This is demonstrated by the abstract so-called Interface Definition Language (IDL) which can only be 
used to describe interfaces for components in CORBA but does not offer the possibility  to implement 
any functionality.  CORBA's main purpose is to enable the development of distributed systems across 
platforms. Thus CORBA requires the use of so-called mappings that connect elements from the IDL to 
elements in  concrete programming  languages.  This  basic principle  of operation  is  identical  to other 
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distributed  object  technologies and web services, of course.  On the client  side the definition  of the 
server's interface must be available and a so-called stub is created. The stub is a facade that  forwards 
invocations to the underlying middleware, the Object Request Broker (ORB) in the case of CORBA, 
which transmits calls over the network. On the server side another ORB instance receives the requests 
and forwards them to the implementation of the server code. The IDL basically offers the same concepts 
as  most  other  modern  object-oriented  programming  languages,  namely  modules  for  grouping  and 
scoping and interfaces that define the functionality  available.  Thus, the mapping of complex (KobrA) 
components  to  CORBA  is  difficult.  Only  recently  did  the  CORBA  Component  Model  (CCM,  
[Wan01])  present a UML profile for CORBA components that is supposed to address this weakness and 
some other  limitations  contained  in  the  original  CORBA standard.  However,  since  the  latter  was 
developed for UML 1.5 it became outdated with the introduction of the component diagrams in UML 
2.0. To our knowledge an update of the CCM  to UML 2.0 was still an open issue at the time of writing.

EJB
Sun's Java 2 Enterprise Edition and the associated Enterprise Java Beans (EJBs) are available in version 3 
[Sun06]  and  have grown into  a  full  enterprise application  framework that  supports packaging  and 
remote  execution  of  components  as  well  as  persistence  mechanisms.  This,  however,  requires  an 
application server since EJBs are normal Java classes and their special features can only be used inside 
such a  container.  While  the  EJB versions prior  to  3  included  a  so-called  XML-based deployment 
descriptor that defined the interfaces of an EJB, the current version of the EJB specification has moved 
away from that concept and tried to simplify their description. EJBs now have become “plain old Java 
objects” (POJOs) and their interfaces are described accordingly with plain old Java interfaces and not in 
an XML file anymore.

.NET
Microsoft's  Component Object Model (COM)  was developed during the 1990s and recently  became 
part  of  the  .NET  framework.  Its  prime  target  platform  is  of  course  Windows,  but  there  are 
implementations for other platforms as well (such as Mono open source project for Linux).  COM  is 
designed to create objects and to communicate with other processes beyond the boundaries of various 
Microsoft programming languages. This has been made possible by a binary format that must be shared 
by all  supporting languages. A large range of other technologies are connected with COM  and often 
COM  is seen as an umbrella  term for them.  Examples include the Distributed  Component  Object 
Model (DCOM)  and OLE (for Object Linking and Embedding) and ActiveX controls that all offer a 
way to reuse chunks of functionality.  COM  applications are built  from COM-aware components that 
expose interfaces with globally unique interface IDs and versioning information. This is one of the main 
advantages over Sun's EJB model which does not provide a versioning mechanism or support for unique 
identification (only hierarchical packaging based on Internet domain names is recommended by Sun).

WEB SERVICES
With the recent advent of web services the idea of service oriented architecture (SOA) became popular. 
We use the term SOA as a slightly more general synonym for the term web service architecture that can 
also be found in  the literature.  The World  Wide  Web Consortium (W3C)  defines web services as a 
"software  system  to support  interoperable  machine- to-machine  interaction  over  a network" [W3C04].  This is 
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by no means a new idea. The underlying concept of remote procedure calls (RPC) is about 30 years old 
and  nowadays  integrated  in  almost  every  modern  programming  language  (e.g.  RMI  on  java-based 
platforms).  Before  web  services  became  available  each  platform  had  its  own  proprietary  way  for 
managing  RPCs  and  interoperability  between different  platforms was difficult  to  achieve.  Even the 
CORBA initiative of the OMG was not  able to really  relieve this  problem since different CORBA 
implementations were sometimes not able to work with each other smoothly.

On the contrary,  a web services architecture reorganizes a system and its infrastructure into a set of 
loosely coupled, cooperating services and requires the use of three core well-defined standards, described 
in the following, to achieve this goal of interoperability. To quote the W3C [W3C04]  another time:

“Web  services  can  be  generally  defined  as  loosely  coupled,  reusable  software  components  that  
semantically  encapsulate  discrete  functionality  and  are  distributed  and  programmatically  accessible  
over  standard  Internet  protocols.”

This definition makes the close relationship between components and services clear and thus we regard 
the latter simply  as a descendant of the former and try  to investigate both whenever possible in  this 
dissertation.  However,  the long-term vision of SOAs is to automate service selection (and  therewith 
service reuse) to the greatest extent possible, and the semantic web community [Ber01]  for example has 
already made some valuable – although widely theoretical – progress towards this goal as we will briefly 
discuss in  section  2.4.3.  The general vision is captured by the famous  UDDI triangle shown in  the 
following figure:

Service
Provider

Service
Broker

(Repository)

Service
Requestor

publish bind

find
Figure 2.7: Web service brokerage architecture.

The  figure  illustrates the  three players in  a  basic  service-oriented  architecture  scenario.  The  service 
provider offers a service and registers it with the service broker where it can be discovered by the service 
requester who wants to use a service. It is easy to recognize the similarity to the scenario of retrieving a 
component from a repository. The main difference at this point is that within a SOA-based system the 
access to a service (i.e.  a functionality)  is mediated directly  while a component repository only  offers 
components that normally have to be downloaded, if necessary compiled and deployed before they can 
be used.

UDDI
The  abstract  structure  in  figure  2.7 illustrates the  basic  idea  behind  the  architecture  of UDDI,  an 
industry  initiative  for  the Universal  Description,  Discovery  and  Integration  of  software  services 
[New02].  The register of a business in  a UDDI repository consists of three separate elements called 
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white,  yellow  and  green  pages.  The  white  pages  contain  things  such  as  the  address and  contact 
information for the service offered, the yellow pages contain a categorization of the service according to 
standard taxonomies and the green pages, which are the most interesting from a technical point of view, 
contain the information about how a service can be invoked over the Internet.  In principle,  UDDI is 
supposed to contain all elements necessary for successful brokerage operations allowing users to find, pay 
for and access a service. However, this has not been borne out in  practice.  A prime example for the 
shortcomings of the UDDI model was provided by the surprising shut-down of the so-called Universal 
Business Registry (UBR), which we discuss in section 4.1.1.

WSDL
The Web Service Description Language (WSDL, [New02])  is used to describe the syntactic interface of 
web services in an abstract way. Hence, it reveals the same information about a web service's functions as 
for example a Java class does about its public methods. Based on XML [New02],  WSDL also provides 
the information necessary to communicate with a web service, i.e. the message formats expected by the 
service and the protocol bindings used to exchange the messages. For actually  calling a service SOAP, 
described in  the next paragraph,  can be used.  One drawback of WSDL is that  it  does not  contain 
semantic  information  that  would  fit  into  the  vision of the semantic  web [Ber01].  However,  several 
enhancements have been already proposed to bridge this gap, probably the most well-known of which is 
Web  Ontology  Language (OWL,  [Ant04])  and  it  descendant  OWL-S  for the semantic  mark-up of 
services.

SOAP
After discovering a service via UDDI and exploring its description with WSDL, SOAP [New02]  is the 
means to finally access the service over standard Internet protocols like HTTP or SMTP, which is why it 
works far better within  firewalls than the competing protocols of CORBA, RMI  or DCOM.  SOAP 
(formerly an acronym for Simple Object Access Protocol) is XML-based and used to send the messages, 
i.e. typically the parameters and return values of a remote procedure, defined in the WSDL file.

According  to  a  recent  survey  of  Hurwitz  and  Associates  [Bar06],  the  main  expectations  driving 
investment into SOA are reuse and interoperability.  While the latter has started to take off, the former 
still  has not,  which is not least demonstrated by the above mentioned failure of the UBR.  This may 
sound surprising,  since the UDDI is a fairly  sophisticated service model and has been a part  of the 
approach from the beginning,  but as we will  show in the following subsections there are more factors 
influencing reuse than just the availability of basic tool support.

2.4.3 SEMANTIC WEB (SERVICES)
Proposed by Sir Tim Berners-Lee et al. in their famous Scientific American article [Ber01]  the semantic 
web is proposed as an extension that makes the current World Wide Web understandable for computers. 
It is closely related with numerous concepts of information retrieval and artificial intelligence and hence 
is briefly discussed in this section. The basic idea of the Semantic Web is to annotate web pages (and the 
natural language contained in them) with machine processable information. Today a variety of languages 
mostly based on XML and other techniques is under discussion for this purpose as shown in the well  
known layer cake diagram depicting the architecture of the Semantic Web below.
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Figure 2.8: W3C's Semantic Web layer cake diagram. 

Of interest for the remainder of this subsection are the Resource Description Format (RDF [Las99]) and 
the Web Ontology Language (OWL [Ant04]).  RDF is a simple language for representing objects and 
their relationships in “sentences” comprising subject - predicate - object triplets. RDF Schema [Bri03]  
adds the vocabulary for describing properties and classes and thus the capability  to describe ontologies. 
However, for this purpose normally OWL is used since it is more expressive and adds formal semantics.

However, explaining all these ideas in more detail would go far beyond the scope of this thesis and thus 
we refer the reader to the literature [Fen05]  and merely briefly explain at this point how ontologies are 
supposed to support reuse in  the context of the so-called semantic web services [Car05].  A common 
ontology is probably the most important factor for a successful introduction of semantic web services. 
The literature (e.g.  the two books we mentioned above) typically describes an ontology as a static data 
model for knowledge representation, which contains concepts and their relationships within the world or 
just  a specific domain.  Therefore it  typically  contains concepts with  attributes and relations between 
them.  In the  terms of software engineering  it  is  certainly  not  wrong to describe an  ontology  as an 
inheritance hierarchy, although this term might not be totally sufficient. However, it cannot be denied 
that  there is a certain similarity  between the applications of OWL and UML class diagrams and one 
might raise the question of how far these two might be representable by each other. More details on this 
interesting question can be found in [Kik05].

Semantic web services typically use ontologies for composing systems out of more fine-grained services. 
In other words they aim to implement exactly the component reuse idea of McIlroy [McI68]  for services 
with  very little  human  interaction.  In order to discover and  match  usable web services for a  given 
purpose,  typically  the  parameters and  return  values of a  service are described with  the  help  of the 
ontology. In theory, the main advantage is that it is possible to reason about such an ontology and thus 
to  find  not  only  direct  matches,  but  matches  with  a  different  structure  or  those  that  require  a 
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combination of some smaller services to deliver the required functionality,  as well. However, we are still  
not aware of any practical application of these ideas and it seems that semantic web services share exactly 
the same problems as components, namely the repository problem (i.e.  collecting enough semantically 
enriched  services),  the  representation  problem  (i.e.  find  one  suitable  ontology  (language)  that  is 
understood and used by everybody) and a combination of the retrieval and usability problem (i.e. how to 
formulate a query in a user friendly way).  We will  discuss this in more detail  in chapter  3. The latter 
problem is a general problem of ontologies though.  Either they are not complete i.e.  not all  necessary 
concepts of a domain are modelled in the ontology or they are so complex that it is almost impossible to 
find the right concept within the ontology. Thus, it will be interesting to see in the future if and when 
these ideas will materialize into usable products. It is already interesting that articles have been published 
recently warning that the research community is loosing sight of the main goal of semantic web services, 
namely the automated discovery and integration [Shi07].

2.5 SOFTWARE REUSE

We  already  pointed  out  in  the  introduction  that  the  idea  of software  reuse is  as  old  as software 
engineering itself. Although it is also a rather simple idea, a lot of different definitions of this term have 
been proposed over the  years.  To pin  down the  common element  of most reuse definitions in  the 
literature we present Krueger's well-known definition [Kru92]  at this point since most others are very 
similar to this:

“Software  reuse  is the  process  of  creating  software  systems  from  existing  software  rather  than  building  
software  systems from  scratch.”

This means that,  in  general,  it  is imaginable that  assets from all  phases of the software development 
process can be reused. [Fra96] provides the following table of potentially reusable artefacts from software 
projects:

1. architectures 6. estimates (templates)

2. source code 7. human interfaces

3. data 8. plans

4. designs 9. requirements

5. documentation 10. test cases
Table 2.1: Potentially reusable aspects of software projects according to [Fra96].

In accordance with  this  table  from [Bas88]  we see a  reuse potential  for all  assets associated with  a 
software project.  For example we are aware of approaches for reusing software requirements [Lam98],  
domain knowledge [Pri91b]  or even large parts of software systems in so-called product lines [Cle02].  
Mili  et al., however, determine in [Mil02]  that reuse traditionally meant the reuse of code fragments and 
components. Interestingly,  this was a hot topic in the research community during the 1980s and 1990s 
and  even some success stories were highlighted  at  this  time  (e.g.  [Len87]),  but  these systems never 
became practically useful and have become outdated by the size of today's standard libraries. Hence it is 
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no surprise that mainstream interest has turned towards more successful approaches such as product lines 
and  design  patterns  [GoF95].  It  seems plausible  that  similar  to  fault  discovery,  the  earlier  in  the 
development process an asset and its successors can be reused, the more benefit can be derived from it. 
The  practical  success of the  more architecture-centric  reuse approaches such as the  just  mentioned 
product-line  engineering  certainly  seems to provide initial  confirmation  of this  claim.  On  the other 
hand, to date, it  has not been investigated whether the reuse of software requirements will  lead to any 
benefit  or how such an approach could be technically  implemented.  Requirements on custom made 
software  vary  significantly  from  customer  to  customer  and  given  the  statements  in  many  older 
publications (such as Krueger [Kru92])  that  abstraction is one important  prerequisite for reuse, it  is 
questionable whether the requirements on software are a good basis for a reuse approach. Consequently,  
Krueger saw the lack of good abstractions at that time as one explanation for the lack of successful reuse 
programs.  Even today,  ten  years after the  UML  was introduced,  abstraction  mechanisms for handy 
software pieces are still an active area of research.

The  expected benefits of reusing  software assets and  knowledge [Bas91]  are quite  obvious and  can 
already  be  found  in  many  textbooks about  software  engineering,  although  there  are  few practical 
confirmations of this claim.  Sommerville [Som06]  for example,  like many others, draws comparisons 
with other engineering disciplines and points out that mechanical and electrical engineering projects base 
their  designs largely  on reusable components that  have been extensively tested in  other systems. This 
approach looks appealing  for software,  too – plugging  software together from prefabricated parts to 
produce working systems of higher quality  in shorter periods of time without inventing the wheel over 
and  over again.  Moreover,  since software engineering  has successfully  adopted ideas such as design 
patterns [GoF95]  or separation of concerns [Kic97]  from other engineering  fields,  component  reuse 
should be transferable to software engineering as well.  At face value, the theory sounds very appealing: 
There are thousands of reusable functions in software libraries, thousands of objects and components in 
software repositories and at  least hundreds of software product  lines in  large companies around the 
world. How could there still be a problem?

2.5.1 THE REUSE LANDSCAPE

In order to classify component retrieval approaches and their place in the family of reuse approaches we 
briefly discuss some important concepts in the following paragraphs. These high-level descriptions are 
widely  based on the  classic  textbook by  Sommerville  [Som06]  complemented  with  pointers to  the 
original publications or our own observations where appropriate.

Naturally,  the  classical  component-based reuse approach also has its  place within  this  classification. 
Sommerville  identifies three different  granularities  of reusable software units,  in  order of decreasing 
benefit and complexity:
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1. System or application reuse
2. Component reuse
3. Object and function reuse

A more detailed consideration of these concepts reveals that all three are more or less in common practice 
these days and many successful examples of their use can be found.  Functions are in fact the smallest 
units that it is conceivable to reuse with today‘s technology, since they just about fulfil the definition of a 
component given by Szyperski [Szy02]  (we already discussed this issue in section  2.4).  And of course, 
function reuse has been done for many decades as evidenced by libraries like the C standard library or 
the Java class Math.  However, other APIs offered by the Java Development Kit (JDK) for instance, go 
one step further. They contain all kinds of reusable packages like Java-3D etc., which do not fit the level 
of object reuse any more. However, they are not components in the classical sense and thus show the 
limitations of this classification and demand an extension,  which we will  introduce below. Complete 
applications or at  least parts of them have been reused,  which is typically  captured under the term 
“commercial  off the  shelf” reuse discussed in  the  next  paragraph.  Our  own  slightly  more  detailed 
classification which has been inspired from a presentation of Morisio in 2006,  comprises the following 
levels, also ordered according to decreasing complexity:

1. Commercial off the shelf – reuse of whole applications
2. Component-based reuse – aiming on components in the sense of KobrA
3. (Object) repository-based reuse – search and retrieval from a dedicated repository
4. Library-based reuse – browsing in class and function libraries
5. Code reuse – [Kru92] called this code scavenging

When we talk about the reuse of commercial  off  the  shelf  (or COTS,  see e.g. [Voa98])  components, we 
typically  mean whole (end-user)  applications such as typical  desktop software,  database systems etc.,  
which are normally used “as is” out of the box. It often seems difficult to include such applications in 
custom built  applications since they are typically  not adaptable and their APIs are sometimes not even 
documented at all so that they have to be glued into the system with scripting languages, for example. 
[Wei01]  call  this a  “lack of  granularity” which leads to attempts to factor out  the more fine-grained 
elements (i.e. components) from these applications to increase reusability.  Another term that we briefly 
need to mention is the term  business  component  which is another term that  has only vaguely defined 
semantics. It is generally defined as a software component that offers functionality for a business domain, 
see e.g. [Car01]  or [Tur02]  in the German business computing community. Thus they can be viewed as 
a specialization of the general term component as defined above. Similar to testing, we talk about black  
box reuse  if only  the specification of a component or a service is available and its implementation is 
hidden, unmodifiable behind its interface. Likewise, white  box reuse  reuse occurs when the internals (i.e. 
normally the source code) of a component are available and can be altered. Furthermore, the idea of glass 
box reuse has been introduced by [Nea96],  meaning that developers are able to behold the source or 
interface of a component, but only use it to learn from it and not to modify it.
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2.5.2 SUCCESS AND FAILURE FACTORS FOR REUSE

Contrary to the visions of McIlroy and others, software reuse is still at a rather rudimentary level and it is 
not possible to buy  components in  the same way that  you can by for example screws from a do-it-
yourself store. As long as there have been publications about reuse there have been publications asking 
why reuse has not worked properly in  practice. Some authors speculate about the reasons and justify 
them with personal observations [Puo99],  others conducted surveys [Fra95]  and finally there are some 
that have performed mature failure mode analyses [Mor02].  Interestingly enough, is difficult to find two 
publications that agree with one another on the reasons for the low level of component reuse in practice. 
Consider,  for example,  the  paper  by  Frakes and  Fox in  which  they  asked  “sixteen  questions  about  
reuse” [Fra95] and let us use it as the starting point for a brief review of success and failure factors. In the 
early 1990s the authors conducted a survey with 113 software professionals from 29 (mainly US-based) 
organisations. They readily admit that this is not a good random sample , but nevertheless it can give at 
least some hints about factors influencing reuse levels at that time. However, it is important to mention 
that  reuse in  this  survey was regarded as a very generic  concept and thus certainly  more research is 
necessary to take into account today's state of the art tools such as software search engines and proactive 
recommendation tools, for instance. The following figure summarizes the results of Frakes and Fox and 
is taken from their article:

Figure 2.9: Overview of which factors affect reuse levels and which do not.
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As depicted in the figure, the survey identified in only five reasons recognized as influencing reuse in a 
general  way.  Training  for reuse seems to  be  an  important  factor  on  reuse.  This  is  plausible  since 
developers who are not aware of reuse possibilities will probably not reuse, and in a more general sense is 
acknowledged by  other publications like  [Mor02]  and  [Is092]  who recommend a top management 
commitment and thus a reuse-friendly environment for companies. The perceived economic feasibility is 
also a plausible obstacle to reuse, but is perhaps overvalued in this survey since no developer would claim 
the contrary in a questionnaire. It is also interesting that [Fra95] identify the use of a common software 
process as a  factor affecting  reuse since even today  there is  practically  no widely-used development 
process well-suited  for component  reuse.  However,  [Mor02]  sees processes adapted for reuse as one 
decisive success factor. The type of industry  is also recognized as a success factor by [Fra95].  This is 
clearly covered by [Mor02]  who found that the type of software under production influences reuse levels 
considerably.

The programming language, on the other hand, does not seem to influence reuse levels a lot. This is an 
opinion  which  is  backed  up  by  our  observations  that  all  modern  (object-oriented)  programming 
languages supporting information hiding provide more or less the same levels of support for reusability.  
However, older research has often been carried out with functional languages (as in [Zar95]) that are free 
of side-effects and built  upon a strict type system. This might be an additional indicator for enhanced 
support for reuse from this family of languages since we are only aware of one substantial work that tried 
to transfer this knowledge into the object-oriented domain [Str94].  We can conclude that  functional 
languages might be better suited for reuse, but since they are not in wide-spread use today this advantage 
is quickly outweighed by the small number of reusable components available. In general, it  is assumed 
that the higher the degree of abstraction supported by a programming language the better its support for 
reuse [Fra95].  This seems to be acknowledged by the fact that object-oriented programs are generally 
much more reusable than equivalent programs in procedural or even in assembly languages. However, 
the recent MDA approach [Bas03]  still has to substantiate this claim for the even more abstract model 
level.

While [Fra95] does not recognize repositories as an affecting factor, [Mor02]  argue that although having 
a repository is not sufficient for a successful reuse program, but an effective repository is nevertheless 
usually required. This makes sense given the demand for high quality assets that is seen as affecting reuse 
by  [Fra95].  The  latter  paper also rules out  CASE tools as an  influencing  factor,  which  is  certainly 
plausible as there were no CASE tools with tight reuse integration as recommended by [Ye01]  at the 
time of their survey (and hardly anything we would call a CASE tool from today's point of view). Both 
publications agree again when they exclude an organisation's size and incentives (i.e. rewards) as factors 
influencing  reuse.  The  latter  is  covered  by  other  findings  [Fra96b]  that  developers  are  generally 
motivated to do a good job and choose the option (i.e.  reuse or no reuse) that is perceived as the more 
promising.  This might also explain why quality  concerns about reusable assets were also ruled out.  As 
soon as no good reusable software is available developer build their systems from scratch and vice versa. 
This is also closely related to the so-called not invented here (NIH) syndrome, which is often mentioned 
in  the literature (e.g.  [Gri93],  [Faf94])  and normally  used as a  generic term for various other human 
factors for why developers might avoid reusing components (such as the steep learning curve needed to 
understand  acquired  components or  concerns about  their  quality).  While  [Fra95]  did  not  perceive 
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developer experience as important for reuse, [Des06] observe from their recent survey that  “reuse  works  
better  among  novice  than  expert  developers”. Potential legal problems and reuse measurement are also not 
widely seen as influencing reuse levels. However, especially the former might change in the near future 
due to the large amount of reusable open source software with many forms of open source licenses and 
sometimes subtle legal issues to consider.

According to e.g.  [Fra96b]  many  developers do not  reuse because they do not  even try.  Any of the 
reasons discussed in other parts of this section might influence this decision,  but it  is apparent that a 
developer's motivation to reuse might decrease drastically once he has tried to reuse a few times and was 
not able to find suitable items, an opinion which is also backed up by the well-known and astonishingly 
simple observation by  Prieto-Diaz [Pri87]:  “To  reuse  a  component  you  first  have  to  find  it”.  [Fra96b] 
presented the following chain of actions that underlines this presumption. This can be viewed as a list of 
things that can fail during the process of reusing a component. This process is described as follows:

1. No Attempt to Reuse at All
2. Part does not exist
3. Part is not available
4. Part is not found
5. Part is not understood 
6. Part is not valid
7. Part cannot be integrated

Understandably, the further a developer gets in this process the more time he probably will have invested 
into finding and adapting a component and the more frustrated he is likely to become if his endeavours 
finally  fail.  If this happens to a particular developer more than once or twice his motivation to try to 
reuse in the future is likely to be significantly reduced.

In this subsection we have presented and discussed a large number of factors that might affect reuse or 
that usually influence the attitude of developers towards reuse. Given the fact that most papers in this 
area to date are either based on rather weak empirical numbers or no empirical observations at all, there 
is still a lot of debate on which factors influence reuse levels and which not. In almost all cases one can 
find papers that hold one view or the other. The only thing that there is general agreement about is the 
fact that developers are likely to reuse only when they are aware of the possibilities and regard it as more 
cost effective than  building  software form scratch.  From this  we believe it  is  safe to conclude  that 
developers will  reuse software if there are tools available that  effectively support them in finding and 
integrating reusable assets. Or in other words, components will  be reused only if the effort to integrate 
them is smaller than the effort to develop the functionality from scratch [Pri87].

2.5.3 REUSE METRICS

The success of all new ideas and methods needed to be evaluated in practice and consequently the reuse 
community  has been thinking  of metrics to measure the degree of reuse in  a system. Frakes [Fra96]  
defines a metric as "a quantitative  indicator  of  an  attribute  of  a thing" .  According to this publication,  a 
model  should also capture the relationship between particular  metrics.  Probably  the most important 
metric for a software asset in this context is its reusability  if it is built from scratch (or for reuse) and the 
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amount  of  reuse  if it is built  with reuse [Sam97].  While the latter is relatively simple to calculate by the 
number of reused lines of code divided by the total lines of code (as long as we do not care about (re-) 
used elements from frameworks etc.),  reusability  is much harder to assess. For white  box reuse this 
obviously  seems to be related to source code complexity  metrics such as Halstead's  program volume 
[Hal77]  or McCabe's  cyclomatic  complexity  [McC77]  as suggested e.g.  by [Cal91]  who developed a 
basic reusability  model,  but  to date it  is not clear what the relation is.  The reusability  of black box 
components is probably mainly influenced by their interface and documentation, but again at the time 
of writing there is a clear lack of understanding of how the interface of a reusable component would look 
compared to a not so reusable component, for instance.

Figure  2.10 provides  a  schematic  overview  of  the  two  metrics  mentioned  above and  four  other 
conventional metrics related to reuse as proposed by [Fra96]:

Figure 2.10: Categorization of reuse metrics and according models from [Fra96].

Cost-benefit models cover the economic aspects of reuse including benefit analysis and productivity pay-
off. The maturity  assessment metrics are about  estimating  the maturity  of a reuse approach.  Failure 
mode analysis is commonly used to find elements that impede reuse in an organization and to compare 
their severity. As already mentioned above, reusability assessment is used to estimate the likelihood that a 
given artefact is reusable. Finally reuse library metrics cover the data that accrues when a reuse repository 
is used.

At the end of the day, as mentioned above, reuse has to pay off, i.e. developing with reusable assets has to 
be more effective then developing from scratch [Pri87].  “More effective” usually means cheaper, faster, 
better (i.e.  with less errors) or two or even all  three of them. Gaffney and Durek [Gaf89]  proposed a 
simple economic model to make this tangible through the following equation:

C=1 1−RRb or C=1Rb−1

where C  is the relative cost of developing a software product  (i.e.  C = 1  for a software component 
developed completely from scratch).  R denotes the proportion of reused code and b is the relative cost 
(e.g. for searching and adapting) of the reused code portion. If C is smaller than 1 reuse is considered to 
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be more cost effective than  developing from scratch.  This  model  is obviously  also applicable to the 
development time and the number of errors in a system and can be extended to

C=1−R1b E
n
R or C=bE

n
−1R1

when we incorporate the development effort  E (typically  > 1  since creating  a reusable component is 
expected to be more expensive) for a reusable component. n  denotes the number of uses over which the 
cost of the reusable component  are amortized.  [Mil02]  have collected a number of results from the 
literature that indicate the relative cost of developing an asset for reuse as being between 1.10  and 2.0 
times as high as for the same asset not optimized for reusability.

Interestingly, at the time of writing there are still no such numbers for developing a system with reusable 
components.  This  might  be another hint  that  so far no sufficiently  usable reuse systems have been 
developed.  Thus,  as with  most models in  software engineering,  the  central  problem with  the  reuse 
metrics introduced in this section is still the difficulty of applying them in practice as predictive models. 
Due to a lack of empirical data and sometimes even due to a lack of understanding and clear definitions 
no values are so far available to use in these formulas.

2.6 COMPONENT-BASED REUSE

The idea of component-based reuse has been around for almost four decades and thus it  might  be 
surprising  that  the  literature  contains  very  little  information  about  how  to  apply  it  to  software 
development in practice. Today, however, virtually every software development project contains reuse in 
one form or the other. Every high-level programming language is shipped with standard libraries that 
offer important functionality  for use out of the box. Mature frameworks exist for many purposes and 
developers take  them for granted  in  their  everyday  work.  Interestingly,  most standard  libraries and 
frameworks have become larger than even the most sophisticated software repositories developed even up 
to 10 years ago. Even generic data types such as a List that were examples for sophisticated reuse about 
ten years ago, can be parametrized to hold integers, floats or any other required type and are contained in 
programming languages such as Java by default today.  However, this was still  of interest to the reuse 
community  about  one and a half  decade ago [Bas91].  Even “real reuse” occurs frequently  in  many 
projects when developers use general web search engines or the new code search engines to find source 
code snippets that could help them solve a problem. This so-called code scavenging [Kru92],  however, is 
discouraged by the anti-pattern book [Bro98],  for example, since it is supposed to degrade the design of 
a system in the long run. This begs the question whether there is a distinction between “good reuse” and 
“bad  reuse”  and  how  the  former  should  be  incorporated  into  a  development  process  without 
compromising the final product?

Sommerville  provides  a  first  abstract  summary  of  what  a  reuse-oriented  and  component-based 
development process could look like in his well-known textbook. This is shown in the following figure:
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Figure 2.11: A simple component-based software development process as 
proposed by [Som06].

This  approach is  based on classic sequential  process models such as the V model.  While  the initial  
requirements specification is no impacted by the component-based reuse approach the next step is. After 
the requirements have been specified,  in  a reuse-oriented process the set of available components is 
searched and the potentially  most useful  candidates are selected.  Due to the complexity  of software 
components there will  typically  be no complete match and  hence it  makes sense to consider slight 
adaptations of the requirements in the next step. As changed requirements can in turn have effects on the 
candidate components the component search and analysis phase may need to be performed again. Once 
an acceptable combination of requirements and available components has been found a system design is 
created that includes the interfaces of the candidate components as well as any necessary glue code and 
parts that have to be developed from scratch. Once the design is finished missing parts of the system can 
be developed and integrated with the available components. Finally, system validation can be performed 
in the usual way.

In addition to this general description, dedicated component-based development methods such as KobrA 
[Atk02] offer a more idealistic approach, which takes effect later in the development process and is based 
on the availability of a large repository of candidate components. KobrA proposes component search and 
retrieval based on the specification of a component. As described earlier, KobrA specifies a component as 
a black box and merely describes its externally visible features such as a syntactic and semantic interface 
description. Based on the initial description KobrA includes an iterative negotiation process for adapting 
the originally  required interface with the one actually  offered by the candidate component if no direct 
match is achievable. The general idea is shown in the following sketch:

Figure 2.12: KobrA's reuse model [Atk02].
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The desired specification,  which is shown in the upper part of the figure,  is taken from an arbitrary 
component in KobrA's containment tree. Once a candidate that is “reasonably  close” to this specification 
has been found it is compared with the desired one. If there is no direct match (and this is assumed to be 
the case most of the time) the negotiation process is initiated,  i.e.  either the desired specification,  the 
candidate's offered specification or both have to be changed. In practice this could also mean that the 
creation of so-called glue code might become necessary, which could be a wrapper (or adapter [GoF95])  
that is put between the desired specification and the candidate component. The following figure from 
Ostertag [Ost92] shows the component selection process in the context of a reuse library.

Figure 2.13: Component reuse in the context of a component library as 
envisaged by [Ost92].

Starting from the target specification a description (see section  3.1.1 for more detail)  of the target in 
terms of the reuse library must be derived before the retrieval process (section 3.1.2) can be initialized 
and candidate components can be retrieved from the library. The retrieved candidates typically do not 
directly  match  and  thus  have to  be  adapted  to  yield  the  target  component  that  fulfils  the  target 
specification. Ostertag also incorporated a feedback cycle which includes the newly created target adapter 
in the reuse library for future use.

In principle such a specification-driven component selection process can be included in  almost every 
development process that includes a mechanism for dividing a system into parts (or components or units 
etc.). However, the literature contains very little information on this topic to date and especially on how 
to deal with the effects that candidates might have if they do not exactly match. Currently,  we are only 
aware of the work of Crnkovic et al. [Crn06]  who elaborated on the idea of changing requirements and 
design according to the candidate components available.  They proposed the following extension of a 
waterfall-like development process with regard to component reuse which shows the principle ideas from 
figure  and figure 2.12 in more detail:
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Figure 2.14: Waterfall-based reuse model [Crn06].

Because of the  impact  that  existing  components might  have on  the  requirements  the  authors also 
advocate the consideration of reusable components already  in  analysis and design phases. The whole 
system development  process is  a  constant  trade-off between whether  existing  components are close 
enough to the requirements to be integrated economically.  However, no guidelines are provided that 
explain  how components can best be searched,  and it  should be clear that  a pure specification-based 
retrieval as advocated by KobrA is not sufficient in this context. Rather, it might be desirable to have a 
more text-oriented approach that is able to find good candidates for a given requirement and to derive a 
kind of an “averaged” design from them.



3 COMPONENT RETRIEVAL

 SO FAR

Good  artists copy,  great  artists steal.
-- Pablo Picasso

From the overview of software reuse in the previous chapter it should be clear that neither component 
retrieval  nor  software  reuse  are  new  ideas  and  most  of  the  underlying  concepts  are  rather  well 
understood.  This  chapter  is  intended  to  give  an  overview of  what  has  been  done  in  the  area  of 
component retrieval to date and to introduce our understanding of semantic component retrieval.  In 
principle,  component  retrieval  requires  three  prerequisites,  namely  a  component  repository  where 
software assets can be stored, a representation format which is able to describe the assets concisely and a 
retrieval mechanism which is able to discover assets in the repository. These have been well characterized 
in  the literature.  The first problem is the so-called software  repository  problem  [Sea99]  which is about 
effectively collecting and storing a large number of software assets in a repository. The next problem has 
been called the  representation  problem  by  [Fra94]  and  deals with  the issue of how best to represent 
software assets in a component repository. Finally, there is the component retrieval  problem  identified by 
[Mil98]  which deals with the issue of finding the most suitable component retrieval techniques.

Previous researchers have proposed a variety of solutions for all three problems, but because of technical 
limitations  none  of  them  was  particularly  convincing  in  practice.  Very  recently,  however,  several 
fundamental technology developments have occurred which have the potential to radically improve this 
situation.  These  include  the  emergence  of  faster  computers  and  larger  storage  devices,  the  wide 
availability of broadband Internet connections and the maturing of search-related open source tools such 
as the Lucene search engine2 and the accompanying web crawler, Nutch. As we shall show in this thesis, 
these have opened  the  opportunity  to  create  large-scale  software repositories with  improved search 
precision. Before we explain our approach for applying these technologies to support improved semantic 
search in  chapter  4,  in  the  remainder  of this  chapter we summarize the  current  state of the art  in 
component retrieval.

2lucene.apache.org
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3.1 SOFTWARE COMPONENT REPOSITORIES

As mentioned before, until recently, reuse repository systems suffered from three main problems, namely 
the repository problem, the representation problem and the retrieval problem. Typically, a search request 
to a (component)  search engine starts with the user formulating a query that describes what he/she is 
looking  for.  The  engine  then  transforms the  query  to  its  internal  representation  and  tries  to  find 
“matching” results. In order to be included in the result set a candidate component has to fulfil the so-
called  matching  criterion.  Ideally,  a  search engine  automatically  ranks  the  results  according  to  the 
closeness of the  match,  in  other  words it  delivers the  better  matches first.  However,  fulfilling  the 
matching criterion of the engine does not necessarily mean that a candidate component also fulfils the 
relevance criterion of the user [Mil98].  This is largely influenced by the latent conceptual gap [Lar05] 
between the concept the user has in mind and the actual software object as well as by the quality of the 
representation  method  and  the  retrieval  algorithm  [Fis91].  Thus,  before this  search process can  be 
successfully  applied,  there clearly  has to be a software repository that  must be filled with an abstract 
representation  of a  set  of components.  Obviously,  all  three problems mentioned  are closely  linked 
together and a clever solution for the representation problem is a prerequisite for satisfactorily solving the 
repository problem and the retrieval problem as well.

