
EQUIVALENCES ON PHASE TYPE
PROCESSES

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Verena Wolf

aus Hachenburg

Mannheim, 2008

Dekan: Prof. Dr. M. Krause, Universität Mannheim

Referentin: Prof. Dr. M. Majster-Cederbaum, Universität Mannheim

Korreferentin: Prof. Dr. C. Baier, Technische Universität Dresden

Tag der mündlichen Prüfung: 15. April 2008

Abstract

In this thesis, we introduce Phase Type Processes (PTPs), a novel stochas-

tic modeling approach that can express probabilistic and nondeterministic

choices as well as random delays following phase type distributions, a gen-

eralization of exponential distributions. Action-labeled transitions are used

to react on external stimuli and they are clearly separated from phase type

transitions. The semantics of PTPs are defined in terms of path probabilities

with respect to schedulers that resolve nondeterministic choices based on the

timed process history.

The main emphasis of this work is to analyze a variety of notions of equiva-

lence for PTPs and classify them with respect to their distinguishing power.

Amongst others, we define bisimulation, trace and testing equivalence as well

as extensions of failure trace equivalence. Moreover, the contribution includes

a discussion of parallel composition in the context of a partial memoryless

property and the examination of a mapping from PTPs to the subclass of

single phased processes in which all random delays are exponentially dis-

tributed.

Zusammenfassung

Die vorliegende Arbeit analysiert und diskutiert einen neuartigen Ansatz

zur Modellierung stochastischer Systeme, der auf sogenannten Phasentyp-

Prozessen (PTPs) basiert. PTPs bieten die Möglichkeit von probablistischen

Verzweigungen und Zustandsübergängen, die entweder mit einer zufälligen

zeitlichen Verzögerung stattfinden oder eine (unverzögerte) atomare Aktion

repräsentieren. Die Verzögerung eines zeitbehafteten Übergangs wird durch

eine phasentyp-verteilte Zufallsvariable beschrieben. Phasentypverteilun-

gen stellen eine Verallgemeinerung von Exponentialverteilungen dar und be-

sitzen nur eine partielle Gedächtnislosigkeit. Atomare Aktionen ermöglichen

eine Interaktion mit der Systemumgebung und ihre Ausführung ist klar ge-

trennt von den Phasentypübergängen. Die Semantik eines PTPs wird durch

die Definition eines Wahrscheinlichkeitsraumes über Ausführungssequenzen

angegeben. Diese Sequenzen folgen den Regeln eines Schedulers, einer In-

stanz zur Auflösung nichtdeterministischer Entscheidungen basierend auf der

Prozessvergangenheit.

Der Schwerpunkt dieser Arbeit liegt auf der Analyse einer Vielzahl von

Äquivalenzbegriffen für PTPs, die entsprechend ihrer Unterscheidungsfein-

heit klassifiziert werden. Unter anderem werden Bisimulations-, Spur- und

Testäquivalenz, sowie Erweiterungen der Spuräquivalenz definiert. Weiterhin

beinhaltet die Arbeit eine Diskussion der parallelen Komposition von PTPs

und die Untersuchung eines Operators, der PTPs auf Ein-Phasentyp-Prozesse

abbildet. Unter Verwendung des Operators und der Tatsache, dass Ein-

Phasentyp-Prozesse die volle Gedächtnislosigkeit besitzen, werden mögliche

Auswege aus der Problematik der parallelen Komposition im Kontext einer

partiellen Gedächtnislosigkeit diskutiert.

Acknowledgments

Foremost, I would like to thank my two supervisors, Prof. Mila Majster-

Cederbaum and Prof. Christel Baier, for their guidance and encouragement

during my research and study at the university of Mannheim. I count myself

lucky to represent the youngest generation of Mannheim’s “scientific women

in concurrency”. My supervisors have always been accessible and willing to

help me with my research and were valuable consultants for my scientific

development.

I also wish to thank Prof. Holger Hermanns for the numerous useful and

enjoyable discussions.

I want to express my appreciation to Werner Sandmann from whom I learned

the most in stochastic modeling. He has also been a good adviser and moti-

vated me in difficult times.

Thanks are also due to Daniel Klink for helping with proof reading the

manuscript. I also gratefully acknowledge Rita Sommer, the group secre-

tary, and Jürgen Jaap, the group system administrator, and my colleagues

in Mannheim (especially Christoph Minnameier, Moritz Martens and Nils

Semmelrock).

I express my deep gratitude to my parents and my sister; this dissertation

is simply impossible without them and their care and support are of most

importance to me.

I would regret my doctoral years in Mannheim if I did not move to Seckenheim

where I shared the apartment with Ulrike Edel, Sebastian Biniek, Wolfgang

Schmid, Anja Anton and Pablo Krämer.

My very best friends in Mannheim, Monika Huber and Julia Keinert, helped

me so much to get through difficult times and provided emotional support

i

ii

for which I am deeply grateful. Thanks.

I also wish to thank Martina Schneider and Susanne Neumann for so many

enjoyable hours at the stable. Many thanks to my horse (Gosik) for not

bucking me off whenever I vent my frustrations out on it.

Finally, I would like to mention that I was extraordinarily fortunate in having

met Hans whose company and wisdoms I value dearly. Perhaps because of

my propensity to philosophy I have learned to defy all those restrictions that

life has placed upon me.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Road Map . 10

2 Background 12

2.1 Overview . 12

2.2 Kronecker Operations . 13

2.3 Probability Spaces . 14

2.4 Random Variables and Cumulative Distributions 16

2.5 Continuous Time Markov Chains 16

2.6 Phase Type Distributions . 21

3 Phase Type Processes 29

3.1 Overview . 29

3.2 Definitions . 31

3.3 Generator Matrix . 37

3.4 Paths . 44

3.5 Schedulers . 48

3.6 Path Probabilities . 51

3.7 Phase Type Bisimulation . 53

3.8 Immediate Phase Type Transitions 62

3.9 Chapter Summary . 65

4 Parallel Composition 67

4.1 Overview . 67

iii

iv CONTENTS

4.2 Composition of Single Phases 69

4.3 Expand Operator . 71

4.4 Composition with Partial Memory 79

4.5 Chapter Summary . 81

5 Trace Semantics 83

5.1 Overview . 83

5.2 Trace Equivalence . 85

5.3 Completed Trace Equivalence 91

5.4 The Influence of Schedulers 93

5.5 Failure and Ready Equivalence 107

5.6 Chapter Summary . 112

6 More button pushing experiments 113

6.1 Overview . 113

6.2 Weighted Trace Equivalence 117

6.3 Delayed Trace Equivalence . 136

6.4 Chapter Summary . 153

7 Testing Semantics 156

7.1 Overview . 156

7.2 Testing Equivalence . 158

7.3 Chapter Summary . 163

8 Conclusion 166

Bibliography 168

A Proofs 179

A.1 Proof of Proposition 6.3 . 179

A.2 Proof of Theorem 6.1 . 184

A.3 Proof of Theorem 7.1 . 190

Chapter 1

Introduction

1.1 Motivation

A mathematical model is usually a simplification of a real system under study

and is used to provide deeper insight into the system behavior. The construc-

tion of a model is based on an abstract view on the system hiding unnecessary

parts. As remarked by Wolkenhauer and Mesarović [WM05]

Mathematical modeling is therefore an art, not unlike writing

short stories or aphorisms. A complex story, fact or reality is

condensed to few essential aspects.

Mathematical models are omnipresent in science, engineering, economics,

and medicine. Their solution helps to understand the almost always too

complicated real world’s behavior. For example in the field of systems biol-

ogy, mathematical modeling is used for the prediction of phenotypic behav-

ior and for the understanding of molecular mechanisms. In manufacturing,

performance measures like throughput and utilization of workstations are

calculated to identify bottlenecks.

In most cases the model is highly complex because the desired accuracy of

the analysis results require the incorporation of many system details. They

are susceptible to design errors and in order to ease the model construction

high-level modeling frameworks are preferable.

1

2 1.1 Motivation

An essential feature of many high-level modeling languages is composition-

ality, i.e. the system can be fractionized into several subsystems and each

of these is modeled independently. Finally, the submodels are combined to

form the global model. This last step requires sophisticated operators which

ensure that the composition of submodels is appropriate.

Besides the advantage of a modular design, compositionality provides the

possibility to view the system on different levels of abstraction which is im-

portant during the intricate modeling process. Moreover, many modeling

languages allow hierarchical modeling which means that one starts with a

coarse simplification passing through several refinement steps. A compo-

nent of the model can be replaced by one which describes the system more

detailed.

Compositionality may also allow for a modular analysis, i.e. the solutions

of the submodels considered in isolation are combined to a solution of the

global model. This technique is exceedingly helpful in the case of models for

which standard analysis is not feasible.

Uncertainty and randomness are nearly ubiquitous in the real world and the

mathematical study of such phenomena has a wide variety of applications.

Often random assumptions make sense and it is necessary to model stochastic

phenomena like failures (e.g. of an unreliable communication medium), ran-

dom time delays, or an unknown environment. It may also be the case that

random elements are part of the real system (e.g. randomized algorithms or

stochasticity in cells [KEBC05]).

The usual approach has been to replace nondeterminism by probabilistic

branching. However, in many cases the exact probabilities are unknown and

it is more advantageous to model both, probabilities and nondeterminism.

This allows for

⋄ underspecification, partly removed in refinement steps, and

⋄ the representation of incomplete information on parameters (such as

Milner’s “weather conditions” [Mil89]).

1.1 Motivation 3

Let us consider, for instance, the specification of a communication channel

with message loss. Refinement can decrease the set of allowed message loss

probabilities.

In the context of compositional stochastic modeling frameworks stochastic

process algebras (SPAs) have emerged as a useful approach by which sys-

tems exhibiting random behavior can be specified and analyzed. The most

popular SPAs are IMCs [Her02], EMPA [BG96], PEPA [Hil96], stochastic π-

calculus [Pri95] and TIPP [GHR92]. They are all based on the idea that the

system evolves from its current state to the next one after a delay which is of

exponentially distributed length. The exponential distribution possesses the

so-called memoryless property which ensures that the underlying stochastic

process is a continuous time Markov process. In the case of a discrete state

space, the process is called a chain and has a simple state transition diagram

representation. Both, modeling and analysis, become very much easier if the

underlying stochastic process is a continuous time Markov chain.

Unfortunately, delays in real-world systems often do not follow exponential

distributions, but rather follow distributions “with memory”. For example,

distributions of CPU service times, file sizes, transfer times, call center service

times, channel holding times in cellular networks deviate considerably from

exponential (see [MSZ00, PF95, JL96], for instance). On the other hand,

many stochastic models become numerically tractable when distributions are

assumed to be exponential. This is because of the memoryless property.

Another reason not to use exponential distributions as it is done in SPAs

is that one might want to abstract from combinations of exponential delays.

For example, in many stochastic models of gene expression it is assumed that

each elongation step during gene transcription has exponential duration. The

intermediate states, however, represent details of the system, one wants to

hide in most cases. More precisely, if one is interested in the quantities

of gene expression products and decides that no further details concerning

elongation are modeled (such as RNA polymerase elongation factors which

regulate the rate of transcription), a more abstract view in which the suc-

4 1.1 Motivation

cessive elongation steps are combined to one step is much more appropriate

(see, for example, [ARM98]).

A possible solution to these problems is the use of phase type distributions

(PH distributions) which describe combinations of exponential distributions

as a single distribution. This formulation allows the Markov structure of

stochastic models to be retained when they replace the familiar exponential

distribution. PH distributions are defined as distributions of absorption times

in finite Markov chains in which all states are transient except one absorbing

state. It has been shown by Johnson and Taaffe that PH distributions are

dense in the field of all positive valued distributions, i.e. they can be used

to approximate any kind of probability distribution on [0,∞) [JT88]. PH

distributions possess a partial memoryless property since a phase variable can

be used to keep track of the state of the underlying Markov process. Phase

type models have turned out to be analytically and numerically tractable

if the number of parameters is small. However, it is important to keep in

mind that there exist distributions for which large numbers of parameters are

necessary to give a satisfying approximation [O’C99]. But on the other hand,

even if a small number of parameters is used, a large variety of distributions

which are of great practical interest can be approximated accurately.

In this thesis, we present a stochastic modeling approach which is based on

phase type distributed delays. The resulting state transition diagrams, called

phase type processes, are equipped with communication actions modeling the

system’s response to external stimuli. Essentially, a phase type process can be

regarded as a state transition graph that combines the features of continuous

time Markov chains with those of labeled transition systems. The clear sepa-

ration between action-based communication structure and internal stochastic

behavior is similar to Hermanns’ interactive Markov chains [Her02] and so

are the probabilistic branching possibilities to those of Segala’s probabilistic

automata [Seg95].

To the best of our knowledge, in the context of concurrent processes phase

type distributions have not yet been incorporated in the way it is done in

1.1 Motivation 5

this thesis. In [HK00] the authors present an elapse operator for interactive

Markov chains that describes a phase type distributed delay. Their notion

of bisimulation for interactive Markov chains is defined independently from

the operator. Therefore, they are not able to abstract from the structure of

the Markov chain representing the phase type distribution. Here, we present

a bisimulation equivalence for phase type processes that does so. The main

difference between the approach in [HK00] and the approach in this thesis is,

however, that we give semantics in terms of schedulers that have no knowl-

edge about the current phase of the delay assigned to a transition. It is

important to point out that a combination of Markovian transitions in an in-

teractive Markov chain (which does represent a phase type distribution) has

a different semantics than a timed transition in a phase type process (repre-

senting the same distribution). Moreover, the phase type process explicitly

defines the “macro” states of the system that are of interest and hides all

“micro” states that belong to a certain phase of the delay in this macro state.

Minor differences concern the possibility of probabilistic branching and the

fact that we focus on linear time relations here.

El-Rayes et al. present in [ERKN99] an extension of the stochastic process al-

gebra PEPA [Hil96] in which actions have a phase type distributed duration.

The same idea is picked up in [Gaj96] but on the basis of the TIPP calcu-

lus [GHR92]. El-Rayes et al. make use of matrix geometric methods [Neu81]

to solve the underlying infinite-state Markov chain. Their calculus does not

allow for nondeterminism and they do not consider any notion of equivalence

but rather focus on the derivation of the underlying Markov chain and its

solution.

There has also been work done on stochastic process algebras with general

distributions (see, for instance, [BD04] and the references therein). The key

idea is to use clocks in order to combat the problem of residual lifetimes of

delays. In our setting, we do not need this construct because it is enough to

record the current phase of a delay.

6 1.1 Motivation

As opposed to models based on exponential delays or to those based on gen-

eral distributions, for phase type processes the memoryless assumption is par-

tially valid. This has great impact on most concepts developed in this thesis.

Hermanns found an elegant way to circumvent the problems related to the

execution of synchronous actions in stochastic process algebras (see [Her02]

and Section 4.1 for a detailed discussion). An equivalent approach fails in

the more general setting of phase type processes. We present a parallel com-

position operator on the subclass of single phase type processes. By defining

a mapping from arbitrary phase type processes to single phased ones, we

are able to analyze parallel composition against the background of a partial

memoryless property. However, applying this mapping extends the possible

behavior of the process and the resolution of occurring nondeterminism must

be done with respect to the original process.

Implementation relations, such as bisimulation equivalence [Mil80] or trace

equivalence [Hoa80], are central for both, the design of complex systems and

the analysis by abstraction. For labeled transition systems, various imple-

mentation relations have been suggested (see e.g. [vGla90] for an overview

of the most important relations from the linear time - branching time spec-

trum) and studied under several aspects such as congruence properties with

respect to composition operators, axiomatization, algorithms for checking

equivalence and logical, domain-theoretic and coalgebraic characterizations.

In the past 15 years, many researchers suggested extensions of the equiva-

lences and preorders originally introduced for labeled transition systems to

reason about quantitative aspects such as time or probabilities. Many rela-

tions have been studied for models with discrete probabilities (see e.g. [BH97,

BKHW05, Her02, LS91, PLS00, SL95] for bisimulation-like relations, [HT92a,

Low93, Seg95] for trace and failure semantics, and [Chr90, CSZ92, Seg96,

KCS98, JY02, JY95, KN98, SV03] for testing relations), while research on

implementation relations for continuous time stochastic models mainly con-

centrated on the branching time view.

1.1 Motivation 7

For processes acting in continuous time without the possibility of nondeter-

ministic branching, bisimulation and simulation relations have been studied

under various aspects, see, for instance, [BKHW05, BG96, Buc94, Hil96] and

the references therein. Testing and trace equivalences have been addressed

in [Ber07, BB07, BC00, WMB05]. To the best of our knowledge, the only

reference in which linear time relations are analyzed in a framework with

continuous time and nondeterminism is [WBM06].

In this thesis, we deal with nondeterministic and probabilistic branching and

the processes under study are time-aware, as they have an explicit reference

to time. This class of processes is a proper superset of many of those on

which the work mentioned above is based. We concentrate on linear time

equivalences for phase type processes and classify them according to their

distinguishing power. A strong notion of bisimulation equivalence is also

defined and used whenever a very low level of abstraction is appropriate, i.e.,

whenever we want to have much distinguishing power.

Relations for concurrent processes based on observations are often moti-

vated by the fact that bisimulation-like equivalences distinguish processes

that are equal on the desired level of abstraction. Lowe, for example, writes

in [Low93]:

I do not believe that bisimulation is the equivalence that we want,

because it makes more distinctions than we would really like.

For most applications, the point where internal probabilistic branching occurs

is not important. As opposed to bisimulation, equivalences based on testing

are not sensitive to probabilistic branching. As stated by Kwiatkowska and

Norman [KN98]:

The idea for this [testing] equivalence is to only make distinctions

that are in some sense observable [...].

Consider the simple time-abstract example of two phase type processes in

Figure 1.1. Although phase type processes have not been introduced yet, it

8 1.1 Motivation

P

1

a

0.5 0.5

b c

Q

a a

0.5 0.5

b c

Figure 1.1: P and Q are not bisimulation equivalent.

is easy to see that P and Q are equivalent in some sense because they show

the same observable behavior under all environment conditions although the

choice between observation ab and ac is, in the case of P, made after the

execution of a and, in the case of Q, before a.

We define trace equivalence for phase type processes based on testing scenar-

ios which are in the style of button pushing experiments as in [vG93, vGla90].

Different notions of trace equivalence arise by varying the way nondetermin-

istic choices are resolved by schedulers. Schedulers randomly decide for a

possible branch the process can follow. Surprisingly, in most cases there is

no correlation between the containment relation of the scheduler classes and

the distinguishing power of the induced notions of trace equivalence. We

also treat variants of trace semantics, namely semantics based on completed

traces [BW82], failures [BHR84] and ready sets [OH83].

We pursue the idea of button pushing experiments and develop testing sce-

narios in which a process is observed under certain environment conditions.

The basic ideas of failure traces [Phi87] and ready traces [Pnu85, BB87] are

extended to the continuous time probabilistic setting. Obviously, it makes

sense to assume that the environment of a phase type process is time-aware

and provides external stimuli after a certain amount of time. Equivalently,

1.1 Motivation 9

one can imagine a scheduler that decides to wait until it makes a choice.

Moreover, we obtain as a side effect a notion of schedulers that resolve only

internal nondeterminism. The relations resulting from these considerations

are analyzed with respect to their relationship to the remaining notions of

equivalence. Additionally, we check whether they are compatible with the

parallel operator on single phase type processes (congruence property). It

turns out that neither the relations based on the simulation of a (time-

abstract) probabilistic environment nor those based on the simulation of a

continuous time stochastic environment are powerful enough to ensure the

congruence property. Only the testing equivalence we define for single phase

type processes is, by definition, a congruence.

We do not consider algorithms to check whether two processes are related or

not (for any of the defined relations) as this exceeds the scope of this thesis.

But we give hints for checking bisimulation equivalence.

The main contribution of this thesis is

⋄ the definition and semantics of phase type processes leading to a novel

stochastic modeling paradigm,

⋄ the discussion of the problems which arise in the context of parallel

composition of Markov models with a partial memoryless property and

nondeterminism,

⋄ the definition and comparison of various trace equivalences including a

large number of interesting counterexamples which give deeper insight

in the distinguishing power of the equivalences,

⋄ the extension of ideas from failure and ready trace equivalence to the

continuous time stochastic setting leading to new types of schedulers

and time-sensitive relations based on trace observations,

⋄ the classification of all defined relations according to their distinguish-

ing power including a comparison with bisimulation and testing equiv-

alence.

10 1.2 Road Map

1.2 Road Map

In Chapter 2 some preliminary definitions of operations related to the Kro-

necker product of matrices are given as well as a short introduction of prob-

ability spaces, random variables and their distributions. Moreover, the last

two sections constitute a sufficient preparation in continuous time Markov

chains and phase type distributions.

Chapter 3 provides a detailed exposition of phase type processes. After the

scheduler definition and a classification of schedulers, semantics are given in

terms of path probabilities. We proceed with a notion of bisimulation equiva-

lence for phase type processes and establish the link between the equivalence

and the path probabilities. Finally, we investigate the use of phase type

transitions that are taken immediately with a non-zero probability (which is

prohibited in the preceding definition of phase type processes).

We focus on the parallel composition in Chapter 4. In the case of phase type

processes that exclusively contain distributions with at most one phase, called

single phase type processes, the definition of a composed process is straight

forward. In order to be able to discuss the general case, we introduce an

“expand” operator that maps a phase type process to a single phase type

process. The chapter concludes with a discussion of a parallel composition

operator for phase type processes.

In Chapter 5 we present relations based on trace observations and study the

influence of the chosen scheduler type on the distinguishing power of the

relation.

Chapter 6 deals with more advanced relations based on trace observations.

Phase type processes while operating in a time-abstract but probabilistic

environment and a time-aware probabilistic environment are analyzed, re-

spectively. This sheds some new light on the way nondeterminism is resolved

in phase type processes and relevant counterexamples are indicated in order

to classify the relations.

We develop a theory of testing for single phase type processes in Chapter 7

and compare each of the relations defined previously with the notion of test-

1.2 Road Map 11

ing. Moreover, we prove the strict inclusion of the testing relation in one of

the relations of Chapter 6.

Finally, Chapter 8 concludes the thesis and gives directions of further re-

search.

Chapter 2

Background

2.1 Overview

This chapter provides a short introduction to some fundamental mathemati-

cal concepts of probability theory which play an important role for the main

chapters of this thesis.

We start with a section focusing on Kronecker operations which are used in

the sequel.

In Section 2.3, we treat probability spaces and the construction of proba-

bility measures. We will resort to these preliminaries in Section 3.6 for a

probability measure on sets of paths which is used throughout the subse-

quent chapters for the probability of certain observations. Basic notations

for discrete probability distributions are introduced in the remainder of the

first section. Such distributions will emerge in the definition of phase type

processes, as randomized scheduler choice, etc. More details can be found in

most textbooks on basic probability theory. We refer, for example, to [Fel68].

Section 2.4 shortly illuminates the idea of random variables and their distri-

butions and leads the way for Markov chains (Section 2.5) and phase type

distributed random variables (Section 2.6).

The section on Markov chains is essential for the entire thesis: It is explained

why Markov chains can be regarded as state-transition graphs. Moreover,

the relationship between Markov chains and exponential distributions is high-

lighted and the parallel composition of Markov chains is covered. The inter-

12

2.2 Kronecker Operations 13

ested reader can consult [Bre99] and [GS82] for more details.

The last section focuses on the definition of phase type distributions and

their representations which have been introduced by Neuts [Neu81]. Special

cases and closure properties are treated as well as the problem of unique

and minimal representations. The section on the theory of phase type dis-

tributions points out the many advantages phase type distributions provide.

Moreover, it argues for the use of phase type distributions in concurrent

stochastic modeling frameworks.

2.2 Kronecker Operations

The following operations are closely related to the parallel composition of

CTMCs, closure properties of phase type distributions and parallel composi-

tion of PTPs. Let A(i, j) denote an element of the matrix A ∈ Rn×m where

1 ≤ i ≤ n, 1 ≤ j ≤ m. The Kronecker (tensor) product of two matrices

U ∈ Rn1×m1 and V ∈ Rn2×m2 is defined as W = U ⊗ V , W ∈ Rn1n2×m1m2

where

W ((k1 − 1) · n2 + k2, (l1 − 1) · m2 + l2) = U(k1, l1)V (k2, l2)

(1 ≤ kh ≤ nh, 1 ≤ lh ≤ mh, h ∈ {1, 2}).

Example 2.1

We consider a simple example with n1 = m1 = 2, n2 = 3, m2 = 4 and

U =

(
u11 u12

u21 u22

)
and V =




v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34


 .

The tensor product W = U ⊗ V is given by

W =

(
u11V u12V

u21V u22V

)

14 2.3 Probability Spaces

=




u11v11 u11v12 u11v13 u11v14 u12v11 u12v12 u12v13 u12v14

u11v21 u11v22 u11v23 u11v24 u12v21 u12v22 u12v23 u12v24

u11v31 u11v32 u11v33 u11v34 u12v31 u12v32 u12v33 u12v34

u21v11 u21v12 u21v13 u21v14 u22v11 u22v12 u22v13 u22v14

u21v21 u21v22 u21v23 u21v24 u22v21 u22v22 u22v23 u22v24

u21v31 u21v32 u21v33 u21v34 u22v31 u22v32 u22v33 u22v34




.

Some important properties of tensor products and sums are

⋄ Associativity: U ⊗ (V ⊗ W) = (U ⊗ V) ⊗ W

⋄ Distributivity over (ordinary matrix) addition:

(U1 + V1) ⊗ (U2 + V2) = (U1 ⊗ U2) + (V1 ⊗ U2) + (U1 ⊗ V2) + (V1 ⊗ V2)

⋄ Compatibility with (ordinary matrix) multiplication:

(U1 × V1) ⊗ (U2 × V2) = (U1 ⊗ U2) × (V1 ⊗ V2)

⋄ Compatibility with (ordinary matrix) inversion:

(U ⊗ V)−1 = U−1 ⊗ V −1

The Kronecker sum of two matrices U ∈ Rn1×n1 and V ∈ Rn2×n2 is defined

by

U ⊕ V = U ⊗ In2 + In1 ⊗ V

where In is the identity matrix of size n × n. The index n will be omitted if

it is clear from the context.

2.3 Probability Spaces

A measurable space is a pair (Ω,A) such that Ω is a nonempty set of outcomes

and A ⊆ 2Ω is a sigma-algebra, i.e., Ω ∈ A and A is closed under countable

union and complement. We call Ω the sample space and think of A as the

set of all possible events.

For C ⊆ 2Ω let σ(C) denote the smallest sigma-algebra containing C defined

2.3 Probability Spaces 15

by

σ(C) =
⋂

A⊇C is sigma-algebra on Ω

A.

A probability space is a tuple (Ω,A,P) such that (Ω,A) is a measurable space

and P : A → [0, 1] is a probability measure, i.e., P(Ω) = 1, P(∅) = 0 and for

any countably many pairwise disjoint A1, A2, . . . ∈ A we have

∑

i

P(Ai) = P
(⋃

i

Ai

)
.

Under certain conditions a probability measure defined on a set C can be ex-

tended to a unique probability measure on σ(C) (for details we refer to [Fel68]).

