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1. Introduction

1.1. Motivation

Nowadays, managers are forced to excel competition on a global scale. Efficient
business processes have become a basic requirement to meet this goal. However,
the design of efficient business processes and the improvement of existing ones is a
difficult task that regularly overburdens human intuition. This is especially true
in the field of logistics and supply chain management (SCM) where the global
integration of economies, the advances in information and communication tech-
nologies and increasing customer demands drive the complexity of information,
material, and cash flows that require coordination.

In order to streamline and optimize business processes, the scientific field op-
erations research (OR) has developed quantitative approaches since the 1950s.
The application of these approaches by industry is nowadays greatly facilitated
through the dispersion of advanced planning systems (APS, see Fleischmann
and Meyr (2003)). APS integrate data retrieval and management services with
quantitative OR planning methods. They can propose optimal or high-quality
decisions used in strategic, tactical and operational supply chain planning, e.g.,
when the optimal strategic network configuration, safety stock allocation, trans-
port plans or lot-sizes are being searched for. As a result, supply chain planners
acknowledge the value of quantitative OR planning approaches as essential tools
which support decision making processes.

Classical OR approaches encompass, e.g., using the simplex method for solv-
ing linear programs or designing branch and bound or dynamic programming
algorithms for solving mixed-integer linear programs, see Hillier and Lieber-
man (2005). Gradient-based root-finding algorithms like the Newton-Raphson
method, see (Judd (1998)) solve certain continuous, non-linear optimization prob-
lems.

However, the complexity of planning problems that companies face today results
in a complicated interplay of conditions under which decision alternatives are
optimal. When classical OR approaches are used to solve such problems, in-depth
problem-specific knowledge is required in order to avoid in-acceptable runtimes of
these algorithms. But, problem-specific knowledge that reduces the combinatorial
complexity successfully is often hard to obtain in an appropriate time-span.

Moreover, many real world problems are non-linear, dynamic and uncertain.
Economies of scale in production or distribution systems or capacity pooling
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effects result in non-linear cost. In order to approximate such problems using
(mixed) integer programming solution techniques, non-linear functions require
linearization. Linearized problems are hard to solve due to additional integer
variabled and resulting combinatorial complexity, in effect the negative impact
of linearization on the runtime of classical approaches can easily rule out its use.
Classical root-finding algorithms for non-linear optimization can only be applied
to a very limited set of problems. They are mislead by local optima, outliers and
noise and can not be applied if the required derivatives of the objective function
can not be obtained in closed analytical form.

In order to overcome the drawbacks of classical OR methods, OR has broad-
ened its scope significantly and nowadays also embraces a multitude of heuristic
approaches for problem solving, see Michalewicz and Fogel (2004) for an intro-
ductory review. The goal is to develope efficient methods that are capable of
obtaining high-quality solutions in an acceptable timeframe, thereby relaxing the
necessity to find an optimal solution but an approximation thereof.

Evolutionary computation (EC, see Eiben and Smith (2007)) is a prominent class
of heuristic search methods. EC puts forward algorithms that are inspired by bi-
ological principles like survival of the fittest, mutation of genes, recombination
and genotype-phenotype mappings. A phenotype is the outward appearance of
an actual solution to a problem in the real world. A genotype is a formaliza-
tion of this solution encoded on by a string of characters (bits, integer values or
real numbers) of certain length. The more prominent evolutionary algorithms
are genetic algorithms (GA, see Holland (1975) and Goldberg (1989)), evolution
strategies (ES, see Rechenberg (1973)) or estimation of distribution algorithms
(EDA, Miihlenbein and Paafi (1996)). Evolutionary algorithms (EA) have suc-
cessfully enlarged the class of planning problems that can nowadays be solved
efficiently, see, e.g., Giacobini et al. (2007) and Cotta and van Hemert (2007).

This thesis centers around the analysis, design and application of estimation of
distribution algorithms. They are a novel, rapidly developing branch of EC.
What differentiates EDA from other meta heuristics is their means to generate
candidate solutions to an optimization problem at hand.

Typically, classical and evolutionary optimization algorithms are hand-tailored
towards a specific optimization problem. As a result, they resort to a fixed bias
towards solutions that exhibit desired properties. This bias is hard-coded into the
variation operators used to construct candidate solutions. The intention is that
the algorithm is able to solve a specific problem reliably and efficiently. It is obvi-
ous that the application of such problem-specific methods to a different planning
problem is problematic. For a different problem, the algorithm might generate
worse results because its search bias might not fit the structure of the problem.
This might result in emphasizing problem features that, although superior in one
problem, are inferior in others.
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EDA work differently. They have been specifically designed for black box opti-
mization (BBO). In BBO, the inner mechanics, the structure, and the underlying
business processes of an optimization problem are hidden from the optimization
routine. The only information that can be exploited by the optimizer is a qual-
ity measure that is assigned to candidate solutions and a genoytpe-phenotype
mapping.

BBO problems arise, if the objective function is not given in closed analytical
form. This is frequently the case, if the quality of a solution is estimated from
runs of a simulation model. Furthermore, BBO can be a reasonable course of
action if some information on the problem is available, e.g., an exact formulation
of a convex hull that surrounds all feasible solutions in a mixed-integer linear
program. Still, this information might not be sufficient to allow the formulation
of a strategy that traverses the search space efficiently and finds the optimum.
Additional structural information on the interplay and dependencies between
decision variables might be required.

EDA contain built-in learning facilities that intent to extract such structural in-
formation from the black box and exploit it during the optimization run. The
basic EDA paradigm is discussed in the following. Most evolutionary algorithms
involve stochastic elements like randomly generated initial solutions or modifica-
tion steps that are applied with a certain probability. As a result, the solutions
that they generate can be regarded as a random sample path in the search space.
This sample follows a probability distribution that is implicitly coded into the
variation operators.

EDA make the use of a sampling distribution explicit. They employ a proba-
bility distribution which holds for solution components the probability of their
appearance in high quality solutions. The distribution is sampled to generate
candidate solutions. It is important to note that the distribution is rebuilt it-
eratively during an EDA run. As the search focuses on high-quality regions of
the search space, it propagates elements that are required for solutions to be
superior. This is achieved by assigning these components a higher probability.
Conversely, low-quality components vanish as they receive a low probability of
being sampled. The probability distribution is the major source of variation.
It adapts itself towards superior structural elements during optimization. This
renders EDA particularly useful for black box optimization.

Up to now, the majority of published material on EDA for discrete optimization
is of technical nature, focuses on theoretical aspects and has largely been pub-
lished in machine-learning and/or EC-theory outlets. Amongst the theoretical
concepts that have been developed in this regard are tools that help to analyze
the interactions between decision variables in optimization problems. Analysis of
problems from logistics by means of these concepts should provide valuable in-
sights into the problems’ structure. However, a transfer of these methodological
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concepts into the problem domain logistics and SCM has not been pursued, yet.

Furthermore, the application of discrete EDA to problems of logistics and sup-
ply chain management is tempting. An application of EDA appears fruitful if
the problem considered is non-linear and thus hard to tackle using standard
approaches. Furthermore, as EDA and other EA are designed for BBO, it is
interesting to study problems where the mainstream solution approaches are
hand-tailored towards specific classes or instances of the problem. Efficient BBO
algorithms like EDA might substantially reduce the cost of algorithm design and
adaptation. Yet, albeit the fact that state-of-the-art EDA are matured problem
solvers, applications of EDA in logistics and SCM are rare (if existent at all).

Moreover, the very first EDA have been developed for combinatorial discrete
BBO. Motivated by successful results in this domain, the EDA paradigm has
been transferred into the continuous domain as well. It was noted though, that
a direct adaptation of the EDA principles to continuous spaces does not directly
lead to successful results. In fact, initial continuous EDA were unable to solve
simple optimization problems that were tractable for hill-climbers.

Note, that in contrast to the discrete domain, most published work on continuous
EDA is experimental. It is necessary to derive sound theoretical insights into the
optimization behavior of continuous EDA. Such formal results are not available.
Although these results are interesting on their own behalf, the major goal must
be to exploit the insights and design more efficient continuous EDA. Along this
line, it is of special importance to build up an understanding what differentiates
discrete and continuous problems from an EDA perspective. Experimental com-
parisons of the newly designed EDA on commonly accepted test functions and
problems that are relevant in practice are needed in order to assess whether the
performance indeed increases.

Summarizing, the central research questions that are adressed in this thesis for
discrete EDA are:

1. Which insights can be gained from using EDA theory to analyze the struc-
ture of certain logistics problems?

2. How efficient and effective are discrete EDA for certain optimization prob-

lems in logistics?

The central research questions that are adressed for the continuous problem do-
main are:

1. How can the optimization behavior of continuous EDA be modeled for-
mally?

2. How efficient and reliable are new, improved continuous EDA which exploit
the insights gained from these formal models?
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1.2. Goal

The goal of this thesis is twofold. In its first part, EDA theory and EDA them-
selves are applied to problems from logistics. The goal of this part is to bridge the
gap between EDA-theory/application and logistics. The thesis will not design
discrete EDA adaptations that are state-of-the-art routines for solving certain
benchmark sets. Instead, it will emphasize the ease of EDA applicability across
different problems and show that EDA are able to solve complicated problems to
global optimality without much adaptation. This illustrates the power of EDA
as BBO routines.

The analysis of problem structure will strive to answer the following questions.
They will be used as guidelines in the first part of the thesis.

e [s the optimization problem decomposable or separable?
e How do the decision variables interact?
e Which features of phenotypes cause dependencies between in the genotypes?

e [s there a natural way to obtain a genotype-phenotype mapping that en-
codes dependent bits closely to each other? What is the impact of such
an encoding, and what is the drawback if such an encoding can not be
designed?

e What is the structure of dependencies in benchmark instances?

EDA theory is used to analyze the structure of warehouse location problems.
The warehouse location problem considers the strategic choice of a companies
distribution warehouses. A set of customers or market regions and determinis-
tic demand forecasts for a single product are given in conjunction with potential
warehouse locations. A set of warehouses must be installed such that the resulting
sum of installation costs for warehouses and linear transportation costs between
warehouses and customers is minimal. The structure of uncapacitated warehouse
location problems is analyzed with the questions above mentioned in mind. It is
found, that the numbering of warehouses has a significant impact on the efficiency
of simple GA, but not on the efficiency of multivariate EDA. In addition to ex-
plaining this numbering defect formally, an experimental study is presented that
compares the performance of a state-of-the-art EDA (the Bayesian optimization
algorithm, BOA, see Pelikan (2002)) and the sGA on selected instances.

Network design decisions like the warehouse location problem have a long-term
impact on a companies business processes as they frame subsequent tactical de-
cisions like safety stock allocation in a supply network. Assume, that some of
the installed warehouses face stochastic end-customer demand for a product and
a supply network exists that links material, cash and information flows. An im-
portant tactical question is where to locate safety stock in the supply network
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in order to protect against demand uncertainty. The goal of the resulting safety
stock allocation problem is to choose the locations and sizes of safety stock such
that a pre-defined service level is reached at minimal cost of holding safety stock.
Although state-of-the-art approaches are designed for general networks, the liter-
ature in this field is dominated by topology-specific approaches, thereby reflecting
the historical development of the field. This thesis takes a different approach and
compares the efficiency of evolutionary BBO on safety stock allocation problems
in serial, divergent, convergent and general network topologies. The simple GA,
the BOA and the (1+1)-EA (a simple stochastic hill-climber) are used in an ex-
perimental study that indicates the superiority of the EDA paradigm over the
chosen EA in this problem class.

Lot-sizing problems are operational problems that are solved to obtain the cost-
optimal sizes of procurement, production or distribution batches while a trade-
off between fixed and variable cost components must be balanced. Fundamental
single-product dynamic demand lot-sizing problems and dynamic joint replenish-
ment problems will be studied, focusing on the decomposition of these problems.
It is shown that they are separable in the meaning of EDA theory. Further-
more, an experimental scalability analysis is conducted in order to approximate
the growth of the runtime of EDA with respect to the size of the problem. The
results are consistent with EDA scalability theory and indicate the potential of
EDA in this field. Mixed-integer linear programming models of these lot-sizing
problems can be solved using standard industry solvers even for practically rele-
vant sizes. Thus, the main goal of this study is to obtain structural insights, and
not to beat runtime-benchmarks.

In the second part, the thesis centers around the analysis and design of continuous
EDA. One goal of this part is to provide formal models that explain convergence
of continuous EDA. In a next step, the insights that have been gained from these
models will be used in order to develop new and more efficient continuous EDA.

Therefore, the overall convergence process is decomposed into three phases. Theo-
retical insights are gained from models that concentrate on one of the convergence
phases each. The results obtained were previously not available and substantially
improve the understanding of what is required for continuous EDA to work well.

Along this line, the adaptation of the EDA principle from the discrete domain
to the continuous domain is scrutinized and the major differences between con-
tinuous and discrete problem domain for EDA are discussed. It is shown that a
direct adaptation of the EDA principle to the continuous domain can easily cause
premature convergence on local optima. In this respect, a simple, yet effective,
variance scaling policy is integrated into a continuous EDA. The efficiency of the
newly designed algorithm is evaluated on standard test functions and in a case
study that considers the stochastic transportation problem. It is found, that the
implementation of variance scaling enlarges the class of functions that EDA are
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able to solve reliably. Additionally, it improves the efficiency of the algorithm on
functions that it was already able to solve.

Moreover, the sampling variance trajectory of continuous EDA is analyzed. It is
shown that optimal sampling variances exist in simple settings. This result has
some impact on future EDA design which is discussed.

Additionally, results on the runtime of a simple continuous EDA on the sphere
function are obtained. To be more precise, a closed form expression for the
number of generations required to solve the sphere function to a given precision is
derived. This result can be a starting point for upcoming theoretical performance
comparisons with other optimization algorithms.

1.3. Structure

The following paragraphs contain detailed information on each chapter. The cur-
rent chapter sets the stage for the content to come by discussing the background,
the goal and the structure of this thesis. In Chapter 2, fundamentals are discussed
that are required for a thorough understanding of the thesis and a literature re-
view on discrete and continuous EDA is given. Therefore, Section 2.1 introduces
basic notation and symbols as well as the simple genetic algorithm (see Goldberg
(1989)) and a general framework for estimation of distribution algorithms. It is
then discussed in Section 2.2.1 how the notion of problem decompositions and
the use of search distributions in EDA are related to each other. Section 2.2
reviews binary estimation of distribution algorithms. It follows the historical de-
velopment of EDA closely. Along this line, simple EDA from Section 2.2.2 which
can not model dependencies between decision variables are followed by EDA that
can capture bi-variate interactions in Section 2.2.3. The most advanced EDA
are able to model multivariate dependencies between decision variables. They
are reviewed briefly in Section 2.2.4. This fundamental chapter is concluded in
Section 2.5.

In Chapter 3, the uncapacitated warehouse location problem (WLP) is consid-
ered. A subtle, yet important defect is discovered in Section 3.2.2 that can arise
when genetic algorithms are used to solve WLP. It is found that the numbering of
warehouses has a significant impact on the performance of the GA. This counter-
intuitive effect is explained in Section 3.2.3 using the factorization theorem that
has been developed in Miihlenbein and Mahnig (1999). A large empirical study
illustrates in Section 3.2.4 that this malfunction is likely to arise when solving
WLP. EDA are proposed as alternative solution methods in Section 3.3. They
do not suffer from the numbering defect, and are found to be more efficient on
the benchmark instances used.

The placement of safety stock in supply networks is covered in Chapter 4. Safety
stock allocation is one field of research where problem specific algorithms for
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certain supply network topologies dominate the literature. We challenge the
mainstream approach of designing problem-specific algorithms and apply EDA
instead. Therefore, a binary encoding is used (see Section 4.3) that exploits an
extreme point property. It is shown, that serial safety stock allocation problems
are separable in terms of EDA theory in Section 4.4. Experimental results are
presented for serial (Section 4.5.1), divergent (Section 4.5.2), convergent (Section
4.5.3) and general acyclic (Section 4.5.4) network topologies. Although EDA re-
gard the safety stock allocation problems as black boxes, they are found to reliably
solve the benchmark instances to global optimality. Furthermore, for complicated
networks that are particularly relevant from a practical standpoint, EDA clearly
outperform the simple genetic algorithms and a stochastic hill-climber in terms
of reliability.

Finally, operational lot-sizing problems are studied in Chapter 5. Using the fac-
torization theorem, it is shown in Section 5.3 that single-product dynamic demand
lot-sizing problems and dynamic joint replenishment problems are decomposable
in the sense of EDA theory. Consequently, a state-of-the-art EDA is used in
Section 5.4 to solve both problems in an experimental scalability analysis. The
running times measured in fitness evaluations are found to grow with a low-order
polynomial that depends on the problem size. This result is in accordance with
existing EDA scalability theory.

Chapter 6 lays the foundation for the analysis of continuous EDA. It presents no-
tation and algorithms that are used in the second part of the thesis. Furthermore,
it illustrates the decomposition of the convergence process into three phases.

Concentrating on phase 1, Chapter 7 models the population statistics of a simple
EDA when it is searching far from the optimal solution. Therefore, it is assumed
that the EDA is traversing a monotonous region of the search space that has a
slope-like function. Population statistics in a specific generation are derived in
Section 7.5, the limit behavior when the number of generations tends to infinity
is assessed in Section 7.6. The results show that continuous EDA can easily get
stuck in a local optimum, because their sampling variance decreases too fast.
The sampling variance directly describes the area of interest that an EDA is cur-
rently exploring. A natural way to combat premature convergence is to increase
the sampling variance in order to enlarge this area. Chapter 8.1 formalizes the
question whether this enlargement can be of arbitrary size, or whether variances
exist that should be preferred. It is shown for a simple setting, that indeed sam-
pling variances exist that maximize the proportion of solutions that are optimal.
Phase 3 of the decomposition is studied in Section 8.2. In this Section, the num-
ber of generations that a simple EDA requires to solve the sphere function to
pre-defined precision is derived formally. This result can act as a starting point
for a principled comparison of the performance of continuous EDA with other
non-linear optimization techniques.
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The analytical results require interpretation. Furthermore, they should be ex-
ploited in order to design better EDA. This is the major intent of Section 9.
Section 9.2 discusses the major differences between discrete and continuous EDA
in the light of the formal findings. It is found that indeed a systematic difference
between the two exists which triggers different approaches to algorithm design in
the discrete and continuous domain. Henceforth, a simple remedy to prevent pre-
mature convergence on local optima with virtually no computational overhead is
proposed in Section 9.3. It is integrated in an existing continuous EDA, yielding
the correlation-triggered adaptive variance scaling IDEA (CT-AVS-IDEA). The
basic idea of CT-AVS-IDEA is to enlarge the variances on slope-like regions of
the search space. CT-AVS-IDEA is experimentally evaluated in Section 9.4. Its
performance is compared to that of the evolution strategy with covariance adap-
tion (CMA-ES, see Hansen and Ostermeier (2001)), the current state-of-the-art
in evolutionary non-linear optimization, and an EDA without variance adapta-
tion. It is found that CT-AVS-IDEA is comparable to CMA-ES and significantly
improves upon the state-of-the-art in continuous EDA. CT-AVS-IDEA can solve
complicated continuous non-linear optimization problems efficiently and reliably.

In order to demonstrate the applicability of CT-AVS-IDEA beyond artificial
benchmarks, it is applied to the stochastic transportation problem (STP) in Sec-
tion 10. The STP arises in supply chain management, when coordinated decisions
on stock levels and shipment quantities must be made under demand uncertainty.
It is found that CT-AVS-IDEA routinely generates optimal or near-optimal solu-
tions for the biggest partof benchmark instances used, but shows slight worsening
in performance for larger instances investigated.

The thesis is summarized in Section 11.1. Its main achievements are concluded
in Section 11.2. Future research possibilities are pointed out in Section 11.3.
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In this chapter, we give an introduction to estimation of distribution algorithms
(see Miihlenbein and Paafl (1996)). Estimation of distribution algorithms consti-
tute a novel paradigm in evolutionary computation. The EDA principle is still
being labeled differently in the literature: estimation of distribution algorithms,
probabilistic model building genetic algorithms (PMBGA), iterated density es-
timation evolutionary algorithms (IDEA) or optimization by building and using
probabilistic models (OBUPM). For the sake of brevity we call this class of algo-
rithms EDA.

EDA have emerged in evolutionary computation from research into the dynamics
of the simple genetic algorithm (sGA, see Holland (1975) and Goldberg (1989)).
It has been found in this research that using standard variation operators, e.g.,
two-parent recombination or mutation operators, easily leads to an exponential
scale-up behavior of the sGA. This means, that the required time measured by
the number of fitness evaluations to reliably solve certain optimization problems
grows exponentially with the size of the problem. Loosely speaking, the use of
fixed variation operators can easily cause a sGA behavior that moves towards
enumeration of the search space.

The failure of the sGA is systematic on certain problems. This has triggered
research that replaces the traditional variation steps in a GA. Briefly stated, what
differentiates EDA from simple GA and other evolutionary and non-evolutionary
optimizers is that the main variation in EDA comes from applying statistical
learning concepts as follows:

1. The joint probability density of the selected individuals’ genotypes is esti-
mated.

2. This density is sampled from to generate new candidate solutions.

As we will illustrate in this chapter, estimating a density from selected solutions’
genotypes and subsequently sampling from it to generate new candidate solu-
tions is a tool to make variation more flexible. This is because density estimation
can be regarded as a learning process. EDA try to learn the structure of prob-
lems. They attempt to adapt their search bias to the structure of the problem at
hand by applying statistical- and machine-learning techniques on a population of
solutions.

The learning capabilities of EDA render them especially suitable for black-box-
optimization. In BBO one seeks to find the extrema of a fitness function, with-
out having a formal representation of the latter. One is solely given candidate
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solutions and their fitness values. The fitness function itself is unknown, it is
encapsulated in a so-called black box. BBO often appears in practice, if little
knowledge on the formal structure of the fitness function is available, and solu-
tions are evaluated with a complex virtual or physical simulation model.

EDA have successfully been developed for combinatorial optimization. State-
of-the-art EDA systematically outperform simple Genetic Algorithms with fixed
variation operators on a broad range of hard problems, such as deceptive prob-
lems, MAXSAT, or Ising Spins, see Pelikan and Goldberg (2003) and Pelikan
et al. (2006b). Many problems that are intractable for standard GA can reliably
be solved to optimality by EDA within a low-order polynomial number of fitness
evaluations depending on the problem size.

Regarding this success for the discrete domain, the EDA principle has been
adapted for the continuous domain. Continuous EDA intend to solve for solving
non-linear optimization problems in continuous spaces that can not be handled
by analytical or classical numerical techniques.

This chapter is structured as follows. In Section 2.1, we briefly review the sGA
and present a general framework for estimation of distribution algorithms. We
focus on discrete EDA for combinatorial optimization in Section 2.2. Funda-
mental relationships between problem decompositions and search distributions
are explained in Subsection 2.2.1. Subsequently, a literature review on discrete
EDA for combinatorial optimization is given. Section 2.3 focuses on EDA for
non-linear optimization in continuous spaces. A literature review for continuous
EDA is presented in Subsection 2.3.1 and 2.3.2. Consequently, we discuss in Sub-
section 2.3.3 recent continuous EDA that are different to first algorithms. The
chapter ends with concluding remarks. A modified version of this chapter has
been published as an introductory tutorial chapter in Grahl et al. (2007b).

2.1. Preliminaries and notation

2.1.1. The simple genetic algorithm

The simple genetic algorithm is a cornerstone in GA-theory. It is a stochastic
search strategy that maintains a set of solutions P of size |P| = n, called the pop-
ulation, throughout the search. The population undergoes generational changes.
We denote a population in generation ¢ by P! A single solution is referred to
as an individual. Each individual has an associated fitness value that measures
its quality. The goal of the sGA is to find the individual that has the highest
quality. An individual consists of a phenotype and a genotype. The phenotype is
its physical appearance (the actual solution to the problem at hand) whereas the
genotype is the genetic encoding of the individual. The sGA processes genotypes
that are binary (bit) strings of a fixed length [. A single bit string is also referred

11
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Figure 2.1.: Genotype-phenotype mapping

to as a chromosome. A single bit at position 7,7 = 1,2,...,[ in the chromosome
is also referred to as an allele. The genotype-phenotype mapping is called the
representation of the problem and is an important ingredient of GA and EA in
general, see Rothlauf (2006). Whereas the fitness of an individual is computed
with its phenotype, new solutions are built on the basis of the genotype. For an
illustration of the genotype-phenotype mapping, see Figure 2.1.

The sGA processes binary strings of fixed length as follows. The first population
of individuals is filled with a random sample from the complete solution space.
All solutions are drawn with an equal likelihood, and all genotypes are assumed
to be feasible. The fitness of all individuals is evaluated and the better solutions
are selected for variation using fitness proportionate selection. In fitness propor-
tionate selection, each individuals probability of being selected is proportional to
its quality. Selection intends to push the population into promising parts of the
search space. For a formal analysis of selection schemes, see Blickle and Thiele
(1996). The set of selected individuals from generation ¢ is called the mating-pool
and is denoted by S*.

New candidate solutions are generated by applying variation operators on ele-
ments of S*. The variation operators of a sGA are recombination operators of
the two-parent crossover-type (see Figure 2.2) and bit-flip mutation. For recom-
bination, one-point crossover and uniform crossover are used. New candidate
solutions, the so-called offspring O, are generated by exchanging partial solu-
tions between the parents. One-point crossover combines parts of two randomly
selected individuals (the so-called parents) from S' by cutting them into two
pieces at a randomly selected locus. Uniform crossover produces offspring by ex-
changing every single bit between two randomly chosen parents with a predefined
probability. Bit-flip mutation modifies single solutions by inverting each bit of
the string with a usually small probability.

The offspring O! replaces the parents and the next iteration ¢ + 1 of the sGA

12
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(a) One-point crossover (b) Uniform crossover

Figure 2.2.: Recombination in the sGA

begins with an evaluation of the newly generated population P**!. The process
of evaluation, selection, variation, and replacement is repeated until a predefined
stopping criterion is met, e.g., the optimal solution has been found, the best
found solution can not be improved further, or a maximal running time has been
reached. See Figure 2.3 for pseudo-code of the sGA.

2.1.2. A general framework for estimation of distribution algorithms

Similar to the sGA, EDA are stochastic, population-based search algorithms.
What differentiates EDA from sGA and other evolutionary and non-evolutionary
optimizers is that the primary source of variation in EDA is not driven by the
application of variation operators to subsets of solutions. Instead, it comes from
estimating a probability distribution from all selected individuals S* and conse-
quently sampling from this probability distribution to generate offspring O!. In
the following explanation, assume maximization of an objective function.

To illustrate the EDA principle, we introduce a random variable Z that has an
associated probability distribution P(Z) that covers all possible genotypes. To
be more concrete, P(Z) denotes a joint probability distribution of all [ alleles in
the chromosome. A single genotype is denoted with Z, its probability is denoted
by P(Z). The random variable associated with a single, i—th allele Z; is denoted
by Z;. The probability distribution of a single allele is denoted by P(Z;). We
further write P*(Z) for a probability distribution over all genotypes that has
a uniform distribution for all genotypes with an associated fitness value larger

Set generation counter t = 1
Fill P! with uniformly distributed solutions
Evaluate P!
Select St from P?
Apply variation operators on S, fill O with newly generated solutions
Replace parents with O!
If termination criterion is met, then end,
else t =t + 1, go to step 3.

Ntk W

Figure 2.3.: Pseudo-code for simple genetic algorithm
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than T and is equal to 0 otherwise. If the probability distribution P¥ (Z) of
the optimal solution T* was known, we would simply have to sample from it to
obtain the optimum because all solutions worse than T* have a chance of zero
to be drawn. In practical optimization we do not know P¥(Z). EDA try to
approximate it iteratively.

The first population P! of n individuals is usually generated uniformly from all
feasible solutions. All individuals are evaluated and the selection step yields a
mating-pool 8 with solutions of higher quality. Now, a probability distribution is
estimated from the genotypes of the solutions in 8. This is achieved by learning a
probabilistic model M = (¢, ) from S that is composed of a structure ¢ and a set
of parameters 0. The structure defines (in)dependence between random variables
and the associated alleles. Learning the structure ¢ can be a complex task. The
(in)dependence assumptions of the model are chosen such that they match those
of the sample S' as close as possible. This can be an optimization problem
itself. The parameters 6 of the model are mostly probabilities and conditional
probabilities. They are estimated after the structure that fits best has been
found. The model M represents a probability distribution that approximates
the true distribution of the selected solutions’ genotypes in S*. Let T denote the
worst fitness from the selected individuals. The model M approximates the true
distribution of P*(Z), that is the distribution of all individuals that have a better
quality than T. The estimated probability distribution represented by M is now
randomly sampled from to generate offspring O!. O! replaces the worst solutions
in the old population P?, and the population advances to population P*t. The
replacement step uses elitism — it is assured that the best found solution is not
replaced by a possibly worse solution. As a result the quality of the best found
solution does not decrease over time.

The process of evaluation, selection, model building, model sampling, and re-
placement is iteratively performed until a predefined convergence criterion is met.
Pseudo-code for the general EDA framework can be found in Figure 2.4.

Set generation counter ¢t = 1

Fill P! with uniformly distributed solutions

Evaluate P!

Select S* from P*

Learn probabilistic model M = (g, 6) from S’

Sample offspring O! from M

Replace the worst solutions in P! with O°

If termination criterion is met, then end,
elset =t+ 1, go to step 3.

P NSO W

Figure 2.4.: Pseudo-code for EDA framework

Note that in other meta-heuristics one is often interested in building efficient
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variation operators that are applied on single or subsets of solutions for a spe-
cific optimization problem. In EDA the focus shifts from single solutions to
the statistical distribution of sets of high-quality solutions in the search space.
Loosely speaking, EDA approximate a density function that tells the decision
maker where high-quality solutions can be found, which probabilities they have
in good populations, and which decision variables are (in)dependent from each
other.

In this chapter, we focus on EDA that operate on fixed-length strings because
fixed length representation are used in the later chapters of the thesis. A discus-
sion of variable length EDA for Genetic Programming, such as Probabilistic Incre-
mental Program Evolution (PIPE, see Salustowicz and Schmidhuber (1997)), Ex-
tended Compact Genetic Programming (eCGP, see Sastry and Goldberg (2003)),
or grammar learning approaches, see Bosman and De Jong (2004), are beyond
the scope of this chapter.

2.2. Binary estimation of distribution algorithms

2.2.1. Problem decomposition and factorized search distributions

In this section, we focus on the special case that the genotype is a binary string
of fixed length [. This means that single alleles have either the value 1 or 0.
Although the major results apply to higher alphabets as well, and the proposed
algorithms are expandable into this direction (see, e.g., Sastry et al. (2006)), the
main stream of research covers the binary case. A simple and straightforward
way to implement an EDA that follows the general EDA framework of Section
2.1.2 for binary genotypes of length | would be to use a frequency table of size
2! as the probabilistic model. The frequency table holds a probability P(Z) for
each solution Z. The parameters of this model are the 2! probabilities of the
solutions. These probabilities can be estimated by the relative frequency P(Z) of
single solutions in the set of selected solutions S as
- Q@

P(Z) = |8_|’ (2.1)

where a denotes the number of solutions in § that equal Z. Generating new
solutions from this probabilistic model can be done in a straightforward manner
by setting the probability to sample Z to P (Z) and sample the offspring individual
by individual. The structure of this model implicitly assumes that all alleles
depend on each other. Using a frequency table of size 2! exploits no independence
assumptions between alleles.