3.1.1 COMPONENT REPRESENTATION METHODS

How to logically  store software assets in  a library  is an aspect of software reuse that  has often been 
neglected  in  the  literature  despite  the  fact  that  a  repository’s  component  representation  format 
determines the possible ways in  which it  can be searched.  Even Mili  et al.,  who presented a highly 
influential  survey on  “storage  and  retrieval  of  reusable  assets” [Mil98],  admit  at the beginning  of their 
article that  there is little that can be said about the logical storage structure used in software libraries 
since the most commonly used structure is “no structure  at all”. As it is practically impossible to define an 
isomorphic mapping from software to its functionality it makes sense to simply store software assets “side  
by side” (using Mili  et al.'s terminology) in some kind of database. An obvious extension of this approach 
is  the  storage of additional  information  (i.e.  metadata)  about  a  component  that  should  ideally  be 
extracted  by  a  tool  without  human  interaction.  Information  about  the  programming  language  or 
signatures of a component's interface are good examples of metadata that would allow more specific and 
faster searches in the collected data pool.

In their survey Frakes and Pole [Fra94]  identified four basic representation methods. These are briefly 
explained in the following. Enumerated  classification  originates from library science and separates an area 
into mutually  exclusive, typically  hierarchical classes to create a taxonomy.  Ontologies  in  the semantic 
web community  [Ber01]  might be considered a modern form of this approach. Typical problems with 
such an approach are the completeness of the taxonomy and the associated complexity  that  makes it  
difficult for humans to handle. Take for example the United Nations Standard Products and Services 
Code (UNSPSC),  a common taxonomy targeting e-commerce products and services. It contains more 
than 18,000 entries and therefore far more than the prototype component repositories in the 1990s (and 
even  some  of  today).  Faceted  classification  [Pri91]  and  the  slightly  more  general  attribute  value  
classification  approaches are very similar and use a number of facets (resp. attributes) to describe an asset. 
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Each facet comprises a finite set of terms that can be chosen to describe the asset (e.g the programming  
language could be a facet).  Each individual  component has one of the allowable facet values for each 
distinct facet. In contrast, an attribute – such as the name of a component – can contain any arbitrary 
value. Finally, free text indexing approaches index textual information from an asset, i.e. the component 
or  its  documentation.  It  is  surprising  that  most approaches in  the  past  tried  to use these methods 
separately form each other since today's web search engines, for instance, show that they can be easily  
and effectively used together. Thus, we believe it makes a lot of sense to use these approaches together to 
support  searches on  components.  In  fact,  one  of  the  research  contributions  of  this  thesis  can  be 
interpreted as an attempt to combine them in a optimal way, as described in chapter 5.

3.1.2 THE REPOSITORY PROBLEM

Relational database management systems have been around for quite a long time and are naturally suited 
for supporting the faceted and attribute value classification.  However, only recent open source search 
engines such as Lucene are specialized on free text indexing and searching. Obviously, a combination of 
these both  approaches would  be useful,  although,  this  is  a  non-trivial  undertaking  since a  database 
normally  lacks free text search capabilities whereas Lucene lacks relational data storage capabilities and 
thus up until  now no solution has been published for this challenge. We will present possible solutions 
to this problem later in this thesis. Luckily, today's (software and) hardware systems are powerful enough 
to store large component indices of ten million or more components and carry out searches on them 
within less than five seconds as we will demonstrate later in this thesis. Thus, the repository problem in 
the sense of storing and quickly  querying  large component collections has been largely  solved by the 
storage and processing capacities of modern computers.

Until recently, this was only one a minor problem anyway because there were not enough reusable assets 
to present a serious storage or searching  challenge.  Nevertheless, the question for the ideal  size of a 
component repository has been another controversially discussed issue that has still not been resolved to 
date. Intuitively, it seems obvious that the larger a repository, the more useful it is for its users. However, 
some publications claim there is an upper limit  on the ideal size although the goal of researchers has 
always  been  to  create  the  largest  possible  component  repositories.  During  the  1990s  articles  were 
published  claiming  the  optimal  size for a  repository  is  somewhere between 30  and  250  [Pou99b] 
components and  larger  collections would  unavoidably  lead to degenerated content  (e.g.  out  of date 
versions and descriptions etc.) in the repository. That opinion is interesting from today's point of view 
and can only be understood in the context of the relatively weak automated indexing systems that existed 
at  the time.  As a result,  practical  repositories had to be classified by domain  experts as for example 
recommended by [Cal91].  Indeed, most successful implementations of component repositories at that 
time such as [Len87] or [Pri91]  were around this size and can be regarded as manually built, centralized 
systems. Ironically,  30 or even 250 components would have been easy to browse manually or with the 
support of a simple keyword matcher and thus intensive research on retrieval mechanisms would have 
been superfluous. Perhaps this is the rationale for the claim in [Pou99b] that the retrieval problem could 
be seen as having been solved?

However,  other researchers realized that  the  ever growing  amount  of reusable material  on the early 
World-Wide Web provided an opportunity to automatically populate component repositories and tried 
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to develop search engines that  automatically  crawled for content  on the web.  The first attempt  was 
initiated by the Software Institute (SEI) that developed the so-called Agora [Sea98]  system in the late 
1990s  (see section  8.1.1 for a  more detailed  description).  The  idea  was to  avoid  the  huge upfront 
investment associated with centralized and manually filled repositories by filling them with components 
found by crawling the web. However, this attempt was unsuccessful due to a lack of hardware resources 
available for crawling and component analysis at that  time.  However, the situation has become even 
“worse” since large companies sometimes have hundreds of thousands of files in  their version control 
repositories, but are typically not even able to perform simple text based searches over these resources let 
alone perform sophisticated semantic searches. With the advent of the open source movement a need for 
component  search  engines  similar  to  common  web search  engines  arose.  And finally  the  standard 
libraries of common programming languages (such as Java) grew to several thousand components, not 
mentioning the large number of supporting frameworks containing tens of thousands of classes. This 
number can barely  be handled  by  catalogue-based approaches as evidenced by  the early  Yahoo web 
portal. Such a large number of resources can only be managed by fully automated crawling technology 
and a sophisticated search solution as promoted by Google for about ten years now. Since the number of 
components in standard libraries and frameworks is already far beyond the above mentioned threshold 
for a centralized component collection, it  is natural that there are already efforts under way to support 
developers in  this  “API jungle”  in  the form of “recommendation  tools”, e.g.  [Man05]  or [McC07].  
However, the heart of our problem is the large amount of open source software available on the Internet 
and in version control repositories of large companies. Although a large number of almost all kinds of 
systems has already  been developed and  published somewhere,  it  was virtually  impossible to find  a 
component that matched a specified design when the research for this thesis was started in 2004.  The 
component repository systems of that time were neither able to index nor search such a massive amount 
of files. The recent commercial interest in code and component search engines shows that there has been 
(and  still  is)  a  growing  need  for  better  searches over components  as well  as  for  larger  and  more 
sophisticated component repositories.

3.1.3 USABILITY

Another important factor in the acceptance of a reuse system clearly is its usability [YeF05] and whether 
a developer has the feeling of receiving useful support or being bothered by a complicated reuse system 
that distracts him from his work [Fra95].  However, advances in hardware as well as the rise of platform-
independent, integrated development frameworks such as Eclipse as quasi standards have opened up the 
prospect of proactive recommendation systems that constantly issue queries to component repositories in 
the background transparently  for the developer. This contrasts with the traditional  reactive approach 
where the developer has to trigger a search manually and consciously. The first examples of this kind of 
system were simple and context-free like Owen's [Owe86]  “Did  You Know  system”  (and not related to 
software reuse), descendants of which are integrated in many end-user products today. However, since 
the relevance of the delivered information in most cases was questionable context-sensitive systems were 
developed. Ye popularized a proactive component retrieval approach in his Ph.D. thesis [Ye01] where he 
developed CodeBroker, a recommendation system integrated in Emacs, a popular editor for the Linux 
operating system. CodeBroker suggests components based on names and comments extracted from the 
code a developer is typing.  However, this system requires so-called “active commenting” in  order to 
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create meaningful queries. McCarey et al. [McC07]  recently presented a similar system called RASCAL 
for the Eclipse environment which aims to recommend useful method calls to a developer. More details 
about these two systems can be found in the section on related work. Although there has not been much 
discussion on this topic there seems to be a general consensus in the reuse community  that a modern 
reuse system should be proactive and generate queries without any direction from the developer.

3.2 COMPONENT RETRIEVAL TECHNIQUES

Over the decades many different techniques have been proposed for retrieving assets from a software 
repository. Mili  et al. proposed a classification of retrieval methods in [Mil98]  which later made its way 
into the comprehensive reuse book [Mil02]  by the same authors. According to this classification,  we 
introduce the component retrieval techniques in order of increasing technological sophistication. This is 
to a large degree, identical to their chronological order of appearance. The given classification is not the 
only one in  this area, and although it  is not perfect from today's point  of view it  is by far the most 
comprehensive and is intended to provide a framework for discussion in this thesis. Additionally, to fully  
understand the ideas discussed in  this thesis (and in  this chapter) a number of general concepts from 
information retrieval and related disciplines are required.

3.2.1 INFORMATION RETRIEVAL

A large part of this thesis is about finding information that matches a user's need. Thus, it is necessary to 
introduce some foundations of information retrieval which is defined by  Manning  et al.  [Man07]  as 
follows: 

“Information  retrieval  (IR) is finding  material  (usually  documents)  of an unstructured  nature  (usually  
text) that  satisfies an information  need  from  within  large  collections  (usually  on  local  computer  servers  
or on  the  internet).”

It is interesting to mention  that  IR explicitly  focuses on large collections and thus it  is questionable 
whether  the  small  component  repositories  of  the  1990s  discussed  above deserve to  be  viewed  as 
“component retrieval systems”. Information retrieval approaches usually index the terms found in a set of 
documents in a so-called term-document-matrix, i.e. they store the number of occurrences of each term 
per document. A nice overview of this topic is e.g. given by [Bae99].  A single document is represented as 
a vector, the so-called term-document-vector [Sal75],  with one dimension per term (going out from all 
documents). Two documents can be compared with each other using vector similarity measures such as 
the cosine measure. In their simplest form the approaches merely use a boolean value for each term to 
indicate whether it  is present in  a given document  or not.  More  sophisticated approaches store the 
number of occurrences for each term per document  (so-called term frequency)  or even multiply  this 
value with  the inverse number of occurrences over all  documents (which is called inverse document 
frequency). This yields the so-called TFIDF (term frequency inverse document frequency).

These approaches purely  operate on  textual  information  and  try  to  “interpret” their  meaning  with 
heuristics to deliver the information that a human would expect to receive for a given query. However, 
they are not able to recognize semantic relations between terms as recognized by a human. Furthermore, 
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problems usually arise when variant spellings, typos, synonyms (different words with the same meaning) 
or homonyms (identical  word with  different meanings)  come into play.  Various solutions have been 
proposed to cope with these problems, the use of stemming algorithms [Por06] to reduce words to their 
stem or the use of thesauri  such as WordNet  [Mil90]  are some examples. Even techniques that  are 
supposed to recognize semantic relations in free text have been developed [Dee90].  To compare retrieval 
techniques in IR, the concepts of recall and precision (see next paragraph) are typically used on a given 
and well-known reference collection.  Approaches available today  are able to achieve good results on 
collections of up  to a  few hundred  thousand documents,  but  run  into  problems,  such as a  lack  of 
precision or ever growing performance challenges, when the collections grow larger.  As a result,  it  is 
difficult to implement the above approaches efficiently for web search engines for example, which often 
have to cope with billions of documents. We will discuss this issue more fully in the next subsection.

Recall  and precision are accepted as the standard measures for the efficiency of retrieval mechanisms. 
Recall is defined as the proportion of all relevant documents that have been retrieved from a collection 
according for a given query and precision is the proportion of all retrieved documents that are relevant to 
that query.  This definition makes one important assumption,  namely,  that the proportion of relevant 
documents in the collection is known a priori, an assumption which is unfortunately no longer valid for 
queries in web search engines [Lew06].  A formal description of the concepts is provided by [Bae99]  for 
example. If R is the set of relevant documents in the collection of documents that should be queried, 
then |R| is the number of documents in this set. Likewise if a retrieval system generates a set A as the 
answer to a user's request, then |A| is the number of documents in A. RA is defined as the intersection of 
R and A - i.e. the intersection of all documents that are relevant and returned from the system and |RA| 
is the size of the intersection. The following figure, adapted from [Bae99],  clarifies this graphically:

Figure 3.1: Illustration of recall and precision [Hum03].

Based on these definitions, recall can be written as |RA| / |R| and precision as |RA| / |A|. Typically the 
user does not receive all  documents that are considered relevant in one fell swoop, but in an iterative 
manner, one after the other, ranked by the degree of relevance. Hence recall and precision depend on 
how many of the most relevant documents are considered in their calculation.  To depict the retrieval 
efficiency of an algorithm graphically so-called precision versus recall figures can be used. 
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Figure 3.2: Recall versus precision curves comparing three different 
retrieval algorithms [Hum03].

The recall on the x axis is typically shown for eleven standard recall levels (0%,  10%, 20%, ...,  100%,  
interpolated if necessary) versus the precision on the y axis. Thus, the larger the area below the curve the 
better the retrieval algorithm. More details can again be found in [Bae99],  for instance.

3.2.2 FOUNDATIONS OF SEARCH ENGINES

Since we will  later rely heavily on search engines for component discovery we have to introduce some 
fundamentals of how search engines work. Before the advent of the World Wide Web search engines 
were not widely known. A few such systems existed in public libraries where they helped users to search 
for books according to keywords etc., but in general these systems developed by the information retrieval 
community  did  not  make  it  into  public  awareness.  The  web,  however,  changed  this  situation 
fundamentally.  Search and retrieval became vital to navigate around the large amount of unstructured 
data on the web. The first search engines (such as early Yahoo) relied on the catalogue principle and tried 
to  manually  categorize websites into  a  hierarchically  organized collection.  However,  with  the  rapid 
growth of the web,  this approach quickly  lost ground against  the “brute-force” crawl approach that 
Google and others have been using since the late 1990s. The basis for such an approach is, of course, an 
index  of  webpages,  but  a  term-document-matrix  as  described  above would  require  far  too  much 
resources. Thus, (web) search engines today rely on a so-called inverse index. In this approach it is not a 
list of terms for each document that is administered but rather a list of pointers to the documents in 
which each term appears. Although this principle does not allow sophisticated document comparisons 
like the application of the cosine measure, it has some significant advantages. The most important one is 
that  for each potential  search term there is  immediate  access to  a  list  of documents  containing  it. 
Furthermore, this approach requires less data to be stored and can easily be distributed over multiple 
machines.

However, this idea was not very new and was not the reason for Google's rapid growth in popularity.  It 
was the  famous Pagerank  algorithm  [Pag98]  that  was responsible  for Google's  initial  success.  The 
motivation for Pagerank was to deliver the most important (and presumably the most relevant) websites 
for a query first. And the idea for a measure of popularity  of websites in Pagerank is as simple as it  is 
brilliant  – just count the number of links that point to a site. The more pages with a high Pagerank 
pointing to a site the higher the site will  be ranked. The calculation of “pageranks” for a considerable 
amount of websites is an iterative process, of course, but the values typically converge after three or four 
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iterations. Together with a few more tricks such as giving more weight to pages that contain the search 
keywords in the URL, title or headings, Pagerank was the foundation for Google's success. The Pagerank 
algorithm has already been adapted for use with software components by [Ino05]  and a more detailed 
description of the calculation can be found in section 8.3.

As the main public search engines do not readily  provide information about such things as their index 
size, there are few scientific publications on this topic and many of the estimates available on the web are 
only rough guesses. However, for the purpose of this thesis it is possible to get a coarse impression of the 
size and the capabilities of the main web search engines. As of 2005,  it is estimated (or speculated) on 
websites about search engines3 that the major players like Google and Yahoo are able to index about 200 
million pages per day which is about 1 to 2 percent of their estimated total index of around 10 to 20 
billion pages. Assuming that the time for re-indexing is uniformly distributed for all  pages this would 
mean that a page is re-indexed every 50 to 100 days. This is, of course, a rather long duration that would 
quickly lead to outdated indexes for pages that are frequently changed. This problem is recognized by the 
search  engines  as  well,  which  is  why  they  try  to  index  pages that  change  often  (e.g.  websites of 
newspapers) more frequently.  But even for the big players in  the search business it  is not realistic to 
create an index on a daily basis. This is an idea that Grub4 tried to implement around the year 2003.  In 
the tradition  of SETI@home5 that  distributes the analysis of radio telescope data  to volunteers that 
donate spare cycles of their computers, Grub distributed the indexing of the web to the computers of 
volunteers. However, the project had to be cancelled due to lacking resources.

3.2.3 COMPONENT RETRIEVAL APPROACHES

As stated by Mili  et al.,  a retrieval process typically involves two criteria because a candidate component 
can fulfil  the matching condition of one specific retrieval technique,  but may not necessarily match a 
user’s  relevance  criterion.  For  example,  a  keyword-based  technique  might  retrieve  20  components 
matching the term “customer” but only  2 of them might  actually  fulfil  the user’s requirements for a 
customer object (perhaps the other 18 only have a reference to a customer object etc.) and thereby fulfil 
his relevance criterion.  The authors divided the existing  component  retrieval techniques into the six 
classes shown below. We briefly summarize these techniques and the results of their assessment at this 
point and provide a more detailed overview of the retrieval methods later in this section:

1. Information retrieval methods 
2. Descriptive methods
3. Operational semantics methods
4. Denotational semantics methods
5. Structural methods
6. Topological methods6

3 such as searchenginewatch.com
4 grub.org
5 setiathome.ssl.berkeley.edu
6 From today's point of view we prefer to view this as an approach for the ranking of search results.
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Since component retrieval is a form of information retrieval it  makes sense to reuse methods from the 
latter area to perform simple textual analyses on software assets. Descriptive methods go one step further 
and rely on an additional textual description of the asset like a set of keyword or facet [Pri91] definitions. 
Operational  semantic  methods  rely  on  the  execution  or  so-called  sampling  [Pod93]  of  the  assets. 
Denotational semantics methods use signatures (see e.g. [Zar95]  and [Rit89])  or specifications [Zar97]  
of assets while topological methods try to minimize the distance between the requirements and available 
assets based on a syntactic or semantic measure. Today, we would characterize these methods as a way to 
rank the results of a query. Finally,  structural methods do not deal with the code of the assets directly,  
but with program patterns or designs. Overlap between these classifications can appear at various places, 
e.g. between (3), (4) and (6) as the behaviour sampling of components typically needs a specific signature 
or  structure  to  work  on.  The  authors provide  the  following  table  for each of the  assessed groups 
according to a scheme with five discrete rates ranging from very low (VL), low (L) through medium (M)  
to high (H) and very high (VH). Unknown rates are denoted with (U).

Recall and precision have already been introduced as the two most important measures from information 
retrieval.  The  coverage ratio  describes the  average number  of assets visited per query  over the total 
number of assets in the library. Time complexity refers to an O(N) measure for computation steps per 
query. In other words, low time complexity stands for a linear correlation, medium for polynomial and 
so on.  Logical complexity  refers to the power of the retrieval method in  terms of predicates. In this 
context, very high means that second order predicates are possible. Finally,  the meaning of automation 
potential  should be obvious. The meaning of investment and operation cost should also be obvious, 
while  pervasiveness reflects how widely  a  method is  used in  research and  practice and  the  state of 
development ranges from a speculative idea to a fully supported industrial product. Again, the difficulty 
of use should be obvious while transparency describes the amount of knowledge a user of a method must 
have about the internals of the retrieval algorithm.
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Table 3.1: Assessment of retrieval methods according to [Mil98].
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The authors conclude their survey with the following sobering statement:

“Despite  several  years  of  active  research,  the  storage  and  retrieval  of  software  assets  in  general  and  
programs  in  particular  remains  an  open  problem.  While  there  is  a  wide  range  of  solutions  to  this  
problem  (...)  no  solution  offers  the  right  combination  of  efficiency,  accuracy,  user- friendliness  and  
generality  to afford  us a breakthrough  in  the  practice  of software  reuse.”

In other words, where a technique offers sufficient precision it  is usually  too time consuming or too 
difficult  to use or the other way round (i.e.  easy to use but  too many false positives or too few real 
positives at all).  Hence,  we believe a practical  component retrieval engine requires a carefully  chosen 
combination of various techniques from the above list (see section 5.2).  To enable the reader to better 
understand the hybrid approach we propose later,  we explain the existing techniques in the following 
subsections in more detail.

3.2.4 INFORMATION RETRIEVAL METHODS

The field of information retrieval (IR,  [Bae99])  is much more mature and better understood than the 
field of software component retrieval. For example, the vector space model explained above, which is one 
of the most seminal retrieval techniques in this field, was originally  proposed in 1975  by [Sal75].  The 
indexing process for such a system can be fully automated and enables the system to easily retrieve the 
most relevant documents for a query (which is represented as a vector as well) by calculating the cosine 
between two vectors. As stated above, since information retrieval is about finding information in libraries 
and software reuse is about  finding  software in  software libraries it  was obvious that  ideas from the 
former could be helpful in the latter field. Moreover, it  is clear that information retrieval methods can 
work by  performing some kind  of textual  analysis of the text  associated with  software assets. These 
natural  language  elements can  come from comments in  source units  themselves or  text  in  analysis 
documents and user manuals. The latter, however, are not well suited for software retrieval since they are 
a  relatively  imprecise  description  of  the  source  code.  As [Mil98]  ironically  states,  "if  traditional  
information  retrieval  methods  were  adequate  in  dealing  with  software  assets, there  would  be  little  incentive  to  
investigate  other  methods".  Although not  optimal  for software reuse,  research has shown it  is  indeed 
possible  to  regard  software components  or  related  documentation  simply  as documents  containing 
information, even though this has serious drawbacks for precision and recall. This results from the fact 
that IR methods only extract textual information from the source code and use neither the syntactical 
nor the semantic information contained in it.

Nevertheless, IR methods have widely been used in various systems in the past due to their simplicity 
and the large degree of automation that  is possible during the indexing process. Frakes and Nejmeh 
[Fra87]  for instance presented a system that  relied  on extracting  natural  language information  from 
header comments in C files. An important prerequisite for this method is of course the adherence to a 
coding standard and the user's familiarity with the behaviour of the retrieval system. More examples are 
given in [Mil98]  where even a hypertext-based system was proposed by [Pou95]  is reviewed. Two more 
problems arise in the context of text analysis – namely the synonymy and polysemy problems, the former 
arising from the fact that different words can have the same meaning while the latter describes the fact 
that one word can have different meanings. The so-called Latent Semantic Analysis (LSA, [Dee90])  tries 
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to extract concepts rather than just terms to damp these effects. This approach was used for instance in  
Ye's CodeBroker system [Ye01], but on a fairly small repository of a few hundred components. Although 
informal evaluations have provided good results, we do not believe the system would scale up since LSA 
is  computationally  very  expensive and  attaining  an  acceptable  level  of  precision  in  the  context  of 
component retrieval requires so-called “active commenting”, i.e. additional information that a developer 
has to provide. A more detailed discussion of Ye's system can be found in section 8.2.1.

3.2.5 DESCRIPTIVE METHODS

Similar  to information retrieval methods, descriptive methods do not use the actual  source code of a 
component, but additional metadata, i.e.  typically  a structured list of descriptive keywords. Mili  et al.  
[Mil98]  denote such descriptive methods as a subset of the information retrieval methods, but they give 
them their own category due to the high use of this approach in practice and literature. It is apparent 
that this approach is simpler to implement than the IR methods before since the component descriptions 
and searches typically  only  consist of terms from a controlled vocabulary.  However, the indexing  of 
components involves much more effort since this task is often difficult to automate and hence normally 
has to be performed by  a  human  administrator.  This  implies a  kind  of natural  upper bound for a 
repository using a descriptive method as it is not practicable to index millions of components in this way.  
Moreover, the administrator and the users of the repository have to have the same background or at least 
the same understanding of the vocabulary used to describe the components. In the best case this can 
simplify the retrieval of components, but in the worst case, new users have to become familiar with the 
description scheme before they are able to use the repository. Interestingly,  websites such as del.icio.us 
have recently  gained much attention with an approach called tagging where users can assign arbitrary 
keywords  to  websites and  classify  them  therewith.  Although,  the  vocabulary  is  not  controlled  this 
approach seems to work  quite  well  as it  can  be used without  learning  the  vocabulary  in  advance. 
However, a first project using Web 2.0  tagging for component retrieval reported rather disappointing 
results [Van06] compared with keyword-based retrieval.

The work of Ruben Prieto-Diaz, called faceted classification [Pri91],  is a well-known example of the use 
of a descriptive approach. It was inspired from library science where systems like the Dewey Decimal 
[Cha94]  provide an enumeration scheme with a finite list of predefined classes. This idea is very similar 
to the concept of ontologies [Ber01]  nowadays proposed by the Semantic Web community.  However, 
Prieto-Diaz argues that it is not always easy to select the class that describes a component best and hence 
relies on a faceted scheme of the kind used in library science since the late 1930.  The term “faceted” in 
this context simply means that there is more than one way of classifying a component, for instance, as in 
Prieto-Diaz's example where a component might  be described by several facets like design,  program, 
structure, system etc. Other more practical facets might be the underlying component technology or the 
domain and so on. Such facets enable a much more concrete description of components and in Prieto-
Diaz's system they are supported by a semantic network that defines a distance measure within a facet to 
enable (the most) similar components to be “recommended” when no direct match is possible.
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3.2.6 DENOTATIONAL SEMANTICS METHODS

Mili et al. [Mil98]  subsume both signature-based and formal specification-based retrieval methods under 
the notion of denotational methods. However, they had to accept that there is some debate on whether 
or not this is appropriate and argue that  the former is only  a subset of the latter.  The denotational  
methods form the group of retrieval methods which is most appropriate for a design-based retrieval of 
software  components  as  proposed  for  example  by  [Atk02].  Since  the  description  of  a  software 
component  typically  consists  of a  syntactical  description  of its  interface  and  a  functional  contract 
specification  (cf.  [Mey92])  it  is  natural  to  use these features to  store component  descriptions  in  a 
repository.  However,  this  approach carries one inherent  problem,  namely  that  it  is  very difficult  to 
formulate formal  descriptions of components for queries and  that  an automated examination  of the 
adherence to a formal specification is not possible due to the halting problem. Since this topic is closely 
related  with  theorem proving  it  is  not  surprising  that  denotational  methods are  most  suitable  for 
functional programming languages.

Signature matching,  on the contrary,  was considered the key to reuse by Zaremski and Wing  in their 
eponymous paper [Zar93]  from 1993.  It  is  in  fact  an  important  prerequisite  for both specification 
matching as well as for operational  semantics methods, which we will  discuss in  the next subsection. 
Rittri  was the first to suggest the use of signature matching for component retrieval in [Rit89].  As the 
name implies, signature matching originally focused on the signatures of functions. The author used the 
functional programming language ML for his research. The underlying idea of signature matching is to 
scan a component library for functions that  have the same signature as the user's query,  but to fully  
ignore function names. An exact match is achieved when the input parameter types and the return type 
of two functions match exactly without observance of the parameter names. [Zar95] defined a number of 
relaxed matches like permuted parameter order or even matches containing sub- or supertypes. However, 
to our knowledge only one publication [Str94]  has tried to transfer these findings to an object-oriented 
language (Ada). This was not a simple undertaking since there is no sound type theory of he kind found 
in functional languages that would allow the definition of type isomorphisms.

Over  the  years  many  well-known  approaches for  the  matching  of  formal  specifications  have been 
proposed.  For example,  [Per93]  proposed a system containing  predicates for functional  features and 
interface descriptions while [Moi92]  use algebraic specifications to describe the signatures and axioms of 
reusable components. On the other hand, [Jen95]  introduced a system based on the formal specification 
of components and queries while Zaremski and Wing complemented their signature matching approach 
with  work  on  specification  matching  [Zar97]  where  they  use  pre-  and  postconditions  to  describe 
components.  However,  the theorem proving required for assessing whether a component  matches a 
query quickly became a bottleneck for practical implementations and the authors consequently tried to 
minimize the effort involved. [Pen99]  proposed domain specific knowledge bases as a solution while 
[Fis91]  introduced a stepwise filtering process to limit  the amount  of processing required.  However, 
from today's vantage point  these approaches all  have limited usability  since they require a human to 
create the specifications for each of the components in a library, a task certainly not feasible on today's 
libraries with millions of components.
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3.2.7 OPERATIONAL METHODS

As the name indicates, this approach is based on the simple observation that software components have a 
dimension that other (i.e.  typically purely textual) retrieval artefacts do not share: they can be executed 
and their reaction to given input stimuli can be evaluated. In other words, the component's behaviour is 
directly observable and does not have to be hidden behind some abstract description.  The underlying 
idea is quite simple, the signature of the desired component is entered into the retrieval system together 
with  some input/output  pairs  to  be  used  for  assessing  the  components.  Each  component  in  the 
repository is executed with the given input values and the output is compared with the expected output 
that  has been fed into  the  system.  Although  appealing  in  theory,  the  approach has some practical 
limitations.  First  and  foremost,  components must  be executable and  although  this  sounds trivial,  it  
sometimes is  a  serious problem to execute an  individual  class of a  large  project  (such  as Eclipse7). 
Moreover, side effects, non-termination, abstract data types and additional files that might be necessary 
to process results can cause further severe problems. Altogether, operational  methods have essentially  
only  been considered for functional  languages where a  sound type theory  is  available  and  signature 
matching [Zar95] is much better understood.

However, the first operational retrieval method, called Behaviour Sampling, was proposed by Podgurski 
and Pierce [Pod93] for simple C functions (i.e. functions that are free of side effects and only use simple 
variables) in the early 1990s. The main focus of their work was to estimate how precisely the approach 
worked for small sets of input samples, and four random samples were found to be sufficient in most of 
their  experiments. Twelve random samples are considered to be the absolute maximum necessary for 
receiving unique results by the authors. However, as [Mye02]  states, for software testing random value 
selection is a rather ineffective way of sampling the behaviour of components. Furthermore, the authors 
already realized that abstract data types must be broken down into their primitive parameters, a strategy 
that is known from algebraic specification.

Hall  [Hal93]  used user-selected samples (what we would today call test cases) to generalize the above 
approach  and  was  able  to  retrieve  not  only  simple  components,  but  also  composite  components 
composed from other elements in the library. Complex data types could be retrieved through the use of 
constructors  that  merely  contained  simple  variables.  However  his  system  neither  supported 
polymorphism nor the isomorphism of signatures and is based on a functional language (Lisp). [Cho96]  
used finite state automata to model the behaviour of object abstractions, an approach that required a lot 
of manual effort since it  could not be automated. Moreover, the use of internal attributes violates the 
information  hiding  principle  and  made  it  necessary  to  anticipate  the  implementation  of a  desired 
component  in  a  query.  [Atk95]  defined a theoretical  framework in  Object  Z that  enabled a partial 
ordering of components in a lattice structure that in turn enabled component retrieval based on the most 
similar behaviour if no exact match could be found. However, no practical implementation of this idea 
was published at the time of writing.

7eclipse.org
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3.2.8 STRUCTURAL METHODS

The retrieval methods introduced so far all try to approximate the functionality of a component in some 
way. Thus, the functional properties of a component are the matching criterion. The few techniques that 
fall into this category, however, have chosen a different way, namely similarity of the internal structure of 
a candidate to the component under consideration. [Mil98]  argue that this technique is best suited to 
situations in which components have to be modified anyway after retrieval. In such a case it makes sense 
to look for a component whose structure is as close as possible to the structure of the desired component 
(look-alike instead of act-alike).  Although this is the case with the other approaches as well,  structural 
methods are supposed to be more suited in this regard. Mili  et al. further argue that structural methods 
are especially well suited for white box reuse where the internal structure of components is available.

However, structural approaches have rarely made any impact on the practice of software reuse. Mili  et al. 
have obviously also struggled to find meaningful examples for this category. There are only two main 
examples of attempts to apply  these approaches in  practice.  One is the idea of programming  clichés 
introduced by Rich et al. [Ric78]  in the context of their Programmer's Apprentice project. Such clichés 
are somewhat similar to today's well-known Gang of Four design patterns [GoF95] although they are on 
the smaller level of idioms according to the pattern classification of Buschmann et al. [Bus96].  Structure 
is the basic selection criterion for clichés since they can be instantiated for a range of varying functions. 
The approach of [Pau94]  is the only true structure-based retrieval approach published to date.  Since 
structural matching requires the expected structure of the component under development to be defined, 
and this would normally  be equal  to programming the component,  the authors define a higher-level 
language which is supposed to specify queries in a more abstract way. However, the authors see the main 
use of their approach in the context of program understanding and re-engineering which is perhaps why 
it would be difficult apply in a reuse context where one would have to anticipate the internal structure of 
the desired component.

3.2.9 TOPOLOGICAL METHODS OR RANKING APPROACHES

Topological methods rely on an underlying distance measure to find the component closest to a query. 
Consequently,  it  is obviously possible to not only deliver the closest result,  but perhaps the ten closest 
results ordered according in  the same way that WWW  search engines select their search result today. 
Hence we prefer to view topological methods as essentially  a tool that ranks the results of a query. In 
other words,  topological  methods must  be built  on top of at  least one retrieval technique from the 
categories above that can be measured in some concrete way. For some, such as the information retrieval 
approaches,  this  appears to  be straightforward  since  the  frequency  of terms could  be counted,  for 
example. But even for the signature of a component it is possible to define a distance measure such as the 
number of steps necessary to transform one signature into another (cf.  [Kra03]).  Unfortunately,  this 
would be very expensive to implement in  a search engine since,  in  principle,  the distance from each 
query to each entry in an index would have to be calculated in each search.

Girardi and Ibrahim [Gir94]  developed a system which is often misinterpreted as a way of extracting 
linguistic, syntactic and semantic information from reusable artefacts and their documentation in order 
to deliver components that are as close as possible to user requests. However, they merely experimented 
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with the extraction of syntax and semantics from textual  information and not from source or binary 
artefacts.  Thus,  they  applied a purely  textual  information  retrieval  approach where they  calculated a 
distance between query and candidates. The authors evaluated their system on an index composed of a 
few hundred Unix commands. For their natural language queries they reported an average recall of about 
0.99  and an average precision of nearly 0.90  based on twenty queries using the index created from the 
“man pages” of the Unix commands.

Mili  et al. list a few other approaches that operate on different underlying distance metrics, but adhere to 
the same principle. The term “ranking”, however, is not used in this publication. The idea of ranking the 
results of component searches was, to our knowledge, first introduced with the work of [Ino05] (a more 
detailed  description  of their  work is provided in  section  8.3)  that  realized that  a  simple search and 
retrieval  approach  is  no  longer  sufficient  for “larger” repositories.  They  were inspired  by  Google's 
Pagerank algorithm [Pag98]  and based their ranking not on the closeness of the query to the candidates 
(they only use a simple keyword matching for this),  but on the popularity  of the candidates. In other 
words, during the creation of its index, their system extracts how many classes use another class and the 
more popular  a class the higher it  is ranked in  the set of results.  A similar  approach is used in  the 
Sourcerer project [Baj06] from UC Irvine. The disadvantage of such an approach, however, is that it will 
only work with known collections in which a naming scheme is applied and no duplicates or similar (e.g. 
older) versions can appear. Currently,  it seems unlikely that this will ever work with data from the web 
or from unknown open source collections. 

3.2.10 DISCUSSION OF CLASSIFICATION

The classification of Mili  et al.  is certainly  a valuable tool to distinguish the various groups of reuse 
techniques. However, in our view its focus on reuse techniques is its main weakness in the context of 
component-based reuse.  The  authors created a generic  scheme applicable for all  software assets that 
might be reusable during the development process. Thus, it is not very descriptive from the point of view 
of components. More specifically, it combines some issues that should be separated in one group (e.g. it 
combines syntactical and semantic aspects into denotational techniques) and separates some issues that 
should be combined into different groups (e.g.  the distinction between structural issues and syntactical 
issues in the denotational techniques).