Example 2.2

Consider Ω = [0, 1] and C = {(x, y] | 0 ≤ x < y ≤ 1}. Then σ(C) is the set of

all countable unions of closed or open subsets of [0, 1] and P((x, y]) = y − x

can be extended to a unique probability measure (the so-called Lebesgue

measure) on σ(C).

When dealing with a discrete set Ω, we always consider the power set sigma-

algebra 2Ω and call P : 2Ω → [0, 1] a discrete probability measure (or a discrete

distribution). For ω ∈ Ω we abbreviate P({ω}) by P(ω). Obviously, P can

be regarded as a function P : Ω → [0, 1] in this case.

Let dis(Ω) denote the set of all discrete distributions on Ω. Sometimes we

abbreviate dis(Ω) by disΩ and we say that µ ∈ dis(Ω) is a Dirac distribution

if there exists ω ∈ Ω with µ(ω) = 1 (which implies µ(ω′) = 0 if ω′ 6= ω). We

write µ = δω in this case. For a set A we extend µ ∈ dis(A) on set B ⊃ A by

letting µ(s) = 0 if s ∈ B \ A

A discrete subdistribution over Ω has similar properties as a discrete distribu-

tion but does not necessarily sum up to one. We write sdis(Ω) for the set of all

discrete subdistributions, i.e., functions µ : Ω → [0, 1] with
∑

ω∈Ω µ(ω) ≤ 1.

The support of µ is the set

supp(µ) = {ω ∈ Ω | µ(ω) > 0}

16 2.5 Continuous Time Markov Chains

and µ⊥ is defined by

µ⊥ = 1 −
∑

ω∈Ω

µ(ω).

2.4 Random Variables and Cumulative Distributions

Let (Ω,A) and (Ω′,A′) be measurable spaces. A random variable is a function

X : (Ω,A) → (Ω′,A′)

such that X is A-measurable, i.e., X−1(A′) ∈ A for all A′ ∈ A′.

If (Ω,A,P) is a probability space, then the function P ′ with

P ′(A′) = P(X−1(A′)) (∀A′ ∈ A′) (2.1)

defines a probability measure on (Ω′,A′).

If moreover (Ω′,A′) = (R,B(R)) where B(R) is the Borel sigma-algebra

(see [Fel68] for details), the cumulative distribution function FX : R → [0, 1]

is defined as

FX(x) = P ′((−∞, x]) (∀x ∈ R).

In the sequel, we simply refer to FX as the distribution of X. Note that

such functions have several useful properties like monotonicity and right-

continuity. An instance will be given in Section 2.6 where phase type distri-

butions are introduced.

We may use the term distribution for both, discrete distributions and distri-

butions of random variables, if it is clear from the context.

2.5 Continuous Time Markov Chains

Let
(
X(t)

)
t≥0

be a continuous time stochastic process with a discrete state

space, i.e., a family of random variables defined on the same probability

space (Ω,A,P) and taking values on a discrete set S = {s1, s2, . . .}. Index

t admits the convenient interpretation as time. Thus, X(t) = s means that

the process is said to be in state s at time t. We let

P (X(t) = s) := P ({ω | X(t)(ω) = s}).

2.5 Continuous Time Markov Chains 17

According to Equation 2.1
(
X(t)

)
t≥0

induces a probability measure Prob

with

Prob
(
X(t) ∈ S

)
= Prob

(
{X(t)(ω) ∈ S | ω ∈ Ω}

)
= 1 (∀t).

Process
(
X(t)

)
t≥0

possesses the Markov property if

Prob
(
X(t + h) = sj | X(t) = si, X(t′) = st′ , 0 ≤ t′ ≤ t

)

= Prob
(
X(t + h) = sj | X(t) = si

)
(∀t, h ≥ 0, si, sj ∈ S).

Informally this means that the future behavior of the process depends only

on the current state si and not on the history of visited states st′ . We

call
(
X(t)

)
t≥0

a (continuous time) Markov chain if the Markov property is

fulfilled and in case that additionally the transition probabilities

Prob
(
X(t + h) = sj | X(t) = si

)

are independent of t,
(
X(t)

)
t≥0

is called homogeneous, i.e., for a time interval

of length h we set

pij(h) := Prob
(
X(t + h) = sj | X(t) = si

)
(∀t).

In the following, we will focus on homogeneous continuous time Markov

chains, and thus the term Markov chain will always refer to a homogeneous

continuous time Markov chain unless otherwise stated.

The time instants at which the process enters a new state are the random

variables

Y (0) = 0,

Y (n + 1) = inf{t > Y (n) | X(t) 6= X(Y (n))}, (n ∈ {0, 1, . . .})
(2.2)

leading to a simple definition of sojourn times (or residence times)

D(0) = 0,

D(n) = Y (n) − Y (n − 1), (n ∈ {1, 2, . . .}).

18 2.5 Continuous Time Markov Chains

Thus, the time spent in state s = X(Y (n)) is D(n + 1).

Obviously, the matrices P (h) =
(
pij(h)

)
i,j∈{1,2,...}

and the initial distribution

ν :=
[
Prob

(
X(0) = s1

)
, P rob

(
X(0) = s2

)
, . . .

]

uniquely determine the transient state probabilities

ν(t) :=
[
Prob

(
X(t) = s1

)
, P rob

(
X(t) = s2

)
, . . .

]
= ν · P (t). (2.3)

In the sequel, we always use bold letters to refer to (probably infinite) vectors

and assume that there is a fixed enumeration of S. For vectors α, bb, . . . we

write α, β, . . . to denote the corresponding discrete distributions.

It is possible to “generate” P (h) from the so-called generator matrix

Q := lim
h→0+

1

h
(P (h) − I).

It holds that

P (h) = exp(Qh) =
∞∑

k=0

hk

k!
Qk. (2.4)

In this thesis, we restrict ourselves to the case that sup(−qii) < ∞ for all i

which can be informally considered as the assumption that a state cannot

be left instantaneously. The diagonal entries of the generator matrix are

lower or equal zero while the remaining entries are non-negative. Clearly,

Equation 2.3 and 2.4 imply that

ν(t) = ν exp(Qt) (∀t).

For the calculation of transient state probabilities we refer to [Ste95].

The existence of the generator matrix suggests a characterization of continu-

ous time Markov chains in terms of a state-transition graph with state space

S and transitions (si, qij , sj) for i 6= j. The initial distribution is given by

incoming edges (without a source) using dashed lines. We call this graphical

representation the intensity graph. Since
∑

j qij = 0 the diagonal entries can

be calculated from the transition labels. Thus, the intensity graph uniquely

determines the generator matrix. For the purpose of this thesis, the following

definition of Markov chains turns out to be more advantageous.

2.5 Continuous Time Markov Chains 19

Definition 2.1 (Continuous Time Markov Chain)

A (homogeneous) continuous time Markov chain (CTMC) is a pair (ν, Q) if

there exists an index set N ⊆ N and a set of states S = {si | i ∈ N} such

that ν ∈ dis(S) and Q =
(
qij

)
i,j∈N

with

i) qij ≥ 0 ∀i 6= j,

ii)
∑

j∈S qij = 0,

iii) sup(−qii) < ∞.

Note that if a quadratic matrix Q satisfies condition i) − iii) than it is the

generator matrix of a CTMC.

The sojourn times Dn are negative exponentially distributed, i.e.

Prob(Dn < h | X(Yn−1) = si) = 1 − eqiih (∀n ∈ {1, 2, . . .})

which justifies the term exit rate of state si for the entry −qii. Hence, the

mean sojourn time in state si is 1
−qii

. The random variables Dn possess the

memoryless property which is the most striking feature of exponential random

variables. It holds that

Prob
(
Dn < t + h | Dn > t

)
= Prob

(
Dn < h

)
(∀t ≥ 0, h > 0). (2.5)

For −qii > 0 and h > 0 the time dependent transition probabilities are given

by

Prob
(
Dn < h ∧ X(Yn) = sj | X(Yn−1) = si

)

= (1 − eqiih)
qij

−qii
=

h∫
0

qije
qiitdt.

Here
qij

−qii
is the probability by which the process enters state sj after an

arbitrary sojourn time in si. Thus, (1−eqiih)
qij

−qii
is the probability of entering

state sj from si within h time units.

The non-diagonal entries of Q are referred to as (transition) rates because

they can be interpreted as the expected number of times the corresponding

20 2.5 Continuous Time Markov Chains

transition is taken (per time unit). Assume that random variable Zk is ex-

ponentially distributed with parameter qik where k 6= i and qik > 0. Then,

for a fixed entry qij > 0

h∫
0

Prob(Zj = t, Zk > t, k 6= j, qik > 0)dt

=
h∫
0

Prob(Zj = t)
∏

k:k 6=j,qik>0

Prob(Zk > t)dt

=
h∫
0

qije
−qijt

∏
k:k 6=j

e−qiktdt

=
h∫
0

qije
qiitdt.

(2.6)

Intuitively, this means that the time dependent transition probabilities are

calculated by assuming that the transition to state sj (with associated de-

lay Yj) wins the “race” between the exponential delays Yk of the possible

successor states sk with qik > 0.

Let Probs be the probability measure of Markov chain (δs, Q) and let
(
X̂(t)

)
t≥0

be the corresponding family of random variables. The (first) recurrence time

of state s is given by random variable Ẑs : Ω → R>0 ∪ {∞} with

Ẑs = inf{t > Ŷ1 : X̂(t) = s}

where Ŷ is the time instant of the first state change as defined in Equation 2.2

but with respect to
(
X̂(t)

)
t≥0

. A state si is called recurrent if the probability

of recurrence in a finite amount of time equals one, i.e., Probs

(
Ẑs < ∞

)
= 1.

Otherwise s is called transient.

Let us now focus on the parallel composition of CTMCs. First recall the defi-

nitions of Section 2.2 concerning Kronecker operations. The parallel compo-

sition of two finite CTMCs (ν1, Q1) and (ν2, Q2) is defined as (ν, Q) with

⋄ n = n1n2 where for i ∈ {1, 2}, ni is the number of states of (νi, Qi),

⋄ ν = ν1 ⊗ ν2 ∈ Rn,

⋄ Q = Q1 ⊕ Q2 ∈ Rn×n.

2.6 Phase Type Distributions 21

It is easy to verify that ν is a discrete distribution on {1, 2, . . . , n} and Q is a

generator matrix. Thus, (ν, Q) is a CTMC and, if νi(t) contains the transient

state probabilities of (νi, Qi), it can be shown that the parallel composition

(ν, Q) has transient probabilities

ν(t) = ν1(t) ⊗ ν2(t), (∀t ≥ 0).

2.6 Phase Type Distributions

Let 1 denote the vector with all entries one.

Definition 2.2 (Phase type distribution)

A function F : R → [0,∞) is called a (continuous) phase type distribution

(PH distribution) if and only if there exists n ∈ {1, 2, . . .}, a matrix T =

(Tij)1≤i,j≤n ∈ Rn×n and a row vector α = [α1 α2 . . . αn] ∈ [0, 1]n such

that

⋄ T is non-singular and for all i, j ∈ {1, . . . , n} with i 6= j, Tij ≥ 0,

⋄ Tii < 0 and Tii ≤
n∑

k=1
k 6=i

Tik for all i ∈ {1, . . . , n},

⋄ α · 1 =
n∑

i=1

αi ≤ 1,

⋄ F (x) =





1 − α exp(Tx)1 = 1 − α
(∞∑

k=0

(Tx)k

k!

)
1 if x > 0,

1 − α1 if x = 0.

The pair (α, T) is called a representation of F and we say that n is the order

of (α, T).

Let F(α,T) denote the PH distribution induced by representation (α, T).

A PH distribution is the distribution of the time until absorption in the finite

CTMC with generator matrix

22 2.6 Phase Type Distributions

Q =




T T0

0⊤ 0


 and initial distribution ν =

[
α (1 − α1)

]

where 0⊤ =
[
0 . . . 0

]
is the zero row vector of appropriate size and column

vector T0 = −T1. Matrix T is non-singular if and only if all states T

represents are transient [Neu81].

A random variable X with distribution FX = F(α,T) for some (α, T) is called

phase type distributed. The k-th non-central moment mk = E[Xk] is then

given by

mk = (−1)kk!αT−k1. (2.7)

Remark 2.1

Let n be the order of (α, T). We can compute the first k moments in an

iterative way as follows (compare [Hav98]): In the first step we solve

β1T = −α

for β1 ∈ Rn which gives m1 =
∑n

i=1 β1(i). Given vector β1 we can compute

β2 and m2 by

β2T = (−2)β1 and m2 =

n∑

i=1

β2(i).

In general we have

βk+1T = −(k + 1)βk and mk =
n∑

i=1

βk(i).

But having T decomposed once in the first step (by using a direct method

such as LU-decomposition), the remaining steps can be done in linear time

using back-substitutions only. Thus, if direct methods are applicable (be-

cause T is small), the first k moments can be computed in time polynomial

in the order.

A representation (α, T) of PH distribution is not unique. In general, a PH

distribution may have several representations as the following example shows.

2.6 Phase Type Distributions 23

1

2

1

r

q

(α,T)

1

2

1

q

r

(α,W)

1 2

0.4 0.6

7

22

(β,U)

1

1

2

(1,−2)

Figure 2.1: Pairs of PH representations which describe the same distribution

Example 2.3

We illustrate phase type representations as follows: Initial distributions are

indicated by dashed arrows labeled with probabilities, consecutive phases are

connected by solid arrows and edge labels correspond to the phases’ rates.

The absorbing state is represented by a black square. We consider three

instances of phase type representations (see Figure 2.1 for a) and b) and

Figure 2.2, left, on page 26 for case c).

a) Let (α, T) and (α, W) be representations of order n = 2 with

α =
[
1 0

]
, T =




−r r

0 −q



 and W =




−q q

0 −r





where r, q ∈ R>0 and r 6= q. It is easy to see that (α, T) and (α, W)

represent the same distribution, i.e., F(α,T) = F(α,W).

b) Let

β =
[
0.4 0.6

]
and U =



−9 7

0 −2


.

It can be shown that F(β,U) = F(1,−2).

24 2.6 Phase Type Distributions

c) If α = 1 and T = r < 0 distribution F(1,r) is the exponential distribu-

tion with parameter r.

The following definition can be used to ensure that a representation (α, T)

does not contain any superfluous states. More precisely, we remove states

that are not reachable from any state i with αi > 0.

Definition 2.3 (Irreducible Representation)

A representation (α, T) is called irreducible if and only if each component of

the vector α exp(Tx) is strictly positive for all x > 0.

Obviously, removing superfluous states in the underlying absorbing Markov

chain such that it becomes irreducible does not change the distribution of

the time until absorption.

As Example 2.3 shows, the restriction to irreducible representations does not

lead to unique representations of PH distributions, i.e. a PH distribution can

have several irreducible representations.

From now on we assume that absorption does not happen immediately, in

other words, we consider representations (α, T) with α ·1 = 1. Furthermore,

we assume that representations are irreducible. Let R be the set of all

such representations and R1 ⊂ R those of order n = 1 (which represent

exponential distributions). If (α, T) is such that α = [1 0 . . . 0] we simply

write T instead of (α, T). For instance, F−2 is shorthand for F(1,−2).

Let us now focus on closure properties of phase type distributions.

Definition 2.4 (Finite Mixture)

For i ∈ {1, 2, . . . , k} let pi ∈ [0, 1] be probabilities with
∑k

i=1 pi = 1. The

finite mixture of k PH distributions with representations (α(i), T (i)) (of order

n(i)) is of phase type and has representation (α, T) of order n =
∑k

i=1 n(i)

2.6 Phase Type Distributions 25

with

α =
[
p1α

(1) p2α
(2) . . . pkα

(k)
]
, T =




T (1) 0 · · · 0

0 T (2) · · · 0

...
...

...

0 0 · · · T (k)




.

Phase type distributions are also closed under convolution, for example, the

sum of k exponentially distributed random variables is hypoexponentially dis-

tributed (compare Figure 2.2 on page 26).

Definition 2.5 (Convolution)

The convolution of two PH distributions with representations (β, V) and

(γ, W) (of order n and m, respectively) is of phase type and has a represen-

tation (α, T) of order n + m with

α =
[
β 0⊤

]
, T =




V V0γ

0 W



.

We write F ∗ F̂ for the convolution of PH distributions F and F̂ .

It is important to point out that there is a close relationship between the

following definition of the minimum of two phase type distributed random

variables and the parallel composition of CTMCs. Moreover, the maximum

plays an important role in the generalization of the race condition between

exponential delays. This is worked out in detail in Chapter 3.

Definition 2.6 (Minimum and Maximum)

The minimum and the maximum of two phase type distributed random vari-

ables with distributions F (·) and F̂ (·) are of phase type and have distribu-

tions

Fmin(·) = 1 −
(
1 − F (·)

)(
1 − F̂ (·)

)
and Fmax(·) = F (·)F̂ (·),

26 2.6 Phase Type Distributions

1

1

r

Exponential

1 2 . . . k

r1 r2 rk

α1 α2 αk

Hyperexponential

1 2 . . . 3

1
rkr1 r2

Hypoexponential

Figure 2.2: Special cases of phase type represenations

respectively. If (β1, V1) and (β2, V2) are representations for F and F̂ of order

n and m, respectively, then Fmin has a representation (αmin, Tmin) of order

nm with

αmin = β1 ⊗ β2, Tmin = V1 ⊕ V2

and Fmax has a representation (αmax, Tmax) of order nm + n + m with

αmax =
[
β1 ⊗ β2 0⊤

]
, Tmax =




V1 ⊕ V2 I ⊗ V0
2 V0

1 ⊗ I

0 V1 0

0 0 V2


.

We now turn to important special cases of phase type distributions: The

simplest special case of a phase type distribution is an exponential distri-

bution (compare Example 2.3 c) and Figure 2.2, left). A finite mixture of

exponentially distributed random variables is hyperexponentially distributed,

illustrated in Figure 2.2 (middle) and forms a slightly more flexible subclass.

The convolution of exponential distributions results in a hypoexponential

distribution (Figure 2.2, right).

Several questions arise when dealing with phase type distributions and their

representations.

1. Is there a unique canonical representation of PH distribution F ?

2. Can we calculate a minimal representation of F , i.e. a representation

(α, T) where T is as small as possible? Here, small means either that

2.6 Phase Type Distributions 27

the order of (α, T) is minimal or that T has the smallest number of

positive entries.

3. How can we check in an efficient way if two representations correspond

to the same distribution?

The first problem has been solved by showing that any PH distribution

has a specially structured representation (monocyclic, bi-diagonal, and uni-

cyclic) [CM99, HZ06, HZ05]. The second question is important for the prac-

tical use of PH distributions since a smaller representation leads to less com-

putational time. It is still an open problem how to calculate a representation

of minimal order. Moreover, even the determination of the minimal order is

not possible. For an overview on the theory of PH distributions we refer to

O’Cinneide [O’C99], Asmussen [Asm03], Latouche and Ramaswami [LR99b]

and the references therein.

The third problem stated above is easy to solve. First note that in gen-

eral, representations are considerably over-parametrized. A representation

of order n has n2 + n parameters. However, the Laplace transform of the

corresponding distribution depends on only 2n parameters. The idea is now

that, given two representations of order n and m, respectively, we compare

the first 2 · max{n, m} moments. The following proposition shows that this

is sufficient to decide whether they describe the same distribution.

Proposition 2.1

Two representations (α, T) and (β, V) of order n and m, respectively, de-

scribe the same PH distribution iff their first 2 · max{n, m} moments agree.

Proof. We prove the statement by first observing that the distributions of two

continuous random variables are equal if and only if their Laplace-Stieltjes

transforms are equal. The Laplace-Stieltjes transform of a PH distributed

random variable is a fraction p(z)
q(z)

of two coprime polynomials. The degree of

p(z) is less than or equal to the degree of q(z). Moreover, q(z) has no more

28 2.6 Phase Type Distributions

than k parameters where k is the order of the smallest representation [O’C99].

Differentiating the Laplace-Stieltjes transform j times and letting z = 0

yields the j-th moment. Thus, a PH distribution is uniquely determined by

its first 2k moments. But then the proposition follows directly.

Because of Remark 2.1, it takes time polynomial in the order to check whether

two representations describe the same distribution.

Chapter 3

Phase Type Processes

3.1 Overview

This section introduces the formalism of phase type processes which are es-

sentially stochastic models for the formal description, specification, and anal-

ysis of concurrent systems. They combine the features of two very popular

modeling frameworks. On the one hand, the stochastic process underlying a

phase type process is a continuous-time Markov chain. On the other hand, a

communication structure is provided in the same way as in (action-)labeled

transition systems which are the most fundamental models of concurrency.

The internal stochastic behavior and the action-based communication struc-

ture of phase type processes are clearly separated and yield an operational

model which supports both, reasoning about (nondeterministic) communica-

tion capabilities and stochastic phenomena.

A phase type process can be represented by a state-transition diagram as this

is also possible in the case of Markov chains and labeled transition systems.

The versatile class of phase type distributions is used to represent random

delays in the system under study. This is realized by transitions labeled by

PH representations. If PH representations are absent the process is a proba-

bilistic automaton [Seg95, Sto02]. Another important subclass of phase type

processes are single phase type processes in which all phase type representa-

tions are of order one. Interactive Markov chains [Her02] can be viewed as

29

30 3.1 Overview

a special case of a single phase type processes. The definition of phase type

processes and useful subclasses are handled in Section 3.2.

The auxiliary construct of a generator matrix defined for each pair of states

is introduced in Section 3.3. The generator matrix describes the transitions

of the Markov chain which underlies the combinations of stochastic state

change rules between two states. The definition involves Kronecker opera-

tions and uses properties of phase type distributions as given in Chapter 2.

It turns out that this matrix representation is very useful for the subsequent

chapters. Moreover, it may lead to algorithms similar to those based on

matrix-analytic methods for stochastic models (see e.g. [LR99a]). However,

analysis algorithms are beyond the scope of this thesis.

It is a widespread approach to give semantics for stochastic models in terms

of a probability measure over sets of paths. A path of a phase type process

captures the behavior of a single realization of the process. We handle paths

in Section 3.4.

In Section 3.5 the concept of a scheduler is introduced. Schedulers are used to

resolve nondeterministic choices which occur in phase type processes. Differ-

ent types of schedulers are considered which differ in the information about

the path history the scheduler’s decision depends on and we also distinguish

between randomized and deterministic choices. Given a fixed scheduler a

probability measure on sets of paths is defined in Section 3.6. All in all,

schedulers, paths and probabilities of paths yield a complete picture of the

process behavior.

Section 3.7 presents bisimulation equivalence for phase type processes by

adapting the bisimulation equivalences in [Her02] and [LS91]. As opposed to

relations based on the observation of linear sequences (as defined in Chap-

ter 5, 6 and 7) bisimulation respects branching time properties. More pre-

cisely, it takes into account that each moment in time may split into various

possible futures. In the sequel, bisimulation is used as an intuitive notion of

equivalence between PTPs.

Finally, in Section 3.8 we discuss a different approach to instantaneous tran-

3.2 Definitions 31

sitions in PTPs which is based on PH representations that allow a zero delay

with positive probability. As opposed to that, in all remaining parts of this

thesis we assume that the probability of a phase type distributed delay being

non-zero is one.

3.2 Definitions

Let us start with an informal description of the building blocks of a phase type

process. Each state of the real-world system under study has a corresponding

representative in the phase type process. Since we consider discrete-state

models of systems acting in continuous-time, the idea is that state changes

occur at discrete points in time (triggered by certain events). We say that

the process1 evolves from one state to another if the current state changes

because a transition has been taken. Often, states are identified by a tuple of

system variables, e.g. populations of molecular species, numbers of processors

being up or down, etc. In the sequel, states are ranged over by s, u, v, w. We

propagate primes and indices when necessary.

States of a phase type process have two types of outgoing transitions, namely

phase type transitions (PH transitions) and action transitions both giving the

possibility to evolve to a discrete distribution on the set of all states.

PH transitions indicate that a certain amount of time has to pass until the

corresponding transition can be taken. This time delay is chosen randomly

and follows a phase type distribution where the parameters are given by the

transition label. Since the target of a transition is a discrete distribution, the

next state is chosen with a certain probability after the transition has been

performed. If a state has several outgoing PH transitions for each of them

a phase type distributed delay is drawn and the discrete target distribution

is chosen according to a race condition. More precisely, we generalize the

idea of a race between random delays as described in Section 2.5 (compare

1The term ’process’ is used here for all kinds of state-transition graphs and their com-

positions.

32 3.2 Definitions

Equation 2.6 on page 20). The race can be seen as an experiment in which

countdown timers are set for each PH transition according to the associated

distribution. If the timer of a certain transition expires we say that this

transition has become enabled. The transition that is enabled before any

other “wins” the race and is taken, i.e., the next state is chosen according

to the discrete target distribution of that transition and the total amount

of time spent in the originating state equals the winner’s delay. Since the

minimum of phase type distributed random variables is again phase type

distributed (compare Definition 2.6 on page 25) the residence time in a state

(i.e., the time spent in that state) is phase type distributed. We call the

phases of the residence time’s distribution the phases of that state.

Action transitions model process communication and are assumed to happen

immediately if communication is possible. They are further distinguished

into visible and invisible ones (the latter are also called internal or hidden

[action] transitions). Visible transitions take place if the process offers an

action to its environment. Typically, this feature is used to model process

communication. In Section 4.2 we describe how processes can synchronize

on action transitions. An invisible transition represents the situation where

the process executes some internal operation which is not influenced by the

process environment. The target of an action transition is a discrete dis-

tribution on the set of all states. Hence, as in case of PH transitions, if an

action transition is performed the next state is chosen according to the target

distribution of that transition.

The instantaneous execution of a visible action transition might be prevented.

Assume that a state has multiple action transitions. Some might be blocked

due to certain environment conditions (there is no communication partner

available) but others might be already enabled or become enabled after a

certain delay because the external environment is already waiting for syn-

chronization on some set of actions or certain actions are externally provided

after some time. Invisible transitions are always enabled since they are per-

formed independently from external conditions and thus taken immediately.

3.2 Definitions 33

This is known as the assumption of maximal progress [Her02] and implies that

the residence time of a state with at least one outgoing invisible transition

is always zero. States with such transitions are called unstable or vanishing

whereas states that do not have an invisible transition are called stable.

Besides providing qualitative information about certain events, action tran-

sitions impose nondeterminism. More precisely, the process’s future splits

nondeterministically into multiple alternatives if a state has several enabled

action transitions.

We distinguish internal and external nondeterminism. The former arises from

two different ways: From the choice between invisible transitions or from that

between visible transitions of the same type, indicated by the same action

label.

Internal nondeterminism (also called pure nondeterminism) models imple-

mentation or scheduling freedom. Its resolution does not depend on external

conditions, such as, for example, other processes which are waiting for syn-

chronization. Internal nondeterminism is resolved by the process itself.

External nondeterminism occurs if the process is in a state which has several

visible action transitions with different labels. As opposed to internal nonde-

terminism, external nondeterminism is resolved by the process’ reaction on

the stimuli of the environment, i.e., the process may proceed in different ways

depending on the communication facilities provided by the environment.

Let Act be the set of visible actions ranged over by a, b, c, Action τ 6∈ Act

denotes the distinguished invisible action2. By Actτ we denote the set Act ∪

{τ}. Recall that R is the set of all irreducible phase type representations

(α, T) for which α1 = 1, i.e., the corresponding delay is greater than zero

with probability one. We restrict to this class of representations at this point

but discuss the general case in Section 3.8.