Note that, if we let the population size (and henceforth |S|) tend to infinity,
the estimated density expressed by the frequency table converges towards the
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true probability distribution P(Z). An iterative procedure of selection, estima-
tion, sampling, and replacement would steadily increase T until P*(Z) only has
positive probability for optimal solutions and has zero probability for all other
solutions. However, this approach is generally intractable because the size of the
frequency table and thus the effort to estimate its parameters grows exponentially
with the size [ of the problem. Also, population sizes are finite in practice.

To overcome the drawback of exponentially growing frequency tables, we can
allow for the estimation of factorized probability models. Factorizations of joint
densities of several random variables are products of marginal densities defined
over subsets of the random variables. Factorizations result from a joint density
by assuming statistical independence between random variables. The structure
of a probabilistic model relates to the (in)dependence relationships between the
random variables. The use of factorizations reduces the number of parameters
that have to be estimated. Estimating the parameters of factorized probability
models is relatively easy, as the parameters can independently be estimated for
each factor, see Lauritzen (1996).

A simple example: We assume that all [ distributions of the alleles are indepen-
dent from each other. Then, the joint distribution of the chromosomes can be
expressed as a univariate factorization, see Section 2.2.2. The [-dimensional den-
sity is decomposed into a product of [ one-dimensional densities. The univariate
factorization is defined as

P(2) =] Pr2). (2.2)

The structure ¢ of this probabilistic model is fixed. The alleles are statistically
independent from each other. The parameters 6 of this model are the [ probabili-
ties of each allele being 0 or 1. Factorizing the joint probability table thus results
in a reduction of dimensionality and, henceforth, probability tables that can be
estimated more efficiently without a reduction in precision.

Different types of factorizations have been used in EDA, see Sections 2.2.2-2.2.4.
Non-surprisingly, depending on the type of factorization that is used, the corre-
sponding EDA exploits different structures of the optimization problem at hand
and exhibits a different type of search bias. In general however, the EDA ap-
proach of building a model with respect to a certain factorization-type and sam-
pling it to generate offspring is especially suited when it comes to solve additively
decomposable problems.

According to Miihlenbein and Héns (2005) the fitness function f(Z) of an opti-
mization problem is additively decomposable if it can be formulated as

F(2)=> fi(Z.). (2.3)
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f(Z) is additively defined over m subset of the alleles. The sq,$s,..., s, are
index sets, s; C {1,2,...,l}. The f; are sub-functions that are only defined on
the alleles Z; with j € s;. The sub-functions can be non-linear. The Z,, are
subsets of all alleles. These subsets can overlap.

Equation (2.3) exhibits a modular structure. It consists of m components that
can, but may not, be coupled. If the s; are disjoint, s, N's; = 0 V i # j, the
functions do not overlap and the overall problem is called separable. Separable
problems can be solved by solving the m sub-problems f; and summing up the
results. Depending on the size of the sub-functions, separation reduces the di-
mensionality of the search space significantly. Assuming that |s;|] = k V i the
dimensionality is reduced from [ to k£ and the size of the solution space is reduced
from 2! to m2*. Function (2.3) is called decomposable if some sets s;, s; exist for
which s;Ns; # 0. In this case, a strict separation of the sub-functions is no longer
possible because a single decision variable influences more than one sub-function.

What makes decomposable problems hard to solve? This is a non-trivial question
and several answers can be found in the literature. Most obviously the hardness
of the sub-functions directly contributes to the overall complexity of the problem.
Deb and Goldberg (1993) discuss problems that are called deceptive. They are
hard to solve for GA and EDA. Solving deceptive problems is only possible, if
a pre-defined number of decision variables is considered simultaneously. Con-
versely, relying the search on the fitness contribution of any smaller number of
variables must fail. Deceptive problems are often assumed as sub-functions for
testing purposes. Deceptive functions are typically harder to solve for GA and
EDA than non-deceptive functions. Further, sub-problems can contribute to the
overall fitness on a similar scale, or the scaling of the sub-functions can differ
greatly. In the first case, all sub-functions of equal importance and convergence
towards the partial solutions will happen simultaneously. If the sub-functions are
exponentially scaled however, the most salient of them will converge first. The
other sub-functions may converge later and some instantiations might already be
lost at that time. Additively decomposable functions with exponentially scaled
sub-functions are harder to solve for GA and EDA — they require a higher popu-
lation size, see Thierens (1999). Kallel et al. (2001) discuss whether the size |s;| of
the sets influences the hardness of a problem. This can be the case, if for solving
fi(Zs,) all associated variables must be regarded simultaneously. It may not be
the case however, if interactions are not very strong and only some of the depen-
dencies are important. The size of the sets can thus be a source for the hardness
of a problem but the degree of connectivity and importance of the dependen-
cies appears to be a more important source for the GA- or EDA-complexity of a
function.

High-quality configurations of alleles that belong to the sets s; are referred to
as building blocks (BBs, see Holland (1975), Goldberg (2002)). It is commonly
assumed in GA and EDA literature that functions defined on a single BB are not
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further decomposable. This means that for solving a sub-problem defined by f;,
all associated alleles Z,, have to be considered simultaneously. In experiments,
this can be achieved by using deceptive functions as sub-problems, see Deb and
Goldberg (1993).

The building block structure of an ADF is called a problem decomposition. A
problem decomposition indicates, which alleles depend on each other and which
are independent from each other. Information on the problem decomposition is
also referred to as linkage information, see Harik and Goldberg (1997), Harik
(1997), Harik and Goldberg (2000) and Goldberg (2002). Tight linkage is a
feature of a representation that encodes alleles belonging to the same sets closely
to each other. Loose linkage characterizes a solution representation that spreads
alleles belonging to the same set widely over the chromosome.

The relationship between a problem decomposition and the factorization of a
search distribution is important. Assume a given population P that contains
high-quality solutions for a decomposable problem. The necessity of simultaneous
appearance of certain configurations of alleles within a sub-function will cause a
statistical dependency between these alleles in P. Alleles from different sub-
functions can be set separately from each other to optimize (2.3), and in general
they will be statistically independent from each other in P except for noise and
finite population effects. A central element of factorized probability distributions
is the possibility to assume independence between random variables. If these
assumptions are exactly in accordance with the decomposition of the problem,
then the joint probability of dimensionality [ is factorized into several marginal
densities of possibly smaller dimensionality - each modeling the distribution of
alleles in a sub-function. In this case, the factorization is called exact.

Sampling from an exactly factorized distribution is a powerful tool to solve com-
binatorial optimization problems, see Miihlenbein and Mahnig (1999). However,
efficient sampling is not always possible. In the following paragraphs, we refer to
work that has been developed in Miihlenbein et al. (1999) and Miihlenbein and
Hons (2005)) to illustrate for which decompositions efficient sampling is possible.
Assume that a fitness function of type (2.3) is given and one tries to solve the
optimization problem Z* = argmax f(Z) by sampling solutions Z from a search
distribution. A candidate for the search distribution is the Boltzmann distribu-
tion which is given as

o 51
Zy e Bf(y)’

see Mandl (1988) where 5 > 0 and y denotes the set of all solutions. The Boltz-
mann distribution has the appealing property, that for increasing (3 it focuses on
global optima of f(Z). For § — oo, only global optima have positive probabili-
ties. Unfortunately, sampling from the Boltzmann distribution needs exponential

Py(2) = (2.4)
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effort because the denominator is defined over all possible solutions. This is no
tractable search strategy.

If the fitness function is additively decomposable, the sampling effort can some-
times be reduced by sampling from a factorization of the Boltzmann distribution.
If it can be shown that for a given fitness function f(Z) the Boltzmann distribu-
tion can be decomposed into bounded smaller marginal distributions, sampling
candidate solutions from it can potentially be a promising search strategy.

To analyze whether this is the case, we define the sets d;, b;, and ¢; for the index
sets s; for i = 1,2,...,m as follows:

i
di = Usj, bi = s; \ di-1, ¢ =8 Ndi1.
j=1

If the following Factorization Theorem (Miihlenbein et al. (1999), Miihlenbein
and Hons (2005), Miihlenbein and Mahnig (1999)) holds for a given decomposable
function, the Boltzmann distribution can be factorized exactly into some marginal
distributions.

Factorization Theorem: Let the fitness function f(Z) = >, fi(Zs,) be an addi-
tive decomposition. If

bi£0 Vi=1,2,....m (2.5)
and
Vi >23j <isuch that ¢; C sy, (2.6)
then -
45(Z) = [ [ Ps(Zv.|Z.,) = P5(2). (2.7)
i=1

This means, that the overall unconditional distribution ¢3(Z) can be expressed in
terms of a conditional distribution []", Ps(Z,|Z.,) which can greatly reduce pa-
rameter requirements. Condition (2.6) is called the running intersection property
(RIP). If conditions (2.5) and (2.6) hold, then the Boltzmann distribution can
be obtained by an exact factorization of marginal distributions. But, it is only
reasonable to sample new solutions from (2.7) in order to solve (2.3), if sampling
new solutions from (2.7) is computationally easier than solving (2.3) directly.
This is not the case if the marginal distributions are of arbitrary dimensionality,
because the sampling effort could then grow exponentially with the problem size
[. Tt is indeed the case, if the size of the sets b; and ¢; is bounded by a constant
that is independent of the bit-string length [. Then, the factorization is called
polynomially bounded.

The effort of sampling a polynomially bounded factorization is much smaller than
sampling the unfactorized distribution. Exactly factorizing a search distribution
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with respect to a problem decomposition can lead to a significant reduction in
dimensionality of the size of the problems that one attempts to solve.

A major result of EDA theory is that if the factorization of the Boltzmann distri-
bution for a combinatorial optimization problem is polynomially bounded, new
solutions can efficiently be generated and an EDA can theoretically solve the
problem to optimality with a polynomial number of fitness evaluations (Miihlen-
bein and Mahnig (1999)). This is an important theoretical result that holds for
infinite population sizes and if the exact problem decomposition is known. In
Sections 2.2.2 - 2.2.4, we will describe how different EDA attempt to transfer this
theoretical result into scalable optimizers. A graphical illustration of the EDA
principle is available in Figure 2.5.

Initial population

ZO Z , Z2 Z3 fitness
171 0 1 1 1325
2,0 0 1 0 3245

nl1 1 0 0 3412

# Selection

zZ Z Z, Z, fitness
1 0 0 1 3025

2 /0 0 1 0 3245

End

ISI11 1 0 0 3412

Model building
A4
Selection @ e
Z0 Z1 Z2 Z3 fitness
1171 1 1 1 3225
2|1 0 1 0 3645

nl1 1 0 0 4032

‘ @)

Sampling & Replacement

Figure 2.5.: EDA-run as a flowchart. The probabilistic model estimation yields
a distribution P(Z) = P(Z()) . P(Zg) : P(Z2|Z0, Zg) . P(Zl|Z2)

2.2.2. No interactions

Historically, the first EDA approaches in binary search spaces used univariate
factorizations of search distributions. A invariable factorized probability distri-
bution is a product of [ univariate probability distributions Hizl Pyi(Z;), where
Pyi(Z;) models the distribution of a single allele Z; and #° is the parameter vec-
tor that has to be estimated for the i-th allele. & simply holds the probability
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of the i—th allele being 1 or 0. Note, that univariately factorized probability
distributions have a fixed structure. All alleles are assumed to be independent
from each other. Univariate factorizations are special cases of general Bayesian
factorizations described in Section 2.2.3 with [ independent variables.

Estimating a model on the basis of univariate factorizations reduces to param-
eter estimation because the structure of the density in terms of (in)dependence
assumptions is fixed. Estimating parameters for univariate factorizations has a
computational complexity of O(n||) where n is the population size and |0] is the
number of parameters that has to be estimated. As the number of parameters
that has to be estimated for a single univariate density Py:(Z;) is usually a small
constant, |#] = O(1).

Different EDA based on univariate factorizations of frequency tables can be found
in the literature. The bit-based simulated crossover operator by Syswerda (1993)
uses a binary string of fixed length [. In the model building process, it computes
for each allele ¢, ¢« = 1,2,...,l the univariate probability of a 0 and a 1 at bit
position i. Therefore, the relative frequencies of single alleles are weighted by
taking into account a fitness measure from high quality solutions. New solutions
are sampled bit by bit. The sampling process uses the probabilities that were
obtained for each bit independently from each other.

Population-Based Incremental Learning (PBIL) by Baluja (1994) uses the same
vector of univariate probabilities for each bit like Syswerda (1993). However, in-
stead of re-estimating the complete probability vector from the selected individ-
uals, the probability vector is adapted in each generation from elitist individuals
using an update rule. Starting with an initial setting where the probability of
each bit being 1 is set to exactly 0.5, the probabilities for each bit are shifted
towards 0 or 1. The directions for the shifts are obtained from elitist samples.
Offspring is generated bit by bit. The alleles are sampled independently from
each other using a univariate probability for each bit.

The compact Genetic Algorithm (cGA) by Harik et al. (1998) is very similar
to PBIL. The ¢GA also works on a probability vector of length [ but does not
maintain a complete population of solutions. Instead, it updates entries in the
probability vectors from two sampled individuals only. The updates are made
with an updating rule that is similar to that of PBIL.

In a similar fashion, the Univariate Marginal Distribution Algorithm (UMDA, see
Miihlenbein and Paafl (1996)) estimates the probability of being 1 or zero for each
bit position from its relative frequency in the population. n new individuals are
sampled from the distribution to replace the population as a whole. In contrast
to previous work, UMDA does not alter the probabilities after estimating them.
New solutions are generated bit by bit from the estimated univariate factorization.
The UMDA algorithm approximates the behavior of a simple GA with uniform
CTOSSOVer.
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Tsutsui (2002) propose an univariate EDA to solve permutation problems. Binary
random variables are introduced for each pairwise combination of permutation
elements. The probability associated with each random variable relates to the
probability that the associated permutation elements are positioned next to each
other in good solutions.

All algorithms discussed in this section are similar to each other and the sGA.
They do not respect linkage information. This means that sub-solutions can be
cut into several parts by the crossover operators and can get lost. The sGA
potentially disrupts building blocks in its crossover step. The EDA based on
univariate factorization set each bit independently from each other. They do not
take into account, that for solving decomposable problems with BBs of size > 1,
the joint appearance of configurations of several alleles has to be accounted for.

This is a valid approach, if the problem is separable into sub-problems of order
k = 1 like the One-Max function. The One-Max function returns the number
of ones in a binary string. The simple genetic algorithm with uniform crossover
converges on One-Max in O(llog!) evaluations, see Miithlenbein and Schlierkamp-
Voosen (1993) or Harik (1999). However, if the size k of the sub-problems grows,
the performance of the sGA can easily deteriorate. It is well-known that the sGA
scales exponentially with the problem size, if the alleles of a composed deceptive
trap function are arbitrarily distributed over the chromosome and the order k of
the traps is k > 3. In this case, the complexity of the simple GA increases from
O(llogl) to O(2!), see Thierens (1995). This clearly demonstrates the boundaries
of genetic algorithms with fixed operators. Loosely speaking, the behavior of ex-
ponentially scaling GA moves towards that of complete enumeration of the search
space. Note that the effect of generating offspring from a univariately factorized
probability distribution is similar to using uniform crossover, see Pelikan (2002).
Thus, the EDA discussed in this section are expected to scale similarly like the
sGA. They are relatively efficient on decomposable problems with sub-problems
of smallest sizes and scale badly on problems where the BBs are of higher order.

For real-world optimization, it is not realistic to assume that the BBs of a prob-
lem are always of size 1. Linkage information is often not known a priori. This
is especially true for black box optimization. Using simple GA with fixed recom-
bination operators or univariate EDA can thus easily result in an exponential
scale-up behavior of the algorithm. Note that this can also happen with other
fixed recombination operators, and is not related to using one-point crossover or
uniform crossover, see Thierens (1999).

2.2.3. Bivariate interactions

Exponential scalability of univariate EDA on problems with BBs of higher or-
der has motivated the development of EDA based on more involved probabilistic
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models. This subsection reviews EDA that are capable of capturing bivariate
dependencies between alleles. In contrast to EDA presented in Section 2.2.2,
the structure of the probabilistic model of the EDA in this section is no longer
fixed. Instead, the structure of the model is flexible to a certain degree, allowing
for an adjustment of the factorization that is built in every generation. Flexible
probabilistic models allow for an adaptive bias of the algorithm. To be more spe-
cific: EDA discussed in this section attempt to convert linkage information into
statistical (in)dependence relationships correctly. Learning probabilistic models
as done in many EDA corresponds to minimizing the discrepancy between the
distribution expressed by the model and the empirical distribution of the alleles
in the set of selected individuals. Inside the boundaries imposed by a model type,
EDA search for that model that fits the distribution of the genotypes best.

In the binary problem domain, Bayesian factorizations of search distributions
based on frequency counts are commonly used as probabilistic models. A Bayesian
factorization of a joint density is a product of conditional densities P(Z;|Z,,) for
each random variable Z;. m; denotes a vector of so-called parents of Z; that in-
dicates on which variables the univariate density Z; is conditioned. A Bayesian
factorization of a joint density P(Z) is defined as

P(Z) = HP9i<Zi|Zm>, (2.8)

where 6" denotes the vector of parameters that has to be estimated for each
density FPyi(Zi|Z,,). The matrix 7 = (my, 7o, ..., m) represents the structure of a
Bayesian factorization. 7 has a representation as a directed acyclic graph with
[ nodes where each node corresponds to a single Z;, + = 1,2,...,l and an arc
from node j to node ¢ indicates that Z; is conditioned on Z;. Importantly, the
Bayesian factorization is only a valid density if and only if the factorization graph
is acyclic. These probabilistic models are also referred to as graphical models or
Bayesian networks, see Heckerman et al. (1994), Lauritzen (1996) and Jordan
(1999) for details.

EDA that are capable of capturing bivariate dependencies between variables re-
strict the general form of a Bayesian network given in (2.8) such that each variable
can at most depend on a single other variable. This means, that |m;| =1V i =
1,2,...,L

Estimating the parameters of a given Bayesian factorization is straightforward.
The probabilities of bit i of being 0 or 1 is estimated by the relative frequency of
this bit of being 0 or 1 given all possible configurations of the parents m;. This
means, that the probability of this bit of being 1 or 0 is held in a frequency table
of size 2/™!. The frequency table lists all possible configurations of the values
of the |m;| parent variables and for each configuration the corresponding relative
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frequency of the i-th bit being 1 or 0 in the mating-pool.

Sampling from Bayesian factorizations is done in two consecutive steps. First,
the nodes are sorted in topological order. If nodes are visited in topological order,
a node 1 is visited after all of its parent nodes m; have been visited already. In
bivariate EDA, each node has at most a single parent. After the nodes have been
sorted, sampling starts at a root node and then visits nodes in topological order.
The probabilities of a bit ¢ of being 0 or 1 is set to the corresponding relative
frequency that has been calculated in the parameter estimation process.

The Mutual Information Maximization Input Clustering algorithm (MIMIC, see
De Bonet et al. (1997)) uses a factorization graph that has the structure of a
chain. In a chain, each random variable has exactly one parent and conditions
exactly one random variable (except for starting and ending nodes in the chain).
For selecting the chain that models the distribution of the selected individuals
as good as possible, MIMIC minimizes the difference between the distribution
expressed by the factorization and the joint distribution of all alleles in the popu-
lation. Therefore, the Kullback-Leibler divergence between both distributions is
taken as a distance measure that is minimized with a greedy chain constructing
approach. The Kullback-Leibler divergence is a measure of difference between
two probability densities, see Kullback and Leibler (1951). The computational
complexity of the model building process is O(l|f|n). As |#] = O(l) in a chain,
the overall model building complexity in MIMIC is quadratic in (.

The Combining Optimizers with Mutual Information Trees algorithm (COMIT,
see Baluja and Davies (1997)) uses a factorization graph that has the structure
of a tree. If the factorization structure is a tree, then every random variable Z;
is conditioned on exactly one parent. In contrast to the chain model of MIMIC,
several variables can be conditioned on the same variable. To find a dependency
tree that models the distribution of the genotypes of the selected individuals as
good as possible, the COMIT algorithm uses a learning technique from Chow and
Liu (1968) that results in a maximum-likelihood factorization with tree structure.
The computational complexity of the model building process of COMIT is similar
to that of MIMIC.

The Bivariate Marginal Distribution Algorithm (BMDA, see Pelikan and Miihlenbein
(1999)) uses a set of independent trees as its factorization graph. In this model,
each random variable has at most a single parent. The model building process
starts with an empty factorization graph. The factorization is constructed greed-
ily by adding edges on the basis of a x? dependency test between pairs of random
variables, where the edges are chosen in descending order of the related x? statis-
tic. The computational complexity of the model building process is O(I?|0|n).
As |0] = O(1), the model building complexity is cubic in [.

In contrast to EDA that use univariate factorizations of the search distribu-
tion, EDA that allow bivariate dependencies between alleles are more powerful.
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However, this comes at the price of a more complex model-building process.
Moreover, EDA that can model bivariate dependencies between alleles are still
not able to solve general k—decomposable problems efficiently. As reported in
Bosman (2003), the number of fitness evaluations that an EDA based on tree-like
factorization of the joint density requires to successfully solve this problem grows
exponentially with the size of the problem [. This is caused by inexact factoriza-
tions with respect to the problem decomposition that allows mixing solutions of
different sub-problems instead of sampling partial solutions to the sub-problems
independently from each other.

2.2.4. Multivariate interactions

Bivariate probabilistic models are not sufficient to solve problems with high-order
interactions like deceptive problems. Thus, probabilistic models that are able
to capture multivariate interactions between alleles were proposed in order to
advance the model flexibility further. Therefore, marginal product factorizations
and Bayesian networks without restriction on the network structure were used.

A marginal-product factorization is a decomposition of a joint density into a
product of multiple multivariate densities, where the multivariate densities are
defined over mutually exclusive subsets of all considered random variables. This
means that each random variable appears in a single factor of the product only.
We call the set of variables that forms the i—th multivariate density a node-vector
v;. The node partition vector v = (v, Vs, ..., V,,) represents the structure of the
marginal product factorization. A marginal product factorization is defined as

P(Z) = H Pyi(Z,). (2.9)

Marginal product factorizations decompose a multidimensional density into a
product of possibly multidimensional densities. In contrast to Bayesian Factor-
izations, marginal product factorizations do not use conditional densities. They
simply assume that all variables that appear in a factor v; are jointly distributed.
Thus, the size of the frequency tables associated with a node vector v; grows ex-
ponentially with |v;|, whereas in Bayesian factorizations, it grows exponentially
with the number of parent variables |m;|. Since a single allele can not appear
in several factors in the marginal product factorization, this model is suited to
modeling problem decompositions with non-overlapping building blocks, that is
separable ADFs.

Bayesian factorizations are a more general class of distributions that comprehend
that of marginal product models. In Bayesian factorizations, single alleles can
be, but do not necessarily have to be, associated with a single marginal density.
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Thus, Bayesian factorizations are suitable for problem decomposition in which
building blocks are non-overlapping and in which they are overlapping.

Marginal product factorizations where the multivariate densities Py (Z,,) are rep-
resented by frequency tables were proposed in the Extended Compact Genetic
Algorithm (ECGA, see Harik (1999)). The ECGA builds a marginal product
model, starting with a univariate factorization of the joint density of the binary
genotype. A greedy heuristic is used to iteratively join marginal densities such
that the improvement in a minimum description length (MDL) metric is max-
imized. MDL metrics are used in order to evaluate the goodness of fit of an
explanatory model to statistical data, see Griinwald (2005). The greedy heuristic
stops, when no potential merging of marginal densities improves the MDL metric
further. The total number of fitness evaluations required by the ECGA to solve
additively decomposable problems of order k grows with O(2¢m!®logm) where
m is the number of BBs in the problem. Note that the ECGA is able to properly
decompose a search density based on frequency tables with respect to a problem
decomposition. The time required to solve additively decomposable problems
measured by the number of fitness evaluations grows sub-quadratic with the size
of the problem if the size of the problem £ is bounded independent from I.

To solve permutation problems, marginal product factorizations were used by
Bosman and Thierens (2001b) and Bosman and Thierens (2001c). The fac-
torizations were built on permutation random variables that allow for a direct
representation of permutations in combination with the greedy model building
process of the ECGA. Both the Akaike Information Criterion (AIC) metric and
the Bayesian Information Criterion (BIC) metric are used. In contrast to the
MDL metric, both the AIC and the BIC metric require parameter tuning in
order to prevent over-fitting of data. They differ in how model complexity is
penalized, see Burnham and Anderson (2002) for details. The results indicate a
sub-quadratic growth of the minimally required population size with respect to
the problem size on decomposable deceptive permutation problems. Simple GA
scale exponentially on these problems with respect to the problem size.

Acyclic Bayesian networks without further restrictions on the structure of the
graph were independently proposed for use in the Bayesian Optimization Algo-
rithm (BOA, see Pelikan et al. (1999), Pelikan et al. (2000), Pelikan (2002)), the
Estimation of Bayesian Network Algorithm (EBNA, see Etxeberria and Larranaga
(1999)) and the Learning Factorized Distribution Algorithm (LFDA, see Miihlen-
bein and Mahnig (1999)).

In these algorithms, the model building starts with a univariate factorization.
In univariate factorizations, all variables are assumed to be independent from
each other. Iteratively arcs are added to the probabilistic model in a greedy
fashion. This relates to assuming dependence between alleles. A first version of
the BOA uses a Bayesian-Dirichlet metric (see Heckerman and Geiger (1995)) to
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measure the fit between the distribution expressed by the model and the empirical
distribution of the alleles in the mating-pool. Greedily, arcs that maximize the
Bayesian-Dirichlet metric are added to the graph, where arcs that cause cycles
are skipped. If the maximum number of parent variables m; is bounded from
above by k, then this greedy approach to model building has a computational
complexity of O(kl® + kl?|0|n).

Later versions of the BOA (see Pelikan et al. (2001)) and the EBNA and LFDA
use penalization metrics similar to the Bayesian Information Criterion (BIC) met-
ric. Using a greedy way to estimate a Bayesian network from selected individuals
with the BIC metric has led to sub-quadratic scale-up behavior of these algo-
rithms on additively decomposable problems, see Miithlenbein and Mahnig (1999)
and Pelikan (2002). Scalability results for the BOA that also suits the LFDA and
EBNA can be found in Pelikan (2002) and Pelikan et al. (2003). According to
BOA scalability theory, the number of fitness evaluations that the BOA requires
to reliably solve additively decomposable problems grows between O(I1%%) for
uniformly scaled sub-problems and O(I?) for exponentially scaled sub-problems
independent of k.

Unconstrained Bayesian factorizations with local structures represented by deci-
sion graphs were used by Pelikan and Goldberg (2001) in the Hierarchical BOA
(hBOA) to solve hierarchically decomposable problems. Hierarchically decom-
posable problems are decomposable and introduce additional dependencies on
several levels of interpretation. The large number of dependencies in these prob-
lems can hardly be expressed in a straightforward manner different from decision
graphs. In hBOA, the decision graphs are combined with a niching scheme.
Niching localizes competition between solutions and ensures that only similar
solutions compete with each other. hBOA uses restricted tournament replace-
ment. For each newly generated solution, a set of currently available solutions
is picked randomly. The most similar solution is replaced by the new solution,
if the fitness of the new solution is higher. The combination of Bayesian fac-
torization with local structures and restricted tournament replacement has lead
to sub-quadratic scale-up behavior on hierarchically decomposable problems, see
Pelikan et al. (2006a). hBOA was successfully applied to Ising spin-glass problems
and MAXSAT, see Pelikan and Goldberg (2003).

The BOA and the hBOA have both been used to solve multi-objective problems,
see Khan et al. (2002) and Pelikan et al. (2005). The BOA was able to solve
deceptive multi-objective problems that other evolutionary algorithms could not
solve. In a practical application, no significant superiority to GA that use classi-
cal crossover operators could be found, see Laumanns and Ocenasek (2002). The
hBOA is found to scale up well on multi-objective decomposable deceptive prob-
lems. To obtain good scale-up however, clustering techniques in the objective
space are needed. On the considered test problems, multi-objective variants of
the simple GA and the UMDA scale badly and are incapable of solving problem
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instances of medium sizes.

As we have seen in this chapter, the use of flexible probabilistic models allows
for a flexible bias of the EDA. State-of-the-art EDA that are built on multivari-
ate probabilistic models solve decomposable problems efficiently. Moreover, the
number of evaluations required to solve such problem reliably should grow sub-
quadratically, given the minimal population size is known. The increase of the
model flexibility has lead to more involved structure learning processes. At the
same time, the class of problems that can reliably be solved was enlarged such
that the resulting EDA consistently outperform standard genetic algorithms with
fixed operators on hard decomposable optimization problems.

2.2.5. Summary

Discrete EDA use probabilistic models to guide their search for high quality
solutions. State-of-the-art EDA incorporate statistical learning techniques for
building a probabilistic model during the optimization and thereby are able to
adapt their bias to the structure of the problem at hand. For the important class
of additively decomposable problems, the use of Bayesian factorizations or multi-
variate factorizations has led to scalable optimizers that reliably solve additively
decomposable problems within a sub-quadratic number of fitness evaluations.

2.3. Continuous estimation of distribution algorithms

The considerable success of discrete EDA has motivated researchers to adapt the
general EDA principle for the continuous problem domain. Continuous EDA are
proposed for function optimization in continuous spaces. Their application can
be promising if classical numerical methods like gradient-based methods fail or
are not applicable because derivatives are not available or due to outliers or noise.
Continuous EDA are used for what is often referred to as global optimization.
For continuous optimization with the EDA of this section a genotype is a vector
of size [ of real values if not stated otherwise.

Continuous EDA mostly use variants of the normal probability density func-
tion (pdf) as the basis of their probabilistic model because the normal pdf is a
commonly—used and computationally tractable approach to represent probabil-
ity distributions in continuous spaces. The normal pdf P(/:L/,z:) for [—dimensional
random variables Z is parametrized by a vector p' = (uq, fto, . .., py) of means
and a symmetric covariance matrix X and is defined by

_L
PN (Z2=2)= 7(27T) ’ e—%(Z—H),(E)fl(Z—M) (2.10)
() (det X2) . .

=
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The number of parameters to be estimated from data to fit the normal distribu-
tion to selected individuals equals —12 3l. A maximum likelihood estimation
for the normal pdf is obtained from a Vector S of samples if the parameters are
estimated by the sample average and the sample covariance matrix, see Anderson
(2003) and Tatsuoka (1971):

\SI 1

fi= |8|Z S, B= |S|]Z<s — 1)(S; — )" (2.11)

On the basis of the normal pdf, different probabilistic models can be estimated
from the selected individuals. The resulting EDA are discussed in the following
sections.

2.3.1. No interactions

A univariate factorization of a multidimensional normal pdf is a product of several
independent univariate normal pdfs. This means that all covariances between two
normally distributed random variables Z;, Z;,¢ # j are 0. The variance of the
i—th allele random variable is denote by o?. Univariate factorizations of normal
distributions are defined as

—0.5(Htiy2
ng G5, (2.12)

Rudlof and Képpen (1996) proposed the first continuous EDA based on the nor-
mal pdf. Their algorithm is an adaptation of the binary PBIL algorithm (Baluja
(1994)) to continuous domains. The distribution of each allele is modeled by
a univariate normal distribution. In the initial phase of the optimization run,
the variances are set to high values to stimulate exploration of the search space.
They are adapted in further generations with a geometrically decaying schedule
to enforce convergence. The means are adjusted with a learning rule similar to
the original discrete PBIL algorithm. New solutions are generated allele by allele
by sampling the values for each allele from the univariate Gaussian distributions
independently from each other.