Consequently,  we  suggest  a  more  component-oriented  classification,  ideally  inspired  by  modern 
component-development approaches such as KobrA [Atk02].  As we pointed out in section 2.4.1. KobrA 
defines a black box view on a component, called a specification, which typically comprises three views of 
the component,  namely  a structural,  a functional  and a behavioural  view. While  the structural  view 
captures the syntactical aspects of a component and its environment in UML class diagrams, the latter 
two perspectives contain semantics information in terms of operation specifications and the externally 
visible  states of the  component.  KobrA also strives to  offer a  concise but  minimal  description  for 
components. Given this model, we believe it makes sense to classify component retrieval techniques in a 
similarly way and propose the following groups:
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1. structural (or syntactical)
2. functional semantics
3. linguistic

The  structural  techniques  comprises all  approaches that  try  to  match  components  based  on  their 
structural properties, this includes pattern-based approaches [Ric78],  signature-based retrieval [Zar95] as 
well as more recent attempts to perform retrieval based on UML class diagrams [Llo04].  The group of 
semantic techniques includes everything that deals with descriptions of the functionality of components 
and  their  behaviour.  This  includes  static  (e.g.  specification  matching  [Zar97])  as  well  as  dynamic 
techniques (such as behaviour sampling [Pod93]).  Although the linguistic aspect is not mentioned in the 
development context of KobrA it has to appear in the retrieval-oriented context of this thesis. Although 
all  component  descriptions contain  names and other linguistic  elements these do not  guarantee any 
behaviour  and  can  totally  be free of meaning  (e.g.  “sdfsdfsd” would  be a  valid  name  for a  class). 
However, in an object-oriented system they normally give valuable hints for the purpose of objects. The 
groups of retrieval  techniques mentioned above thus are orthogonal  and capture different aspects of 
components. None of them would be sufficient to describe a component fully on its own. For example, 
as a recent publication [Kra03] has shown the interface of components holds some information about its 
functionality, but is not sufficient alone because it does describe the full functional semantics.

Although the three perspectives from above cover the functional aspects of a component,  they do not 
include the non-functional quality aspects. These were not explicitly considered by Mili  et al. Either, but 
are also important  and  can be used for the  ordering  of components within  a  result  set.  Given the 
different approaches currently  known, we propose to classify approaches for ranking components into 
the following groups –

1. quality of service
2. popularity
3. distance to the query

The first two groups can normally be applied independently from the query and thus can be calculated 
at index creation time. Since they do not influence how well a component matches a query they should 
only be applied on groups of results which have the same degree of match to the query. The third group 
is different since it ranks components according to their distance to the query. Consider, for example, a 
component that has four operation signatures matching the query. It is obvious that it should be ranked 
higher than another component matching only two of the signatures.

Finally,  the  core  challenge  from  a  reuse  point  of  view  is  to  find  a  simple  and  comprehensive 
representation of components that  allows simple query formulation for the user without  the detailed 
knowledge of a new query language. Up to now, the opposite has been the case. Query formulation has 
largely  been driven by  the  selected retrieval  technique  and  hence has ranged  from simple  keyword 
searches to the formulation of formal specifications. However, as pointed out in the introduction, these 
approaches are often unnatural for developers normally working with UML diagrams or source code.
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3.2.11 RETRIEVAL TECHNIQUES IN USE TODAY

The advent of web-based code search engines has brought some new component retrieval techniques 
into focus. Thus, we briefly provide an understanding of the techniques that are in use today and that 
will appear frequently in this thesis. We start with a structural retrieval technique. We will use the term 
signature- based  retrieval  in accordance with the signature matching approach [Zar95]  mentioned above. 
Consider the following class diagram of a small Stack component as an example.

Stack

+push(o:Object):void
+pop():Object
+size():int

Figure 3.3: Class diagram of 
exemplary Stack component.

From this information, signature-based retrieval would use the following signature for a search:

Object -> void
void -> Object
void -> int

The simplest linguistic approach still in use today is of course plain  keyword  matching , whose relevance 
criterion is just the appearance of the required keyword somewhere in  the candidate component,  i.e. 
typically  in the source code. This would result in the following query for the above example where all 
names and parameter types have been extracted from the component's interface:

stack push object void pop size int

A number of the structural techniques that have appeared recently have also been influenced by linguistic 
approaches. The simplest one is the so-called name- based  retrieval  approach  that limits keyword matching 
on specific structural elements of a component, i.e. typically the method and class names:

stack push pop size

The so-called interface- based  retrieval  approach uses the complete interface information contained in the 
UML  diagram,  and  the search engine  is expected to recognize them properly.  Queries are typically  
expressed in a special query language, such as the UML-like one that we developed for this thesis, – 

Stack (
   push(Object):void
   pop():Object
   size():int
)

or directly as (Java) code as in the following stub:
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public class Stack {
   public void push(Object o) {}
   public Object pop() {}
   public int size() {}
}

Previously,  specification- based  retrieval  meant retrieval based on a formal specification of a component 
such as the following excerpt of a Larch/ML specification for a Stack presented in [Zar97].  

Figure 3.4: Formal specification of a stack 
in Larch/ML as given in [Zar97].

However, since we intend to use this term for retrieval based on a (KobrA) specification of a component 
as defined  in  the  last  subsection,  we prefer  to  call  the  former  formal- specification- based  retrieval  to 
distinguish the two.

3.3 SEMANTICS IN REUSE APPROACHES

Few if any of the retrieval techniques developed to date have fulfilled their requirement.  As has been 
explained during this chapter, most attempts have only been prototypical implementations which have 
demonstrated features in  carefully  controlled environments “in vitro” and never “in the wild” (or “in 
vivo”). Furthermore, none of these approaches could really be called “semantic”. Semantics, defined as 
“the study  of  meanings” by Merriam Webster's dictionary, is a term that is connected with components in 
a variety of ways. There is a textual semantics dimension related to the meaning of names in source code 
and  perhaps also in  the  documentation  of components.  As shown above,  this  is  typically  used by 
approaches  based  on  classic  information  retrieval  techniques.  Unfortunately,  names  or  text  in  a 
component  do not  necessarily  determine any  of the behaviour or the functionality  of a  component 
although  one fundamental  rule  in  object-oriented  design  is  to  keep the  so-called  “conceptual  gap” 
between an object in the real world and its software representation as small as possible [Lar05].  Assumed 
that this rule is adhered to, it is likely that the textual semantics are helpful in getting a first idea of the 
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domain a component is used in.  However, it  is also likely  that in large repositories such an approach 
alone will not be precise enough as our results shall indicate later in this thesis.

This is one of the reasons why the semantic web community has been trying to enrich for example web 
pages and web services with ontologies that  can be used for reasoning within  service repositories for 
automated discovery, matching, and composition. However, practically usable implementations are still 
a long way off and some concerns that the research has lost its focus and is drifting away from this goal 
have been raised [Shi07].  The main problems arising in this context are the complexity of the ontologies 
created and the problem of automatically  matching different ontologies with each other. Furthermore, 
there have been attempts to use the formal semantics of components for retrieval [Zar97],  but these are 
typically too complicated to use. The idea is based on the design by contract approach [Mey90]  and uses 
pre- and postconditions to capture the behaviour of operations. However, formal methods are not very 
popular amongst developers since their use is typically as complex as programming the actual solution.  
Additionally,  a concrete mapping from functionality  to formal description must be developed by hand 
for each component appearing in  a repository and there is not even a chance to automatically  check 
whether  a  component  adheres to  its  formal  specification  due  to  the  halting  problem.  The  above 
mentioned operational  semantics methods [Pod93]  have tried to circumvent this problem by directly 
observing the behaviour of simple components, stimulated with a few random values. In our opinion, 
this is a promising approach. However, as we discussed above has not been sufficiently  developed and 
investigated for modern programming languages.

For the purpose of our dissertation we define semantic component retrieval as the ability  of a search 
engine  to deliver the components that  have the lowest conceptual  gap to the software object that  a 
developer has in mind. While this might at first sight might appear to require mind-reading, it actually 
means nothing more than optimizing a retrieval system for various conceivable component search use 
cases under different circumstances. Since there has to date been no description of such use cases in the 
literature we shall  identify  and explain  the use cases in  chapter  5 where we describe the core of our 
semantic search approach.
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4 THE INTERNET AS A REUSE 
REPOSITORY

Getting  information  off  the  Internet  is like taking  a drink from  a fire  hydrant.
-- Mitchell Kapor, Lotus Corporation

The main technical obstacles to widespread, systematic reuse have remained the same ever since the idea 
was first put forward – how and where to find components suitable for a particular need in a particular  
context.  One obvious approach is to create a component repository which component suppliers and 
consumers can use to match  their  needs and  services through  universally  agreed categorization  and 
description rules, as described in the vision for UDDI in section 2.4.2. However, while there have been 
serious efforts to create practical component repositories along these lines, as Seacord concludes [Sea99],  
there will not be a “useful  solution  to the  software  repository  problem  without  education  and  direction  from  a  
central  group  advocating  the  establishment  of  these  software  engineering  repositories”.  Still,  from today's 
vantage point, it seems unlikely that such a centralized approach will ever make a significant impact on 
commercial reuse levels any time soon. This view was reinforced d by the quiet shut-down of the UDDI 
business registry (UBR) in early 2006. The UBR was set up with huge upfront investment by IBM, SAP 
and Microsoft as a showcase for a worldwide service repository. However, as our investigations [Hum06]  
shortly before the shut-down revealed, it contained very little usable material and the effort put into its 
creation never paid off.

Right now, it  is difficult to judge whether the similarities between evolution component/service search 
engines and general web search engines are merely coincidence, but it is interesting to note that Yahoo 
(like the UBR) also started as a browsing-oriented catalogue of web pages which relied on the entries of 
users. Obviously,  the web grew too fast and Yahoo finally  also switched to a crawling-based approach. 
Therefore,  we conclude  that  the  most  promising  way  of promoting  component-based reuse in  the 
foreseeable future is to find better ways of automatically  using the largest and most widely  accessible 
knowledge and software base in the world today: the Internet. Indeed, the arrangement of data on the 
Internet is obviously the antithesis of a strictly  organized repository. Information on the World Wide 
Web (WWW)  is organized in a large variety of different ways, with no central control or standardization 
other than at the protocol level. The WWW  is the part of the Internet determined by the use of the 
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Hypertext Transfer Protocol (HTTP)  and has made its way from an underestimated research project 
[Ber99] into our everyday life bringing along three major advantages as an information resource:

1. it vastly overwhelms any other repository in terms of scale and content
2. it is freely available and 
3.  it  is the focus of the most advanced searching tools available today  – namely  web search  
     engines such as Google etc. 

Thus, it makes sense to consider the use of the Internet as a source for reusable components, especially 
since many of the techniques that haven proven successful in this disorganized environment should be 
applicable in the context of company internal projects as well. Still,  as mentioned before, keyword-based 
searching is the preferred way to find information on the Web today. Search engines like Google, Yahoo, 
Lycos and others are currently the most sophisticated tools used to find information on the web. Recent 
estimates such as that from [Gul05]  give 11.5 billion indexable pages as a lower bound for the size of the 
Web in 2005.  Google, for instance, claimed at that time to have more than 8 billion pages indexed. It is 
likely that amongst those is a large number of source files and Java applets from the web and even the 
CVS and SVN servers of a lot of open source repositories are accessible through the Internet. 

When work on this thesis was started in 2004,  the idea of using the Internet as a reuse repository was 
already more than five years old. In the late 1990s the Software Engineering Institute (SEI) had tried to 
crawl the web for reusable Java applets using special queries to a mainstream search engine. However, the 
experience with their so-called Agora project [Sea98] was disappointing since their system was not able to 
effectively process the amount of data created by that endeavour. More information on this project can 
be found in  section  8.1.1.  Fortunately,  times have changed since then and in  the last five years the 
technological environment has become much more favourable. As we shall explain in this chapter, the 
Internet has indeed become a valuable source for software components. In the following, we try to assess 
the theoretical potential of the Internet as a reuse repository and to estimate the number of source (and 
binary) files available from it.  Furthermore, we discuss, how general style search engines can be used for 
targeted source code searches and what material we were able to find for the Merobase search engine that 
demonstrated that  it  is  possible  to  gather  and  populate  a  dedicated  component  search engine  with 
content found on the Internet. We round this chapter off with a discussion of the difficulties involved in 
publishing components on the Internet in order to make them findable. 

4.1 ESTIMATED POTENTIAL

One way of estimating the number of available files on the web is of course to use web search engines to 
search for appropriate files. We developed some simple heuristics that enabled us to yield very precise 
results for most programming languages, at least from the two biggest search engines Google and Yahoo. 
Interestingly, [Yao04] still denied the feasibility of such an undertaking in 2004. Our basic idea is to use 
some undocumented  features of the filetype filters of the two identified  search engines to constrain 
searches to files in a desired programming language. For example, it is possible to restrict searches to Java 
files with  filetype:java  in  Google queries and with  originurlextension:java  in Yahoo queries. Adding for 
example  “class stack” to such a query will  deliver stack components with a surprisingly high precision. 
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Further heuristics to search for operations etc. are presented in the next subsection. The heuristics can 
also be used to estimate  the number of files in  a  given programming  language that  are indexed by 
mainstream search engines and hence allow to estimate at least a lower bound for the total number of 
such files available on the web. To illustrate the magnitude of the accessible code resources on the web, 
table  4.1 shows the numbers of Java files that could be retrieved using the Google and Yahoo search 
engines during our experiments over the last years. Two sets of values are shown for the Google entries – 
the  first  giving  the  number  obtained  using  the  regular  human  HTML  interface  and  the  second 
(bracketed) giving the number obtained using the web service API for automated access. Unfortunately, 
the latter delivers only a fifth of the results available using the former and is no longer supported. This, 
of course, makes it less appealing to use the Google API for issuing such metasearches.

Month Google (Web API) Yahoo

08/2004 300,000 -

01/2005 640,000 -

06/2005 950,000 (220,000) 280,000

08/2005 970,000 (220,000)
1,510,000 (367,000)

2,200,000

11/2005 2,210,000 (190,000)
4,540,000 (410,000)

2,200,000

03/2007 1,350,000 470,000

06/2007 2,900,000 680,000

11/2007 1,300,000 1,000,000

Table 4.1: Number of Java files indexed by search engines on the web.

The italicized values in the fourth and fifth row stem from the query “filetype:java” class OR – class that – 
strangely  enough  – delivered significantly  more results for Google than  just  filetype:java class.  One 
would assume that a search with “filetype:java” -class would only deliver Java interfaces and no classes but 
actually,  this  is  not  the  case.  Manual  inspections  revealed  a  high  percentage  of  class  files.  One 
explanation  for  this  strange  result  may  be  that  Google  does  not  completely  index  some  files. 
Furthermore, Google obviously changed its system in 2007 so that a plain search for filetype:java started 
to deliver results without further search terms (which did not happen before). The numbers in the table 
represent the mean value of samples per month whereas individual values can vary even from one request 
to  the  next  within  just  a  few minutes.  However,  the  growth  trend  illustrated  by  the  numbers  is 
unmistakable even though the numbers also show the sustained effort of Google and Yahoo to clean 
their indices from files not containing natural language. In August 2005,  similar requests for various C-
style languages (filetypes: c, cpp and cs) revealed a total  of about 1.6  million source files in  Google’s 
index, and 2.7 million from Yahoo.



72 - THE INTERNET AS A REUSE REPOSITORY

The overlap between Google and Yahoo seems to be rather low - it is typically below 20%. For example, 
only 5 out of 24 results for the isLeapYear example used in chapter 7 were the same and in the first 
250 results of each engine for the Matrix example from the same chapter, only 47 out of 500 overlap. 
This observation tallies with other reports for general HTML searches as those described in [Dog05] for 
example. Additionally,  it is interesting to observe that both search engines were apparently surprised by 
the massive growth of open source software on the web in 2004  and 2005.  At that time, both engines 
also indexed source code from the WebCVS (or -SVN) interfaces of the large open source hosting sites, 
but as of 2007 both engines have obviously removed these files from their indices. This is not surprising 
since indexing source code is not the goal of commercial search engines as Peter Norvig (head of search 
quality  department)  from Google confirmed in a private e-mail  conversation in 2005.  The observable 
decrease in  the number of Java files on Google by about three million  Java files after that  operation 
corresponds pretty well with the amount of files that our own crawling efforts for the open source hosters 
delivered in 2006 (cf. table 4.6). In summary, we estimate that about 3 million Java source and about 2 
million C,  C++ and C# files (without WebCVS/WebSVN) are available on the open web at the time of 
writing. Additionally,  at least 3 million Java and 2 million C language source files are available in open 
source repositories. Due to the rapid growth of both the web and the open source community, it is likely 
that  these numbers will  grow steadily  in  the  next  few years,  even if  the  millions  of code snippets 
embedded in  an uncountable number of web pages are not  taken into account.  However, the large 
number of exact or near duplicates (some files appear more than a dozen times in our index) makes it 
even harder to find a good estimate of reusable components on the web. Although the exact number of 
software components is indeterminable and in constant flux, the following fact is clear – the number of 
components available through the Internet exceeds every pre-millennial component repository reported 
in the literature by at least three orders of magnitude.

Google and Yahoo might  also be helpful  for the web service community  since they  are also able to 
retrieve WSDL files. As the next table illustrates, the number of files is high compared to the values for 
the former UBR presented in [Hum06],  but more a detailed validation has shown that most of these 
WSDL files are not backed up by a working implementation of a service.

Search Engine API Claimed no. of 
links to WSDL 
files

No. of actual links 
to valid WSDL files

Google yes 9000 (1700) 794 out of first 1000

Yahoo yes 13400 (1900) 425 out of first 1000

Table 4.2: Number of WSDL files delivered from search engines.

The values in brackets show the number of results returned through the APIs. This indicates that the 
search results could be better if the artificial limitation on automated queries were removed. Both search 
engine APIs allow automated access to only  the first 1,000  results returned in  response to a manual 
query.  This  is  usually  not  a  problem when searching  for a  specific functional  component  since the 
number of retrieved candidates for a specific query rarely exceeds a few hundred.
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Given the total numbers presented in this section, we can estimate that roughly 1/1,000 of the pages 
indexed by the two big search engines were source files in August 2005.  After the exclusion of CVS and 
SVN content this number seems to have dropped to about 1/10,000.

4.1.1 SPECIALIZED SEARCH ENGINES ON THE WEB

As of 2004 when work on this dissertation was started, no specialized code or component search engine 
were available on the web as we have already pointed out above. But since then the situation has changed 
considerably and four serious commercial projects emerged. In order of appearance these are:

1. koders.com, started in late 2004 by a development company in California. Koders was the first 
code search engine on the market, focusing on components from public CVS servers.

2. krugle.com, backed up by several million dollars of venture capital, Krugle started in late 2005  
with a beta version but needed until June 2006 to offer public access for everybody.

3. Merobase.com is the search engine that  emerged from this dissertation and went live in  July 
2006.

4. google.com/codesearch. Google followed with its code search engine in fall 2006.

In contrast to general web search engines the named sites are specialized for source code searches. Hence, 
they all  offer the opportunity  to limit  searches to a specific programming language, and they all  fulfil 
another important requirement for being accessible by external tools – namely they provide an API for 
programmatic  access. The APIs are based on Amazon’s Opensearch format [Cli07]  which in  turn  is 
based on RSS. When estimating the size of their repositories by counting the number of Java classes (by 
searching for the terms “class” or “interface” in Java files) we found the last three engines having more 
than 10 million components in various languages in their indices as of November 2007.  We will give a 
comprehensive overview of known code search engines and their content when discussing related work 
in section  8.1.2. More details on the content indexed in the Merobase search engine can be found in  
section  4.4.  In section  4.3 we provide more details on its capabilities and on,  the different types of 
components that it contains and other interesting facts learned during its construction. In a nutshell, we 
currently have about 4 million Java source files indexed in Merobase, 3 million originating from open 
source hosters and about 1 million from the World-Wide Web.

Since  one  of the  reasons for  the  recent  excitement  around  web service  technology  was its  search 
capabilities (UDDI [New02] was supposed to bring together service providers and service requesters) we 
continue our overview with an analysis of web services repositories and the services that they offer for 
third-party  (re-)use.  UDDI  used  to  be  (and  sometimes  still  is)  advertised  as  a  flexible  brokering 
technology  that  allows component  developers to  “publish” their  software as services,  and  potential 
component  users to automatically  find suitable services via formalized syntactic  descriptions of their 
requirements  (in  the  form of WSDL  documents).  Even semantic  composition  capabilities  for  web 
services are becoming available (e.g. with the help of OWL [Ant04]).  Since so much industry investment 
had been pumped into the UDDI Business Registry (UBR), one would have expected a sizeable index of 
services to be available.  However, as table  4.3 demonstrates, the UBR (and other service repositories) 
failed to reach a critical mass of entries and a large proportion of the entries contained in the repository 
were out of date. Many entries did not even point to valid WSDL descriptions and of those that did,  
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only a small proportion were actually backed up by working implementations. The UBR’s shut-down in 
early 2006 was a logical consequence. 

Search Method API Claimed number of links to 
WSDL files

No of actual links to 
valid WSDL files

UDDI Business Registry8 yes 770 400

BindingPoint.com8 no 3900 1270 (validated)

Webservicelist.com no 250 unknown

XMethods.com yes 440 unknown

Salcentral.com8 yes ~800 all (validated)

Table 4.3: Number of WSDL files within reach at various websites (July 2005).

However, the main problem with the UBR's concept in our opinion was not a technical one, but the 
overhead involved in  the manual  creation and maintenance of the repository. The effort involved in 
entering a complete service profile into the UBR should not be underestimated. In addition,  the effort 
involved in updating or removing the (possible many) entries when a server was moved or closed down 
should also be taken into account.  In theory, this should have been taken over by the publisher who 
entered a service in the UBR,  but this is often forgotten in practice. Interestingly,  the UBR followed 
exactly the three-phase reuse progression (empty,  filled with little content or filled with a lot unusable 
content) that Poulin reported in [Pou95] from his practical experience at IBM (although we would argue 
that the UBR actually never reached the third phase). In general, we can only speculate about the reasons 
for the disappointing performance of such repositories. One feasible explanation is the simple fact that 
there were not many  services available at  that  time.  We  were able to discover about 3,000  working 
services in  2006  for Merobase and only recently  another web service search engine (seekda.com) that 
emerged from an EU-funded project has been able to collect more than 10,000  publicly available web 
service endpoints. Our efforts in late 2007 also led to about 12,000 such service endpoints.

In addition to these code and web service search engines, there have been numerous attempts to establish 
commercial  component  “marketplaces” in  recent  years.  However,  these have also had  only  limited 
success. Two of the most well known, ComponentSource.com and Flashline.com, had to merge in 2005.  
Moreover, the UDDI Business Registry (UBR),  the high  profile industry  repository for web services 
contained very little useful material (as we will show later) and was finally shut down in January 2006 9. 
Likewise, most other initiatives have had very limited impact. These approaches have essentially all been 
based on a standard “e-retail” model in which components are offered in an informal catalogue-like style 
as if they were mainstream consumer products. Trying to discover a component at ComponentSource is 
therefore still  much like browsing for a book on Amazon. It is a very informal,  unpredictable process 
with a highly  uncertain  outcome. Of course, searching tools are provided,  but  these are very simple, 

8  As of 2007 this website is no longer available.
9  The official rationale is that the UBR has been successful as a proof of concept, though.
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typically  text-based technologies that  essentially  look for keywords in  a component’s documentation. 
They are still far away from a semantic matching or at least a matching based on the signatures (i.e. the 
parameters of methods) or the full interface (i.e. parameters and names of methods) of classes.

4.2 PRECISE RETRIEVAL WITH GENERAL-STYLE SEARCH ENGINES

Although there is a number of specialized code search engines around,  “metasearching” general search 
engines can be an appealing option to find software components on the web. No special infrastructure 
involving potentially thousands of computers is necessary to answer queries, for instance. It is sufficient 
to offer a more specialized user interface and to send the actual query to one of the large general search 
engines. There are probably hundreds of thousands of developers that use the web on a daily  basis to 
collect  reusable  source snippets  or  to  draw inspiration  from open-source software and  who would 
welcome such a search engine.  But,  “abusing” general-style  search engines like  Google for software 
component searches is not simple and some researchers like Yao [Yao04]  doubted that  this would be 
possible at all while others tried it  in an unsanctioned way [Ino05].  However, researchers from various 
areas have been using queries enriched with special keywords on general-style search engines for many 
years. For instance,  we have been using this approach with  Google to extract information on music 
perception  in  2003  [Bau05]  from music  related  websites and  [Ino05],  as just  mentioned,  enriched 
searches with the terms “java” and “source” to limit results to these kinds of files.

However, although queries of this form deliver pages that may well contain information on the topic 
desired, the hit ratio for actual source code is still rather low. Fortunately,  as briefly indicated above, a 
better way is of doing this is provided by at least Google and Yahoo. After studying the advanced features 
of today's two most important search engines, we were able to develop some simple heuristics that can be 
used to limit  searches to a specific programming  language [Hum04]  and  even to retrieve classes or 
methods with a high precision. Both engines offer a filter that limits searches based on the “filetype” of a 
web page. Officially, types like pdf or doc are supported that contain textual information that might be 
interesting for people to read. Unofficially, however, file extensions of common programming languages 
like java, c, or cpp are also supported although in some cases the filter does not work perfectly (e.g. for 
links to CVS pages that end on “.java” but contain HTML content). But in general, the pureness of the 
results is larger than 95%. The following examples show how to use this feature to estimate the number 
of java files within the indices of Google and Yahoo:

Google: filetype:java
Yahoo: originurlextension:java 

Both forms are simple, but unfortunately most of the commercial search engines limit  the number of 
results a user can access to avoid too high a processing load and the undesirable “exploitation” of their 
indices. Google and Yahoo display the estimated total number of hits although only the first 1000 results 
can actually be accessed. However, whenever an API for automated access is available, such exploitation 
cannot  be  totally  avoided  since  it  is  possible  to  enrich  search requests with  further  terms from a 
dictionary  to  get  more  results  as Seacord  has already  demonstrated  with  Agora [Sea98],  the  SEI's 
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software retrieval engine (see also section 8.1.1). Hence, the number of requests that can be issued via the 
search engine's API is typically also limited to a few thousand requests per day.

Going back to our heuristics, a simple “speculative” search for a stack component might look as follows:

Google: filetype:java stack
Yahoo: originurlextension:java stack

The drawback of this approach is that any source file that somewhere contains the term “stack” will be 
retrieved  no  matter  whether  it  appears  in  the  component's  name,  in  identifier  names,  strings  or 
documentation. Hence, a better heuristic to limit searches to a specific class, i.e. a stack in this case, has 
the following form:

Google: filetype:java “class stack”
Yahoo: originurlextension:java “class stack”

To attain even higher precision it is necessary to search for operation signatures as well. However, this is 
difficult in this context since methods in Java have no keyword that could be used to filter the results. 
The simplest possible heuristic in this case is to add the method names and perhaps the parameter types 
as follows:

Google: filetype:java “class stack” “void push int” “int pop”
Yahoo: originurlextension:java “class stack” “void push int” “int pop”

This is possible since special characters like brackets etc. are ignored by the search engines. Suppose we 
are looking for a method that  has more than one parameter.  It is highly  unlikely  that we would find 
anything  if we have to specify the parameter names since in  Java, these are listed between the types. 
However, Google (and recently  also Yahoo) have limited support for the asterix character as wildcard 
and hence support the following kind of query:

Google: filetype:java “int add int * int” “int sub int * int”
Yahoo: originurlextension:java “int add int * int” “int sub int * int”

These simple examples show how, given a precise knowledge of the required interface, ordinary search 
engines can be used to discover source code components with a very high precision. Of course, the recall 
tends to decrease the more operation signatures are added as more and more signatures and their orders 
have to be anticipated correctly.  However, our initial  prototypes have shown that this approach is well 
applicable to reduce the number of candidates to a reasonable amount, which can be processed further 
afterwards.

4.2.1 (META-)SEARCHING WITH GOOGLE CODESEARCH

More than two years after our initial experiments with the general version of Google's search engine the 
company released its own dedicated code search engine. Compared with other engines that were around 
in late 2006,  its interface looked rather premature. However, it  offers an API for programmatic access 
and  possesses one  of  the  largest  indices  of  code currently  available.  This  makes  it  interesting  for 
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metasearches. Although it  does not support any kind of interface-driven searches, it  was the first code 
search engine to support regular expression (“regex”) searches. This enables a more efficient filtering 
process since regex are more powerful than the primitive wildcard character mentioned above. Hence, we 
developed some regular expressions that are able to describe the signature of components in Java-style 
programming languages. The general idea is similar to the one presented above, keywords like method 
names or parameter  types and  other fixed elements like  brackets are extracted from a  component's 
signature and other variable elements that  are required for a text-based search on Google Codesearch 
(like e.g.  the parameter names) are replaced by regex constructs. For example, a parameter name in a 
method signature could be replaced by the following regular expression: [a-zA-z0-9]+

This means that a parameter name must contain at least one upper- or lower-case char or a number. This  
technique  can be applied  for all  signatures in  a component  and  can mimic,  to a  reasonable extent,  
signature matching [Zar95]  in  specialized search engines. Take for example the following regex query 
that could be derived from a Customer object with getAddress and setAddress methods:

(class\s+Customer[\s+|{]|(program|unit)\s+Customer)

(String\s+getAddress\s*\(\s*\))|((procedure|function|def)\s
+getAddress\s*\(\)\s*:?\s*String)

(void\s+setAddress\s*\(\s*String\s+[a-zA-z0-9_\$]+\s*\))|((procedure|
function|def)\s+setAddress\s*\(\s*[a-zA-z0-9_\$]+\s*:?\s*String\s*\)\
s*:?\s*void)

However,  as  becomes apparent  by  this  example,  regex can  quickly  become complicated  and  even 
experienced regex users are likely to make errors in defining such expressions, especially when they have 
to be formulated in Google's small query box without any syntax highlighting.  Thus we created a little  
tool which is able to derive such regex queries from Java and C# code as well as from UML-like interface 
descriptions.  However,  is important  to remember that  even regular  expression searches are still  very 
limited compared to signature matching.  In particular,  since it  is not possible to ignore the parameter 
order, signature- and interface-based searches are still not possible.

4.2.2 LIMITATIONS

It should have become clear in the recent subsections that mainstream search engines and most of the 
“first-generation” keyword-based search engines are not optimized for the kind of component retrieval 
we require for delivering components based on a (KobrA) specification. If this was the case, there would 
be no need to work on better retrieval solutions. Furthermore, as we discussed above, the mainstream 
search engines obviously  have been trying  to remove source code from their  indices.  Steele [Ste01]  
explains that the web is simply becoming too large to index all its content deeply enough, so there is a 
need  for specialized  or so-called  “vertical”  search engines.  WebCVS  systems,  which  require  a  large 
number of package hierarchy levels to be navigated to find code are a good example of this.  Other 
limitations of general  search engines like  a user interface that  is optimized on keywords and not on 
component descriptions or the retrieval and ranking algorithms (like Google's Pagerank [Pag98]) that are 
optimized for prose text make component retrieval too complicated for serious software development. 
Even with  the tricks described above, the signature  and  interface matching  capabilities with  regular 
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search engines are limited. For example, it is not possible to match signatures in orders different to the 
one defined in  a query.  This  is  a serious limitation  which can only  be circumvented by  adding  all  
possible  permutations for all  parameter  orders disjunctively,  an  approach that  quickly  takes queries 
beyond the maximum supported length.

Some other problems are not as obvious, but nevertheless make the use of these engines impractical to 
use for serious software engineering. For instance, Google and Yahoo both used to offer a Java-based API 
for automated access to their indices, but both were very unreliable and often delivered only cut-down 
versions of the  actual  result  set.  Apparently,  neither  is  supported any  more and  have recently  been 
replaced by  other technologies.  Moreover,  since the filetypes of the programming  languages are not 
officially supported there is no guarantee that they will be supported in the future nor that they will work 
reliably.  Furthermore, some file extensions like “cs” are not limited to C# source files but also for other 
kinds of files and hence undesirable files might  frequently  be included in  result  sets. Additionally,  it 
looks as if the filters only consider the file extension or even worse only the last characters of the URL for 
their decision about the type, which has the consequence that sometimes HTML files and other types 
slip through. These problems triggered the decision to build our own vertical search engine we describe 
in the next section.

4.3 THE BUILD-UP OF MEROBASE.COM

When we started the investigations of the web as a source for reusable software, we focussed on retrieving 
code using  mainstream search engines.  As we have shown in  the previous part  of this  chapter,  this 
approach works reasonably well for scientific purposes, but has significant drawbacks once a reliable tool 
is  required.  The main  problem is  that  the two big  players,  Google and  Yahoo, artificially  limit  the 
number of results they deliver for a search and additionally  only offer a limited number of queries per 
day. This makes it impossible to use a tool is based on these two engines in a serious software production 
environment. Furthermore, the frequent changes of their content as discussed in section 4.1 also limited 
their usefulness for scientific comparisons. Hence, the collection of our own component base and the 
development of an own search engine was a natural next step.

4.3.1 CRAWLING AND INDEX STRUCTURE

With the recent advent of nutch and Lucene [Hat04],  two powerful open source tools for the creation of 
search engines have become available.  Although  it  would  be feasible  to store the  crawl  results in  a 
relational  database, Lucene offers some significant  advantages. The most important  benefit  is that  it  
offers a very fast full-text search capability,  which is vital for all search engines as understood today (and 
for the  implementation  of information  retrieval  approaches for component  searches).  Since  Lucene 
supports values to be stored in different fields it allows faceted, attribute value and even catalogue-based 
retrieval approaches (as we discussed in section  3.1.1) to be implemented.  The drawback is that these 
fields are not relational as in a database and thus relational searches are not directly feasible. However, 
below we discuss how it  is possible to overcome this problem to a certain extent with a special index 
structure.  To solve the representation problem for the components in  our index and to increase the 
realm of potential searches we combined all four representation methods described in the literature (and 
explained in section 3.1.1).  The following table gives an overview of some of the most important fields 
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in our index and the data (or metadata) stored in them. It is important to mention that the content of all 
fields can be extracted automatically so that no human interaction is necessary.

Field Representation Method Content
content free-text source code

name attribute value component names

method attribute value method names

url attribute value component's URL

lang faceted component's programming language

kind faceted special kind of component, e.g. application or test case

methodSignature attribute value full signature of methods

namespace enumerated a component's namespace
Table 4.4: Exemplary fields contained in the Merobase index.

These fields are contained in each Lucene document,  representing an individual  component (which is 
typically  a class).  One specific field can be added several times to a document,  i.e.  a component can 
contain a number of methods with each of their names stored in a method field. In principle, on all of 
these fields the full Lucene query syntax (as e.g. described in [Hat04])  with wildcards, range queries etc. 
is applicable as a long as the fields can be tokenized.  However, one of Lucene's limitations becomes 
apparent at this point.  Since no relational connections between fields are feasible, it  is not possible to 
relate a parameter to a method signature. Interface-based retrieval, however, requires the ability to search 
for the exact signature of a method, including name, parameters and return type. Thus, we were forced 
to concatenate and store them in one field which is not tokenized to enable such exact matches. In turn,  
this means that only exact matches are possible with this structure and different parameter orders cannot 
not be searched. However, by sorting the parameters alphabetically it is possible to also identify different 
orders of method parameters.  We  had to develop a number of further innovative solutions to fully 
implement  all  semantic  search use cases which  we will  discuss in  the  next  chapter.  The  associated 
extensions of our Lucene structure will also be discussed there.

The creation of the index using the nutch web crawler suite is straightforward. It includes powerful tools 
for traversing and managing links as well as for the interpretation of robots.txt files (which may restrict 
the access of search engines to websites) directly out of the box. However, as we pointed out earlier, we 
estimate that only about 1 of 10,000 documents on the web contains a source file interesting for us and 
thus a blind crawl would require far too much effort. Hence we fed the nutch engine with seed pages 
containing  links  to  popular  web service or  component  catalogues,  for example.  Another  promising 
technique to find appropriate input  is to “metasearch” general-style search engines as described above, 
which was also used by e.g. [Sea98].  Once an initial  list of source files is found, it is useful to trim the 
URLs within them to find lists of further source files in higher directory levels. Luckily,  the crawling of 
CVS  and  SVN  repositories  is  simpler  (once  a  functioning  CVS  and  SVN  client  is  available  for 
integration into the crawler) and the access to one server often provides thousands of files in one pass (cf. 
table 4.6). Unfortunately, downloading files from CVS or SVN has a large overhead due to the lengthy 
login procedure required. For this reason we decided to cache the crawled content (which is about 120 
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GB) of these repositories locally in order to guarantee fast access to the source code. In principle,  this 
would make sense for http-based files as well in order to avoid dead links, but we have not implemented 
this so far.