2For the purpose of this thesis it is not necessary to distinguish between several types

of invisible actions.

34 3.2 Definitions

Definition 3.1 (Phase Type Process)

A phase type process (PTP) P is a tuple (S, , , ν) with the following

elements:

⋄ S is a non-empty countable set of states.

⋄ ⊆ S ×R× dis(S) is a phase type transition relation.

⋄ ⊆ S × Actτ × dis(S) is an action transition relation.

⋄ ν ∈ dis(S) is an initial distribution.

For convenience, the generic elements of a PTP P are denoted by S, ,

and ν. We propagate primes and indices when necessary. For example,

the elements of a PTP P ′
i are S ′

i,
′
i,

′
i and ν ′

i. If we are dealing with

PTPs P and Q we may write νP and νQ and so on.

We restrict to PTPs that are finitely branching, i.e. the set
{
(s, (α, T), µ) ∈ | (α, T) ∈ R, µ ∈ dis(S)

}
∪

{
(s, a, µ) ∈ | a ∈ Actτ , µ ∈ dis(S)

}

is finite for all s ∈ S. This restriction is harmless from the “practical” point

of view and simplifies most of the proofs. We claim that many results carry

over to processes in which states may have an infinite number of transitions.

For simplicity, we also assume the absence of parallel edges, i.e.,

s a µ′ ∧ s a µ′′ =⇒ µ′ 6= µ′′.

We write s a µ if (s, a, µ) ∈ and s
α,T

µ if (s, (α, T), µ) ∈ . If

µ(s′) = 1 for some s′ ∈ S we shall also write s a s′ and s
α,T

s′ for short.

Further abbreviations:

⋄ The notation s means that s has at least one outgoing PH transi-

tion. Similarly, we write s if there is at least one outgoing (visible

or invisible) action transition.

⋄ s
a

means that there is at least one outgoing action transition with

label a ∈ Actτ .

3.2 Definitions 35

⋄ We use s to denote that state s has no outgoing action transitions.

If s has no outgoing PH transitions we write s .

⋄ We say that s is a deadlock state if s and s .

We assume that if s τ then s . Because of the maximal progress

assumption this restriction can be made without loss of generality.

Definition 3.2 (Subclasses)

Let P = (S, , , ν) be a PTP.

⋄ P is called a single phase type process (SPTP) if all PH representations

in are restricted to those of order n = 1, i.e.

⊆ S ×R1 × dis(S).

Clearly, this implies that for SPTPs all initial distributions of the PH

transitions’ labels equal α = 1 and the only phase has a single param-

eter −r ∈ R<0, i.e., T = −r. In this case, we will abbreviate s
α,T

µ

as s −r µ.

⋄ P is an interactive Markov chain (IMC) if P is a SPTP and all target

distributions of and are of Dirac type, i.e. s a µ or s r µ

implies that there exists s′ with µ = δs′.

⋄ We call P a probabilistic automaton if is empty.

⋄ P is a labeled transition system (LTS) if it is a probabilistic automaton

and all target distributions of and are of Dirac type.

In the sequel, we may also mention continuous-time Markov decision pro-

cesses (CTMDPs) which have been studied since the late 1950s [Put94]. A

CTMDP can be seen as a special case of an IMC in which the outgoing tran-

sitions of a state are either only action transitions or they are exclusively

single phased PH transitions. In the former case, internal nondeterminism

is absent and deadlock is possible whereas in the latter case at least one

36 3.2 Definitions

PH transitions must be present. Action and PH states alternate and the

initial distribution assigns positive probability to states having only action

transitions.

Before we consider an example of a PTP, a short comment on the graphical

representation of PTPs is given. PTPs can be represented as graphs. States

are depicted by circle nodes and distributions by rectangles. PH transitions

and action transitions are drawn using solid edges (in the former case by

using a single arrowhead and for the latter case we use two arrowheads)

whereas discrete distributions are illustrated by dashed edges. The initial

distribution is indicated by incoming edges having no source.

This graphical notation should not be mixed up with the intensity graph

of CTMCs. PH transitions with representations of order one are labeled by

a single real-valued parameter being negative. Although this deviates from

the notations used in literature for models such as IMCs, it is appropriate to

use −r instead of r > 0 in our setting since the parameter is just a special

case of a PH representation. Note also that in the case of illustrations of PH

representations we depict the intensity graph in which the edges are labeled

by the positive entries of the generator matrix. We use thick lines for edges

of PH representations and normal lines for PH transitions to point out the

difference.

Example 3.1 (Producer/Consumer System)

Figure 3.1 illustrates a PTP which models a producer/consumer system.

Here, each state has a pair of labels. The first component represents the cur-

rent state the producer is in and the second one corresponds to the consumer.

Initially, the system starts in state (w1, w2) with probability ν(w1, w2) = 1 (w

is shorthand for “wait”). The visible action a describes the “activation” of

the producer, i.e., the producer is activated by obtaining stimulus a from the

environment. In state (p1, w2) the consumer is still waiting whereas the pro-

ducer is generating an item (p stands for “production”). This takes X time

units where X is PH distributed according to representation (α, T). Distri-

bution µ models the failure probability of production. If the production fails

3.3 Generator Matrix 37

w1,w2

1

p1,w2 µ f1,w2

s1,w2

a

τ

α,T

0.1

0.9

w1,c2

p1,c2

a

µ f1,c2

s1,c2

d

α,T

0.1

0.9

−r

−r

−r
τ

Figure 3.1: A PTP modeling a producer/consumer system.

(f1) the producer starts again with the production of an item (represented by

the τ -transition). With probability 0.9 the production is successful (s1) and

the delivery action d can be performed. After delivery the consumer starts

with the consumption of the item which takes an exponentially distributed

time (parameter −r < 0). However, during consumption (c2) the producer

can be activated once more (indicated by the a-transition emerging from

state (w1, c2)) and another item can be produced in state (p1, c2). Due to the

memoryless property of the exponential distribution, state (p1, c2) and state

(s1, c2) have a PH transition which has also label −r (the distribution of the

consumption time has again parameter −r). Thus, in state (p1, c2) there is

a race between two PH transitions. Note that the delivery of another item

is not possible during consumption in state (s1, c2).

3.3 Generator Matrix

The PH transitions of a PTP describe a continuous-time Markov chain if

consecutive and competing PH transitions are combined. This property of

PTPs is a consequence of the various closure properties of phase type dis-

38 3.3 Generator Matrix

tributions. Since a Markov chain is completely described by its generator

matrix, we can also define the generator matrix of a PTP. It is important to

keep in mind that this matrix ignores the action transitions completely. As

we will see at the end of this section, the generator matrix will be helpful for

the calculation of reachability probabilities.

Recall that for representation (α, T) column vector T0 contains the absorp-

tion rates of the transient states of the underlying absorbing Markov chain.

Definition 3.3 (Generator Matrix)

Let P be a PTP and let s ∈ S. Assume that s has k ≥ 1 outgoing PH

transitions s
αi ,Ti µi where i ∈ {1, 2, . . . , k} and (αi, Ti) is of order ni. Then

the number of phases of state s is given by ns :=
∏k

i=1 ni. Let 1ni
denote the

column vector of size ni with all entries one, and let vector Ui be defined as

Ui :=
(i−1⊗

j=1

1nj

)
⊗T0

i ⊗
(k⊗

j=i+1

1nj

)
∈ Rns×1.

We call row vector

γs :=
k⊗

i=1

αi ∈ [0, 1]ns

the initial distribution of state s. The generator matrix Qs,s′ of the pair

(s, s′), s′ ∈ S is a real-valued matrix of size ns × ns′ with

Qs,s′ :=





k⊕
i=1

Ti +
k∑

i=1

(
Ui · µi(s) · γs

)
if s = s′,

k∑
i=1

(
Ui · µi(s

′) · γs′

)
otherwise.

If s we define ns := 1, γs := 1 and Qs,s′ := 0 ∈ {0}1×ns′ for all s′.

The Kronecker sum of the Ti describes the race between the different PH

transitions of s, i.e., the entries of Qs,s represent the phases which determine

the residence time in s. Assume that Qs,s 6= 0 ∈ R1×1. Then the residence

time distribution in state s is of phase type and given by representation

(γs, Qs,s) ∈ R. We define F res
s := F(γs,Qs,s) as the residence time distribution

3.3 Generator Matrix 39

of state s if Qs,s 6= 0. Otherwise, if Qs,s = 0 we let F res
s be a function such

that F res
s (t) = 1 for all t ≥ 0. In the sequel, we shortly write Qs instead of

Qs,s. If the i-th transition wins the race by passing through the last phase

via Ui then either the process starts again in s (because µi(s) > 0) and

distributes according to γs (in this case a PH transition is taken but the

target distribution loops back to source s). Or the process evolves from s

to s′ 6= s according to γs′. An instance of a generator matrix is given in

Example 3.2.

The initial distribution and the generator matrix of the Markov chain under-

lying PTP P is obtained as follows: If ν is the initial distribution of P and

νs := ν(s) · γs we define vector νS := (νs)s∈S. Similarly, the matrices Qs,s′

yield a “global generator matrix”: For finite non-empty subsets A, B ⊆ S let

QA,B :=
(
Qs,s′

)
s∈A,s′∈B

up to enumeration of the elements of A and B. Then

QS,S is the generator matrix of the underlying Markov chain. In the sequel,

if A or B are singletons, say A = {s}, we may write Qs,B instead of Q{s},B

and we put QA,s := QA,{s}. If A = B we abbreviate QA,A by QA. In a similar

way we use the notations γA and νA. We only make use of these notations

if the enumeration of the states is not of relevance.

Example 3.2

Consider state s in Figure 3.2 (left) with three outgoing PH transitions and

one action transition. The representations that correspond to the PH tran-

sitions of s are shown in Figure 3.2 (right). Recall that γs is the initial

distribution of state s (see Definition 3.3). Assume that

α1 =
[

0.5 0.5
]
, α2 =

[
0.4 0.6 0

]
, α3 = 1,

T1 =




−14 10

0 −4



 , T2 =




−1 1 0

0 −2 2

0 0 −3


 , T3 = −5,

γv =
[

0.5 0.5
]
, γw =

[
0.5 0.2 0.3

]
.

Then the initial distribution of s is given by

40 3.3 Generator Matrix

γs = α1 ⊗ α2 ⊗ α3 =
[

0.2 0.3 0 0.2 0.3 0
]

and for the generator matrix we calculate

Qs = (T1 ⊕ T2 ⊕ T3) + U1 · µ1(s) · γs

=




−19.76 1.36 0 10.24 0.36 0

0.24 −20.64 2 0.24 10.36 0

0.24 0.36 −22 0.24 0.36 10

0.24 0.36 0 −9.76 1.36 0

0.24 0.36 0 0.24 −10.64 2

0.24 0.36 0 0.24 0.36 −12




Qs,v =




1.4 1.4

1.4 1.4

2.75 2.75

1.4 1.4

1.4 1.4

2.75 2.75




Qs,w =




2.5 1 1.5

2.5 1 1.5

2.65 1.06 1.59

2.5 1 1.5

2.5 1 1.5

2.65 1.06 1.59




The race between the three PH transitions of s can be described by a CTMC

with ns = 6 transient states, and Qs is the corresponding part of the generator

matrix. Consider, for instance, the third row of Qs which represents that

T1 and T3 are in the first and T2 is in the third phase (state (1, 3, 1) in the

parallel composition of the three CTMCs in Figure 3.2, right). T1 may end up

in absorption with rate T0(1) = 4, enter s again with probability µ1(s) = 0.3

and start another race in state (1, 1, 1) with probability γs(1, 1, 1) = 0.2.

Consequently, the corresponding entry in the first column is 4·0.3·0.2 = 0.24.

Exit rate −22 shows that state (1, 3, 1) has an absorption rate of

22 − (0.24 + 0.36 + 0.24 + 0.36 + 10) = 10.8

which is split into 5.5 + 5.3 = 10.8 because after absorption either v or w is

entered. State v is entered with rate

3.3 Generator Matrix 41

s

µ1 µ2 µ3λ

v w

α1,T1

α2,T2

α3,T3

0.3

0.7 0.9

0.1
1

a

0.8

0.2

... ...

1 2

0.5 0.5

4
4

10

(α1,T1)

1 2

3

0.4 0.6

1

2

3

(α2,T2) (α3,T3)

1

1

5

Figure 3.2: State s (left) has one action transition (labeled by a) and three

PH transitions with representations (α1, T1), (α2, T2) and (α3, T3) (right).

4 · µ1(v) + 3 · µ2(v) = 4 · 0.7 + 3 · 0.9 = 5.5

if T1 or T2 wins. In the case of state w we get 3 · 0.1 + 5 · 1 = 5.3. Matrix

Qs,v shows that if state v is entered from (1, 3, 1) with rate 5.5, the initial

distribution γv of v splits this rate into 2.75 + 2.75 (compare the third row

of Qs,v).

Let us now concentrate on reachability probabilities of the underlying CTMC

of a PTP which can be easily defined by using the generator matrix QS. These

probabilities will turn out to be very useful, especially for the definition of a

probability measure on paths (compare Section 3.6) and for the observation

functions in Chapter 5, 6 and 7.

For a PTP P with state set S, let A, B be finite subsets of S and J = (x, y] ⊆

R≥0 with x < y. We are interested in the probability to reach some state

in B at time instant t ∈ J by visiting only A-states before t in the Markov

chain underlying P. Let us denote this probability by reachP(A, B, J). If

B = ∅ or A = ∅ and 0 6∈ J we put reachP(A, B, J) = 0. If A = ∅ and 0 ∈ J

reachP(A, B, J) :=
∑

s∈B

ν(s).

42 3.3 Generator Matrix

Otherwise the definition in terms of transient state probabilities is divided

into two steps (see also [BHHK03]). The first step calculates the probability

of staying within A until time instant x. In the second step we focus on the

next y−x time units and the probability to reach B. Recall the definitions of

ns, νA′ and QA′,B′ for s ∈ S, A′, B′ ⊆ S (compare Definition 3.3 on page 38).

i) Consider the CTMC (ν̃1, Q̃1) with
∑

s∈A ns + 1 states and

ν̃1 := [νA νS\A1],

Q̃1 :=



QA QA,S\A1

0⊤ 0


 .

Thus, if set A is left, the process ends up in absorption (the states in

S \A are collapsed to one absorbing state). Assume that the transient

state probabilities at time instant x ≥ 0 are given by ν̃1(x). We let

[αA\B αA∩B αno] := ν̃1(x)

where we arrange ν̃1 according to the partitions A\B, A∩B and S \A.

We omit an entry if its corresponding set is empty.

ii) Let

ν̃2 := [αA\B αA∩B1 αno],

(where we set αA∩B1 = 0 if A ∩ B = ∅ but B \ A 6= ∅). Furthermore,

we define C := A \ B and

Q̃2 :=




QC QC,B1 QC,S\(A∪B)1

0⊤ 0 0

0⊤ 0 0




.

Then (ν̃2, Q̃2) is a CTMC with 2+
∑

s∈C ns states in which all states of

B and S \ (A ∪ B) are absorbing. Note that if set A is not left within

[0, x], the process proceeds either in A \ B with αA\B or has already

3.3 Generator Matrix 43

reached A ∩ B with probability αA∩B1. If A is left before x (which

happens with probability αno) the process remains in the final state.

Let

ν̃2(y − x) =: [βC βyes βno]

be the transient state probability vector at time instant y − x.

Probability reachP(A, B, J) is then given by

reachP(A, B, J) = βyes. (3.1)

Let s ∈ S for a fixed PTP P. We may write reachP
s (A, B, J) for the probabil-

ity to reach some state in B at time instant t ∈ J by visiting only A-states

before t while starting in s at time instant 0 with probability one. Obviously,

if ν(s) = 1 then reachP
s (A, B, J) = reachP(A, B, J). We may omit superscript

P if it is clear from the context.

Example 3.3

Assume that state s of Example 3.2 has initial probability 0.8. Thus,

νs = 0.8 · γs =
[

0.16 0.24 0 0.16 0.24 0
]
.

We are interested in the probability reachs(A, B, J) with A = {s}, B = {v},

J = (0.2, 0.3]. We get

ν̃1 =
[

0.16 0.24 0 0.16 0.24 0 0.2
]

and

Q̃1 =




Qs Qs,{v,w}1

0⊤ 0


 .

The transient state probabilities at time instant 0.2 are given by

ν̃1(0.2) = ν̃1 · exp (Q̃1 · 0.2)

≈
[
0.006 0.008 0.002 0.050 0.071 0.022 0.840

]
.

44 3.4 Paths

This implies that αno ≈ 0.84. Since A∩B = ∅, C = {s} and S\(A∪B) = {w}

the initial distribution of the second step is given by

ν̃2 :=
[
0.006 0.008 0.002 0.050 0.071 0.022 0 0.840

]

and generator matrix Q̃2 is given by

Q̃2 =




Qs Qs,v1 Qs,w1

0⊤ 0 0

0⊤ 0 0




.

Finally, we calculate transient state probabilities at time instant 0.1

ν̃2(0.1) = ν̃2 · exp (Q̃2 · 0.1)

≈
[
0.002 0.003 0.001 0.022 0.030 0.012 0.035 0.895

]

and derive reachs(A, B, J) ≈ 0.035.

3.4 Paths

Informally, an (execution) path of a PTP corresponds to a single realization of

the process, i.e. , we can think of a simulation experiment which captures the

process’ behavior in time. Initially, a random number is drawn to decide for

an initial state according to the initial distribution. Afterwards, the process

evolves from state to state according to the transition relations. If the current

state, say s, is stable (which means that s τ) the process resides in s as

long as none of the outgoing transitions is enabled. If s has at least one

outgoing transition, the first one which is enabled is taken. The successor

state is determined by the transition’s target distribution, say µ, i.e., another

random variable is used to decide for a state in the support of µ. In case that

s is unstable, one of its outgoing τ transitions is selected to reach the next

state. This alternation of state and transition selection proceeds infinitely

long if there is always at least one enabled transition and ends in a state

otherwise.

3.4 Paths 45

We use simplifying environment conditions at this point which will be relaxed

in subsequent chapters. Actions are either immediately available or assumed

to be completely blocked, i.e., if s has an outgoing transition labeled by a

visible action there are three possible continuations of a path: Either the

action transition is taken immediately, or the paths ends in s (because no

other transition becomes enabled), or a PH transition is taken (if there is

any).

Here, each state change is accompanied by an event. An event is either

1. the entering of the next state via a PH transition after remaining in

the current state for a non-zero duration, or

2. the instantaneous execution of an action.

The first type of event is represented by the residence time whereas in the

second case only the performed action is recorded. Let E = R>0 ∪ Actτ be

the set of events.

Definition 3.4 (Paths and path fragments)

Let s1, s2, . . . , sk, . . . be states of a PTP P and let e1, e2, . . . , ek−1, . . . ∈ E. A

path of P is an infinite or finite sequence

π = s1
e1 s2

e2 . . . or π = s1
e1 s2

e2 . . .
ek−1 sk

such that for i ∈ {1, 2, . . .} (i < k if π is finite) there exists µi ∈ dis(S) with

µi(si+1) > 0 and

1. ei ∈ R>0 implies si
α,T

µi for some (α, T) and si is stable,

2. ei = a ∈ Actτ implies si
a µi.

We require maximality in the following sense: If π is finite then sk and

sk is stable. The intuition behind this is as follows: If sk the process

will leave state sk after a finite amount of time with probability one. If sk is

unstable, it is left immediately. Therefore, the only case in which the process

46 3.4 Paths

may remain in sk forever is the case where sk is stable and has no outgoing

PH transition.

A path fragment is a prefix of a path that ends in a state. Let path(s) and

pathf(s) denote the set of paths and path fragments, respectively, that start

in state s. If PTP P has initial distribution ν we let

path(P) =
⋃

ν(s)>0

path(s) and pathf(P) =
⋃

ν(s)>0

pathf(s)

In the sequel, we will use the following notations for paths and path frag-

ments:

⋄ By π↓i we denote path fragment ξ = s1
e1 s2

e2 . . .
ei−1 si of

path π. If π is finite π↓i is only defined for i ≤ k. We may sometimes

abbreviate ξ by s1e1s2e2 . . . ei−1si.

⋄ Let last(ξ) and first(ξ) denote the last state and the first state on

path fragment ξ, respectively, i.e. if

ξ = s1
e1 s2

e2 . . .
ei−1 si

we have last(ξ) = si and first(ξ) = s1.

⋄ time(ξ) denotes the total amount of time that has passed on path

fragment ξ, i.e.,

time(ξ) =
∑

1≤j<i

tj where tj =





ej if ej ∈ R>0,

0 otherwise.

⋄ Let trace(ξ) ∈ Act∗ denote the ordered sequence of visible actions on ξ

and we put

pathf(P, σ) := {ξ ∈ pathf(P) | trace(ξ) = σ}.

By ǫ we denote the empty sequence, i.e. if ξ contains no visible action

we write trace(ξ) = ǫ.

⋄ Let |ξ| = |π↓i | = i − 1 ∈ {0, 1, . . .} denote the number of events of ξ.

3.4 Paths 47

⋄ The time-abstract copy untime(ξ) ∈ (S ∪ Actτ)
∗ of path fragment ξ is

obtained by omitting all residence times of ξ. For consecutive elements

of untime(ξ) we write si si+1 if ei ∈ R>0 and if ei = a we keep

writing si
a si+1. Clearly, trace(ξ) depends only on κ = untime(ξ).

Therefore, we may also write trace(κ) instead of trace(ξ). Similarly,

last(κ) := last(ξ), first(κ) := first(ξ).

Example 3.4

An example of a finite path (fragment) of the PTP which models the pro-

ducer/consumer system (see Example 3.1 on page 36) is

π = (w1, w2)
a (p1, w2)

1.1 (f1, w2)
τ (p1, w2)

2.5 (s1, w2).

Then π ↓3= (w1, w2)
a (p1, w2)

1.1 (f1, w2), last(π) = (s1, w2) and

time(π) = 1.1 + 2.5 = 3.6. Furthermore, untime(π) is the sequence

(w1, w2)
a (p1, w2) (f1, w2)

τ (p1, w2) (s1, w2)

and trace(π) = a.

Not all paths of a PTP are of interest: an infinite number of transitions

taken in a finite amount of time contradicts our intuition of a reactive system

operating in continuous time. This situation is referred to as zeno behavior

and occurs, for instance, if the PTP contains a cycle consisting of action

transitions. For the rest of this thesis, we restrict to PTPs that do not show

zeno behavior.

A further restriction is made concerning divergence. In the sequel, we require

that all considered PTPs are divergence free meaning that there exists no

infinite path which contains an infinite number of consecutive τ -transitions.

The above restrictions are made to simplify most of the proofs. We claim

that all results are still valid if we replace these restrictions by an adaption of

Segala’s probabilistic convergence. However, the proofs would become more

technical.

48 3.5 Schedulers

3.5 Schedulers

This section focuses to the concept of schedulers [Var85], also often called

policies [Put94, dA97] or adversaries [Seg95]. They are used to resolve non-

deterministic decisions. In general, internal or external nondeterminism is

present in a PTP. A scheduler gives priorities to the outgoing transitions of a

state and the behavior of the process relative to the scheduler becomes fully

probabilistic. Thus, for a fixed scheduler D, each path occurs with a certain

probability. More precisely, a probability space can be defined where the

sample space is the set of all paths that are possible under D. Until now, we

have not yet given a formal semantics for PTPs but discussed only informally

their meaning. In the sequel, we define the their formal semantics based on

the decisions of a scheduler.

The detailed functioning of a scheduler D can be informally described as

follows: Let s be a state of PTP P. Scheduler D can either decide that

⋄ state s is left immediately by selecting an action transition among the

ones available in state s,

⋄ or, if s is stable, D decides that s is not left immediately (because none

of the action transitions is already enabled) and a race between the

outgoing PH transitions of s starts.

If s and s is stable, scheduler D has also the possibility to choose a

non-zero deadlock probability, i.e., the process remains in s for an infinite

amount of time.

Definition 3.5 (Scheduler)

A scheduler for PTP P is a function

D : pathf(P) → sdis(Actτ × disS)

such that for ξ ∈ pathf(P) with last(ξ) = s and untime(ξ) = κ

3.5 Schedulers 49

i) s
τ

implies D(ξ) ∈ dis(Actτ × disS),

ii) D(ξ)(a, µ) > 0 implies s a µ.

iii) There exists a partition of R≥0 into countably many pairwise disjoint,

non-empty intervals I1, I2, . . . ⊆ R≥0 such that for all ξ1, ξ2 ∈ pathf(P)

with untime(ξ1) = untime(ξ2) = κ it holds that:

If time(ξ1), time(ξ2) ∈ Ii for some i ∈ {1, 2, . . .} then D(ξ1) = D(ξ2).

Let us examine the three conditions given above. The first condition states

that if s τ the residence time in s is zero and with probability one, s is left

immediately. In the case of condition ii) we require that the pair (a, µ) has

a non-zero probability only if s a µ. Condition iii) ensures that D behaves

nicely in the sense that D’s decisions are piecewise constant with respect to

the time elapsed in previous steps. This avoids measurability problems.

In our setting, schedulers do not resolve the (probabilistic) choice between

PH transitions. If λ = D(ξ)(a, µ) ∈ sdis(Actτ × disS) then, with probability

λ⊥ = 1 −
∑

(a,µ):s
a

µ

λ(a, µ),

no action transition is selected at all. If additionally s , the race between

the outgoing PH transitions takes place with probability λ⊥. Note that if

s the race between the outgoing PH transitions of s takes place with

probability λ⊥ = 1.

Remark 3.1

Consider an extension of the above definition in which schedulers give prior-

ities to certain action transitions but may also cause that action transitions

are enabled after a certain delay. More precisely, in case that the scheduler

decides for a non-zero residence time in s, a race between PH distributed

delays starts. For a (possibly empty) subset of the set of action transitions

of s, PH distributions are chosen. Each of these representations defines the

distribution of the amount of time that has to elapse until the corresponding

action transition is enabled. Thus, there is a race between the PH transitions

50 3.5 Schedulers

and (some of) the action transitions of s. All remaining action transitions

are assumed to be blocked completely. We are not going to analyze such

schedulers at this point but refer to chapter 6 for this class of schedulers.

Let us consider several subclasses of schedulers because often the full class

of schedulers is too powerful. One might be interested in the behavior of

PTP P with respect to a certain type of scheduler. We follow the standard

classification of schedulers similar to that in [Put94] for Markov decision

processes.

Definition 3.6 (Scheduler Types)

Let D be a scheduler for PTP P. D is called

⋄ time-abstract if D’s decisions do not depend on the time elapsed in pre-

vious steps, i.e., for all path fragments ξ, ξ′, if untime(ξ) = untime(ξ′)

then D(ξ) = D(ξ′),

⋄ deterministic if D only schedules transitions with probability zero or

one, i.e., D can be regarded as a partial function

pathf(P) → (Actτ × disS),

⋄ stationary if D’s choice depends only on the current state, i.e., D(ξ) =

D(ξ′) for all ξ, ξ′ ∈ pathf(P) with last(ξ) = last(ξ′),

⋄ total if for each ξ with last(ξ) and last(ξ) the choice D(ξ)

is a distribution on S which prevents D from deciding for deadlock

although last(ξ) has outgoing action transitions.