A second adaptation of the binary PBIL algorithm is presented in Servet et al.
(1997). In this algorithm, a lower and an upper bound for each variable is given
that defines a range where values for the variables lie. A simple histogram model
with two bins is maintained. The first bin corresponds to the lower half of the
value range, the second bin corresponds to the upper half of the value range. The
binary random variables of the PBIL algorithm correspond to the probability
that a solution lies in the upper half of the range. For example P(Z; == 1)
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denotes the probability that the fourth allele has a value in the upper half of the
initialization range. If the values converge towards a single bin, then the bin sizes
are adaptively re-sized to the half of that range, similar to bisection. Sampling
is again done allele by allele.

Sebag and Ducoulombier (1998) propose another adaptation of PBIL to contin-
uous spaces. They use a univariate normal pdf for modeling the distribution of
each allele independently from each other as in Rudlof and Képpen (1996). In
contrast to the latter, the variance and the mean are updated with the same
learning rule.

In Gallagher et al. (1999), the parameters of the univariate factorization are esti-
mated from a set of selected individuals with the standard maximum-likelihood
estimator for mean and variance. The approach of Gallagher et al. (1999) is more
similar to the EDA principle compared to previous approaches.

Similarly, the Univariate Marginal Distribution Algorithm in the Continuous Do-
main (UMDA,) was proposed in Larranaga et al. (2000a). UMDA, is an adap-
tation of the UMDA algorithm by Miihlenbein and Paaf§ (1996) to continuous
domains. In UMDA,, a first population of candidate solutions is sampled uni-
formly from the set of feasible solutions. The fitness of each individual is evaluated
using f. Now we use truncation selection of the best 7 - 100% individuals. This
means, given a population size of n individuals, we select the 7-n best individuals.
Selection pushes the population towards promising regions of the search space.
From these selected individuals the following probabilistic model is estimated.
In UMDA_, it is assumed, that the joint distribution of the selected individuals
follows a [-dimensional normal distribution that factorizes over [ univariate nor-
mals. That is, the covariances between all z; and x; are 0 for all 7 # j. Thus, in
generation t, the n variables X, _,, follow a univariate normal distribution with
mean /! and standard deviation o?.

The parameters u! and ¢! are estimated from the selected individuals by using
the well known maximum likelihood estimators for moments of the univariate
normal distribution.

Now, new individuals are generated by sampling from the estimated joint density.
These individuals completely replace the old population. The algorithm continues
with truncation selection again. This process is iterated until a termination
criterion is met.

2.3.2. Multivariate interactions
To increase the modeling capabilities of the probabilistic model, research into

more involved probabilistic models on the basis of the normal pdf was conducted.
To be more specific, similar to the discrete domain, the model structure is no
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longer assumed to be fixed, but is allowed to be flexible to a certain degree.
This is achieved by allowing for modeling multivariate interactions between con-
tinuous alleles. Consequently, the probabilistic models comprehend multivariate
densities. For real-valued optimization, marginal product factorization, Bayesian
factorizations, and mixture-based factorizations have been proposed.

Marginal product factorizations of the normal pdf are products of possibly mul-
tivariate normal densities where each allele random variable belongs to exactly
one factor. Similar to multivariate factorizations in the discrete problem domain,
they are defined for the continuous domain as:

P(2) =[] Phii s), (2.13)
i=1

where p¥i denotes the |v;|-dimensional mean vector and ¥v the covariance matrix
of the i—th partition. Multivariate factorizations of normals have first been
proposed in Bosman and Thierens (2001b).

Bayesian factorizations based on the normal pdf are referred to as Gaussian net-
works (see Heckerman and Geiger (1995)). For real-valued optimization, the use
of Gaussian networks has independently been proposed by Bosman and Thierens
(2000) in the iterative density estimation evolutionary algorithm (IDEA )-framework
and in Larranaga et al. (2000a). The latter uses a variant of the MIMIC algorithm
based on the normal pdf, called MIMIC,, and unrestricted Gaussian networks in
the Estimation of Gaussian Network Algorithm (EGNA).

As a first approach to learning the Gaussian network Bosman and Thierens (2000)
used an algorithm by Edmonds (1976) to build a factorization of the search dis-
tribution with minimum entropy. In this factorization, each variable is allowed
to depend on at most another variable. In Bosman and Thierens (2001a), unre-
stricted Gaussian networks are used. A greedy factorization learning scheme in
combination with a Bayesian Information Criterion metric is used to learn the
structure of the Gaussian network. In Larranaga et al. (2000a), the model build-
ing process starts with a complete factorization graph. Arcs are greedily removed
from the factorization based on a likelihood-ratio test.

Mixture distributions are weighted sums of M > 1 pdfs. The probabilistic
model defined by a mixture distribution is a collection ¢ of M (simpler) prob-
abilistic model structures ¢, and a collection @ of M parameter vectors where
m=1,2,..., M. A mixture distribution is then defined as

Po)(Z) = BmPs,, 0, Where (2.14)

1=

31



2. Fundamentals and literature

M
B >0, and > fBn =1 (2.15)
m=1

The factors of this product are called mixture components, the weights [3,, are
called mixing coefficients. The interesting feature of mixture-based probabilistic
models is that they allow to model the distribution of solutions independently on
different peaks, potentially allowing a population to concentrate on more than
a single peak in the search space. This is of special importance, if the search
function is multi-modal and several basins of attraction should be investigated
simultaneously. To achieve this, mixture-based probabilistic models for continu-
ous optimization have been proposed by Bosman and Thierens (2001a). Cluster-
ing techniques like k-means clustering are used to divide the population into M
sub-populations from which the parameters for each of the mixing components
are estimated. Maximum likelihood estimates for (2.14) can not be obtained an-
alytically. Instead, an iterative procedure defined in Dempster et al. (1977) is
used to obtain the estimates for the mixing coefficients, the mean vector and the
covariance matrix.

Real-valued mixture probability distributions have been used for multi-objective
optimization in Bosman and Thierens (2002) and Bosman and Thierens (2003).
The results indicate that a mixture-based model can effectively help to maintain
diversity along the pareto-frontier of a multi-objective problem. Similar obser-
vations were made in Costa and Minisci (2003), where pdfs based on Parzen-
windows, that are similar to mixture distributions, are used.

Continuous EDA can readily be used to solve permutation problems if a real-
valued representation of permutations is chosen, see Bosman and Thierens (2001b),
Larranaga et al. (2002), and Robles et al. (2001). These approaches are however
not very effective, as the commonly used Random-Key representation is highly
redundant, see Bosman and Thierens (2001b).

2.3.3. Recent approaches

For discrete search spaces, the use of Bayesian factorization based on frequency
counts has led to scalable evolutionary optimizers that outperform classical ge-
netic algorithms on a broad range of problems. It has been noted however, that
simply estimating and sampling probabilistic models on the basis of the normal
pdf does not automatically lead to efficient EDA for the continuous problem
domain.

The main problem is premature convergence on local optima when using max-
imum likelihood-based normal EDA, see Chapter 7, Grahl et al. (2005) and
Bosman and Grahl (2008). In order to solve the problem of premature con-
vergence, a class of more involved probability distributions could theoretically
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be introduced for use as a search distribution in continuous EDA. However, con-
tours of continuous fitness landscapes can be of virtually any shape. As universal
approximation in arbitrary exactness is computationally intractable, recently de-
veloped EDA still stick to the use of the normal pdf, but emphasize a more
sensible tuning of the parameters of the normal distribution.

Ocenasek et al. (2004) use a self-adaptation approach adopted from evolution
strategies to scale the variance after the distribution estimation. The results
indicate that the performance of the resulting algorithm is comparable to that
of the evolution strategy with covariance adaptation (CMA-ES, see Hansen and
Ostermeier (2001)), a state-of-the-art evolution strategy, on separable univariate
functions.

Gallagher and Frean (2005) propose a scheme that tries to approximate the Boltz-
mann distribution (see Section 2.2.1) in continuous spaces using the normal pdf.
Note that the Factorization Theorem and the related theoretical work is valid
for discrete and continuous domains. Its implications are nonetheless limited to
the discrete domain, because a parametric distribution such as the normal pdf
might mislead the optimization in the continuous domain, see Chapter 9 for a
discussion. The results from Gallagher and Frean (2005) indicate that indeed a
more sensible tuning of the parameters of the normal pdf that is not limited to
using maximum-likelihood estimates results in more efficient continuous EDA.

Yuan and Gallagher (2005) modify the estimation scheme such that it maintains
diversity in the population by restricting the variances to values greater than 1.
This reduces the risk of premature convergence, because it directly enlarges the
area that the algorithm is exploring.

Grahl et al. (2006) propose to adaptively scale the covariance matrix after the
estimation process. The scaling of the variance is triggered on slope-like regions of
the search space and is disabled when the currently investigated region is shaped
like a peak. To identify which structure currently dominates the investigated
region, the use of ranked correlation estimates between density of the normal
pdf and the fitness values is proposed. The results on non-linear problems that
can not be solved by simple hill-climbing algorithms (e.g., Rosenbrocks function
in high dimensions) show that the proposed algorithm scales with a low order
polynomial depending on the problem size. Computational results are very close
to that of the CMA-ES (Hansen and Ostermeier (2001)), one of the leading
algorithms in continuous evolutionary optimization.

Bosman et al. (2007a) extend the work Grahl et al. (2006) by proposing a vari-
ance scaling trigger that is especially suitable for high-dimensional problems. In
Bosman et al. (2007b), an extension is proposed that tunes not only the variances
of the Gaussian model, but also shifts the mean of the distribution.

The above approaches are specially interesting in this thesis, as they largely
relay on the normal distribution. However, similar results were found by other
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researchers, using different probability distributions than the normal distribution,
but still attempting to obtain a maximum-likelihood estimate, see Larranaga
et al. (2000b), Cho and Zhang (2001), Shin et al. (2001), Shin and Zhang (2001),
Cho and Zhang (2002), Ocenasek and Schwarz (2002), Paul and Iba (2003a),
Paul and Iba (2003b), Ahn et al. (2004), Kern et al. (2004) and Cho and Zhang
(2004).

All of the above approaches advance the class of problems that continuous EDA
are able to solve reliably. A more sensible adaptation of the EDA principle to
the continuous domain seems to be required to develop efficient continuous EDA.
Recently obtained results are promising and indicate the potential of continuous
EDA when it comes to solve continuous optimization problems. The adaptation
of the normal density in the continuous domain appears to be a central element
of study for EDA to come.

2.3.4. Summary

The success of discrete EDA has motivated researchers to adapt the EDA princi-
ple to the continuous domain. A direct adaptation of the principle has however
proven not to be effective. In contrast to the discrete field, recent work shows
that the model structure is not as important as a right treatment of the model
parameters. A more sensible adjustment or alteration of the density estimation
or sampling process for continuous EDA is required to advance the performance
of continuous EDA. Recent approaches have proven to be successful and reliable
for continuous non-linear optimization problems.

2.4. Ant colony optimization and EDA

Estimation of distribution algorithms belong to the larger class of meta-heuristics.
While this class of strategies comprises many different approaches towards heuris-
tic optimization, some of them are closely related to EDA. Following Quinlan
(1993) and Zlochin et al. (2004) heuristic algorithms can be classified as being
either “instance-based” or “model-based”. The larger part of search algorithms
can be classified as being instance-based because they generate candidate so-
lutions on the basis of current solutions or a population of solution. Genetic
algorithms and local search techniques with its variants are prominent members
of this class. On the other hand, model-based search (MBS) algorithms have been
proposed that generate candidate solutions on the basis of a probabilistic model.
The probabilistic model captures information that is regarded as crucial in order
to guide the search into high-quality regions of the search space. Estimation of
distribution algorithms are clearly a member of the latter class. Furthermore,
ant-colony systems (ACO, see Dorigo (1992), Dorigo et al. (1997) and Dorigo
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and Di Caro (1999)), share conceptual similarities with EDA that will briefly be
covered in the following.

ACO was inspired by the foraging behavior of real ants, see Deneubourg et al.
(1990). It was found, that ants are capable of finding near-shortest paths between
their nests and food. In the beginning of the search for food, ants explore the
surroundings of their nests in a random manner. Once food is found, it is brought
back to the nest. During their return, ants place a pheromone trail on the ground.
The intensity of this trail can depend on the quality and amount of food that was
found. The pheromone trail is used as a guidance by other ants when searching
for food. Over time, pheromone trails develop between the nests and places
where food can be found. This basic concept is exploited in ACO in order to
solve combinatorial optimization problems.

In ACO, solutions are constructed on the basis of a pheromone model. The
pheromone model directly relates to a probabilistic distribution over the solution
space. Constructed solutions are used such that the pheromone model biases
the search towards high quality regions of the search space. The major differ-
ence between ACO and EDA is the use of a constructive heuristic in ACO. The
constructive heuristic is a problem-specific technique that builds complete solu-
tions sequentially. Starting with an empty solution, parts are added based on a
construction rule. In contrast to using the construction heuristics alone, ACO
randomizes the sequence in which the construction steps are carried out. The
construction process can be modeled as traversing a construction graph. The
construction graph consists of nodes that correspond to states. A state defines
the current parts of a solutions that have already been built. Arcs that contain
construction steps link nodes. The choice of the construction step is dependent
on the pheromone value that is associated with this step and usually proportional
to this value. This means, that the transition probabilities between states are
dependent on the probabilistic model expressed by pheromone values.

The pheromone model is used as an adaptive bias towards construction sequences
that result in good solutions. In order to be able to adapt the sequence depend-
ant on the problem at hand, a pheromone update is done. Pheromone updates
are basic ingredients of every ACO algorithm, but can vary greatly between im-
plementations. Usually, a pheromone evaporation uniformly reduces the amount
of pheromone. This allows to “forget” old solutions and explore larger regions of
the search space, thereby adhering to a diversification of the search. In a second
step, one or more solutions that have been constructed are used in order to in-
crease pheromone trail parameters that are part of the solutions considered. This
update rule can take many forms, see Dorigo and Stiitzle (2004) for a detailed
analysis. The unifying idea of update rules is to increase the probability of us-
ing construction steps that are contained in high quality solutions via positive
feedback, directly adhering to an intensification of the search.
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A simple example taken from Blum (2004) for a 4-city TSP is illustrated in Figure
2.6. Subfigure 2.6(a) contains a graph G = (V, E') of the TSP instance. The edges
e;; are solution components that in combination make up a tour. They have
distances d;;. Assume that the tour should start in city 1. A first construction
step can allow a random edge e;;,j = 2...6 to be added. In following steps, it
must be assured that a Hamiltonian cycle results from the chosen edges. Subfigure
2.6(b) shows the construction graph. Subfigure 2.6(c) shows a single path through
the graph that relates to a single solution. In order to use an ACO to solve
this problem, the choice of edges could be based on a simple nearest-neighbor
selection. It can be randomized by allowing the choice of further-away cities and
biased over time towards edges that are available in high-quality tours.

(a) TSP instance (b) Solution graph (c) Construction of solution
< €12, €24, €34, €13 >

Figure 2.6.: Example for ACO TSP solution construction

The main differences between ACO and EDA follow. EDA work on partial so-
lutions directly. They store (conditional) probabilities that are associated with
the presence of partial solutions. ACO work on construction steps that add parts
to partial solutions. They store probabilities that are associated with the use
of construction steps. As a direct consequence, EDA depend on a representa-
tion that maps the partial solutions to phenotypes and work on the alleles on a
genotypic level. Thus, proper representations on whose genotypes a probabilistic
model can be defined are essential for EDA. ACO work directly in phenotypic
space. Thus, construction heuristics are essential in order to apply ACO. Fur-
thermore, while multivariate EDA build a probabilistic model that can capture
dependencies between decision variables, pheromone trail parameters in ACO
are handled as independent probabilities. Conditional probabilities are not (yet)
used in ACO. Blum and Dorigo (2005) show that this can systematically lead to
premature convergence. Finally, while the use of problem-specific routines allows
the design of highly efficient ACO for specific problems (see Dorigo and Stiitzle
(2004)), ACO is not usable for BBO due to the same reason. This is in direct
contrast to EDA that are designed with BBO in mind.
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2.5. Conclusions and outlook

This chapter intended to serve as an introduction to estimation of distribution
algorithms. We discussed the major terms, concepts, and algorithms for the dis-
crete and the continuous problem domain and pointed out the difference between
the two fields. State-of-the-art EDA systematically outperform standard GA
with fixed recombination operators on hard additively decomposable problems.
To be more specific, the total number of fitness evaluations that is required to
reliably solve additively decomposable problems to optimality is often found to
grow sub-quadratically with respect to the problem size.

In order to choose an EDA for a given discrete optimization problem, the most
helpful information is knowledge about the complexity of interactions between
decision variables. If most variables are independent, a simple EDA such as the
UMDA can be chosen. If no such information is available, it is a reasonable
strategy to use a multivariate EDA such as the BOA in a first step and analyze
the probabilistic models that it constructs during optimization in a second step.
If these prove to be simple, switching to a bivariate or univariate EDA might make
sense. If the models feature highly interdependent decision variables, one should
keep using a multivariate EDA because simpler EDA are not able to capture
these dependencies.

First stage EDA for continuous optimization rely solely on variance estimation
and do not tune the variance after estimation. These first stage EDA should be
neglected in favor of more recent implementations like the CT-AVS-IDEA, that
is presented in Chapter 9.

The correct choice of parameters like the population size, selection intensity or
termination conditions can be facilitate using parameter-less implementations of
evolutionary algorithms. Parameter-less implementations are available for the
simple GA in Harik and Lobo (1999), the ECGA in Lima and Lobo (2004) and
for the hBOA in Pelikan and T. (2004). The current state-of-the-art in parameter
setting in EA is presented in Lobo et al. (2007).

Most of the publications on EDA come from the computer-science, EC-theory
and machine-learning community. This research has lead to effective optimizers
and theoretical insights. In industry however, the sGA and its variants are still
predominantly used although EDA research has clearly shown us the boundaries
of these approaches. This is partly due to the fact that the EDA principle is
relatively new and still unknown in industry. In addition to existing applications
for EDA, (see e.g. Blanco et al. (2001), Sierra et al. (2001), Larraniaga and Lozano
(2001), Bengoetxea et al. (2002), Ducheyne et al. (2002), Pelikan and Goldberg
(2003), Blanco et al. (2003), Pelikan et al. (2006b)), more applications of EDA
to problems of industrial relevance are needed that illustrate practitioners the
effectiveness of EDA and the drawback of classical approaches. Furthermore,
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EDA theory on problem decompositions might provide insightful results when
being applied to problems of practical interest.

Henceforth, the application of EDA to problems in supply chain management
and logistics, as well as the analysis of such problems by means of EDA theory
will be at the center of Chapters 3-5.

In the continuous domain, the use of probabilistic models has not directly lead
to effective optimizers. In contrast to the discrete problem domain, a more sen-
sible adjustment of the estimated parameters is necessary to avoid premature
convergence and boost performance. Most of the available results for the con-
tinuous domain are still experimental. Developing formal models that help us to
understand the dynamics of continuous EDA is a formidable and promising task.
According to this need, theory will be developed, its insights exploited and the
outcome experimentally validated in Chapters 6-10.
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3. Decomposition of warehouse location
problems and the linkage problem

3.1. Introduction

Location decisions have a long-term impact on a company’s business processes.
By defining production-, warehouse- and distribution sites, they frame subsequent
tactical decisions such as safety stock or capacity allocation and operational de-
cisions such as transportation or production planning, just to name a few. It is
therefore not surprising that ample research has been conducted to solve loca-
tion problems of various kinds, for reviews see, e.g., Daskin (1995), Drezner and
Hamacher (2002), and Klose and Drexl (2005).

At their core, discrete warehouse location problems are solved to balance cost
trade-offs that arise from warehouse opening decisions and resulting material
flows and transportation between installed locations and customers. The unca-
pacitated warehouse location problem (uWLP) is the fundamental discrete WLP
and is the topic of this chapter. It determines the optimal number of warehouses
from a finite set of potential locations and balances the cost trade-off between
opening and resulting transportation cost. uWLPs are N'P-hard, see Cornuéjols
et al. (1990). Overviews are available in Cornuéjols et al. (1990) and Klose and
Drexl (2005). As solution procedures to uWLPs, a variety of exact algorithms
have been proposed in the literature. Krarup and Pruzan (1983) attribute the
best performance to dynamic programming, cutting plane, pseudo-boolean pro-
gramming, and combined approaches. Despite efficient algorithms such as DU-
ALOC (see Erlenkotter (1978)), large instances of the WLP and its variants
such as WLPs with limited warehouse storage capacity and WLPs that integrate
routing decisions for goods delivery can still not be solved in reasonable time.
This justifies heuristic methods such as constructive ADD heuristics (Kuehn and
Hamburger (1963)), Lagrangian heuristics (Guignard (1988), Beasley (1993)) or
meta-heuristics such as simulated annealing and tabu search (see Klose (2001),
Hoefer (2002) or Michel and van Hentenryck (2004)). Several genetic algorithms
have been proposed to solve the uWLP successfully. Kratica et al. (1996) hy-
bridize a simple GA with an ADD-heuristic. Horng et al. (1999) integrate clus-
tering and local search into a simple GA. Filipovic et al. (2000) study the effect
of different selection schemes in simple GA for uWLPS. Kratica et al. (2001)
develop a more efficient implementation of the sGA for uWLPs. Jaramillo et al.
(2002) provide a comparative study of a GA with elitism, binary tournament
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selection and fitness-based fusion crossover used to solve the uWLP and several
other location problems.

The existing body of literature is largely experimental, and work is rare that
analyzes on a theoretical level the prerequisites under which GA work well /badly
on uWLPs. The contribution of this chapter is to link structural properties of
the uWLP to results from GA theory. This allows us to draw conclusions on the
expected behavior of simple genetic algorithms for uWLPs and present a subtle
defect that may arise when using sGA to solve uWLPs. To be more precise,
we focus on inherent functional drawbacks of sGA when it comes to learning
and exploiting dependencies between the warehouse opening decisions. We label
this drawback the “numbering defect”. It is relevant for the solution of uWLPs
but to the best of our knowledge has not received attention in the literature
until now. Furthermore, with estimation of distribution algorithms we propose
an alternative evolutionary approach that does not suffer from the defect and
outperforms sGA on uWLPs reliably. The insights gained from this chapter are
valuable for optimization practitioners who design evolutionary algorithms for
location problems.

The remainder of this chapter is structured as follows. The uncapacitated ware-
house location problem is described in Section 3.2.1. Sections 3.2.2 - 3.2.4 present
experimental results that illustrate defects of simple GA on the uWLP, explain
the defects theoretically and, by means of a large numerical study, underline
the necessity to overcome them. Section 3.3 proposes EDA as alternative evolu-
tionary algorithms that do not suffer from the defects and solve uWLPs faster
and more reliable than sGA. The chapter ends with concluding remarks and an
outlook on further research. This chapter was published in Grahl et al. (2007c).

3.2. Linkage in warehouse location problems

3.2.1. The uncapacitated warehouse location problem

The uWLP considers the selection of a non-empty subset of warehouses out of a
given set of M potential warehouses such that the sum of transportation costs
between warehouses and /N customers and opening costs is minimal. Let f; denote
costs of opening warehouse ¢ = 1,..., M. A binary indicator variable y; is set to
1 if warehouse 7 is built and to 0 otherwise. Let ¢;; denote transportation costs
for delivering the total demand of customer j = 1,..., N from warehouse ¢. x;;
is the fraction of demand that is being shipped from warehouse i to customer j.
All z;; follow the single assignment property (see Krarup and Pruzan (1983)),
which states that an optimal assignment of customers to a given set of open
uncapacitated warehouses is obtained by assigning every customer j to warehouse
i for which ¢;; = min{¢;; | ¢ = 1,...,M; y; = 1}. In presence of uncapacitated
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warehouses and linear transportation costs, each customer is assigned to the
closest open warehouse which, in turn, supplies him/her completely. As a result,
fractions z;; are € {0,1}. A binary programming formulation of the uWLP that
follows Bilde and Krarup (1977) is given as follows:

M M N
min C = Z fiyi + Z Z CijTij (3.1)
=1

i=1 j=1
M
st > wy =1 Vji=1,...,N (3.2)
i=1
Yi — 5 >0 Vi=1,...,.M;5=1,...N  (3.3)
y; € {0,1} Vi=1,...,M
[L’ZJEO VZzl,,M7]:1, ,N

(3.1) minimizes the total costs of warehouse opening decisions and transportation.
Equality constraints (3.2) assure that total customer demand is delivered and (in
optimal solutions) assigns each customer to a single warehouse. Opening and
assignment decisions are linked in (3.3).

3.2.2. Numbering defects

We used a sGA to solve uWLPS. The sGA employed one-point crossover, bit
flipping mutation and fitness proportionate selection. The crossover probability
has been set to 1.0, the mutation probability to 0.01. A sGA run was terminated
by allele convergence, i.e., for each allele the same value was present for at least
95% of the individuals. We mapped the warehouse opening decisions y;,i =
1,..., M onto genotypes of fixed length [ = M. The i-th bit denotes the opening
decision of warehouse ¢. This coding is commonly used by GA that can be found in
the literature. Infeasible solutions with no open warehouse are discarded using a
large penalty value. We exploit the single assignment property by assigning each
customer to his/her closest open warehouse. This representation is illustrated
in Figure 3.1. Circles represent customers, solid lined triangles represent open
warehouses (warehouses 1,4, and 5) and dashed lined triangles closed warehouses
(warehouses 2, and 3). Directed arcs from alleles to warehouses indicate the
assignments of the opening decisions to the warehouses.

We consider some uWLP benchmark instances from the well-known ORLIB and
Galvao-Raggi test-beds! and encode the y; on the bitstring in the exact order that

TAll instances that are used in this chapter are available in the uncapacitated facility
location library (UFL library), URL:http://www.mpi-sb.mpg.de/units/agl/projects/
benchmarks/Uf1Lib/
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[ fofofr]1]

Figure 3.1.: Representation for the uWLP

is proposed in the benchmarks. We determine the smallest population size for
which the sGA finds the optimal solution in 27 of 30 independent consecutive runs
using bisection. The number of fitness evaluations is averaged over the successful
trials, yielding a hardware-independent measure of performance e. The results
are listed in Table 3.1. Instances are named as in the description files.

Test-bed Instance name | M e | ¢ Factor | ¢’ TFactor
cap7l | 16 885 906 1.02 795 0.89

ORLIB capl02 | 25 3,595 5,778 1.06 | 2,165 0.60
capl32 50 25,636 27,975 1.09 | 11,731 0.46

50.1 | 50 10,710 | 18,331 1.71 | 10,248 0.96

Galvao-Raggi 70.1 | 70 19,117 | 55,637 2.91 | 15,899 0.83
100.1 | 100 54,112 | 159,223 2.94 | 32,586 0.60

Table 3.1.: Number of fitness evaluations with different numbering

We now illustrate what we label the numbering effect. A slight modification is
made to the representation. An opening decisions y; is no longer encoded by bit ¢
of the genotype, but by a different bit. For example, warehouse number 4 could be
re-labeled to warehouse number 17, and its opening decision is no longer encoded
by bit 4 but by bit 17. Still, every opening decision is encoded by a single bit
and each bit encodes a single opening decision. The numbering has been changed
systematically in order to obtain the following results. Detailed explanations will
be given in Section 3.2.3. Note that, all warehouse-specific parameters and thus
the instances themselves (including optimal solutions) do not change. We repeat
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the experiment. Results are listed in Table 3.1. The average number of fitness
evaluations is € ’.

Interestingly, the performance of the sGA deteriorates for all instances. The effect
gets worse for the larger instances, where computation times increase by a factor
of up to ~ 3. We perform another renumeration and repeat the experiment. The
average number of fitness evaluations is € 7, see Table 3.1. This numbering of
the warehouses proves to be advantageous. The performance of the GA increases
throughout all test instances: up to half the computation times could be saved
compared to the initial experiment by simply using a different numbering of the
warehouses! Why is this the case?

In the remainder of this chapter, we
1. explain this behavior theoretically,
2. show its existence empirically, and

3. propose EDA as alternative evolutionary algorithms that do not suffer from
this defect and are more efficient.

3.2.3. Decomposition of the uWLP

We will use results that link a decomposition of the uWLP to the performance
of evolutionary algorithms in order to explain the numbering effect that was
presented in section 3.2.2. Therefore, we review some results on problem de-
compositions and its effect on the scalability of EA and thereafter propose a
decomposition of the uWLP in this Section. Empirical results from widely used
benchmarks highlight the likeliness of witnessing the outcome of the defect in
Section 3.2.4.

Recall, that crossover operators used in a GA that do not disrupt BBs are called
linkage-friendly. The use of linkage-friendly crossover operators significantly en-
hances GA performance (Thierens and Goldberg (1993)). However, to design
linkage-friendly crossover operators, the decomposition of the problem has to be
known a priori.

An alternative approach to reducing disruption of BBs stems from the order in
which bits are encoded on the binary string, see Goldberg et al. (1989). Codings
that place bits from a BB closely together on the genotype are said to possess
tight linkage and (due to less BB disruption) increase the performance of sGA. In
contrast, codings that place bits of a BB widely spread over the genotype are said
to possess loose linkage. They can trigger a deterioration of GA performance. A
requirement for the design on tightly linked codings is information about the BB
structure — the decomposition — of a problem.

We propose a decomposition of the uWLP to gain insights into its BB structure.
The decomposition is based on the idea to assign opening costs and relevant
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transportation costs to open warehouses. Therefore, we split the set of ware-
houses into a set of open warehouses W = {Wy,..., W,} whose size is denoted
by |[W| = o, and a remaining set of closed warehouses W = {W,, W5, ...}. Closed
warehouses are not assigned any costs directly. They enlarge the transportation
costs associated with open warehouses. This is due to transportation require-
ments that accumulate at the open warehouses, if warehouses are being closed.
We reformulate fitness function (3.1) as an additively decomposable function as
follows.

min C = Z far + Z Capj Tay.j (3.4)
k=1

JEAL
; (3.5)
A =UN{j | gy =1}, 3.6
Bi(k) = UM {i] cij < Capj} Vj € Ay, and (3.7)
Sk = A U ( U Bj) . (38)
JEAL

Just like in Section 3.2.1 we assign customers to their nearest open warehouse. o
denotes the number of open warehouses in a solution. (3.4) is additively defined
over o cost components that include opening costs and transportation costs that
result from each of the opened warehouses. a; denotes the index of the k-th open
warehouse, f,, the associated opening costs. The index set Ay (3.6) comprises
the customers that are assigned to warchouse a,. Equation (3.7) returns for a
customer j = 1,..., N that is assigned to warehouse a; a set B; that contains
the indices of those warehouses that could have served customer j at lower cost
than ai. From the interaction of the set definitions and the assumption that all
customers are assigned to their closest open warehouse follows directly that all
warehouses W are closed. The set definition (3.8) defines the sets of decision
variables s, that directly or indirectly influence the costs caused by the open
warchouse ay,.

We can construct the sets s for any instance of the uWLP if its optimal solution
is given. The s; can be regarded as the BBs of the warehouse location problem.
They consist of a single bit that is 1 (the opening decision for warehouse a;) and
zeros for closed warehouses, if any. The opening decision causes opening costs
and transportation costs from nearby customers. Spilled-over customers from
closed warehouses increase transportation costs further.

We can now explain the numbering effect of Section 3.2.2. In Section 3.2.2,
all sets s has been computed for each considered instance using the optimal
solution. The worsening of GA performance was triggered by a numbering that
spread bits belonging to the same s, widely over the binary string. This was
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achieved by setting them at equal distance. Thus, a coding with loose linkage was
used. One-point crossover often disrupts high quality configurations of these bits
and prevents them from appearing jointly in solutions. Larger population sizes
are required for reliable convergence and thus, the number of fitness evaluations
grows. The increase of GA performance and large savings in computation times
were caused by choosing a numbering where bits that belong to the same s, were
coded closely together (tight linkage). The disruption of BBs is less likely in this
case, and GA performance rises significantly.