4.4 THE CONTENT OF MEROBASE

Given the large variety of assets that mainstream search engines are expected to index, it  is clear that 
there is room for more specialized search services. Recently, this idea became popular under the name of 
so-called vertical search engines. While general or horizontal search engines cover a wide range of assets 
only shallowly,  a vertical search engine is supposed to build a much deeper index on a smaller area of 
interest.  Our  software component  search engine  has grown to  one of the  largest  source code and 
component collections available on the web. The following table gives an overview of its contents in 
summer 2007:

Programming Language No. of Files Percentage
Java 8,011,883 79.566%

   Source 3,927,475 49.021%

   Binary 4,084,408 50.979%

C# 207,092 2.057%

C 1,399,455 13.898%

WSDL 3,228 0.032%

.NET assemblies 447,801 4.447%

Total 10,069,459 100%
Table 4.5: Number of components/services indexed in Merobase in summer 2007.

Since we focused our initial crawling on Java, the numbers shown are certainly not representative of the 
distribution of files on the Internet. We not only indexed files available via HTTP,  but also files stored 
in  the  CVS  and  Subversion (SVN)  repositories of large open source hosters.  While  more than  one 
million files (to be exact: 1,279,362) have been found on the open web via extensive crawling, by far the 
largest number of files has been retrieved from the various CVS servers as shown in the following table:

Hoster CVS SVN total
java.net 3,159,151 0 3,159,151
sourceforge.net 2,193,030 208,083 2,401,113
apache.org 0 666,808 666,808
googlecode.com 0 348,584 348,584
eclipse.org 325,119 0 325,119
netbeans.org 31,275 0 31,275
tigris.org 13,159 9,711 22,870
savannah.nongnu.org 13,653 0 13,653
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Hoster CVS SVN total
savannah.gnu.org 9,425 0 9,425
gna.org 1,886 1,224 3,110
Table 4.6: Overview of components found in version control repositories.

Since we have focused our research efforts on the Java programming language we present some more 
detailed analyses of the distribution of files in this language below. As the goal was to deliver working 
(i.e.  executable) components, another interesting number is the percentage of Java interfaces contained 
in our index. Java 5 also introduced the concept of a so-called enum(eration).  However, this is clearly 
not very widely used so far since not a single enum is contained in our index as table 4.7 demonstrates 
below.

Type Occurrences Percentage
class 7,036,451 87.83%
enum 0 0.00%
interface 975,432 12.17%
total 8,011,883 100.00%

Table 4.7: Percentage of interfaces contained in all Java files.

The open source movement [Ray97]  has certainly been the main trigger that has enabled the creation of 
large-scale component search engines. However, some open source licenses such as the General Public 
License (GPL) can become problematic  for their  users if  they  want  to reuse material  in  proprietary 
projects since GPL-like licenses require the disclosure of new code that uses the original code. This can 
become dangerous for proprietary commercial projects that accidentally  (or on purpose) used GPL’ed 
material.  Consequently,  it  is a requirement for a code search engine to be able to search for a specific 
open search license or even better to exclude a group of licenses. To implement this requirement,  we 
developed a regular expression-based recognition feature for open source licenses, which enabled us to 
construct the following statistics about the usage of open source licenses in our index. Since binary files 
do not contain this information, these numbers are based on the roughly 4 million Java source files in 
our index.  In total  we searched for 102  open source licenses gathered from various websites (such as 
opensource.org) and discovered components using 34 of them in our index. The following table contains 
the ten most popular licenses. Since the bulk of our indexed source files originates from designated open 
source hosting sites, one might assume that most of these files are annotated with an appropriate open 
source license. However, as the results of our analysis show, this is not the case as almost three quarters of 
all files do not contain a dedicated open source license.

License Occurrence Percentage
no license 2,880,932 73.35%
GNU General Public License 464,353 11.82%
Apache License, Version 2.0 209,878 5.34%
GNU Lesser General Public License 134,619 3.43%
Eclipse Public License v1.0 128,579 3.27%
Common Public License 42,147 1.07%
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License Occurrence Percentage
BSD License 14,587 0.37%
Mozilla Public License Version 1.1 10,151 0.26%
Academic Free License 5,928 0.15%
Open Software License 5,919 0.15%
Sun Public License 4,756 0.12%
others 25,626 0.65%

Table 4.8: Open source licenses recognized for Java source files.

In order to execute and test components (for example, to support our Extreme Harvesting approach, see 
section 5.2) it is also interesting to know which classes can cause problems when executed remotely on a 
server  –  that  is,  when  the  Java  sandbox  would  block  file  or  network  access  and  thus  raise  a 
SecurityException. We found that the following numbers of source files use classes from major Java IO 
packages:

Package Occurrences
io 868,014
net 221,144
nio 18,102

Table 4.9: Number of classes using IO-Packages.

The usage of a graphical user interface (GUI) can cause similar problems as it requires access to a display 
and normally also user interaction, which is typically not available for remotely executed test cases. Thus, 
we investigated how many source classes can be executed without the necessity of requiring a display.  
The following table summarizes the usage of GUI frameworks found in our index:

Package Occurrences
swing 417,475
awt 687,980
swt 69,306

Table 4.10: Overview of GUI frameworks used.

Since the SWT framework was introduced with Eclipse, we found about 32,000 source files from within 
one of the many  Eclipse packages, but  only  about  37,000  classes outside the direct  environment  of 
Eclipse use the SWT.  It is important  to mention that  these numbers are not independent  since, for 
example,  a component that  uses Swing GUI elements typically  also requires listener classes from the 
older AWT framework or, of course, can use file I/O as well.

Java has grown to a language with a large number of different target platforms (J2SE, J2EE, J2ME) and 
thus we were curious to find out how these are represented in our index. Unfortunately, it is not possible 
to determine directly  which edition of Java a class is intended to be used with since all  three share a 
number of libraries. However, we were able to recognize a number of special component types such as 
applets or applications (classes containing a main method) etc. as shown in the following table:
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Type Occurences Percentage
Application 508,466 6.35%
Test Case 123,881 1.55%
Applet 91,224 1.14%
Servlet 18,311 0.23%
EJB 3,786 0.05%
MIDlet 1,660 0.02%
All Java 8,011,883

Table 4.11: Distribution of special component types in the Merobase index.

452,295  source files contain a main method and thus can potentially  be executed standalone in J2SE 
after compilation. In contrast, only 56,171 binary classes contain a main method. We speculate that this 
difference is due to the fact that most of our binaries classes originate from JAR libraries that typically  
only have one or a few entry points. As we pointed out earlier, we believe that a lot of files from our open 
web crawls are simple (teaching) examples that typically need to be executable and hence the ratio of files 
containing a main method is much higher here. The relatively large number of JUnit test cases indicates 
a high level of acceptance of this framework in the Java community.  The small amount of Enterprise 
Java Beans (EJB) demonstrates again how difficult it still is to find reusable business components.

4.5 SHARING COMPONENTS OVER THE WEB

As shown in  the  previous part  of this  chapter,  developers today  have various opportunities  to find 
reusable material  on the web.  However, it  is still  nearly  impossible to publish reusable material  in  a 
targeted fashion for others. To be more precise, it is simple to publish material on the web, but hard to 
make  it  findable  for  others in  a  controlled  manner.  In  principle,  there  are  three  ways  in  which 
components can be shared via the Internet:

1. Creating an open source project on Sourceforge or a similar site
2. Publishing components on a website and registering them with a search engine
3. Sharing files on a Peer-to-Peer network

However, all  three possibilities are introduce uncertainties.  New open source projects on Sourceforge 
(and similar sites) have to be manually approved, which induces a delay of perhaps a few days in the best 
case and a rejection in the worst case. Thus there is a high administrative overhead involved in making a 
project available online. Furthermore, the publication of a project on an open source hosting site does 
not necessarily mean that files will  be quickly accessible through mainstream search engines. A project 
that we made publicly  available in 2005  was, after months, indexed neither by Google nor by Yahoo. 
Only  Google was able  to  retrieve the  link  to the  project's  homepage.  After 6  months,  Yahoo also 
delivered the homepage, but neither of them indexed the sources which are linked to directly from the 
project's homepage. As mentioned before, Google has obviously started to remove source files from its 
index. On the other hand, vertical search engines such as Koders and Krugle are known to update their 
indices only  at  very irregular  intervals.  As of 2007,  our  project  was only  findable  via  Krugle,  who 
officially partnered with Sourceforge for code searches in 2006 (and thus should have privileged access to 
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the repository servers) and was not discoverable in Google Codesearch, Koders nor in Merobase. Thus, it 
is still highly unpredictable whether and when an uploaded project will be findable on the Internet.

We experimented with the second option by manually placing the aforementioned project on a .com and 
a university webpage and submitted the URLs to Google, Yahoo and MSN in November 2005 to check 
whether and when the search engines would be able to retrieve source code from the project. The results 
were also disappointing since it took about one month until  at least the starting page and some of the 
linked source files became available. However, they were only sometimes reachable and not on a regular 
basis.  This  experience  with  mainstream  search  engines  for  non  human  readable  files  was  recently 
acknowledged by the web service community where [Son07]  reported similar behaviour for WSDL files. 
These observations make it clear that contributing components to the ubiquitous repository World Wide 
Web in a controlled fashion is not practical at present.

For the third option, we also investigated whether the common peer-to-peer (P2P) platform Gnutella is 
useful for component distribution, as P2P systems typically are a place where all kinds of files can easily 
be shared with almost no effort. Such peer-to-peer systems (P2P),  which formerly started out with the 
famous Napster and were very successful in the late 1990s,  are an appealing approach for solving the 
software repository  problem.  However,  the  results in  2005  were not  encouraging.  P2P systems like 
Gnutella (having almost 2 million users at that time according to [Men05])  are not suitable for source 
code searches at all.  Although we were able to limit  searches to a desired programming language with 
special search terms (like "class") and special filter settings (".java" or ".jar"), the results were not usable. 
Our investigations in December 2005 revealed only about 2,500  Java source files and about 1,100  JAR 
files on the Gnutella network. But, since P2P systems simply search in the name and not in the content 
of files they offer only the most simplistic search support and hence do not offer much incentive for 
developers to use P2P systems for this purpose.

The  investigations  in  this  subsection  show that  as  of 2007  a  well  aimed  sharing  of  open  source 
components  through  search  engines  is  still  very  difficult.  Not  to  mention  the  attempt  to  make 
commercial binary components searchable over the Internet. Thus, there is no doubt that there is still 
plenty of room for a dedicated component storage solution that combines version control repositories 
with search for open source software and for a specialized, trusted brokerage solution as we will sketch it 
in section 9.3 with respect to commercial components.
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Don't mind  Pierce  and  Hunnicutt,  they're  both  first rate  surgeons.
Sure,  they'll  show  up to role  call  in  their  bathrobes.

They  keep a still in  their  tent.  Once  they  ran  all my  underwear  up the  flagpole.
But I want  you  to understand  it's an honour  to serve  with  these men.

-- Major Margaret Houlihan, M.A.S.H.

In the last two chapters we discussed the state of the art in component retrieval and presented a potential  
solution to the repository problem. However, the explosion in  the number of searchable components 
available on the Internet and in companies' repositories makes the retrieval problem even more pressing. 
In the past,  when component repositories used to contain a few hundred elements, simple browsing-
based retrieval techniques worked reasonably well, although they were certainly not perfect. But today's 
repositories which are more than a thousand times larger impose new challenges on retrieval techniques 
in terms of precision. Let us illustrate this by means of signature matching [Zar95],  a well-known and 
understood retrieval technique from the 1990s. When we apply it to our Merobase index and search for 
a  Stack component with methods for pushing  and popping integers,  we receive more than 40,000  
results of which only about one hundred are likely to deliver the required functionality.  Thus, browsing 
through the results to find components that  are actually  Stacks is similar  to finding  a needle in  a 
haystack.

Furthermore, with the experience, we gathered during the development and operation of Merobase we 
realized that  previous component  retrieval approaches were somewhat unspecific about the use cases 
which they expected the system to support. In other words, they had no idea how people would use such 
a retrieval system in practice since none of these systems ever made it into practical use. This, in turn,  
makes it  very difficult  to optimize a search engine towards semantic  component retrieval,  which we 
defined earlier in this thesis as the task of delivering candidate components that best fulfil the purpose a 
developer has in mind.  Through the development of Merobase we were able to observe user behaviour 
and, combining this with our own experience from using the system, we were able to derive a number of 
requirements that today's large-scale component search engines should support. We introduce them in 
the next section before explaining how it is possible to define search algorithms that they deserve to be 
regarded as semantic component retrieval approaches. 
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5.1 USE CASES FOR COMPONENT SEARCH ENGINES

Depending on the point of time in the development process at which a search is performed, more or less 
information about the desired component is known. Early in the process, when perhaps just a very coarse 
assignment of responsibilities has been performed, a component search engine is more likely to be used 
to provide the user with an impression of what of components are around in the repository. Neither a 
detailed  syntactical  description  nor  a  description  of the  semantics  is  likely  to  be  available  for  the 
component under discussion. The other extreme occurs much later in the development process after the 
design for a component under discussion has been finished. At this point, the developer is likely to have 
a clear mental  picture and ideally  a  complete specification of the component  desired.  Thus,  in  this 
scenario a search engine needs to deliver very precise results, which should be usable without too much 
adaptation effort. However, after implementing our Merobase search engine, we realized that developers 
could have a third and even a fourth reason for using a component search engine.  The third use case 
occurs when a developer wishes to find the source code of a very concrete class from some open source 
system, e.g.  he/she might want to comprehend the internal flow in the component before using it.  A 
search engine  which is able to deliver the required files quickly  is likely  to save a lot  of effort that  
otherwise would have to be invested into locating and downloading the appropriate source package and 
finding  the appropriate file.  The  fourth use case we identified  in  the  context  of component  search 
engines is similar to the third one and deals with finding the library that contains a specific class. In the 
context of Java, such libraries are often JAR files. The following table summarizes these different usage 
modes. We explain each of them in more detail later where necessary.

Use Case Description Useful for...
1) speculative searches the search engine is used to get an impression of 

what is available and what might be a good 
design for a component

Design & coding

2) definitive searches a component fulfilling a given specification is 
wanted

Coding and testing

3) concrete open source searches the source code of a specific class from a 
concrete open source system is required e.g. to 
better understand how it is used

Coding

4) library searches the user looks for the library containing a 
specific class, e.g. triggered by a 
ClassNotFoundException

Coding, 
testing/deployment

Table 5.1: Use cases for component search engines.

For the sake of completeness we should briefly mention textual searches at this point. although they can 
neither be called semantic in the sense of this thesis and no longer present any serious challenges. There 
exist open source search frameworks such as Lucene [Hat04]  and others which specialized on this kind of 
search and  provide  impressive performance.  For example,  Lucene can  typically  search an  index  of 
millions of documents in  less than five seconds. Since it  has developed into a full-grown text search 
engine over the last years and is optimized for this task, Lucene is the optimal choice for supporting 
textual  searches. By “textual  search” we mean searches for a specific string of text within  the subject 
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artefacts.  Such a query  might  be useful  in  our context to find  out  how a specific class is used,  for 
example. Like most search engines, Lucene allows a search to be constrained to specific fields by placing 
a string in  double quotes. Thus,  the query “new BufferedReader” would,  for example,  deliver source 
code that instantiates a BufferedReader. Adding the lang:java constraint would only return results in 
the Java programming language. By default,  Lucene searches in the content field, although it  is always 
possible to define other fields that  should be searched as just shown with the constraint.  This search 
mode is extremely simple to implement since the expected result can be found one for one within the 
source code. Furthermore, Lucene even offers support for wildcards and a number of other interesting 
features.  Details  can  be found  in  [Hat04].  The  other  use cases are much  more interesting  from a 
scientific  point  of view since they  require  special  extensions of Lucene's  concepts and  thus  will  be 
described in more detail in the following.

5.1.1 SPECULATIVE AND OPEN SOURCE SEARCHES

At first  sight,  speculative and  open source searches seem rather  contrary.  However,  since the  same 
heuristics are applicable in both cases to optimize the search algorithm, we will discuss them together in 
this section. Before going into more detail  about the implementation,  we have to distinguish between 
speculative searches and textual  searches. We  realized that  the simple keyword-matching  of Lucene's 
algorithm introduced in the subsection before is typically not sufficient to provide meaningful results for 
developers. Since speculative searches are typically  used to get an impression of what is available in  a 
repository, a developer who searches for Stack is likely to be interested in an implementation of a Stack 
and not in components where Stack appears somewhere in the source code because it  is, for example, 
used there etc. This is similar to the optimizations of modern web search engines, especially Google, to 
deliver “meaningful” results.  The Google website10 states that  “Google  tries  to  find  pages  that  are  both  
reputable  and  relevant” . Reputable sites are delivered from the well-known Pagerank algorithm which was 
published in  [Pag98]  when Google was more of an  academic  research project  than  a commercially 
oriented company.  However, Pagerank is one reason for Google's success. Finding  the most relevant 
results for a query is at least as important as ranking the most reputable sites first. Google does this by 
paying particular attention to some special elements of web pages, such as headlines or the title of pages. 
We have found that a similar idea is applicable to software components as well.  The key in  doing so 
successfully is to identify the elements that deserve the accentuation.

Consider  the  following  simple  example for a  better  understanding.  When  someone types the  query 
“eclipse astparser”, he or she is likely  to be interested in  that  specific class from the Eclipse project. 
Hence,  the  indexed versions of the  ASTParser class should  be returned  first,  simply  due  to their 
relevance for this query.  However, when we started to assess the performance of our early  Merobase 
prototypes,  we quickly  realized that  a  simple  keyword-matching  approach is  not  enough  to  deliver 
semantically  relevant  information  for  such  a  query.  Similarly,  suppose the  user  types  “stack” as a 
speculative query. What is he or she most likely to be looking for? We believe it is components delivering 
the LIFO functionality of the well known Stack abstract data type. However, purely text-based searches 
deliver all results that contain the text “stack“ somewhere in the source code, even if they have not even 
the slightest resemblance to this abstraction.

10 http://www.google.com/librariancenter/articles/0512_01.html
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However, since these two main usage scenarios are not supported by the standard Lucene approach, an 
important contribution of this thesis is development of query algorithms to support these use cases. As 
they have similar requirements they can both be supported by the same basic techniques. The basic idea 
is to transfer the above mentioned techniques, applied in mainstream search engines, to our component 
search engine.  Thus,  we experimented with expanding  our queries to selected metadata fields in  our 
index and assigned them different weights to emphasize their relative importance. The general formula 
for the relevance R of a document under consideration is as follows:

R=∑
n=1

k

wn⋅r n  

Whereby rn is the relevance for each field as delivered by Lucene, w n is the weight assigned to each field 
and k is the number of fields used. This, of course, can be normalized to a value between 0 and 1 by:

R=
∑
n=1

k

wn⋅r n

k⋅∑
n=1

k

wn

In our early prototypes we had to write a specific search routine to perform this weighting, but in more 
recent versions Lucene added a special QueryParser making it possible to search over more than one 
field and to attach different weights to them. We experimented with various values and found that the 
following configuration works equally well for both speculative and open source searches:

n Field Weight wn

1 name 5

2 namespace 3

3 interface 4

4 project 4

5 method 1

6 content 0.5

7 url 4
Table 5.2: Fields and weights used for improved ranking within speculative and open source searches.

The general rationale behind the choice for the fields and the associated weight values shown is that 
classes in  object-oriented programming are supposed to be abstractions of domain  objects. However, 
depending  on the individual  developer and the task he or she has to deal with,  functionality  can be 
implemented on various levels within a system and thus it also makes sense to assign high weights to the 
namespace or the whole project.  The interface field indicates the name of implemented interfaces and 
thus is  also a  good source of information  as well  as the project  name.  However,  sometimes simple 
functionality is implemented in just one method. The content itself should not be totally left out since 
some helpful terms might be hidden in the source or in a comment. The URL is also helpful to ensure 
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that relevant open source classes are ranked highly since the namespace and the name are both normally 
included in the URL. As our evaluation in chapter 7 demonstrates, the shown combination of weights 
works well for both use cases.

5.1.2 DEFINITIVE SEARCHES

Definitive searches are the counterpart to speculative searches and are typically  used when a concrete 
specification for a component has already been defined, typically as part of the overall design of a system 
(e.g.  as recommended by [Atk02]).  Since definitive (or specification-based) queries require the search 
engine to “understand” the syntax – and in the ideal case also the semantics – of programming languages 
they are more expensive to implement than simple keyword-based algorithms. To be able to understand 
the syntactical structure of a program, typically a parser is required for each supported language in order 
to extract the required information during index creation. Assessing whether a component is semantically 
appropriate for the purpose at hand is even more complicated and at the time of writing has not been 
supported  by  any  publicly  available  component  search  engine.  Since  the  semantic  matching  of 
components is the major contribution of this thesis, we leave this aspect aside at this point and discuss it 
in more detail in section 5.2 et seq.

The next challenge to support syntactical  definitive searches, is to find an appropriate representation 
format: a simple approximation for full syntactic searches would of course be a name-based search (as e.g. 
offered by Krugle and Koders) where only class and method names are saved in appropriate fields that 
can  easily  be  stored  in  databases  as  well  as  in  an  Lucene  index.  Storing  the  complete  interface 
information is more complicated, however. It either requires a relational database schema with quite a 
number of join operations for searches or some heuristics to store this in Lucene appropriately.  Since 
Lucene is required  for keyword-matching,  a combination  of both approaches seems to be the most 
powerful option. However, we believe this is not practically implementable for a variety of reasons. The 
biggest issues we see in  the combination of both approaches is the overhead involved in  storing the 
indexed information twice and the problems in merging results from two different searches together and 
ranking them. Thus, in the context of this thesis we implemented the pure Lucene version as described 
in the following.

The overall structure of our index has already been described in subsection 4.3.1 and basically comprises 
a field called content ,  storing the textual content (i.e.  normally the source code) of a component, and a 
number of other fields containing metadata about the component. While  most fields such as the class 
name or method names are rather simple, storing a method signature is not that simple with Lucene as it 
lacks the ability to store relationships between the fields. Our solution is to concatenate method names, 
parameter types and return values into a single field as shown in  the following example.  Supposed a 
component has a method random accepting two parameters of type int and returning one int. This 
would be mapped to the following entry in the method field

mn:random_rt:int_pt:int_pt:int

This field must be indexed directly (i.e.  not tokenized as explained in  4.3.1) because otherwise Lucene 
would  not  be  able  to  recognize  it  correctly.  Furthermore,  the  parameter  types  have  to  be  sorted 
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alphabetically  since we want to recognize permuted parameter orders as well.  It is obvious that search 
requests in Java or the UML-like query language have to be translated into this format by an appropriate 
parser before searches can be carried out.  Unfortunately,  wildcard searches on these structures are not 
possible due to internal restrictions of Lucene. However, it is possible to enable at least a pure signature 
matching [Zar95] for the operations by storing a second, largely identical field that does not contain the 
method name, but only the parameter and return types. In the case of the random method, this would 
have the form:

rt:int_pt:int_pt:int

Another problem that could occur in this context is when a given signature is required more than once in 
one class since it is not possible to specify the number of required appearances for Lucene. However, it is 
feasible to circumvent the problem by preceding each signature with a counter of the number of times it 
appears in the component, i.e.

1_rt:int_pt:int_pt:int
2_rt:int_pt:int_pt:int

This makes it possible to search for classes that contain the required signature once as well as twice, or 
any other number of times. However, as soon as parameters or return values contain object types we 
again face the problem of identifier choices. Thus,  for example, a  LifoBuffer could be regarded as 
equivalent to a Stack on a purely textual basis (and in Lucene queries) if it appears as a parameter or 
return type. The only way to mitigate this problem is to replace the name of the current class with “this” 
if it occurs as a parameter or return type. Let us illustrate this problem with a little example. Suppose we 
are searching for a class Matrix containing a method with the following signature –

multiply(Matrix):Matrix

which would be mapped to –

rt:matrix_pt:matrix

in our Lucene representation. Unfortunately, based on this structure, Lucene would not be able to match 
this  to  a  class with  a  method  with  a  signature  that  is  identical  except  for  the  class  name  (e.g.  
MyMatrixImplementation rather than Matrix).  However, if all types that are identical to the class 
name itself are replaced by “this”, i.e. as

rt:this_pt:this

Lucene could at least recognize this as a potential candidate and the search engine tool would be able to 
test  it  for semantic  equivalence  as shown e.g.  in  table  7.3 in  section  7.3.  These workarounds  are 
especially  useful  when  implementing  so-called  multilevel searches,  which  we  will  describe  in  the 
following. It is intuitively clear that the more complex a component design becomes the less components 
are  likely  to  match  it  completely  [Sam97]  and  thus  the  recall  decreases quickly  with  the  size of 
component. Thus, we have developed some heuristics that relax the search criteria in multiple steps if an 
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insufficient  number  of components is  found  by  the  basic  matching  algorithm.  The  following  table 
presents some examples of reasonable “relaxed search” heuristics. The dollar sign used in  some places 
indicates either an OR separator or a wildcard.

Level Approach Example
0) Original syntax ShoppingCart(

  addItem(Item, int):void;
  total():double;
)

1) Split class name ShoppingCart 
  -> ShoppingCart$Shopping$Cart

2) Class name is merely desired ShoppingCart 
  -> ShoppingCart$

3) Ignore method names addItem(Item,int):void; 
  -> $(Item,int):void;

Table 5.3: Multi-level searching for specification-based searches.

Various other combinations of relaxed searches are also imaginable. However, the strategy shown above 
should be sufficient for a large index since the number of results normally increases quickly with each 
level. Even if this is not the case, it normally does not make sense to add too many relaxation levels since 
each level requires a completely new search, which usually requires around 3 seconds time. Fortunately,  
Lucene ranks components fulfilling more search criteria higher in the result list so that results that are 
likely to be closer to the original request are presented automatically first.

However, this approach still suffers from a number of limitations. The first one is obviously that searches 
are restricted to the syntactical information in a component's interface, which may contain misleading 
linguistic information in class and method names as well as in parameter and return type names. This 
introduces all the usual problems known from information retrieval [Fur87]  such as the recognition of 
synonyms (i.e. different words with the same meaning), homonyms (same words with different meaning) 
or even hypernyms (one term is a generic term for another).  The information retrieval community has 
tried to tackle this problem in two main ways. First, it has created large dictionaries, such as WordNet 
[Mil90],  which make it it possible to look up synonym and homonym information. Second, they have 
developed techniques like  Latent  Semantic  Analysis (LSA) that  analyse the complete content  of the 
searchable  artefacts [Dee90].  Since  these are applicable  for speculative searches as well  as definitive 
searches, we discuss them in a separate subsection (cf. 5.1.4).

5.1.3 JAVA LIBRARY SEARCHES

Since Java does not disclose the required interface of classes or JAR files, it is typical for Java execution 
environments to create so-called  ClassNotFoundExceptions when binary  components are to be 
integrated into a system or appropriate error messages when a source code is to be compiled. Usually, the 
only information a developer gets in this context is the name of the missing class and the namespace, i.e.  
the  package,  it  belongs to.  Developers used to have to waste a  lot  of time  guessing,  browsing  and 
searching to find the appropriate JAR file containing  the required class. Since our search engine has 
indexed more than 4 million binary Java files from a large number of JAR files, we are able to find the 
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library containing  a specific class by proving some additional  constraints on a search. For example,  a 
search for the class org.apache.lucene.search.Query has the following form on Merobase:

namespace:org.apache.lucene.search name:Query

Thus,  a  simple  field-based,  keyword-matching  approach  can  be  used  for this  task.  Depending  on 
whether  the  binary  or  the  source version of the  class should  be retrieved,  the  query  can  either  be 
extended by the constraint  form:binary  or by the constraint  form:source.  The default case delivers both 
variants.  Table  8.2 shows a comparison of our data  content  with  some other public  search engines 
regarding their support for this specialized task later.

5.1.4 FURTHER OPTIMIZATION OPTIONS

Intuitively,  it  is clear that the more complex the specification of a component becomes the smaller the 
amount of delivered reuse candidates gets [Sam97].  Since similar problems are well-known in the IR 
community,  a number of solutions are already present there which we have also adopted to increase the 
recall of our system. A simple technique to increase the recall of keyword-based searches is to search for 
synonyms  of  the  desired  keywords  as  well.  This  is  subsumed  under  various  techniques  for  query 
expansion as discussed in [Bae99].  While there are statistical ways of automatically creating thesauri of 
terms via co-occurrence matrices, the process to create such a matrix is very computation-intensive and 
thus currently only an interesting option for future research. Latent Semantic Indexing (LSI) is another 
well-known information retrieval technique developed by [Dee90],  which is based on the co-occurrence 
of terms and is supposed to mitigate these problems. It is based on correlation analysis of term document 
vectors and thus is expected to extract concepts out of documents rather than just plain terms. Thus, it is 
able to create an “understanding” of what the documents are about and synonyms,  for instance,  are 
automatically  understood correctly.  In the context of this dissertation, we have experimented with this 
approach for our component searches (details can be found in [Gru06]).  However, our results seem to 
confirm the results of [Ye01] who found that LSI only functions reasonably in the component retrieval 
context if additional  text (i.e.  in  Ye's case comments) is available.  In other words, LSI usually  works 
better if developers enter small  stories, describing the functionality  they need,  rather than just a class 
name. However, in our trials [Gru07]  it  was so hard to achieve acceptable precision, due to the large 
amount of noise usually delivered, that we did not investigate LSI further.

Manually  collected thesauri for English, such as WordNet [Mil90],  are also freely available on the web 
and  we  have also experimented  with  their  use  for  query  expansion  in  the  context  of component 
searching.  However,  our  experiments have shown that  this  is  also not  very  promising.  First  of all,  
programmers often tend to use descriptive names for classes and operations which are assembled from 
various terms which are typically  not contained in a dictionary as a whole. The Java coding guidelines 
promote the use of the so-called “camel case” identifiers (e.g.  isCourseToBeScheduled)  for this 
purpose, i.e. an upper case letter should be used for each new word that is attached to another one. As we 
have already discussed, it  is indeed possible to decompose such constructs and use them for relaxed 
searches if  the composite term could  not  be found.  However,  the decomposition of the camel  case 
typically yields a number of new terms to be searched for. However, these do not necessarily describe the 
original  concept  any  more  and  might  add  a  lot  of  noise  to  the  search  results,  even  if 
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“stopwords” [Bae99],  such as “is” and “be” in the above example, were filtered out.  Another problem 
that limits the applicability of thesauri for component searches is the fact that they often contain a large 
number  of  terms  related  to  a  concept  that  are  usually  not  very  helpful  for  discovering  similar 
components. Consider, for example, a query for the term stack in WordNet that delivers the following 
list of synonyms:

• batch, deal, flock, good deal, great deal, hatful, heap, lot, mass, mess, mickle, mint,  mountain,  
muckle, passel, peck, pile, plenty, pot, quite a little, raft, sight, slew, spate, stack, tidy sum, wad 

• push-down list, push-down stack, stack 
• smokestack, stack 
• push-down storage, push-down store, stack

Although this list includes a separation of contexts for the synonyms,  it  is impossible to tell  without 
human intervention which of the four categories is the most useful for a given context.  Furthermore, 
even if this were possible, a potential number of twenty or more synonyms would still not be very helpful 
for  directed  component  searches.  Thus,  we  decided  not  to  pursue  this  approach  further  in  this 
dissertation and only included a manually collected list of a few dozen synonyms which often appears in 
the context of programming.

5.1.5 DESIGN RECOMMENDATIONS BASED ON SEARCH RESULTS

In recent years, online shops have popularized so-called collaborative filtering systems that recommend 
potentially interesting items to customers (“people  who  bought  that  book also were  interested  in  ...”). Such 
systems typically require a list of users that have purchased a number of items and from this data pool 
recommendations can be derived for similar  users.  In  general,  there are two feasible  approaches to 
implement such an algorithm [Bae99],  namely user-based algorithms that cluster similar users together 
and item-based algorithms that  maintain  a matrix with item-item pairs containing  information about 
how often two users bought these two items.

These techniques have not only been applied to shopping sites on the web, but also to software reuse 
problems already. [McC07]  uses such an algorithm to recommend Java Swing method invocations based 
on the analysis of a few thousand Java classes. A class is regarded as a user by their  system and the 
method invocations are the items he is interested in.  However, at the time of writing  it  is not clear 
whether that approach is generalizable to multiple domains and to larger data collections. Hence we have 
used a slightly different approach in our search engine. We have found it  feasible to extract the first n 
search results for a query and to derive an interface recommendation based on this information. The idea 
is to utilize the method signatures of these results to calculate the optimal average class interface in that 
context. We do this by counting how often a given method signature appears amongst the top n results 
and return the most popular signatures or all signatures that appear more often than a given threshold as 
the average of the n classes. A simple algorithm that delivers usable results is described by the following 
piece of pseudo code:
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for the first n results
for each signature of the current result

if signature is stored in hashtable of signatures
increase number of occurrences

else
store signature in hashtable

next signature
next result
for each signature in the hashtable

if number of occurrences > threshold
add signature to result

endif
next signature

This algorithm works reasonable fast (i.e. typically a response time of less than a second is required since 
the recommendation has to be created on the fly when a search is run)  and well  for  n = 100  and a 
threshold of appearances of 20% of the components. Consider, as an example, a speculative search for a 
“stack” component for which this algorithm recommends the following interface:

public class Stack{
boolean isEmpty() {}
Object pop() {}
void push(Object arg1) {}
Object top() {}

}

It should be obvious that common abstractions such as Stack deliver better results than a search for e.g. 
“public” would,  but that  is in  the nature of things.  Unfortunately,  in  its current implementation the 
algorithm is merely able to recognize identical method signatures and thus is rather limited. Although we 
have implemented  a  more  sophisticated  analysis  of  signatures  and  method  names,  it  is  too  time 
consuming in the context of a component search engine since it can require more than 10 seconds. This 
time  might  be  acceptable  for  transparent  proactive  searches that  are  triggered  in  an  IDE without 
knowledge of the user or for future research, but at present it is certainly too long for a web-based search 
engine.

5.2 SPECIFICATION-BASED RETRIEVAL WITH EXTREME HARVESTING

Probably the most important contribution of this thesis is the development of a specification-based reuse 
approach that is convincing in its ease of use as well and uses the vast amount of (open source) software 
on the World Wide Web as a component repository. Nevertheless, our approach is neither limited to 
open source software nor reliant upon the web, i.e. it can also be used in proprietary CVS repositories, 
for instance. Although the syntactical definitive searches, which we introduced in  section  5.1.2,  come 
much closer to this goal than previous retrieval techniques as we will see in the evaluation of our work in 
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chapter 7 their precision is generally still below 50 percent or less and the recall can also decrease rapidly  
for more complex queries. Thus, it is desirable to further extend the search techniques introduced so far.

The literature identifies only two approaches capable of guaranteeing a precision of 100  percent or at 
least close to this optimum, namely formal semantics based (cf. e.g. [Zar97]  or [Fis91])  and operational 
approaches. The main problem with the former is that it is difficult to apply and that the semantics of all 
components have to be specified manually,  a task that is certainly  too expensive for large numbers of 
components. Most approaches of the latter category are based on behaviour sampling [Pod93]  where 
random  samples of the  input  space are  used  to  identify  functions  to  deliver  the  expected  results. 
However, while this was doable for small test collections of about 100  C functions, it  is certainly  not 
feasible for millions of components in a practical amount of time. Thus, for this thesis we extended our 
syntax-driven retrieval techniques from the previous part of this chapter with ideas inspired by behaviour 
sampling. We have found that it is possible to use the fast and relatively cheap interface-driven retrieval 
approach as a filtering process before using an expensive operational retrieval approach. Moreover, we 
have discovered that Extreme Programming (XP, [Bec99])  offers the optimal context (with its maxim 
“design  a  little,  test  a  little,  code  a  little”)  for such a search approach since it  creates an  operational 
semantic description of all units under development. With  a slight change, we can adapt XP's guiding 
principle to become “design a little, test a little,  reuse  a little” and our approach can be integrated easily 
into any test-driven development process and even transparently  into development environments and 
tools. Due to its natural  relationship to Extreme Programming we have called our approach Extreme 
Harvesting.