We use the following abbreviations. Let THR be the set of all schedulers.

THD denotes the subclass of deterministic schedulers, while HR stands for

the set of all time-abstract schedulers and HD for its subclass of time-abstract

deterministic schedulers. We write SR for the subclass of HR consisting of all

stationary schedulers and SD ⊂ SR∩HD for the set of all stationary, determin-

istic schedulers. Thus, T stands for “time dependent”, R for “randomized”,

3.6 Path Probabilities 51

D for “deterministic”, S for “stationary” and H for “history-dependent”. The

prefix t will we used to denote that we consider total schedulers. E.g., tHD

means the class of all total HD-schedulers. Moreover, for

D ∈ {THR, THD, HR, HD, SR, SD, tTHR, . . . , tSD}

we may write D(P) to denote the set of all D-scheduler for PTP P. Conse-

quently, THR(P) denotes the set of all schedulers for P.

In the case of HR-schedulers we may write D(κ) instead of D(ξ) if κ =

untime(ξ). If D is a SR-scheduler D(ξ) is abbreviated by D(s) where s =

last(ξ). Similarly, for a choice δ(a,µ) of a deterministic scheduler D we write

D(ξ) = (a, µ).

3.6 Path Probabilities

In this section, we present the semantics of a PTP in terms of paths and

probabilities of paths.

Let D be a scheduler for PTP P, i.e. D ∈ THR(P). A D-path is a (finite or

infinite) path π ∈ path(P) with

π = s1
e1 s2

e2 . . . or π = s1
e1 s2

e2 . . .
ek−1 sk

that obeys D’s decisions, i.e., for all i ≥ 1 (i < k if π is finite) there exists

µi ∈ dis(S) with µi(si+1) > 0 and whenever

ei =





t ∈ R>0 then D(π↓i) = λ with λ⊥ > 0,

a ∈ Actτ then D(π↓i) = λ with λ(a, µi) > 0.

A D-path fragment is a path fragment of a D-path.

Now, recall the definition and construction of probability spaces in Section 2.3

on page 14. Scheduler D induces a probability space as follows: The sample

space Ω is the set of all D-paths, a sigma-algebra and a probability measure

is constructed using the standard cylinder set construction for CTMDP-like

models (see e.g. [Put94]).

52 3.6 Path Probabilities

Let

ζ = s1 E1 s2 E2 . . . Ek−1 sk

where s1, s2, . . . , sk ∈ S and for i ∈ {1, 2, . . . , k−1} either Ei = {a} for some

a ∈ Actτ or Ei = (x, y] ⊆ R>0, x < y, and D’s decisions are constant on

(x, y] (recall condition iii) of Definition 3.5 on page 48). Let ΞD
ζ be the set of

D-path fragments ξ such that

ξ = s1
e1 s2

e2 . . .
ek−1 sk

and ei ∈ Ei for all i ∈ {1, 2, . . . , k − 1}. Then cylinder set CD
ζ is the set of

all D-paths π with π↓k ∈ ΞD
ζ . Hence, CD

s is the set of all D-paths that start

in s. Let CD be the set of all such cylinder sets CD
ζ . Set CD yields a basis for

the σ-algebra ΣD := σ(CD) and a probability measure PrD on ΣD is defined

by specifying the probabilities for the elements of CD.

For k = 1 we define

PrD(CD
s) := ν(s)

where ν is the initial distribution of P. Now, let k > 1, π ∈ CD
ζ with

π↓k = s1
e1 s2

e2 . . .
ek−1 sk,

ζ = s1 E1 s2 E2 . . . Ek−1 sk,

ζ ′ := s1 E1 s2 E2 . . . Ek−2 sk−1,

and D(π↓k−1) =: λ. Then λ depends only on ζ ′ since D makes the same

decision for all path fragments in Ξζ′. We distinguish two cases:

1. Assume that Ek−1 ⊆ R>0. This implies that λ⊥ > 0 and a race between

the outgoing PH transitions of sk−1 determines the probability to evolve

from state sk−1 to sk within t ∈ Ek−1 time units. We set

PrD(CD
ζ) = PrD(CD

ζ′) · λ
⊥ · reachsk−1

({sk−1}, {sk}, Ek−1).

2. Now, assume that Ek−1 = {a}, a ∈ Actτ . In this case, sk is entered

immediately and we put

PrD(CD
ζ) = PrD(CD

ζ′) ·
∑

{|λ(a, µ) · µ(sk) | ∃µ : sk−1
a µ|}

3.7 Phase Type Bisimulation 53

where {| . . . |} denotes a multi-set.

In the subsequent chapters, the unique extension of PrD on the complete

sigma-algebra ΣD is denoted by PrD as well. Sometimes we may add subscript

P, i.e. we write PrDP instead of PrD. Moreover, we may abbreviate

PrD({π ∈ path(P) | ∃i : π↓i= ξ})

by PrD(ξ). We may take as sample space the set of all paths instead of the

set of D-paths by assuming that sets of paths that are prohibited by D have

probability zero.

Note that the above probability measure also enables us to reason about the

minimal and maximal probability of certain sets of paths by ranging over all

schedulers or certain sets of schedulers.

3.7 Phase Type Bisimulation

The idea of bisimulation is that the behavior of a PTP can be mimicked

stepwise by an equivalent one. Here, a “step” corresponds to the execution

of a single action transition or to that of a PH transition.

For the remainder of this section, assume for simplicity that there is no state

that is in the support of a discrete distribution being the target of a PH

transition emerging from that state (PH self-loops). All results presented in

the sequel are also valid without this restriction but the proofs would be less

readable.

Let us first fix some notations. For PTP P we write s a c
µ iff there exist

p1, p2, . . . , pn ∈ [0, 1] such that
∑n

i=1 pi = 1, µ =
∑n

i=1 piµi and s
a

µi for

each i ∈ {1, 2, . . . , n}. We call s a c
µ a combined transition.

For a given equivalence relation R on a set S and µ1, µ2 ∈ dis(S), we write

µ1 ≡R µ2 iff for all equivalence classes C ∈ S/R

∑

s∈C

µ1(s) =
∑

s∈C

µ2(s).

54 3.7 Phase Type Bisimulation

Definition 3.7 (Phase Type Bisimulation)

Let P1 and P2 be PTPs with S1∩S2 = ∅. An equivalence relation R on S1∪S2

is a phase type bisimulation between P1 and P2 iff (s1, s2) ∈ R implies that

i) for all a ∈ Actτ whenever s1
a µ1 in either P1 or P2 then there exists

a combined transition s2
a c

µ2 in either P2 or P1 such that µ1 ≡R µ2,

ii) for all C ∈ S/R, C 6= [s1]R, t ≥ 0

reachs1({s1}, C, [0, t]) = reachs2({s2}, C, [0, t]),

iii) s1 and s2 have the same residence time distribution, i.e.

F res
s1

= F res
s2

.

We write P1 =bs P2 iff there exists a phase type bisimulation R between P1

and P2 such that for the initial distributions holds ν1 ≡R ν2.

Note that reachs({s}, C, [0, t]) is the probability to reach a state in C within

t time units via a single PH transition from s. For a phase type bisimulation

R ⊆ S × S let s1Rs2 and

{[s1]R, C1, C2, . . .} = S/R

where S/R denotes the quotient space and [s1]R the equivalence class of s1.

For i ∈ {1, 2} let ni := nsi
be the number of phases of si, Ai := [s1]R \ {si}

and3

Qi :=




Qsi
Qsi,Ai

1 Qsi,C11 Qsi,C21 . . .

0⊤
ni

0 0 0 . . .

0⊤
ni

0 0 0 . . .
...

...
...

...




,

Vi :=




1ni
0ni

0ni
. . .

0 1 0 . . .

0 0 1 . . .
...

...
. . .

. . .




3Note that the case Ai = ∅ is not relevant here, because it implies that s1 = s2.

3.7 Phase Type Bisimulation 55

where 0 (1) is the column vector with zeros (ones, respectively) of appropriate

size (of size n ∈ N if subscript n is added) and superscript ⊤ refers to the

transposed vector. Then Condition ii) and iii) are equivalent to

γs1
eQ1tV1 = γs2

eQ2tV2, ∀t ≥ 0

because vector γsi
eQitVi contains the probability to enter Cj (Ai, respec-

tively) before time instant t for all j ∈ {1, 2, . . .}. The first entry is the

probability to stay in state si until time instant t. Note that Condition ii)

and iii) specify a multivariate PH distribution [ALS84] for which (γsi
, Qi) is

a representation (if we omit zero-entries and use the fact that P1 and P2 are

finitely branching). Thus, for all C ∈ S/R, J = (x, y] ⊂ R≥0, x < y, the

probability to reach C within time interval J from si via a single transition

is

reachs1({s1}, C, J) = reachs2({s2}, C, J). (3.2)

In case of PTPs in which all target distributions of PH transitions are of type

Dirac, we have that ii) and iii) hold iff F (s1, C) = F (s2, C) for all C ∈ S/R

where F (s, C) is the distribution of the time to reach an element of C from

s (via a single transition). It is easy to see that F (si, C), C 6= [s1]R is a PH

distribution if si has at least one PH transition leading to an element of C.

Formally,

F (si, C) =





⊥ if 6 ∃u ∈ C : si
α,T

u,

1 −
∏

si

α,T
u,u∈C

(
1 − F(α,T)

)
otherwise.

Note that according to Definition 2.6 on page 25, a representation of F (si, C) 6=

⊥ is given by

β =
⊗

si

α,T
u,u∈C

α, U =
⊕

si

α,T
u,u∈C

T.

In the case of IMCs this reduces to the sum of the rates of all transitions

leading to C. Therefore, the above definition is a natural extension of the

56 3.7 Phase Type Bisimulation

u1 u2

w

P
1
4

1
8

5
8

UV
T

a a

a

b

b
a

a

1
2 1

2

1
4

3
4

3
4

1
4

u′

w′

Q
3
8 5

8

a

a

3
4

1
4

T

U⊕V

b

Figure 3.3: P and Q are bisimulation equivalent.

strong bisimulation in [Her02]. More precisely, two IMCs P, Q are in relation

=bs iff they are strongly bisimilar according to [Her02]4.

Example 3.5

Consider two PTPs P and Q (partly illustrated in Figure 3.3) and assume

that equivalence relation R identifies those states that are depicted on the

same height such as, for example, u1, u2 and u′ or w and w′. Additionally,

the successors of u1, u2, w, u′ and w′ are shaded according to the equivalence

classes they belong to (their outgoing transitions are omitted in the figure).

It is easy to see that all combined a-transitions of u1 can be matched by a

combined a-transition of u′ (or u2) and vice versa. The probability to reach

the dark shaded equivalence class via an a-transition is always between 0

and 3
4

and that of reaching the light shaded class is between 1
4

and 1. The

same holds for the b-transitions. We have that w and w′ are related because

with the same probability the white (the gray) equivalence class is reached

within t time units and the residence time in w and w′ is PH distributed

with representation T ⊕ U ⊕ V .

4Recall that in contrast to [Her02] we do not allow PH self-loops. However, it is possible

to modify the definition of phase type bisimulation such that PH self-loops are taken into

account.

3.7 Phase Type Bisimulation 57

Let us treat the relationship between phase type bisimulation and the se-

mantics of PTPs in terms of path probabilities. For simplicity, we restrict to

time-abstract schedulers and treat the time-dependent case afterwards.

Let P and Q be PTPs with P =bs Q and let R be a phase type bisimulation

which relates P and Q. For k ≥ 1 let

η = A1 E1 A2 E2 . . . Ek−1 Ak

where for j ∈ {1, 2, . . . , k − 1} either Ej = (x, y] ⊆ R>0, x < y, or Ej = {a}

for some a ∈ Actτ and A1, A2, . . . , Ak ⊆ SP ∪ SQ are equivalence classes of

R. We define Ξη as the set of all path fragments ξ ∈ pathf(P) ∪ pathf(Q)

such that |ξ| = k, the l-th state on ξ is in Al for all l ∈ {1, 2, . . . , k}, the j-th

event is in Ej for all j. The length |η| is defined as the number of equivalence

classes, i.e. |η| = k. By HR we denote the set of all such sets Ξη.

Lemma 3.1

Let P,Q be PTPs with P =bs Q and let R be a phase type bisimulation which

relates P and Q. Then for all D ∈ HR(P) there exists D′ ∈ HR(Q) such that

for all k ≥ 1, Ξη ∈ HR, |η| = k

PrDP ({π ∈ path(P) | π↓k∈ Ξη}) = PrD
′

Q ({π ∈ path(Q) | π↓k∈ Ξη}).

Proof. Let η = A1 E1 A2 E2 . . . Ek−1 Ak. We first decompose

PrDP(Ξη) := PrDP({π ∈ path(P) | π↓k∈ Ξη})

into summands

PrDP(Ξζ) := PrDP({π ∈ path(P) | π↓k∈ Ξζ})

where ζ = s1 E1 s2 E2 . . . Ek−1 sk and si ∈ Ai for 1 ≤ i ≤ k. Let Z(η,P) be

the set of all such ζ for which additionally si ∈ SP for all i. We use the same

notation for Q. Since D is time-abstract we may also write D(ζ) instead

58 3.7 Phase Type Bisimulation

of D(ξ) whenever ξ ∈ Ξζ (and last(ζ) instead of last(ξ)). Furthermore, we

observe that for each ζ ∈ Z(η,P) and each a ∈ Actτ scheduler D induces a

combined transition s a c
µ with s = last(ζ) and

µ(u) =
∑

µ′:s
a

µ′

D(ζ)(a, µ′)

D(ζ, a)
· µ′(u) (u ∈ SP)

provided D(ζ, a) :=
∑

µ′:s
a

µ′
D(ζ)(a, µ′) > 0. We write D(ζ) a µ in

this case. However, if D(ζ, a) = 0 no such combined transition exists. Vice

versa, if D(ζ) a µ, the choices D(ζ)(a, µ′) are uniquely determined by µ

and D(ζ, a). Additionally, we define

PrDP (Ξζ , a) := PrDP (Ξζ) · D(ζ, a)

PrDP (Ξη, a) :=
∑

ζ∈Z(η,P) PrDP (Ξζ , a).

and use the same notations for D′ and ζ ∈ Z(η,Q).

We construct D′ ∈ HR(Q) as follows: Let ξ′ ∈ pathf(Q), let Ξη ∈ HR

be such that ξ′ ∈ Ξη. We define D′(ξ′)(a, µ′) = 0 for all µ′ ∈ dis(Q) if

D(ζ, a) = 0 for all ζ ∈ Z(η,P). If D(ζ, a) > 0 for some ζ ∈ Z(η,P)

then D(ζ) a µζ . We know from last(ξ′) R last(ζ) that for each such ζ there

exists a combined transition last(ξ′)
a c

µ′
ζ with µ′

ζ ≡R µζ. Assume that

PrDP (Ξη) > 0 (otherwise D′(ξ′) is defined arbitrary). We choose D′ such that

D′(ξ′) a
∑

ζ∈Z(η,P)

PrDP (Ξζ , a)

PrDP (Ξη, a)
· µ′

ζ

and

D′(η, a) :=
∑

ζ∈Z(η,P)
PrDP (Ξζ ,a)

PrDP (Ξη)
=
∑

ζ∈Z(η,P)
PrDP (Ξζ)

PrDP (Ξη)
· D(ζ, a)

Thus, the choice of D′ for a is determined by a convex combination of the

combined transitions induced by D and a convex combination of the prob-

ability that D decides for a. It is important to note that D′(η, a) depends

3.7 Phase Type Bisimulation 59

only on η and not on ξ′ whereas D′(ξ′)(a, µ) depends on ζ ′ where ξ′ ∈ Ξζ′

(we may write D′(ζ ′) instead of D′(ξ′)).

We now proceed by induction on |η| and show that PrDP (Ξη) = PrD
′

Q (Ξη).

Assume that |η| = 1, i.e. there exists an equivalence class A with Ξη = ΞA.

But then by using νP ≡R νQ we get

PrDP (ΞA) =
∑

s∈A PrDP (s) =
∑

s∈A νP(s)

=
∑

s∈A νQ(s) =
∑

s∈A PrD
′

Q (s) = PrD
′

Q (ΞA).

We now turn to the induction step. Let η′ = A1 E1 A2 E2 . . . Ek Ak+1 and

η = A1 E1 A2 E2 . . . Ek−1 Ak. We distinguish two cases: Ek = {a}, a ∈ Actτ

and Ek ⊆ R>0. Assume that Ek = {a}. It holds that for all ζ ′ ∈ Z(η,Q)

D′(η, a, Ak+1) :=
∑

µ:last(ζ′)
a

µ

D′(ζ ′)(a, µ) · µ(Ak+1)

= D′(η, a) ·
∑

ζ∈Z(η,P)
PrDP (Ξζ ,a)

PrDP (Ξη ,a)
· µ′

ζ(Ak+1)

= D′(η, a) ·
∑

ζ∈Z(η,P)
PrDP (Ξζ ,a)

PrDP (Ξη ,a)
· µζ(Ak+1),

i.e. D′(η, a, Ak+1) is independent of ζ ′. Therefore we get5

PrD
′

Q (Ξη′) =
∑

ζ′∈Z(η,Q)

PrD
′

(Ξζ′) ·
∑

µ:last(ζ′)
a

µ

D′(ζ ′)(a, µ) · µ(Ak+1)

= PrD
′

(Ξη) · D
′(η, a, Ak+1)

= PrD
′

(Ξη) · D
′(η, a) ·

∑
ζ∈Z(η,P)

PrD(Ξζ ,a)

PrD(Ξη ,a)
· µζ(Ak+1)

= PrD
′

(Ξη) ·
∑

ζ̂∈Z(η,P)

PrD(Ξ
ζ̂
,a)

PrD(Ξη)
·
∑

ζ∈Z(η,P)

PrD(Ξζ ,a)

PrD(Ξη ,a)
· µζ(Ak+1)

ind. hyp.
=

∑

ζ̂∈Z(η,P)

PrD(Ξ
ζ̂
,a)

PrD(Ξη ,a)
·
∑

ζ∈Z(η,P)

PrD(Ξζ , a) · µζ(Ak+1).

=
∑

ζ∈Z(η,P)

PrD(Ξζ , a) · µζ(Ak+1).

= PrDP(Ξη′).

5We sometimes omit subscript P and Q and write Pr
D and Pr

D
′

to improve readability.

60 3.7 Phase Type Bisimulation

Finally, assume that Ek is an interval. Let ζ ′ ∈ Z(η,Q) and last(ζ ′) = s′.

We define

D′(ζ ′, Ek, Ak+1) := D′(ζ ′)⊥ · reachs′({s
′}, Ak+1, Ek).

From condition ii) of Definition 3.7 and Equation 3.2 (see page 55) we know

that sRs′ implies reachs({s}, Ak+1, Ek) = reachs′({s
′}, Ak+1, Ek). Combining

this with the fact that

D′(ζ ′)⊥ =
∑

ζ∈Z(η,P)

PrD(Ξζ)

PrD(Ξη)
· D(ζ)⊥ (∀ζ ′ ∈ Z(η,Q))

yields for all ζ ′ ∈ Z(η,Q)

D′(ζ ′, Ek, Ak+1) = D′(ζ ′)⊥ · reachlast(ζ′)({last(ζ ′)}, Ak+1, Ek)

=
∑

ζ∈Z(η,P)

PrD(Ξζ)

PrD(Ξη)
· D(ζ)⊥ · reachlast(ζ′)({last(ζ ′)}, Ak+1, Ek)

=
∑

ζ∈Z(η,P)

PrD(Ξζ)

PrD(Ξη)
· D(ζ)⊥ · reachlast(ζ)({last(ζ)}, Ak+1, Ek)

=:
∑

ζ∈Z(η,P)

PrD(Ξζ)

PrD(Ξη)
· D(ζ, Ek, Ak+1)

But then

PrD
′

Q (Ξη′) =
∑

ζ′∈Z(η,Q)

PrD
′

(Ξζ′) · D
′(ζ ′, Ek, Ak+1)

= PrD
′

(Ξη) ·
∑

ζ∈Z(η,P)

PrD(Ξζ)

PrD(Ξη)
· D(ζ, Ek, Ak+1)

ind. hyp.
=

∑
ζ∈Z(η,P)

PrD(Ξζ) · D(ζ, Ek, Ak+1)

= PrDP(Ξη′)

which concludes the case Ek ⊆ R>0 and the lemma follows.

The above result can be extended to the case of time-dependent schedulers:

3.7 Phase Type Bisimulation 61

Theorem 3.1

Let P,Q be PTPs with P =bs Q and let R be a phase type bisimulation which

relates P and Q. For all D ∈ THR(P) there exists D′ ∈ THR(Q) such that

for all k ≥ 1, Ξη ∈ HR, |η| = k

PrDP ({π ∈ path(P) | π↓k∈ Ξη}) = PrD
′

Q ({π ∈ path(Q) | π↓k∈ Ξη}).

Proof. Assume that D ∈ THR(P). The construction of a scheduler D′ ∈

THR(Q) such that for all Ξη ∈ HR

PrD
′

Q (Ξη) = PrDP (Ξη)

is exactly the same as for the time-independent case (see Lemma 3.1) except

that we first prove the statement for the case that D’s choice is constant

on all intervals of η. For all remaining sets Ξη we proceed as follows: Let

I1, I2, . . . ⊆ R≥0 be the intervals on which D’s choice is constant (recall

condition iii of Definition 3.5). We define D′ such that its choice is constant

on exactly the same partition of R≥0 and use the fact that we can write Ξη

as the disjoint union of sets Ξη′ where D’s choice is constant on the intervals

contained in η′.

Obviously, phase type bisimulation is a fine notion of equivalence and con-

forms to the semantics given in terms of schedulers and path probabilities.

More precisely, each scheduler decision in a PTP can be matched (stepwise)

by a scheduler decision in an equivalent PTP.

Since the emphasis of this thesis is not placed on bisimulation relations we

do not define weaker notions of bisimulation at this point. We claim that a

subtle combination of the weak bisimulation in [Her02] and in [SL95] would

yield a weak bisimulation for phase type processes.

62 3.8 Immediate Phase Type Transitions

s

q1

q2 qn...

µ1

µ2

µk

...
λ1

λ2

λm

(α1,T1)

(α2,T2)

(αk,Tk)

...

a1

a2

am

Figure 3.4: The incoming and outgoing transitions of state s

3.8 Immediate Phase Type Transitions

In this section we assume that PH transitions can have associated repre-

sentations allowing a zero delay to occur with positive probability, i.e., we

drop the restriction α · 1 = 1 for the initial distribution of a PH representa-

tion. Thus, F(α,T)(0) might be greater than zero and a transition with label

(α, T) might be taken immediately. But an instantaneous state change also

happens if a transition labeled by τ is taken; the difference being that for

instantaneous PH transitions it is possible to specify the exact probability at

which a PH transition is enabled immediately (in the case of τ -transition this

probability is one). Since PH representations are required to be irreducible

and to have at least one phase, we have always F(α,T)(0) < 1. Hence, it

might be desirable to use both, PH transitions with general representations

and τ -transitions. We gain expressiveness but it is not clear how the choice

between several PH transitions and τ -transitions shall be interpreted. Let us

discuss this problem in the sequel.

Assume that s is a state with k > 0 outgoing PH transitions s
αi ,Ti µi, i ∈

{1, 2, . . . , k} and no other (action or PH) transitions. Then the probability

of leaving s immediately equals

p(0) := 1 −
∏k

i=1P
(
Xi > 0

)
= 1 −

∏k
i=1(αi1) = 1 − (⊗k

i=1αi)1.

3.8 Immediate Phase Type Transitions 63

where Xi is a PH distributed random variable with representation (αi, Ti)

and 1 is a column vector of appropriate size with all entries one. Now, under

the condition that s is left immediately, the choice between different PH

transitions with αi1 < 1 is then resolved with respect to the probabilities

P
(
Xi = 0

)
= 1 − αi1 =: p

(0)
i . More precisely, it is appropriate to assume

that, under the condition that the sojourn time in s is zero, the probability of

the i-th transition is given by p
(0)
i /p(0). This makes sure that PH transitions

with small p
(0)
i are chosen with a lower probability than those with a higher

value p
(0)
i . E.g. if k = 2, p0

1 = 0.1 and p0
2 = 0.5, we have a zero delay with

probability p(0) = 1 − (0.9 · 0.5) = 0.55. Obviously, it is much more likely

that transition s
α2 ,T2 µ2 triggers a zero delay in s than transition s

α1 ,T1 µ1.

The former happens with probability p0
2/p

(0) = 0.5/0.55 ≈ 0.9 whereas in ca.

10% of the cases the residence time in s is zero because transition s
α1 ,T1 µ1

“won the race”.

If s has also one or more outgoing τ -transitions, we do not have appropriate

“weights” for them. All τ -transitions should have the same probability to

be taken. We can assume that the scheduler determines the probability at

which each τ -transition is taken under the condition that s is left immediately.

But this contradicts our intuition that the weight of this transition equals

the probability that this transition is enabled immediately (which is one in

the case of a τ -transition) and it is not clear how to combine the scheduler

decision and the weights p
(0)
i .

In the light of these problems, the restriction α ·1 = 1 made in the remaining

parts of this paper appears most reasonable. But there is another argument

for this restriction: We can simulate the case where a PH transition has

representation (α, T), α · 1 < 1 with our restricted model. Assume that s is

a state with k > 0 outgoing PH transitions. Additionally, we assume that s

has m action transitions labeled by a1, a2, . . . , am and that s is in the support

of n distributions6 with probability q1, q2, . . . , qn (compare Figure 3.4).

6The case where s is in the support of infinitely many distributions is treated in a

similar way.

64 3.8 Immediate Phase Type Transitions

svan

q1p(0)

q2p(0) qnp(0)...

k
P

i=1
µi

p
(0)
i

p(0)

λ1

λ2

λm

τ
...

a1

a2

am
ssta

q1(1−p(0))

q2(1−p(0))

qn(1−p(0))

...

µ1

µ2

µk

...
λ1

λ2

λm

(α′
1,T1)

(α′
2,T2)

(α′
k,Tk)

...

a1

a2

am

Figure 3.5: The incoming and outgoing transitions of state s(i) and s(d)

The idea is to replace s by two states svan and ssta (“vanishing” and “stable”).

The former one is left immediately because of one outgoing τ -transition with

target distribution

µ :=
k∑

i=1

p
(0)
i

p(0) µi.

Moreover, svan has the same action transitions as s but is reached with prob-

ability q1 · p
(0), q2 · p

(0), . . . , qn · p
(0) (compare Figure 3.5, left). The incoming

edges of state ssta are labeled by q1 · (1− p(0)), q2 · (1− p(0)), . . . , qn · (1− p(0))

and the PH transitions have labels (α′
i, Ti), 1 ≤ i ≤ k where α′

i(j) := αi(j)
αi1

.

Note that this implies α′
i1 = 1 and therefore the residence time in ssta cannot

be zero. As in the case of svan the action transitions emerging from s also

emerge from ssta (compare Figure 3.5, right).

Intuitively, the replacement of s by svan and ssta yields a process that is

“equivalent” to the original one. Obviously, bisimulation equivalence is too

fine but we claim that all linear time relations defined in the subsequent

chapters identify the two processes. However, we omit a further analysis in

the sequel since a proof would require new definitions of paths, schedulers,

etc. for the extended model.