3.2.4. Numerical study

Although the results of our initial example are startling, the question remains
whether disruption of BBs is a relevant facet of GA behavior that optimization
practitioners have to keep in mind when solving location problems. Disruption is
clearly relevant if the sets s, are highly overlapping and of large sizes in instances
that are supposedly realistic. Then, any encoding that is chosen without respect
to linkage information can be a reason for bad GA performance.

To answer this question we conducted an empirical analysis of 647 uWLP in-
stances in 12 problem classes from the uncapacitated facility location library web
page. The library comprises test instances from several sources and their asso-
ciated optimal solutions. In cases where the optimal solution is not known, the
best solution found so far is provided and was used in the analysis below. A short
description of each problem class is available both on the UflLib web page and
in Hoefer (2002). A pointer to the origin of each class, providing more detailed
information on its nature, is given in column ORG. of Table 3.2.

We generalized the classification scheme of Schilling et al. (2000) and distin-
guished instances according to how the transportation cost matrix was generated.
FEuclidean inter-point distances are based on a spatial representation in the plane
where coordinates are known for each customer and warehouse location. Network
distances are based on shortest paths between warehouses and customers on a
random or predefined network such as road or railroad networks. Random dis-
tances are present if a distance matrix is generated randomly. Further, a distance
matrix can be full, i.e., there is a true transportation cost value for each ¢;;, or
sparse, i.e., some connections are blocked by prohibitively large values.

The analysis of the instances has been conducted as follows. Starting from the
optimal solution of each instance, the sets of interacting variables are computed
according to equation (3.8). Then the sizes of the sets, the absolute and relative
amount of decision variables that overlap with other sets, and the compliance of
a solutions sets with the running intersection property was computed. Relative
values are used to make instances of different sizes comparable. For each problem
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3. Decomposition of warehouse location problems and the linkage problem

class, the following characteristics are provided as average values over all instances

in the class:

CLASS
ORG.
No.

CLASSIFICATION

OPEN

Ava. SS

Max. SS

OLp.
RIP

Instance class name.

Pointer to source and/or description of problem class.
Number of problem instances in the class.

Type of distance matrix.

Percentage of potential locations opened in optimal solution.
Average set size relative to total number of

locations [avg(|sk|)/M].

Maximum set size relative to total number of

locations [maz(|sg|)/M].

Overlap between sets as percentage of average set size.
Percentage of problems for which the running intersection
property is fulfilled.

Table 3.2 presents the results. They show that overlapping and large sets of in-
teracting variables are common in uWLPs. Optimal solutions are unknown in
practical applications and a BB analysis as carried out in this chapter cannot be
conducted. It follows that tightly linked codings cannot be designed in a princi-
pled manner. Under these circumstances, sGA do not seem to be the methods of
choice because their efficiency is likely to be very sensitive to the numbering of

the locations

. With EDA, we propose an alternative in the next section.

CLASS

o
=
@

NO. CLASSIFICATION OPEN AvG.SS MaX.SS OLp.

Bilde-Krarup
Chessboard
Euclidean
Finite PPs
Galvao-Raggi
Koerkel-Gosh
k-Median
Duality Gap
M*

ORLIB

PCodes

Uniform

DN DN

220 Random (full) 9.0% 87.5% 91.2% 63.2%

30 Random (sparse)  11.1% 13.1% 16.1%  52.5%
30 Euclidean (full) 13.7% 10.5% 17.3% 29.5%
59 Random (sparse) 6.8% 41.5% 54.9% 83.2%

50 Network (full) 84.4% 2.5% 9.8% 16.2% 56.0%
45 Random (full) 4.7% 56.7% 64.3% 82.0% 33.3%

6 Euclidean (full) 1.1% 16.1% 20.9% 65.5% 0.0%
90 Random (sparse)  13.6% 22.9% 36.6% 67.7% 0.0%
15 Random (full) 2.5% 97.4% 98.1% 78.8% 100.0%
37 Network (full) 28.9% 17.6% 45.0% 17.7% 67.6%

909700 TSy (N (O [ (00 09 N N T

[\

3 Biased Eucl. (full)  6.7% 45.1% 55.7% 63.0%
32 Network (sparse)  12.5% 15.6% 20.3% 60.3%
30 Random (full) 13.2% 19.4% 33.6% 61.8%

Problem origins:
[1] Bilde and Krarup (1977)
| Galvao and Raggi (1989)
| Barahona and Chudak (2005)
7] Akinc and Khumawala (1977)

3

[
5
[

[2] Kochetov and Ivanenko (2003)
[4] Ghosh (2003)

[6] Kratica et al. (2001)

[8] Beasley (1988)

Table 3.2.: Set characteristics obtained from popular uWLP test instances.
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For EDA to work well, the set size |b;| and |¢;| have to be polynomially bounded.
The empirical study shows, that the sets s, which comprise both b; and ¢; is on
average much smaller than the problem size.

As listed in Table 3.2, the RIP does not hold for most instances. Other decompo-
sitions without overlapping BBs could be constructed that would use larger sets
and fulfill the RIP. However, compliance with the RIP is no necessary condition
for an EDA to convergence to the global optimum and thus we refrain from doing
SO.

3.3. Experimental section

We perform experiments on Galvao-Raggi and ORLIB uWLP instances, as both
are extensively used in benchmark studies. We use both a sGA and the Bayesian
Optimization Algorithm. The BOA is able to identify the structure of decom-
posable problems and represents a state of the art multivariate EDA. Note that
the EBNA or IFDA could have likewise been used. An experimental scalability
analysis is conducted to assess how the average number of fitness evaluations
required to solve the problems reliably grows with M.

3.3.1. Experimental design

Galvao-Raggi instances are based on randomly generated networks. The shortest
path between warehouses and customers is used to obtain transportation costs.
Warehouse opening costs are comparably low which leads to small set sizes and
low overlap (see Table 3.2). The instances cover problem sizes from N = M =1 =
50 to N = M =1 = 200. ORLIB instances are widely used in the assessment of
uWLP solution procedures. For the scale-up analysis, two subclasses have to be
distinguished. The ORLIB instances with M = 16, 25,50 are based on railroad
distances between American cities, see Kuehn and Hamburger (1963). Instances
of the same size differ with regard to warehouse opening costs. The instances
with M = 100 are generated by randomly placing warehouses and customers in
a 1000 x 1000 square, see Beasley (1988). Transportation costs are derived from
Euclidean inter-point distances that are scaled using a random factor in [1,1.25].

The sGA uses tournament selection, bit-flip mutation, one-point crossover and
generational replacement. Crossover and mutation probabilities were set to values
that yielded best performance on the smallest instances of each problem class as
follows. These probabilities may not sum up to 1.0. The probability of mutation
is very low, whereas crossover is the major variation operator.

48



3. Decomposition of warehouse location problems and the linkage problem

M=N=1 sGA BOA Speedup
50 8,625 4,457 1.94

70 88,200 7,604 11.60

100 168,273 14,437 11.65

150 600,085 19,956 30.07

200 941,390 29,175 32.27

Table 3.3.: Scalability results for the Galvao-Raggi uWLP instances.

Galvao-Raggi ORLIB

Tournament size 2 3
Probability of crossover 1.00 1.00
Probability of mutation 0.00 0.01

Mutation prohibits complete convergence in the sGA. A sGA run was terminated
when, for each allele, the same value was present in 95% of the solutions. This cri-
terion, however, was only applicable to the ORLIB instances. The Galvao-Raggi
instances apparently feature multiple global optima. For these problems, the op-
timization run was terminated as soon as 95% of the individuals had converged
to the same fitness value.

The BOA was set up to select the best 50% of each generation, from which its
probabilistic model was built. The worse half of the population was replaced
with newly generated individuals. A BOA run was terminated by bit-string
convergence, that is all individuals are identical.

We made the following experiment for each algorithm and problem instance. The
minimal population size required to solve the instance to optimality in at least
27 of 30 independent consecutive runs was determined by bisection. The number
of fitness evaluations was averaged over successful trials. Results were averaged
over instances of identical size.

3.3.2. Results and interpretation

Results of the scale-up analysis conducted on the Galvao-Raggi instances are
provided in Figure 3.2 and Table 3.3. The values reported are averaged over the
instances for each problem size. Both axes in Figure 3.2 have a logarithmic scale.
Thus, straight lines represent polynomial scale-up behavior.

Figure 3.3 and Table 3.4 provide analogous information for ORLIB instances. The
values reported are average values over four instances per size. On the M = 100
ORLIB instances, the sGA converged reliably for instance capa only.

Solution effort in number of evaluations e using the BOA has been determined
to be e & M3 and e ~ M for the Galvao-Raggi and ORLIB instances
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Figure 3.2.: Scalability results for the Galvao-Raggi uWLP instances. The graph
plots the number of fitness evaluations necessary for a 90% success
rate against M. Logarithmic scaling is used; straight lines indicate
polynomial scalability.

M=1 N sGA BOA Speedup
16 50 1,261 2,792 0.45

25 50 5,326 4,416 1.20

50 50 34,059 14,448 2.36
100 1000 305,679 28,473 10.74

Table 3.4.: Scalability results for the ORLIB uWLP instances.
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Figure 3.3.: Scalability results for the ORLIB uWLP instances. The graph plots
the number of fitness evaluations necessary for a 90% success rate
against M. Logarithmic scaling is used; straight lines indicate poly-
nomial scalability.
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respectively using regression. This is even lower than predictions from literature
that predict a growth in between O(M'5%) and O(M*%), see Pelikan et al. (2003).
The good results might be attributed to the problems’ favorable set structure.
Both set sizes and overlap are comparably low for the problems considered. On
average, the sGA’s running time grows between e = M?%8 (ORLIB) and e ~
M3 (Galvao-Raggi), respectively. Again, this was approximated by regression.

From the results above, one can conclude that uWLPs are suited for both GA and
EDA, but sGA are outperformed by EDA in terms of fitness evaluations. This is
due to the inherent ability of EDA to learn linkage between warehouse opening
decisions. Although the scalability of the BOA is better in terms of fitness eval-
uations, building large probabilistic models takes time. To decrease computation
times that are caused by model building, various efficiency enhancements have
been proposed in the literature, see Sastry et al. (2004).

Further, the experiments from Section 3.2.2 have been conducted using the BOA.
Since variation in the BOA bases on density estimation and the structure of
its probabilistic model is flexible with respect to the position of BBs, different
numberings have no effect on its performance.

3.4. Summary and conclusion

Simple GA and EDA show good performance for solving uncapacitated warehouse
location problems. We showed that the performance of sGA can nonetheless vary
strongly and is not robust, depending on how opening decisions are mapped onto
the genotype. It is difficult, if not impossible, to design tightly linked codings
for an uWLP instance if its optimal solution is not known. The large speed-ups
that are obtained from tightly linked codings make it worthwhile to investigate
approaches that are capable of learning linkage when solving warehouse location
problems.

We proposed to use EDA to solve uWLPs. EDA have been designed to solve
additively decomposable functions with large and overlapping building blocks.
EDA outperform GA and are insensitive to the warehouse numbering effect.
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4. Solving safety stock allocation problems with
evolutionary algorithms

Safety stock allocation problems in purely serial, divergent and convergent net-
work topologies can be solved efficiently by dynamic programming. While the
straightforward applicability of dynamic programs is limited to network topolo-
gies they have been designed for, dynamic programs for general networks suffer
from the size and complexity of state and decision spaces. We challenge the
paradigm of designing problem-specific algorithms and report on the reliabil-
ity and runtime of evolutionary black-box optimizers on safety stock problems.
They exploit little problem specific knowledge but expected total inventory hold-
ing costs of a safety stock allocation that results from a well-known extreme point
property. This reduces the costs of algorithm design to a minimum. The con-
tribution of this chapter is to indicate that evolutionary algorithms are capable
of routinely solving safety stock allocation problems in different topologies to
global optimality. Superior topology-algorithm matchings are recommended on
the basis of an experimental study.

4.1. Introduction

Multi-echelon inventory control is one area of supply chain management that has
attracted ample research during the last decades. Early contributions to multi-
echelon inventory theory focused on analytical insights and were restricted to
rather simple settings like two stages, identical retailers, negligible lead times,
to name just a few. For a general overview of the development we refer to the
reviews by Diks et al. (1996), van Houtum et al. (1996) and Axséter (2003).

Recently, more emphasis has been put on the development of methods for de-
termining inventory levels and control parameters in networks of more general
structure and under less restrictive assumptions with regard to materials flow and
information requirements. According to van Houtum et al. (1996) and Graves and
Willems (2003), these models fall into two major categories: full-delay/stochastic-
service models and no-delay/guaranteed-service models. The approaches differ
in terms of the underlying materials flow concept and the resulting service-time
characteristics. The service time is the time it takes until materials ordered by a
stock-point are made available for processing by its predecessor.

The no-delay approach with its fundamental work by Simpson (1958) and the
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underlying base-stock concept proposed by Kimball (1988) assumes determin-
istic service times. Here, orders of any size can be met by the supplying stage
within the quoted service time. This is enabled by the assumption that, in case of
insufficient inventory to meet demand, extraordinary measures, e.g. overtime or
accelerated production, exist, so-called operating flexibility, by which the missing
amount is made available in time. This allows for a decomposition of the overall
optimization problem into a master coverage allocation problem and individual
safety stock sizing problems for each stage given the allocation coverage require-
ment. Assuming independent normally distributed demands the optimization
problem has the special structure of a concave minimization problem subject to
linear constraints for which an extreme point property holds (see e.g. Horst and
Tuy (1998)).

Solution techniques comprise general purpose concave minimization algorithms
(see e.g. Horst and Tuy (1998)) and methods that make explicit use of an ex-
treme point property. Here, dynamic programming is the most prominent one.
For divergent networks Minner (1997) presents backward recursion formulations.
Similarly, convergent networks can be solved by forward recursion formulations
(see Minner (1997)). An extension of these basic network types to more realistic
topologies is presented by Graves and Willems (2000). A single state variable
dynamic programming algorithm is developed for spanning trees and is further
improved by Lesnaia (2004). Humair and Willems (2006) build on the result by
Graves and Willems (2000) and extend it to so-called clusters of commonality
networks where component commonality occurs only between adjacent echelons.
This approach is applicable to fairly general network types and comprises pure
topologies. Lesnaia (2004) shows that the general safety stock coverage problem
is NP-hard, characterizes candidates for an optimal solution and uses these prop-
erties to develop a branch-and-bound algorithm. For general acyclic networks,
Minner et al. (2006) present a dynamic programming approach.

Besides solution techniques that guarantee optimality, several heuristic methods
have been proposed in the literature. Minner (2000) presents several local search
algorithms, e.g. simulated annealing, threshold accepting and tabu search. Mag-
nanti et al. (2006) approximate the concave objective function by piecewise linear
functions, thus enabling the use of standard MIP solver technology to find the
optimal solution. The authors state that even networks of general acyclic type
can be solved within reasonable computation time, but detailed information on
runtimes is missing.

We are interested in the applicability of global black-box optimization to solve
safety stock problems. We considered a stochastic hill-climber with the (1+1)-EA
, the simple genetic algorithm and the Bayesian optimization algorithm, a state-
of-the-art estimation of distribution algorithm. These methods embody different
schools of thought in black-box optimization. They are widely available, well un-
derstood, and require only a minor modification for solving safety stock problems
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in different network types: the objective function has to be implemented and a
solution representation must be chosen. No modification is made to the algo-
rithms’ search strategies. This dramatically reduces the complexity of algorithm
design compared to topology-specific algorithms. However, stochastic heuristics
can not guarantee global optimality of the best found solution. Furthermore, a
seperated investigation of different problem topologies facilitates the understand
of the behaviour of the algorithms although complex networks comprise the pure
network types that we study as well.

Therefore, the central question of this work is how reliable in terms of success
ratios the evolutionary approaches are when solving safety stock allocation prob-
lems in serial, divergent, convergent and general acyclic supply networks. Further,
we are interested in their running times.

Section 4.2 reviews a mathematical model of the safety stock allocation problem
in general acyclic supply networks. Section 4.3 briefly reviews the evolutionary
algorithms which are used in Section 4.5 to solve the safety stock problems. The
chapter ends with conclusions and an outlook on future research. A preliminary
version of the chapter is available in Dittmar et al. (2007).

4.2. The guaranteed service time safety stock allocation
problem

We make frequent use of mathematical symbols and some specific notation, all
of which are introduced in the following. Single echelons 7 in a supply network
consisting of ¢ = 1,2, ..., n nodes have immediate predecessor nodes v(i) and im-
mediate successor nodes n(i). The terms node, product and stock-point are used
interchangeably. All nodes with external supply and no predecessor nodes are
in set A, all intermediate nodes are in set P. End-item nodes without successor
nodes that face customer demand are in set E.

Demand occurs at nodes ¢ in F and has expected single period demand ;. The
standard deviation of single period demand for product 7 is g;. The coefficient of
correlation between single period demand for products ¢ and j is p;;.

Inventory holding costs per unit and unit of time at stock-point ¢ are h;. The
processing time for product ¢ is A;. Stock-point is service level is SL;. The
customer service time for nodes e € E is ST,. Furthermore, e; denotes the excess
coverage provided by downstream stock-points which is available at stock-point
1.

The supply network is modeled as a directed, acyclic graph G. Each node per-
forms a certain processing function, e.g. a manufacturing or transportation pro-
cess, and is a potential location for holding safety stock after the process has
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finished. The arcs (i, j) indicate material flow requirements between stock-points
7 and j. The set A contains all stock-points ¢ that have no immediate predecessors
v(i) in G, i.e. v(i) =0 Vi € A, but procure raw material from external sources.
Stock-points with at least a single predecessor and successor in G are assigned
to set P. All stock-points that directly face stochastic end-product demand and
therefore have no immediate successors n(i) in G, i.e. n(i) =0 Vi € E, are in set
E.

End-product demand at stock-point 7 is assumed to be normally distributed with
mean u; and standard deviation o;. Unsatisfied customer demands are back-
ordered.

Dependent internal demand at stock-point ¢ results from the input coefficients
specified in the bill of materials (BOM). These coefficients are assumed to be 1
throughout the chapter. Each stock-point operates a periodic review base-stock
policy with the review period being identical at all stock-points. Consequently,
every review triggers a material request at all supplying stock-points for exactly
the difference between the base-stock level of a stock-point and its inventory
position (i.e. outstanding orders plus on-hand inventory minus back-orders.).

The processing time at each stock-point \; is assumed to be deterministic and
an integer multiple of the review period. \; denotes the time required for the
transformation process at node i, given that all required input materials are
available. Whether materials are available immediately or after a certain period of
time depends on the so-called service times of the preceding stock-points, ST).
A service time of 0 corresponds to immediate material availability. Furthermore,
it is assumed that each stock-point quotes the same service time to all of its
successors. Due to the coupling of adjacent stock-points via service times, the
time span for which protection against demand uncertainty is required is given
by

T, = mzaE)(){Sﬂ} + X\ — ST, . (4.1)

Jjev(s

The coverage time T; consists of the replenishment lead time of stock-point
i, maX;cy(;){97;} + A;, minus coverage requirements postponed to successors
through a (positive) service ST;. The coverage time calculation ignores the im-
pact of potential stockouts at supplying stock-points and assumes deterministic
predecessor service times. The corresponding amount of safety stock can be de-
termined by

SST, = ky(SL)o/T; . (4.2)

SST; is analogous to the well-known square root safety stock formula of the single-
echelon case where k; is a so-called safety factor that depends on the service level
SL;. The service level is assumed to be of the alpha-type in the experimental
section, that is the probability of experiencing a stockout at the end of a period
is constrained by (1 —«). Assuming that demand is normal, k; is computed from
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the inverse of the normal cumulative distribution function.

The resulting safety stock allocation optimization problem for an arbitrary num-
ber of stock-points n can be stated as follows

min€' = 3 hik(SL)o, fmax(ST,) (43)

s.t. 0<ST; < maEX){ST]} + X\ Vi¢ E (4.4)
J€ev(e

0 < ST; < ST, Vie E (4.5)

The goal of the optimization is to find the service time combination and in turn
safety stock levels that minimize total safety stock holding costs in the supply
network. Note that in the upper formula, the safety stock is used as an approxi-
mation for the on-hand stock. Following Silver et al. (1998), this approximation
is feasible due to a negligible chance of experiencing backorders when high exter-
nal service levels like 95% are assumed and internal service levels are set equal
to the external ones. This follows the relevant literature.

Constraints (4.4) ensure a positive service time at each stock-point and further
restrict the maximum service time to the stock-point’s replenishment lead time.
Constraints (4.5) represents a special case of (4.4) for stock-points facing end-
product demand. The service time ST, is a parameter rather than a decision
variable and specifies the acceptable customer waiting time.

Under normally distributed demand, service levels of the a-type and a serial
network topology the objective function is non-linear and concave. For complex
network topologies, concavity is used as an assumption. Note that an extreme
point property holds, that is, an optimal service time (coverage) allocation is
obtained on the edges of the feasible region, see, e.g., Horst and Tuy (1998) and
Magnanti et al. (2006) for a linearization of the max operator. This property
implies, that a stock-point either covers zero time (and therefore postpones the
coverage of its replenishment lead time to its direct successor locations) or holds

sufficient safety stock to cover its entire replenishment lead time, see Simpson
(1958) and Minner (2000).

Whereas in serial and divergent networks, possible coverage time candidates only
comprise cumulative processing time values, in convergent and general networks
additional solution candidates have to be considered resulting from so-called ex-
cess coverage values M (i). Excess coverage may occur at convergent substruc-
tures in the network. Stock-point ¢ experiences an excess coverage time of M (i), if
the service time that stock-point ¢ quotes to its immediate successor k is smaller
than the service time of another stock-point j which has the same immediate
successor k. In case stock-point k decides to hold safety stock it has to cover
the longer replenishment lead time, i.e. ST(j) + \g, and therefore stock-point ¢
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receives excess coverage of M (i) = ST; — ST;.

4.3. Representation and (1+1)-EA

The (141)-EA, the simple genetic algorithm, and an estimation of distribution
algorithm have been chosen for comparison. These are well understood black
box optimization routines and representative for different variation paradigms
encountered in EC. The (1+1)-EA uses a single solution as input for variation.
Variation is performed through randomly mutating parts of the solution. In con-
trast, the simple genetic algorithms is population-based. It takes two solutions,
called parents, as inputs for variation and employs crossover-type recombination
operators to combine bits and pieces of the parents. Mutation is performed with
low probability and crossover is the dominating operator. The estimation of dis-
tribution algorithm tries to learn problem structure by estimating a probability
density from all selected solutions. This density is sampled from to generate
offspring. This section describes the solution representation used by the EA and
briefly introduces the (1+1)-EA.

A core element of evolutionary algorithms such as the (141)-EA, the simple
genetic algorithm and the estimation of distribution algorithm is a solution rep-
resentation which defines a mapping between actual solutions to the problem at
hand (the phenotype) and a string of solutions components Z (the genotype), see
Rothlauf (2006). Whereas the quality of a solution is measured on the phenotypic
level, new solutions are constructed by variation steps that modify the genotypes.

Following the representation introduced in Minner (2000), it is sufficient to encode
the stock-points coverage decisions as binary values. 1 denotes that a stock point
holds inventory, 0 denotes a stock-point that does not. This binary representation
is unique and sufficient in order to represent all possibly optimal solutions of
safety stock allocation problems in serial and divergent networks. Note that
the mapping between genotypes and phenotypes is surjective. A single solutions
can be decoded by more than a single genotype, but all feasible phenotypes can
be decoded on binary strings. For convergent and general acyclic networks we
follow the mainstream assumption that optimal solutions can equivalently be
characterized. The coverage decisions are used along with the network topology
in a decoding procedure to obtain coverage times which in turn are evaluated
with holding costs.

Thus, a phenotype is a safety stock allocation in the network. It is represented by
a genotype that is a binary string of fixed length. In serial networks the coverage
decision of node i = 1,2...,n—1 is mapped onto bit ¢ of the genotype, see Figure
4.1 for an example. All nodes that face end-customer demand hold safety stock.
Regardless of the network topology, these nodes are not encoded on the binary
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string because their genotypic values will always be 1. Thus, the problem size
|Z| = [ differs from the number of nodes as |Z| =1 =n — |E|.
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Figure 4.1.: Representation of solutions in a serial network. Black nodes represent
stock-points that hold safety stock.

We use a mapping illustrated in Figure 4.2. Starting from the most upstream
stock-point the network is traversed stage-wise. Nodes from the same stage are
encoded next to each other starting with the topmost node in a graphical illus-
tration to the bottommost node. The same encoding is used for serial, divergent,
and convergent topologies. As illustrated in Chapter 3, the positioning of deci-
sion variables on the bitstring can have a significant impact on the performance of
genetic algorithms. Yet, an analysis of linkage in safety stock allocation problems
is beyond the scope of this chapter.
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Figure 4.2.: Representation of solutions in a general acyclic network. Black nodes

represent stock-points that hold safety stock

The coverage times are compiled from a binary string Z using a two-stage algo-
rithm proposed by Minner (2000). Optimal coverage times T; can be characterized
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by
T, = (L(Gi)—M@)"  i=1,2,...,n, (4.6)

with replenishment lead times L(i) and excess coverage times M(i). A binary
vector encodes a single, well defined set of coverage times 7;. Note that L(7) can
be evaluated independent of M (i). In a first step the replenishment lead times
L(7) are computed, then excess values M (i) are derived.

To obtain replenishment lead times L(i), the network is traversed starting from
nodes in A. For these nodes i € A, the replenishment lead time L(7) is ;.
The remaining nodes are visited in a topological order. Each node is visited,
after all its predecessors have been visited already. If a predecessor j to ¢ holds
safety stock (Z(j) = 1), its service time is zero and does not influence node
’s replenishment lead time. The effect of A; is zero, it is thus multiplied by
(1 —Z(j)) = 0. If a predecessing node j does not hold safety stock, L(j) might
influence the replenishment lead time of node ¢ and is multiplied by (1—Z2(j)) =1
for potential cumulation. Formally,

L(i) = \; Vie A, (4.7)
L(i) = A + max{L(j) - (1 — Z(5))} Vie PUE. (4.8)

Excess values M (i) are deduced starting with stock-points without successors.
The excess of these nodes ¢ € F is zero by definition. All other nodes are visited
in a sequence where a node is visited when the coverage time values for all of its
successors have already been derived. Formally,

M(i) = ST; — \; VieE, (4.9)
M(i) = mi(n){Tj — N+ MG} Vie AUP. (4.10)
71en(e

Having derived replenishment lead times and excess coverage, the costs associated

with Z are .
C(Z)=) hi-oi-ki-/T,(Z) (4.11)
=1

and are used in the algorithms to evaluate the expected costs of safety stock in
the solution expressed by Z.

The (1+41)-EA is the simplest EA that can be designed. It is a stochastic hill-
climbing algorithm that searches inside a bit-flip neighborhood as follows. An
initial binary solution vector is generated randomly. In a variation step, each bit
is considered for being flipped with an exogenously chosen mutation probability.
The modified solution is the offspring. If its quality is superior to that of its
parent, the offsprint replaces the parent, and is deleted otherwise. The (1+1)-
EA iterates the mutation and replacement steps until a stopping criterion is met.
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4.4. Decomposition of serial safety stock allocation
problems

Using the binary representation introduced in Section 4.3, this section demon-
strates separability of the serial safety stock allocation problem. Separability is
demonstrated by formulating cost function (4.11) as an ADF. The set of n binary
decision variables is partitioned into m disjoint sets s;,2 = 1,...,m. Each set
holds part of all indices for stock-points 1,2,...,n, such that s; C {1,2,...,n}
and s; Ns; = OVi # j. Furthermore, the sets s; contain adjacent indices. Total

cost is expressed by
C=> "1 Zihoik; > M| (4.12)
=1 JES; kes;

Cost function (4.12) decomposes the overal cost calculation into m terms. Each
term expresses safety stock holding costs that arise in the i—th part of the serial
network, ¢ = 1,2,...,m. The m parts are non-overlapping and obtained as
follows. In total, " , Z; = @ binary variables Z; are 1. @ nodes hold safety
stock. A vector ¢' = (q1, ..., qg) is introduced that contains all indices of exactly
these nodes in increasing order, that is ¢; = min{q;,j = 1,...,Q}. Based on this
information, the sets s; are constructed as

ok =1
S; = k.:1 ' ’ (413)
U

qi :
K= +1 kEoi>1.

By (4.13) the s; contain a single index that is associated with a binary variable
that is 1 (one per set s;). All other indices in a set (if any exist) link to a binary
variable that is 0. These adjacend nodes lie more upstream than the node that
holds safety stock. The resulting cost function is identical to (4.11) and an ADF,
since the sets s; do not overlap.

This result shows that selector-recombinatorial optimization techniques like GA
and EDA are in principal suited to solving the safety stock allocation problems
in serial topologies. In divergent systems, a similar decomposition should ap-
ply. Convergent and general acyclic topologies result in potential excess coverage
values that complicate the dependencies between decision variables.

Since the representation used in this chapter aligns decision variables that belong
to a dependency set on the binary string (for serial problems), it proposes a
tightly linked coding that should be especially suited for GA. In more complex
network types, renumbering effects like the one illustrated in Chapter 3 are likely
to have an impact on the performance of GA. An analysis of the dependency
structure and numbering effects in complex networks is future work.
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4.5. Experimental study

How effective and efficient are the above black-box optimizers on safety stock al-
location problems? To answer this question, we performed experiments on serial,
divergent, convergent and general acyclic supply networks. The experimental
setup is similar for all network topologies. We consider both small and larger
networks for each topology. 20 instances of safety stock problems are randomly
generated for each size and all optimal solutions are obtained from dynamic pro-
grams (Minner (2000), Minner et al. (2006)).

A critical parameter that needs to be set when using the simple GA and the
EDA is the population size. Too small population sizes hinder convergence,
while too large populations waste computational resources. In order to obtain
insights into the appropriate choice and impact of population sizes, we varied
them systematically. In a first step, each problem is solved with a population
size that equals the problem size. The problem size is the number of nodes that
do not face end-customer demand. A population size is used in 10 independent
trials for each of the 20 instances. Termination criteria are identical for the GA
and the EDA. A trial is terminated if the optimal solution has been found, or the
best found solution does not improve over 100 generations.

The success ratio is the percentage of runs in which the optimal solution has been
found by an algorithm. It is averaged over all instances and trials. Additionally,
the total number of fitness evaluations is recorded for trials in which the optimal
solution has been found. It is averaged over all successful trials. The average
number of fitness evaluations serves as a hardware-independent measure of per-
formance. The population size is doubled in subsequent steps until it reaches
a maximal value of 10.000 individuals or until the success ratio is larger than
80%. The simple GA uses one-point crossover and a mutation probability of 1/1.
Truncation selection selects 50% of the individuals in both the GA and the EDA.

The (1+1)-EA does not employ a population of individuals. The maximum num-
ber of fitness evaluations required by the GA or the EDA for a given population
size is used as the maximum allowed number of evaluations for a single run of the
(14+1)-EA. Its mutation probability is set to 1/I. The (1+1)-EA is terminated
after 5000 non-improving evaluations.

The experiments result in an empirical distribution of the success ratios and num-
ber of evaluations given different population sizes are obtained. This distribution
allows for a comparison of the algorithms with respect to reliability and runtime.