5.2.1 PROCESS OVERVIEW

The  figure  below  provides  a  schematic  summary  of  the  main  steps  involved  in  the  practical 
implementation of our approach as initially introduced in [Hum04].  Only the steps (a) and (b) need to 
be  performed  manually  as  part  of  the  software  design  process.  Steps  (c)  to  (f)  can  be  processed 
automatically by a tool.
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Figure 5.1: Schematic description of Extreme Harvesting process.

The steps shown in the figure have the following meaning:

a) define syntactic signature of desired component
b) define semantics of desired component in terms of test cases
c) search for candidate components using an arbitrary search engine with a search 

term derived from (a)
d) find source units which have the exact signature defined in (a) 
e) filter out components which are not valid (i.e. not compilable) source units, 

if necessary, try to find any other units upon which the matching component relies
for execution

f) establish which components are semantically acceptable (or closest to the 
requirements) by applying the tests defined in (b)

It is important to note that the search step (c) does not necessarily need to be carried out with the help of 
Google or another general-style web search engine. A specialized engine or a proprietary repository can 
be plugged in  at  this  point  as well.  In fact,  the  use of our Merobase repository  with  its  optimized 
capabilities for interface-driven searches makes step (d)  widely  superfluous in  the best case. Another 
recent development in the context of this dissertation [Kru07]  makes it  even possible to renounce step 
(a) and to automatically extract the interface of the unit under test from the test case and thus deserves 
the label  test-driven  reuse .  We  will  provide a more detailed explanation of the steps in  the harvesting 
process below.

5.2.2 COMPONENT SEARCHING – A HYBRID APPROACH

Based  on  the  lessons learned  from  previous  approaches  in  section  3.2,  we  have  created  Extreme 
Harvesting as a new hybrid semantics-driven search and retrieval approach by integrating some of the 
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techniques outlined there. As stated in  [Mil98],  a retrieval process typically  involves two criteria as a 
candidate component may fulfil the matching  condition  of one specific retrieval technique, but may not 
necessarily  match a user’s  relevance  criterion  (recall  the “conceptual  gap problem”).  For example,  an 
information retrieval-based technique might retrieve 20 components matching the term “customer” but 
only two of them might  actually  fulfil  the user’s requirements and thereby his relevance criterion.  In 
other words, a single matching criterion is typically too weak to guarantee satisfactory precision. Hence, 
applying  more than  one matching  criterion  can essentially  be understood as a  filtering  process that 
iteratively reduces the number of components in the result set until only acceptable components are left. 
In the first version of the harvesting tool,  we applied three filtering stages, namely linguistic,  syntactic 
and semantic filtering, as shown in the sketch below:

Figure 5.2: Search space reduction.

The cost of applying these filtering steps grows in  the order they are introduced.  For this reason the 
combination of the three steps is the only practical way to retrieve components semantically  from the 
web or a  large-scale software repository  (without  dedicated support  for interface-based searches).  In 
theory, other combinations of retrieval techniques are also imaginable, but ultimately it is always a trade-
off between the effort at index creation time and the time required to repsond to a query. Since we were 
able to store the interfaces of components in a later version of our Merobase index, we are able to omit 
one filtering step and retrieve tested results more quickly  since. It would also be conceivable to even 
perform the compilation of components at crawl time and store dependencies and binary files to reduce 
the testing time even further, but this would require an amount of effort at crawl time that has not been 
viable so far.

5.3 COMPONENT EVALUATION

For general search engines it is normally sufficient if they deliver results that are reasonably close to what 
the user expects. However, component search engines are usually  expected to deliver a much higher 
precision since even if only small adaptations to component are necessary to reuse them, this can become 
very expensive. Thus various heuristics are discussed in section  4.3 that are intended to deliver results 
much closer to a specification than plain keyword-based searches (which is confirmed by our evaluation 
in chapter  7).  However, the Extreme Harvesting approach, as we have just explained it,  requires even 

set of components
available on the Web

relevant components

syntactically matching candidates

linguistically matching candidates

semantically matching candidates  
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more sophisticated techniques to determine the “distance” between a query and a candidate component 
and ultimately also the possibility of adapting the candidate for execution. In other words, to be usable 
for the purpose at hand a component must ultimately fulfil a given specification and the software reuse 
community has been working on a measure of the degree of conformance of two components (or a query 
and a component) for many years.

This,  however, is not as simple as it  may sound.  As we have pointed out,  a component has various 
dimensions that all  influence the degree to which a component matches the desired specification,  but 
ultimately  only  its functional  semantics are an indicator of whether or not  it  is fit  for purpose. For 
example,  the signatures  or  names in  the  component  can  differ  from the  specification  even if  the 
behaviour of the component finally fits, which makes it difficult to define a metric for the conformance 
of a component, even though there have been various attempts to solve at least one or the other aspect of 
this problem.  For example,  in  her seminal  work about subtyping  relations [Lis93],  Liskov defined a 
fundamental understanding of conformance in object-oriented inheritance relationships – that is, under 
what  circumstances a  superclass can  be  replaced  by  a  subclass.  However,  this  approach  requires  a 
knowledge of the complete inheritance hierarchy which is rarely  available in  large and not organized 
component collections. [Zar95] discussed signature matching for functional languages under the premise 
of reuse and of course the information retrieval community has been researching the closeness of textual 
documents to one another.  However, a comprehensive approach for software component reuse is still 
not available. Thus, in the next subsections we will explain our approach for putting the available pieces 
together in order to develop a component matching and adoption mechanism applicable for Extreme 
Harvesting.

5.3.1 LINGUISTIC CONFORMANCE

Although a recent study has confirmed [Ami04]  that about 85% of the class names of an open source 
project  can  be  traced  back  to  entries  in  the  popular  WordNet11 dictionary  [Mil90],  the  so-called 
“vocabulary problem” reported by Landauer et al. in [Lan87]  still has to be taken into account. Simply 
stated,  the authors discuss the fact that  different programmers tend  to use different names for their 
components. They report the probability of two people using the same term for a concept as being only 
about 20%. [Kra03]  recently conducted a similar study in the context of method signatures and found 
the  similarity  of  signatures  and  names  based  on  the  required  functionality  of  around  40%.  In  a 
conventional (older) component repository with a relatively small number of assets this led to a serious 
reduction in the effectiveness of information retrieval methods, since most of the components are stored 
under just one name. An obvious way to tackle this is to use synonyms as we already discussed in section 
5.1.4.  By storing a component  with  an additional  alias (i.e.  synonym)  the recall  can be doubled,  in 
theory.  However,  as  Furnas  et  al.  [Fur87]  state  “many  aliases  are  needed  to  achieve  a  really  good  
performance ”, and this would, in turn, drastically decrease the precision. In addition, it is still not clear 
how usable aliases can be discovered.

However, we expect a given piece of functionality to appear with many different interfaces and names on 
the Internet  since diversity  is one of its  major strong points and  the  potential  number of different 

11 http://wordnet.princeton.edu/
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implementations is typically  large - at least for relatively simple components. Ultimately,  however, this 
only shifts the problem to more complex components and thus it is still necessary to find good heuristics 
that are able to suggest components that have the closest possible match to the query if no direct matches 
are available.  We  have already  established some simple ideas in  the context of the multilevel  search 
approach in section 5.1.2. However, the linguistic dimension is still worthy of further investigation. As 
we shall see later, a signature-driven approach to candidate selection which completely ignores methods 
and parameter names is able to increase the recall  significantly,  although it  is still  too expensive for 
practical use at the time of writing.

5.3.2 SIGNATURE MATCHES IN JAVA

Signature matching in its original  form, as defined by [Zar95]  for functional languages with firm type 
hierarchies, recognizes between two functions only when they were identical in terms of the types they 
used in their interfaces. To our knowledge, only [Str94]  has transferred these ideas to an object-oriented 
language, namely Ada. We are not aware of any work in this direction for today's common languages 
such  as  Java  or  C#.  However,  it  is  rather  straightforward  to  transfer  the  ideas  from  these  older 
publications to Java, for instance. In general, for a Java class it is merely necessary to take the signatures 
of all its non-private methods into account to apply signature matching in a simple form. Unfortunately, 
potential  breaches of the information  hiding  principle  through non-private attributes in  classes pose 
additional  challenges to this approach. However, in  our experience this issue occurs so rarely that  we 
have decided to disregard it  for our current prototype. For the example shown in figure 5.3, signature 
matching would work well to determine the counterparts of the get (signature: int x int -> double) 
and the set methods (signature: int x int x double -> void), but it would fail to choose the correct 
method for the add, sub and mul methods.

Figure 5.3: Example for a candidate result that requires an adapter.

The idea of relaxed signature matches that,  for instance, also accept different parameter orders (as we 
already  used  in  the  creation  of  the  Lucene  index)  is  also  transferable  to  modern  object-oriented 
languages. Even the idea of relaxing parameter or return types is easily applicable for primitive types in 
Java as we will  show below. In principle,  this is also imaginable for object types based on subtyping 
relations as investigated by [Lis93],  however, in  practice it  is difficult  to fully  establish the required 
inheritance hierarchies as we will  discuss soon.  The  generally  applicable rule  in  this  context  is that 
preconditions  cannot  be  strengthened  and  postconditions  cannot  not  be  weakened  in  a  subtype. 
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Translated to parameters in an operation signature this means that the parameter in a candidate can be 
“extended”, as shown in this example where for the query –

boolean isNegative(int number)

a candidate with the signature

boolean isNegative(long number)
would also be acceptable. The inverse principle can be applied for return values. If long was expected 
int would also be a feasible option.  The following table shows the possibilities for the relaxation of 
primitive types in Java.

Relaxed Matches for Parameters Relaxed Matches for Return Values
Expected Also Acceptable Expected Also Acceptable
char String String char
byte short, int, long long byte, short, int
short int, long int byte, short
int long short byte
float double double float
byte, short, int float float byte, short, int
byte, short, int, 
long

double double byte, short, int, 
long

Object all object types
Table 5.4: Possibilities for relaxed signature matches in Java.

The problem with object types in this context, however, lies in the difficulty of recognizing inheritance 
hierarchies in  unstructured repositories and definitively  finding the appropriate superclass. Consider a 
Stack class that  inherits from a  Vector for example.  In theory,  the  Stack could thus replace the 
Vector as a parameter. However, in practice, only in very rare cases is the Vector class referenced in a 
fully qualified manner and would thus be precisely identifiable. Even if that were the case, there could 
still  exist a large number of different versions or variants of that specific  Vector in a repository that 
could have different properties. This is also a problem for signature matching in  general,  since, if an 
object type is used in a signature, it is not normally fully qualified nor are the signatures of its methods 
fully defined and available (cf. section  5.6).  This is a reason why (unknown) object types can only be 
treated as textual elements in a signature matching approach with all the attendant linguistic problems 
discussed above.

Java 5 (also known as Java 1.5)  has brought at least some relief in this context as it  introduced a new 
feature called “autoboxing” which frees the developers from caring about the conversion of primitive 
types into the so-called wrapper types and vice versa. Another example should make clear what this is 
supposed to mean. Before Java 5 the following code was required:
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Integer wrapper = new Integer(42);
int primitive = wrapper.intValue();

Since  the  introduction  of autoboxing  and  the  reverse auto-unboxing  in  1.5  Java the  following  two 
statements are now feasible:

Integer wrapper = 42;
int primitive = wrapper;

In conclusion, signature matching for Java, as discussed above is another helpful technique to decrease 
the number of potential  operation matches. However, it  is still  not sufficient on its own due to the 
peculiarities of object-oriented languages and their inability  to represent the semantics of an operation.  
Thus, it is practically impossible to determine whether two operations match by purely comparing their 
signatures and the only viable option is to try all feasible permutations.

5.4 RESULT ADAPTATION

The adaptation of components has long been recognized as an important issue in software reuse, whether 
it be in the reuse community [Mil02],  as a design pattern [GoF95],  or even as the topic of PhD theses 
(e.g. [Gsc02]) or research papers (cf. [Mez01]).  We can only briefly discuss the most important issues in 
the  context  of this  dissertation  and  refer the reader to the works just  mentioned  for more detailed 
information. In our context a typical adaptation scenario occurs when a client wants to reuse an existing 
component whose interface does not exactly match his/her requirements. This means that an adapter is 
required as “glue code” between the client and the existing component. From the client’s point of view 
the adapter is supposed to offer exactly  the interface he/she expects. The existing  component,on the 
other hand, expects the adapter to use it in exactly the way it was designed to be used. When this is the 
case, both the client and reused component can be “satisfied” without changing any of their code. The 
goal of Extreme Harvesting is to fully automate this process of adapter creation so that a user does not 
have be concerned with building it at all.

5.4.1 GOF ADAPTERS

Probably the most well-known discussion on adapters can be found in the famous Gang of Four (GoF) 
design pattern book [GoF95] where two forms of the so-called adapter pattern are mentioned. The more 
intuitive implementation of the two is probably the object adapter which is shown in figure 5.4.

Figure 5.4: Object adapter as defined by [GoF95]  

 



102 -   SEMANTIC COMPONENT SEARCHING

The Client on the left side wants to work with the component on the right side (the  Adaptee).  In 
order to promote clean software development, the client is written against an interface. This interface is 
called Target here and offers the services that the client expects. The ObjectAdapter implements this 
interface.  It  also maintains  a  reference to an  instance of the  Adaptee.  Upon a service request,  the 
adapter forwards all calls to the instance of the Adaptee. This means the adapter essentially “wraps” the 
Adaptee and delegates incoming method invocations to it. In contrast to the object adapter pattern, the 
class adapter pattern follows a slightly different approach. Instead of having a reference to an Adaptee 
instance, the class adapter uses inheritance to achieve its goal. The original design of this pattern used 
multiple inheritance which is not directly supported in Java. However, the basic idea remains the same, 
the class adapter also forwards incoming calls to the corresponding Adaptee method. The difference is 
just that this time the adapter does not maintain a reference to the Adaptee, because it has inherited all 
the  methods from it.  A Java  implementation  of this  pattern  would  have to  simulate  the  multiple 
inheritance,  which is possible in  a rather simple way:  the target interface has to be defined as a Java 
interface and not as an abstract class. The Java-version of the pattern is shown in the following UML 
class diagram.

 

Figure 5.5: Class diagram of the class adapter.

As clarified by the figures, both patterns can easily be implemented in Java. However, they both have 
their advantages and disadvantages, especially  when it  comes to more complex target interfaces, as we 
shall briefly discuss in the following subsection.

5.4.2 LIMITATIONS OF THE GOF ADAPTERS

At a  first  glance,  the  adapter  pattern  seems to  be  the  ideal  candidate  to  use  in  a  reuse-oriented 
development and it is recommended for this purpose by the GoF. But, the two versions of the pattern 
that we described above, bring along some unwanted disadvantages which hinder their usage for some 
more complex interfaces. First and foremost, the class adapter requires the adapter itself to inherit from 
the Adaptee class which makes it  impossible in Java to inherit from any other class. This is a widely 
known issue which in general makes the object adapter the preferable solution. But there exists another 
issue that considerably limits the use of the two adapter. All the code that only involves primitive data 
types,  Strings,  or  Objects can indeed be reused without  any  problems.  But,  all  the  classes that 
reference objects of their own type cannot be adapted with the above mentioned pattern variants. The 
following extract from the interface of a BinaryTree will illustrate this problem.
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  public interface BinaryTree {
public BinaryTree(int value, BinaryTree left, BinaryTree right);
public BinaryTree getLeft();
public void setLeft(BinaryTree bt);
public BinaryTree getRight();
public void setRight(BinaryTree bt);

  }

The critical elements of the code fragment above are the methods setLeft and  setRight and their 
corresponding  getter  methods  getLeft and  getRight.  The  same  problem  also  holds  true  for 
constructors if  they  contain  self-referencing parameters.  The following  sketch illustrates the problem 
with the setter-methods more closely:

Figure 5.6: A situation in which an object adapter would fail.

As visible in the sketch, the BinaryTree’s (i.e.  the adapter’s) set-method expects a parameter of type 
BinaryTree which  would  be  delivered  by  the  client  and  normally  be  passed on  directly  to  the 
BinaryTreeAdaptee. Of course, the latter object (and its method) only know its own type and has no 
knowledge of the existence of the adapter class and of the fact that a BinaryTree instance would be 
delivered in this case. Thus, an incorrect parameter type would be passed to BinaryTreeAdaptee and 
the adaptation would fail in this situation.

This  issue is rather easy to solve, as we will  show for the general  case in  figure  5.7.  If the method 
anotherRequest in  our so-called  ManagedAdapter is called with an instance of itself,  it  simply 
forwards  the  call  to  the  anotherSpecificRequest method  and  has  to  make  sure  that  the 
ManagedAdapter is  replaced  with  that  Adaptee  instance  that  was  created  for  this 
ManagedAdapter. This explains why each ManagedAdapter should have a getAdaptee method as 
demonstrated in the figure.

Abbildung 5.7: ManagedAdapter that overcomes the problems of the GoF adapters.
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More challenging,  however, is a solution for the case when a return value has the type of the adapted 
class (i.e.  for getter-methods).  We  have developed the following solution  for this issue.  As shown in 
figure 5.7, the ManagedAdapter stores all adaptees it creates in a Hashtable where Adaptee objects 
are used as the key.  Once an  Adaptee object  is  returned  by  a  method of the  class  Adaptee the 
appropriate instance of the ManagedAdapter can be looked up in the Hashtable or a new one can 
be created if there is none. However, one limitation is obvious with this solution if it is applied to Java 
programs. Since one reference to a ManagedAdapter object is always stored in the Hashtable the 
garbage collector would never be able to recognize such an object as unused and delete it.  And since no 
explicit possibility to delete objects is available in Java, an object could not be deleted. For this reason we 
consider this solution only useful in the context of Extreme Harvesting where an object is only used for 
testing and where programs typically  run for just a few moments in  an isolated virtual  machine.  For 
practical use it seems to be better to refactor the Adaptee in order to fully adapt it to the interface of 
the  target.  Another solution  for this  problem is  inspired  by  C# where an  IDisposable interface 
offering a  dispose method is used to delete objects.  If the  ManagedAdapter implements such a 
method,  clients that  are aware of this feature would be able to delete adapter objects by calling their 
dispose method.

5.4.3 PARAMETER PERMUTATOR

After explaining how potential candidates can be found and adapted for the testing process, we have to 
explain how situations like the one in figure 5.3 can be resolved automatically,  i.e. how the most likely 
counterpart for a desired method can be found in a reuse candidate. In other words, the new challenge to 
be  addressed at  this  point  is  finding  the  “correct” way  of mapping  the  operations  of the  desired 
component to those of candidate components. Since the names of operations and parameters are at most 
an indication of their meaning,  but in practice have no impact on the semantics of the operations, all 
possible type-correct permutations need to be considered.  The  basic idea is to execute the test case 
associated with  the query  until  a  mapping  for the adapter  which  passes all  tests is discovered.  One 
approach  to  do  this  would  be  to  create  adapters  for  each  potential  mapping,  but  since  for  each 
permutation  a  new adapter  has to  be created,  compiled,  and  executed,  a  large  overhead would  be 
involved. Thus, we have implemented a more efficient solution that uses Java’s reflection capabilities. 
The idea is to compile the adapter once, but to interpose a so-called Permutator object that uses a new 
mapping in each test run until  all test cases are passed without error. The basic flow of this process is 
shown in the following sequence diagram.
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Figure 5.8: Sequence diagram of the testing process.

The  TestCoordinator object on the left is responsible for managing the whole testing process. It 
initiates  the  Permutator object  and  lets  it  create  all  possible  permutations  for  the  method  and 
parameter mappings derived from the interfaces of the Adapter and Candidate objects. After that, it 
starts the permutation and testing cycle by executing the TestCase, which is a normal JUnit test case. 
Since the adapter is adjusted to the calls of the test case, no changes need to be made to the code of the 
test case. The Adapter object, in turn, forwards the parameters and the ID of the invoked method to 
the Permutator object which looks up the appropriate permutation for the current cycle and invokes 
the candidate with the appropriate internal mapping.  This loop is executed until  either the test case is 
completely  passed or  no  further  permutations  are  available.  The  former  case obviously  occurs for 
semantically  acceptable reuse candidates while the latter result indicates that the candidate is for some 
reason not reusable in the given context.

The creation of the permutations in  the  Permutator is a two stage process. First,  it  is necessary to 
determine whether two method signatures are identical and thus a potential  mapping from a required 
method to a candidate's method can be established. Once this is finished, all feasible parameter orders 
have to be found for each mapping.  For a better understanding of this concept consider the following 
example where the method calls from a RequiredCalculator need to be mapped to the relevant calls 
of the CandidateCalculator:
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class RequiredCalculator {
int add(int i, int j) {}
int sub(int i, int j) {}

}

class CandidateCalculator {
int something(int x, int y) {}
int sub (int a, int b) {}
int add(int x, int y) {}
int no(int a, int b, int c) {}

}

First,  all  feasible  mappings  from  the  methods  in  the  RequiredCalculator to  the 
CandidateCalculator are established as follows:

add -> something    add -> sub    add -> add
sub -> something    sub -> sub    sub -> add

Once all method mappings are established, we can start creating all feasible parameter permutations for 
each method mapping, i.e.:

add(i, j) -> something(i, j) add(i, j) -> sub(i, j)
add(i, j) -> add(i, j)
add(i, j) -> something(j, i) add(i, j) -> sub(j, i)
add(i, j) -> add(j, i)
...

The next step is to combine the mappings for add and sub without accepting mappings where a method 
from the candidate is used twice, i.e. a mapping add -> add + sub -> add is to be avoided. Thus, the 
following combinations remain acceptable:

add -> something + sub -> sub add -> something + sub -> add
add -> sub + sub -> something add -> sub + sub -> add
add -> add + sub -> something add -> add + sub -> sub

Of course, these mappings have to be combined with the parameter permutations and in our example 
this yields four permutations per mapping, e.g.:

add(i, j) -> something(i, j) + sub(i, j) -> sub(i, j)
add(i, j) -> something(j, i) + sub(i, j) -> sub(i, j)
add(i, j) -> something(i, j) + sub(i, j) -> sub(j, i)
add(i, j) -> something(i, j) + sub(i, j) -> sub(j, i)
...

Once all  potential  mappings have been established,  the  Permutator is able to “wire” the incoming 
parameters from the  Adapter to  the appropriate  parameter in  the  Candidate as specified in  the 
current permutation. 
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5.5 DEPENDENCY RESOLUTION

The process introduced above only functions for components that carry their whole functionality in one 
class. However, software systems today are typically so large that they have to be divided into a number 
of classes and modules that have dependencies on one another. However, Java and most other common 
programming languages today do not make required interfaces explicit in the source code, at least not 
very precisely.  Consider full  package imports such as  java.util.*.  It is neither clear which classes 
from that package will be needed later during the execution of the class nor is it apparent where to obtain 
the  package.  Java  virtual  machines  typically  search  for  importable  classes in  its  classpath  during 
compilation  and  execution  and  would  successfully  find  everything  in  the  standard  util  package. 
However, as soon as external packages come in to play,  there exists no standard that would guarantee 
that the package could be downloaded from a specific URL, for example.  Hence, Java developers often 
have to deal with missing dependencies as already discussed in  the context of the search use cases in 
section  5.1.3.  A powerful  dependency  resolution  approach is  thus a  critical  element  of an  effective 
Extreme Harvesting implementation.  This is evidenced by the fact that  in  our Merobase index only 
about 44% of all Java source classes from the open web and only about 15% of all source classes from 
version control  repositories could  be compiled with  the standard Java (J2SE) classpath.  Or  in  other 
words, about three quarters of our Java source files have dependencies that need to be resolved before a 
class can even be compiled.

During the development of our harvesting solution we found the following heuristics that are helpful to 
mitigate this problem. However, although these ideas are all rather straightforward they also all contain 
some limitations which means that they will not always be successful and will under given circumstances 
even collide with each other. In other words, these heuristics can create an inconsistent classpath which 
causes the compilation to fail. If this situation occurs, there is in the end no other solution than a simple 
trial and error approach that tries to compile and run each possible solution similar to the permutation 
approach  from before.  However,  such  an  expensive approach  might  not  always  be  worthwhile  in 
practice. Nevertheless, the following table contains the heuristics we propose as well as a discussion of 
their likely benefits and limitations.

Heuristics Advantages Limitations
Extend  classpath  with 
common JAR files

Easily  applicable  for  standard 
libraries of other Java editions such 
as  J2ME  or  J2EE and  some well-
known  libraries  such  as  Apache 
commons etc.

Different required versions of the files 
might impose a risk for this approach. 
Furthermore,  some of these libraries 
might  conflict  with  one  another. 
Prominent  examples  for  Java  are 
loggers and XML parsers. Potentially 
large  libraries  have  to  be  delivered 
with the classes. 

Extend  classpath  with 
libraries from project

Helpful  for files from CVS/SVN if 
libraries are indexed as well.

Not applicable for HTTP-based files. 
Libraries must  be delivered with  the 
class.
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Heuristics Advantages Limitations
Explicitly  search  for 
libraries  containing  the 
missing  classes  in  an 
engine such as Merobase

Promising for every class potentially 
published somewhere in a library.

Creates additional load and traffic on 
the search server. Candidates are not 
always decisively identifiable. 

Derive URLs of missing 
classes from their names

Simple  and  easy  to  implement 
technique  especially  promising  for 
classes  that  belong  to  the  same 
package  as  the  one  that  was 
compiled.

Often classes from different packages 
or  even  projects  are  required  that 
might not be findable on the current 
server.

Search missing classes in 
Merobase

Potentially  very powerful  technique 
that  should  be  able  to  find  most 
dependencies. 

The right candidate is hard to identify 
which  is  why  this  technique  can 
become very complex and  expensive, 
especially  if  adaptation  heuristics are 
taken into account.

Create  empty  stubs  for 
missing classes

Useful for Exceptions and Interfaces 
that could not be found with one of 
the other methods.

The  originally  intended  functionality 
is lost.

Table 5.5: Potential heuristics for resolving missing dependencies.

As the table illustrates, we have developed a number of heuristics that come close to the dependency 
resolution capabilities of a human. However, they ultimately struggle with the same problems as human 
developers since it  is often not clear whether the correct version of a required dependency has been 
found. This issue, though, can only be solved by trial and error, but it is a major question whether the 
required effort in processing and implementation time is worthwhile.

5.6 CLASS ENSEMBLES

As we explained  in  section  2.4,  the  optimal  granularity  for reusable  component  is  an  issue that  has 
probably been discussed since components were invented. And it looks as if there is no optimal answer to 
this  question  since  most  mainstream  component-based  development  approaches  use  a  hierarchical 
component  model  that  allows recursively  composed components.  This  is  an  important  issue  for  a 
practical implementation of Extreme Harvesting or any other search technique in software component 
markets. While  most of the examples that we have shown so far can be built  with just one class, it  is 
obvious that this does not scale up to more complex functionality.  The Blackjack component, shown 
in  the following figure,  can be considered as a simple example of such a case. With  the help of our 
dependency resolution algorithms introduced above we were able to discover it with one simple test case.
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Figure 5.9: Simplified class diagram of a harvested Blackjack component.

However, the literature does not contain any guidance on how to derive a query for such a component or 
on how the results should be returned from search engines that are specialized on primitive components 
consisting  of single  files.  To  exchange  queries  and  results,  it  makes sense to  use  the  standardized 
representation of a class diagram as the query (i.e. XMI data) and return the results packaged according 
to another standard such as the RAS [OMG04b].  Depending on the implementation language and the 
used IDE it could also make sense to package the results as JAR files, or maybe as Eclipse or even IDE-
independent Maven (maven.apache.org) projects.

In addition to these technical  issues, the question of how best to search for such class ensembles still 
remains. Currently, we see two possible solution strategies. The first one would be to sequentially search 
for each class described in the class diagram and to build the ensemble by collecting all the smaller ones. 
This could either be done in a manual approach that implements a design such as that the above in the 
usual way e.g. a test-driven development process. In other words, as e.g. recommended by [Lar05]  the 
least connected class of the design (in the case of the example this would be Card) is selected first, a test 
case is created for it and the harvesting tool is used to search for an appropriate implementation. Then 
the second least connected class (Hand in this example) is chosen and so on until  the whole system is 
implemented. We will present a little case study that demonstrates its power in section 7.5.

The other approach that looks promising in order to save manual labour is to speculate on the capability 
of the  dependency  resolver.  It  might  be able to  discover required  classes if  test  cases for the  most 
connected class (i.e. the one with the most dependencies) from the design are created and executed first. 
Once a candidate for these test cases is found it is possible that the dependency resolver might find the 
other required classes without additional  manual  effort.  This idea was applied for the above blackjack 
example and  yielded  two implementations from the  web without  further  human  intervention.  This 
comes already  quite  close to  the  approach that  is  envisaged in  KobrA [Atk02]  and  would  use the 
specification of the upper-level component to find the complete ensemble in one go. Although we were 
able to find a picture viewer, an arkanoid game and other applications based on speculative searches by 
means of such a dependency resolver, one inherent problem could not be solved within this dissertation 
– the problem that the component concept that is incorporated in KobrA is not implemented in today's 
programming languages. We discuss this challenge in more detail in section 6.2.
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5.7 IMPLEMENTATION

As we already  pointed  out  at  various points  during  this  dissertation,  an  appropriate  tool  is  a  very 
important requirement for the application of our ideas and the only vehicle to demonstrate that they are 
applicable in practice. Although the overall Extreme Harvesting process is straightforward and should be 
rather simple to implement, “the devil is in the details”, as is often the case. From the first standalone 
prototype,  through various Eclipse-based versions to the current sophisticated (and  safe) client-server 
implementation of Merobase, the implementation of each version had its special challenges. Whether it 
be the execution of the Java compiler and the analyses of its error messages, the correct configuration of 
the Java security manager, the use of Ant tasks to simplify compilation and testing, or the difficulties of 
Eclipse programming (see [Jan07]  for some more insights on that), many tasks often caused unexpected 
difficulties due to weak documentation. However, we do not want to go into all implementation details 
at this point and thus limit ourselves to the essentials in this subsection. The following figure summarizes 
the current structure of our system, which is organized as a classical 4-tier-architecture (as described e.g.  
in [Som06)]:

Figure 5.10: System architecture for Extreme Harvesting with Merobase.

The remainder of this chapter, covers the most important issues in the structure and implementation of 
our current client-server solution depicted above. Since it is of more interest for users of our approach, 
we  want  to  discuss  the  ideas  behind  the  Eclipse  plugin  first  before  turning  to  the  backend 
implementation.

5.7.1 ECLIPSE PLUGIN

Related  work  has  given  strong  indications  that  reuse  seems  to  work  best  if  queries  are  created 
automatically (or proactively) out of the developer's current working environment and reuse candidates 
are recommended in  an unsolicited way [YeF05]  &  [McC07].  Thus,  we also built  a proactive reuse 
recommendation  tool  integrated  in  a  common  development  IDE.  Obviously,  a  successful 
implementation  of this  idea  would  immediately  avoid most of the reuse failure  modes discussed in 
section  2.5.2.  The  precondition  for a  successful  reuse recommendation  tool  following  this  maxim, 
however, is that it is able to automatically generate queries from what the developer is currently doing. In 
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other  words,  such  a  tool  should  be  able  to  trace  the  programming  activities  of  a  developer  and 
automatically  send  off queries at  appropriate  points  in  time.  Exactly  this  issue was a  fundamental 
weakness of CodeBroker since it  required its users to “actively” comment the source code they were 
working  on.  In other words,  developers had to describe the code they  intended  to write  in  natural  
language before they starting to implement it.  This was necessary to generate the queries for the LSI-
based [Dee90] search system driving CodeBroker. However, in our opinion, much of the advantages of a 
proactive system are lost  if  developers have to “describe” their  intentions to the  system first.  Since 
Extreme Harvesting and Merobase were developed with this issue in mind, we were able to optimize our 
plugin  to avoid such problems. Our  so-called component finder Eclipse plugin  simply  monitors the 
coding work of the developer and when some specified event occurs (to be described later) the interface 
of the code is extracted, and sent to Merobase as a search query. Since Merobase is able to parse (Java) 
code this can happen totally transparently to the developer. Reusable components can then be presented 
to the user within just a few seconds. The following figure illustrates how this functionality can be used 
in practice to carry out interface-driven searches on Merobase:

Figure 5.11: Our Eclipse plugin suggesting reusable candidates 
based on an interface-driven search.

As soon as a user adds a new method signature to the class he is editing in the area at the top of the 
figure, the plugin recognizes the new information, sends it to Merobase and provides the user with reuse 
recommendations  that  are  likely  to  be useful  in  his  context.  It  does not  even matter  that  Eclipse 
complains about the missing return statements inside the method bodies. Once the lower segment of the 
window is populated, the user can browse the discovered components and study their code in the right 
hand part of the window. If a satisfying candidate is found, a double click on the candidate or one of its 
methods in the tree on the left will copy exactly the desired element to the correct place in the editor at 
the top.
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Within  the context of an agile development project that utilizes test-driven development (TDD),  it  is 
possible to go even further. In the purest form of TDD, developers do not start their development or 
design work with the class stub,  instead they write a suitable test case before any production code is 
written.  For the  Calculator example from the figure above such a test case might  have the form 
shown in the following figure. Thus, the key point in this variant of the process is that the class under 
test (e.g. the Calculator) does not even exist, which again leads to problem reports in Eclipse:

Figure 5.12: Using Eclipse's "quick fix" function to derive a class 
stub from a test case.

A test-driven development purist would now use the “quick fix” function of Eclipse and let it generate 
the missing class and its methods one after the other, which might at least save some time in comparison 
to the manual creation of the stub. But our plugin is able to reduce the workload even further. As soon 
as the user has created a viable test case in the top window, the tool can start searching for matching 
components. The list of syntactically matching components is again displayed in the bottom left-hand 
window proactively after just a few seconds. However, using a test case as the search query offers another 
significant advantage as it allows to fully implement semantic retrieval based on Extreme Harvesting and 
thus to directly and fully test all reuse candidates in the result list using the defined test case:

Figure 5.13: Test-driven reuse proposals by the Eclipse plugin supporting Extreme 
Harvesting.
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As soon as a component is successfully tested, its name is written in bold face and green as shown in 
figure  5.13.  To  provide this  ability  to  deliver  results  as soon as they  become available,  the  plugin 
regularly  polls the  server every 15  seconds in  order to  check if  new results  are available  (since the 
underlying  Opensearch  protocol  is  based  on  HTTP).  Often,  studying  the  code  of  discovered 
components gives the user more insight into the required behaviour of the component, and if none of 
the initially proposed candidates is exactly suitable, he can extend the JUnit test definitions and continue 
the “harvesting” process in an iterative way until either an acceptable candidate is discovered or no more 
candidates are available. A simple case study using this plugin is described in section 7.5. For details on 
the client-side implementation of the plugin we refer to [Jan07].  An overview of the architecture on the 
server-side is given in the next subsection. 

5.7.2 SERVER-SIDE IMPLEMENTATION

This subsection gives a brief insight into the system structure on the server-side. Basically,  as already 
indicated above (in  figure  5.10),  Merobase is implemented as a classical 4-tier-architecture comprising 
the client tier with the web browser or the Eclipse plugin just explained and the three server-side tiers. 
These comprise the web tier, the application server (JBoss), containing the business logic and the Lucene 
index and finally the database that stores the EJBs. As far as the search engine functionality of Merobase 
with the web front end is concerned, current dual-core servers (as of October 2007 with 2*1 GHz, 2 GB 
RAM, 200 GB HDD) are easily capable of satisfying a user request in typically  less than five seconds. 
Merobase began as a web application that had to be used through an HTML-based interface in a web 
browser in early 2006.  For programmatic access to our search engine we later added an API and slightly 
extended the Opensearch format [Cli07]  developed by Amazon for that purpose. It delivers an XML 
feed that can be parsed and processed by tools such as our Eclipse plugin.

The architecture described above is not sufficient for Extreme Harvesting, however. When large numbers 
of files have to compiled and tested, significant processing power is needed and security risks caused by 
the execution of unknown code are introduced. Thus, it makes sense to externalize this task to one or 
more supporting  machines.  This,  might  be sufficient  in  terms of performance,  but  not  in  terms of 
security  and  thus  we developed a  solution  based on virtual  private  servers (VPS)  as shown in  the 
following figure:
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Figure 5.14: Harvesting system architecture.