3.9 Chapter Summary 65

3.9 Chapter Summary

In this section we have presented the concept of phase type processes which

is the central formalism of the thesis. Phase type processes form a very gen-

eral class of models including e.g. the class of labeled transition systems,

probabilistic automata and interactive Markov chains. The main difference

lies in the use of phase type transitions which are enabled after a phase

type distributed delay. We made use of matrix operations based on the

Kronecker product to give formal semantics in terms of path probabilities.

More precisely, the generator matrix of the Markov process underlying a

PTP can be analytically represented using Kronecker algebra. It is impor-

tant to point out that this Kronecker representation is advantageous for the

model solution since the complete matrix does not need to be generated.

A lot of Kronecker-based methods exist in the field of stochastic automata

networks [Pla84] which exploit the structured representation to solve large

Markov models [FPS98, BCDK00]. We claim that for the analysis of phase

type processes it is possible to make use of the Kronecker representation as

well.

We have used schedulers to resolve nondeterminism in PTPs and stuck to

the classical scheduler types in [Put94]. All schedulers decide that nonde-

terministic alternatives are either taken immediately or completely blocked

with a certain probability. They do not have the possibility to specify a

time duration after which a transition is enabled. But if we view phase

type processes as concurrent processes which act in continuous time, such

an extended scheduler approach is suitable as well. We pick up this idea

in Chapter 6 where we describe process environments in which actions are

externally available after a certain amount of time.

We have defined bisimulation equivalence for PTPs which is a very fine notion

of equivalence. Here, “fine” means that only few processes are related by this

equivalence. A lot of variants of bisimulation equivalence exist in literature

(e.g. compare [HJ89, LS91, SL95, vGSST90]). Many of them are “coarser”

and can be adapted to our formalism but since the emphasis of this thesis

66 3.9 Chapter Summary

are linear time relations we leave the investigation of coarser bisimulations

as future work.

Another starting point for future research is the development of checking

algorithms for our bisimulation. We claim that it is possible to extend the

existing partitioning/splitter technique for probabilistic processes with non-

determinism [Bai98] which runs in time polynomial in the size of the state

transition graph and add a method to check the PH distributions of two given

representations for equality. Proposition 2.1 (on page 27) shows that this re-

quires time polynomial in the number of phases. More precisely, given two

representations of order n and m, the comparison of the first 2 · max{n, m}

moments is necessary to decide whether they describe the same distribution

or not. However, the first k moments of a PH distribution with representa-

tion of order n can be computed in time O(n3 + k · n) (compare Remark 2.1

on page 22). Therefore, we claim that bisimulation equivalence for PTPs can

be checked in polynomial time.

Chapter 4

Parallel Composition

4.1 Overview

Many real-world systems can be considered as a set of concurrent processes,

such as molecules in a living cell, Java threads, network protocols, etc. Com-

positional modeling affords several benefits including the possibility to de-

scribe components of a global system by first specifying subsystems and then

combining the submodels by parallel composition to a global one.

Different forms of parallel composition exist and most of them have been

analyzed in the context of process algebra [Mil80, BHR84]. Here, we use

multi-way synchronization which is based on CCS [BHR84] and allow a num-

ber of processes to participate in a common transition. All synchronization

partners are treated equally, i.e., there is no distinction between active and

passive synchronization partners.

The parallel composition of models based on continuous time Markov chains

has always been subject to keen discussions. Most stochastic process alge-

bras follow the idea of durational actions, i.e., the execution of an action

lasts an exponentially distributed amount of time. This is, for instance, the

case for the stochastic process algebras TIPP [GHR92], PEPA [Hil96] and

EMPA [BG96]. If now a common transition is performed, the “slowest”

communication partner determines the amount of time the synchronous ac-

tion lasts. Unfortunately, the maximum of two random variables following

exponential distributions is not exponentially distributed. Therefore, a syn-

67

68 4.1 Overview

1

P

−r

a

Q
1

−q

a

1

P ||{a}Q

−r

−r

−q

−q

a

Figure 4.1: Interleaving of single phased transitions

chronous transition cannot be encoded as one transition in the compound

model. This problem is circumvented by assuming that the duration of the

common action is determined by only one participant, i.e., there is exactly one

“active” communication partner and all others are “passive”. The stochastic

process algebra PEPA additionally allows an approximation of the actual du-

ration by the calculation of a rate which involves the rates of all participants.

For details on this discussion we refer to [Hil94].

Hermanns proposes a more general and very elegant solution to this problem

in [Her02]. He defines a stochastic process algebra based on IMCs with a

clear separation between delays and actions and sticks to the original parallel

composition operator for LTSs. More precisely, processes synchronize on

action transitions and timed transitions are composed in an interleaving style.

The result is exactly what applies to many natural systems: the cooperation

is completed when the slowest participant has finished his operation. Let

us illustrate the effect of interleaved exponential delays by an example. In

Figure 4.1, the two IMCs P and Q are composed such that timed transitions

are interleaved and synchronization applies to a-transitions (the compound

process is denoted by P ||{a}Q). The result exhibits the typical “diamond

structure”. From the construction of a PH representation describing the

maximum of two PH distributions (see Definition 2.6 on page 25), we know

that the diamond represents the distribution Fmax = F−r · F−q.

4.2 Composition of Single Phases 69

However, when (arbitrary) phase type processes are composed via an (asyn-

chronous) parallel composition operator, the result is not necessarily a phase

type process. This is due to the absence of the memoryless property. There-

fore, we first define parallel composition for the subclass of single phase type

processes in Section 4.2, for which interleaving semantics in the style of inter-

active Markov chains is possible. In Section 4.3 we define an operator which

“expands” a PTP such that all phases of a state are visible. This operator

allows for a detailed discussion of the parallel composition problem of PTPs

in Section 4.4.

4.2 Composition of Single Phases

In this section we focus on an adaption of the parallel composition operators

in [Her02] and [LS91]. Since we restrict ourselves to SPTPs all PH transi-

tions have only a single phase which ensures the memoryless property during

composition.

Definition 4.1 (Parallel composition of SPTPs)

The parallel composition P1 ||A P2 of two SPTPs P1 and P2 over a finite set

A of visible actions is given by SPTP

P1 ||A P2 =
(
{(s1 ||A s2) | s1 ∈ S1, s2 ∈ S2}, , , ν

)

where

⋄ is such that (s1 ||A s2)
a µ iff one of the following conditions is

true:

i) a ∈ A ∧ ∃λ1, λ2 :

s1
a

1λ1 ∧ s2
a

2λ2 ∧
(
∀s′1, s

′
2 : λ1(s

′
1) · λ2(s

′
2) = µ(s′1 ||A s′2)

)

ii) a 6∈ A ∧ ∃λ1 :

s1
a

1λ1 ∧
(
∀s′1 : λ1(s

′
1) = µ(s′1 ||A s2)

)

iii) a 6∈ A ∧ ∃λ2 :

s2
a

2λ2 ∧
(
∀s′2 : λ2(s

′
2) = µ(s1 ||A s′2)

)

70 4.2 Composition of Single Phases

w1
1 p1

µs1 f1

a

τ−q

0.9 0.1

d

w2
1

c2

d
−r

Figure 4.2: A model of the producer (left) and the consumer (right)

⋄ is such that (s1 ||A s2)
−r µ, r > 0, iff either

(
s2 is stable ∧ ∃λ1 : s1

−r

1λ1 ∧ ∀s′1 : µ(s′1 ||A s2) = λ1(s
′
1)
)

or
(
s1 is stable ∧ ∃λ2 : s2

−r

2λ2 ∧ ∀s′2. µ(s1 ||A s′2) = λ2(s
′
2)
)
.

⋄ The initial distribution ν is such that ν(s1 ||A s2) = ν1(s1) · ν2(s2) for

all s1 ∈ S1, s2 ∈ S2.

Here, set A determines which actions have to be performed synchronously

and Act \ A contains the actions that are performed independently. Thus,

it may happen that one process, say P, has to wait for Q to perform a

transition with label a ∈ A. Such a transition cannot be executed until a is

also possible in the (current) local state of Q. If the set A of common actions

equals the empty set we shortly write || instead of ||∅ . Note that the parallel

composition of finitely branching SPTPs is a SPTP that is finitely branching

as well. Similarly, if we compose two SPTPs that do not show zeno behavior,

the compound process also does not have zeno paths. The same holds for

divergence.

Example 4.1

Consider the two SPTPs in Figure 4.2. Their parallel composition over action

set A = {d} yields the SPTP of Example 3.1 (see also Figure 3.1 on page 37)

if we assume that (α, T) = (1,−q) for some q > 0.

We conclude this section by observing that phase type bisimulation is pre-

4.3 Expand Operator 71

served by parallel composition of SPTPs. The proof is similar to that in [Her02]

and [vGSST90] and is therefore omitted here.

Proposition 4.1

Let P1,P2 be SPTPs with P1 =bs P2. Then for all SPTPs Q, A ⊆ Act

P1 ||A Q =bs P2 ||A Q.

4.3 Expand Operator

This section discusses an operator that turns out to be useful in the context

of parallel composition. It is based on the observation that a PTP constitutes

a “compressed” model in which the phases of a state are hidden. Intuitively,

a PTP, say P1, may provide a more abstract view on a system than another

PTP, say P2, in which several phases (represented by several PH transitions)

are collapsed to one PH transition. Consider for example a PTP modeling

DNA transcription. The time until the transcription of a gene is finished can

be expressed as a phase type distributed random variable which is the sum

of several exponentially distributed random variables. If the modeler decides

that the intermediate transcription steps are important he might use several

single phased PH transitions to model transcription. If a more abstract view

is desired a single PH transition labeled by an appropriate representation can

be used.

Stated more generally, the ex-operator (from “expand”) assigns to each phase

type process P a single phase type process I = ex(P). The idea is that

intermediate steps of the stochastic delays in P are specified explicitly.

Definition 4.2 (Expand operator)

Let P be a PTP and for s, u ∈ SP let ns, γs, Qs,u be as in Definition 3.3 (see

page 38). The SPTP ex(P) =: I is given by SI := {s(i) | s ∈ SP , 1 ≤ i ≤ ns}

and for all s ∈ SP

⋄ ∀i, j ∈ {1, . . . , ns} : s(i) −r

Is
(j) iff Qs,s(i, j) = r > 0 and

72 4.3 Expand Operator

s

u v

−r

a (β,T)

(α,U)

P
1

s(1)

Q
1

s(2) s(3)

u(1) u(2) v(1)

−q1 −q2

−r
−r

−ra

a

−q3

−p2−p1

Figure 4.3: P and Q = ex(P)

∀u ∈ SP , u 6= s, ∀k ∈ {1, . . . , nu} : s(i) −r

Iu
(k) iff Qs,u(i, k) = r > 0,

⋄ ∀i ∈ {1, . . . , ns} : s(i) a

Iµ iff s a

Pµ′ and

∀u ∈ SP , j ∈ {1, . . . , nu} : µ′(u) · γu(j) = µ(u(j)),

⋄ ∀i ∈ {1, . . . , ns} : νI(s
(i)) = νP(s) · γs(i).

Note that ex replaces the discrete target distributions of PH transitions by

Dirac distributions and takes the entries of the generator matrix as rate la-

bels. More precisely, if (s, (α, T), µ) is a PH transition in P then the absorp-

tion rates of vector T0 are distributed according to µ such that s(i) r
u(k),

s 6= u which means that r = T0(i) · µ(u) · γu(k). This means that we mul-

tiply the absorption rate of phase i with the probability to enter the k-th

phase of state u after absorption. Alternatively, one could define ex such

that s(i) has a transition with rate T0(i) leading to distribution µ(u) · γu ∈

dis({u(1), u(2), . . . , u(nu)}). Note also that ex removes all PH self-loops of state

s if ns = 1.

Example 4.2

Consider the two PTPs in Figure 4.3. For simplicity, all target distributions

are Dirac distributions. We define matrices

4.3 Expand Operator 73

U :=




−p1 p1

0 −p2



, T :=




−q1 q1 0

0 −q2 q2

0 0 −q3




and vectors

α :=
[
1 0

]
, β :=

[
1 0 0

]
.

We assume that r ∈ R>0. It is easy to see that Q = ex(P) by checking the

conditions of Definition 4.2 and calculating

γs =
[
1 0 0

]
,

Qs,s =




−(r + q1) q1 0

0 −(r + q2) q2

0 0 −(r + q3)


 ,

Qs,v =




0

0

q3


 , Qs,u =




r

r

r


 .

Next we focus on the relationship between P and ex(P). Intuitively, one

might argue that they are “equivalent” in some sense. However, they are not

related by phase type bisimulation (see Definition 3.7) since those states of

ex(P) that represent phases of a state in P may not be related to that state.

On the other hand, P and ex(P) have the same generator matrix (up to

enumeration of the state space) which follows directly from construction.

Therefore, they have the same underlying continuous time Markov chain.

Moreover, the states in ex(P) representing the phases of a state in P inherit

its action transitions. In the sequel, we show that this results in “equivalent”

paths probabilities. To formalize this we first aim at the relationship between

path fragments of P and ex(P). For the remainder of this section, assume

that there is no state that is in the support of a discrete distribution being

the target of a PH transition emerging from that state (PH self-loops). This

74 4.3 Expand Operator

restriction simplifies the distinction between the case that the process visits

different phases of a state and the case where a PH self-loop is taken. We

claim that the following results can also be proven for the general case but

the proofs would require some technical effort in order to mark the execution

of a self-loop of P in a path of ex(P).

Let ξ ∈ pathf(ex(P)). ξ is called P-observable if for all states s of P each

maximal subsequence

s(i1) t1 s(i2) t2 . . .
tm−1 s(im), m > 1

of ξ is followed by s(im) tm u(k), u 6= s where tj ∈ R>0, ij ∈ {1, 2, . . . , ns} for

all j ∈ {1, 2, . . . , m}. If ξ is P-observable we write contr(ξ) (from “contrac-

tion”) for the sequence that results from ξ by replacing maximal subsequences

s(i1) t1 s(i2) t2 . . .
tm−1 s(im) tm u(k), u 6= s, m > 1

by s t u, t =
∑m

j=1 tj and v(i) a w(l) by v a w for all a ∈ Actτ ,

i ∈ {1, . . . , nv}, l ∈ {1, . . . , nw} and all states s, u, v, w in P.

Example 4.3

Recall Example 4.2. Instances of P-observable path fragments of Q = ex(P)

(see Figure 4.3) are

ξ1 = s(1) 0.2 s(2) 0.3 u(1) a s(1),

ξ2 = s(1) 0.2 s(2) 0.5 s(3) 0.1 v(1)

with contr(ξ1) = s 0.5 u a s and contr(ξ2) = s 0.8 v. An instance of

a path fragment that is not P-observable is

s(1) 0.2 u(1) 0.3 u(2) a s(1).

Remark 4.1

Note that it is possible to define a scheduler such that all path fragments of

ex(P) are observable in P. More precisely, if we consider a scheduler more as

4.3 Expand Operator 75

an instance simulating the environment of a PTP rather than a strategy for

instantaneous decisions, it is appropriate to define a scheduler that decides

for a visible action after a certain time period has passed (compare also

Remark 3.1 on page 49). This idea is picked up in Section 6.3.

It is easy to see that contr(ξ) ∈ pathf(P). Moreover, mapping contr is sur-

jective. Now assume that D is a THR-scheduler for ex(P). We call D a

P-observation-based scheduler if the following two conditions hold

⋄ whenever ξ1 and ξ2 are P-observable and contr(ξ1) = contr(ξ2) then

D(ξ1) = D(ξ2),

⋄ whenever ξ is not a prefix of some P-observable path fragment then it

holds that PrD(ξ) = 0.

These conditions ensure that D’s decisions depend only on the history in

P and path fragments with a non-zero probability must be completed to P-

observable ones. It is easy to see that this implies that a P-observation-based

scheduler chooses D(ξ) = λ with λ⊥ = 1 if ξ is not P-observable but a prefix

of a P-observable path fragment.

Example 4.4

Recall Example 4.2. Path fragment

ξ = s(1) 0.2 u(1) 0.3 u(2)

is not P-observable but a prefix of a P-observable path fragment. If scheduler

D ∈ THR(P) chooses D(ξ)⊥ = 1 all continuations of ξ that are not P-

observable have probability zero.

Let ζ = s1 E1 s2 E2 . . . Ek−1 sk where s1, s2, . . . , sk ∈ SP and for i ∈

{1, 2, . . . , k − 1} either Ei = {a} for some a ∈ Actτ or Ei = (x, y] ⊆ R>0,

x < y. Let cylinder set Cζ be the set of all paths π ∈ path(P) such that

π↓k= s1
e1 s2

e2 . . .
ek−1 sk

76 4.3 Expand Operator

and e1 ∈ Ei for all i ∈ {1, 2, . . . , k−1}. Let CP be the set of all such cylinder

sets. For Cζ ∈ CP we define ex(Cζ) as the set of all paths π ∈ path(ex(P)) for

which there exists j ≥ k such that π↓j is P-observable and

contr(π↓j) = s1
e1 s2

e2 . . .
ek−1 sk

is a prefix of a path in Cζ . Hence, if ζ = s then ex(Cs) is the set of all paths

in ex(P) that start in a state s(i) for some i ∈ {1, . . . , ns}.

Theorem 4.1

Let P be a PTP. Then for each P-observation-based scheduler D ∈ THR(ex(P))

there exists a scheduler D′ ∈ THR(P) such that for all Cζ ∈ CP

PrDex(P)(ex(Cζ)) = PrD
′

P (Cζ),

and vice versa.

Proof. Let us first prove the existence of D′ if D ∈ THR(ex(P)) is given. We

use the fact that contr is surjective and define D′(ξ′)(a, µ′) := D(ξ)(a, µ) for

ξ′ ∈ pathf(P) where ξ ∈ pathf(ex(P)) is such that ξ′ = contr(ξ) and µ′(u) ·

γu(j) = µ(u(j)) for all u ∈ SP , j ∈ {1, . . . , nu} (compare Definition 4.2). Since

D is P-observation-based, D′(ξ′) is well-defined (compare the first condition

of the definition of a P-observation-based scheduler). The next step is to

prove by induction on the length of ζ that

PrDex(P)(ex(Cζ)) = PrD
′

P (Cζ) (4.1)

where ζ is such that the decisions of D′ (and therefore those of D) are constant

on the intervals contained in ζ . But having established (4.1) the statement

follows immediately because we can express any set in CP as the disjoint

union of sets Cζ for which D and D′ have constant choices on the intervals

4.3 Expand Operator 77

of ζ . Assume that Cζ = Cs. Then

PrDex(P)(ex(Cs)) = PrDex(P){π ∈ path(ex(P)) |

π↓1= s(i) for some i ∈ {1, . . . , ns}}

=
∑ns

i=1 ν(s)γs(i)

= ν(s)

= PrD
′

P (Cs).

For the induction step, let

ζ ′ = s1 E1 s2 E2 . . . Ek−1 sk and ζ = s1 E1 s2 E2 . . . Ek−2 sk−1.

Let ξ be a P-observable path fragment in ex(P) such that contr(ξ) = π↓k−1

with π ∈ Cζ . The choice D(ξ) depends only on ζ since D is a P-observation-

based scheduler and has constant choices on the intervals of ζ . Therefore we

write D(ζ) instead of D(ξ). The same holds for D′(π↓k−1). Let λ := D(ζ)

and D′(ζ) = λ′. If Ek−1 = {a}, a ∈ Actτ , we derive that PrDex(P)(ex(Cζ′))

equals

PrDex(P)(ex(Cζ))·
{∣∣∣

nsk∑

l=1

λ(a, µ)·µ(s
(l)
k) | sk−1

a µ′, ∀s(j) : µ′(s)γs(j) = µ(s
(j)
k)
∣∣∣
}

by using the fact that all states s
(i)
k−1, i ∈ {1, . . . , nsk−1

} inherit the a-

transitions of sk−1 and that D is a P-observation-based scheduler. From

λ(a, µ) = λ′(a, µ′) we get

{∣∣∣
∑nsk

l=1 λ(a, µ) · µ(s
(l)
k) | sk−1

a µ′, ∀s, j : µ′(s)γs(j) = µ(s(j))
∣∣∣
}

=
{∣∣∣
∑nsk

l=1 λ′(a, µ′) · µ′(sk)γsk
(l) | sk−1

a µ′
∣∣∣
}

=
{∣∣∣λ′(a, µ′) · µ′(sk) | sk−1

a µ′
∣∣∣
}

78 4.3 Expand Operator

which implies that

PrDex(P)(ex(Cζ′)) = PrDex(P)(ex(Cζ)) ·
{∣∣∣
∑nsk

l=1 λ(a, µ) · µ(s
(l)
k) |

sk−1
a

µ′, ∀s(j) : µ′(s)γs(j) = µ(s
(j)
k)
∣∣∣
}

= PrDex(P)(ex(Cζ)) ·
{∣∣∣λ′(a, µ′) · µ′(sk) | sk−1

a µ′
∣∣∣
}

ind. hyp.
= PrD

′

P (Cζ) ·
{∣∣∣λ′(a, µ′) · µ′(sk) | sk−1

a µ′
∣∣∣
}

= PrD
′

P (Cζ′)

and the proof is complete for the case that Ek−1 = {a}.

If Ek−1 is an interval then

PrDex(P)(ex(Cζ′)) = PrDex(P)(ex(Cζ)) · D(ζ)⊥ ·
∑nsk−1

l=1 γsk−1
(l)·

reach
s
(l)
k−1

({s
(j)
k−1 | 1 ≤ j ≤ nsk−1

},

{s
(i)
k | 1 ≤ i ≤ nsk

}, Ek−1).

Now, recall the definition of reachs({s}, {u}, J) for states s, u of a PTP and

an interval J (see Equation 3.1 on page 43). We consider the Markov chain

underlying all PH transitions of s and start in state s with probability ν(s) =

1. But then ν{s} = ν(s) · γs = γs which means that the initial phase of s is

chosen by γs. Combining this with the fact that P and ex(P) have the same

generator matrix we derive

nsk−1∑
l=1

γsk−1
(l) · reach

s
(l)
k−1

({s
(j)
k−1 | 1 ≤ j ≤ nsk−1

}, {s
(i)
k | 1 ≤ i ≤ nsk

}, Ek−1)

= reachsk−1
({sk−1}, {sk}, Ek−1).

4.4 Composition with Partial Memory 79

By using D(ζ)⊥ = D′(ζ)⊥ we conclude that

PrDex(P)(ex(Cζ′)) = PrDex(P)(ex(Cζ)) · D(ζ)⊥ ·
∑nsk−1

l=1 γsk−1
(l)·

reach
s
(l)
k−1

({s
(j)
k−1 | 1 ≤ j ≤ nsk−1

},

{s
(i)
k | 1 ≤ i ≤ nsk

}, Ek−1)

= PrDex(P)(ex(Cζ)) · D
′(ζ)⊥ · reachsk−1

({sk−1}, {sk}, Ek−1)

ind. hyp.
= PrDP (Cζ) · D

′(ζ)⊥ · reachsk−1
({sk−1}, {sk}, Ek−1)

= PrD
′

P (Cζ′)

For the reverse direction we set D(ξ)(a, µ) := D′(ξ′, µ′) if ξ is P-observable,

contr(ξ) = ξ′ and µ′(u) · γu(j) = µ(u(j)) for all u, j ∈ {1, . . . , nu}. If ξ is not

P-observable but a prefix of a P-observable path fragment, we let D(ξ) := λ

with λ⊥ = 1. The remaining choices of D are arbitrary since they are based

on a history which is not P-observable. The decisions specified so far are such

that path fragments which cannot be continued to P-observable ones have

probability zero. From construction D is a P-observation-based scheduler.

Similar as above the statement can now be proven by induction on the length

of Cζ .

Note that the above proposition indicates that whenever we consider ex(P)

instead of P we have to restrict to P-observable schedulers.

4.4 Composition with Partial Memory

Let us now consider the parallel composition of arbitrary PTPs P and Q.

Assume that P is waiting for synchronization on some a ∈ A. Simultaneously,

the race between the PH transitions of P’s current local state takes place and

if the delay of a certain PH transition is over it is taken unless a is unblocked

before (for example, because it is offered by a communication partner). This

80 4.4 Composition with Partial Memory

means that, while P passes through the phases of its local state, say s, the

action transitions of s can become enabled before absorption takes place.

The following example shows that the parallel composition of PTPs cannot

be described in a satisfying way by a (global) PTP (without applying ex)

even if they do not synchronize on any action.

Example 4.5

First, recall that we omit the initial distribution α of a PH representation if

probability one is assigned to the first state. Consider the PTPs P and Q in

Figure 4.4 (left) where the representations U and V are given by

U =




−r1 r1

0 −r2



 , V =




−q1 q1

0 −q2





and r1, r2, q1, q2 > 0. Figure 4.4 (right) illustrates the parallel composition

of the two SPTPs ex(P) and ex(Q) over action set A = ∅. We use the

ex-operator at this point to gain insight into the behavior of the parallel

composition of P and Q. The structure of ex(P) || ex(Q) is similar to the

race structure of U ⊗ V but in case, say, U wins the race, representation V

proceeds with its current phase (and not with the initial one). Consider, for

example, the state represented as a black node in ex(P) || ex(Q). PTP P has

already finished its delay and is ready to perform a while Q has only finished

one of the two successive phases. Such intermediate states cannot be part

of a PTP that models the compound process without an explicit reference to

the phases of the states of Q and P. The problem is that we have to store

in which phases the states of Q and P currently are.

It is important to point out that PTP P ′ (Figure 4.4, middle) does not show

the behavior that we expect from the parallel composition of P and Q. To

see this, consider again the black node. If in the initial state the left PH

transition wins the race, the delay of the transition labeled by V is no longer

distributed according to V . This comes from the fact that PH distributions

possess only the partial memoryless property, i.e., the Markov chain that

corresponds to representation V might be already in the second phase. Thus,

4.5 Chapter Summary 81

1

P

U

a

Q
1

V

b

1

P ′

U

a
U

Ua

a

V

V

V

b

b

b

1

ex(P) || ex(Q)

−q1−r1

−q1

−r2

−q1

−r1

−r1−q1

−r1

−r2

a

a −r2

−r2
a

a

−q2

−q2

−q2

−q2

b

b

b

b

Figure 4.4: Parallel composition of the expanded PTPs

the usual interleaving semantics is not appropriate in the case of phase type

processes.

4.5 Chapter Summary

This chapter has focused on the parallel composition. In the style of [Her02],

an operator for SPTPs has been defined which maintains the usual inter-

leaving semantics. It has been shown that this is not possible in the case of

states having several phases. More precisely, there is, in general, no “natural”

operator for the parallel composition of PTPs.

The ex-operator provides the possibility to consider a PTP on a less abstract

level. The phases each state has to pass through until it is left are added

as extra states. The operator is useful in many respects because it sharpens

the understanding of several problems related to phase type processes, e.g.

the parallel composition or the definition of certain scheduler classes. In the

remaining chapters of this thesis, notions of equivalence will be defined for

PTPs and we will check if ex is compatible with each of these notions.

82 4.5 Chapter Summary

We conclude this chapter by observing that a way out of the problem of the

parallel composition of phase type processes is the use of the ex-operator and

proceeding with the “expanded” model. However, in this case we would loose

the advantages phase type processes have over single phase type processes.