The following problem-specific parameters are used identically for all topologies.
End-customer demand is normally distributed with mean 10 and variance 9 and
uncorrelated between stock-points. A 95% service-level of the a-type is enforced
in all stock-points, resulting in safety factors k; = 1.65. Customer service times
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5. for end-item stock-points are 0. Processing times \; are uniformly distributed
in [1:5]. Holding costs h; at a stock-point are

h; = , (4.14)

The parameter z; is set differently across topologies and instances as explained
in the following sections. The general idea is to set z; such that optimal solutions
are stimulated, that the instances have a value-added cost structure that reflects
value-adding transformation processes that occur at nodes. Further, the optimal
solutions should contain safety stock at nodes in A and P. The experimental
results obtained for the stochastic hillclimber indicate that the instances are
multimodal for a search operator that flips a single bit.

In order to obtain such properties, an indifference ratio is obtained in a first
step. If z; is set to this ratio, the safety stock holding costs that are caused by
holding safety stock at stock-point ¢ are equivalent to those caused by not holding
safety stock at stock-point 7. In a second step, random numbers are sampled that
can be higher and lower than the indifference ratio, resulting in solutions where
coverage decisions are distributed over the network. It has been checked, that
this methodology generates multimodal serial instances. It is conjectured, that
multimodality also holds for the other network types.

Consider a two-echelon serial toplogy with nodes 1 and 2. Node 2 faces end-
customer demand and holds safety stock. Node 1 supplies node 2 and might hold
safety stock, if this reduces total safety stock holding costs in the system. The
two decisions (Z; = 0/1) cause identical total costs, if

hlalk‘lv )\1 + th’gk’Q\/ )\2 = th’gk’Q\/ )\1 + )\2. (415)

Assuming identical standard deviation of demand and safety factors across stock
points and simplyfying leads to

VA1

ho = hy - )
? ' VAL A — VA

(4.16)

We generalize (4.16) to n nodes in a serial network where node ¢ holds all safety
stock and an additional coverage decision of node ¢ — 1 has no impact on total
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costs:

(4.17)

;c_ 1 Ak
Zk 1 Ak — \/7

By randomly sampling holding costs around h;, randomized optimal coverage
patterns are stimulated. Note that setting holding costs as in (4.18) leads to a
value-added holding costs structure because h; > h;_;:

(4.19)

(4.20)

(4.21)

Since all A; > 0, (4.21) and thus (4.19) must be true. This idea is generalized to
divergent and convergent problem structures in the following sections.

4.5.1. Serial topology

In a serial network, the most upstream stock-point has an index of i = 1. Pa-
rameter z; = 1, and z;,7 = 2,...,n is set to

;c_:l Ak
Zi = Zj—1 U 1, 2- (422)

Zk 1)‘k \/7

where Ula;b] denotes a realization of a random variable that is uniformly dis-
tributed in [a;b]. Note, that a« = 1, and b is set to twice the indifference ratio
that has been described above.

The experimental results are illustrated in Figure 4.3 for small networks of 10
stock-points. The results for larger supply chains with 25 stock-points are pre-
sented in Figure 4.4. The horizontal axes list population sizes in a logarithmic
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scaling. The vertical axes list average success ratios and average runtimes associ-
ated with these population sizes. Missing points indicate that the algorithm was
unable to at least once solve an instance to optimality given this population size.

It is obvious that the generated instances do not pose problems for either evo-
lutionary algorithm given the population size is high enough. Given a fixed
population size, the sGA attains the highest success ratio. It is important to
note that it also requires the highest runtimes for any population size. The run-
time results suggest that the (1+1)-EA is the most efficient algorithm out of the
selected ones for solving the instances. This might be due to the underlying sim-
ple structure of serial safety stock allocation problems. Nodes that hold safety
stock decouple the supply chain. This logic limits interaction between decision
variables. As a result, flipping single bits in a (1+1)-EA suffices to solve the
instances to optimality.

4.5.2. Divergent topology

In divergent topologies, the most upstream stock-point has an index ¢ = 1. The

parameter z; is set to
z; = 100V: € £, and (4.23)

\/ Zke\/(j) Ak — V >‘j
a= > z-UlL : (4.24)
jen(i) 2- A/ ZkeV(i) Ak

The network structure is depicted in Figure 4.5(a) for problems with 28 nodes.
Small networks have the same triangular structure but less nodes. The results
depicted in Figure 4.6 are similar to the ones obtained for serial networks. This
is in line with the structural similarities between serial and divergent safety stock
problems. For either size no clear distinction can be made between the success
ratios of the algorithms. Given that populations are large enough (resp. the
maximum runtime for the (141)-EA), the EA solve the instances reliably to
the optimum. The sGA again requires the highest number of fitness evaluations.
Optimization speed renders the (14-1)-EA a sensible choice for solving safety stock
allocation problems in small divergent networks. For larger networks, Figure 4.7
presents different results. The (1+1)-EA is incapable of solving these instances
with required reliability. The inherent functionality of the (1+1)-EA suggests
that this is due to getting trapped in a local optima. Obviously, the number of
local optima increases faster than the problem size, rendering larger instances
harder to solve. The EDA proves to be more reliable than the GA. At the same
time, it reaches the optimum faster.
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Figure 4.3.: Success ratios and runtime for serial networks with 10 stock-points
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Figure 4.4.: Success ratios and runtime for serial networks with 25 stock-points
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(a) Divergent network b) Convergent network

Figure 4.5.: Network topology for large divergent and convergent networks.
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Figure 4.6.: Success ratios and runtime for divergent networks with 28 stock-
points

4.5.3. Convergent topology

In convergent networks the most upstream stock-point has index ¢ = 1 and z; is

set to
zi = 1Vi € A, and (4.25)

A
\/W(lvj)elgVaE}l)fj),leAZkEW(lJ) k

Z; = zi-U [1;2-
Z) J \/ max Zkew(l,i) M — Vi

jeu(i w(l,i)EW (1,i),l€A

(4.26)

The network topology is illustrated in Figure 4.5(b). The results from the ex-
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Figure 4.7.: Success ratios and runtime for divergent networks with 105 stock-
points

periments are graphed in Figures 4.8 and 4.9. It can be seen that the (1+1)-EA
is not able to reliably solve neither small nor large instances. We suggest that
this is due to a higher number of local minima. Further, excess coverage times
and their influence reduce the effectiveness of simple bit flipping strategies as
the complexity and strength of interactions between coverage times and cover-
age decisions between stock-points increase. The sGA and the EDA are both
capable of solving the small instances reliably, but runtime results are in favor
of the EDA. Considering the large instances, however, a significant deterioration
of performance is witnessed for the sGA. It is not able to solve the instances
to optimality in a reliable manner. In contrast, the EDA manages to generate
optimal solutions with desired reliability. At the same time, its running times
are considerably lower than those of the sGA. Note that the EDA requires much
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smaller populations to generate optimal solutions at all.
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Figure 4.8.: Success ratios and runtime for convergent networks with 28 stock-
points

4.5.4. General acyclic topology

The topology of the general networks is depicted in Figure 4.10. Additionally,
outgoing arc is added to every node in A U P. It is linked to a random node
in the next stage in order to increase the complexity further while maintaining
acyclicness. The approach from Sections 4.5.1-4.5.3 for setting holding costs could
not be adopted for general topologies due to its formal complexity. Holding costs
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Figure 4.9.: Success ratios and runtime for convergent networks with 105 stock-
points

are 1 for all nodes in A. Holding costs of a node ¢ in P and E are set to

hi =U[1;2] Y hy, (4.27)

J€v(4)

reflecting a value-added cost structure. Results from the experiments are plotted
in Figure 4.11. As foreshadowed by the results for convergent networks, the
(14+1)-EA is not able to solve the instances reliably. Interestingly, both the
sGA and the EDA are highly reliable when solving instances with 25 stock-
points, while a consideration of runtimes is in favor of the EDA. Due to limited
computational resources available, we could not solve larger instances of this type.
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Figure 4.11.: Success ratios and runtime for general networks with 24 stock-points
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4.6. Summary and conclusion

We investigated the reliability and runtime of the simple genetic algorithm, the
(14+1)-EA and the Bayesian optimization algorithm on safety stock allocation
problems. Recall that these algorithms do not exploit more problem specific
knowledge than the total expected holding costs caused by a safety stock alloca-
tion which can readily be derived on basis of a well-known extreme point property.
Nonetheless algorithm-topology matchings exist where the EA solve safety stock
allocation problems to global optimality with a reliability of 80% or higher.

For serial topologies, the (141)-EA is surprisingly reliable and fast. The Bayesian
optimization algorithm can be suggested for divergent, convergent and general
acyclic structures. These algorithm-topology matchings proved to be reliable and
efficient in our experiments. At the same time, their implementation required
minimal effort.

The instances that are considered in this chapter are small compared to instances
used, e.g., in Humair and Willems (2006). Specialized heuristics are required to
solve large instances. One approach is to hybridize the BBO algorithms used
in this section with local search algorithms like Tabu Search (Glover and La-
guna (1997)) or Simulated Annealing (Kirkpatrick et al. (1983)). Minner (2000)
presents results using local search to solve safety stock allocation problems that
can act as starting points.
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5. Decomposition of single- and multi-product
lot-sizing problems and scalability of EDA

5.1. Introduction

The main contribution of this chapter is twofold. First, similar to Chapter 3 the
practical relevance of decomposability assumptions is demonstrated. Two lot-
sizing problems are studied that are fundamental in inventory management and
of practical relevance. These are the single-product lot-sizing problem (Wagner
and Whitin (1958)) and the dynamic joint replenishment problem (JRP, Silver
(1979)). The single-product lot-sizing problem considers the placement of replen-
ishment orders for a single product over time and is polynomial-time solvable, see
Wagelmans and van Hoesel (1992). The dynamic joint replenishment problem
extends the single-product problem to a multi-product case where ordering costs
are linked between the products. The JRP is NP-complete (Arkin et al. (1989)).
In this chapter, it is shown that both problems are decomposable and that their
fitness functions can be formulated as additively decomposable functions. It is
assessed how Boltzmann-type search distributions factorize into marginal distri-
butions for these decompositions and it is shown that the factorizations of the
Boltzmann distribution are polynomially bounded for both problems.

Second, the problems are solved with the BOA, a state-of-the-art EDA in an
experimental scalability analysis. The total number of evaluations required to
reliably solve the problems to optimality grows with a low-order polynomial de-
pending on the problem size. The results confirm existing scalability theory for
decomposable problems and show the potential of EDA in lot-sizing.

This chapter is structured as follows. In Section 5.2.1, a brief introduction to
lot-sizing problems is given. The single-product lot-sizing problem is presented
in Section 5.2.2, the dynamic joint replenishment problem in Section 5.2.3. In
Section 5.3, we propose decompositions for the single- and the multi-product lot-
sizing problem. In Section 5.4, experimental scalability analysis for both problems
are conducted. The chapter ends with concluding remarks. It has been published
as Grahl et al. (2008).
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5.2. Lot-sizing

5.2.1. Introduction

Almost any organization has to cope with inventories to exploit economies of
scale, guarantee a certain service level or to decouple processes to name just a few
reasons. A central problem of managing inventories is matching replenishment
ordering decisions with customer demand over time. Lot-sizing problems are
solved to balance cost trade-offs that arise from placing replenishment orders in
an inventory system at different points in time.

Assume that customer demand for a product is known over time, e.g., for the
next 12 weeks. A company can place replenishment orders for the product at
various discrete time points, e.g., every Monday. Received but not used goods
can be stored as inventories. Customer demand has to be satisfied completely
from the available sources.

The total costs that are caused by placing replenishment orders consist of (1)
fixed ordering costs and (2) inventory holding costs. Fixed ordering costs arise
for each order that is placed (e.g. shipping costs). They are independent from the
amount of goods that is actually ordered. Inventory holding costs arise, if goods
are put on stock and are carried as inventory. The sum of the fixed ordering
costs grows with the number of orders that are placed. The sum of the inventory
holding costs decreases with the number of orders that are placed. This trade-off
has to be balanced in order to minimize the total costs that is caused by placing
replenishment orders.

5.2.2. Single-product lot-sizing

The standard single-product dynamic, discrete time lot-sizing problem (also known
as the Wagner-Whitin problem) was introduced in Wagner and Whitin (1958).

This fundamental problem addresses the placement of replenishment orders for a

single product over time such that the sum of fixed ordering costs and inventory

holding costs is minimized. The single-product lot-sizing problem is the starting

point for several extensions into various directions that address issues arising in

practice.

In the single-product lot-sizing problem, time is discredited into 7' time-points.
The t-th period denotes the time interval between time-point ¢ and time-point
t + 1. Orders of amount ¢; > 0 are placed at each time point ¢t € {1,2,...,T}.
This means that orders are placed at the beginning of period ¢t. An order of ¢; > 0
causes a fixed costs of ¢ that is independent of the amount that is actually ordered.
The ordered goods are immediately available. They can be stored in a warehouse
with unlimited capacity. The inventory level of the warehouse at the end of period
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t is denoted by ;. We assume that initial inventory g, is zero. Holding a single
item of inventory from one time-point to the next causes a costs of h. After an
order ¢; has been placed, demand occurs of size z;. Without loss of generality
we assume throughout the chapter that z; > 0 in the single-product lot-sizing
problem because initial periods with zero demand can be neglected. Demand z;
has to be satisfied completely from the order ¢, or from stock (thereby reducing

yt)-

The objective is to place the orders ¢; such that the sum of fixed ordering costs
and inventory holding costs over the planning horizon is minimized. Therefore,
the following two questions have to be answered:

1. For which time-points t € {1,2,...,T} should ¢, > 07
2. If ¢; > 0, how large should ¢; be?

Using a mixed integer linear program, the single-product lot-sizing problem can
be formulated as follows.

T
min f=Y (c-am+h-y) (5.1)
t=1
Yt =Yr—1+ G — 2 Vi=1,...,T (5.2)
Yo =10 (5.3)
T
thxt'zzi Vi=1,...,T (5.4)
i=t
o € {0,1} Ve=1,....T
Y, qp = 0 Vi=1,...,T

In this formulation, binary variables x; are introduced to indicate whether an
order is placed at time-point ¢t. If z; = 1, then an amount of ¢; > 0 is ordered.
If z; = 0, then no order is given at time-point ¢. In that case, inequality (5.4)
restricts the order amount ¢; to zero. The inventory balance equation (5.2) states
that the inventory level at the end of period t equals the inventory level at the
end of period ¢ —1 plus items that are ordered in period ¢ (¢;) minus demand that
occurs in period ¢ (z). Equality (5.3) states the initial condition that starting
inventory is zero.

The single-product lot-sizing problem can be solved in polynomial time. Wagner
and Whitin (1958) prove a zero inventory property which reduces the set of
potential optima to solutions where batches of consecutive demand are ordered.
They proposed a dynamic programming formulation that has a complexity of
O(T?). More efficient algorithms with O(T'log T') complexity have been proposed

7



5. Decomposition of single- and multi-product lot-sizing problems

by Federgruen and Tzur (1991) and Wagelmans and van Hoesel (1992). Several
heuristics for the problem have been proposed, overviews are available, e.g., in
Wemmerlév (1982) , DeBodt et al. (1984) and Jans and Degraeve (2007).

5.2.3. The dynamic joint replenishment problem

Lot-sizing problems become more complex in a multi-product context with de-
pendencies between different products. Examples in practice are products that
are manufactured on the same machines (multi-item lot-sizing and scheduling
problems) or products that share a common warehouse. In the dynamic joint re-
plenishment problem, the ordering costs depend on the mix of multiple products
that are replenished jointly.

The JRP considers K > 1 products. For each product £ = 1,..., K, a single
product lot-sizing problem (see Section 5.2.2) has to be solved. Fixed ordering
costs ¢* (also referred to as minor setup costs), inventory holding costs k¥, and
customer demand z¥ are product-specific. We assume for the JRP throughout the
chapter that initial periods where all products have zero demand are neglected.
It follows that at least a single product has positive demand in the first period.
The products are linked as follows. If at least one product is replenished at time-
point ¢, then an additional order cost of ¢® arises (also referred to as major setup
costs), independent of the number of products that are actually replenished at
time-point ¢. If no product is replenished at time point ¢, ¢® does not arise at
time point . Note that if several products are ordered at time point ¢, product
specific fixed ordering costs c* arise for each of these products but ¢ arises once.
One example in practice is that several products are jointly shipped in a single
truck, causing transportation costs of ¢°.

If ¢® = 0, the JRP decomposes into K single-product lot-sizing problems that can
be solved independently. If ¢ =0V k = 1,..., K, the JRP can be transferred
into one single-product lot-sizing problem by using ¢ as setup costs and summing
up demands and holding costs.

The dynamic joint replenishment problem can be formulated as a mixed-integer
linear program. The notation used follows the notation that has been introduced
in Section 5.2.2. Decision variables and problem parameters are assigned a prod-
uct index k. The fitness function includes all ordering and inventory holding
costs.
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K T T
min f:ZZ(ck-:tf—l-hk yf)—l—Zco wy (5.5)
k=1 t=1 t=1
yf:yf_l+qf—zf vt=1,....,T;k=1,....K
ys =0 Vh=1,... K
T
qféxfz,zf Vi=1,....T;k=1,.. K
i=t
aF < w, Vt=1,....T:k=1,....K
(5.6)
Y g >0 Vt=1,....T:k=1,....K
(5.7)
zF € {0,1} Vt=1,....T:k=1,....K
(5.8)

This formulation is a direct extension of the single-product lot-sizing mixed-
integer linear program (see Section 5.2.2) for K products. If at least one product
is replenished in period ¢, an indicator variable w; is forced to 1 and ordering
costs ¢° arise in the fitness function (5.5). This coupling of the ordering costs is
modeled in inequality (5.6).

Algorithms that determine an optimal solution using dynamic programming ap-
proaches were developed by Silver (1979) and Kao (1979). A branch-and-bound
method was proposed by Erenguc (1988). A dual-based method was developed by
Robinson and Gao (1996), heuristics were proposed in Joneja (1990) and Robin-
son et al. (2007). Efficient integer programming formulations are available in
Boctor et al. (2004) and Narayanan and Robinson (2006).

5.3. Decomposition of lot-sizing problems

A major result of EDA theory is that if the factorization of the Boltzmann distri-
bution for a given problem is polynomially bounded, new solutions can efficiently
be generated and an EDA can theoretically solve the decomposable problem with
a polynomial number of fitness evaluations (Miihlenbein and Mahnig (1999)).
During the last years, this potential has been turned into scalable optimizers
that outperform standard GA on a wide range of problems.
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5.3.1. Single-product case

In this section, we reformulate the fitness function (5.1) as an additively decom-
posable function of type (2.3). Then, we show that the Factorization Theorem
holds for the decomposition and that the size of the marginal distributions is
bounded with the consequence that a state-of-the-art EDA should be able to
solve the problem in polynomial time.

The proposed decomposition is constructed by exploiting the zero inventory prop-
erty (see Wagner and Whitin (1958)). This property states that in an optimal
solution for the single-product lot-sizing problem, replenishment orders ¢; > 0 are
placed at time ¢ if and only if y;_; = 0. From this it follows that order quantities
¢; in optimal solutions are batches of aggregate consecutive future demands. In
the previous formulation of the problem (see Section 5.2.2), a company has to
decide when replenishment orders should be placed and how much should be
ordered. If we exploit the zero inventory property, it is only necessary to decide
when the orders have to be placed and not how much should be ordered. The
order amounts are completely derived from the times when orders are placed. If
an order ¢; is placed at time ¢ and the next order w is placed at time ¢t < u < T,
then ¢, = Z;‘:_tl z;. Consequently the last order amount is ¢, = ZT 2.

Exploiting the zero-inventory property allows us to represent a solution on a
binary string. The ordering decision variables z; are binary (either an order is
placed at time ¢ or not) and their values are aligned on the string. The ordering
decision x; is represented by the ¢-th bit on a string of length T'.

Note that for lot-sizing problems considered in this chapter an order has to be
placed in period one as initial inventory is zero and z; > 0. This means that
solutions where z; = 1 are feasible and solutions where x; = 0 are infeasible. For
all following reformulations and analysis we assume feasibility of the solutions.

1 2 3 t T1T Periods
Figure 5.1.: Coding for the single-product lot-sizing problem

The total costs caused by m replenishment orders over T" periods of time can be
calculated by adding up m costs values that cover the costs that occurs in m
lots over disjoint and aligned sets of periods. Thus, the single-product lot-sizing
problem is decomposed along batches of aggregate consecutive future demands.

We reformulate (5.1) to an additively decomposable function of type (2.3) as
follows:
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min f =Y fi(zs,) (5.9)
i=1
with
P = {plapZa o 7pm}
ple{17277T} 7;:1,2,...,7”
pr=1
Pit1)—1
S; = U 7 1=1,2,...,m
J=pi
|x51‘|_1

f(x&) =c+h- Z j'Z(PH-j)
=0

Fitness function (5.9) is additively defined over m sets of the ordering decision
variables z,,. m, denotes the number of 1 < m < T orders that are placed.
The z,, are disjoint subsets of all ordering decision variables and z,, consist of
all variables that are associated with the order point p;. Order points p;,7 =
1,2,...,m are time points ¢ where x; = 1. The set p contains all order points.

Example 1 Let the number of periods T be 12. Orders are placed at the beginning
of periods 1,5,6, and 10. In this case, m = 4, p = {1,5,6,10}, p1 = 1, po = 5,
ps = 6 and py = 10. The sets s; have the following structure: s; = {1,2,3,4},
sy = {5}, s3 = {6,7,8,9}, and s, = {10,11,12}. The decision variables x are
grouped into sets of xs, = {x1,T2,x3,24}, x5, = {5}, Ty = {T6, 27,28, T0},
and xs, = {10,211, 212}. These groups can be denoted as building blocks of the
problem instance.

The example illustrates that the building blocks of single-product lot-sizing prob-
lem instances have a well-defined structure. They consist of a leading 1 that
denotes the setup decision plus subsequent 0Os, if any. An illustration of the BB
structure is given in Figure 5.2. The BBs of a problem instance need not be
equally sized. But the average size of the BBs will increase with the setup costs
c and decrease with h. The more expensive an order is, the more is ordered in a
single batch to avoid frequent ordering and the more demand of future periods
is covered by a single order.

We now show that the Factorization Theorem holds for this decomposition and
that the factorization of the Boltzmann distribution is polynomially bounded.

First, we show that b; # () for all i = 1,2,...,m.
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B B4 Building blocks

7506 1767678 1 0] o] sitstring

1 2 3 45 6 7 8 9 101112 Periods

Figure 5.2.: Building blocks of a single-product lot-sizing instance

Obviously, all s; # ), because the s; always include at least one index p;. Since
s;Ns; =0 for all ¢ # j, it follows that

i—1
Cizsiﬂdi—lzsiﬁusj:@-

Jj=1

Thus, b; = s; \ d;_1 = s;. Since s; # 0, it follows that b; # 0 Vi = 1,2,...,m.
The RIP is fulfilled because the sub-problems do not overlap, the problem is
separable.

Additionally, it is desired that the factorization is polynomially bounded. This
means that the size of the marginal distributions is bounded by a constant inde-
pendent of T'. The size of a marginal distribution relates directly to the number
of periods |s;| whose demand a replenishment order placed in p; covers. It is rea-
sonable to assume that the ordering costs ¢ and the inventory holding costs h are
bounded and positive. Assume now that 7" — oo. Under these assumptions, the
number of periods that any replenishment order covers is bounded. Any values
chosen for ¢ and h will make it beneficial to order more than once if 7" — oo.
The size of any s; is bounded. b; is bounded since b; = s; and ¢; is bounded
because ¢; = (). The factorization of the Boltzmann distribution is polynomially
bounded. The planning horizon theorem from Wagner and Whitin (1958) yields
similar results by stating independence of partial solutions spanning periods ¢ to
t + H, if the optimal solution for periods ¢ to t + H + 1 includes an additional
order in period t + H + 1 and the optimal order amount in period ¢ remains
unchanged.

Chapter 3 discussed that the numbering of warehouses in a warehouse location
problem causes performance differences when the WLP is solved with sGA. The
numbering effect is caused by encoding bits that belong to a BB loosely on the
bitstring. The codings that are presented in Figures 5.1 and 5.3 map the timely
sequence of ordering decisions directly onto the genotype. The bits that belong to
a BB are coded next to each other. For the single-product lot-sizing problems that
are studied in this chapter the numbering effect is thus assumed to be neglectable.
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5.3.2. Multi-product case

In this section, we will reformulate (5.5) as an additively decomposable function
of type (2.3). Then we show that the Factorization Theorem holds for this decom-
position and that the factorization of the Boltzmann distribution is polynomially
bounded.

The zero-inventory property also holds for the dynamic joint replenishment prob-
lem (Veinott (1969)). This allows us to extend the additively decomposable re-
formulation of the single-product lot-sizing problem (see Section 5.3.1) to the
multi-product case.

The reformulation introduces an artificial product with index k& = 0 that is used
to model the coupling of ordering costs. Inventory holding costs for the artificial
product are zero. If at least one real product is replenished at time point ¢, then
the artificial product is replenished as well at time point ¢. This causes fixed
ordering costs of ¢° that are independent of the number of products that are
actually replenished in period ¢. If no real product is replenished at time-point
t, then the artificial product is not replenished at time-point ¢.

Solutions of the JRP are represented on a binary string as follows. Like in the
single-product case we do not need to encode the amounts that are ordered. Due
to the zero-inventory property, we only need to encode binary ordering timing
decisions. A single product kK = 0,1,..., K is exactly encoded as described in
5.3.1. The setup decisions for all products are aligned on the binary string. This
means, that if 3 products are given and 7" = 12, then 4-12 = 48 bits are needed to
encode a single solution. The first T bits are used to represent the order decision
of the artificial product. Bits T+ 1 to bit 2T represent ordering decisions of the
first product, second, and so forth. In general, the ordering decision for period ¢
of product k is represented by bit T - k 4+ t. The coding is illustrated in Figure
5.3.

Bit (k*T)+2

X,] . x| Bitstring

0 (artificial) 0<k<K (real) K (last real)  Products
Figure 5.3.: Coding for the dynamic joint replenishment problem

We reformulate function (5.5) as an additively decomposable function of type (2.3)
as follows:

83



5. Decomposition of single- and multi-product lot-sizing problems

k

min f(z) = imef (:csi_c> (5.10)

k=0 i=1
with
L=c¢; h=0
pF={pl. 5. Pl Vk=01,... K
pre{l,2,...,T} ViE=0,1,...,K;i=1,2,...,m"
b =1 Vk=1,2,...,K
Pk Cp° Vk=1,....K (5.11)
Plisy~1
ss= |J i+ & 1) Vk=0,1,....K;i=1,2,...,m"
j=pk
IxSf‘_l
fiag) =+ G
j=0

Fitness function (5.10) is additively defined over all products & = 0,1,..., K
and all associated sets of decision variables z for each of the products. (5.11)
links the ordering decisions of the real productlwith the ordering decisions of the
artificial product.

Example 2 Let the number of periods T be 12 and the number of real products K
be 3. The first product is replenished in periods 1,5, and 6. The second product
1s replenished in periods 1, 6, and 11 and the third product is replenished in
periods 1 and 3. The artificial product is therefore replenished in periods 1,3,5,6,
and 11. For this setting, p* = {1,5,6}, p* = {1,6,11}, p* = {1,3} and p° =
{1,3,5,6,11}. The set s9 = {1,2}, s5 = {3,4}, s3 = {5}, s§ = {6,7,8,9,10},
sO = {11,12}, s! = {13,14,15,16}, s} = {17}, s} = {18,19,20,21,22, 23, 24},
s? = {25,26,27,28,29}, s2 = {30,31,32,33,34}, s2 = {35,36}, s7 = {37,38},
s3 = {39,40,41,42,43,44, 45,46, 47,48} .

We have shown in Section 5.3.1 that the Factorization Theorem holds for a single
product. We transfer this result to the dynamic joint replenishment problem.
The above reformulation of the JRP separates the products from each other.
The index sets s¥ do not overlap between the products. This means that for each
product that is modeled in the JRP, the single-product results apply. Because
the products of the JRP are separated, the Factorization Theorem also holds for
the JRP as a whole.
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We have shown in Section 5.3.1 that the Boltzmann distribution is polynomially
bounded for a single product. In our JRP formulation we separate the products
from each other and no additional complexity is introduced for all feasible solu-
tions. Thus, this result is valid individually for every “real” product k > 0. Note,
that the artificial product is special because it has zero-inventory holding costs.
The size of the inventory holding costs does not affect the analysis of the decom-
position. Therefore, the results for a single real product apply for the artificial
product as well.

An instance of the JRP is made up by a combination of a bounded number of
real products and one single artificial product. If we let T" — oo, the size of no
set s¥ can tend to infinity. All sets s¥ are bounded. All sets b are bounded
because b¥ = sF. The sets ¢} are bounded because ¢ = (). The factorization of
the Boltzmann distribution is polynomially bounded for the JRP as a whole.

Renumbering effects that result from changing the allocation of bits to decision
variables might occur when different sorting of products are used. For one product
k, the mapping the timely sequence provides a naturally tightly linked encoding.

5.4. Experimental results

We perform experiments on the single-product lot-sizing problem and the dy-
namic joint replenishment problem. The analysis of the previous chapters indi-
cates that both problems are decomposable. State-of-the-art EDA solve decom-
posable problems in polynomial time. We conduct an experimental scalability
analysis to assess the degree of the polynom and how the constant factor de-
pends on the problem instance.

The Hierarchical Bayesian Optimization Algorithm (hBOA) (Pelikan et al. (1999);
Pelikan (2002)) is used in all experiments because it is a state-of-the-art EDA.
It has been used for solving complicated problems from computer science and
physics previously, see Pelikan and Goldberg (2003) and Chapter 2.2.4. hBOA
performs selection by restricted tournament replacement (RTR). In RTR, a spec-
ified percentage of the population is iteratively replaced by the best individual
out of a randomly chosen subset of individuals of size w (called the window size).
We chose to replace 50% of the population. After some initial testing, the window
size for RTR was set to 4, independent of the size of the problem I.

5.4.1. Single-product dynamic lot-sizing

We implemented fitness function (5.9) for hBOA. Solutions were encoded on the
binary string as explained in Section 5.3.1. In every generation of the algorithm,
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the feasibility of the population was maintained by setting the first bit of a
solution to 1.

In order to assess whether the scalability results for the lot-sizing problem are in
accordance with scalability theory, we propose two test problems with constant
demand and constant BB-size in Table 5.1. In the optimal solution of the first test
problem, BBs are of size 2. In the optimal solution of the second test problem,
BBs are of size 6.

Table 5.1.: Test problems with constant BB-sizes for the single-product lot-sizing

problem
BB-size ‘ Optimal costs ‘ c ‘ h ‘ 2 Vt
2 T/6 - 5400 15000 | 8 | 100
6 T/6 - 27000 1500 | 8 | 100

We propose a second test problem with seasonal demand in Table 5.2 where BBs
of the optimal solution have varying sizes from 2-6.