There are various open source (such as Xen developed by the university of Cambridge) or commercial 
(e.g.  Virtuozzo by  SWSoft)  solutions  available  that  allow  an  arbitrary  number  of  isolated  virtual 
machines to be set up  on a physical  server.  Today,  these are already  in  widespread use by  hosting 
companies that  offer virtual  servers to their  customers. We  use this approach to provide the security 
needed to execute test cases and unknown code from the Internet and to provide sufficient control over 
the resources of the server. Although we haven't experienced any problems with malicious code in our 
experiments so far, it  is likely that such attempts will  occur as soon as such a service becomes publicly  
available Each running  VPS instance is periodically  checked by the VPS Manager,  and as soon as it  
becomes aware of any problems (such as a system not responding anymore), it  shut down the running 
instance automatically and powers up a new one. Such a switch usually takes about 60 seconds until the 
new VPS is fully operational.

We run a Tomcat web server on the VPS which provides a web service based interface to the testing 
service to the main Merobase server. The latter, sends test cases and a list of files to test to the VPS which 
then performs the compilation,  dependency resolution,  permutation  and test case execution steps as 
explained in the previous parts of this chapter by utilizing further open source tools such as JUnit  and 
Ant. The test results are collected on the main server and are sent back to the Eclipse plugin as soon as 
this polls the server or to a user of the website by email once the specified number of results have been 
tested.
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Organ  transplants are  best left  to professionals.
Organ  transplants are  best left  to professionals.
Organ  transplants are  best left  to professionals.

...
-- Bart Simpson‘s Chalkboard 

It is interesting that component-based reuse has been on everybody's lips for almost four decades, but 
there is still  very little  theory on how to apply  it  in  common development processes, as discussed in 
section  2.6. In this chapter we thus describe how the ideas of this thesis can be used to integrate and 
foster reuse in today's software development processes. Given the sheer number of software development 
processes and methodologies we choose two representative examples – namely Extreme Programming 
[Bec99] and KobrA [Atk02] - to demonstrate how the findings and developments of this dissertation can 
be used to enhance everyday  development  practice.  It should be straightforward from the presented 
processes to  integrate  these results  into  other  methodologies –  such as an  Agile  RUP  as proposed 
by[Lar05] – as well.

Since the current generation of publicly  accessible component repositories are almost all  source code 
centric and offer only basic text-search capabilities, at the present time it is difficult to use them for more 
than just “code scavenging” [Kru92].  This practice involves copying and pasting of small code snippets 
into the system under development and is discouraged in  many publications such as for example the 
Anti-Pattern Book [Bro98].  The argument against the reuse of such snippets is that it requires a lot of 
effort to find appropriate snippets and their use is more likely  to degenerate the design of the system 
under development than to improve its quality.  However, these snippets can certainly be useful if they 
are used as an inspiration for how to solve a problem, rather than as a way of avoiding the programming 
of the solution from scratch. With the techniques developed in this dissertation it has become possible to 
increase the granularity  of reusable elements up to small components which can be selected based on 
their  specification  in  the  system design.  However,  although  software reuse has been the  subject  of 
research for almost four decades, there is still  no clear picture of when and how reusable components 
should be used in a development process. Even modern development methodologies contain few if any 
guidelines on how to select components based on their specification. In general, since reuse candidates 
will  usually  not  match  perfectly,  a  feedback loop is  often necessary where either  the  design  or the 
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candidate have to be adapted, as we have already explained in section . To our knowledge, this idea is 
currently best described in [Crn06].

Our own experience with reuse repositories indicates that the best kind of component search to use in a 
development process depends heavily on the point of time at which the search is performed rather than 
on the nature of the process itself. The earlier the point in a system’s development process at which a 
search for reusable components is performed the less design work is likely  to have been carried out.  
Hence,  a general “speculative” search is more useful  in  early  development phases and can feed back 
valuable information about available components and their interfaces into the design process. On the 
other hand, if a component search is carried out at a relatively late point in the development process, an 
interface-  or  even  a  specification-based  search  (the  latter  includes  a  semantic  description  as  well)  
approach is required.  Furthermore, if binary components or web services are to be the subject of the 
search,  there  is  no  source code and  thus  the  search  has to  use interface descriptions  in  any  case. 
Considering these differing requirements, a component search engine must be very flexible and none of 
the first generation code search engines is able to support them all. The next subsection will discuss how 
the  advanced features of Extreme Harvesting  can  be utilized  within  test-driven (i.e.  typically  agile) 
processes.

6.1 REUSE IN TEST-DRIVEN PROCESSES

Iterative and  incremental  development  and  software reuse are  both  strategies for building  software 
systems more cost effectively.  Iterative (and  especially  agile)  methods do this  by  shunning  activities 
which do not directly create executable code and by minimizing the risk of user dissatisfaction by means 
of tight development cycles in functionality is implemented. Software reuse does this by simply reducing 
the amount of new code that has to be written to create a new application. Since they both work towards 
the same goal,  it  is natural  to assume that  they can easily  be used together in  everyday development 
projects. However, this is not the case. To date, incremental development and systematic software reuse 
have rarely been attempted in the same project. Moreover, there is very little, if any, mention of software 
reuse in the agile development literature, and at the time of writing,  there is only one published reuse 
concept whose stated aim is to reinforce agile development. This is the so called “agile reuse” approach of 
McCarey et al. [McC07].

The reason for this lack of integration is the perceived incompatibility  of incremental approaches and 
software reuse. Whereas the former explicitly eschews the creation of software documentation, the latter 
is  generally  perceived as requiring  it.  And while  agile  methods usually  regard  class operations (i.e. 
methods) as defining the granularity of development increments, reuse methods typically regard classes 
as the smallest unit of reuse in object-oriented programming. As a third difference, reuse approaches tend 
to  be  more  successful  the  “more” explicit  architectural  knowledge  is  reused  (as  in  product  line 
engineering), whereas agile development methods employ as little explicit architecture as possible. At first 
sight,  therefore,  there appear to be several fundamentally  irreconcilable differences between the two 
approaches.
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McCarey  et  al.  suggest  a  way  of promoting  reuse in  agile  development  through  so-called  “software 
recommendation” technology.  Their “agile reuse” tool, RASCAL [McC07]  is an Eclipse plugin which 
uses  collaborative  and  content-based  filtering  techniques  [Bae99]  to  proactively  suggest  method 
invocations to developers. Although the concept of RASCAL fits well into the agile spirit of providing 
maximum support for “productive” activities, there is nothing in the technology which specifically ties it 
to agile development.  The approach embodied in  RASCAL can just as easily  be used with any other 
development methodology that produces code, including traditional  heavyweight processes. Moreover, 
the approach has the same fundamental weakness as other repository-based approaches – the quality of 
the recommendations is only as good as the quality (i.e. the size and the precision) of the code repository 
that  is  used  to  search for components.  The  version  of the  tool  described  in  [McC07]  is  clearly  a 
prototype, but McCarey et al. do not present a strategy for solving this important problem. Moreover, 
although RASCAL showed impressive performance for the limited domain of Swing invocations, it  is 
not clear whether this technique will  work for other domains with repositories containing many more 
classes that have much lower usage frequencies.

We believe the core challenge of agile reuse lies in  developing a reuse strategy that  complements the 
principles of agile development and offers a way of promoting reuse in tandem with the key artefacts and 
practices of agile  methods.  In other words,  we need to find  a  way  to seamlessly  integrate  Extreme 
Harvesting into agile methodologies. Typically,  tests are used as the basic measure of a unit’s semantic 
acceptability.  Once  a  code  unit  passes the  tests  defining  its  required  behaviour,  it  is  regarded  as 
“satisfactory” for the job in hand. Usually the code to satisfy the tests for a unit is implemented by hand. 
However, there is no specific requirement for this to be so as we have shown in this dissertation so far.

6.1.1 AN EXTREME PROGRAMMING EXAMPLE

As mentioned above, our approach most obviously fits with agile approaches for software development, 
since these normally also involve the definition of test cases prior to the attainment of implementations. 
The  creation  of test  cases to  evaluate  software units  is  one  of the  fundamental  tenets  of Extreme 
Programming [Bec99] – in fact, they are usually defined before the units they are intended to check.

We assume that the reader is familiar with other fundamental principles of Extreme Programming such 
as the four values of communication,  simplicity,  feedback and courage and the many  recommended 
practices. For further details we refer to [Bec99],  for instance. The test-driven nature of XP requires in 
particular that unit tests be written for a software unit before the code itself. These tests are used as the 
primary measure for completion of the actual code. The maxim is that anything that can’t be measured 
simply doesn’t exist [Bec03] and the only practical way to measure the acceptability of code is to test it.  
To illustrate how test-driven development works in practice let us consider a small example. We choose 
the  Movie class that,  together with a  Customer and a Rental class, forms the initial  version of the 
well-known video store example in Martin Fowler’s refactoring book [Fow99].  This class is required to 
offer one constructor and three methods with the following signatures:
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public class Movie {
   public Movie(String title, int priceCode)
   public String getTitle()
   public int getPriceCode()
   public void setPriceCode(int priceCode)
}

Please note that  we only  presented the full  interface of this  class here in  order to facilitate  a better 
understanding.  Following  the  recommendations of Beck [Bec03],  the  XP development  cycle  would 
normally be applied iteratively, driven by the following to-do list:

 Create object with title and price code
 Retrieve title
 Retrieve price code
 Change price code

The basic idea is to define tests to check that the constructor works correctly in tandem with the retrieval 
method. This can be done by using one combined test or using a separate test for each retrieval method. 
In this example we choose the latter since it  is the more realistic for larger components. First a JUnit 
[Bec99b] test case is created for the retrieval of the movie’s title:

public void testTitleRetrieval() {
   Movie movie = new Movie("Star Wars", 0);
   assertTrue(movie.getTitle().equals("Star Wars"));
}

In practice, test cases would probably be more elaborate (for example, they might follow the principle of 
triangulation [Bec03])  but for sake of simplicity we have decided to stay with the most simple example. 
This is enough to convey the core idea.  In the next step,  a stubbed out version of the  Movie class 
(similar to the signature above) with just the constructor and the getTitle method is generated (TDD 
purists typically  use the quick fix function of Eclipse) and is made to compile. After this, the test case 
and the stub are compiled, and the test is run to verify that a red bar is obtained from JUnit.  Once the 
failure of the  test  has been checked,  the  stub is  filled  with  the  simplest  implementation  that  could 
possibly  work,  and the test is re-run until  a green bar is received from JUnit.  The to-do list  is then 
updated accordingly:

  Store title and price code
  Retrieve title 
 Retrieve price code
 Change price code

The same process is then applied to the next method on the to-do list.  First, a test case is defined to 
check the functionality of the new method in relation to the already implemented code, a new method 
stub is added to the existing version of the class and the tests are executed to check that the new one 
actually fails:
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public void testPriceRetrieval() {
   Movie movie = new Movie("Star Wars", 0);
   assertEquals(movie.getPriceCode(), 0);
}

The stub for the new method is again filled out with minimal implementation and the test is re-run until 
a green bar is received from JUnit. The to-do list is then updated again accordingly:

  Store title and price code
  Retrieve title 
  Retrieve price code
 Change price code

The last method of the class is then implemented in the same way and finally, the to-do list is completed.

6.1.2 EXTREME REUSE

As explained above, the basic idea behind our notion of agile or extreme reuse is to use test cases that are 
developed as part  of the normal  activity  of Extreme Programming  as the basis to search for suitable 
existing implementations.  However, to achieve the maximum benefit of our specification-based reuse 
approach,  it  would  be necessary  to  define  the  test  definitions  for all  methods and  thus  the  unit's 
complete interface in advance. Then, if the harvesting is successful, the only additional step would be the 
invocation  of  our  reuse  tool.  All  additional  implementation  work  usually  involved  in  building  a 
component from scratch would thus be avoided. However, this approach suffers from some drawbacks. 
First,  it  requires an unnatural  processes from the point  of view of agile  developers who are used to 
iteratively developing a unit  under test as explained in the last subsection. Thus, the full specification-
based approach is probably more suitable for an agile version of the RUP, as recommended by [Lar05], 
since the RUP recommends that a system design be created before the test cases are prepared on the basis 
of UML class diagrams. We discuss this idea in more detail in the next subsection when we will present 
an agile version of KobrA. The second issue arising in this context is the difficulty  of anticipating the 
content of the reuse repository, which has plagued all reuse approaches right from the beginning. As we 
mentioned before,  the more complex a component  becomes, the lower the probability  of finding  a 
reusable component that exactly matches its specification [Sam97].  Thus, all reuse approaches developed 
so far  include  a  negotiation  phase where the  specification  is  changed  to  conform to  the  retrieved 
candidates and/or a glue coding phase where the components are adapted to fit into the system design 
(cf. e.g. figures 2.12 and 2.14 in section 2.6).

Given our Extreme Harvesting approach and our proactive Eclipse plugin,  we are able to reduce this 
overhead  significantly  if  we  integrate  it  in  a  straightforward  manner  into  a  test-driven  process,  as 
sketched in  the last subsection.  The general idea is to provide immediate feedback on each new test 
added to the test case class. Thus, we optimized our plugin accordingly in order to support the following 
process demonstrated by means of the movie example from above. The first action where our plugin can 
intervene occurs when the developer is about to create the new test case, as shown in the figure below:
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Figure 6.1: The Eclipse plugin recommends potentially useful 
methods for MovieTest class.

The proactive search mechanism queries the Merobase index to find out whether other developers have 
created a MovieTest class before. In this case there are actually 16 results available. With a little luck, 
we might find a test case that corresponds well with our to-do list and could avoid the work of deriving 
our own test for it. Out of these 16 results, our plugin is able to derive the most often used methods and 
presents  them  as  the  first  result.  However,  the  test  methods  written  by  other  developers are  not 
particularly useful at this point.  And even a brief overview of the results presented does not reveal any 
test case that would test the functionality we require. Thus, we continue to add the first test method to 
our test case as designated in our to-do list which them makes it  possible for our plugin to generate a 
new list of recommendations. This time, it realizes that we specified functionality of another class within 
the test case and thus presents a list of Movie classes that are potentially capable (based on a syntactic 
analysis) of delivering the needed functionality as shown below:

Figure 6.2: The plugin presents reusable candidates that are 
likely to offer the required functionality.

Just another click to trigger the testing of the presented candidates delivers the following list where 
successfully tested candidates are printed in green and bold face:
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Figure 6.3: List of results that 
actually deliver the required 

functionality.

This  step  obviously  is  the  key  of  the  whole  test-driven  reuse  process.  If  no  syntactically  suitable 
candidates are found, we could change the interface of the class under test. However, the probability of 
finding a usable candidate would obviously be rather low and it  might  make more sense to focus on 
programming from scratch. Since we have actually  found a large number of matching candidates, we 
could now take advantage of the additional  information that these candidates bring along.  We could 
either create a Movie class and copy the required constructor and method from one of the candidates 
and continue with a test case for the next requirement on our to-do list or we could choose the candidate 
that seems to be closest to our to-do list and integrate it completely into our project. After all, the latter 
alternative bears the risk of significant adaptation effort since it  is not guaranteed that the interface of 
this candidate fits into the system under development and the test cases that are to be defined for it.

Thus, we believe, it makes sense to create a hybrid version of both approaches and add one test method 
at a time and let Extreme Harvesting present all candidates that successfully pass the test at each point. 
As long as there are more candidates available, another test method can be added with the interface that 
is desired for the system and the ones that are offered by the candidates. In this way,  it  is feasible to 
incrementally  add more and more functionality  to be checked to the test case until  there is either a 
number of candidates that offers the full functionality  or there are no more appropriate candidates. In 
the former case, one of the candidates can be selected to be integrated into the system and in the latter 
case, one of those candidates that was left over before the last test method was added should be chosen. It 
can be integrated into the system and the additional functionality added manually.

6.2 COMPONENT-DRIVEN DESIGN WITH KOBRA

It follows from the previous discussions that the ideal methodology for use with our Extreme Harvesting 
approach is  one which  integrates model-driven  and  component-based development  approaches and 
allows them to be applied within the context of an agile development process. Several methods claim to 
do this, such as Catalysis [Sou98],  UML Components [Che00]  or even an agile variant of the RUP, as 
described e.g.  by [Lar05],  although the latter has certainly  weaknesses in being component-based. We 
believe the method which currently  offers the cleanest integration  of these two paradigms is KobrA 
[Atk02].  The essential difference between KobrA and other mainstream methods that claim to integrate 
components and models is that  in  KobrA all  UML  diagrams (not  just  their  contents)  are organized 
around the logical components in a system. Thus, components are considered in analysis and design (at 
the level of the platform independent model or PIM)  rather than just at the implementation (i.e.  the 
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platform specific model or PSM)  level as is often the case in  other methods.  KobrA uses the three 
different perspectives we have depicted in figure 2.6 to specify the structure, functionality and behaviour 
of a component.

As long  as a  KobrA component  is  implemented  by  just  one class,  it  is  relatively  straightforward to 
translate  a  KobrA component  specification  into  a  query  for Merobase and  Extreme Harvesting.  If 
appropriate UML tools (such as Omondo or Together that can be run inside Eclipse) are used, even a 
proactive search on KobrA's structural specification (the interface of the class specified in a UML class 
diagram) becomes feasible since the tools are able to generate class stubs usable as input for Merobase 
from  their  class  diagrams.  KobrA's  behavioural  specification,  which  is  typically  captured  in  state 
diagrams, can easily  be turned into test cases (see e.g.  [Kim99]).  KobrA, in  its latest version,  aims to 
capture the functional  specification of a component in  OCL [War03].  Although at  present it  is not 
feasible to use OCL as the semantics description for our search approach, there is research underway that 
aims to executing  OCL descriptions for testing (see e.g.  [Bri01])  or derive test cases from them.  In 
summary,  a KobrA specification can be turned into an Extreme Harvesting query with relatively little 
effort and that should be automatable in the not so distant future. Moreover, this effort would usually  
have to be performed in any case in order to to finally test the component once it is implemented.

However,  as  stated  before,  KobrA defines  a  hierarchical  component  model  which  is  capable  of 
condensing a number of smaller components into a larger one. Although this is, in principle, similar to 
packages in common programming languages, packages are not sufficient to implement this idea since 
KobrA components can not only package other components, they are also facades [GoF95] at the same 
time.  Unfortunately,  the latter is not possible in today's programming languages, which makes it  very 
difficult,  if  not  impossible,  to  apply  the  KobrA component  model  to  them  in  a  simple  way  since 
important KobrA concepts are not directly supported. Although we are not aware of any work in this 
direction, we believe it should be feasible to mimic the behaviour of nested KobrA components in Java 
by means of inner classes. But this idea is not thought through yet and also comes with two important  
drawbacks. First of all, the composition of these Java classes to new components would involve copying 
subcomponents into the source code of their  parents which is fundamentally  against  the rule that  a 
component  must  be independently  deployable and furthermore it  would  make this  approach highly 
confusing after just one or two composition levels. The second problem with this approach at the present 
time is that it is not widely known, let alone widely used and thus it is not possible to find any existing 
components that adhere to this principle. Unfortunately, it is also not feasible to adapt existing packages 
of class ensembles into KobrA components as described in  section  5.6.  This would require extensive 
reverse engineering to extract the structure of the facade inherently hidden in the interfaces of the classes 
in the ensemble, and thus could only be carried out by a human.

Beyond these technical issues, the design-first approach just described is not the way in which product 
architectures are developed in  other engineering disciplines. When  developing a new product in  well 
established domains such as automobiles or computer hardware, engineers start off with a good idea of 
what kind of components are available and what kinds of architectures have been used in the past. The 
process of developing a new architecture for a new product is thus a highly iterative one, with ideas for 
possible architectures being developed hand in hand with the identification of possible components to 
realize them. Like the agile reuse approach described above, the basic process behind component-driven 
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design in  KobrA should be highly  iterative, and therefore requires a tight  feedback loop between the 
component identification and component selection activities:

1. Model pre-existing components
2. Flesh out potential first cut design, reusing already identified components wherever possible
3. Model the interfaces of any new components required in the design
4. Search for new components matching these interface
5. If perfect matches are found for all new components, use them
6. If not, repeat from (2)

Figure 6.4: Iterative component modelling process 
in KobrA.

The key ideas behind this process are illustrated in  figure  6.4.  The central part of the figure shows a 
hierarchy of components. Each component is represented as a box whose top surface is the component 
specification  and  whose  bottom  surface  is  the  component  realization.  According  to  the  KobrA 
consistency rules each subcomponent’s specification must conform to the realization of the component 
containing  it.  In  other  words  it  must  conform  to  the  containing  component’s  architecture.  The 
canonical development process is top down as indicated by the spiral arrows in the centre. However, the 
left  hand  side of the  diagram illustrates that  whenever a  desired component  specification  has been 
created, it is possible to find and integrate an existing component rather than developing a new one from 
scratch. And this is where Extreme Harvesting comes in. It is the job of the Extreme Harvesting engine 
integrated  into  the  development  tools  to  find  and  present  candidate  components  based  on  the 
component specifications and the associated test cases. It is even conceivable to use an extended version 
of our tool to find of components at runtime. The developer simply defines the syntactic and semantic 
interfaces of the required component  and the tool can search the web or a  web service registry  for 
components that match.

But the real key advance in this process, and the reason why we refer to it as component-driven design is 
that the architecture is always developed or evolved with regard to the specifications that are known to 
exist and have already been defined. As in other engineering disciplines, therefore, architects have a pallet 
of existing  components in  front  of them when developing  the architecture.  This  contrasts with  the 
situation today where architectures are first developed independently  and then an attempt is made to 
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retrieve components matching those required by the architecture. In component-driven design, feedback 
about  the  availability  of components is  provided as soon as a  potential  architecture  to  use them is 
modelled.

Large  software  repositories  such  as  the  one  that  we  created  for  Merobase  open  a  lot  of  exciting 
opportunities. One of them is the idea to derive design recommendations from commonly used elements 
found in the repository, as we described in section 5.1.5. Although this idea is not limited to KobrA per 
se, we will  explain  how to apply  it  in  the context of component-driven design within  KobrA in  the 
following subsection.

6.2.1 SUPPORTING SOFTWARE DESIGN WITH INTERFACE RECOMMENDATIONS

Assume that early in the design phase of a system the necessity of a stack data structure is recognized. At 
this point,  a developer might add a corresponding class without any further information to the system 
design to refine it later. Then, design is typically driven by interactions with other objects to define the 
interface of the stack component.  But consider a system that would be able to (actively)  recommend 
commonly  used operations of a  stack to the developer.  This  certainly  has the potential  to ease the 
development process and to reduce problems arising due to missing operation interfaces and, of course, 
it makes a giant leap towards realizing the idea of grounding a design on approved solutions. Although 
the current version is limited to unique classes, it is easily conceivable to extract dependencies as well and 
to  form more complex design  recommendations  from that.  Furthermore,  given  common code and 
design metrics such as fan-in and fan-out [Hen81]  it  should even be feasible to recognize bad designs 
and to exclude them from the recommendation process. And last but not least,  it  seems appealing to 
investigate the potential of integrating approaches that try to recognize design patterns (such as [Kel99])  
to improve the quality of the derived design suggestions.

6.3 GENERAL DESIGN GUIDELINES FOR SUCCESSFUL REUSE

Endres and Rombach [End03],  identify common object-oriented design guidelines like high cohesion, 
low coupling and encapsulation of the implementation as the prime prerequisite for successful reuse. In 
general,  it  seems reasonable to  claim  that  adherence to general  design  guides and  rules should  also 
increase the chances of creating a reusable component or of finding one. During the development of our 
approach we collected a lot  of additional  informal  knowledge that  seems to increase the chances of 
finding reusable components with Merobase and/or Extreme Harvesting.  We share this experience in 
this subsection in the form of small reuse idioms that are intended to simplify daily  work with a reuse 
system based on a large repository.

Follow  naming  conventions
It  obviously  makes sense to follow the (Java)  naming  guidelines such as using  imperative verbs for 
method names, nouns for class and attribute names etc.

Use common  data  types
Modern computer systems with a lot of cheap memory obviously made programming more convenient 
and thus some primitive data types are still widely used. According to our experience, it makes sense to 
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use  double instead  of  float (e.g.  add(double,  double):double vs.  add(float, 
float):float = 190 vs. 67 results in Merobase),  int instead of long,  short or byte (results for 
the add example from before: 920, 503, 20, 19) and String instead of char whenever this is feasible.

Use void  whenever  possible
Method calls that perform some operation on a potentially larger data structure (such as sort(int[])) 
should  return  void and  change  the  parameter  object  whenever possible  to  preserve memory,  e.g. 
quicksort(int[]):void could  be  found  140  times  with  Merobase  while 
quicksort(int[]):int[] delivers just 13 results.

Use exceptions
Exceptions should be part of the interface, i.e. they should be thrown by a method and not be handled 
internally since different users may have different requirements for exception handling.

Combine  atomic  functionality
Searching  for atomic functions is often more promising  than  searching  for complex operations.  For 
instance, components that  sort an array of integers from the largest to the smallest are rather hard to 
find, but components that sort from the smallest to the largest and provide a method to reverse the array 
are typically easy to find. Sometimes it might also make sense to split up classes if their cohesion is low 
since this has also a negative impact on their reusability.  According to our experience, reuse is currently 
much more promising if it is used as a bottom-up approach putting together very small functional units.  
Top-down reuse requires more sophisticated recommendation technologies, as we will briefly describe in 
the next section.

Search  the  least- coupled  elements  first
A guideline  which is valid  for the implementation  and testing  of components should be taken into 
account when searching for reusable components as well – namely,  move from the least-coupled to the 
most-coupled  classes as  recommended  by  [Lar05],  for  instance.  Many  problems  disappear  if  this 
guideline is followed, as for example demonstrated in the small case study described in section 7.5.
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7 EVALUATION

Computers are magnificent  tools for  the  realization  of our  dreams,
but  no  machine  can  replace  the  human  spark of spirit,  compassion,  love,  and  understanding.

-- Louis Gerstner

Empirical evaluation in software engineering has been gaining importance for many years. It has been 
recognized (e.g. by [Bas86]) as something that could bring software engineering closer to the established 
standards  of  other  engineering  disciplines.  In  the  last  few  years  empirical  evaluations  in  software 
engineering have made significant progress by for example integrating practices from the social sciences. 
However, the evaluation of software development approaches in general is still  a difficult (and perhaps 
hence also a widely  disregarded)  undertaking  that  requires a very high  degree of effort.  Reuse-based 
approaches are even more problematic in this context since it is by no means a trivial issue to assess the 
quality of software retrieval approaches as we will explain in the first part of this chapter. However, it is 
not only the effectiveness of retrieval techniques that influence the practical usability of reuse approaches, 
but also the tools, the content of the repository, the domain of application, and the underlying process, 
for example.  In other words, a lot  of variables may influence the results and it  is not always easy to 
control them. Thus, basic and innovation-oriented research is certainly still justified and necessary. This 
aligns  with  the  argumentation  of  [Nun90]  who  recommend  a  multi-level  evaluation  approach  to 
information systems research which we adopted for this thesis as explained in section 1.3. Hence, it was 
not  possible to perform full  empirical  evaluations on the developed technology  at  the present time. 
Instead we evaluate the approach by demonstrating its practical feasibility  in smaller proof of concept 
experiments and small case studies as presented below.

7.1 EVALUATION APPROACHES SO FAR

[Bae99] present two common criticisms of information retrieval (IR) research, namely the lack of a solid 
formal framework and the lack of consistent testbeds and evaluation frameworks. software engineering in 
general,  and component retrieval in  particular,  are obviously open to the same criticism. The authors 
argue that the first criticism is hard to address due to the inherent psychological subjectiveness associated 
with  information  understanding  by  humans.  Thus,  only  the second problem can currently  be acted 
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upon. Retrieval approaches for textual information retrieval are typically compared on so-called reference 
collections where queries are applied to a well-known collection of documents and the expected results 
are  determined  by  experts.  However,  until  the  so-called  TREC  (for  Text  REtrieval  Conference) 
collection with more than one million documents was established in the early 1990s, experimentation in 
information retrieval had only used small and proprietary “proof-of-concept” test collections for nearly 
thirty  years. However, for the determination of the relevant result a trick had to be applied since the 
collection is simply too large to be known completely by humans. The reference queries were created by 
experts and the list of relevant documents was actually created by selecting only the documents that were 
actually regarded as being relevant by the experts from the results delivered by various IR systems. With 
this  (imperfect)  information  it  has  become fairly  simple  to  compare  various  information  retrieval 
approaches with one another and to calculate recall and precision for them in a comparable way.

Research in software reuse, however, is still many years behind. In the first place, the notion of relevance 
is typically different compared to textual retrieval systems. While the latter focus on finding potentially 
meaningful documents in natural language, the basis for component retrieval are typically programming 
languages and their more formalized constructs. Thus, it is possible to define a much tighter definition of 
relevance in the software reuse context. In the optimal case, a component is relevant if it  matches the 
required syntactical as well as the semantic properties to 100% and thus can directly be re-used in the 
given context without any modification.  While  syntactic matching is essentially  a question of pattern 
matching,  it  is  not  guaranteed  that  a  syntactic  match  also  delivers  relevant  results  in  terms  of 
functionality.  Relevance in  textual  information  retrieval  does not  require  an  exact  syntactic  match, 
however, as there exist various ways to express the same information with natural language. Actually, this 
fact is valid for components as well, but a component will only be relevant to a developer if it adheres to 
the interface defined by him. Thus, we can extend our notion of relevance to all components that deliver 
the  required  functionality  (i.e.  match  semantically)  and  can  be  adapted  to  the  required  interface 
automatically.

Furthermore, in the component retrieval literature, there is nothing like a common reference collection 
which would allow component repositories or component discovery algorithms to be evaluated. The few 
evaluations known so far are all based on proprietary collections with merely a few hundred components 
([Fra94],  [Pod93]).  To date, only [Ino05]  has experimented on a significantly  larger component base. 
Furthermore, all three named experiments only applied one retrieval technique. Thus, they were limited 
to rather imprecise queries and were not able to provide a comparison of different techniques per se. In 
addition,  most  previous evaluation  attempts  suffer from serious  methodological  flaws that  make  it 
difficult  to transfer the results to today's  conditions.  The  relevance criterion used from the [Ino05] 
article, for instance, is not made explicit,  but it is likely that it  was merely the appearance of a specific 
term in the source code. However, the fact that we can only assume this, together with the fact that they 
used a proprietary  repository,  make it  very difficult  if  not impossible to replicate their  study.  Other 
experiments such as those performed by Ye in his Ph.D. thesis [Ye01]  to demonstrate the usefulness of 
his  CodeBroker  system suffer from additional  problems.  Due  to the  small  number  of components 
indexed in  his  prototype,  his  experimental  tasks look very much as if  they  were optimized for the 
contents of his repository. Thus, it is very difficult to judge whether his tool would have received such 
impressive appraisals in a scaled-up version in a productive environment.
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7.2 PROOF OF CONCEPT

The  background  for  our  evaluation  is  different,  however.  We  used  the  open  web  in  our  early 
investigations and now possess a repository with millions of entries that  we obviously  can no longer 
oversee manually. Moreover, older retrieval techniques are not precise enough to be used in this context. 
Thus,  as  explained  before,  we  combine  three  retrieval  techniques  to  create  our  hybrid  Extreme 
Harvesting approach.  Since we are not  aware of any  other similar  work at  the moment,  we cannot 
directly  compare our  results  with  other systems.  Thus,  the  only  reasonable approach for evaluating 
whether our approach is at least equivalent to other approaches is to demonstrate its applicability based 
on retrieval examples collected from the literature.

Another  insight  into  the  demand  for  component  searches  and  thus  a  good  source  for  retrieval 
experiments is provided by Koders.com. Like Google’s “Zeitgeist” search statistics, Koders has started to 
publish  statistics  about  the  most  requested  search  terms  for  specific  programming  languages.  For 
example, one popular request to Koders in May 2005 was for an algorithm to calculate the MD5 hash-
value for a given string. The following table gives a first impression of the capability of an early Extreme 
Harvesting prototype using three publicly available search engines as repositories. It shows that it is able 
to handle the examples of older approaches effectively.  The table presents results for various stateless 
components (i.e. just operations) that contain frequently used algorithms. The first column presents the 
method names that we used for the search, the second the signature that we entered into our system, the 
third the number of results discovered on the web from the given search engine in each case, and the last 
the literature source that provided the inspiration for the example.

Name Signature Koders Yahoo Google Source
getRandomNumber int x int: int 3 6 2 [YeF05], [Ino05]
sort int[]: void 1 12 15 Koders
reverseArray int[]: void 0 10 6 -
copyFile String: void 2 1 0 Koders
isPrime int: boolean 1 8 14 [Hal93]
sqrt double: double 2 9 5 [Pod93]
isLeapYear int: boolean 1 29 24 [YeF05]
randomString int: String 1 1 0 Koders
replace String x String: String 14 10 22 Koders
gcd int x int: int 3 68 10 [Cor01]
md5 String: String 3 1 0 Koders
quicksort String[]: void 4 3 2 [Ino05]

Table 7.1: Exemplary query results from June and July 2005.

Due to the heuristics implemented in  our first prototype,  results with  slightly  different names were 
adapted to the original signature and also accepted, like getRandomInt instead of getRandomNumber 
and  so on.  However,  no  parameter  permutation  was available  at  that  time  and  hence only  results 
according to orderings that we guessed could successfully be tested. This first proof of concept was based 
on publicly  available search engines accessible over the web. Only one of them (Koders) is a so-called 
vertical search engine focussing on source code searches. For the other two (Yahoo and Google) we used 
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the general search interface with the heuristics described in section 4.2. We were actually able to retrieve 
useful components from them, although [Yao04] still stated at that time that this would be impossible to 
do.  Additionally,  these results gave a first indication  that  our harvesting approach used with  general 
search engines (and the web) at that time performed at least as good as, if not better than the repositories 
discussed in the literature,and thus encouraged us to pursue our ideas.

We  also used this prototype to experiment  with  more complex and typically  stateful  components as 
shown in the following table. Interestingly, we were not able to retrieve a single functioning web service 
for  any  of  the  examples  from table  7.1 above and  could  only  find  a  single  web  service  for  the 
CreditCardValidator example from table 7.2 presenting some more complex examples below. This 
time, for the sake of clarity, we describe the interfaces in the form of UML class diagrams:

Component’s UML diagram Koders
(07/05)

Yahoo
(07/05)

Google
(07/05)

Merobase
(11/07)

Source

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree) 
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree) 
+height():int

BinaryTree

+BinaryTree(value:int, left:BinaryTree, right:BinaryTree) 
+height():int

0 4 7 0 [Mil98]

Stack

+push(o:Object):void
+pop():Object

6 13 33 150
[Ino05] & 
similar to 
[Zar95]

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

Matrix

+Matrix(rows:ints, cols:int)
+set(row:int, col:int, val:double):void
+get(row:int, col:int):double
+add(m:Matrix):Matrix
+sub(m:Matrix):Matrix
+mul(m:Matrix):Matrix

1 1 3 2 [Cza00]

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

CreditCardValidator

+CreditCardValidator(type:int)
+isValid(no:String):boolean

1 1 1 0 [Vit03]

Deck

+shuffle():void
+deal():Card

Deck

+shuffle():void
+deal():Card

Card

+toString():String

Card

+toString():String

0 20 17 20 [YeF05]

Table 7.2: Exemplary query examples for more complex components.

The results demonstrate that even classes and small class ensembles are delivered by our approach with 
perfect precision (as long as meaningful test cases are supplied, of course). However, it is also apparent 
that anticipating the correct interface for more complex components rapidly becomes a game of chance 
and the recall  decreases quickly.  By way of comparison with  the other search engines and our early 
prototype, we added our latest version of Merobase (with the simple interface-based harvesting) to this 
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table.  Further  examples used to  mitigate  the  issue of the  decreasing  recall  and  to  demonstrate  the 
feasibility of our signature-based, so-called “full” harvesting approach, are discussed in the next section. 
The test cases used to evaluate the more complex examples in table 7.2 above and in the tables 7.3, 7.6 
and 7.8 are listed in appendix A.