However, it is possible to define an operator that transforms a SPTP into a

PTP having less states by combining several successive PH transitions to a

single one.

Chapter 5

Trace Semantics

5.1 Overview

This chapter covers trace semantics for phase type processes. The basic idea

is to explore the different execution paths a PTP can follow which means

that the observable process behavior is analyzed from a linear-time perspec-

tive [vGla90]. For a fixed path each moment in time has a unique possible

future. Thus, linear-time semantics can be captured by (linear) sequences

and we regard them as describing the behavior of a single run. If the system

operates under the control of a scheduler these sequences occur with a certain

probability. Moreover, a PTP acts in continuous time which means that the

timing behavior is also recorded. Since the observable part of a path is given

by its trace, in our setting observations are functions, each of which assigns

a probability to the input pair consisting of a trace and a time bound.

Trace semantics induces an equivalence relation1, called trace equivalence,

as follows: Two PTPs P and Q are distinguished if they can be differentiated

by their observable behavior, or, in other words, P and Q are related if they

have the same observation functions.

We characterize trace semantics in terms of intuitive button pushing experi-

ments [Mil89, vGla90] and extend van Glabbeek’s trace machine [vGla90] to

1We focus on equivalences rather than preorders. Obviously, each semantics also in-

duces a preorder.

83

84 5.1 Overview

the stochastic setting. The trace machine of a PTP P is a black box which

simulates P. An observer watching the box can see those activities of P

that are external. This means that they are visible to the process’ environ-

ment (e.g. other “objects” which might interact with P). Visible actions

are shown at an action display. Since PTPs act in continuous-time, we put

the observer in the position to clock how long the execution of a trace takes.

This is realized with an hourglass (timer). We call the machine extended in

this way stochastic trace machine. An illustration is given in Figure 5.1 on

page 85.

Several notions of trace equivalence are defined which differ in the type of

scheduler used to resolve nondeterministic choices. In the case of history-

dependent schedulers, the resulting relations can be viewed as continuous-

time counterparts of Segala’s notion of trace distribution equivalence for

probabilistic automata [Seg95]. Surprisingly, the choice of the scheduler-

type is crucial, as the induced trace equivalences are different, and even not

comparable in most cases. Similar results have been established in [WBM06].

We are also concerned with variants of trace semantics, namely semantics

based on completed traces [BW82], failures [BHR84] and ready sets [OH83].

In the case of failures, we define the stochastic failure machine (see Figure 5.6

on page 108) by equipping the stochastic trace machine with switches which

are used to block or unblock actions. Similarly, for ready semantics, (action)

lamps are used to reveal which actions are currently externally enabled (see

Figure 5.7 on page 110). We show that both, switches and lamps, increase

the distinguishing power of the stochastic trace machine, respectively.

Trace equivalences are located at the bottom of the linear time - branching

time spectrum for LTSs [vGla90]. In the setting of probabilistic automata,

it has been shown by Segala that trace equivalence is coarser than relations

based on testing or bisimulation [Seg96, Seg95]. However, if processes with

nondeterminism act in continuous-time this is no longer valid. For instance,

trace equivalence is incomparable to testing equivalence (compare Proposi-

tion 7.2). The reason for that is that schedulers can determine environment

5.2 Trace Equivalence 85

Hour-

glass

a

Action

display

Figure 5.1: The stochastic trace machine

conditions which cannot be simulated by an environment in which external

stimuli are exclusively provided by other processes. This fact is discussed

more detailed in Chapter 6.

The trace equivalences defined in the sequel fail to be preserved by par-

allel composition of SPTPs, even in the purely interleaving case (without

communication). This “non-property” carries over from the discrete-time

setting [Seg95].

5.2 Trace Equivalence

Let us start with the description of the stochastic trace machine: Assume

that phase type process P is represented by a machine which is essentially

a black box. The box simulates the temporal evolution of P and displays

P’s visible behavior. As illustrated in Figure 5.1, it is equipped with two

features:

⋄ An action display shows the sequence of external actions performed by

the process during a run of the machine.

⋄ An hourglass timer counts down from a value initially specified by an

external observer.

86 5.2 Trace Equivalence

A run of the machine starts with the choice of an initial state with respect to

the initial distribution ν of P. The action display is empty at the beginning of

the experiment. Then the machine behaves according to P’s underlying tran-

sition system while the timer counts down. If a visible action is performed, it

appears at the display. The action display remains unchanged until the next

external action is performed by the process and shown at the action display.

If a deadlock state is reached or the process diverges the action display still

shows the symbol of the last visible action executed by P or remains empty if

no visible action is carried out during the whole run. Note that the observer

cannot distinguish between the case that P deadlocks or diverges. The ob-

server records the sequence of displayed actions (where we assume that he

can distinguish between two successive actions that are equal). The result is

the trace of a path (compare Definition 3.4 on page 3.4). The experiment is

over when the hourglass timer expires (i.e. the upper bulb of the hourglass

is empty). Then the machine is reset for another run. This means, there is a

countdown in each run and therefore a time interval can be associated with

each trace (i.e. with each sequence of external actions recorded by the ob-

server). Upon reset, the action display is cleared and the hourglass is turned

(we assume that the observer works with different hourglasses to observe the

process behavior for periods of time of different lengths). Then the machine

starts again according to ν for another run and again the observer records

the sequence of displayed actions until the hourglass timer expires etc.

If the machine encounters nondeterminism then it is resolved in the same way

in each run, i.e. we fix a scheduler D for the whole experiment and restart

the process infinitely often under D. For each experiment we can deduce an

observation function that gives the probability of each pair of trace and time

bound (value of the hourglass timer).

In the sequel, we analyze trace semantics for different classes of schedulers

and compare the respective equivalences with each other.

Let D be a class of schedulers, i.e.

D ∈ {THR, THD, HR, HD, SR, SD, tTHR, . . . , tSD}.

5.2 Trace Equivalence 87

And recall that D(P) denotes the set of all D-schedulers for P, in particular

THR(P) denotes the set of all schedulers for P. Now, consider PTP P under

D-scheduler D. Let σ ∈ Act∗. We are interested in the measure of all paths

π ∈ path(P) on which σ is performed within t time units.

Definition 5.1 (Trace Observation)

Let P be a PTP, D a scheduler class and D ∈ D(P). A trace observation is

a function trDP : (Act∗ × R≥0) → [0, 1] such that

trDP(σ, t) = PrD({π ∈ path(P) | π is a D-path and

∃i : trace(π↓i) = σ, time(π↓i) ≤ t}).

The set of trace observations with respect to scheduler class D is defined as

OD
tr (P) = {trDP | D ∈ D(P)}.

Definition 5.2 (Trace Equivalence)

Two PTPs P1 and P2 are trace equivalent with respect to scheduler class D,

written P1 =D
tr P2, if and only if

OD
tr (P1) = OD

tr (P2).

Remark 5.1

For trace semantics we consider P’s behavior in different environments (i.e.

simulated by different schedulers). We do not add information about them

to the respective observations. Another process can “match” this behavior

in an environment that is not necessarily the same as for P. This means

that two PTPs P and Q are trace equivalent iff for each scheduler D for P

there is a scheduler D′ for Q that yields a matching observation and vice

versa. This viewpoint is the core of trace semantics. Finer relations are

obtained by equipping the stochastic trace machine with additional features

such as action buttons that, if pressed by the observer, block (or weight) the

occurrence of certain external actions. In this case, the recorded sequence

consists of the performed trace and the sequence of (sets of) pushed action

88 5.2 Trace Equivalence

buttons (or the weights assigned to external actions). An equivalent process

has to show the same behavior for the same sequence of blocked actions

(compare Section 6.2 and 6.3).

Our next objective is to analyze the relationship between =HR
tr and the trace

equivalence for probabilistic automata defined in [Seg95].

Definition 5.3 (Probabilistic Trace Equivalence)

Two PTPs P1 and P2 are probabilistic trace equivalent, written P1 =HR
ptr P2,

iff for each D1 ∈ HR(P1) there exists D2 ∈ HR(P2) such that

lim
t→∞

trD1
P1

(σ, t) = lim
t→∞

trD2
P2

(σ, t) (∀σ ∈ Act∗).

Proposition 5.1

Let P1 and P2 be PTPs.

1. P1 =HR
tr P2 implies P1 =HR

ptr P2.

2. If P1 and P2 are probabilistic automata then

P1 =HR
tr P2 iff P1 =HR

ptr P2.

Let us consider a simple example which shows that the reverse of the first

statement in the above proposition is not valid, i.e. probabilistic trace equiv-

alence does not imply stochastic trace equivalence.

Example 5.1

Assume that PTP P consists of three states, say, s1, s2 and s3 and tran-

sitions s1
α,T

s2, s2
a s3 (recall that we simply write s instead of target

distribution δs). Furthermore, initially P starts in s1, i.e. ν(s1) = 1. Now,

let Q be a copy of P except that representation (α, T) is replaced by (β, V)

with F(α,T) 6= F(β,V). Then P =HR
ptr Q but P and Q are not related by any

of the stochastic trace equivalences =D
tr . Since F(α,T) 6= F(β,V) there exists

5.2 Trace Equivalence 89

T

1

7

9

1 2

1 1

1

U1

1

3

1

U2

3

1

0.5 0.5

−5T

a a

−5

P

U1

b c

0.5 0.5

−5U1

a a

−5

Q

U2

c b

Figure 5.2: FT = FU1 = FU2 and P =D
tr Q for all scheduler classes D.

t > 0 such that F(α,T)(t) 6= F(β,V)(t) which implies trDP (a, t) 6= trD
′

Q (a, t) for

all combinations of D-schedulers D and D′.

Let us now examine a more complex example.

Example 5.2

Consider the two PTPs P and Q and the PH representations illustrated in

Figure 5.2. For simplicity all target distributions are Dirac distributions

and omitted in the illustration. Recall that in the case of illustrations of

PH representations we depict the intensity graph in which the edges are

labeled by the positive entries of the generator matrix whereas the single

phased transitions of PTPs are labeled by negative parameters (because they

constitute a special case of a PH representation). By computing the first

three moments it can be shown that the phase type distributions of P and Q

fulfill FT = FU1 = FU2 (compare Proposition 2.1 on page 27). Assume that

scheduler D ∈ HD(P) is such that in each state the single outgoing action

transition is chosen with probability one. Similarly, D′ chooses the available

transitions of Q labeled by a, b and c with probability one. Then for both

processes the probability of performing trace σ = a within t > 0 time units

90 5.2 Trace Equivalence

is given by

trDP (a, t) = 0.5 · FT (t) + 0.5 · F−5(t)

= 0.5 · FU1(t) + 0.5 · F−5(t) = trD
′

Q (a, t).

For trace σ = ab we exploit the commutativity of the convolution of two

random variables (compare Definition 2.5 on page 25) and get

trDP (ab, t) = 0.5 · (FT ∗ F−5)(t)

= 0.5 · (F−5 ∗ FU2)(t) = trD
′

Q (ab, t).

Finally,

trDP (ac, t) = 0.5 · (F−5 ∗ FU1)(t)

= 0.5 · (FU1 ∗ F−5)(t) = trD
′

Q (ac, t).

Now, if D decides to block the execution of b or c with a certain probability

there is always a scheduler D′ ∈ HD(Q) that can “match” the observation

trDP . Actually, it is not difficult to see that for all scheduler classes P =D
tr Q.

Let us now treat the relationship between =bs and =THR
tr .

Proposition 5.2

=bs is strictly finer than =THR
tr .

Proof. The inclusion =bs ⊂=THR
tr follows directly from Theorem 3.1 (compare

page 61) since the set of all paths on which trace σ is performed within a

certain time interval is the (disjoint) union of sets Ξ ∈ HR (where R is the

phase type bisimulation relating P1 and P2).

An example that proves strictness is given in Figure 5.2. As already shown

above we have P =THR
tr Q. But P 6=bs Q because there is no phase type

bisimulation that relates the target states of the a-transitions. Thus, the

initial states are not related and νP 6≡R νQ for all phase type bisimulations

R.

5.3 Completed Trace Equivalence 91

Note that =bs is sensitive to τ -transitions whereas =THR
tr is not but our coun-

terexample relies not on invisible transitions (otherwise, =THR
tr 6⊂=bs follows

trivially).

Remark 5.2

A closer look at Example 5.2 shows that a finer notion of trace equivalence

can be obtained if the observer records the time after each visible step, i.e. the

amount of time that is needed to perform the next visible action is recorded.

In this case, P and Q are distinguished. For trace σ = ab, for example,

the probability to perform action a within, say, t1 = 0.25 time units and

afterwards action b within t2 = 1 time units is much greater in the case of Q

than in the case of P. This can be seen by observing that

0.5 · F−5(0.25) · FU2(1) ≈ 0.169︸ ︷︷ ︸
for Q

> 0.034 ≈ 0.5 · FT (0.25) · F−5(1)︸ ︷︷ ︸
for P

.

In the sequel, we do not investigate this variant and restrict for simplicity to

a single time bound.

5.3 Completed Trace Equivalence

A lot of results concerning trace semantics carry over from the nonproba-

bilistic setting to the probabilistic setting. An example is the observation

that restricting to total schedulers increases the distinguishing power of the

resulting equivalences. In the nonprobabilistic setting van Glabbeek defines

completed trace equivalence by changing the features of the stochastic trace

machine [vGla90]: Each time the process reaches a deadlock state, a special

symbol is shown at the action display. This ensures the detection of states

from which no visible action can be executed in the future. In our setting,

we find such states if no further actions are observed from a certain time in-

stant on, although the chosen scheduler is total. Recall that we only consider

divergence free processes and therefore deadlock cannot be mixed up with

divergence.

92 5.3 Completed Trace Equivalence

Remark 5.3

Completed trace equivalence, also called maximal trace equivalence, coincides

with trace equivalence in the fully probabilistic setting. For discrete-time

models without nondeterminism this is formulated in [JS90] and [HT92b]

and for the continuous-time, deterministic case compare [WMB05]. How-

ever, in the presence of nondeterminism this result is neither valid for the

nonprobabilistic nor for the stochastic case.

Proposition 5.3

Let D ∈ {THR, THD, HR, HD, SR, SD} Then

=tD
tr is strictly finer than =D

tr .

Proof. We present a simple counterexample which proves =HR
tr 6⊆ =tHR

tr in CCS

notation: The LTSs a+(a.b) and a.b. can be distinguished by completed trace

equivalence (with respect to all scheduler classes of total schedulers). The

observation of a single a can be made only in case of a + (a.b) because in a.b

all total schedulers are forced to proceed with b. This example can also be

found in [vGla90].

Now, we show that P1 =tD
tr P2 implies P1 =D

tr P2 as follows: For j ∈ {1, 2},

we construct PTP P ′
j from Pj by inserting a new state stopj and additional

τ -transitions. These transitions have target distribution δstopj
and emanate

from every state in which a total scheduler always assigns a distribution,

i.e. all states s with s and s . Then clearly, P1 =tD
tr P2 implies

P ′
1 =tD

tr P ′
2. Assume D1 ∈ D(P1). Now, a total scheduler D′

1 ∈ tD(P ′
1) is

constructed from D1 by choosing

D′
1(ξ) =





D1(ξ) if last(ξ) or last(ξ) ,

λξ otherwise,

where λξ(τ, δstop1) = D1(ξ)
⊥ and λξ(a, µ) = D1(ξ)(a, µ) for all a and all µ.

5.4 The Influence of Schedulers 93

From P ′
1 =tD

tr P ′
2 we know that there is a total scheduler D′

2 for P ′
2 that

matches the observation associated with D′
1. A scheduler D2 ∈ D(P2) is

obtained by transforming D′
2 such that

D2(ξ) =





D′

2(ξ) if last(ξ) or last(ξ) ,

λξ otherwise,

where λ⊥
ξ = D′

2(ξ)(τ, δstop2) and λξ(a, µ) = D′
2(ξ)(a, µ) for all a and all µ.

Obviously, the respective observations of D1 and D2 are equal, i.e. trD1
P1

=

trD2
P2

. In a similar way for each D2 ∈ D(P2) we can construct a matching

scheduler D1 ∈ D(P1). We conclude that P1 =D
tr P2.

5.4 The Influence of Schedulers

The following theorem states the results of a comparison between the trace

equivalence relations =D
tr . As we will see, many combinations (=D

tr , =
D′

tr),

D 6= D′ are incomparable. Nevertheless, the following observations can be

made2

⋄ HR is the scheduler class that leads to a relation being strictly coarser

than most of the remaining trace equivalences:

=THR
tr , =THD

tr and =HD
tr are all strictly finer than =HR

tr

⋄ If the scheduler decision additionally depends on timing information

relations tend to become strictly finer:

=THD
tr ⊂ =HD

tr and =THR
tr ⊂ =HR

tr

⋄ Randomization decreases the distinguishing power (except in the sta-

tionary case):

=HD
tr ⊂ =HR

tr and =THD
tr ⊂ =THR

tr

2The inclusions =THD
tr ⊂=THR

tr and =HD
tr ⊂=HR

tr are only shown for the case that the

schedulers choose no visible action after a fixed number of steps (see Lemma 5.5).

94 5.4 The Influence of Schedulers

The following theorem summarizes the influence scheduler classes have on

trace equivalence.

Theorem 5.1 (Influence of Schedulers)

a) Time independent case:

Let D, D′ ∈ {HR, HD, SR, SD} and D 6= D′. The relations =D
tr and =D′

tr

are incomparable with the following two exceptions2:

⋄ =HD
tr is strictly finer than =HR

tr ,

⋄ =HR
tr 6⊆ =SR

tr but the opposite direction is unknown.

b) Time dependent case:

⋄ =THD
tr is incomparable to =SR

tr and =SD
tr ,

but strictly finer than =THR
tr , =HD

tr and =HR
tr ,

⋄ =THR
tr is incomparable to =SD

tr , =SR
tr and =HD

tr ,

but strictly finer than =HR
tr .

The remainder of this section focuses on the proofs of the results stated in the

above theorem. Table 5.1 on page 95 gives an overview over the relationships

“ =D1
tr

?
⊆ =D2

tr ”

where each row corresponds to scheduler class D1 and each column to class

D2. Entries that are pairs of PTPs refer to the counterexamples in Fig-

ure 5.3, 5.4 and 5.5 on page 96 to 99. Here, “⊂” denotes that D1 is strictly

finer than D2. For some combinations more than one counterexample is

indicated although only one is used in the proof.

The counterexamples showing the incomparableness in the case of time in-

dependent scheduler classes are mostly LTSs. Intuitively, this is due to the

5.4 The Influence of Schedulers 95

D1 \ D2 THR THD HR HD SR SD

THR – P5, P6 ⊂ P5, P6 P9, P10 P5, P6

THD ⊂ – ⊂ ⊂ P1, P2 P1, P2

HR P7, P8
P5, P6

P7, P8

– P5, P6 P9, P10 P5, P6

HD P7, P8 P7, P8 ⊂ – P1, P2 P1, P2

SR P7, P8
P5, P6

P7, P8

? P5, P6 – P5, P6

SD
P3, P4

P7, P8

P3, P4

P7, P8

P3, P4 P3, P4 P3, P4 –

Table 5.1: An overview of trace equivalence relationships2

fact that schedulers have no influence on the outcome of a race between PH

transitions. The following lemma states the result of the last row and the

last column of Table 5.1.

Lemma 5.1

=SD
tr is incomparable to all other equivalences =D

tr , D 6= SD.

Proof. First, recall that nodes correspond to states, transitions of discrete

distributions are illustrated as dashed edges, action and PH transitions as

solid edges. The former type of transition is headed by two arrows, the latter

by one arrow. Moreover, Dirac distributions are omitted.

Now, consider Figure 5.3. It is easy to see that P3 =SD
tr P4 since for both

96 5.4 The Influence of Schedulers

P1

=THD
tr

=HD
tr

6=SD
tr

6=SR
tr

a

b

1

P2

1
a

ab

b

P3

=SD
tr

D 6=SD

6=D
tr

ab

1

ba

P4

1

a b

a b

Figure 5.3: Counterexamples of Lemma 5.1 and 5.2 .

processes a SD-scheduler can select trace σ with positive probability if σ is of

the form a∞, b∞, a or b. But then P3 6=SR
tr P4 since a scheduler D ∈ SR(P3)

can choose each loop with probability 1
4

and the remaining two transitions

also with probability 1
4
. Then traces of the form (ab)∗ have positive prob-

ability. This is not possible in the case of P4. Thus, =SD
tr 6⊆ =SR

tr . With a

similar argumentation it can be shown that P3 6=
HR
tr P4 and P3 6=

THR
tr P4 and

therefore =SD
tr 6⊆ =HR

tr , =THR
tr .

We show =SD
tr 6⊆ =HD

tr , =THD
tr by observing that P3 6=HD

tr P4 and P3 6=THD
tr P4.

This can be seen by considering D ∈ HD(P3) that produces sequences σ ∈

(ab)∗ with a positive probability by alternately choosing a and b. There is

no HD-scheduler for which σ ∈ (ab)∗ has positive probability in P4. Since

P3 and P4 are time-abstract, the same argumentation can be used for time

dependent schedulers.

In what follows, we consider =HD
tr , =THD

tr 6⊆ =SD
tr . Let us again concentrate on

Figure 5.3. First, note that P1 =HD
tr P2 (and P1 =THD

tr P2) since each possible

branch of P2 can be matched by a scheduler for P1, e.g., if P2’s self-loop is

never entered and the scheduler chooses first a and then b, a scheduler for P1

can choose the self-loop at first and the b -transitions next. But on the other

5.4 The Influence of Schedulers 97

hand P1 6=SD
tr P2 since trace σ = ab can have a non-zero probability only in

the case of P2.

Finally, we show =SR
tr , =HR

tr , =THR
tr 6⊆ =SD

tr as follows: In Figure 5.4 every SD-

scheduler for P6 decides either for the left transition (label a) or for the right

transition (label b) depending on the sojourn time of the initial state. But

an element of SD(P5) can always choose the left a -transition in the left PH

successor state and the right b-transition in the right PH successor state. The

resulting observation cannot be matched by some D ∈ SD(P6). Therefore,

P5 6=
SD
tr P6.

We have (P5,P6) ∈ =THR
tr because for a given residence time in the initial state

a scheduler for P6 can match every choice {pa
l , p

b
l , p

a
r , p

b
r} of D ∈ THR(P5)

(where pa
l is the probability to take the leftmost a -transition, etc.) by choos-

ing the a -transition with probability 1
2
pa

l + 1
2
pa

r and the b -transition with

probability 1
2
pb

l + 1
2
pb

r.

The time-abstract cases can be shown using a similar argumentation, i.e.

P5 =HR
tr P6, P5 =SR

tr P6. Thus, =SR
tr , =HR

tr , =THR
tr 6⊆ =SD

tr .

Lemma 5.2

=SR
tr is incomparable to all other equivalences =D

tr , D 6= SR except in the case

of D = HR where =HR
tr 6⊆ =SR

tr , but the other direction is unknown (compare

the row and the column before last of Table 5.1).

Proof. First recall from Lemma 5.1 that we already have shown that =SD
tr and

=SR
tr are incomparable. For =SR

tr 6⊆ =HD
tr , =THD

tr consider again the pair (P5,P6)

in Figure 5.4. As shown above P5 =SR
tr P6. On the other hand P5 6=

D
tr P6 for

D ∈ {HD, THD} with a similar argumentation as in the proof of Lemma 5.1

where we showed that P5 6=
SD
tr P6.

98 5.4 The Influence of Schedulers

P5

1

=D
tr

D∈{SR,

HR,THR}

6=D′

tr

D′∈{SD,

HD,THD}
a b a b

−2 −2

P6

1

a b

−4

P7
=D

tr

D∈{SD,

SR,HD,HR}

6=THD
tr

6=THR
tr

−3

1

τ τ

a b

P8

1

−3 −3

τ τ

a b

Figure 5.4: Counterexamples of Lemma 5.1, 5.2 and 5.3.

Let us focus on =HD
tr , =THD

tr 6⊆ =SR
tr . In Figure 5.3 we have P1 =HD

tr P2 and

P1 =THD
tr P2 (compare again the proof of Lemma 5.1). But P1 6=SR

tr P2

because if for P2 a SR-scheduler chooses the a-transition to the lower state

with a positive probability, there is no scheduler for P1 that can match the

corresponding observation.

Finally, we show =HR
tr , =THR

tr 6⊆ =SR
tr by considering P9 and P10 in Figure 5.5

on page 99. It holds that P9 =HR
tr P10 (and also P9 =THR

tr P10) because

each choice for a or b of an HR-scheduler for P9 can be matched by a choice

of an HR-scheduler for P10 (observe that in each state there is exactly one

a-transition and one b-transition). But a SR-scheduler for P9 has only one

choice whereas for P10 a SR-scheduler can choose three times, possibly always

different subdistributions. This yields observations that cannot be matched

by a SR-scheduler for P9 and thus P9 6=
SR
tr P10.

Remark 5.4

To the best of our knowledge, it is still an open problem if =SR
tr ⊂ =HR

tr holds.

For many optimization problems related to discrete time Markov decision

processes it is known that there exists an optimal scheduler being history

independent (compare [Der70], for example). However, in the setting of trace

observations, we remark that it is non-trivial to describe an HR-scheduler by

5.4 The Influence of Schedulers 99

P9

1
a

b

=D
tr

D∈{HD,HR,THD,THR}

6=SD
tr

6=SR
tr

P10

1

b

aa

a b

b

Figure 5.5: Counterexamples of Lemma 5.2 and 5.3.

combinations of SR-schedulers such that =SR
tr ⊂ =HR

tr can be established.

Lemma 5.3

Both, =HD
tr and =HR

tr are not contained in =THR
tr or =THR

tr .

Proof. Consider the two PTPs P7 and P8 in Figure 5.4 on page 98. In both

cases, the observer will see action a after a delay that follows an exponential

distribution with parameter −3 if the left branch is chosen, respectively.

Trace b has the same distribution provided that the right branch is chosen. It

is easy to see that P7 =D
tr P8 for all time-abstract scheduler classes D because

a scheduler D′ ∈ D(P8) can “match” the observations under D ∈ D(P7) by

choosing the same distribution for the nondeterministic τ -transitions as D.

On the other hand P7 6=
THD
tr P8 and P7 6=

THR
tr P8, because D ∈ THD(P7) can

choose the left branch if the first delay (in the initial state) is lower than,

say, x = 1 and the right branch if the delay is greater or equal 1. Then the

probability trDP7
(a, t) of trace a within t time units is zero if t > 1 but greater

zero otherwise. There is no scheduler D′ ∈ THR(P8) that can match the

observation trDP7
since the nondeterministic branching in P8 occurs at a point

where no time has passed yet.

We need some preliminary observations to prove the next lemma.

100 5.4 The Influence of Schedulers

Let D ∈ HR(P) for some PTP P = (SP , P , P , νP), let σ ∈ Act+ and

f : R≥0 → [0, 1] with

f(t) := trDP (σ, t).

We define Xσ : Ω → R≥0 ∪ {∞} as the random variable which describes the

time that process P needs to perform trace σ (under D), i.e.

Prob
(
Xσ ≤ t

)
= f(t),

P rob
(
Xσ = ∞

)
= 1 − limt→∞ f(t).