Table 5.2.: Test problem with varying BB-sizes for the single-product lot-sizing

problem
BB—size‘ Optimal costs ‘ c ‘ h‘ Z

2-6 | T=6:3680 |1000]2]z= (100,140,180,140,120,110,
T =12:6100 80,50,30,50,80,90,
T =18 : 9600 100,140,180,140,120,110,
T =24 : 12080 80,50,30,50,80,90,
T = 30 : 15680 100,140,180,140,120,110,
T = 36 : 18160 80.,50,30,50,80,90,
T = 42 : 21680 100,140,180,140,120,110,
T = 48 : 24160 80,50,30,50,80,90,
T = 54 : 27760 100,140,180,140,120,110,
T = 60 : 30240 80,50,30,50,80,90)

For all problems, we varied the problem size T from 6 to 60 in steps of size 6,
resulting in 10 problem sizes per problem. For each problem size, the optimal
solution was computed with the solver XPress-MP as listed in the tables. Then,
we derived the minimal population size that hBOA required to solve the problem
to optimality using a bisection method. An instance was assumed to be solved
to optimality, if in at least 27 out of 30 independent consecutive runs of hBOA,
the entire population converged towards the optimal solution. For the minimally
required population size, the number of fitness evaluations was averaged over the
number of successful runs.
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Figure 5.4 illustrates how the average number of fitness evaluations depends on
the problem size [. Additionally, the average number of evaluations has been
approximated by a function of the form O(I"), where r was set such that experi-
mental results were fitted accurately using regression. More stable experimental
results for larger problems where emphasized, smaller instances were neglected
due to high volatility of the results. Straight lines in the plot indicate polynomial
scalability.
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Experiment, BB-size =6 X
Experiment, BB-size = %—26 *
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O(T )
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6 12 18 24 30 36 42 48 54 60

Problem size I=T
Figure 5.4.: Scalability results for the single-product lot-sizing problem

As can be seen in Figure 5.4, the average number of fitness evaluations grows
with a low-order polynomial depending on the problem size [ = T'. For a BB-size
of 2, r resulted in r = 2.0, for a BB-size of 6, r resulted in r = 2.2. hBOA scales
within these bounds, if the BB-size is in between 2 < BB-size < 6.

Scalability theory for hBOA on non-hierarchical problems predicts that the num-
ber of fitness evaluations needed to reliably solve decomposable problems of
bounded order grows with a low-order polynomial depending on the problem
size with respect to the problem size [ (Pelikan (2002)). Our estimate of r for
a BB-size of 6 lies slightly above quadratic scalability. Still, hBOA succeeds in
solving single-product lot-sizing problems within low-order polynomial time.

The size of the constant factor of the polynom that approximates the experimental
results grows with the size of the BBs. This means that hBOA needs more time
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to solve instances where large batches are ordered, compared to instances where
smaller batches are ordered. If batches are not sized identically, the constant
factor grows with the size of the largest batch ordered in the optimal solution.This
is in accordance with scalability theory for EDA where the size of a BB drives
the runtime of EDA, see Pelikan et al. (2003).

5.4.2. The dynamic joint replenishment problem

We implemented fitness function (5.10) in hBOA. Solutions were represented as
described in Section 5.3.2. Feasibility of all solutions was maintained as follows in
each generation. We assume positive demand. All bits TxkV k=10,1,2,..., K —
1 were set to 1, if they were 0. Additionally, whenever 22{:1 T(ks1)4; = 0 for any
Jj=0,1,2,...,T — 1, then x; was set to 0. This means that if none of the real
product is ordered at time-point j, the artificial product is not ordered as well.

We conduct scalability analysis for K = 2 and K = 6 products. For each case,
we propose in Table 5.3 two test problems with constant demand and constant
BB-size, resulting in 4 problems in total. For both K = 2 and K = 6, a problem
with BB-size of 2 and a problem with BB-size of 6 is designed. Just like in the
single-product case, we expect that a problem instance with seasonal demand
and varying BB-size between 2 and 6 would scale up inside the bounds of these
problems.

Table 5.3.: Test problems with constant BB-sizes for the JRP
‘ BB-size ‘ Optimal costs ‘ Ytk ‘ hEY k ‘ c° ‘ vk

2 2 £ - 11400 100 8 [2000| 100
Products 6 L - 3260 10 5 | 1560 | 100
6 2 é - 2100 10 5 | 100 | 50
Products 6 - 9100 10 5 | 1600 | 500

By varying the number of time-points T" between 6 and 60 with a step size of 6, we
obtained 10 problem instances for the 2 products case. The scalability analysis
for two products spans problem sizes from 18 to 180 bits. For the 6 products
case, T" was varied from 6 to 30 in steps of 6, yielding 5 problem instances. This
was necessary due to limited computational resources available for doing the
scalability analysis. The scalability analysis for K = 6 products spans problem
sizes from 42 to 210 bits.

For each instance, we obtained the optimal costs using the solver XPRESS MP as
listed in Table 5.3. We derived the minimal population size that hBOA required to
solve the problem to optimality using a bisection method. A problem instance was
solved to optimality, if in at least 27 out of 30 consecutive and independent runs
of hBOA, the optimal solution was found. For the minimal required population
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size, the average number of fitness evaluations was averaged over all successful
runs.

Figure 5.5 illustrates how the average number of fitness evaluations depends on
the size of the problem for K = 2 and K = 6 products. In addition, the average
number of evaluations has been approximated by a function of the form O(I"),
where r was set such that experimental results were fitted accurately, again em-
phasizing larger problem sizes. Both plots have a log-log scale. Straight lines in
the plots indicate polynomial scalability.

For the case that the number of products K = 2, r has been set to r = 1.9 (BB-
size of 6) and r = 1.7 (BB-size of 2). For the 6 products case, r = 2.5 (BB-size
of 6) and r = 2.4 (BB-size of 2). Thus, hBOA succeeds in solving decomposable
instances of the JRP in low-order polynomial time. For the two-products case,
the constant factor grows with the size of the BBs. Like in the single-product
case, more time is needed to solve instances of the JRP where larger batches are
ordered optimally, compared to instances of the JRP where smaller batches are
ordered.

The scalability results from the 6-products case illustrated in Figure 5.5b) yield
counter-intuitive results. hBOA scales polynomially for small and large BB-sizes,
but obviously the problem set with a BB-size of 2 is harder to solve and requires
more fitness evaluations than the corresponding instance with a BB-size of 6. This
result can be explained with the population sizing model from Harik et al. (1999)
which states that the required population size scales inversely proportional to the
signal-to-noise ratio defined as oy,/d. Noise oy, denotes the standard deviation
of fitness values from all solutions that include the best BB and indicates the
amount of fitness variability in the instance. The signal d denotes the difference
between the mean fitness f; of solutions that contain the best BB and the mean
fitness f, of solutions that contain the second-best BB. The signal-to-noise ratio
for the JRP instance with 6 products and 6 periods (I = 42) is presented in Table
5.4. Note that, for a BB-size of 2, the average costs of solutions that contain the
second-best BB is lower than that of solutions that contain the best BB. This
deception is not present in the case of BB-size 6, rendering the instance with
smaller BB-size harder to solve than the instance with larger BBs.

Table 5.4.: Signal-to-noise ratio for JRP with six products

‘ fi ‘ f ‘ d ‘ Obp ‘ Signal-to-noise ratio
BB-size 6 | 20107.81 | 20257.80 | -150.01 | 1717.19 -0.09
BB-size 2 | 2864.06 | 2823.44 | 40.62 | 309.92 0.13
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Figure 5.5.: Scalability results for hBOA on the joint replenishment problem
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5.5. Summary and conclusion

Decomposability of fitness functions is well-understood and frequently assumed
in theoretical GA and EDA literature. State-of-the-art EDA reliably solve de-
composable problems in a low-order polynomial number of fitness evaluations
depending on the problem size. This success makes it a tempting idea to apply
EDA to problems of practical relevance. It is essential to bridge the gap between
theoretical work that focuses on solving decomposable problems and applied work
that focuses on solving problems of practical interest. However, the complexity
of the real world makes a direct adaption of theoretical concepts a stiff task and
it is rarely known which problems are decomposable.

In this chapter, we demonstrated that decomposability is of practical relevance
and valid for certain problems in inventory management. The decomposability
of single-product lot-sizing and the dynamic joint replenishment problem was
analyzed. The results indicated that these lot-sizing problems are indeed decom-
posable into sub-problems of bounded complexity. We conducted a scalability
analysis that showed that a state-of-the-art EDA can reliably solve the problems
with a low-order polynomial number of fitness evaluations depending on the prob-
lem size. The results are promising and reveal the potential of EDA applications
in inventory management.
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Analysis and design of continuous EDA
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6.1. Introduction

Over the years, the focus of published work on continuous EDA has changed with
respect to at least the following issues. In first-stage EDA the correct choice of
the structure of probabilistic models was regarded as crucial for efficient optimiza-
tion. This was largely motivated through the lessons that had been learned from
the analysis of the dynamics and design of discrete EDA. However, the results
obtained in the continuous domain were by far not comparable to that of their
discrete counterparts and these algorithms sometimes failed on problems where
much simpler algorithms, even hill-climbers, did not fail. Results like those pre-
sented in the following chapters let researchers conclude that a sensible adaption
of the parameters of the model (specifically the variances) boosts the performance
of continuous EDA and requires deeper analysis.

Furthermore, while most of the initial work was experimental, researchers have
started to model the dynamics of continuous EDA, see Gonzalez et al. (2002)
and Yuan and Gallagher (2006). In addition to being interesting itself, formal
analysis provides guidelines for design decisions.

The contributions of the following chapters are in line with these trends. We
present a formal study of the hill-climbing behavior of continuous EDA. The
EDA is initialized with a mean that is far from the optimal solution and should
minimize the sphere function, that is simply the sum of squared values for each
considered dimension, to a pre-defined value to reach. All points that have a
fitness smaller or equal a given value to reach lie inside an elliptical convex region.
This region is called the optimal region. The convergence process is artificially
decomposed into three phases, see Figure 6.1. (1) The mean is far from the
optimal region and optimal solutions have a negligible chance of being sampled.
(2) The mean is close to, but still outside, the optimal region and significant
proportions of the sampled candidate solutions are in the optimal region. (3)
The mean is positioned on the optimum.

For phase (1) we replace the sphere function by a linear function as a substitute
for slope-like regions. In Section 7 we derive closed form expressions of the
population statistics of a simple EDA in phase (1). It becomes obvious that
continuous EDA that use maximum-likelihood estimates to sample offspring are
likely to converge prematurely on slope-like regions of the search space. The
reason is that the variance decreases too fast if maximum likelihood estimates
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are used to sample offspring. We show in Section 8.1 that once an EDA is in phase
(2), a unique, optimal sampling variance exists, that can be obtained in a closed
form. The optimal sampling variance maximizes the proportion of solutions that
are optimal. For convergence in phase (3) we derive in Section 8.2 a lower bound
on the number of generations that is required until the optimal solution is sampled
with, e.g., 99.5% chance. Such runtime analysis is available for, e.g., Evolution
Strategies in Jagerskiipper and Witt (2005) and Jégerskiipper (2005), but is still
missing for continuous EDA.

These novel results are discussed in Section 8.3 with a special focus on how they
influence design guidelines for continuous EDA. It should be noted, that the
following chapters present results that are obtained under limiting assumptions
such as the use of normal distributions, maximum likelihood estimation of model
parameters and an infinite population size. The results from Chapters 6-8 have
been published in Grahl et al. (2005) and Grahl et al. (2007a).

Phase (1) Phase (2) Phase (3) Normal pdf

Sphere fct. Normal pdf

Sphere fct. Normal pdf Sphere fct

Figure 6.1.: Decomposition of the overall process into three artificial phases. s
denotes the success ratio, that is the mass of the normal pdf inside
the optimal region.

6.2. Notation and algorithm

Index t denotes the state of a variable in generation t. As an example, a variance
in generation ¢ is denoted by o?. Furthermore, the (1 — a)-quantile of the chi-
square distribution with n degrees of freedom is x7,. The standard normal
density at value z is ¢(x). ¢, () denotes the normal density with mean p and
standard deviation o at value x. Cumulative standard normal density at value x
are denoted by ®(x). The quantile function of the standard normal density (the
z - 100% quantile) is ~'(z). Similarly, ®; (x) denotes the quantile function of
the normal distribution with mean p and standard deviation ¢. The cumulative
density of normal distribution with mean g and standard deviation o, at value
z is &, (z). Accordingly, ®,,2(x) denotes the cumulative density of a normal
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6. Convergence phases

distribution with mean g and variance o2 at value x. 7 denotes the percentage
of selected solutions in truncation selection. v is a target fitness function value
called the value to reach. Different to previous chapters, @ = (x1, 22, ..., ;) is a
single solution.

This chapter analyzes the UMDA, algorithm with truncation selection. UMDA,
is a simple EDA introduced in Larranaga et al. (2000a), a description is available
in Section 2.3.1. In UMDA,, the essential parameters are u} and of. We are
interested in how these parameters change over time. Therefore we make the
following assumptions.

We assume an infinite population size. Furthermore, we minimize a [-dimensional
function f to by using the UMDA, algorithm to the vector * that minimizes f.

The sphere function assigns a single, [—dimensional solution = (x1, s, ..., 1)

a fitness 1
fla)=> al.
i=1

A value to reach is a real value v that denotes the maximal fitness that a solution
may have to be considered optimal. Further, we refer to the estimated variance
as the maximum-likelihood variance (ML-variance). A variance that is used to
sample offspring from is referred to as a sampling variance. Note that in original
UMDA,, the ML-variance equals the sampling variance. If the ML-variance is
modified before sampling, e.g., because it is scaled, the sampling variance can be
different.
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In this chapter, we center our analysis on convergence behavior of UMDA, in
phase (1). We present an approach to model the behavior on the set of monotonous
functions. We focus on monotonous functions in order to model UMDA,’s be-
havior when it is far from the optimum in unimodal search spaces. In a first step,
we analyze the effect of the truncation selection scheme for use with monotonous
fitness functions in Section 7.1 and link it to the behavior of UMDA, in Section
7.2. Consequently, analytical results are derived. First, we show how population
statistics change from generation ¢ to generation ¢ + 1 (Sections 7.3 and 7.4),
then we analyze population statistics in generation ¢ (Section 7.5). Finally, we
investigate convergence behavior of UMDA,. in Section 7.6 and discuss the results.

7.1. Monotonous fitness functions and truncation
selection

In order to use UMDA, a fitness function f needs to be specified for evaluating
the population. In many work on parameter optimization, highly complex fitness
functions are used as benchmark problems. These functions exhibit deceptive
structures, multiple optima, and other features that makes optimizing them a
stiff test.

We make simplified assumptions on the structure of f. In particular, we focus
on the behavior of UDMAc on monotonous functions. This set of functions
includes, but is not limited to linear ones. This can be seen as a way to model
the structure of the search space far away from the optimum. A nice side effect
is reduced complexity of our analytical analysis.

In the following we will introduce monotonous fitness functions. Furthermore, We
will show an interesting result that occurs when combining truncation selection
with monotonous fitness functions. This result will be of some importance later
on.

Let S be a population of individuals. Let 27 and x* € S be two distinct individ-
uals of the population and let g; : R — R be a fitness function defined over the
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7. UMDA, on monotonous functions

i — th gene of the individuals (denoted as & and x¥). Then,

g; is increasing if :cf < z¥ implies that
gi(x)) < gi(xb)Val xb e S

g; is decreasing if a:g < x¥ implies that
gi(x)) > gi(x¥) Vol zF € S.

(7.1)

We consider a fitness landscape monotonous if the fitness function f is either
increasing or decreasing. Note that the class of monotonous functions includes,
but is not limited to linear functions.

Assume that a population P of individuals is given. We use [ different increasing
functions fi.; to evaluate this population P. After each evaluation process, we
use truncation selection of the best 7 - 100% of the individuals and call the [
sets of selected individuals M; ;. It is a simple, yet interesting fact that all sets
M. ; have to be identical. Note that the fitness of the selected individuals may
of course be different. For our analysis it is more important that the selected
individuals are identical. Note that if all fitness functions are decreasing, this
fact is true as well.

In the density estimation process of UMDA,, the fitness of the individuals is
not considered. Density estimation solely relies on the genotypes of the selected
individuals, which is the . As the parameters ! and of are estimated from the
x, they are identical for all f; ;.

This fact simplifies our further analysis. We can now state that the UMDA,
will behave the same for all increasing fitness functions (and for all decreasing
functions). Thus, we can base our analysis on the simplest monotonous function
that is the linear one. Yet, we know that our results are valid for all monotonous
functions.

7.2. UMDA., for monotonous fitness functions

In the following paragraphs, we model the behavior of UMDA, with truncation
selection on fitness functions of the type

fl@)= > aile), (7.2

where g;(x;) is an increasing function. Note, that the case of decreasing functions
does not provide additional insight. Thus, we focus our analysis on increasing
functions.
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p(%)

(a)

Selected best 7 - 100% of the individuals

X

Population density

p(y(x:)) y(zi)

B Ym

Figure 7.1.: Impact of truncation selection of the best 7-100% individuals on the
fitness distribution (b) and the population density (a). We assume an
increasing fitness function (c). The fitness distribution is truncated
from the left in y,,. The population distribution is truncated from
the left in the corresponding point x,,.

The specific structure of the fitness function allows us a decomposition. UMDA,
factorizes over n univariate normals. The fitness function consists of a sum of n
univariate monotonous functions.

Thus, we can reduce our analysis to the analysis of one single g;(z;). We develop
mathematical expressions that model how u! and ¢! change over time. More
specifically, we are interested in p*! and o/ given the corresponding parameter
values at generation t.

Furthermore, we analyze population statistics for a specific generation and the
limit behavior of UMDA.. This means we investigate the convergence of u} and
ot for t — oo. These calculations are made under the assumption of an infinite
population size. For finite samples, they can be seen as an approximation. Here,
appropriate order statistics might be used.

We now analyze the truncation selection step in presence of fitness functions
of type (7.2). Due to the structure of UMDA.’s probabilistic model and the
structure of f(x), we can decompose the fitness function and analyze the behavior
of each u; and o; independently.

As we have seen above, we can simplify our approach even further and replace all
gi(z;) by linear functions of the form y;(z;) = a;-x;+b; and study how truncation
selection influences the population statistics.
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In UMDA,, new candidate solutions are generated by sampling new individuals
z; from a normal distribution with mean u! and variance (o?)?. The fitness y;
is obtained from a linear function y; = a; - x; + b;. As the x are realizations
of a random variable, the fitness can be considered a random variable. The
distribution of the fitness Y can be expressed in terms of a normal random variable

with mean 4y and variance o7:

pf = a; - ft; + b;

7 = a2 - (ol

(7.3)

By truncation selection, the best 7-100% of the individuals are selected. Thus,
all individuals with a fitness larger than a fitness minimum of y,, are selected.
Their probabilities sum up to 7. y,, can be obtained from the quantile function
of the normal distribution as follows:

— -1 _

=& N1 —7) - 0! + a;pt + b,

Statistically, the fitness distribution is truncated from below at y,,. We refer to
Ym as the fitness truncation point. Now, we are interested in the individual z,,
that corresponds to the fitness value y,,. All individuals z; > x,, are selected.
We call z,, the corresponding population truncation point. This is illustrated
graphically in Figure 7.1. The fitness truncation point v, can be transformed
into the population truncation x,, as follows.

T =Y (Ym)
a.
s 7.4)
(I) 1 1— 07 ¢ 3 ¢ bi_bi (
_ (1—=7)-a;o! + a;ul + 0 40
a;

It is interesting to see that obviously the truncation point is independent from
a; and b;(a; > 0). Put differently, no matter which linear function with a; > 0
we choose, the population truncation point remains the same. Thus, the effect
of selection is independent from a; and b;, for all a; > 0. No matter how these
parameters are chosen, the same individuals are selected.

As we have seen in this section, the selected individuals are identical for all
linear functions y;(z;), where a; > 0. Furthermore, the population truncation
point solely relies on statistical parameters of the population. Thus, the selected
individuals can be obtained from the population statistics directly without con-
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sidering the fitness landscape.

7.3. Mean dynamics

We have seen that the effect of truncation selection is identical for all linear
functions y; with positive gradient. We have also shown, that for predicting
the behavior of UMDA, under our assumptions we do not need to model the
distribution of the fitness. The change in population statistics can be obtained
from the population statistics directly. In this section, we derive mathematical
expressions for the change of the population mean from generation ¢ to generation
t+ 1.

We model selection by truncation of the normally distributed population density.
Assume that a population is distributed with mean p! and standard deviation
ot. The fitness values of the individuals are calculated and the best 7 - 100%
individuals are selected. This equals a left-truncation of the normal distribution

in x,,.

To do this, we first summarize results from econometric literature on the trun-
cated normal distribution (see Greene (2003), appendix). We start with present-
ing the moments of a doubly truncated normal distribution. A doubly truncated
normal distribution with mean p and variance o2, where z, < < 3, can be mod-
eled as a conditional density where z € A = (x,, 1) and —o0 < 2, < x}, < +00.

20 (%55)
O () — @ (*4)

o (o

FIX|X € A) = (7.5)

The moment generating function of this distribution is:

m(t) = E(e™|X € A)
P (Bt —ot) — P (2= — o) (7.6)
@ (252) = 0 (=)

[ el

— pltta??/2

From the moment generating function, we can derive the statistical moments of
the distribution. We are interested in the mean. It is

E(X|X € A) =m'(t)]=0
¢ (xba—u) _ ¢ (l’aa—ﬂ) . (77)

:ILL—O'~

We are not interested in the mean of a doubly truncated normal distribution, but
in the mean of a left-truncated normal distribution. Thus, we now let z; tend to
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3
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Figure 7.2.: Illustration of ¢(7) and d(7)
infinity. This results in:
E(X|X>:1:a):,u+a-w (7.8)
D)

From Section 7.2 we know that z, = z,,, = <I>;t_lo¢ (1—7). Inserting and rearranging

leads to
§H = B(X|X > 2,)

t t ol (r
BEaRRC % (7.9)
¢ (271())

=pui+ol-d(r), where d(7) = T

Note that the mean of the population after applying truncation selection can now
be easily computed. The factor d(7) is illustrated in Figure 7.2. It can be seen
that for 7 — 1 the factor d(7) converges to 0 leaving the mean of the population
unchanged in ¢ + 1.

7.4. Variance dynamics

Again, we model truncation selection by truncation of the normally distributed
population density. Therefore, we again make use of the moment generating
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function as in Section 7.3. We let z;, — oco. Finally, we get:

Var(X|X > x,) = B(X?|X > z,,) — B(X|X > z,,)?

Tm—p ¢ (mm—u)
_ 2 o g
=0 {1+ 1_(I)(xm—u)

o (22t) |’
[ T e

We use this equation in the context of our model by assigning appropriate indices,
inserting x,,, simplifying, and rearranging. This leads us to:

7 7

(Uz§+1>2 — (O_t)2 . {1 + (b_l(l _ 7_)¢ ((I)_l(T))

[¢<<I>—1<r>>r} 711)

Now, we can compute the population variance in ¢t + 1, given the population
variance in t. The factor ¢(7) is plotted in Figure 7.2. It can be seen, that if
T — 1, the factor ¢(7) converges to 1, leaving the variance in generation ¢ + 1
unchanged.

7.5. Population statistics in generation ¢

The last two subsections examined the change of the population statistics from
one generation to the next generation.

Now, we calculate how the population mean and variance depend on ¢t. To obtain
the corresponding population statistics, we sum up the iterative formula that have
been developed in 7.3 and 7.4.

Doing this we get the following result for the mean after some calculations. In
generation ¢ > 0, the mean ! can be computed as:

= w0 d(r) - Y0 el (7.12)
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Similarly, in generation ¢ ,the variance o? can be computed as:

(09)* = (0})* - e(7)’ (7.13)

7.6. Convergence of population statistics for ¢ — oo

In this section, we analyze convergence of UMDA,.. That means that we analyze
how the population statistics develop over time, assuming that ¢ — oo.

First, we consider the mean. Therefore, we make use of (7.12). Note that the
sum is the only part of the expression that depends on ¢. This leads us to:

t
Jim ph=pd + o) d(r) - lim { C(T)(k_l):| = (7.14)
k=1

-~

W
infinite geometric series

1
tlim ph=pd 4+ o) - d(r) —————= (7.15)

1 —\/c(7)

This expression allows us to compute the maximum distance, that UMDA_’s
mean will move across the search space for a given selection intensity of 7-100%
and monotonous fitness functions.

Now, we consider the variance. We make use of (7.13) and let ¢ tend to infinity.
Note that 0 < ¢(7) < 1. This leads to

lim (0)2 = lim [(6?)? - ¢(r)']

t—o00 t—00 (716)
=0
Thus, the variance converges towards 0.

In the previous paragraphs, we derived expressions to describe the behavior of
the UMDA, algorithm with truncation selection on monotonous functions.

We have seen that the algorithm converges since the population variance con-
verges towards 0. The maximal distance that the mean of the population can
move across the search space is bounded. This distance solely depends on

e the mean of the first population,
e the variance of the first population,

e and the selection intensity 7.
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This has some important effects on the behavior of UMDA... First, if the optimum
lies outside this maximal distance, the algorithm can not find it and one will
experience premature convergence. Furthermore, the first population is usually
sampled uniformly in the space of feasible solutions. The exploration of the
search space relies on density estimation and sampling. However, by choosing
the amount of individuals that are selected, one can adjust the maximal distance
that the mean of the population will move. One needs to be careful when choosing
the selection intensity 7. By wrongly setting 7, the algorithm might not even be
able to sample all feasible points. In essence, these results agree with the results
from Gonzélez et al. (2002). They show that for simple linear functions the same
problems exist when the tournament selection scheme is used.

A simple solution to combat premature convergence would be to increase the
sampling variance beyond its maximum likelihood estimate. This could combat
the variance decrease and allow the algorithm to traverse slope-like regions of the
search space.
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According to the major lesson learned from the last chapter, using the maximum
likelihood variances to sample offspring from can easily lead to premature con-
vergence. This is due to the fact that the variance decreases towards zero. In
practical optimization, this happens too fast. Variance enlargement appears to
be crucial if a continuous EDA traverses a slope-like region of the search space.
Section 8.1 aims at answering the fundamental question, whether the sampling
variance can be set arbitrarily high, or whether values exist that should prefer-
ably be chosen when an EDA is in phase (2) of the search. Furthermore, it is
still an open question how fast an EDA can solve the sphere function to a given
precision. This is relevant for EDA in phase (3) of the search and will interest us
in Section 8.2.

8.1. Optimal sampling variances

In this section, we seek an answer on how to set the sampling variance. To
this end, assume the simplified case that the one-dimensional sphere function
f(x) = 2? should be minimized to a value to reach v. All solutions z that lie
inside an optimal region R have a fitness smaller than v. For the one-dimensional
case, R = [—+/v; ++4/v]. Consequently, we seek to find a variance that maximizes
the chance to sample candidate solutions inside R. The success ratio s measures
the overall probability that a solution sampled from a one-dimensional normal
distribution with mean x and variance o lies inside an optimal region R = [a, b],
with ¢ < a < b, and is defined as

s(p, 0%, a,b) = @, 52(b) — @, ,2(a).

Without loss of generality we set = 0, a and b are known parameters. The aim
is to find a sampling variance (¢%)* that maximizes s:
2)* = arg max (0,07, a,b)

(U o2eRt

The first order derivative of s(u, 02, a,b) with respect to o is given as

ds L o5y L i (8.1)
_ = — € 20° - e 204 - (. .
do \V2mo? \V2mo?
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(8.1) has two roots, one of which is infeasible due to negativity. The positive root

b — a?
2\% __
(o) _<21n§>

is a possible feasible maximizer for s. The second order derivative of s(u, o2, a, )
with respect to o is

d2$(,u,<7,a,b)_e_2%2. ﬂ_ﬁ _6_;?‘ @_a_?’
do? 7 VT '

w7 =7 (8.2)

It can easily be shown, that (8.2) is < 0V a < b. Thus, (¢%)* is the unique
maximizer for the success probability. If a converges towards the mean p = 0,
then (0%)* — 0.

The existence of a unique maximizer for the success probability is an interest-
ing and novel result with some important consequences for EDA design. If R
is known, a sampling variance of (¢*)? maximizes the number of solutions that
are sampled in R and hence maximizes convergence speed. If the used sam-
pling variance deviates from (¢*)?, less individuals will be sampled in R. The
result applies only for one-dimensional search spaces, and we do not provide an
extension to multi-dimensional spaces. A starting point for this analysis can
be elliptically truncated multivariate normal distributions and their moments as
presented in Kotz et al. (2000). We conjecture, that a similar maximizer exists
for the multi-dimensional case as well, although it is more difficult to obtain.

8.2. Runtime bound

In this section, we analyze phase (3) of the search. The mean is positioned
inside the optimal region. Not all solutions are optimal, as the success ratio
depends also on the sampling variance. We derive a lower bound on the number
of generations that a continuous EDA utilizing truncation selection needs in order
to solve the sphere function to a given precision. Provided parameters are an
initial variance o2 for each dimension of the normal distribution and a value to
reach v. We consider the simpler one-dimensional case first and extend the results
to n dimensions.

8.2.1. Runtime on z?

The sphere function in a single dimension is f(z) = x?. We consider the case
that the EDA has already located the optimal solution 2* = 0 and that the mean
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@ is g = x*. Under an infinite population size, g will not move away from x*
in an EDA run. Truncation selection selects solutions point-symmetrically to z*.
The consequence is that p, =0V ¢.

2 2
Change from o} to oj

Given a variance in period ¢ denoted by o2 and the fraction of selected individuals
T, we seek to derive o7, — the variance after truncation selection. Since y = z* =
0, all individuals that lie inside the unique interval [—w, w] satisfying

/_Z P02 (x)dz =7

are selected. Selection equals a double truncation of the normal distribution. The
variance of a doubly truncated normal distribution can be expressed in simple
terms for the special case of truncation limits A, B, A < B that are symmetric
around the mean, cf. Johnson et al. (1994) p. 158. If A— = —(B — p) = —ko,
then the mean of the truncated distribution is, again, x. The variance o2 of the

truncated normal is 2 ()
v (1 20k) ) |
o =0 ( 2B(n) — 1 (8.3)

This special case applies here. The upper bound B can be determined by
B=®"0.5+0.57) = &.

The variance after selection can thus be written as

) ) (1 2071(0.5+ 0.57) (071(0.5 + 0.57)))

g =0
t+1 t T

=07 - b(7), with
br) — (1 2071(0.5 4 0.57)¢ (81(0.5 + 0.57))) |

T

Thus, the variance is decreased by a constant factor that solely depends on the
selection intensity. The term b(7) can easily be computed numerically.

Variance in generation ¢

It is straightforward to derive the variance in a generation ¢ if we know an initial
variance oa. As the variance is decreased by b(7) in each generation, the variance

in generation ¢ is
o = op - b(7)". (8.4)
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Runtime

We define the runtime as the number of generations required until the variance
has decreased so far, that solutions with a fitness that is smaller than a value
to reach v are sampled with a probability of at least 99.5%. Note that other
probabilisties can equally be chosen.

It is required that |x| < /v, for x to be optimal. The above chance constraint
can be expressed as

P(z € [—vv;v/v]) > 0.995. (8.5)

It is known that 99.5% of the mass of the normal distribution lies within its
3o-quantile. Thus, we can rewrite (8.5) as

30 < Vv
S0t <
5
As soon as the variance has decreased to a value smaller than §, optimal solutions
are sampled with a probability of at least 99.5%. Using (8.4) , this will be the
case, if

ogb(T)" <

NeR i

Solving for t yields a runtime of
; Z log Q '
log b(T)

Equation (8.6) gives a lower bound on the runtime on the one-dimensional sphere
function that depends on a value to reach, an initial variance, and the selection
intensity.

(8.6)

8.2.2. Runtime on the [-dimensional sphere function

The [-dimensional sphere function is point-symmetric to 0 and has a unique global
optimum at * = 0 with f(z*) = 0. The result from Section 8.2.1 is generalized
to [-dimensional spaces in the following. Therefore, g = 0, the reasons being
equal to the one-dimensional case.