7.3 SEMANTIC RETRIEVAL

Earlier, we defined semantic component retrieval as the retrieval of assets the developer really needs and 
have found test cases are a good vehicle to describe the required functionality.  In order to achieve fast 
retrieval times we use a number of heuristics to cut down the number of candidates to be tested with our 
retrieval prototype. However, since we have demonstrated the feasibility  of a pure test-driven retrieval 
solution,  which is totally  independent  of any  (class or method)  names,  we want  to introduce some 
examples that illustrate how such a pure test-driven retrieval approach can be used to increase the recall,  
without losing precision, as long as enough processing power is available. Thus, we have extended our 
search engine to test all source classes from Merobase's index that contain the required signature. The 
permutator solution we explained in section 5.4.3 is able to work through all feasible mappings of the 
required methods to the matching methods in the candidates. For example, consider again a Stack data 
structure which is expected to have the interface shown on the left hand side below. In the pure test-
driven retrieval approach,  the  Queue on the right  hand side would  be a valid  candidate (since it  is 
possible to match each method in the Stack to a method in the Queue) and thus needs to be tested as 
part of the search process:

Stack ( Queue (
   push(Object)void    enqueueFirst(Object):void
   pop():Object    dequeue():Object
) )

The above example is not that impressive at a first glance, since a signature-based mapping would be 
totally  sufficient  in  the  cut  down version shown.  However,  the  Queue candidates found contain  a 
number of other methods such as enqueueLast(Object) or peek():Object which have the same 
signature as the required one.  Another, more impressive example is the Calculator class shown in the 
table  below.  Consider  its  sub  method  which  has  two  parameters,  namely  the  minuend  and  the 
subtrahend.  The permutator enables our system to consider methods in which the two parameters are 
contained  in  reverse order as well.  The  following  table  contains  some further  examples where this 
approach works well.  We  present the specified interface in  the first column.  Columns two and three 
compare the simple interface-based harvesting with the full  signature-based harvesting.  We  show the 
number of components that passed the test vs. the total number of candidates in each cell, e.g. for the 
interface-based harvesting of the stack, 150 components passed the test out of 692 candidates. The small 
numbers show how many candidates passed the test out of the first 10 or 100 etc.
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Query Interface-
Based 

Signature-
Based

Exemplary Result Classes 
for  Signature-Based 
Harvesting

Stack(
  push(Object):void
  pop():Object 
)

150 / 692
2 / 10

37 / 100

26 min 45 s

611 / 35,634
0 / 10
1 / 100
5 / 1000

18 h 23 min

Stack, MyStack, 
ObjectStack, 
Queue, Deque, 
List, LinkedList, 
Keller, LIFO, 
Pila, ObjectPool, 
LifoSet, 
CircularList

Calculator(
  sub(int,int):int
  add(int,int):int
  mult(int,int):int
  div(int,int):int
)

1 / 4

19 s

22 / 23,759
0 / 100

20 h 24 min

Calculator, 
CalculatorImpl, 
Moclecule, 
Arithmetic, 
SimpleMath, 
Operators

Matrix (
  Matrix(int, int)
  get(int,int): double
  set(int,int, double):void
  multiply(Matrix): Matrix
)

2 / 10

23 s

26 / 137
2 / 10
20 / 100
5 min 25 s

Matrix

ShoppingCart(
  getItemCount():int    
  getBalance():double
  addItem(Product):void
  empty():void
  removeItem(Product):void
)

4 / 4

26 s

4 / 12
2/10

47 s

ShoppingCart

Spreadsheet (
  put(String,String):void
  get(String):String
)

0 / 0

3 s

4 / 22,705
0 / 1000

15 h 13 min

Sheet, Compiler, 
Util

ComplexNumber (
  ComplexNumber(double,double)
  add(ComplexNumber):ComplexNumber
  getRealPart():double
  getImagineryPart():double
)

0 / 1

3 s

32 / 89
1 / 10

1 min 19 s

ComplexNumber
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Query Interface-
Based 

Signature-
Based

Exemplary Result Classes 
for  Signature-Based 
Harvesting

MortgageCalculator(
  setRate(double):void
  setPrincipal(double):void
  setYears(int):void
  getMontlyPayment():double
)

0 / 0

4 s

15 / 4,265
0 / 100
14 / 1000

3 h 19 min

Loan, 
LoanCalculator, 
Mortgage

Table 7.3: Comparison of interface-based and signature-based harvesting.

Since our current Lucene index structure delivers a candidate as soon as a required signature appears only 
once, it  is likely that there are actually  far fewer classes in our index that contain the signature int x 
int -> int four times as required by the Calculator example. Another challenge is highlighted by 
the Matrix example. Since Matrix appears as a parameter and return value in the required signature, 
our current index structure is not able to deliver candidates that have a different name. The increase in 
results is due to the fact that we have ignored the method names. See section 5.1.2 for a more detailed 
discussion on this issue. The ShoppingCart example demonstrates that our system is also capable of 
testing classes that  depend on other classes. However, at the time of writing,  parameter permutation 
could not be applied to these additional  classes. Furthermore, the dependency on the  Product class 
makes  to the chance of finding  similar  classes based on the signature rather small  since our current 
implementation requires an exact keyword match.

7.4 PRECISION ANALYSIS

As we pointed out in the section on information retrieval (cf. page  53),  retrieval systems are typically 
evaluated  by  assessing  their  precision  (proportion  of  relevant  documents  amongst  the  returned 
documents)  and  recall  (proportion  of returned  relevant  documents).  These two measures are  often 
related approximately inversely proportional to one another. The higher the recall the lower the precision 
and  vice  versa.  Unfortunately,  they  both  require  a  good  knowledge  of  the  underlying  document 
collection to determine their values. More specifically,  to calculate the recall an experimenter needs to 
know the number of relevant documents for a query and to calculate the precision he needs to be able to 
judge whether a retrieved document is relevant. This issue is normally solved in information retrieval by 
the use of reference collections as we explained at the beginning of this chapter.

This approach works quite nicely as long as the size of document collections remains in the order of a 
few thousand. However, the web has allowed search engines to index billions of documents so that no 
human  expert  would  ever  be  able  to  determine  all  relevant  documents  for  a  given  query.  Thus, 
calculating the recall is practically impossible for large (web) search engines (cf. [Lew07]).  Similarly, it is 
hard to estimate the precision since it  is not known how many relevant results are to be expected. As 
most users of web search engines, according to empirical  investigations, normally  investigate only the 
first 20 results, it makes sense to determine the precision up to a similar reasonable cut off value (this is 
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also a rationale why a good ranking algorithm is essential for every search engine). This value is called the 
top-20  precision by [Lew07].  These ideas can be directly  transferred to large-scale component search 
engines. [Ino05] already recognized these problems when they experimented with their ComponentRank 
approach with about 150,000  components. For our Merobase engine with a total of 10 million entries 
theses problems have become even greater.

The aim of the subsequent subsections, therefore, is to present reasonable evidence for the effectiveness 
of our component search engine in supporting the use cases introduced in section 5.1. However, since 
the library  searches that  we identified as use cases (and textual  searches as well)  are simply  based on 
keyword matching, which has been a standard technique for many years, we do not invest any time in  
evaluating these (see e.g. [Gar06] for such an example). We rather evaluate our technology for the other 
three search algorithms in the next subsections thoroughly,  starting with an evaluation of open source 
searches below.

7.4.1 EVALUATING OPEN SOURCE SEARCHES

The evaluation of open source searches is a relatively simple undertaking compared with the speculative 
and  definitive  component  searches,  which  will  follow  later.  Remember,  open  source  searches  are 
supposed to deliver the source code of a specific class from a specific open source project with as little 
effort as possible for the searcher. According to our opinion, the “projectname classname” constraint is 
the most appropriate way to submit this information to a search engine. We discussed the motivation 
and the implementation of it  in more detail  on page 87 et seq. Once it  is known that a specific open 
source project (such as Lucene) is in the index, it is straightforward to search for a specific class within it 
(e.g.  QueryParser) and to determine whether the original version is contained in the top-10 results, 
for example.  This  approach can be seen as a variant  of the so-called “known item” test defined by 
[Kan76].  It  has been used in  its  original  form to evaluate the performance of libraries in  delivering 
known books to a customer.

The  following  table  summarizes the  results  of the  experiment  which  we performed to evaluate  the 
precision in retrieving open source entities. We compared our optimized Merobase algorithm, with the 
regular Lucene algorithm and a name-based Latent Semantic Indexing [Dee90] algorithm as described in 
[Gru07]  on Merobase. Furthermore, we added Koders and Krugle, two other search engines that claim 
to index the most important open source repositories to our comparison as well.

Query Optimized
(Merobase)

Keyword
(Merobase)

LSI
(Merobase)

Koders Krugle

ant junittask 1 / 236 x / 47 x / ∞ x / 25 1 / 667

eclipse astparser 1 / 484 x / 360 x / ∞ x / 100 2 / 660

eclipse navigator 1 / 2,727 x / 2,562 x / ∞ x / 1,027 1 / 10

eclipse textelement 1 / 215 x / 147 x / ∞ 2 / 19 1 / 342

findbugs redundantbranch 1 / 17 1 / 8 x / ∞ 2 / 4 1 / 8
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Query Optimized
(Merobase)

Keyword
(Merobase)

LSI
(Merobase)

Koders Krugle

jmaki jmakicontroller 1 / 10 1 / 4 1 / ∞ 1 / 1 1 / 7

juddi registryobject 1 / 1172 1 / 1027 x / ∞ - / 9 1 / 701

junit testcase 1 / 100,809 x / 100,280 x / ∞ x / 33,616 3 / 121,254

lucene queryparser 1 / 2248 x / 983 x / ∞ x / 530 3 / 1923

opensymphony rijndael 1 / 42 1 / 2 x / ∞ 1 / 4 1 / 4

struts submitaction 1 / 86 1 / 25 x / ∞ - / 24 1 / 115

tomcat url 1 / 2,786 x / 2,446 x / ∞ x / 850 1 / 15,561
Table 7.4: Comparison of retrieval performance for open source searches on various search engines.

In front of the slash in each cell we present the position at which the first appropriate result was ranked 
by each search engine and after the slash we present the total number of delivered results. An “x” means 
that the correct candidate was not amongst the top 10 results and an “-” indicates that the project was 
not indexed by this engine at all. For the LSI algorithm we denoted an infinite number of results since 
LSI calculates the distance of each document to the query and simply delivers the document with the 
lowest distance first.  There is  no concrete threshold that  determines whether or not  a document  is 
relevant.

It is interesting that only the optimized algorithms of Krugle and Merobase, developed independently 
and roughly  at the same time as one another,  reliably  deliver the desired results amongst the highest 
ranked  candidates.  The  other algorithms  are only  able  to  come up  with  some chance hits  for not 
particularly  well-known projects where the total number of hits is apparently  much lower anyway.  As 
soon as a larger number of potential results is to be delivered, their performance totally breaks away. The 
LSI algorithm is a special case in this context.  As we also realized in other experiments, the perceived 
results  of the  LSI algorithm  in  general  are  not  bad  (considering  what  it  is  supposed to  do)  since 
candidates somehow related with the query are usually delivered first. On the other hand, however, the 
results are too general since the existing more concrete results get lost within the “noise” of somehow 
reasonable, but not actually relevant results. 

7.4.2 COMPARISON OF RETRIEVAL TECHNIQUES

To evaluate the performance of speculative and definitive searches we started with reusing the query 
examples we had collected from the literature for our proof-of-concept implementation. We performed 
these interface-driven queries again and inspected the first 25  results for each query to judge whether 
they offered the functionality  we were expecting.  Our matching criterion was that  either the required 
signature was completely contained (verbatim)  in a candidate or was contained with only a change of 
case and that  the associated JUnit  test cases were successfully passed. In other words, we applied our 
Extreme Harvesting approach as the final criterion for determining whether or not an asset was relevant.
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We performed two different experiments. First, we used our Extreme Harvesting prototype to evaluate 
the retrieval performance of various search engines on the web as shown in table 7.5. We used, to the 
best of our understanding, the most precise queries for achieving interface-based retrieval for each search 
engine.  We limited our comparison to the three component search engines shown in the table below 
since only  they offered an API for programmatic  access. We  evaluated how they compared with  the 
general web search versions of Google and Yahoo enhanced with special filetype constraints (as explained 
in  section  4.2)  to  better  retrieve software components.  In  total,  we searched for twelve functional 
abstractions in the first part of the experiment.

Query Google Yahoo GCS Koders Merobase

copyFile(String, String): 
void

1 / 25 2 / 25 7 / 25 0 / 25 18 / 25

gcd(int,int):int 10 / 25 7 / 25 12 / 25 2 / 25 17 / 25

isLeapYear(int):boolean 8 / 25 12 / 25 3 / 25 2 / 25 14 / 25

md5(String):String 0 / 25 0 / 25 4 / 22 0 / 25 12 / 25

isPrime(int):boolean 6 / 25 15 / 25 7 / 25 4 / 25 5 / 25

randomNumber(int, 
int):int

0 / 25 3 / 25 2 / 7 0 / 7 14 / 25

randomString(int):String 4 / 25 2 / 25 6 / 25 4 / 16 5 / 25

replace(String, String, 
String):String

2 / 25 8 / 25 14 / 25 3 / 25 22 / 25

reverseArray(int[]):int[] 1 / 10 3 / 23 1 / 1 0 / 4 5 / 7

sort(int[]):int[] 0 / 25 0 / 25 5 / 20 0 / 25 20 / 25

sqrt(double):double 5 / 25 4 / 25 4 / 25 1 / 25 11 / 25

getMinMax(int[]):int[] 0 / 15 0 / 22 0 / 0 0 / 25 2 / 4

Average Precision 12.8% 18.4% 32.0% 6.1% 56.1%

Standard Deviation 13.7% 19.7% 26.1% 8.1% 21.5%

Table 7.5: Comparison of code search engines performed on stateless operations.

We then calculated the mean value and the standard deviation of each engine’s precision. Furthermore, 
we performed t-tests for  α = 0.05  to measure the statistical difference of the results. Only  the results 
provided by Merobase show a significant improvement over those of other engines. Google Codesearch 
(GCS) is also significantly better than Koders, but all other pairwise comparisons reveal no statistically 
significant difference. It is interesting that the general versions of Google and Yahoo even seem to deliver 
more precise results for code searches than the specialized engine of Koders. However, we believe that 
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this can be explained by the different expressiveness of the queries that can be used with the different 
search engines.  We  will  back this up with  more evidence in  the next paragraph where we compare 
interface-driven retrieval with other methods.

For table  7.5 above we merely  used simple stateless operations, but to get a better impression of the 
performance of the engines when dealing  with full-fledged objects, we repeated the same experiment 
with the following collection.  However, as we (and the literature)  assume the likelihood of correctly 
guessing the interface of an object decreases with its complexity  and thus, not too much significance 
should be placed on the results since positive matches only occur when the correct interface is found.

Query Google Yahoo GCS Koders Merobase
Account (
  deposit(double):void
  withdraw(double):void
  getBalance():double
)

1 / 21 7 / 25 8 / 25 0 / 25 6 / 25

Article (
  setId(int):void
  setName(String):void
  setPrice(double):void
  getId():int
  getName():String
  getPrice():double
)

0 / 1 0 / 2 0 / 2 0 / 0 4 / 4

Calculator (
  add(int,int):int
  subtract(int,int):int
  mult(int,int):int
  divide(int,int):int
)

0 / 2 1 / 5 0 / 0 0 / 0 1 / 4

ComplexNumber (
  add(ComplexNumber):ComplexNumber
  getRealPart():double
  getImaginaryPart():double
)

2 / 25 0 / 3 0 / 2 0 / 1 0 / 1

Customer (
  setAddress(String):void
  getAddress():String
)

3 / 25 5 / 25 1 / 25 1 / 25 13 / 25

Die (
  roll():void
  getFaceValue():int
)

7 / 25 7 / 25 3 / 3 0 / 0 2 / 4

Document (
  Document(String,String,String)
  getAuthor():String
  getTitle():String
)

0 / 25 0 / 25 0 / 21 0 / 8 0 / 25
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Query Google Yahoo GCS Koders Merobase
Matrix (
  Matrix(int,int)
  set(int,int,double):void
  get(int,int):double
  multiply(Matrix):Matrix
)

0 / 25 0 / 25 0 / 6 0 / 25 2 / 10

Movie (
  Movie(String,int)
  getTitle():String
)

1 / 25 3 / 25 1 / 25 2 / 9 15 / 25

Sort (
  quickSort(int[]):void
)

0 / 25 3 / 25 11 / 25 0 / 25 5 / 16

Spreadsheet (
  put(String,String):void
  get(String):String
)

0 / 22 0 / 25 0 / 0 0 / 0 0 / 0

Stack (
  push(Object):void
  pop():Object 
)

2 / 25 4 / 25 0 / 25 6 / 25 5 / 25

Average Precision 5.4% 11.3% 15.3% 4.2% 31.9%

Standard Deviation 8.2% 11.2% 30.4% 8.9% 29.6%

Table 7.6: Comparison of search engines with small exemplary components.
 

The results in table 7.6 confirm the intuitive assumption of [Sam97] that the complexity of a component 
has a significant influence on its precision and recall (at least as long as no sophisticated tool support is 
available as we demonstrated in  section  7.3).  For instance,  complex components such as Matrix  or 
Spreadsheet are noteworthy since there are no returned candidates. Compared to the operations from 
table  7.5 the  overall  precision  values drop by  nearly  20%.  According  to a  t-test  for  α  = 0.05  the 
difference in the Merobase examples is even statistically significant. The difference between the values in 
this table is thus not  as clear as before. Although the results indicate that  Merobase has the highest 
precision  again,  the  difference  is  statistically  significant  only  to  Koders  and  mainstream  Google. 
Compared with Yahoo and Google Codesearch the difference is not significant this time.

The second experiment was an academic comparison of the four retrieval techniques and the associated 
representation methods as introduced in section 3.2.11. Table 7.7 presents the results of our experiment, 
this time performed completely  on the data pool of Merobase with various retrieval techniques. The 
experimental process is identical to the one summarized in the paragraph above. We compared interface-
driven search capabilities with pure signature matching and with simple keyword-based searches in two 
distinct forms. Namely, our “speculative”algorithm which tries to guess the functionality of a component 
by placing special emphasis on some keywords and a name-based algorithm which is able to constrain 
searches to method and class names (similar to the capabilities that Krugle and Koders offer). In addition 
to the precision for the first 25 values as used before, we also show the total number of results delivered 
by a retrieval technique italicized in each cell.
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Query signature 
matching

speculative
keyword
matching

name-
based

interface-
driven

copyFile(String, String):void 0 / 25
63,904

3 / 25
3,023

16 / 25
3,305

18 / 25
315

gcd(int,int):int 0 / 25
21,690

20 / 25
1,752

11 / 25
1,998

17 / 25
523

isLeapYear(int):boolean 0 / 25
38,967

9 / 25
467

7 / 25
563

14 / 25
280

md5(String):String 0 / 25
131,281

0 / 25
447

0 / 25
515

12 / 25
55

isPrime(int):boolean 0 / 25
38,967

4 / 25
724

5 / 25
872

5 / 25
357

randomNumber(int, int):int 0 / 25
21,690

0 / 25
553

0 / 25
607

14 / 25
31

randomString(int):String 0 / 25
120,997

4 / 25
370

6 / 25
155

5 / 25
72

replace(String, String, String):String 1 / 25
7,775

6 / 25
81,840

0 / 25
92,385

22 / 25
1473

reverseArray(int[]):int[] 0 / 25
1,848

0 / 25
90

2 / 25
93

5 / 7
7

sort(int[]):int[] 1 / 25
1,848

0 / 25
60,246

0 / 25
67,669

20 / 25
68

sqrt(double):double 0 / 25
12,285

2 / 25
25,430

4 / 25
30,583

11 / 25
258

getMinMax(int[]):int[] 1 / 25
1,848

2 / 25
289

2 / 25
298

2 / 4
4

Average Precision 1.0% 16.7% 17.7% 56.1%

Standard Deviation 1.8% 22.8% 20.1% 21.5 %

Table 7.7: Comparison of retrieval techniques on stateless operations.

We also performed statistical t-tests for α = 0.05  on these results and found all  pairwise comparisons 
significantly different, except for speculative vs. name-based. We also ran the same experiments with the 
more complex components that we used before. These results are shown in the following table.

Query signature 
matching

speculative
keyword
matching

name-
based

interface-
driven

Account (
  deposit(double):void
  withdraw(double):void
  getBalance():double
)

0 / 25
12,245

6 / 25
556

5 / 25
1,104

6 / 25
93
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Query signature 
matching

speculative
keyword
matching

name-
based

interface-
driven

Article (
  setId(int):void
  setName(String):void
  setPrice(double):void
  getId():int
  getName():String
  getPrice():double
)

0 / 25
4,166

4 / 5
5

4 / 5
5

4 / 4
4

Calculator (
  add(int,int):int
  subtract(int,int):int
  mult(int,int):int
  divide(int,int):int
)

1 / 25
1,283

1 / 12
12

1 / 12
12

1 / 4
4

ComplexNumber (
  add(ComplexNumber):ComplexNumber
  getRealPart():double
  getImaginaryPart():double
)

0 / 25
1,285

0 / 1
1

0 / 1
1

0 / 1
1

Customer (
  setAddress(String):void
  getAddress():String
)

0 / 25
1,552

6 / 25
410

6 / 25
425

13 / 25
54

Die (
  roll():void
  getFaceValue():int
)

0 / 25
198,365

19 / 25
63

22 / 25
115

2 / 4
4

Document (
  Document(String,String,String)
  getAuthor():String
  getTitle():String
)

0 / 25
3,892

0 / 25
332

0 / 25
337

0 / 25
25

Matrix (
  Matrix(int,int)
  set(int,int,double):void
  get(int,int):double
  multiply(Matrix):Matrix
)

0 / 25
73

0 / 25
551

0 / 25
803

2 / 10
10

Movie (
  Movie(String,int)
  getTitle():String
)

0 / 25
11,396

12 / 25
264

10 / 25
318

15 / 25
29

Sort (
  quickSort(int[]):void
)

0 / 25
11,826

0 / 25
2,692

0 / 25
2,824

5 / 16
16

Spreadsheet (
  put(String,String):void
  get(String):String
)

0 / 25
22,153

0 / 25
244

0 / 25
295

0 / 0
0
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Query signature 
matching

speculative
keyword
matching

name-
based

interface-
driven

Stack (
  push(Object):void
  pop():Object 
)

0 / 25
33,844

2 / 25
11,505

0 / 25
20,641

5 / 25
692

Average Precision 0.3% 22.4% 21.7% 31.9%

Standard Deviation 1.2% 29.8% 31.8% 29.6%

Table 7.8: Comparison of retrieval techniques.

The  differences in  this  table  are not  significant  for  α  = 0.05  between the  last  three columns (i.e. 
speculative,  name-based and  interface-based).  However,  they  all  are  significantly  different  from the 
results for signature matching in  the first column.  The results for the  Die example are of particular 
interest  –  indeed,  they  are amazing  at  a  first  glance.  The  interface-based searches deliver  only  four 
potentially  matching candidates while a name-based search delivers 22 positively tested candidates that 
should have the same interface, of course. The answer for this little paradox is simple. Only a few of the 
results have a roll method that actually returns void. Most of the candidates return an int, which is 
of course recognized and excluded by the interface-based search algorithm, but is accepted by the Java 
compiler and ignored by the test case.

When  combined,  the  above comparisons  of  retrieval  techniques  demonstrate  that  interface-driven 
searches are usually  better than plain keyword-based queries in terms of suggesting candidates that are 
likely to also be semantically appropriate. However, the latter tend to lose some of their advantage when 
components become more complex, which is, of course, understandable since the more information a 
interface contains, the more descriptive text can be used for the weaker retrieval techniques and the less 
false positives they  will  return.  Furthermore,  these results also explain  why Koders tends to be even 
weaker than the general versions of Google and Yahoo where interface-driven searches can be simulated 
to a certain extent. Koders merely implements a very simple text-based algorithm that could not compete 
with the more sophisticated approaches of the other engines.

However, despite the promising results shown in these experiments, the overall precision values remain 
roughly between 30 and 60 percent and given the fact that sometimes thousands of useless candidates are 
returned a further increase in the precision is urgently required. This is another clear hint to use a final 
semantic  assessment of the candidates as integrated in  our Extreme Harvesting  approach.  However, 
another important requirement for precise searches in the practical use of large-scale component search 
engines are so-called  search constraints  that  allow queries to  be constrained  to a  given language  or 
component type as is common in most web search engines today.  Otherwise, the results in the above 
experiments would certainly have been worse.

To summarize, the results in this subsection support three of the assumptions that we postulated earlier 
on.  First of all,  they underline that  we are actually  on the right  track by combining various retrieval 
techniques from the literature to increase the precision of the overall retrieval approach used on today's 
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large component collections. Second, it is also important to incorporate not only one, but a number of 
representation methods (as introduced in  section  3.1.1)  to focus the retrieval algorithms on the right 
programming language or component type, for instance. And third, the experiments have shown that the 
more complex a component becomes the lower the chances for a “lucky guess” of its interface become 
and the greater the need for an approach with increased recall  such as that  based on signature-based 
harvesting as introduced in section 7.3.

7.5 CASE STUDY

Finding a good case study for a reuse system such as our Merobase Eclipse plugin is another problematic 
task since on the one hand it  has to be general enough to contain some reusable elements, and on the 
other hand it needs to be specific enough to go beyond the level of simple data structures. Since we want 
to  demonstrate  our  approach embedded  in  a  test-driven  development  context,  we  studied  popular 
literature in  this area.  However, this was not  very helpful  since some books such as [Fow99]  are so 
popular  that  that  their  code examples can be found on the web hundredfold.  Other books such as 
[Bec03]  only contain extremely simple examples, or examples that are so specific they never made their 
way on the web as in [Bec99].  Luckily,  we finally  found the book by [Wak02]  that develops a simple 
search system for bibliographic data as a running example. The following four classes comprise its initial 
“design”.

Figure 7.1: Initial design of Wake's running example.

In the following, the system is developed in a fully test-driven manner. In other words, Wake starts with 
the definition of tests and derives the interfaces of the classes from them. Since all other classes depend 
on the Document class, it makes sense to define the following simple unit test for the Document class 
first.
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public class DocumentTest extends TestCase {
  public void testDocument() {
    Document d = new Document("a", "t", "y");
    assertEquals("a", d.getAuthor());
    assertEquals("t", d.getTitle());
    assertEquals("y", d.getYear());
  }
}

In a classic TDD approach a developer would then create a Document class, add an empty constructor 
with three String parameters and the three empty getter methods. Our Merobase plugin makes this 
step much easier.  As soon as we have created the test case shown above in  a project,  it  suggests two 
Document classes that are likely to comply with the unit test, at least syntactically. And a few moments 
later,  it  will  have tested them (remotely  on the secured server environment)  and found that  the first 
result also passes the test as shown in the following picture:

Figure 7.2: Screenshot of the Eclipse plugin recommending a Document class.

A double click on the StringDocument class copies its source code into the current project and after 
renaming  it  to  Document,  removing  the  superfluous  Document  interface and  commenting  out  a 
method that  relies on the  Query class, our candidate is properly  integrated into our project.  In the 
future, these steps should happen automatically, of course. The next step is executing our test case locally 
on the candidate to ensure that we have integrated it correctly, which will lead to a green test result from 
JUnit.
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Wake then starts to define the semantics of the Result class with the following test case, which returns 
a total of twelve syntactically matching candidates, one of which actually passes the test.

public class ResultTest extends TestCase {
  public void testEmptyResult() {
    Result r = new Result();
    assertEquals (0, r.getCount());
  }

    }

We  repeat  the process from above by  double clicking  on the result  to integrate it  into the project,  
performing  some minor  manual  adaptations and  executing  the unit  test locally.  Since this  is  passed 
without problem, we can continue by adding the next unit test proposed by Wake for the ResultTest 
class:

public void testResultWithTwoDocuments() {
   Document d1 = new Document("a1", "t1", "y1");
   Document d2 = new Document("a2", "t2", "y2");
   Result r = new Result(new Document[]{d1, d2});
   assertEquals (2, r.getCount());
   assertTrue(r.getItem(0) == d1);
   assertTrue(r.getItem(1) == d2);

}

To make  sure  the  newly  delivered  Result and  the  Document classes from  before are  correctly 
integrated, we execute the test case once more and again receive a green bar from JUnit.  We are now 
ready to continue with the Query class by starting with a test case as follows:

public class QueryTest extends TestCase {
  public void testSimpleQuery() {
    Query q = new Query("test");
    assertEquals("test", q.getValue());
  }
}

This results in 5 syntactically matching candidates proposed by our plugin, one of which passes the test. 
We integrate it  into our project as before and run the test case locally  to ensure it  actually  works as 
expected. The Searcher class is the next to be considered. Wake defines the following test case for it.
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public class SearcherTest extends TestCase {
  public void testEmptyCollection() {
    Searcher searcher = new Searcher();
    Result r = searcher.find(new Query("any"));
    assertEquals(0, r.getCount());
  }
}

Unfortunately, this time, the compilation service on the Merobase server is not able to resolve the various 
dependencies contained in  the four Searcher candidates that match syntactically  and thus we have to 
inspect these classes manually to assess whether or not we can use one of them. In fact, one of the classes 
can be adapted with about five or six minor changes so that we finally receive a green bar for this test 
case. At this point we have harvested an initial version of all four classes required for Wake's system. 

Wake's example implementation in the book contains only the absolute minimum code that enables it to 
pass the unit  tests. However, the code harvested in our case study obviously is not some intermediate 
implementation, but a more sophisticated version. Consequently, it should be able to pass the additional 
test cases that Wake creates to cover the rest of his implementation. We added them to the appropriate 
test  classes and  executed  them  to  see whether  all  functionality  was implemented  correctly  by  the 
harvested files. After re-adding the method that was commented out earlier in the Document class and 
including two constructors that were commented out in the downloaded version of the Document and 
the Result class, we were in fact able to run all JUnit test cases successfully as shown in the following 
figure:

Figure 7.3: Screenshot of the final local JUnit test run.

In  total,  we  needed  only  about  ten  minutes  to  find  all  four  classes that  fully  implemented  the 
functionality defined in Wake's test cases, while programming it would have certainly taken more than 
an hour. Thus, although this small case study is somewhat artificial, it demonstrates the high potential of 
the approach and suggests that further analysis of its usability in industrial environment are warranted.
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8 RELATED WORK

If I have  seen  further  it is by standing  on the  shoulders of giants.
-- Isaac Newton

In earlier parts of this thesis we introduced the seminal retrieval techniques that paved the ground for our 
work, and described other relevant research projects and prototypes that have been developed over the 
last decade. We reported on all related work that is fundamental to the understanding of this dissertation 
or that was used for the purposes of comparison. In this chapter we summarize the latest developments 
in the software reuse community with a special focus on working systems that aim to component-based 
software reuse. The study of the advantages and disadvantages of these systems provided many valuable 
insights used in the development of Extreme Harvesting and the associated prototype. Wee are currently 
not aware of any system that has the same capabilities as that developed for this dissertation:  Extreme 
Harvesting is to our knowledge the only  practically  implemented component retrieval approach that 
offers support for queries with  linguistic  and syntactic  filtering  steps and a semantic  assessment that 
assures a high degree of component suitability,  i.e.  precision. On the other hand, the idea of using the 
web as a source for reusable components, as documented in the next subsection, was not new when we 
started our research.  However, as we shall  also see, where attempted it  has not been developed to a 
practically usable technology.

8.1 COMPONENT SEARCH ON THE INTERNET

As mentioned earlier,  component search on the Internet was neglected by researchers for quite a long 
time. Even in 2004, some researchers still publicly stated that a web search for components would not be 
feasible at  all  [Yao04].  Hence,  we are currently  only  aware of one research project that  has tried to 
discover components from the web with  the help of a search engine.  And only  recently  have some 
commercial  approaches came up trying  to utilize the large amounts of source code available on the 
Internet. We will present a brief outline of these developments in this section. We begin by providing a 
more detailed discussion of the so-called Agora system, already mentioned a few times before.
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8.1.1 AGORA

Robert Seacord and his colleagues at the Software Engineering Institute (SEI) were the first researchers to 
publish substantial work on utilizing the web as a source for software components. Already back in 1998,  
they published their work about Agora, a system that was designed to use introspection mechanisms for 
identifying  and  retrieving  JavaBeans12 and  CORBA components  from  the  web.  At  that  time  the 
AltaVista.com search engine  distributed  the  AltaVista  Search  Developer's  Kit,  which  offered search 
engine capabilities like indexing and searching with a C++ API. Seacord and colleagues used this to set 
up their own component repository filled by agents that crawled the web for specific component types. 
The agents typically  searched the web with the help of the AltaVista search engine for their respective 
component  type.  If  they  discovered  a  suitable  component,  they  used  mechanisms  such  as  Java 
introspection to extract interface information from the component and sent it  to the index server that 
stored it in the index. This index was connected to a so-called query server, which in turn was connected 
to a web server that was responsible for forwarding the user's queries to the query server and returning 
results to the user's web browser. We would probably call  this a 3-tier architecture today.  Figure  8.1 
depicts it graphically.

Figure 8.1: Agora's architecture, taken from [Sea98].

The  figure  shows three kinds  of components that  were planned  for the  system,  namely  JavaBeans, 
CORBA and ActiveX. In practice, however, significant success could only be achieved for JavaBeans. 
According to [Sea98],  the retrieval of CORBA components raised a lot of problems and the developers 

12The authors carelessly intermingle the terms JavaBeans and Java applets in their article and so far as 
we are able to make out  only worked with Java applets that are embedded in web pages. 
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ended up recommending  that  the OMG adapt  CORBA significantly  to make it  suitable for Agora. 
Similarly, the ActiveX agent never made it beyond the prototype stage.

The major drawback of the Agora idea (at least at that time) was the additional layer of complexity of the 
index server that the developers imposed on their system. As they reported, filling the index server with 
components was a major performance bottleneck and allowed only about 800 JavaBeans to be indexed in 
24 hours, even with a cluster of crawlers. Given that around 150,000 Java applets that were available on 
the web at that time through the AltaVista search engine, it would have taken more than half a year to 
add all these applets to Agora's index. Unfortunately, the authors did not reveal how many applets they 
had actually indexed, but some other numbers they presented indicate that it was in the order of just a 
few thousand.  Thus,  the  Agora  experiment  has  to  be  regarded  as  a  failure  due  to  the  ambitious 
architecture that could not be implemented with the hard- and software resources available at that time.

8.1.2 WEB-BASED COMPONENT & CODE SEARCH

About ten years after Agora, the high potential for - component retrieval from the Internet, and thus of 
this dissertation, was underlined by the fact that a large number of component search engines emerged 
during the time that this dissertation work was performed. These various engines all reinforced the belief 
that the repository problem could now be regarded as solved since they all collected a significant number 
of components, sometimes in the millions. Details on the size of the most important search engines has 
already  been presented in  section  4.1.1.  However, most of them are still  limited  to rather primitive 
keyword-based query  algorithms and thus demonstrated that  the retrieval problem still  has not been 
solved in  general.  Furthermore,  since most  of these engines are commercial,  there is  only  minimal  
information about their internal structure and implementation. However, since the research of this thesis 
has triggered  the  development  of Merobase,  one of the  most  advanced  component  search engines 
available today,  we refer the reader to section  4.3 for a more detailed description of how this can be 
done.

In  addition  to  our  Merobase search  engine  and  the  three  other  important  search  engines  already 
discussed in section 4.1.1, a large number of other code search engines has appeared on the world wide 
web in the last two or three years. We surveyed them in summer 2007 and give a brief summary of their 
most  important  features  in  the  following  table.  Since  interface-based  driven  and  signature-driven 
searches are obviously not that simple to support, some of the search engines introduced a new retrieval 
technique allowing certain constraints to be defined on class and method names. In chapter 7, we have 
called this  name- based  searches and also assessed their  capability  in  comparison to the other retrieval 
techniques.