Proposition 5.4

There exists a (possibly infinite) CTMC (ν, Q) such that the distribution of

Xσ equals the distribution of the time to reach a certain set of states in (ν, Q).

Proof. We construct (ν, Q) in two steps:

i) The first step is concerned with the definition of an HR-scheduler Dσ

which decides like D but stops scheduling if either σ has already been

performed or if σ cannot be performed in the future. Assume that σ =

σ′a, i.e. a ∈ Act is the last element of σ (recall that σ 6= ǫ). Let pathf(σ)

denote the set of all prefixes of D-path fragments ξ = ξ′as ∈ pathf(P)

with trace(ξ′) = σ′, s ∈ S. We construct Dσ from D as follows:

Dσ(ξ) :=





D(ξ) if trace(ξ) 6= σ and ξ ∈ pathf(σ),

λ otherwise,

where λ is such that λ⊥ = 1.

Let Yσ be the random variable which describes the time until P per-

forms trace σ under scheduler Dσ. It is easy to verify that Yσ and Xσ

have the same distribution.

ii) We define a PTP P ′ = (S ′, ′, ′, ν ′) which is the (deterministic)

tree describing the behavior of P under Dσ. This means that each

5.4 The Influence of Schedulers 101

state of P ′ corresponds to an untimed history κ = untime(ξ) where

ξ ∈ pathf(P). In P ′ immediate transitions are collapsed, i.e. a path

fragment which exclusively contains events e ∈ Actτ is removed and

integrated in the preceding timed step (or in the initial distribution if

there is no such preceding step). The information about the actions

taken is stored in the state’s name (the history κ).

The set of states is given by S ′ := SDσ ∪ {s∞} where

SDσ := {κ = untime(ξ) | ξ ∈ pathf(σ) ∧
(
Dσ(κ)

)⊥
> 0}.

(Recall that we may take an untimed path fragment as argument of

a time independent scheduler.) Let instDσ ⊆ pathf(P) be the subset

of untimed Dσ-path fragments κ which encode an instantaneous path

fragment ξ, i.e. κ = untime(ξ) = ξ. This means that no PH transitions

have been taken on ξ. The initial distribution ν ′ is such that if κ ∈

instDσ we set

ν ′(κ) := νP(first(κ)) · col(κ) · Dσ(κ)⊥

where function col : instDσ → [0, 1] (col from “collapse”) is inductively

given by

col(s) := 1

col(κ′as) := col(κ′) ·
∑

µ:µ(s)>0,

last(κ′)
a

µ

Dσ(κ′)(a, µ) · µ(s)

for all a ∈ Actτ , s ∈ SP . We put ν ′(κ) := 0 if κ ∈ SDσ \ instDσ and let

ν ′(s∞) := 1 −
∑

κ∈SDσ

ν ′(κ).

The PH transitions of P ′ are defined as follows: s∞ and also all

states κ with trace(κ) = σ. For all remaining κ ∈ S ′ we have that

102 5.4 The Influence of Schedulers

κ
α,T

µ iff last(κ)
α,T

µ′ where µ is such that for all κκ̂ ∈ SDσ with

κ̂ ∈ instDσ we have that3

µ(κκ̂) = µ′(first(κ̂)) · col(κ̂) · Dσ(κκ̂)⊥

and µ(s∞) = 1 −
∑

κ′∈SD
σ

µ(κ′). Thus, state s∞ represents all D-path

fragments of P which cannot be continued to a D-path fragment with

trace σ.

Then CTMC (ν, Q) is given by ν = νS′ and Q is the generator QS′ of P ′

(compare Definition 3.3 on page 38). From construction, the time until an

absorbing state κ with trace(κ) = σ is reached has the same distribution as

Yσ and thus as Xσ.

Lemma 5.4

P =THD
tr Q implies P =HD

tr Q, and P =THR
tr Q implies P =HR

tr Q.

Proof. We give the proof details only for the randomized case. The deter-

ministic case can be shown by using a very similar argumentation.

We assume that P =THR
tr Q and consider a scheduler D ∈ HR(P). Since

HR(P) ⊂ THR(P) there exists D′ ∈ THR(Q) with trDP = trD
′

Q . We define

scheduler D′′ ∈ HR(Q) as follows: Let π ∈ path(Q) with

π↓i= s1
e1 s2

e2 . . .
ei−1 si.

For i > 1 we define D′′’s decision by

D′′(s1
e1 s2

e2 . . .
ei−1 si) := D′(s1

ê1 s2
ê2 . . .

êi−1 si)

3Recall that in untime(ξ) timed events are simply left out, i.e. we may have several

successive states which are not separated by an action as e.g. in untime(ξ) = κκ̂ =

s1as2s3bs4, κ = s1as2 and κ̂ = s3bs4.

5.4 The Influence of Schedulers 103

where for j ∈ {1, 2, . . . , i}

êj =






ej if ej ∈ Actτ

1 if ej ∈ R>0.

We remark that instead of êj = 1 we can choose an arbitrary but fixed event

in R>0. If i = 1 we put D′′(s1) = D′(s1). Next we show that trD
′

Q = trD
′′

Q .

From the definition of schedulers we know that for each decision D′(ξ) there

exists a non-empty interval of R≥0 on which the decisions of D′ are constant.

In combination with the definition of D′′ we conclude that for each σ ∈ Act∗

there exists a non-empty interval Jσ ⊆ R≥0 such that

trD
′

Q (σ, t) = trD
′′

Q (σ, t) (∀t ∈ Jσ).

Let us fix σ and for k ∈ {1, 2} define fk : R≥0 → [0, 1] by

f1(x) := trDP (σ, x) and f2(x) := trD
′′

Q (σ, x)

for all x ∈ R≥0. We claim that

f1(t) = f2(t) (∀t ∈ Jσ) =⇒ f1(t) = f2(t) (∀t ∈ R>0). (5.1)

From Proposition 5.4 we know that fi has a Markov chain representation.

Thus, fi can be expressed in terms of transient state probabilities. However,

this implies that fi is an analytic function. But then from the identity the-

orem, the implication 5.1 is true, i.e. if f1 and f2 coincide on an arbitrary

small interval they coincide everywhere on R≥0.

For scheduler class D let Dk be the set of all D-schedulers that do not decide

for visible actions after a path fragment of length k, i.e.

D ∈ Dk =⇒ ∀a ∈ Act, ∀µ, ∀ξ, |ξ| ≥ k : D(ξ)(a, µ) = 0.

Let =Dk

tr be the induced trace equivalence of class Dk.

104 5.4 The Influence of Schedulers

Lemma 5.5

Let k ≥ 1. Then

=HDk

tr ⊆ =HRk

tr and =THDk

tr ⊆ =THRk

tr

Proof. We show the statement for the time-abstract case and omit the timed

case as the argumentation follows similar lines.

Let us first fix some notation. For an HR-scheduler D ∈ HR(P), let D|n

denote the restriction of D on path fragments of length n ∈ N and let HRn(P)

be the set of all such partial schedulers D↓n for P. Similarly, HDn(P) denotes

the subset of all restrictions of HD-schedulers for P. Note that HDn(P) is a

finite set because P is finitely branching. Let h := |HDn(P)| and let D be

an HR scheduler for P. The proof is separated into two steps:

1. We define the set Λn(D) as follows:

Λn(D) :=
{(

xE)E∈HDn(P) ∈ [0, 1]h :
∑

E∈HDn(P) xE = 1

and D|n =
∑

E∈HDn(P) xE · E
} (5.2)

where D|n and E are taken as (finite) vectors in which each entry corre-

sponds to a path fragment of length k ≤ n. The value xE is the weight

of the partial HD-scheduler E and scheduler D is ”approximated“ until

its n-th decision. Note that Λn(D) is a non-empty and compact set.

Next we define for m ≥ n functions fm,n : Λm(D) → Λn(D) by

fm,n

(
(xE)E∈HDm(P)

)
:= (yF)F∈HDn(P) where yF :=

∑

E∈HDm(P),
F=E|n

xE

to sum up certain entries of vector (xE)E∈HDm(P) and calculate weights

for F ∈ HDn(P). Let

fm,n

(
Λm(D)

)
=
{
fm,n

(
(xE)E∈HDm(P)

)
| (xE)E∈HDm(P) ∈ Λm(D)

}
.

5.4 The Influence of Schedulers 105

Obviously, each element in fm,n

(
Λm(D)

)
is a vector of size h. Our next

objective is a backward construction for which we take into account all

future decisions of D. The set

Γn(D) :=

∞⋂

m:=n

fm,n

(
Λm(D)

)

is non-empty and compact because it is the intersection of non-empty

compact sets and because fm,n is continuous. Our aim is now to pick

out elements z(0), z(1), . . . of the sets Γ0(D), Γ1(D), . . . such that they

constitute a sequence which converges uniformly. We choose z(0) ∈

Γ0(D) arbitrary and let z(n+1) ∈ Γn+1(D) be such that fn+1,n(z(n+1)) =

z(n). From construction we get for E ∈ HDn+1(P)

z
(n)
E|n

=
∑

F∈HDn+1(P)

F|n=E|n

z
(n+1)
F ≥ z

(n+1)
E (5.3)

where z(m) =
(
z

(m)
E

)
E∈HDm(P)

for m ≥ 1.

It is clear that for each n we can find z(n) =
(
z

(n)
E

)
E∈HDn(P)

such that

Equation 5.3 holds and additionally

∑

E∈HDn(P)

z
(n)
E = 1, 0 ≤ z

(n)
E ≤ 1.

We conclude the first step by observing that for each path fragment

ξ ∈ pathf(P) of length m ≤ n we can show by induction on m and n

that

PrD(ξ) =
∑

E∈HDn(P)

z
(n)
E · PrE(ξ) (5.4)

where the probability PrE({π | ξ is a prefix of π}) = PrE(ξ) for partial

HD-scheduler E is well-defined if |ξ| ≤ n.

106 5.4 The Influence of Schedulers

2. Let f : HDk(P) → HDk(Q) be a function such that for all σ ∈ Act∗,

t ≥ 0
∑

ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

PrEP(ξ) =
∑

ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

Pr
f(E)
Q (ξ).

The existence of f follows from P =HDk

tr Q. Furthermore, for E ′ ∈

HDk(Q) we define

z
(k)
E ′ :=

∑

E∈HDk(P)

f(E)=E′

z
(k)
E . (5.5)

This yields for D ∈ HRk

trDP (σ, t) =
∑

ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

PrD(ξ)

5.4
=

∑
ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

∑
E∈HDk(P)

z
(k)
E · PrE(ξ)

=
∑

E∈HDk(P)

z
(k)
E

∑
ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

PrE(ξ)

5.5
=

∑
E ′∈HDk(Q)

z
(k)
E ′

∑
ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

PrE
′

(ξ).

We define the partial HR-scheduler D̃ ∈ HRk(Q) by

D̃ =
∑

E ′∈HDk(Q)

z
(k)
E ′ · E ′

and get for all D′ ∈ HRk with D′↓k= D̃ that

trDP(σ, t) =
∑

ξ:|ξ|≤k

trace(ξ)=σ,time(ξ)≤t

PrD̃(ξ) = trD
′

Q (σ, t)

for all σ ∈ Act∗, t ≥ 0. But then P =HRk

tr Q.

Unfortunately, the general case is much more difficult and there is no proof

yet. The problem is that if there is no bound on the number of transitions

5.5 Failure and Ready Equivalence 107

until a certain trace is performed the second step of the proof can not be

done as above. Nevertheless, we claim that the statement is true in the case

of =HR
tr and =THR

tr as well.

All remaining relationships of Table 5.1 follow from combining the results

given above.

5.5 Failure and Ready Equivalence

Let P be a PTP with state set S. A failure set of a stable state s ∈ S

with s is a set of external actions that cannot be carried out from s, i.e.

A ⊆ Act is a failure set of s if s
a

for all a ∈ A. Clearly, if A is a failure set,

so are all subsets of A. An appropriate testing scenario for failure semantics

consists of a stochastic trace machine with an hourglass and action display as

in the case of trace semantics but in addition for each a ∈ Act there is a switch

which is used to block or unblock action a (see Figure 5.6 for an illustration).

P can only perform free actions, i.e. actions that are currently not blocked.

We call the machine the stochastic failure machine. After each visible action

the experimenter can change the combination of free and blocked actions.

Assume that s is a stable state with s and the experiment is carried

out under a total scheduler. The machine stagnates in state s if either s is a

deadlock state or if the observer blocks all actions of the outgoing transitions

of s. The failure set of s can be deduced from the set of actions that are not

blocked by the observer.

Clearly, if s τ or s the machine cannot halt in s and there exists no

subset of Act that is a failure set of s. If the hourglass timer expires before

the machine is forced to halt, a trace observation is recorded. Otherwise, a

failure observation is made.

In this section, we do not consider time dependent schedulers but restrict to

the class HR. We compare failure semantics with =HR
tr and forgo a comparison

of failure semantics based on classes like THR, HD, SR, . . . as this would not

give any interesting new insights.

108 5.5 Failure and Ready Equivalence

a b c . . .

Switches

Hour-

glass

a

Action

display

Figure 5.6: The stochastic failure machine.

Remark 5.5

For the experiment described above, we use two assumptions: We restrict

to total schedulers to ensure that a deadlock is not caused by the scheduler

(but by the set of blocked actions or by a deadlock state). Furthermore, we

assume that in each step the scheduler always chooses a subdistribution over

the set of free actions, i.e. if the observer chooses A as the set of free actions

while P is in state s and ξ is the process history with last(ξ) = s, the choice

D(ξ) of scheduler D is such that

D(ξ)(a, µ) > 0 =⇒ a ∈ A ∪ {τ}. (5.6)

Formally, in the setting of failure semantics, observations are given by the

following definition:

Definition 5.4 (Failure Observation)

Let P be a PTP and D ∈ HR(P). A failure observation is a pair (faDP , trDP)

where trDP is the trace observation under D and faDP is a function such that

faDP :
(
Act∗ × R≥0 ×P(Act)

)
→ [0, 1]

and

faDP (σ, t, A) = PrD({π ∈ path(P) | π is a D-path, ∃i : trace(π↓i) = σ,

time(π↓i) ≤ t, last(π↓i) ,

∀a ∈ A ∪ {τ} : last(π↓i)
a }).

5.5 Failure and Ready Equivalence 109

The set of failure observations is defined as

Ofa(P) = {(trDP , faDP) | D is an HR-scheduler for P}.

We claim that this definition characterizes the scenario of failure semantics

as described above although both restrictions of Remark 5.5 are not used.

Moreover, the set of free actions is only recorded for the last step. The

following observations justify Definition 5.4:

⋄ Assume that A is the set of free actions at a certain time instant but

the machine is able to proceed with the execution of a visible action,

say, a (probably preceded by a τ -transition). This means that the

current state, say, s is either unstable or s a for some a ∈ A and

the knowledge of A does not give new insights in the communication

capabilities of s.

⋄ Assume that the scheduler causes a deadlock by choosing λ⊥ = 1.

Definition 5.4 ignores the last choice of the scheduler but examines the

actions the state reached by trace σ can perform. Thus, we neither have

to restrict to total schedulers nor have to stipulate that Equation 5.6

holds.

Definition 5.5 (Failure Equivalence)

Two PTPs P1, P2 are failure equivalent, written P1 =fa P2, iff

Ofa(P1) = Ofa(P2).

Failure equivalence possesses more distinguishing power than trace equiva-

lence. The same holds for ready equivalence. We summarize these results in

Proposition 5.5 on page 111 after focusing on ready observations.

The ready set of a stable state s is the set of external actions that can be

performed in s, i.e. A ⊆ Act is the ready set of s iff

A = {a ∈ Act | s a }.

110 5.5 Failure and Ready Equivalence

a b

Lamps

c . . .
Hour-

glass

a

Action

display

Figure 5.7: The stochastic ready machine

We define the following button pushing experiment4 for ready semantics: The

machine is the same as for trace semantics but additionally for each a ∈ Act

there is a lamp. If the hourglass timer expires and the current state of the

machine is s, the a-lamp is lit if and only if s a . See Figure 5.7 for an

illustration of the stochastic ready machine.

Definition 5.6 (Ready Observation)

Let P be a PTP and D ∈ HR(P). A ready observation is a function

reDP :
(
Act∗ × R≥0 ×P(Act)

)
→ [0, 1]

such that

reDP(σ, t, A) = PrD
(
{π ∈ path(P) | π is a D-path, ∃i : trace(π↓i) = σ,

time(π↓i) ≤ t, ∀a ∈ Act : (a ∈ A ⇐⇒ last(π↓i)
a)}

)
.

The set of ready observations is defined as

Ore(P) = {reDP | D is an HR-scheduler for P}.

As opposed to the definition of failure equivalence it is not necessary to

4We keep using the term “button pushing experiment” even if the machine has other

features than buttons.

5.5 Failure and Ready Equivalence 111

compare the trace observations in addition because of the equality

∑

A⊆Act

reDP(σ, t, A) = trDP(σ, t).

Definition 5.7 (Ready Equivalence)

Two PTPs P1, P2 are ready equivalent, written P1 =re P2, iff

Ore(P1) = Ore(P2).

In the probabilistic setting, a result which is analogous to the following propo-

sition is given, for instance, in [vGla90, JS90].

Proposition 5.5

=fa and =re are incomparable, but both are strictly finer than =tHR
tr .

Proof. The fact that =fa and =re are incomparable carries over from the

nonprobabilistic setting [vGla90, Counterexample 6, Page 24]. To see the

strictness consider the nonprobabilistic counterexamples in [vGla90] or com-

pare [JS90] for the fully probabilistic case.

For the implication

P1 =fa P2 =⇒ P1 =tHR
tr P2

first note that obviously =fa ⊂ =HR
tr . Now, assume that there are PTPs P1 and

P2 which are stochastic failure equivalent and P1 6=tHR
tr P2. From P1 =fa P2

we know that the observation of failure set Act are equal in P1 and P2. But

Act is a failure set of a state s if and only if s is a deadlock state. This

contradicts the assumption that deadlock states can be detected by =tHR
tr . In

a similar way, we can derive that P1 =re P2 implies P1 =tHR
tr P2.

Note that with a similar argumentation as for the proof of Proposition 5.2

(see page 90) we also derive that both, =fa and =re, are strictly coarser than

=bs.

112 5.6 Chapter Summary

5.6 Chapter Summary

For LTS-like models, trace semantics is known to be an important way to

describe the behavior of a process: the visible parts of all execution paths

the process can follow are listed. Nondeterministic choices are resolved de-

terministically based on the process history.

If probabilities come into play, we deal with a set of distributions which

give the probability of a certain trace. In this setting, the resolution of

nondeterminism is often associated to some kind of strategy related to an

optimization problem (see, for instance, [Der70]). The process is considered

as a closed system and constitutes a model for the analysis of this problem.

This viewpoint leads to the definition of different scheduler classes.

In the timed setting, the current scheduler decision might depend on the time

passed so far. Thus, even more scheduler classes are of interest.

We considered trace semantics with respect to a variety of scheduler classes

and proved inclusions and also found out that many relations are incom-

parable. Additionally, we extended some well-established variants of trace

equivalence to the setting of PTPs.

We do not expect any of the relations defined in this chapter to be a congru-

ence with respect to the parallel composition of SPTPs since this is not even

the case in the discrete-time setting (e.g. compare, for example, [Seg95]).

For an example of two trace equivalent SPTPs which fail to be equivalent

after composition we refer to Example 6.4 on page 132.

As an open problem, it remains to establish the relationship between =SR
tr and

=HR
tr . We have shown that =HR

tr 6⊂ =SR
tr but it is still unknown if =SR

tr ⊂ =HR
tr .

For future work related to the topics of this section, we also mention axiom-

atizations and logical characterizations of the relations defined above.

Chapter 6

More button pushing

experiments

6.1 Overview

In this chapter we retain the idea of button pushing experiments. An exper-

iment is carried out in which the process is represented by a black box. As

before, during a run of the process the visible process behavior is shown at

a display and the experimenter determines which external stimuli are given

to the process. But as opposed to the previous chapter, here a PTP is con-

sidered as an open system which is strongly influenced by its environment.

Since visible actions constitute the interface to the outside world, external

nondeterminism is no longer resolved arbitrarily such as in the case of trace

equivalence. Instead, two processes are regarded as equivalent if they have

equivalent trace observations under fixed environment conditions. Thus, we

compare their behavior provided that the same external stimuli are given.

Stated informally, P is equivalent to Q if for all environments E

Observations(P operates in E) = Observations(Q operates in E).

There are several ways to represent a communication environment of a PTP.

One possibility is to maintain the scheduler classes {THR, THD, HR, . . .} of

Definition 3.5 (see page 48) and to relate certain schedulers, for example, if

113

114 6.1 Overview

scheduler D for PTP P resolves external nondeterminism in the same way

as scheduler D′ for PTP Q does. Another possibility is to follow some well-

established approaches from the nonprobabilistic setting. There, the idea

is that the environment of a process is simulated by assuming that in each

step only a certain subset of visible actions is offered by the environment.

In that context the observations are called failure traces [Phi87] or ready

traces [Pnu85, BB87]. Here, we extend these ideas to the stochastic setting.

The extension presented in the sequel differs from trace semantics in the

following points:

⋄ Choices resolving external nondeterminism are not made on the basis

of the complete process history but on its visible part only.

⋄ Processes are tested under fixed environment conditions in order to

decide if they should be related or not.

In the probabilistic setting, a further distinction regarding the environment

of a process can be made. The “nature” of the environment can be ei-

ther completely nonprobabilistic or probabilistic. We show that assuming a

probabilistic environment increases the distinguishing power of the resulting

notions of equivalence.

In the setting of this thesis, processes act in continuous time which gives rise

to a further distinction: Is the environment aware of time or are external

stimuli given in a time-abstract manner?

We take the above considerations into account by proceeding as follows:

Similar to trace semantics, a button pushing experiment is used to describe

our approach in which actions are externally available either a) with a certain

probability or b) after a certain delay. The resulting semantics are called

weighted trace semantics in the case of a) and delayed trace semantics for

scenario b).

All relations presented in the sequel are analyzed with respect to parallel

composition of SPTPs. It turns out that even relations based on the sim-

ulation of a probabilistic environment are not powerful enough to ensure

6.1 Overview 115

the congruence property (see Counterexample 6.4 on page 132). And also

in case that external stimuli are given after a certain duration, we found

out that the resulting relation does not have the congruence property (see

Counterexample 6.7 on page 148).

Weighted Traces The weighted trace machine1 (as illustrated in Figure 6.1

on page 117) is equipped with controllers, one for each action, which are

used to resolve nondeterministic choices between the different actions the

PTP under study can execute. The observer can adjust the controllers to

determine the probability at which a certain action is (immediately) available.

New adjustments can be made when a visible action is executed by the

process. As a by-product, we present a notion of internal schedulers which

are restricted to the resolution of internal nondeterminism.

Since the weighted trace machine has more features to “test” a process we

cannot expect any of the trace equivalences of Chapter 5 to imply weighted

trace equivalence. The opposite direction also does not hold: We show that

weighted trace equivalence is not finer than trace equivalence (and thus not

finer than ready or failure equivalence) but for a good reason: The experi-

menter of the weighted trace scenario has not access to the complete process

history (but only to the trace performed so far). Her choice for the resolution

of external nondeterminism is based on the visible part of the process his-

tory (whereas the choice of the internal scheduler depends on the complete

history). As opposed to that, in the case of trace semantics, an HR-scheduler

can have different choices after path fragments with the same trace. We elu-

cidate this relationship by defining trace dependent schedulers and show that

the resulting trace equivalence is strictly finer than weighted trace equiva-

lence.

1To improve readability, we drop the adjective “stochastic” for the machines considered

in this chapter.

116 6.1 Overview

Delayed Traces The delayed traces approach relies on the idea that the

environment provides external stimuli after a certain delay, i.e. the environ-

ment is of a “timed nature”. The corresponding delayed trace machine is as

the trace machine for PTPs but additionally equipped with (action) count-

down timers, one for each visible action (compare Figure 6.9 on page 137).

The process can communicate with the environment via an action, say, a, af-

ter the timer of a has expired. The observer determines the respective delays

by setting the action timers. It is possible to choose the zero delay for an

action meaning that this action is immediately available. If more than one

timer is set to zero, the remaining nondeterminism has to be resolved by a

scheduler.

It turns out that delayed trace equivalence fails to be comparable to the trace

equivalences defined in the previous chapter for the same reason as weighted

trace equivalence does so. Surprisingly, it is also not comparable to weighted

trace equivalence which is due to the fact that

⋄ a delay imposed by the environment increases the distinguishing power

of the machine and

⋄ it may be the case that several actions are immediately externally avail-

able and this external nondeterminism is not resolved by the experi-

menter (which is never the case in the scenario of weighted traces).

It is important to point out that the delayed traces scenario describes a new

class of schedulers. We did not list schedulers which make their decision after

a certain delay in the scheduler definition of Chapter 3 (see Definition 3.6

on page 50). Instead we present this idea here in form of a enriched but-

ton pushing experiment to ensure that while comparing two processes fixed

environment conditions are used.

6.2 Weighted Trace Equivalence 117

⊥

Controllers

a b c . . .

Sand

glass

a

Action

display

Figure 6.1: The weighted trace machine

6.2 Weighted Trace Equivalence

The button pushing experiment associated with weighted trace semantics

is as follows (compare Figure 6.1): As for trace semantics the black box

simulator has an action display and an hourglass. Additionally, there are

controllers, one for each visible action and one labeled by ⊥. The experi-

menter can adjust the controllers in order to determine the probability at

which the corresponding action is supplied by the environment. More pre-

cisely, each controller position specifies a weight which equals the probability

of the associated action after normalization. The ⊥-controller represents the

probability that no external stimulus is given. The observer can make new

controller adjustments after the execution of a visible action. This means

that the weight of an action stays constant until the process performs the

next visible action.

In the setting of failure/ready traces, actions are either blocked (available

with probability zero) or free (available with probability one). Since PTPs

branch probabilistically, it is appropriate to assume that in our setting the

observer can decide that with a certain probability an action is immediately

available. The controller adjustments during the whole experiment can be

118 6.2 Weighted Trace Equivalence

described by a function

ctr : Act∗︸ ︷︷ ︸
interaction history

×
(
Act ∪ {⊥}

)
︸ ︷︷ ︸

controller

→ R≥0︸ ︷︷ ︸
controller position

.

Let σ̃ ∈ Act∗, a ∈ Act and let P be the PTP under study. If ctrσ̃(a) :=

ctr(σ̃, a) > 0, action a is immediately provided by the environment after

trace σ̃. If a is possible in the current state of P the probability that a

is executed by P is ctrσ̃(a)/N where N is a normalization factor. In case

that ctrσ̃(a) = 0, action a is completely blocked. If ctrσ̃(⊥) > 0, there is a

non-zero probability that the environment refuses any interaction with the

process.

Obviously, for a given scheduler the underlying probability measure of paths

changes if communication opportunities are limited according to ctr. We

assume that the remaining internal nondeterminism is resolved by a scheduler

and give a new definition which elucidates the role a scheduler has in the

setting of weighted trace semantics. Let Z be the set of functions

ϑ : (Actτ × disS) → [0, 1]

such that for all a ∈ Actτ we have that ϑ(a, ·) =: ϑa is a subdistribution

on disS. A scheduler can choose ϑa to resolve the internal nondeterminism

which occurs if a state has several outgoing transitions labeled by a.