The multivariate normal distribution
The [-dimensional normal distribution is given by a mean vector g and a positive

semi-definite covariance matrix 3 of order (I x [). The eigenvectors of 3 are de-
noted by e;, i = 1,2,...,1. The eigenvalues of ¥ are denoted by A\;, 2 =1,2,...,1.
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X2

€

(1 —7)100% prediction ellipsoid

Figure 8.1.: Univariate factorization of a two-dimensional normal pdf, prediction
ellipsoid and half axes with lengths d. ¢(z1) and ¢(x3) denote the
normal pdfs associated with x; and x,.
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We are especially interested in some geometric properties of the multivariate nor-
mal. Points of equal density lie on hyper-ellipsoids. The half-axes of the ellipsoids
point in direction of the eigenvectors of the normal distribution. The eigenvalues
relate directly to the length of the associated half-axes. The covariances induce
rotation of the ellipsoids around the mean. If all covariances are 0, the axis of
the ellipsoids point exactly into the directions of the main axes of the reference
(coordinate) system. Prediction ellipsoids are the smallest ellipsoidal regions in
[-dimensional space that are centered around the mean and contain a certain
percentage of the mass of the multivariate normal. Further details can be found
in Kotz et al. (2000).

Change from ¥; to >,

In order to solve the [-dimensional sphere function, the utilized EDA estimates
and samples an [-dimensional normal distribution. It is assumed that in the
estimation process no superfluous dependencies between the [ random variables
are introduced. This means, that only dependencies that result from the function
that is optimized are introduced and sampling as well as estimation errors are
neglected. Hence, the estimated model is a univariate factorization. This product
of [ univariate normals matches the separable structure of the sphere function
perfectly. The general idea of our approach is that the modifications of the
covariance matrix due to selection can be expressed fully in terms of modifications
in the univariate normals. First it is analyzed which solutions in /-dimensional
space are selected. Then, the impact of selection is modeled in one-dimensional
space. This allows to reuse the basic idea from Section 8.2.1.

It is known that (1 —«) - 100% of the mass of the multivariate normal lies within
the so-called (1 — «) prediction ellipsoid. This ellipsoid has half-axes with lengths
of d; = w/)‘iX%,avi =1,2,...,1. Recall, that Xzz,a denotes the (1 — «) quantile of

the chi-square distribution with [ degrees of freedom. Truncation selection selects
all individuals that lie in a prediction ellipsoid that covers exactly 7-100% of the
density. We are interested in the inner region of the ellipsoid, so « = 1 —7. Since
selection is point-symmetric to the optimal solution all eigenvalues have equal
values \; = AV i=1,2,...,[. The prediction ellipsoid that contains all selected

individuals thus has axes with half lengths d = /Ax7,_,. If the probabilistic

model consists of a factorization of univariate normals, the eigenvalues A denote
the variances into this direction. Hence the half-length d of the axes of the
prediction ellipsoids covering the selected solutions is

d=0-\/Xi1_r (8.7)

A graphical illustration of this result is depicted in Figure 8.1.
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Knowing d we can reuse the approach from Section 8.2.1 to derive the variance
in the next generation. Utilizing (8.3) leads to a variance after selection

9 9 2Xl2,1—7—¢ (\/ X12,1—7'>
Op41 = 0y ° 1_2(1)(\/27 )
Xl,l—T) -

= Ut2 : X(la 7_)7 WlthX(l7 T)

1 2Xl2,1—7—¢ (\/ Xl2,1—7'>
20 (\/ Xl%l—'r) -1

Like in previous calculations of the variance after selection, the variance is reduced
by a constant factor. The factor (I, 7) solely depends on 7 and [ and can be
computed numerically.

Variance in generation ¢

Given an initial variance of in each dimension and the number of dimensions n,
the variance in generation ¢ can be computed as

of =05 x(l,7)".

Runtime

Section 8.2.2 showed that the overall modification of the covariance matrix can be
expressed also through the modifications of the [ variances assuming a univariate
factorization and an initial isotropic normal distribution. In order to derive the
runtime of a continuous EDA on the [-dimensional sphere function, we define a
target standard deviation that, if used to sample from, will cause 99.5% of the
solutions to have a fitness value smaller than a given value to reach v. Then
we analyze how many generations selection must reduce the variance in order to
reach this target value.

Optimal solutions are solutions whose fitness is smaller than v. For solutions to
be optimal it is required that

l
fo <. (8.8)
i=1

Under infinite population sizes the EDA behaves identically for every dimension.
This has allowed the dimensionality reduction in the previous section and allows
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to rewrite (8.8) as

2?2 <w

@xg\@.

In order to sample 99.5% optimal solutions, it is required that

(Y
<4/-.
30’_\/;

Inserting the general variance in generation t leads to

30-0 : X(laT)% S \/ga

which can be solved for t. The necessary number of generations ¢ is at least
Vi
300

log x(1,7)

log

t>2 (8.9)

The runtime depends on an initial variance, the selection intensity, the value to
reach, and the number of dimensions.

It can easily be seen that - once search is in phase (3)- reducing the variance is
preferable for reducing the runtime.

8.3. Summary and conclusion

How do continuous EDA really work? Much of the currently available results are
experimental. A thorough understanding of continuous EDA can only be achieved
on the basis of formal models. Taking together the current literature, many
important questions are still unanswered. One of the most important questions
is how the parameters of the probabilistic models (e.g., the covariance matrix
and the mean vector) change over time due to selection. Such results are difficult
to obtain if the underlying fitness landscape is complex. We have concentrated
on the sphere function and have artificially decomposed the convergence process
into the following three phases.

1. The mean of the normal distribution is far from the optimum. The EDA
traverses a region that has a slope-like function. The optimum is not sam-
pled with significant probability.

2. Selection has shifted the mean towards the optimum. A significant portion
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of the sampled solutions lie in the optimal region, but the mean is still
outside the optimal region.

3. The mean has moved onto the optimum and is relatively stable.

All three phases are characterized through ML-variance trajectories, that is a
series of subsequent variances modified over generations through selection. In
the first phase, variances estimated by maximum-likelihood estimators have been
proven to lead to premature convergence. As a consequence, variance enlargement
was introduced in Ocenasek et al. (2004), Yuan and Gallagher (2005) and Bosman
and Grahl (2008). This has lead to trajectories of sampling variances that are
not equal to the estimated ones. In order to traverse slopes, a maximal increase
of the ML-variance is beneficial as it increases progress.

It is important to know, whether this increase can come at a price in later phases
of optimization. We have shown in Section 8 that too high a variance can in-
deed slow down progress if the optimal solution is coming “into sight” and is
sampled with significant chance. For the one-dimensional case we have proved
the existence of a sampling variance that is the unique maximizer of the success
ratio (recall, that the success ratio was defined as the proportion of solutions
sampled in the optimal region). This optimal sampling variance decreases with
the distance between the mean and the region, and converges towards zero for
the extreme case that the mean has reached the border of the region. We have
not provided an extension of this result to the general multi-dimensional case,
but it appears highly likely that a similar result applies, although it might be
more difficult to obtain. Obviously, if the sampling variance that an EDA uses
is very close or equal to the optimal sampling variance, progress of the search
is maximized. If the sampling variance is too high, or too low, fewer sampled
individuals are optimal.

In the third phase, selection has moved the mean onto the optimum and it is
relatively stable. Until now, it was unknown how fast a continuous EDA can
contract the distribution around a point of interest. We provided in Section 8.2.2
such a runtime result. The number of generations required until a value to reach
is reliably sampled on the sphere function can be computed. By multiplying
with a sensible estimate for the population size, the number of fitness evaluations
can be approximated easily. A deeper analysis of these results will not only be
interesting on its own, but also open the door for a principled comparison of
continuous EDA with, e.g., evolution strategies.

From the results on phase (1) dynamics, and the results on phase (3) dynamics,
we conjecture that the variance will decrease exponentially fast also if an EDA
is in phase (2). This would mean that the variance goes down steadily over
time throughout an EDA run. This leads to premature convergence on slope
like regions of the search space. Furthermore, it is highly unlikely that such a
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decrease matches the optimal variances required for maximal progress in phase
(2). However, it is a sensible approach in phase (3).

The results are interesting, as they are substantially different to the ones obtained
for discrete domain. An in-depth discussion of the differences as well a novel
variance scaling policy is presented in the next chapter. The three phases are
assumed as independent. In an EDA run, the EDA will move from one phase to
another and it is interesting to identify the “current” phase on the fly. A simple
method that strives answer this question will be introduced in the next chapter
as well.
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9. Matching search bias and problem structure:
CT-AVS-IDEA

9.1. Introduction

This chapter proposes a principled contribution to explaining what goes wrong
in the adaptation of EDA from the discrete domain to the continuous domain
and to solving the problem of premature convergence. Therefore, it is assessed
which requirements a probability distribution has to meet in order to function
properly as a search distribution in EDA. We argue that there is a fundamental
and systematic difference between the discrete and the continuous domain. Gen-
erally speaking, in order to build efficient optimizers using the EDA principle,
the induced bias in the form of the estimated probability distribution has to fit
to the structure of the problem at hand.

Thereby, a central topic is to assess the discrepancies between the concept of
problem structure in the discrete and continuous domain and to assess to which
extent the probabilistic search bias can fit the problem structure in the contin-
uous domain. We indicate that indeed compared to the discrete case there are
additional issues that need to be addressed in the design of the continuous EDA
to decrease the probability of failure. We also present a simple remedy to meet
with the additional issues we identify and show on the basis of experimental
results that consequently the optimization performance of the continuous EDA
indeed improves substantially.

The remainder of this chapter is organized as follows. In Section 9.2, we transfer
lessons learned from the discrete domain to the continuous domain. The notion
of inductive search bias, problem structure and how it relates to the use of dis-
tributions in EDA is discussed in Section 9.2.1. Henceforth, these concepts are
exemplified for discrete EDA in Section 9.2.2 and for continuous EDA in Section
9.2.3. We also point out how the main lessons learned from the discrete domain
can be transferred to the continuous domain. We show that a more careful inter-
pretation is required of these lessons for the proper design of continuous EDA.
We illustrate by experiments how and why continuous EDA can indeed fail. Af-
terwards, in Section 9.3, we propose a straightforward remedy with virtually no
additional computational overhead. Integrating it into a continuous EDA yields
the correlation-triggered adaptive variance scaling IDEA (CT-AVS-IDEA). It is
compared to a continuous EDA and the state of the art in continuous evolutionary
optimization in Section 9.4. We conclude this chapter in Section 9.5.
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9.2. Adapting discrete EDA to continuous EDA

9.2.1. Matching inductive search bias and problem structure

In general, for an optimization algorithm to be competent in solving a certain
optimization problem, the search bias of the optimization algorithm has to fit the
structure of the problem. The search bias of EDA, exemplified by the probability
distribution used, is inductive as it is learned during optimization. Now, if it
is possible to approximate the probability distribution over the solution space
that assigns a uniform probability distribution over all solutions with a quality
at least as good as that of the worst selected individual, a highly efficient EDA
can be constructed, see Rastegar and Meybodi (2005). This EDA fine-tunes the
probability distribution each generation to represent ever more precisely and se-
lectively the best solutions in the search space. For EDA, therefore, the following
two prerequisites are of specific importance:

1. Adequacy of the class of probability distribution
The probability distribution must be able to assign solutions that have
a certain minimal quality, i.e. solutions that have specific properties, a
high probability density. In other words, the capacity of the probability
distribution must be adequate.

2. Competence of the estimation procedure
Even if the capacity of the class of probability distribution used is adequate,
proper exploitation of the structure of the optimization problem is only
guaranteed if the estimation procedure is actually capable of configuring
the parameters of the probability distribution in such a way that the high
probability densities are actually assigned to solutions of a certain minimal
quality. In other words, the estimation procedure must be competent.

Finally, it should be noted that for efficiency, an additional prerequisite is that
the estimation procedure is efficient (i.e., of low—order asymptotic algorithmic
complexity) in addition to being competent.

9.2.2. Discrete EDA
Inductive search bias

Probability distributions for discrete spaces assign probabilities to specific set-
tings of variables. Hence, any probability distribution can be expressed, ensuring
an adequate capacity. By factorizing the probability distribution (see Lauritzen
(1996); Friedman and Goldszmidt (1996)), not all combinations of settings for
all variables need to explicitly be enumerated, but probabilities can be assigned
to specific combinations for subsets of variables. Since factorizations are only a
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more efficient way of representing the probability distribution, the adequacy of
the capacity is not affected. Using frequency counts to estimate the probabili-
ties from data results in maximum-likelihood estimations that reveal statistical
dependencies.

Problem structure

In the discrete domain, problem structure refers to a decomposition of the opti-
mization problem into sub-problems of smaller sizes Goldberg (2002). In other
words, there are configurations of bits at specific locations, so—called Building
Blocks (BB), that contribute significantly to the solution quality when present in
a solution. These building blocks are commonly said to form partial solutions to
the problem. Moreover, the knowledge of which bit—configurations at what loca-
tions cause a significant contribution to the solution quality is commonly referred
to as linkage information, see Harik and Goldberg (1997).

Matching

The necessity of the joint appearance of configurations of bits causes statistical
dependence of random variables when estimating the probability distribution of
the configurations of the bits from a set of solutions that were selected on the
basis of their quality. Using factorized probability distributions, these statistical
dependencies can be modeled. In other words, a discrete EDA can store which
configurations of bits should have a large probability of appearing jointly in a
good solution because the capacity prerequisite from Section 9.2.1 is met.

It has to be noted however, that in accordance with the degree of the interactions
between the bits, simple or more involved factorizations need to be used. If there
are no interactions between the bits, meaning that the building block size is one,
univariately factorized probability distributions in which each variable is modeled
to be statistically independent of each other variable, have proven to be efficient
when used in an EDA, see Pelikan and Miihlenbein (1998). In general however
the size of the building blocks is larger. As the interactions between the bits
get more complex, the possibilities for expressing statistical dependency relations
in the probability distributions should increase accordingly, see Thierens (1999)
and Bosman and Thierens (1999). To this end, Bayesian factorizations have been
found to be a suitable choice, see Pelikan et al. (1999), Miihlenbein and Mahnig
(1999) and Pelikan and Goldberg (2003) as they meet capacity prerequisite and
in addition, a greedy estimation procedure is often found to meet the competence
prerequisite from Section 9.2.1.

Summarizing, in the discrete space the inductive bias of factorized probability
distributions based on frequency counts can match the decomposability of the
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problem structure. In addition, assuming that the decomposability is of bounded
complexity, the greedy estimation procedure that is commonly employed in dis-
crete EDA is both competent and efficient. Consequently, discrete EDA allow for
efficient optimization.

9.2.3. Continuous EDA
Inductive search bias

In the continuous domain, it is the contour—lines of the probability distributions
that indicate which parts of the search space have a higher probability of being
sampled.

Problem structure

Analogous to the inductive search bias, the problem structure in the continuous
domain is exemplified by the contour—lines of the function to be optimized.

Matching

To match inductive search bias and problem structure, we thus need to match the
contour lines. However, because the contour-lines of the optimization problem
can be of virtually any shape, we require the property of universal approxima-
tion. However, such universal approximation is computationally intractable. In
practice, a continuous EDA will therefore have to rely on tractable probability
distributions, such as ones that are based on the normal pdf.

Because in general we cannot assume that the contours of the fitness function
can be modeled properly, a problem arises. The concept of statistical dependence
no longer corresponds with dependence as imposed by the fitness landscape. For
instance when using the normal pdf, after estimating the parameters it might be
found that there is no statistical dependence between two variables. However,
when observing the actual source for the data, which follows the density contours
of the fitness function, the variables may be strongly dependent through non-
linear interactions that simply cannot be modeled by the normal pdf. Hence, we
can now conclude the following implications for the design of continuous EDA
regarding adequacy:

1. Adequacy of the class of probability distribution (continuous domain)

a) Adequate class of probability distribution
Linkage information in the continuous case only maps perfectly onto
statistical dependency information as observed in the factorization of
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the probability distribution if the class of probability distribution that
is used to perform density estimation with has the capacity to allow
for a close modeling of the contours of the fitness landscape.

b) Inadequate class of probability distribution
Assume that there is a mismatch between the capacity of the class
of probability distribution used for estimation and the contours of
the fitness landscape. Then, the modeling of statistical dependen-
cies through factorizing the probability distribution in estimating the
distribution from data is a less important and less reliable source of
information for inducing the search bias.

From these revised prerequisites it follows that in an EDA based on the normal
pdf it appears not to be a promising way to approach probabilistic modeling in the
continuous domain with the same goal as in the discrete domain: to focus solely
on getting the statistical dependencies right in the estimated model and thereby
assume a proper problem decomposition. Indeed, in initial EDA that estimate
a Bayesian factorization of the normal distribution using maximum-likelihood
estimations, problems of inefficiency were already revealed after performing ex-
periments on a variety of problems with differing problem structures, see Bosman
(2003).

The inductive search bias on a slope

It was observed that initial EDA are not capable of exploiting gradient infor-
mation since density estimation makes no assumption on the source of the data
from which to make the estimations. As a result, these EDA were found to be
extremely inefficient on problems with strong non-linear interactions between
the variables, even in the presence of smooth gradients and unimodality. As a
consequence of the approach taken, premature convergence can occur even on
very simple functions. This was formally illustrated in Chapter 7 and will be
generalized to slope-like regions in this section. Therefore, the function to be op-
timized is a sphere function, with an EDA initiated on one side of the optimum,
representing a slope-like region that must be traversed in order to advance to the
optimum.

An experimental illustration of optimization failure is presented in Figure 9.1.
The Figure shows the result of using a one-dimensional maximum-likelihood
normal EDA to minimize the sphere function. The progression of density esti-
mations is shown in subsequent generations. The solutions are initially in the
range [—10; —5]. Indeed, even though the function to optimize has a smooth
gradient and is unimodal, the EDA is not able to find the optimum because the
variance goes to zero too rapidly. The problem caused by lack of generalization
is immediately apparent from this Figure.
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Figure 9.1.: Population and estimated probability distribution (rescaled to fitness
range for visualization) in the maximum-likelihood normal EDA in
generations 0, 1, 2, 3, 4 and 5 (top—left to bottom-right).

The resulting situation is comparable to the loss of building blocks during a GA
run in the discrete domain. Discrete GA theory tells us that in that case the
population size should be increased. However, because of the limiting shape of
the density function to be estimated we know that increasing the population size
will not help to obtain a better approximation of the true density. Hence, the
population size will have to increase dramatically to improve the initial quality
of solutions. Under the use of elitism, these solutions will then be maintained
throughout the run, increasing the eventual possibility of ending up with a dis-
tribution of solutions surrounding a peak. However, such increase will be expo-
nential in the number of variables due to the curse of dimensionality. Moreover,
if the optimum is simply not contained in the initial range in which samples
are available, increasing the population size will not improve the probability of
finding the optimum at all.

Concluding, using maximum-likelihood estimations of normal pdfs, the search
bias cannot be fit to match the structural properties of slope-like regions in the
fitness landscape due to lack of generalization.

The inductive search bias on a peak

Assuming that solutions are distributed nicely surrounding a peak in the land-
scape, it is evident that the search bias induced by an EDA based on the normal
pdf will fit the problem structure well. The reason is that the unimodality of the
normal pdf will place the center of mass of the estimated distribution near the
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true center of the landscape, increasing the probability of generating solutions
near the optimum.

9.3. Adaptive variance scaling and correlation triggering

In the previous chapter we have analyzed how the induced bias of the normal pdf
fits to two elementary structures of a continuous search space: slopes and peaks.
We found, that the induced search bias cannot be made to fit the structure of a
slope well enough to guarantee successful search, whereas it imposes no problem
on peaks. Both structures will, however, in general appear during an EDA run.
Since we are not interested in making the class of probability distribution more
involved in this chapter, the most important question that now arises is how
the estimation procedure in the normal EDA should be changed to prevent the
identified problems as best possible.

In this section we first introduce a simple technique that modifies the estimation
procedure of the normal pdf in a way that makes it more effective when traversing
a slope. Subsequently we propose a triggering method that allows to decide
during optimization whether the use of this efficiency enhancement is currently
appropriate or not.

9.3.1. Adaptive variance scaling

We propose a technique that modifies the estimation procedure of the normal
pdf in continuous EDA to make it more reliable when traversing a slope. The
smaller the variance is in the estimated probability distribution, the smaller the
area of exploration for the EDA. The variance in the normal pdf is explicitly
stored in the covariance matrix 3. Hence, a straightforward manner to allow the
EDA to increase the area of exploration and thereby increasing the probability
of traversing a slope is to enlarge the variance beyond its maximum-likelihood
estimate.

Therefore, an adaptive-variance-scaling coefficient ¢*V® is maintained. Upon draw-

ing new solutions from the probability distribution, the distribution is scaled by
c*V3. This means, that the covariance matrix used for sampling the normal pdf
is ¢*V5X instead of just X. If the best fitness value improves in one generation,
then the current size of the variance allows for progress. Hence, a further en-
largement of the variance may allow further improvement in the next generation.
To fight the variance diminishing effect of selection, the size of ¢*V® is scaled by
n™° > 1. If on the other hand the best fitness does not improve, the range of
exploration may be too large to be effective and the adaptive variance scaling

coefficient should be decreased by a factor n°*¢ € [0,1]. For symmetry, we set
,r]INC — 1/,',,DEC.
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AVS-MAX and

AVS-MIN

We bound the magnitude of ¢*V® from above by a predefined value ¢
from below by a predefined value ¢*VSM™. For symmetry, we set c
1/eAVEMAX - Moreover, if ¢AVS < ¢AVSMIN we set ¢*V® to ¢AVSMAX in order to stimu-
late exploration.

An experimental illustration of the normal EDA extended with the adaptive—
variance—scaling technique is presented in Figure 9.2. Indeed the EDA is now
capable of finding the optimum even though it is outside of the initial sampling
range.
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Figure 9.2.: Population and estimated probability distribution (rescaled to fitness
range for visualization) in the adaptive—variance-scaling maximum-—
likelihood normal EDA in generations 0, 1, 2, 4, 8 and 16 (top-left
to bottom-right).

9.3.2. Correlation—triggered adaptive—variance-scaling

In the scheme defined in Section 9.3.1 the adaptive—variance-scaling coefficient
¢*V® increases if a better fitness value is found, i.e. if the EDA is successful in a
certain generation. A success does however not always mean that the variance
needs to be enlarged. This is especially the case when the center of the normal
pdf is close to the optimum. Once this is the case, the induced bias of the normal
pdf suffices to guide the search to the optimum. Making the variance larger in
such a case will only slow the EDA down as it leads the bias of the algorithm to
also explore a larger area around the optimum. Because this essentially makes
the EDA less efficient, adaptive variance scaling is to be prevented in such a case.
Note that this approach to distinguish between the two situations during the EDA
run is actually a test that indicates whether the currently induced search bias
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suits the structure of the current search area. If it does, the maximum-likelihood
probabilistic modeling of the normal pdf can be used (following the combination
of prerequisites la and 2). Otherwise, additional means of inducing the search

bias may be extremely helpful (following the combination of prerequisites 1b
and 2).

To obtain a test of the reliability of using structure identification in continuous
EDA by means of maximum-likelihood estimations, the relationship between
normal density and fitness of the selected solutions can be exploited. If the
selected solutions are centered around a (local) optimum, the density will be
strongly correlated with fitness (positively in case of maximization and negatively
in case of minimization). The reason is that for the normal distribution the
density of a point decreases when it is moved away from the mean. Intuitively,
such correlation is desirable since better fitness values get a higher probability
of being (re)produced by the EDA. If on the other hand the selected solutions
are found to be on a slope, on the one side of the mean the fitness values will
be better whereas on the other side of the mean the fitness values will be worse.
Hence, a decrease in density is associated with both an increase and a decrease
in fitness, effectively decorelating density and fitness.

We propose to base the test for triggering the use of adaptive variance scaling
on the ranked correlation coefficient between density and fitness. We use ranked
correlation because the most important aspect is that a larger density should
be associated with a better fitness value whereas the exact form of the fitness
landscape is less important. The results of using this correlation trigger for a
slope and for a peak are illustrated in Figure 9.3.
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Figure 9.3.: Scatterplots and corresponding regression lines for fitness of the se-
lected solutions versus their density under the estimated normal dis-
tribution in the first generation when minimizing the sphere function
for [ = 5. (Left) initial range = [—10, —5] (r = —0.3289859), (Right)
initial range = [—3, 2] (r = —0.9725636).
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We propose to have a threshold value 8 such that if the value of the correlation
coefficient r between the density and the fitness of the selected solutions is at
most the value of the threshold, i.e. 8 < r, then the conventional maximum-—
likelihood estimate is used in the EDA. Otherwise, the estimate based on adaptive
variance scaling is used. Note that in the case of maximization we should test for
0 > r instead. An experimental illustration of using adaptive variance scaling
only when the correlation test was not passed is presented in Figure 9.4. Indeed,
adaptive variance scaling is now not always used, preventing the variance from
becoming unnecessarily large and speeding up convergence.
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Figure 9.4.: Population and estimated probability distribution (rescaled to fit-
ness range for visualization) in the correlation—triggered adaptive—
variance—scaling maximum-likelihood normal EDA in generations 0,
1,2, 4, 6 and 8 (top-left to bottom-right).

The principle of correlation-triggered adaptive variance scaling is EDA-independent.
We integrated it into a continuous EDA based on Bayesian factorizations of
normal pdfs, the iterated density- estimation evolutionary algorithm (IDEA,
Bosman and Thierens (2000)). The resulting algorithm is called correlation-
triggered adaptive variance scaling IDEA (CT-AVS-IDEA). Pseudo-code for CT-
AVS-IDEA is presented in Figure 9.5.

Attempting to separate the EDA run into generations where variance scaling ap-
pears to be necessary and into phases where it appears not to be necessary directly
relates to the notion of diversification and intensification. Scaling the variance
beyond its ML-estimate clearly corresponds to diversification of the search. A
larger variance increases the area in that solutions are sampled. Once a corre-
lation test as described above dismisses the need to scale the variances beyond
the ML-estimates, the EDA can intensify its search on the current center of at-
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CT-AVS-IDEA( 7, n, nP=c, cAVS-MAX georr )

Set generation counter t = 0.
Initialize population P with n random individuals.
ASSlgIl CAVS—MIN — 1/CAVS—1\/IAX'
Assign n'™° = 1/nP"e.
Assign ¢*VS = 1.
Evaluate solutions in P.
Store best fitness found in P in b
Select best |7n] individuals and store them in S.
If b* = b'~! then
(a) aSSIgH CAVS — CAVS . nDEC.
else

© 0N o Ot W

(b) assign ¢*V® = ¢AVS . e,

10 If CAVS < CAVS—MIN or CAVS > CAVS—MAX then
a881gn CAVS — CAVS—MAX.

11. Estimate Bayesian factorization of normal pdf from S.

12. Compute ranked correlation coefficient 7.

13. If r > 6°°"" then
Assign X = V58X,

14. Sample n — |7n| new candidate solutions from estimated normal pdf (with

possibly scaled covariance matrix) and store new candidate solutions in O.

15. Replace worst n — |7n | individuals in P with O.
16. Update generation counter, i.e. assign t =1t + 1.

17. If termination criterion is not met, go back to 6.

Figure 9.5.: CT-AVS-IDEA pseudo-code (minimization).

traction. It has centered around a (possibly local) optimum and reduces the size
of the investigated area. In this respect, correlation-triggered variance scaling
separates phases 1 and 2 from phase 3 of Chapters 6-8 on the fly.

9.4. Experimental section

9.4.1. Experimental setup
We perform experiments on test functions listed in Table 9.1 using CT-AVS-

IDEA, the IDEA without adaptive variance scaling and the CMA-ES Hansen
et al. (2003), the current state-of-the-art in evolutionary non-linear optimization.
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All functions are unimodal. The optimum for functions 1-7 is obtained by setting
x; = 0 for all 7. For function 8 the optimum is obtained by setting x; = 1 for all
1. The optimum for functions 9 and 10 is obtained by setting x; = 0 for all ¢ > 1
and letting x; go to co. The initialization range used for all functions is [-10, 5],
i.e. asymmetric around the optimum and for functions 9 and 10 far away from
the optimum for variable z;.

Name Definition Value to reach
Sphere S 4 10710
Ellipsoid S 100 a2 10-10
Cigar 22+ 3, 1002 10710
Tablet 10922 + S, a2 10710
Cigar Tablet 22 4+ 32170 102 + 10822 10710
Two Axes SRl 0622 45 12) T 1071
Different Powers | S°'_, |xi|2+1oij 10~
Rosenbrock SYVTHA00 - (22 — 2i40)? 4 (25— 1)2) 10710
Parabolic Ridge | —z; + 100Y'_, 2?2 —10~10
Sharp Ridge -z + 100\/2222 x? —10~10

Table 9.1.: Test functions and values to reach.

Using a scalability analysis, the running time complexity of the algorithms is
experimentally approximated. To be more specific, it is assessed how the total
number of fitness evaluations e and the population size n required to solve the
problems to optimality grows with the size of the problem [. Therefore, the
dimensionality [ was varied: [ € {2,4,8,10,20,40,80}. For each dimensionality
we used a bisection method to obtain the minimally required population size for
which the problem’s value to reach was found in at least 95 out of 100 independent
consecutive runs. The scalability analysis is important, as it allows us to predict
whether CT-AVS-IDEA is a tractable approach for solving real-world problems
that are often of much higher dimensionality.

For CT-AVS-IDEA we used n°®° = 0.9 after pre-experimental testing, i.e. a small
multiplication factor to allow for smooth adaptation of the variance multiplication
factor. The correlation trigger threshold 6 was set to 6« = —0.55 (see Section
9.4.2). The magnitude of ¢*V® was bounded from above by ¢*VSMA% = 10.0.
Following the rule of thumb from Miihlenbein and Mahnig (1999), the selection
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threshold 7 was set to 7 = 0.3 for both CT-AVS-IDEA and the IDEA without
variance adaptation.

9.4.2. Setting the correlation trigger threshold

In order to obtain a reasonable value for 8™, we tested when the ranked cor-
relation coefficient between fitness and density actually triggers scaling of the
variance on the sphere function. The sphere function is a single peak and can
be solved by EDA without variance scaling. We varied 6™ from -1.0 to 1.0 in
steps of 0.01. For each value of 8, 100 independent runs of CT-AVS-IDEA on
the sphere function in dimensionalities [ € {2,4, 8, 10, 20, 40, 80} were performed.
Initial populations were drawn symmetrically around the optimal solution of 0
for all dimensions in a range of [—7.5,7.5]. The population size that was used
for a dimensionality [ was equal to the minimally required population size for
the IDEA to solve this problem optimally. In that case variance scaling is not
required because the induced bias of the normal pdf itself suffices to locate the
optimum.

Figure 9.6 illustrates the percentage of generations in which variance scaling was
nonetheless triggered (averaged over 100 runs). As a rule of thumb, we propose
to set 6 to 8" = —0.55. For this value, the number of unnecessary correlation
triggers is rather constant and at most 25%. If a smaller value (i.e. closer to
-1.0) is chosen, it can be seen from Figure 9.6 that the number of unnecessary
correlation triggers will grow with increasing dimensionality. Although the value
of —0.55 is rather robust, i.e. values between —0.6 and —0.4 lead to good results,
the value for the correlation trigger should not become much larger. If a larger
value (i.e. closer to 1.0) is chosen, the scaling of variances was observed from
initial experimentation not to be triggered when it is required on slopes.
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Figure 9.6.: Correlation trigger thresholds.
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9.4.3. Results and interpretation

AVS-IDEA, IDEA and CMA-ES

Plots that reveal the influence of problem dimensionality on the average number
of evaluations and the minimal population size required to solve the problems
are presented in Figure 9.7. As the plots have a log-log scale, straight lines
indicate polynomial scalability. Additionally, Table 9.2 shows results from two
linear least squares regressions on log-log-scaled data where the average number
of evaluations e and the minimally required population size n depend on the
dimensionality [ of the problems as follows:

logn =logl®+e¢ and loge =logl® +e, (9.1)

where € is a standard-normally distributed error term.