URL Languages Size Java Files Sources Search Types Constraints
Merobase.com 5 (+ 43 by 

GCS)
> 10 M  8 M CVS

SVN
HTTP

1) keyword
2) name-based
3) sign. matching
4) interface-based
5) spec.-based

form, type, kind, 
namespace, project, 
url, host, license, 
lictype, name, method

krugle.com 43 > 10 M 3.5 M CVS 1) keyword language, project, 
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URL Languages Size Java Files Sources Search Types Constraints
SVN 2) name-based filename, site, classdef, 

functiondef, 
functioncall, 
comment, code, file 
extensions 

google.com/codesearch 46 > 10 M 2.5 M CVS
SVN
HTTP

1) keyword
2) regex

lang, file, package, 
license 

koders.com 32 > 1 M 600 k CVS
SVN

1) keyword
2) name-based

lang, licence, cdef, 
mdef, idef, file

codase.com 3 < 1 M 300 k CVS 1) keyword
2) name-based
3) interface-based

lang, project

codefetch.com 22 < 100 k < 100 k Books 1) keyword lang

csourcesearch.net 2 1 M 0 CVS 1) keyword
2) name-based

various code elements

labs.oreilly.com/code 25 100 k 15 k Books 1) keyword cat, isbn, author, 
pubyear, chapter

ucodit.com 2 > 100 k > 100 k SVN 1) keyword
2) name-based

-

mine8.ics.uci.edu:
8080/sourcerer2/search/i
ndex.jsp 

1 250 k 250 k CVS 1) keyword
2) topological

comments

demo.spars.info 2 > 300 k 300 k CVS 1) keyword
2) name-based

-

planetsourcecode.com 11 < 100 k < 50 k uploaded 1) keyword lang, category, code 
type, code difficulty 
level 

yahoo.com
(originfileextension:java) 

all > 10 M > 500 k HTTP 1) keyword
2) name-based

url, site, title

componentsource.com 8 > 1000 > 100 proprietary 1) keyword -

Table 8.1: Overview of recent code search engines.

As the  table  illustrates,  the  vast majority  of code search engines available  today  are still  limited  to 
primitive keyword matching retrieval techniques. Furthermore, most of them are limited to components 
from CVS or SVN repositories, with only Merobase and Google Codesearch including content from 
version control repositories and the open web in their indices. We have also listed the regular versions of 
Google and Yahoo as well as the component broker componentsource.com to facilitate comparison. It is 
interesting to mention that – according to our experiments in section  7 – the two general style search 
engines have a  higher  potential  in  terms of precision  than  most  specialized search engines if  their 
undocumented features are well exploited.
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In addition  to the search engines just  presented,  there are some other even more specialized search 
engines available on the web focussing on the so-called library searches we introduced in section 5.1.3. 
For the sake of completeness, we present an overview of them and a comparison with Merobase in the 
subsequent table.

URL JAR Files Class Files
Merobase.com n.a.  4 M

jarhoo.com 10 k 500 k

jarfinder.com n.a. 250 k

whatjar.net not functioning as of 11/2007
Table 8.2: Overview of search engines offering library searches.

As the table demonstrates our collection in Merobase is the largest collection of class files retrieved from 
JAR libraries and is about eight times larger than the closest competitor.

8.1.3 WEB 2.0 TECHNOLOGIES

The recent Web 2.0  hype has also left it  mark  on software reuse. However, although Web 2.0  was 
originally regarded as the precursor to the Semantic Web [Ber01],  the term Web 2.0 in widespread use 
today goes back to a definition by Tim O'Reilly [ORe05]  and merely covers techniques that allow users 
to influence the content available on the web, e.g. wikis, blogs, tagging etc. However, the idea that users 
should be able to edit web pages (similar to what we would call a wiki today) was already contained in 
Tim Berners Lee's original vision for the “Web 1.0” [Ber99].  Nevertheless, community-driven websites 
based on the ideas of today's Web 2.0 have become widely available (e.g. del.icio.us etc.).

The emergence of similar community  sites could be observed in  the software engineering community  
recently  (such  as planetsource.com).  Sites  that  offer users the  possibility  to  upload,  comment  and 
sometimes tag source code or source code snippets can be considered as collaborative reuse or at least 
knowledge sharing platforms. Even some of the main code search engines (such as Krugle) are offering 
commenting capabilities at the time of writing. However, currently there is few, if any, scientific data on 
how useful these “gimmicks” really are in the context of component search. We are only aware of one 
paper  where tagging  was investigated  as an  additional  data  layer  for component  searches [Van07].  
Interestingly,  the authors describe that  the high upfront effort involved in  adding tags to their small 
database of a few hundred classes did not lead to any significant improvements in search quality. Rather,  
the search results were worse than those achieved with simple keyword-based searches. Since source code 
(or components) contain much more structural information than plain web pages, we assume that it is 
highly  questionable  whether techniques like  tagging  are applicable  in  this  context.  Perhaps,  tagging 
might  be useful for component management in  closed developer teams, but for open repositories we 
expect tagging to experience the same problems as other linguistic approaches (see e.g.  [Fur87]).  The 
only thing we can say for sure at this time is that Web 2.0 technologies for component reuse still require 
a lot of research to determine whether they will be able to increase component search efficiency.
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8.2 OTHER REUSE TOOLS

Since the idea of software reuse has been around for almost four decades there have been many attempts 
to create viable reuse technologies including the implementation of various reuse tools. The number of 
such tools reported in the literature so date is probably in three digits. As a result, there is almost no idea 
related to software reuse that has not been tried out in one tool or another. It is clearly too much to 
discuss each of these tools in the scope of this thesis but below we discuss the ones whose ideas have been 
most influential for this thesis and simultaneously hope to provide a reasonable overview of the state of 
the art. Unfortunately, most of these tools are not available for testing today, as since they either are not 
working with today technology, require complicated configuration or even worse are just not available 
any more. As a consequence, it is only possible to summarize information from the literature and not to 
compare these tools in action.

8.2.1 CODEBROKER

The CodeBroker system was developed by Yunwen Ye in his Ph.D. dissertation [Ye01] at the University 
of Colorado. It is certainly  one of the most influential  and interesting works concerned with software 
reuse in recent years and is documented by the numerous papers that have been published about it since 
the year 2000.  Just recently a summary article [YeF05] appeared in the Journal of Automated Software 
Engineering.  Admittedly,  the main objective of Ye's work was not to develop a new reuse or retrieval 
mechanism, but rather to explore a new way of presenting potential reuse candidates to developers. Ye 
distinguishes two fundamentally contrary ways of getting information, the first one is information access, 
which is the classical “pull” approach where a user is actively browsing or searching for information, i.e. 
the  system is  reactive.  The  second approach is  called  information  delivery  and  is  based on "push" 
technology  which  monitors  the  activities  of  users  and  offers corresponding  information  which  it 
considers useful in this context. Such systems are called proactive .

Although  this  proactive  approach  is  very  interesting,  Ye's  implementation  is  targeted  to  Emacs,  a 
standard Unix text-editor, and not integrated into a modern IDE such as Eclipse. Furthermore, Ye only 
used a small repository with just a few hundred assets and performed no empirical evaluation. His results 
can only be regarded as anecdotal since he only had five subjects that tested his system and considered it 
useful. Furthermore, we believe it is very unlikely that the CodeBroker system would be able to scale up 
to repositories with millions of assets since its underlying retrieval technique is based on Latent Semantic 
Indexing [Dee90],  which is well known to be effective in “understanding” natural language, but is also 
require high processing power. A further disadvantage is the need for developers to perform so-called 
“active  commenting”  (i.e.  the  developer  has  to  explain  what  he  wants  to  implement  in  extensive 
comments)  of the  class under  development,  which  is  required  to  provide  the  system with  enough 
information to be able to find potential reuse candidates.

8.2.2 RASCAL
The most remarkable feature of RASCAL, a recommender agent for “agile reuse” developed by McCarey 
et al.  at the University College in Dublin [McC07],  is in fact that it  tries to combine reuse with agile 
development, two ideas that at first sight inherently contradict each other. McCarey et al. suggest a way 
of promoting  reuse in  agile  development  through  so-called  “software recommendation” technology, 
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which  is  similar  to  CodeBroker.  However,  their  “agile  reuse” tool  is  an  Eclipse plugin  which  uses 
collaborative and content-based filtering techniques [Bae99]  to proactively suggest method invocations 
to developers. It does this by attempting to cluster Java objects according to the methods they use, just as 
Amazon, for example, clusters its customers according to the books they buy. The tool monitors method 
invocations in the class currently under development to predict method calls that are likely to be needed 
soon and suggests them to the developer. To evaluate their system the authors experimentally predicted 
invocations of the Java Swing  Library  in  common open source systems and claim  precision rates of 
around 30% for this setting.  Although RASCAL showed good performance for the limited domain of 
Swing invocations, it is not clear whether this technique would work for other domains with many more 
classes that have much lower usage frequencies and how the system will scale up in general. 

8.2.3 CODEGENIE

Up until  very recently  we were not aware of any approach coming close to the sophistication of our 
Extreme Harvesting technology. Although this is probably still the case, a group from the University of 
California  working  on the Sourcerer search engine (which is also contained in  table  8.1 and briefly 
discussed in section 8.3) has presented an approach very similar to our Extreme Harvesting idea. They 
have called their  tool CodeGenie and  refer to their  approach as Test-Driven Code Search (TDCS).  
Unfortunately, only an extended abstract [Lem07] and some videos on it are available so far. As far as we 
can tell from that, they are following a similar approach to us as demonstrated by the following figure:

Figure 8.2: Process of a test-driven code search in CodeGenie.

CodeGenie is also an Eclipse plugin that generates a code query for Sourcerer out of a given test case. As 
far as we can judge, the developer then is able to inspect the delivered candidates (that are not yet tested 
automatically at that point) and to “weave” them into to the project under development. Once this has 
worked out, the project can be tested in the normal Eclipse environment to see whether the candidate 
fits into the project. It is also possible to “unweave” results again in order to integrate another candidate 
into the project.  This approach obviously  still  requires a lot  of human intervention and has not yet 
reached the degree of automation of Extreme Harvesting, but nevertheless it demonstrates the utility  of 
test-driven reuse from another perspective.

8.2.4 AND MORE...
Since  reuse  research  has  a  tradition  of  almost  forty  years  and  almost  each  approach  has  been 
accompanied by a prototypical implementation,  there are dozens of other descriptions available in the 
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literature.  However,  none of these tools has made a  big  impact  in  the  reuse community  or is  still 
available for testing today, let alone being in practical use somewhere. Most of these prototypes merely 
used  simple  information-retrieval  methods  and  relied  on  extracting  textual  information  from  the 
components.  Michail  and Notkin  [Mic99]  have been worked with identifier (i.e.  class and function) 
names to  find  similar  components.  Di  Felice  and  Fonzi  [Fel98]  and  Maarek  et  al.  [Maa91]  both 
developed a system which used the documentation of a component to automatically  construct a reuse 
repository.  Scott Henninger developed CodeFinder for his Ph.D.  thesis [Hen93]  at the University  of 
Colorado in the early 1990s and used a hybrid technique. He emphasized query formulation and thus 
supported  queries  with  reformulation  as  also described  by  [Fis89]  for  the  general  retrieval  system 
Helgon.  Inspired by [Moz84],  Henninger used a retrieval algorithm based on the idea of spreading 
activation  in  AI applications.  The  publications  by  Rittri  [Rit89]  and  Zaremski  and  Wing,  already 
discussed  in  section  3.2.6,  also  developed  prototypical  systems  that  used  signature  matching  for 
component retrieval. Another text-based retrieval prototype called ROSA was developed by Giradi and 
Ibrahim [Gir94].  Gomes et al. extended their so-called ReBuilder system with case-based reasoning based 
on a WordNet dictionary to reuse design patterns [Gom03]. The group of Silvio Meira in Brazil recently 
also  put  significant  effort  into  the  development  of  a  reuse  repository  and  accompanying  plugin. 
However,  their  current  Maracatu  system supports only  faceted (i.e.  components can be searched by 
platform,  component  type  and  component  model)  and  keyword-based  searches.  We  regard  the 
significance of the experiments described in  [Gar06]  as rather low since their repository was small (< 
5,000  classes)  and  their  relevance  criterion  was  simply  –  as  far  as  we  found  out  in  personal 
communication – the appearance of the search term or similar words in the delivered candidates.

Besides CodeBroker and RASCAL, which he have already explained in a separate subsection above, some 
other proactive recommendation tools have been recently presented in the literature. We have already 
briefly mentioned the work of Mandelin et al. [Man05]  who created Prospector, an Eclipse plugin which 
is able generate a chain of required method calls in order to come to a desired return type from a given 
set of input parameter types. This can be particularly helpful for understanding complicated APIs such as 
the one of Eclipse more quickly. Holmes et al. [Hol06] followed a similar approach when they developed 
their Strathcona tool, which is also implemented as an Eclipse plugin that recommends helpful method 
execution  chains derived for frameworks in  its index.  According to the evaluations presented in  the 
publications, both tools perform well in this task as long as proprietary frameworks are used and it  is 
certainly an interesting question whether this approach could be scaled to an open component collection. 
In addition to many tools surveyed in  this section,  a countless number of other less influential  tools 
exists, but can not be mentioned any more for brevity.  However, some other reuse tools deserve our 
attention because of their innovative ranking approaches and thus we explain them in more detail in the 
next section.

8.3 RESULT RANKING

All search engines, whether for code or for normal web pages, invariably  try  to rank the results that 
match a given query in order to offer the best results first. When potentially hundreds or even thousands 
of functionally matching components can be retrieved for a query it is of particular importance to order 
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these candidates to provide the ones with the best quality  first. Mili  et al.  [Mil98]  categorized ranking 
approaches as a topological retrieval method in their survey (explained in section 3.2.9). Unfortunately, 
relatively  little  work has been performed in  this  area so far,  perhaps because there is no commonly 
accepted and  easily  obtainable notation  for measuring  the “distance” between components.  Another 
rationale  for this  is not  surprising  at  all:  for the relatively  small  repositories utilized in  the past the 
ranking of results was simply not necessary. 

Some obvious approaches have been proposed in the literature in the past, but none of them reached a 
degree of maturity  that would have made it usable in practice. Our literature survey and analyses have 
revealed  approaches  in  the  following  three  categories.  As we  briefly  discussed  in  section  3.2.10 
component ranking could be based on:

1. quality of service
2. popularity
3. distance to the query

Substantial work has only been performed for the second category in the context of component retrieval. 
The so-called ComponentRank approach of Inoue et al. [Ino05], based on the indirect measure of usage 
counting,  has experienced significant attention in this area so far. The authors developed the so-called 
SPARS-J system which could be seen as the first serious attempt to construct a scalable reuse repository.  
SPARS-J uses a simple text-based retrieval approach and comprises about 180,000 components, i.e. Java 
classes in this case. Compared to earlier works in  this area, this represents major progress in terms of 
repository  size and  has made  the  need  for a  ranking  approach  apparent.  The  authors  drew some 
inspiration from PageRank [Pag98],  which is the Google's way of ranking web pages and developed the 
ComponentRank  algorithm by analogy.  According to the Mili  survey [Mil98]  on retrieval techniques, 
the underlying  information retrieval approach has a rather average level of precision and the authors 
argue that a ranking algorithm could remedy this issue. The idea is to rank the components according to 
their popularity, i.e. components which are used often by other components should appear highest in the 
list of results. Furthermore, components that have a higher ComponentRank (CR)  than others have a 
higher impact on the calculation of the CR of the components they use than the ones with a lower CR. 
This relationship is stored in a directed (and weighted) graph as shown in figure 8.3 below.

Figure 8.3: Representation of a system as a directed graph for 
ComponentRank [Ino05].
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A node represents a component while an edge stands for a use relation. Relations considered by SPARS-J 
are:

 class inheritance
 interface implementation
 abstract class implementation
 variable declaration
 instance creation
 field access
 method invocation

A node  v  in  the graph is assigned a non-negative weight  w(v)  with  0  <= w(v)  <= 1.  The rank of a 
component is derived from its weight. The higher the weight, the higher the rank. The weight of a node 
v i is calculated by summing up the weight of all incoming edges:

An edge's weight is given by the following formula:

d ij  is the so-called distribution ratio, i.e. a simple factor to distribute the weight of a node to its outgoing 
edges. Initially,  all  node weights are set to an arbitrary value and the weights are iteratively computed 
until they converge. Further details about the computation can be found in [Ino05].

SPARS-J is one of the few academic reuse repositories which has an accessible prototype on the web 
(http://demo.spars.info).  The authors have performed evaluations of their system in which it  performs 
well  in  comparison with  general search engines such as Google.  However, their  experimental  design 
contains some serious flaws since for example the relevance criterion is not made explicit  and thus a 
replication of this experiment is made impossible. Furthermore, ComponentRank faces another inherent 
problem which is neither sufficiently  investigated nor solved in  their  publications. While  the original 
PageRank is based on URLs (i.e.  Uniform Resource Locators),  which are unique,  Java classes are not 
necessarily  unique.  ComponentRank  therefore requires a reliable mechanism to identify  components 
since a repository can contain copies or various versions of the same component. While  this might be 
possible with a few carefully selected version control repositories and source files, it becomes impossible 
as soon as binary  files or components from the open web or automatically  crawled repositories are 
included. Thus, ComponentRank is not likely to be applicable for comprehensive and diverse content of 
the kind stored in Merobase. The absence of this distinction between closeness of match and ranking is 
obviously another weakness of the ComponentRank algorithm,  which tries to compensate for a rather 
weak  name-based  matching  by  incorporating  the  popularity  of  a  result.  However,  this  approach 
obviously  does not overcome the problems of weak matching since even a very popular result  might 
simply not be the right one for a query.
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The Sourcerer system [Baj06]  is another academic component search engine recently developed at the 
University of California in Irvine. It also has a special focus on the ranking and it tries to combine three 
values  for  it,  namely  the  TFIDF  (term  frequency  inverse  document  frequency  [Bae99],  i.e.  the 
importance of the query term in a document) values delivered from Lucene, a so-called CodeRank value 
similar to ComponentRank and some other special heuristics. Unfortunately, at the time of writing, no 
detailed information was available.
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9 EPILOGUE

The  best way  to predict  the  future  is to invent  it.
-- Alan Kay

9.1 SUMMARY

The central goal of this thesis was to deliver a solution for semantic software component retrieval that 
supports the vision of KobrA [Atk02]  to select a component from a repository according to a given 
specification. At the beginning of our work we performed a thorough investigation of the state of the art 
in component- and service-based software reuse and whether and how it is integrated into mainstream 
development processes. We found a vast number of approaches that focussed on the idea of reusing pre-
produced components in other development projects. However, none of them delivered a useful solution 
in practice,and none of them demonstrated how a potentially functioning solution would be integrated 
into common development processes. Our extensive literature survey revealed the following four major 
challenges for a practically usable component reuse solution:

1. The repository problem
2. The representation problem
3. The retrieval problem
4. The usability problem

Most  approaches so far only  deal  with  one or two of these problems and  consequently  have never 
reached a degree of maturity that would have satisfied practical demands.

Within  the scope of this  thesis,  however,  we developed a reuse system that  tackles all  of the above 
problems. It is based on a repository of almost 10 million components, which is more than a thousand 
times larger than any repositories available at the time when this thesis was started in  2004.  It offers 
sophisticated component descriptions based on fields that allow a high-quality (pre-)selection of reusable 
candidates in typically under 5 seconds. The final assessment of fitness for purpose is performed with the 
help of our new operational retrieval approach based on standard unit tests. We have integrated a client 
for this repository into the well-known Eclipse development environment where it runs transparently in 
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the background and is able to generate queries from class stubs or even directly from unit  tests. In the 
case of test-driven development, our system is able to propose fully tested and thus reusable candidates 
about minute after a test case has been specified by the developer.

Additionally,  we have found,  investigated and optimized a number of further use cases to address this 
issue. Finally,  an evaluation of our ideas and a survey of related works published in the last four years 
round off the description of the work performed in the context of this thesis. The following subsection 
lists the contributions of this dissertation in more detail.

9.1.1 CONTRIBUTIONS

Based on the open issues in the area of component-based reuse which we identified in the first chapter, 
this subsection presents the general contributions and steps-forward that we were able to make within 
the  scope of  this  dissertation  to  improve the  state  of the  art  in  component-based  software  reuse. 
Referring  to  the  quote  of Carma  McClure  [McC97]  that  we cited  in  the  first  chapter,  we briefly 
summarize our contributions in an abstract way before we give a more detailed discussion in the second 
part of this subsection. McClure identified the following three areas where progress is necessary to come 
to a practically usable reuse solution:

1. Something to reuse
We  have shown that  it  is feasible to use the Internet or version control repositories of large 
companies as a source for software components. On top of this,  early  trials proved that  it  is 
indeed possible to use general web search engines to retrieve components with surprisingly good 
precision. From the sources collected during these investigations we were able to build one of 
the largest software repositories currently available containing more than 10 million entries and 
to carry out efficient searches on it with the help of the open source text search engine Lucene.

2. Software tool set
Recent  research has proposed that  effective reuse tools should  be seamlessly  integrated into 
development environments and recommend potentially  reusable components pro-actively,  i.e. 
without requiring the developer to issue searches manually.  Consequently,  we have built a pro-
active plugin for the well-known Eclipse IDE that automatically  extracting queries from class 
stubs or  even test  cases under  development  and  presents reusable  candidates  unprompted. 
Furthermore, we have developed another recommendation algorithm which is able to derive 
commonly  used  operations  related  to  a  search  term  and  thus  could  be  used  to  support 
developers as early as during software design.

3. Software process
Most software development processes in the past did not care about reuse at all or if they did,  
they only  delivered very vague guidelines on how to reuse. Our thesis proposes a test-driven 
reuse approach to  reuse called  Extreme Harvesting  which  is  easily  applicable  in  most  agile 
development methodologies and even in  test-first variants of the RUP,  KobrA or most other 
modern development processes.
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During our work we have identified another gap in the state of the art, namely, that the performance of 
component retrieval techniques has only been weakly investigated. Thus, we were also able to make a 
contribution in the area of evaluating reuse repositories:

4. Retrieval Evaluation
We have carried out a precision analysis of various component retrieval techniques based on a 
component specification comprising interface and test cases. This involved 4 million Java source 
components and revealed that some well established older techniques are no longer usable on 
such large repositories. On the other hand, we were able to show that interface-based retrieval 
could be used as a time-saving replacement for a specification-based approach such as Extreme 
Harvesting.

Furthermore,  we have transferred older  ideas such as signature matching  to Java and  other modern 
object-oriented languages for the first time and have defined an innovative data representation format 
that allows fast interface-based component retrieval and signature matching with common text retrieval 
systems such as Lucerne. To fully implement our Extreme Harvesting vision we have implemented a set 
of innovative algorithms such as a parser that extracts the interface of the class under test from JUnit test 
cases and a fully automated testing system that is purely signature based. In other words, it completely 
ignores class and  method names and  furthermore is  able  to permute  through  all  possible  “wirings” 
during the process of adapter creation until  it finds a working solution. Since the classic Gang of Four 
adapter pattern is not sufficient for adapters that require the adapted class itself as a parameter, we also 
developed our so-called managed adapter that solves this problem and makes the automated creation of 
adapters for reusable components feasible.

Thus,  in  summary,  we have developed a specification-based reuse system based on one of the largest 
reuse repositories so far in existence that is fully integrated into a modern development environment. We 
have shown that it has the potential to support reuse and thus to accelerate software development. The 
optimal hosting process for our approach is a test-driven development process (like most agile processes) 
since,  according to our results,  unit  tests are a perfectly  good starting point  for component retrieval. 
Admittedly, one small limitation remains, we are not yet able to fully implement the vision of the KobrA 
development method which proposes hierarchically (de-)composable components. However, this is due 
to  the  current  generation  of  programming  languages  since  none  of  them  contains  sufficient  for 
components.

9.2 FUTURE WORK

Extreme Harvesting is a highly successful proof of concept and opens up a whole lot of further research 
perspectives. We have shown that the idea is applicable for Java and web services, and see no reason why 
it  should not be transferable to most other common programming  languages. The most challenging 
question, however, is whether and how larger components or component ensembles can be retrieved. As 
we pointed out in section  5.6, current programming languages only support classes and packages, but 
not the concept of a component as envisaged e.g. by KobrA [Atk02].  Thus, currently,  the discovery of 
“super-components” as a collection of smaller components typically  requires a detailed specification of 
each of the smaller components until a description at the level of atomic units of the used programming 
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language is attained. This, of course, defeats most of the benefits of component-based development, but 
it  is questionable whether it  will  become possible to reach a higher abstraction level with the current 
generation of programming languages. However, it is certainly also interesting to find whether there are 
any heuristics that would make it feasible to recognize cohesive component ensembles automatically.

Another part of our Extreme Harvesting approach that has the potential to be improved is the usage of 
linguistic  elements (such as class and method names) for the initial  result  population.  Although the 
search algorithms proposed in  this  thesis are very precise they  are likely  to be optimizable with  e.g. 
synonyms or hypernyms optimized on programming in the case that few or no results are found for the 
initial  request. However, this problem has been plaguing general information retrieval systems for years 
and to our experience, naively adding synonyms as search terms quickly  leads to an explosion in  the 
number of results and normally makes them unusable. We believe that a special thesaurus for names of 
software entities and a special decomposition of composite names (e.g. IsACourseToBeScheduled) might 
be more promising. However, first evaluations in this direction performed in the context of this thesis 
are quite disappointing [Gru07] and rather indicate that a splitting of composite class and method names 
might only become useful when combined with interface-driven searches or Extreme Harvesting. Thus, 
one goal for the near future should be the discovery of the optimal mix of heuristics that delivers an 
acceptable amount of tested results within a reasonable period of time.

In [Hum05c]  we have already discussed the idea of using Extreme Harvesting as a source for back-to-
back testing [Vou90] and n-version programming approaches [Avi95] where different versions no longer 
have to be laboriously developed but can be harvested from the web. The application of our repository to 
improve effort  estimation  approaches such as COCOMO  [Boe00]  also seems to  be a  feasible  and 
interesting option.

From a practical point of view, there are other obvious ways of improving the Merobase system. We are 
already working on a more responsive version of our back-end system, which is able to index changes in 
a software repository in  (near)  real-time.  A fast and syntax-aware search system as developed for this 
thesis is also likely to become a valuable extension for web service composition environments as currently 
promoted by SAP (Netweaver Composition Environment)  and other companies. And certainly,  to be 
able to assess the efficiency of our approach under practical conditions, the controlled application of our 
technology in an industrial setting is also desirable.

9.3 CONCLUDING VISION

Since testing  still  is (and  will  certainly  remain  for some time to come) the only  means by  which a 
software component can be judged as “fit for purpose”, we believe that,  together with our test-driven 
reuse approach, it  can become the central driver for component and service markets in  the mid-term 
future. Thus, our basic idea is to integrate the ability of testing components into standard software search 
brokers, as we have done it  with Merobase. As well as delivering components that syntactically  match 
users’ queries, search engines enhanced in this way will also be able to execute tests on the user's behalf. 
In contrast with current testing approaches, however, a new form of “blind testing” is required to protect 
the interests of component providers and users in a commercial brokerage scenario. Thus, we propose a 
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form of testing in which the user is only provided with an indication of whether a test was passed or 
failed by a trusted broker, but not with the results generated by the component in the event of a failure 
[Hum06b].  Furthermore, it is important that the expected result of a test submitted by the user is also 
not disclosed to the component under test since it could otherwise be used to return spoofed results. The 
search engines in our vision thus acts as the trusted broker or mediator between component providers 
and users.

Since the overall effect is it to allow potential users to test components with minimal knowledge about 
them as black boxes, we refer to the overall model as black box brokerage (BBB). From the point of view 
of a component provider, a black-box broker is little  different from a standard component repository 
such  as a  UDDI  repository.  The  difference is  that  the  component  provider  must  provide  all  the 
information  and  content  required  to  actually  execute  the  component.  In  the  case of  a  standard, 
embeddable component, such as a source code module (e.g. class) or a non-source component (e.g. Java 
Byte  Code  or  .NET  module)  this  means that  the  executable  (or  compilable)  description  must  be 
provided. In the case of an online service, such as a web service, this means that a suitable account must 
be created and all necessary access keys provided. From the point of view of potential component users, 
the only difference between a black box broker and a normal component search engine is that once a 
component of interest has been identified (usually via a normal syntactic search), the user can supply one 
or more test cases, which the broker will apply to the component on the user’s behalf. In the ideal case, a 
search could even be test-driven as we have developed it in this thesis.

Although the idea is simple, there are some significant challenges to be overcome in its implementation 
as we discussed in more detail in [Hum06b].  In a nutshell,  these problems are the creation of a secure 
and  efficient  testing  environment  and  an  adapter  that  is  capable  of mapping  a  user's  test  cases to 
components with  potentially  different interfaces. However, these problems have already  largely  been 
solved within our test-driven reuse approach and thus it seems feasible to integrate both these approaches 
with relatively little effort. It appears feasible to offer a systems that recommends open source and even 
commercial  components that  are guaranteed to work without  violating the interests of the respective 
component owners in the near future. The research conducted for this dissertation has paved the way to 
create component markets that are able to offer tested components appropriate for a given task without 
any  additional  effort  for  developers and  without  the  risk  to  component  producers of  having  the 
functionality exploited without payment.
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APPENDIX A: TEST CASES

This appendix contains the JUnit  [Bec99b]  test cases, used to perform the semantic evaluation of the 
examples in tables 7.2, 7.3, 7.6 and 7.8, in alphabetical order.

public class AccountTest extends TestCase
public void testDeposit()
{

Account a = new Account();
a.deposit(32.33);
assertEquals(32.33, a.getBalance(), 0.005);

}

public void testWithdrawal()
{

Account a = new Account();
a.deposit(32.33);
a.withdraw(20.20);
assertEquals(12.13, a.getBalance(), 0.005);

}
}

public class ArticleTest extends TestCase {       
public void testArticle() {

Article art = new Article();
art.setId(12345);
art.setName("Navigator");
art.setPrice(299.99);
assertEquals(art.getId(), 12345);
assertEquals(art.getName(), "Navigator");
assertEquals(art.getPrice(), 299.99);

}
}

public class BinaryTreeTest extends TestCase {
public void testTree() throws Throwable {

BinaryTree bt = new BinaryTree(42);
assertTrue(bt.contains(42));

}
}
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public class CalculatorTest extends TestCase {
private Calculator c;

public void setUp() {
c = new Calculator();

}

public void testSub() {
Calculator c = new Calculator();
assertEquals(-1, c.sub(4,5));

}
        

public void testAdd() {
Calculator c = new Calculator();
assertEquals(9, c.add(4,5));

}

public void testMul() {
Calculator c = new Calculator();
assertEquals(20, c.mul(4,5));

}
        

public void testDiv() {
Calculator c = new Calculator();
assertEquals(3, c.div(9,3));

}  
}

public class ComplexNumberTest extends TestCase {
public void testAdd() {

ComplexNumber z1 = new ComplexNumber(1.0, 1.0);
ComplexNumber z2 = new ComplexNumber(1.0, 1.0);
ComplexNumber z3 = z1.add(z2);
assertEquals(2.0, z3.getRealPart());
assertEquals(2.0, z3.getImaginaryPart());

}
}

[http://www.cafeaulait.org
/slides/ad2006/testdriven/Test_Driven_Development_with_JUnit.html]

public class CreditCardValidatorTest extends TestCase {
public void testCardNumber() {

CreditCardValidator ccv = new CreditCardValidator();
assertTrue(ccv.isValid("4123456789012349"));
assertFalse(ccv.isValid("0000")); 

}
}

public class CustomerTest extends TestCase {       
public void testCustomer() {

Customer c = new Customer();
c.setAddress("Baker Street 210");
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assertEquals(c.getAddress(), "Baker Street 210");
}

}

public class DeckTest extends TestCase {
public void testAll() throws Throwable {

Deck deck = new Deck();

Card card1 = deck.dealCard();
Card card2 = deck.dealCard();
assertTrue(card1 != card2);

           
deck.shuffle();
Card card3 = deck.dealCard();
assertTrue(card1 != card3 || card2 != card3);

assertTrue( card1.toString().endsWith("Spades")
|| card1.toString().endsWith("Clubs")
|| card1.toString().endsWith("Hearts")
|| card1.toString().endsWith("Diamonds") );

        }
}

public class DieTest extends TestCase {
public void testRoll() {

Die die = new Die( );
for (int i = 0; i < 100; i++) {

die.roll();
boolean result = die.getFaceValue() > 0

&& die.getFaceValue() <= 6;
      assertTrue("Face value out of range", result);

}
}

public void testRandom() {
Die die1 = new Die( );
int [] count = new int [7];
for (int i = 0; i < 12000; i++) {

die1.roll();
count[die1.getFaceValue()]++;

}
for (int i = 1; i <= 6; i++) {

assertTrue("Non-random outcome "+i+" = "+count[i],
count[i] > 1900 && count[i] < 2100);

}
}

}

[http://www.cs.vassar.edu/~cs335/Testing/DieTest.java]

public class DocumentTest extends TestCase {
public void testDocument() {

Document d = new Document("a", "t", "y");
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assertEquals("a", d.getAuthor());
assertEquals("t", d.getTitle());

}
}

[Wak02]

public class MatrixTest extends TestCase {
Matrix matrix, matrix2, matrix3;

 public void testMatrix() throws Throwable {
     matrix  = new Matrix(2, 2);

matrix2 = new Matrix(2, 3);
matrix3 = new Matrix(3, 2);

        
matrix.set(0, 1, 42.0);
assertEquals(matrix.get(0, 1), 42.0);

matrix3.set(0, 0, 1.0);
matrix3.set(0, 1, 2.0);
matrix3.set(1, 0, 2.0);
matrix3.set(1, 1, 3.0);
matrix3.set(2, 0, 1.0);
matrix3.set(2, 1, 4.0);

matrix2.set(0, 0, 1.0);
matrix2.set(0, 1, 2.0);
matrix2.set(0, 2, 3.0);
matrix2.set(1, 0, 3.0);
matrix2.set(1, 1, 2.0);
matrix2.set(1, 2, 1.0);

matrix2 = matrix3.multiply(matrix2);             
assertEquals(matrix2.get(0, 0), 7.0, 0.1);
assertEquals(matrix2.get(1, 1), 10.0, 0.1);
assertEquals(matrix2.get(2, 1), 10.0);
assertEquals(matrix2.get(2, 0), 13.0); 

        }
}

public class MortgageCalculatorTest extends TestCase {
public void testMortgage() {

MortgageCalculator mc = new MortgageCalculator();
mc.setRate(6.0);
mc.setYears(1);
mc.setPrincipal(100.0);
assertEquals(8.61, mc.getMonthlyPayment(),0.5);

}
}

public class MovieTest extends TestCase {       
public void testTitleRetrieval() {

Movie movie = new Movie("Star Wars", 0);
assertEquals(movie.getTitle(), "Star Wars");
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}
}

[Fow99]

public class ShoppingCartTest extends TestCase {
private ShoppingCart cart;
private Product book1;

protected void setUp() {
cart = new ShoppingCart();
book1 = new Product("Pragmatic Unit Testing", 29.95);
cart.addItem(book1);

    }

public void testEmpty() {
cart.empty();
assertEquals(0, cart.getItemCount());

}

public void testAddItem() {
Product book2 = new Product("Pragmatic Project Automation", 29.95);
cart.addItem(book2);
double expectedBalance = book1.getPrice() + book2.getPrice();

 
assertEquals(expectedBalance, cart.getBalance(), 0.0);
assertEquals(2, cart.getItemCount());

    }

    public void testRemoveItem()  {
cart.removeItem(book1);
assertEquals(0, cart.getItemCount());

    }
}

[http://clarkware.com/articles/JUnitPrimer.html]

public class SortTest extends TestCase {
public void testSort() {

int[] odd = {8, 2, 3, 1, 24, 13, 5, 4};
int[] sorted = {1, 2, 3, 4, 5, 8, 13, 24};
Sort s = new Sort();
s.quickSort(odd);
for (int i=0;i<odd.length;i++)

assertEquals(odd[i], sorted[i]);
}

}

public class SpreadsheetTest extends TestCase {
public void testCellReference() {

Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "=A1");
assertEquals("5", sheet.get("A2"));
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}

public void testCellChangePropagates() {
Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "=A1");
sheet.put("A1", "10");
assertEquals("10", sheet.get("A2"));

}

public void testFormulaCalculation() {
Spreadsheet sheet = new Spreadsheet();
sheet.put("A1", "5");
sheet.put("A2", "2");
sheet.put("B1", "=A1*(A1-A2)+A2/3");
assertEquals("15", sheet.get("B1"));

}
}

[http://today.java.net/lpt/a/69]

public class StackTest extends TestCase {
public void testAll() throws Throwable {

Stack stack = new Stack();
stack.push((Object)"Lassie");
stack.push((Object)"Fury");
stack.pop();
stack.push((Object)"Flipper");
stack.push((Object)"Fury");

                
assertEquals(stack.pop(), (Object)"Fury");
assertEquals(stack.pop(), (Object)"Flipper");
assertEquals(stack.pop(), (Object)"Lassie"); 

}
}
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It‘s not  the  pace  of life  that  concerns  me,  it‘s the  sudden  stop at the  end.

-- Unknown