Results for « indicate that the population size n scales sub-linearly with the
problem size [ for all regarded algorithms. For the IDEA without covariance
adaptation, the population size n grows approximately with the square root of
the dimensionality. For AVS-IDEA, the population size n grows even slower. For
CMA-ES (Hansen and Ostermeier (2001)) , the population size needs not to be
enlarged beyond the initial setting of 4 = 2 and A = 4 for most functions, except
for Rosenbrocks function and the Sharp Ridge function. The reason for this is
that in the CMA-ES, the probability distribution used to guide the search is not
entirely rebuilt from scratch using only the data in the current set of selected
solutions. Instead, the distribution is weighted over a path of generations past
and hence represents an accumulation of information.

Results for  indicate that the average number of evaluations e for success grows
sub-quadratically with [ for all regarded algorithms. The average number of
evaluations grows faster for the AVS-IDEA than for the IDEA without variance
adaptation. However, AVS-IDEA is capable of solving all problems in high di-
mensionality which the IDEA without variance adaptation can not. The IDEA
without variance adaptation is incapable of solving Rosenbrocks function, the
Parabolic Ridge function and the Sharp Ridge function in higher dimensions.
The reason for this is that to find the optimum for the latter two functions, the
value for the first variable needs to be moved extremely far outside its initial
range. Although the gradient along that direction is straightforward, i.e. it is a
simple linear slope, the variance in the IDEA without variance adaptation shrinks
too fast and the slope cannot be traveled. In Rosenbrocks function, again the
variance shrinks too fast. Even though the optimum lies inside the initial range,
the valley in which the optimum is contained is so narrow that the distribution
quickly converges to a part inside the valley that is far from the optimum. The
bottom of the valley, a curved slope, needs to be traveled to find the optimum.
This slope cannot be traveled by the IDEA without variance adaptation.
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Figure 9.7.: Scalability results for IDEA, AVS IDEA and CMA-ES.
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Figure 9.8.: Scalability results for CT-AVS-IDEA (for legend, see Figure 9.7).

Although the CMA-ES has a marginally better scalability than AVS-IDEA on
the first half of the benchmark problems, this is not the case for all problems.
Moreover, both algorithms scale sub—quadratically in the number of required
evaluations to find the optimum.
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CT-AVS-IDEA

In Figure 9.8 scalability results are shown for the CT-AVS-IDEA. From the re-
sults it can be seen that the addition of the correlation trigger indeed reduces
the search effort of the AVS-IDEA. Up to 20 dimensions, although on the one
hand the population size scales similarly to the AVS-IDIEA, the number of evalu-
ations scale more like those of the normal IDEA, indicating that less evaluations
are required because variance scaling is not always required and is consequently
correctly detected and signaled by the correlation trigger. However, for a di-
mensionality of 40 and 80, the correlation trigger reduces in efficiency. On the
Sharp Ridge function, the correlation trigger even fails to trigger the scaling of
variances altogether. The reason for this is that the correlation trigger and the
scaling of variances is done globally for all directions, i.e. the entire covariance
matrix. For the Sharp Ridge function, all dimensions except one do not require
the scaling of variances. The signal obtained in the single non—correlated dimen-
sion becomes insignificant as the dimensionality increases and hence variance
scaling is no longer triggered. Without variance scaling, the normal IDEA can-
not solve the problem and hence, the CT-AVS-IDEA fails. The same will happen
for the Parabolic Ridge function, albeit for even higher dimensions and similarly
for Rosenbrocks function. For Rosenbrocks function, the problem can still be
solved for [ = 80, albeit clearly no longer in a polynomially scaling fashion, i.e.
for even larger dimensionalities the CT-AVS-IDEA will start to behave more like
the normal IDEA and hence fail. A solution to this problem may be to factor-
ize the correlation trigger and the scaling of variances. In other words, to have
various different variance scaling and correlation triggering mechanisms that are
specialized in different directions. A variance-scaling trigger that achieves these
goals is proposed in Bosman et al. (2007a).

9.5. Summary and conclusion

In this chapter, we have analyzed the design of continuous EDA starting from
the lessons learned from research into discrete EDA and from Chapters 7 and
8. The major lesson learned that the inductive bias of the probabilistic model
has to suit to the structure of the optimization problem at hand is valid in
any domain. Problem decomposition allows to find efficient descriptions of the
problem structure. In the discrete domain, this automatically maps to detecting
dependency relations when estimating probability distributions as the basis of
the inductive search bias of the optimization algorithm. This understanding
then maps to typical GA concepts such as building blocks. In the continuous
domain these concepts have no direct equivalent. Hence, before transferring the
lessons learned from the discrete domain to the continuous domain, we must first
generalize the lessons learned before we specialize them again for the domain at
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hand.

In continuous problems, the structure of a problem is characterized by the con-
tours of the function to be optimized. Since the contours can take any shape
and hence fitting the problem structure in the continuous case would require
the intractable property of universal approximation, it is much more convenient
to view problem structure as an arrangement of slopes and peaks in the search
space. These simpler substructures are much easier to take into account and to
build inductive search biases for.

Continuous EDA rely on normal distributions. We have shown that the bias of
the normal distribution does not fit well to slopes due to lack of generalization and
as a consequence the EDA can get stuck. When searching around peaks, the bias
of the normal distribution suffices to find the optimum. We argue that substruc-
ture identification is possible and beneficial in continuous EDA. Substructure
identification relates to analyzing the local structure of the current search area
so as to find out which shape dominates this search area. To accomplish proper
substructure identification, we use the ranked correlation coefficient between the
density of the approximated probability distribution and the fitness of the set of
selected solutions. On slopes, we then scale the variance of the EDA beyond its
maximum-likelihood estimate.

AVS-IDEA was shown to be effective on a test bed of unimodal test functions. In
comparison to the IDEA without variance adaptation, it solves all functions from
the test bed and requires smaller populations. The total number of fitness eval-
uations grows faster for AVS-IDEA than for IDEA without variance adaptation.
However, for both algorithms the average overall fitness evaluations still grows
sub-quadratically with the number of dimensions. Adding the correlation trigger
is effective for smaller problems. It does not always work well if the problem
dimensionality is higher than 40.

It is an important goal of GEC research to enhance EA such that they are able
to solve an increasing array of problems. In this light, we have extended the class
of problems that can be solved efficiently and reliably by continuous EDA based
on the normal pdf.
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Function | Algorithm | « | I6]
Sphere IDEA 0.5541 | 1.1635
AVS-IDEA 0.1994 | 1.6563
CMA-ES 0.0000 | 0.9601
CT-AVS-IDEA | 0.5041 | 1.1023
Ellipsoid IDEA 0.6119 | 1.2171
AVS-IDEA 0.1870 | 1.6870
CT-AVS-IDEA | 0.5725 | 1.1701
CMA-ES 0.0000 | 1.5183
Cigar IDEA 0.5052 | 1.1865
AVS-IDEA 0.2125 | 1.6976
CT-AVS-IDEA | 0.6400 | 1.2377
CMA-ES 0.0000 | 1.1093
Tablet IDEA 0.4398 | 1.0860
AVS-IDEA 0.2066 | 1.6397
CT-AVS-IDEA | 0.4493 | 1.1030
CMA-ES 0.0000 | 1.4178
Cigar Tablet IDEA 0.4521 | 1.1142
AVS-IDEA 0.1879 | 1.7155
CT-AVs-IDEA | 0.6192 | 1.1732
CMA-ES 0.0000 | 1.2431
Two Axes IDEA 0.6603 | 1.2854
AVS-IDEA 0.2177 | 1.6551
CT-AVS-IDEA | 0.5879 | 1.1530
CMA-ES 0.0000 | 1.7208
Different Powers IDEA 0.9355 | 1.4983
AVS-IDEA 0.8419 | 1.1692
CT-AVS-IDEA | 0.8568 | 1.1016
CMA-ES 0.0000 | 1.5845
Rosenbrock IDEA not solved
AVS-IDEA 0.7475 | 1.9154
CT-AVS-IDEA | 0.8830 | 1.9937
CMA-ES 0.6885 | 1.4872
Parabolic Ridge IDEA not solved
AVS-IDEA 0.1064 | 1.1160
CT-AVS-IDEA | 0.1686 | 1.0536
CMA-ES 0.0000 | 1.0853
Sharp Ridge IDEA not solved
AVS-IDEA 0.1678 | 0.8563
CT-AVS-IDEA | 0.1570 | 0.7913
CMA-ES 0.5228 | 1.4764

Table 9.2.: Regression coefficients for scalability.
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10. CT-AVS-IDEA solves stochastic
transportation problems

10.1. Introduction

As shown in Section 9.4, adaptive variance scaling significantly improves the
performance of continuous EDA. CT-AVS-IDEA solves complicated nonlinear
benchmark problems reliably and efficiently. This chapter assesses the perfor-
mance of CT-AVS-IDEA beyond artificial benchmark functions and applies it to
the stochastic transportation problem (STP).

The stochastic transportation problem arises in supply chain management when
coordinated decisions on shipment and order quantities must be made under un-
certainty. Material flows from sources where inventory and production capacity
is available to sinks representing customers or markets whose stochastic demand
has to be satisfied. Sources and sinks are linked through transportation possibil-
ities. Generally, demand uncertainty can be handled in a proactive or reactive
manner, see Kenyon and Morton (2002). A proactive approach optimizes total
expected costs of stock-outs and leftover inventory. This basic trade-off is ana-
lyzed in the one-period one-product inventory control problem, often referred to
as the newsvendor-problem, for a review see Khouja (1999).

Stochastic transportation problems are important in practice. They can readily
be extended towards more complex stochastic and dynamic settings, see Arnold
(1987) for an overview. It arises in strategic network design and operational
transportation planning of advanced planning systems, see Fleischmann (2005).
The STP is a sub-problem of strategic network design when locations are fixed.
On an operational level, the STP provides inventory levels that should be held
in short-term at supplying sources. Allen (1958) studies the related problem
of redistributing stock using transshipments. In this respect, a classification of
nodes in a supply network into sources and sinks is part of the decisions. The
nodes hold initial inventory that is redistributed before demand realizes.

One important means to distinguish between stochastic optimization problems is
the sequence and timing of decisions and realizations of random variables. If cus-
tomer /market demand is known before the shipment quantities must be set, the
problem reduces to a deterministic transportation problem, see Domschke (2007).
In this situation, the largest possible advantage of postponing the transportation
decision is realized. The problem can be formulated as a stochastic program

134



10. CT-AVS-IDEA solves stochastic transportation problems

if the stock levels and shipment quantities must be set before demand realizes.
Chance-constraint approaches are required, if the expected degree and/or impact
of stock outs is bounded by a service level agreement, see Witten and Zimmer-
mann (1978).

A different approach is taken, if decisions related to compensation are modeled,
e.g., emergency transshipments in case of stock outs and discounted sales in
case of leftover inventory. Thereby, a first-stage decision sets initial inventory
levels, capacities and/or the network structure while anticipating the expected
cost that is caused by compensation actions at a second stage. This approach is
considered in this chapter. The first stage decisions comprise the choice of sources
and material supply for a transportation problem. The second stage describes
cost consequences of leftover inventory or stock-outs in a one-period inventory
model.

The STP that results from combining the classical transportation problem with
the one-period newsvendor-problem is convex under linear constraints and in
principle solvable by methods of convex optimization. However, an integration of
concave economies of scale in production and of expected convex mismatch costs
at the second stage yields a multimodal problem that is intractable for standard
non-linear programming approaches.

Meta-heuristics are routinely used to solve combinatorial optimization problems
in logistics. On the contrary, they are still rarely used to solve nonlinear con-
tinuous optimization problems. The goal of this chapter is to solve the STP
with the CT-AVS-IDEEA, see Chapter 9.3.2. This will provide insights into the
performance of CT-AVS-IDEA beyond artificial test problems.

Section 10.2 presents the classical STP and reviews solution methods that have
been proposed in the literature. The impact of integrating economies of scale on
the problem complexity is discussed afterwards. Section 10.3 reports on results
from an experimental study that is conducted using CT-AVS-IDEA on a test bed
of STPs. Linearly approximated programs are used as benchmarks. The chapter
is concluded in Section 10.4. It has been published in Grahl and Minner (2006).

10.2. Stochastic transportation problems

10.2.1. The classical stochastic transportation problem

Consider m supplying nodes (sources) i = 1,2,...,m that offer a; units of ca-
pacity per period of time. n demand nodes (sinks) j = 1,2,...,n face stochastic
demand D;. The distribution functions ¢; and the cumulative distribution func-
tions F}; are known. As a simplification, it is assumed that demand is uncorrelated
between customers. The goal is to decide on stock levels y; such that total cost

135



10. CT-AVS-IDEA solves stochastic transportation problems

are minimized. Unmet demand causes opportunity costs of lost sales (underage
costs) of p; per unit at sink j. Leftover inventories cost h; per unit (overage
costs). The expected lost sales and inventory costs at sink j with stock level y;
are

B = v+ [y =00ty [ @ m)siade. 101)

Yj

The optimal solution for y; that minimizes (10.1) results from the well known
critical ratio

pj—¢
pi+h

Fyly;) = (10.2)
Setting an optimal value for y; results in a probability Fj(y;) which equals the
ratio between underage costs and the sum of underage and overage costs.

Producing a single unit at source ¢+ and transporting it to sink j causes variable
linear costs of ¢;;. The goal is to minimize expected total costs per period that
consist of production, transportation, inventory holding and opportunity costs of
lost sales. Apart from setting the stock levels y;, shipment volumes z;; between
sources and sinks are set in equalities (10.4) such that y; equals the total amount
that it receives. Inequalities (10.5) enforce capacity limitations at the sources.
The resulting non-linear optimization problem with linear constraints is

minZ =" " cyay+ Y fi(y5) (10.3)
j=1

i=1 j=1

stY wi =y Vji=1,2,...,n (10.4)
=1

Y w<a Vi=1,2,...,m (10.5)
j=1

;>0 Vi=1,2,...,mj=12....n (10.6)

y; >0 Vi=1,2,...,n. (10.7)

The above model comprises two special cases. It reduces to the classical trans-
portation problem if y; = b;, b; € RY. If an allocation of sources to sinks is fixed,
the capacity constraint is not binding and each sink is supplied from a single
source only, the problem decomposes into independent newsvendor problems.
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Exact optimization algorithms are most prominent in the literature. Elmaghraby
(1960) presents a method to systematically evaluate Kuhn-Tucker conditions. Qi
(1985) improves on this work by considering only a single dimension per iteration.
The convex minimization problem under linear constraints is solvable with meth-
ods of convex optimization, see Horst and Tuy (1998). Williams (1963) uses an
approach dating back to Dantzig. Cooper and LeBlanc (1977) and LeBlanc et al.
(1985) use the Frank-Wolfe approach. Holmberg and Jornsten (1984) discuss
pricing-based Dantzig-Wolfe and resource-based Benders decomposition methods
and develop a combined algorithm that relaxes the complicated master problem.
Holmberg (1995) compares decomposition and linearization approaches for the
STP and reports on advantages from using decomposition approaches.

Heuristic approaches result from stopping exact methods before they reach the
optimal solution. Wilson (1975) presents a problem-specific heuristic that em-
ploys cost approximations.

10.2.2. Integrating economies of scale

We extend the basic model from Section 10.2.1 by assuming economies of scale
of production. Production costs at source i follow a non-linear and concave cost
function g¢;(z;), where z; is the total production quantity and capacity at source
1.

min 7 = chz’szj +Zgi(zi) ‘I‘ij(yj) (10.8)
i=1 Jj=1

i=1 j=1

stY mi; =y Vi=1,2,...,n (10.9)
i=1

inj =z Vi=1,2,....m (10.10)
j=1

0<z<a Vi=1,2,...,m (10.11)

xy; >0 Vi=1,2,...,m;j=1,2,...,n (10.12)

y; >0 Vi=1,2,...,n (10.13)

z >0 Vi=1,2,...,m (10.14)

The above formulation of g;(z;) includes the special case that production costs
contain a fixed component that arises only if z; > 0, as assumed in warehouse
location problems, see Drezner and Hamacher (2002) for a review. Constraints
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(10.9) and (10.10) link produced, shipped and stored goods, while (10.11) ensures
that the capacity constraint is met.

The objective function consists of a concave part that describes production costs,
a linear part that describes transportation costs, and a convex part that describes
inventory holding and lost sales costs. It is thus neither concave nor convex and
can have multiple local optima. Non-convex optimization problems under linear
constraints are in general NP-hard, see Pardalos and Rosen (1984). Holmberg
and Tuy (1999) develop a branch and bound algorithm to solve the above STP.

10.3. Experimental section

10.3.1. Experimental design

We use CT-AVS-IDEA (see Section 9.3.2) to solve the STP described in Section
10.2.2. The number of sources is varied in m € {2, 5,10}, the number of sinks is
varied in n € {10, 35,50} resulting in 9 network configurations. K = 50 random
instances are generated for each configuration as follows. The sources and sinks
are randomly placed in a square area that is 100 x 100 units large. Variable
transportation costs ¢;; from source 7 to sink j are the euclidean distance scaled
by a random factor UF ~ U[1;1.5]. The production cost function g;(z;)

9i(zi) = Biz" (10.15)

is concave. The parameter a; ~ UJ[0.5;1], and §; ~ U[100;200]. Demand
D; is normally distributed with mean p; ~ U[40;200] and standard deviation
o; = pj€;. The coefficient of variation €; ~ U[0.1;0.5]. Underage costs p; are
uniformly distributed in [100;200], overage costs h; are uniformly distributed in
[3; 6]. Capacity constraints are neglected.

For the special case of normally distributed demand, the expected lost sales and
inventory holding costs are given as

Fiws) = pj(i—y;)+(hi+p;) (Y — 1) o (%) +(hj+p;)oidoa (%) :
J J
(10.16)
where @ ; is the cumulated density function of the standard normal distribution,
and ¢ is the density function of the standard normal distribution.

Benchmarks were obtained by piece-wise linearization of production and mis-
match cost functions. The resulting mixed-integer linear program was solved by
XPress-MP. Production costs g;(z;) are concave in z;, mismatch costs f;(y;) are
convex in y;. In order to obtain a lower bound Z; for the optimal costs, ¢;(Z;)
was linearized using secants, and f;(y;) was linearized using tangents. An upper
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bound Z, on the costs was obtained conversely. Z, and Z; converge when the
number of breakpoints in the piece-wise defined functions increases.

The first break-point for lingering f;(y;) is y; = 0 Vj = 1,2,...,n. An upper
bound y™4X resulted from solving (10.2) using the minimal transportation costs
cf\fIN =min{¢;|i =1,2,...,m;j =1,2,...,n} as per unit price for sink j.

The first break-point for linearizing g¢;(z;) is z; = 0¥2 = 1,2,...,m. An upper

bound zM4X results from choosing the largest possible sensible amount
A=y = 1,2, m, (10.17)
j=1

The cumulated distribution function of the normal density was approximated
by the polynomial approximation 26.2.19, the quantile function of the normal
cumulative distribution function was approximated by the rational approximation
26.2.22 from Abramowitz and Stegun (1972).

The population size used by CT-AVS-IDEA is set to 2nm, the ratio of selected
individuals 7 is set to 7 = 0.3. #°ORR is set to 0.55. A smooth adaptation of
the variance is obtained by setting nP¢ to 0.9. Furthermore, ¢AVSMAX — 10.0.
CT-AVS-IDEA was terminated as soon as the cost difference between the best
and the worst solution in a population was smaller than 1.0.

10.3.2. Results and interpretation

A lower bound ZF was derived for each of the k = 1,2,...,50 instances using
successive linear approximation and XPress-MP. The number of breakpoints used
in the linearization was chosen such that the lower bounds were not further apart

than 2-3% of total cost. It is used as a benchmark and is compared to the best
found solution xf of CT-AVS-IDEA. A cost increase A¥ is defined as

Z(xy) — Zf

AF =
Zt

- 100%. (10.18)

The results are listed in Table 10.1. Minimal, average and maximal cost increases
that are obtained from CT-AVS-IDIEA over the bound are reported.

It is immediately apparent from the results that CT-AVS-IDEA is capable of find-
ing optimal or near-optimal solutions of the STP without exploiting any problem-
specific knowledge besides the objective function.
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n 10 35 20
m | min | avg | max | min | avg | max | min | avg | max
210.01]0.04|0.380.0010.02|0.61|0.01]0.17 | 0.71
51000021316 0.020.20]|0.841]0.05]0.43| 1.76
10 1 0.00 | 0.42 | 2.60 | 0.78 | 1.82 | 3.76 | 0.52 | 2.50 | 8.80

Table 10.1.: Cost penalty of using CT-AVS-IDEA over lower bound in percent.

10.4. Summary and conclusion

The mainstream approach to solving the STP is hand-tailoring problem specific
solution methods for its variants. Specialized methods exist for linear, concave, or
convex cost structures. We have shown, that CT-AVS-IDEA can solve the STP.
This is an important result, as it demonstrates the applicability of CT-AVS-
IDEA beyond artificial benchmark problems. From an applied point of view, the
availability of robust BBO algorithms such as CT-AVS-IDEA opens the road for
resolving difficult planning problems at minimal design efforts without having to
face the downsides of classical techniques. This advantage gets more pronounced,
if non-linear concave transportation costs (see Fleischmann (1993) are used or
customer demand is correlated between markets, rendering a linearization of the
objective function more complex and time-consuming.
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11.1. Summary

This thesis centered around the following two research topics. In its first part
(Chapters 3-5), existing EDA theory and discrete EDA were applied to prob-
lems in logistics in order to bridge the gap between discrete EDA theory and
application. In its second part (Chapters 6-10) continuous EDA were analyzed,
redesigned, implemented and tested.

The second chapter introduced genetic algorithms, estimation of distribution al-
gorithms and basic theoretical concepts like factorized search distributions and
the notion of a problem decomposition.

The first part of the thesis started in Chapter 3, where EDA theory was applied
to the warehouse location problem. A subtle numbering defect was discovered.
After explaining the defect formally, an experimental comparison of sGA and the
BOA was carried out on test instances that are widely used in the literature. For
the instances considered, EDA are found to be more efficient than sGA. Chapter 4
applied the sGA, the BOA and the (141)-EA on safety stock allocation problems
in serial, divergent, convergent and general topologies. An experimental study
was conducted, on basis of which topology-algorithm matchings were proposed.
The sole adaptation made to the EA was the integration of the fitness function
on basis of a fixed-length binary encoding. The (141)-EA was found reliable for
solving serial problems. For other network topologies, the BOA dominated the
other EA in terms of reliability or runtime.

In Chapter 5, the single-product dynamic demand lot-sizing problem and the
dynamic joint-replenishment problem were analyzed and it was found that the
problems are decomposable in the sense of EDA theory. Furthermore, a state-
of-the-art EDA was used to solve instances of both problems in a scalability
analysis. The results were in accordance with existing scalability theory of EDA
as the run-time of the EDA measured in number of fitness evaluations grew with
a low-order polynom depending on the size of the instances.

Chapter 6 introduced the second part of the thesis by setting the stage for the
formal analysis of continuous EDA. It therefore decomposed overall convergence
into three simpler to understand phases that were assumed independent. The
first phase represents a situation in which a continuous EDA is searching far
from the optimum. Population statistics for this phase were derived analytically
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in Chapter 7. Phase two generalizes to a situation in which the algorithm has
moved towards the optimum and a significant proportion of solutions is optimal.
It was shown in Section 8.1 that a preferred sampling variance exists for a simple
setting that should be chosen in order to maximize the ratio of optimal solutions.
Once the mean is located on the optimal solution and the variance must shrink to
sample optimal solutions reliably, the EDA has reached phase three. A runtime
result for this phase was derived in Section 8.2.

The results indicated that a proper tuning of variances is essential for the success
of continuous EDA that are based on normal distributions. To be more precise,
using the well-known maximum likelihood estimators for the normal distribution
does not automatically enable efficient search, even if a full covariance matrix
is estimated. In this respect, continuous EDA differ substantially from their
discrete counterpart, where maximum likelihood estimation of model parameters
is sufficient, given that the structure of the model can capture the decomposition
of the problem.

Chapter 9 discussed in detail potential pitfalls in the adaptation of discrete EDA
to the continuous domain. Additionally, it proposes a simple remedy to enhance
the performance of continuous EDA: correlation-triggered adaptive variance scal-
ing. This concept was integrated into the IDEA algorithm in Section 9.3.2. The
resulting algorithm CT-AVS-IDEA was tested on artificial non-linear test func-
tions in Section 9.4 and was found to solve complicated non-linear problems
reliably to global optimality. Furthermore, CT-AVS-IDEA was applied to the
stochastic transportation problem in Chapter 10, generating solutions that are
close to optimality in reasonable time.

11.2. Conclusion

This section will conclude the major findings of this thesis. First, it summarizes
its contribution to the interface between EDA theory and logistics, afterwards its
contribution in the field of continuous EDA are discussed.

This thesis attempted to bridge the gap between EDA theory and the application
of EDA. Recent advances in evolutionary computation that have, e.g., lead to
estimation of distribution algorithms, remain largely unnoticed in practice and
applied optimization. Successful applications of EDA are required that illustrate
the drawbacks of simple GA and drive the diffusion of the EDA paradigm in
practice.

In this respect, EDA theory was used to analyze the structure of the uncapac-
itated warehouse location problem. It was shown, that the numbering of ware-
houses can significantly increase or decrease the performance of a simple GA.
This is clearly an undesired behavior, especially as it is virtually impossible to
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judge the quality of the a chosen numbering a priori. In order to overcome this
problem, linkage learning techniques are needed. The BOA (and any other EDA
that can capture multivariate interactions) does not suffer from the numbering
defect. Additionally, it was found to dominate the simple GA in terms of effi-
ciency and reliability. Since significant speed-ups are obtained from tightly-linked
codings, optimization practitioners should investigate possibility to obtain such
codings, or use linkage learning techniques when solving location problems.

Safety stock allocation is one field of research where the literature is dominated by
problem-specific approaches. The thesis challenged this approach and used evo-
lutionary black-box-optimizers to solve safety stock problems. These algorithms
exploited an extreme-point property that allowed the encoding of solutions on
a fixed-length binary string. No further modification was made to the built-in
search mechanics of the EA. Nonetheless, the algorithms were able to routinely
solve safety stock allocation problems in different topologies to global optimality.
The BOA was especially successful solving problems in complex structures that
arise in the real world. Here, the simple GA turned out to be less efficient and
less reliable.

Finally, the structure of single-product and multi-product dynamic demand lot-
sizing problems was analyzed. It was shown that these problems are decompos-
able in the sense of EDA theory. Experimental scalability results highlighted the
potential of EDA in inventory management.

Summarizing the findings of the first part of the thesis, important insights in the
behavior of search algorithms can be obtained from the application of EDA theory
to optimization problems. This was demonstrated for warehouse location prob-
lems. Furthermore, evolutionary black box optimization is a flexible and efficient
means to solving related variants of non-linear optimization problems that would
require hand-tailored methodologies otherwise. This was demonstrated for safety
stock allocation problems in different network topologies. Finally, EDA theory
has been developed for artificial test problems. Nonetheless, it matches the be-
havior of EDA on practical problems that are decomposable. This could be shown
for dynamic demand lot-sizing problems and the joint replenishment problem.

It must be noted though, that using un-modified versions of state-of-the-art mul-
tivariate EDA for very large instances of (combinatorial) optimization problems
might take very long due to time demand model building. This potential draw-
back must be traded off against reliability and ease of use. Efficiency enhance-
ments like sporadic model building (Sastry et al. (2004)) or BBO local search
(Lima et al. (2006)) can be integrated into EDA to reduce the time required for
model building.

Regarding the second part of the thesis, first continuous EDA were designed as
direct counterparts of successful discrete EDA. A variety of probabilistic models
based on the normal distribution were used. It was hoped, that an increase in
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the modeling capacity of the distribution used should leverage the performance
of continuous EDA. This thesis contributed to understanding why this direct
adaptation was not successful. It showed that the variances obtained through
maximum likelihood estimation decrease exponentially fast. This can be prob-
lematic if the algorithm is initialized far from the optimal solution and can easily
cause premature convergence. One way to solve this problem would be to use
a more involved probability distribution but the Gaussian distribution in order
to better model the structure of the problem. However, it was discussed in this
thesis that problem structure in continuous spaces is expressed through fitness
landscape contours. These contours can be of virtually any shape. Since arbitrary
structure approximation in high dimensions is computationally not tractable, a
different approach was taken. In order to prevent premature convergence, the
Gaussian distribution was kept, but the sampling variance was enlarged beyond
its maximum-likelihood estimate. Variance enlargement was triggered only if
necessary, that is on slope-like regions of the search space. A trigger based on
correlation between density and fitness was used to achieve this goal.

The resulting CT-AVS-IDEA significantly improved upon the state-of-the-art of
continuous EDA and is among the most efficient continuous EA available. It
increased efficiency on problems that were solvable before, and beyond that en-
larged the class of problems that continuous EDA are able to solve reliably. In this
light, the thesis demonstrated both formally and experimentally that a proper
tuning of the parameters of the distributions used is essential for the success of
continuous EDA and exemplified how efficient continuous EDA can be designed.

11.3. Outlook

The uWLP considered in Chapter 3 neglects practical properties like limited
warehouse capacities and/or multiple distribution stages. Furthermore, problem-
specific meta-heuristics that are tailored towards certain problem classes have
been designed, e.g., in Kratica et al. (1996). It is interesting to analyze, how
well sGA and EDA are able to solve multilevel location problems and whether
the numbering effect plays an important role when solving these problems with
EA. Additionally, the integration of local search into baseline algorithms like the
sGA as done in Kratica et al. (1996) is likely to influence the strength of the
numbering effect. It is tempting to generalize the numbering effect to a problem
that arises when geographical information is mapped onto a binary string.

Structural insights that have been gained for the uncapacitated warehouse loca-
tion problem might be usable to design EDA that are especially efficient for this
problem. One attempt is to reduce the complexity of the probabilistic model to
interactions that are important.
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Regarding the results from Chapter 4, it seems worthwhile to investigate heuristic
approaches for large scale safety stock allocation problems. A first approach can
be to hybridize global and local search. EDA can function as global searchers
while local search (see Minner (2000)) improves upon selected genotypes. This
will lead to operators specifically designed for safety stock allocation problems.
In order to reduce the runtime of EDA, the search space for model building might
be reducible. Therefore, in-depth knowledge about the probabilistic models that
are built by EDA is a requirement.

Moreover, the problem difficulty of safety stock allocation problems has not been
analyzed theoretically, and it is hard to tell what makes an instance hard for
heuristic search algorithms. Possible first steps can be to assess the locality of
binary encodings, see Rothlauf (2006) or fitness landscape analysis, see Merz and
Freisleben (1999).

Lot-sizing problems typically arise in capacitated multi-level settings where a bill-
of-material structure couples material flows. This class of problems has received
considerable attention in the last decades and might serve as a next step in the
application of EDA in inventory management.

The large population sizes that have been observed in this thesis are undesired in
practice because they lead to high computational costs when probabilistic models
are built. In order to overcome this drawback, efficiency enhancements have been
designed, see Sastry et al. (2004). Specifically, sporadic model building should
be addressed, as it provides significant speed-ups at little effort, see Pelikan et al.
(2006¢).

The theoretical investigations made in Section 8.1 should be generalized to several
dimensions and/or other search distributions. These results can act as a bench-
mark for practical variance scaling policies. Further, it will be interesting to work
out variance scaling policies that are capable of emulating optimal variances.

Runtime results such as the one derived in Section 8.2 can be starting points for
a systematic comparison of the performance of EDA with other evolutionary and
non-evolutionary algorithms.
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