Definition 6.1 (Internal Scheduler)

A (time independent) internal scheduler for PTP P is a function

E : pathf(P) → Z

such that for ξ ∈ pathf(P) with last(ξ) = s and E(ξ) =: ϑ the following

conditions hold:

6.2 Weighted Trace Equivalence 119

i) ϑ(a, µ) > 0 implies s
a

µ.

ii) Whenever s is stable, ϑa is a distribution for all a ∈ Act with s a .

iii) Whenever s is unstable, ϑτ is a distribution.

iv) For all path fragments ξ, ξ′ ∈ pathf(P),

if untime(ξ) = untime(ξ′) then E(ξ) = E(ξ′).

Intuitively, the third condition ensures that if s is unstable, ϑ⊥
a can be non-

zero for some a ∈ Act. Thus, it enables the internal scheduler to decide (with

a non-zero probability) for an invisible transition but for a. We explain this

more detailed in the sequel.

Assume that P is simulated by the weighted trace machine and ξ ∈ pathf(P).

The controller positions in state last(ξ) = s are given by ctrσ̃ where σ̃ =

trace(ξ). If s is stable and ctrσ̃(a)> 0 then transition s a µ is (immediately)

taken with probability ϑ(a, µ) · ctrσ̃(a)/N(ξ, ctr) under internal scheduler E

with E(ξ) = ϑ. The normalization factor N(ξ, ctr) is given by

N(ξ, ctr) =
∑

a∈Act:s a ,
ctrσ̃(a)∈R>0

ctrσ̃(a) + ctrσ̃(⊥). (6.1)

The probability of leaving s not immediately equals the probability that the

environment refuses an immediate interaction. This happens with probability

soj(ξ, ctr) := ctrσ̃(⊥)/N(ξ, ctr)

if N(ξ, ctr) > 0 and soj(ξ, ctr) := 1 otherwise (soj stands for “sojourn”). This

probability is determined by the observer and initiates a race between the

outgoing PH transitions of s. If immediate interaction is permitted by the

observer, the internal scheduler cannot inhibit this.

If s is unstable, we put soj(ξ, ctr) := 0. In case that ctrσ̃(a)> 0 and a 6= τ

transition s a µ is taken with probability ϑ(a, µ) · ctrσ̃(a)/N(ξ, ctr). How-

ever, the probability that an invisible transition is taken is the sum of pe and

pi where pe is the probability that the environment refuses any interaction

120 6.2 Weighted Trace Equivalence

and pi is the probability that scheduler E decides against a visible transition.

More precisely,

pe :=






ctrσ̃(⊥)
N(ξ,ctr)

if N(ξ, ctr) > 0,

1 otherwise,

pi :=





1 − pe if 6 ∃a : s a , ctrσ̃(a) > 0,

or N(ξ, ctr) = 0,

∑
a∈Act:s a ,
ctrσ̃(a)∈R>0

ϑ⊥
a · ctrσ̃(a)

N(ξ,ctr)
otherwise.

(6.2)

Thus, transition s τ µ has probability ϑ(τ, µ) · (pi + pe). This definition is

reasonable because with probability pe the environment refuses any interac-

tion. Thus, the probability of a τ -transition must be greater or equal to pe.

On the other hand, E can always decide for τ , independent of ctrσ̃.

Next, we focus on the definition of a probability measure on sets of paths

that are executed while nondeterministic branching is resolved by ctr and E .

A (ctr, E)-path is a path

π = s1
e1 s2

e2 . . . ∈ path(P)

that respects the decisions of ctr and E , i.e., for all i ≥ 1 there exists µi ∈ disS

with µi(si+1) > 0 and whenever

ei =






t ∈ R>0 then soj(ξ, ctr) > 0,

a ∈ Act then ctrσ̃(a) ∈ R>0 and ϑ(a, µi) > 0,

τ then ϑ(τ, µi) > 0 and pe + pi > 0,

where trace(π↓i) = σ̃, D(π↓i) = ϑ and pe, pi are as defined above. A (ctr, E)-

path fragment is a path fragment of a (ctr, E)-path.

The pair (ctr, E) induces a probability space over sample set Ω which is the set

of all (ctr, E)-paths. A sigma-algebra Σ(ctr,E) is constructed in a similar way

6.2 Weighted Trace Equivalence 121

as in Section 3.6 for THR-schedulers. The basis is the set C(ctr,E) of cylinder

sets of (ctr, E)-paths. Probability measure Pr(ctr,E) on Σ(ctr,E) := σ(C(ctr,E)) is

defined by specifying the probabilities for the elements of C(ctr,E). Let

ζ = s1 E1 s2 E2 . . . Ek−1 sk

where s1, s2, . . . , sk ∈ S and for i ∈ {1, 2, . . . , k−1} either Ei = {a} for some

a ∈ Actτ or Ei = (x, y] ⊆ R>0, x < y. Then cylinder set Cζ ∈ C(ctr,E) contains

all (ctr, E)-paths

π = s′1
e1 s′2

e2 . . .

such that sj = s′j , 1 ≤ j ≤ k and ei ∈ Ei for all i ∈ {1, 2, . . . , k − 1}.

For k = 1 we define

Pr(ctr,E)(Cs) = ν(s)

where ν is the initial distribution of P. Now, let Cζ ∈ C(ctr,E), |ζ | > 1

and π ∈ Cζ , ξ := π↓k−1. The controller positions are given by ctrσ̃ where

trace(ξ) = σ̃ and the decision of internal scheduler E is denoted by E(ξ) = ϑ.

Let

ζ ′ = s1 E1 s2 E2 . . . Ek−2 sk−1.

We distinguish three cases:

1. In the case that Ek−1 is an interval, we know that sk−1 is stable and

define

Pr(ctr,E)(Cζ) := Pr(ctr,E)(Cζ′) · soj(ξ, ctr) · reachsk−1
({sk−1}, {sk}, Ek−1).

Recall that soj(ξ, ctr) is the probability of not leaving last(ξ) imme-

diately and reachs({s}, {s
′}, Ek−1) is the one-step probability to reach

state s′ from s at time instant t ∈ Ek−1 (compare Section 3.3, page 41).

2. Assume that Ek−1 = {a}, a ∈ Act. This implies that sk−1
a and

ctrσ̃(a) ∈ R>0. The observer decides for a with probability ctrσ̃(a)
N(ξ,ctr)

and

E chooses transition (a, µ) with probability ϑ(a, µ). Therefore

Pr(ctr,E)(Cζ) := Pr(ctr,E)(Cζ′) ·
ctrσ̃(a)
N(ξ,ctr)

·

∑{∣∣∣ϑ(a, µ) · µ(sk) | ∃µ : sk−1
a µ

∣∣∣
}
.

122 6.2 Weighted Trace Equivalence

s

v1

v2

v3

v4

v5

(α,T)

a

a
b

c s′

v1

v2 v4

v5

τ

c d

d

Figure 6.2: Outgoing transitions of state s and s′ of PTP P

3. Suppose that Ek−1 = {τ}. As already explained above, τ can be

performed if either the environment refuses instantaneous interaction

(which happens with probability pe) or if E decides against a visible

transition (probability pi). Let pe and pi be defined as above. Then

Pr(ctr,E)(Cζ) := Pr(ctr,E)(Cζ′) · (pi + pe)·

∑{∣∣∣ϑ(τ, µ) · µ(sk) | ∃µ : sk−1
τ µ

∣∣∣
}
.

Similar to the construction in Section 3.6, measure Pr(ctr,E) can be extended to

a unique probability measure on the complete sigma-algebra Σ(ctr,E). Some-

times, we may take as sample space the set of all paths instead of the set of

(ctr, E)-paths by assuming that sets of paths that are prohibited by ctr or E

have probability zero. Moreover, we may write Pr
(ctr,E)
P instead of Pr(ctr,E).

Example 6.1

Suppose that PTP P is analyzed with respect to weighted traces. For sim-

plicity, we only consider a single step in P. Let s (s′ respectively) be the a

state of P and assume that this state is entered at time instant t after trace

σ̃ is performed. The transitions of s and s′ are depicted in Figure 6.2 (for

simplicity we assume that all target distributions are Dirac distributions).

We consider controller adjustments ctrσ̃ with values given by the following

table:

6.2 Weighted Trace Equivalence 123

Action a b c d ⊥

ctrσ̃ 5 2 0 2 3

An internal scheduler E is used to resolve occurring internal nondeterminism.

Let ξ with last(ξ) = s and trace(ξ) = σ̃ (ξ′ with last(ξ′) = s′ and trace(ξ′) =

σ̃, respectively) be a path fragment of P. The scheduler decision is given by

E(ξ) = ϑ and E(ξ′) = ϑ′ where ϑ and ϑ′ are defined as follows:

Transition (s, a, δv2) (s, a, δv3) (s, b, δv4) (s, c, δv5)

Scheduler ϑ 1/2 1/2 1 1

Transition (s′, τ, δv1) (s′, c, δv2) (s′, d, δv4) (s′, d, δv5)

Scheduler ϑ′ 1 2/3 1/4 0

Note that ϑa, ϑb, ϑc are distributions because s is stable. Obviously, s is left

immediately with probability 7/10 if the controllers are positioned according

to ctrσ̃. Thus, PH transition (s, (α, T), δv1) is taken with probability 3/10.

Let us consider the probability to reach state v2 from s after history ξ. If

π↓i= ξ then

Pr(ctr,E)({π | π↓i= ξ and last(π↓i+1) = v2})

= Pr(ctr,E)({π | π↓i= ξ}) · 5/10 · 1/2

since v2 can only be reached by an a-transition. The probability at which a

is externally available is 5/10 and E chooses (s, a, δv2) with probability 1/2.

For the probability to reach v1 within x > 0 time units we calculate

Pr(ctr,E)({π | π↓i= ξ, last(π↓i+1) = v1, time(π↓i+1) ≤ x + time(π↓i))})

= Pr(ctr,E)({π | π↓i= ξ}) · 3/10 · reachs({s}, {v1}, [0, x]).

124 6.2 Weighted Trace Equivalence

We now treat s′. Unstable states are left immediately, regardless of the

controller settings. In the case of scheduler choice ϑ′ and path fragment ξ′

with π↓i= ξ′, state v1 is reached with probability

Pr(ctr,E)({π | π↓i= ξ′ and last(π↓i+1) = v1})

= Pr(ctr,E)({π | π↓i= ξ′}) · (pe + pi) · 1

= Pr(ctr,E)({π | π↓i= ξ′}) · (3/5 + 2/5 · 3/4).

Definition 6.2 (Weighted Trace Observation)

Let ctr : Act∗ × (Act ∪ {⊥}) → R≥0 describe the controller positions and

let E be an internal scheduler for PTP P. A weighted trace observation is a

function

we
(ctr,E)
P :

(
Act∗ × R≥0

)
→ [0, 1]

such that

we
(ctr,E)
P (σ, t) = Pr

(ctr,E)
P ({π ∈ path(P) | π is a (ctr, E)-path,

∃i : trace(π↓i) = σ, time(π↓i) ≤ t}).

The set of weighted trace observations of P with respect to ctr is defined as

Octr
we(P) = {we

(ctr,E)
P | E is an internal scheduler for P}.

Definition 6.3 (Weighted Trace Equivalence)

Two PTPs P1 and P2 are weighted trace equivalent, written P1 =we P2, iff for

all functions ctr : Act∗ × (Act ∪ {⊥}) → R≥0

Octr
we(P1) = Octr

we(P2).

Our next objective is the relationship between =we and failure trace equiv-

alence [Phi87]. We define failure trace observations as a special case of

weighted trace observations:

6.2 Weighted Trace Equivalence 125

Definition 6.4 (Failure Trace Equivalence)

Two PTPs P1 and P2 are failure trace equivalent, written P1 =ftr P2, iff for

all functions ctr : Act∗ × (Act ∪ {⊥}) → R≥0 and all internal schedulers E1

for P1 there exists an internal scheduler E2 for P2 such that

lim
t→∞

we
(ctr,E1)
P1

(σ, t) > 0 ⇐⇒ lim
t→∞

we
(ctr,E2)
P2

(σ, t) > 0.

We only distinguish, if σ can be performed under the pair (ctr, E) or not. We

do not compare the probabilities nor set time limits.

Proposition 6.1

Let P1 and P2 be PTPs. Then P1 =we P2 implies P1 =ftr P2.

Obviously, the opposite direction of the above proposition does not hold.

This can be seen by considering a similar example as in the case of trace

equivalence and probabilistic trace equivalence (compare Example 5.1 on

page 88).

For LTSs it was shown that failure trace equivalence does neither imply ready

nor failure equivalence (see [vGla90, Page 21]). The following example proves

a similar result in the setting of PTPs: weighted trace equivalence neither

implies failure nor ready equivalence. Because of the effect the controller

positions have on the resolution of external nondeterminism and the fact that

we consider randomized schedulers, the argumentation is more complicated

than in the nonprobabilistic case.

Example 6.2

Consider the two PTPs in Figure 6.3. It is easily seen that P and Q are

failure and ready equivalent (see Definition 5.5 and 5.7 on page 109 and 111)

and therefore also P =HR
tr Q. But P 6=we Q. This can be seen by assuming

that the observer

1. initially allows the immediate execution of action a by setting ctrǫ(a) >

0,

126 6.2 Weighted Trace Equivalence

1

aa

c c

d e

P

b f

1

aa

c c

e d

b f

Q
1

a

0.5 0.5

c f

e

T

Figure 6.3: P =fa Q and P =re Q, but (P,Q) 6∈ =we, =de, =te.

2. assigns positive weights only to c and f in the next step, i.e. ctra(c) =

ctra(f) = 1 and ctra(b) = 0,

3. blocks all actions except e completely in the final step (after trace ac

has been performed), i.e. ctrac(e) = 1 and ctrac(d) = 0.

Furthermore, we assume that the ⊥-controller is at position 0 during the

whole experiment. Note that internal nondeterminism is only resolved in the

first step. If now internal scheduler EP for P chooses the right a-transition

with probability one, we have for all t ≥ 0

we
(ctr,EP)
P (ace, t) = we

(ctr,EP)
P (ac, t) = we

(ctr,EP)
P (af, t) = 1/2,

we
(ctr,EP)
P (a, t) = 1.

An internal scheduler EQ for Q must choose the left a-transition with prob-

ability 1/2 because only then we
(ctr,D)
P (ace, t) = we

(ctr,D′)
Q (ace, t) holds. Since

the choice of an internal scheduler is a distribution on the set of equally la-

beled transitions, the right a-transition is also chosen with probability 1/2.

We get for all t ≥ 0

we
(ctr,D′)
Q (ace, t) = 1/2, we

(ctr,D′)
Q (ac, t) = 3/4,

we
(ctr,D′)
Q (af, t) = 1/4, we

(ctr,D′)
Q (a, t) = 1.

6.2 Weighted Trace Equivalence 127

0.5 0.5

a a

d c e f

P

b b

0.5 0.5

a a

f c e d

Q

b b

1

a b

c f

T

Figure 6.4: (P,Q) 6∈ =HR
tr , =de, =te but P =we Q

Obviously, a different resolution of the initial nondeterministic choice in Q

does also not lead to a matching observation. Thus, there is no internal

scheduler EQ for Q that can match this combination.

The next example proves that weighted trace equivalence does not imply

failure and ready equivalence. We summarize the results of the two coun-

terexamples in Proposition 6.2 and give an informal explanation of the in-

comparableness.

Example 6.3

The two PTPs in Figure 6.4 are not in =HR
tr (and therefore also neither failure

nor ready equivalent). To see this, assume that HR-scheduler D for P is

such that trDP (ac, t) = trDP (bf, t) = 0.5 and trDP (ae, t) = trDP (bd, t) = 0 (for all

t ≥ 0). Now, an HR-scheduler D′ for Q must choose the left a-transition with

probability one to match trDP(ac, t) = trD
′

Q (ac, t) = 0.5. But then trD
′

Q (bf, t) =

0. Thus, P 6=HR
tr Q.

But, P =we Q because every weight the observer assigns to a and b will result

in an observation which is the same for both PTPs, P and Q. Note that there

is no internal nondeterminism which has to be resolved. Thus, the choice of

an internal scheduler does not play a role.

Example 6.2 and 6.3 imply the following result.

128 6.2 Weighted Trace Equivalence

Proposition 6.2

=we is incomparable to =HR
tr .

Note that the two counterexamples also imply that =we is also incomparable

to =fa and =re.

Intuitively, the reason why weighted trace equivalence does not imply trace

equivalence is that the observer’s choice is based on the visible part of the pro-

cess history but not on the complete history. Thus, if an invisible transition

is taken or if the process branches probabilistically (and instantaneously),

the controller adjustments are the same for each branch. However, in the fol-

lowing we define trace equivalence with respect to the set of schedulers that

resolve external nondeterminism based on the performed trace (and internal

nondeterminism based on the complete process history). We show that this

variant of trace equivalence is strictly finer than weighted trace equivalence.

Before we give the definition of the scheduler class mentioned above, a remark

is in order: Assume that the visible parts of two path fragments ξ and ξ′,

ξ′ 6= ξ are equal, i.e. trace(ξ) = trace(ξ′) = σ and assume that HR-scheduler

D’s resolution of external nondeterminism depends only on σ. This means

that if both, last(ξ) =: s and last(ξ′) =: s′ are stable, for each pair (a, b) of

visible actions the ratio of the scheduler’s choice is equal i.e.

s a , s′ a and s b , s′ b =⇒
P

µ D(ξ)(a,µ)
P

µ D(ξ)(b,µ)
=

P

µ D(ξ′)(a,µ)
P

µ D(ξ′)(b,µ)
.

It is important to keep in mind that after a certain trace has been per-

formed, different states can be reached from which visible transitions emerge

having different action labels. Consider, for instance, PTP Q in Figure 6.5

on page 132. The two states that can be reached from the initial one with an

invisible transition (trace σ = ǫ) provide either b or c. Thus, in this case we

do not stipulate any additional conditions for a trace dependent scheduler.

Similarly, if s a and s′ a we want the scheduler’s choice to fulfill

D(ξ)⊥
P

µ D(ξ)(a,µ)
= D(ξ′)⊥

P

µ D(ξ′)(a,µ)
.

6.2 Weighted Trace Equivalence 129

However, if s or s′ is unstable, the situation is more complicated. Even if the

environment decides for, say, action a with probability p > 0, D can choose

an internal transition instead of a a-transition. For instance, in Example 6.1

on page 122 we have that in state s′ action d is externally enabled with

probability 2
5

but internally chosen with probability 1
4
. Thus, a d-transition

is taken with probability 2
5
· 1
4

= 1
10

. As opposed to that, in a stable state with,

say, two outgoing transitions labeled by c and d, respectively, the probability

of d is 2
5
.

Let D(ξ, a) :=
∑

µ D(ξ)(a, µ). The above considerations motivate the follow-

ing definition.

Definition 6.5 (Trace Dependent Scheduler)

We call D ∈ HR(P) a trace dependent scheduler if for all σ ∈ Act∗ there

exist values z⊥, za, zb, . . . ∈ R≥0 such that for each ξ ∈ pathf(P, σ) with

normalization constant

N := z⊥ +
∑

a∈Act

last(ξ)
a

za

and last(ξ) =: s the following conditions are true:

1. If s is stable then

D(ξ)⊥ =





z⊥
N

if N > 0,

1 otherwise,

and s a implies

D(ξ, a) =





za

N
if N > 0,

0 otherwise.

2. If s is unstable then N > 0 implies that for each a ∈ Act with s a

there exists pξ
a ∈ [0, 1] with

D(ξ, a) = za

N
· pξ

a,

D(ξ, τ) = z⊥
N

+
∑

a∈Act

s
a

za

N
· (1 − pξ

a).

130 6.2 Weighted Trace Equivalence

If N = 0 then D(ξ, τ) = 1.

We write TR ⊂ HR for the set of all trace dependent HR-schedulers2.

Note that for each set pathf(P, σ) there always exists ξ′ ∈ pathf(P, σ) such

that last(ξ′) is stable because P is divergence free.

Intuitively, za describes the external weight of action a and z⊥ corresponds

to the weight of external refusal of any interaction. Similarly, pξ
a is the

probability of a (instead of τ) being chosen internally under the condition

that the external stimulus a is provided. With probability 1−pξ
a the scheduler

decides for τ .

The class TR induces the trace equivalence =TR
tr by setting D = TR in Defi-

nition 5.1 and 5.2 (see page 87).

The values za in the above definition (which depend on D and σ) correspond

to the controller settings ctrσ(a) in the weighted trace testing scenario. But

the equivalence =TR
tr differs from weighted trace equivalence not only in that

it is formulated using HR-schedulers instead of a button pushing experiment.

Here, if P1 =TR
tr P2, a scheduler D1 for P1 might use a different resolution of

external nondeterminism than scheduler D2 for P2 to match the observations

resulting from P2 under scheduler D2.

Proposition 6.3

Let P1 and P2 be PTPs. P1 =we P2 implies P1 =TR
tr P2. But the opposite

direction does not hold.

Sketch of Proof. Let us start with the implication. We give only a proof

sketch and refer to Section A.1 of the appendix for the proof details.

Assume that P1 =we P2. Now, let D1 be a trace dependent scheduler

for P1 and let σ ∈ Act∗. According to Definition 6.5 there exist values

z⊥, za, zb, . . . ∈ R≥0 such that the above conditions are fulfilled. We perform

a button pushing experiment using the weighted trace machine and assume

2Here, TR stands for “trace dependent, randomized”.

6.2 Weighted Trace Equivalence 131

controller settings ctrσ(a) := za = zD1,σ
a for a ∈ Act, ctrσ(⊥) := z⊥ = zD1

σ (⊥).

The idea of the proof is to construct a trace dependent scheduler D2 for P2

such that for all t ≥ 0 and all σ ∈ Act∗

trD1
P1

(σ, t) = trD2
P2

(σ, t). (6.3)

This is done in two steps. First we construct an internal scheduler E1 for

P1 based on the decisions of D1. Since P1 =we P2 there exists a matching

internal scheduler E2 for P2. Based on E2 we construct D2 and show that

Equation 6.3 holds.

For the opposite direction we consider Figure 6.5. It holds that P and Q

are trace equivalent with respect to trace dependent schedulers. To see this

assume that the (trace dependent) scheduler’s choice for P is pτ for the invis-

ible transition, pb and pc for the b-transition and c-transition, respectively. A

(trace dependent) scheduler for Q can match this by choosing the following

discrete distribution in the initial state: probability pb/(pb + pc) is assigned

to the left τ -transition and pc/(pb + pc) to the right τ -transition. This choice

concerns internal nondeterminism. Then, in both successor states, no tran-

sition at all is chosen with probability pτ (which is a trace dependent choice)

and the respective visible transition with probability 1 − pτ . Since

pb

pb+pc
· pτ + pc

pb+pc
· pτ = pτ

pb

pb+pc
· (1 − pτ) = pb

pb+pc
· (pb + pc) = pb

pc

pb+pc
· (1 − pτ) = pc

pb+pc
· (pb + pc) = pc

each trace has the same probability and P =TR
tr Q follows.

On the other hand P 6=we Q because if the controller settings are given

by, say, ctrǫ(⊥) = 1, ctrǫ(b) = ctrǫ(c) = 2, we get trace c with probability

3/4 · 2/3 = 1/2 if the right transition of the initial state of Q is (internally)

chosen with probability 3/4. But in P the probability of c cannot be greater

than 2/5 under these controller settings.

132 6.2 Weighted Trace Equivalence

1

τ
b c

P

1

ττ

b c

Q

Figure 6.5: P =TR
tr Q, but P 6=we Q

Let us now examine an example which proves that =we fails to be a congru-

ence with respect to the parallel composition operator of Definition 4.1 for

SPTPs. Intuitively, =we does not have the congruence property because it is

not sensitive to behavior which arises from a delayed supply of external stim-

uli, since =we tests for immediate interaction (or complete external refusal of

an action) only.

Example 6.4

Consider the two SPTPs P1 and P2 in Figure 6.6, left. Obviously, P1 =we P2

(and also P1 =HR
tr P2). The parallel composition of P1 and Q over A = {a}

results in a SPTP which can perform trace ac (with probability 0.5) after a

delay that is PH distributed according to (α, T) (compare Figure 6.6, right):

the maximum of the two exponential delays (rates −1 and −3) is convoluted

with the final exponential delay preceding the c-transition (rate −2). In the

case of P2 ||A Q the delay for ac has representation (α, T ′). This can be seen

by observing that this delay is the convolution of the random variables X

with distribution FX = F1,−2 · F1,−3 and Y with distribution F1,−1. From

F(α,T) 6= F(α,T ′) we derive that for all combinations of internal schedulers E1

and E2 there exists t ≥ 0 such that

we
(ctr,E1)
P1 ||A Q(ac, t) 6= we

(ctr,E2)
P2 ||A Q(ac, t)

for all functions ctr that assign positive weights to a (initially) and c (after

trace a). Thus, P1 ||A Q 6=we P2 ||A Q .

6.2 Weighted Trace Equivalence 133

0.5 0.5

−1−2

a a

−1

P1

−2

b c

0.5 0.5

−1−2

a a

−1

P2

−2

c b

1

−3

a

Q
α,T

1

1 3

3 1

2

α,T ′

1

2 3

3 2

1

Figure 6.6: (P1,P2) ∈ =we, =
HR
tr , but (P1 ||{a} Q,P2 ||{a}Q) 6∈ =we, =

HR
tr and

(P1,P2) 6∈ =te, =de.

It is important to note that =we fails to be a congruence also in the purely

interleaving case of parallel composition (for a counterexample, suppose in

the above example that A = ∅).

Let us now focus on the relationship between =we and phase type bisimula-

tion. Assume P =bs Q and R is a phase type bisimulation which relates P

and Q. In analogy to Theorem 3.1 (compare page 61) it can be shown that

for all timer settings ctr and all internal schedulers E there exists E ′ such

that for all k ≥ 1, Ξη ∈ HR, |η| = k

Pr
(ctr,E)
P ({π ∈ path(P) | π↓k∈ Ξη}) = Pr

(ctr,E ′)
Q ({π ∈ path(Q) | π↓k∈ Ξη}).

But since the set of paths measured by we
(ctr,E)
P (σ, t) is the (disjoint) union

of sets Ξη ∈ HR, the inclusion of the following proposition follows:

Proposition 6.4

=bs is strictly finer than =we.

Proof. We already justified above that the inclusion holds. Strictness can be

seen by considering the two PTPs P1 and P2 in Figure 6.6. As already shown

134 6.2 Weighted Trace Equivalence

P

s1

1

u1

u′
1

v1

w1

−2

−1

b

a
a

Q

s2

1

u2

u′
2

v2

w2

−1

−2

b

a
a

P ′

1/3
2/3

1/3
2/3

−2

−1

b

a

a

Q′

1/3
2/3

1/3
2/3

−1

−2

b

a

a

Figure 6.7: P =de Q and P =te Q, but P 6=we Q,P 6=HR
tr Q

above, P1 =we P2. But P 6=bs Q because there is no phase type bisimulation

that relates the target states of the a-transitions. Thus, the initial states are

not related and νP1 6≡R νP2 for all phase type bisimulations R.

Although =we is defined as a probabilistic extension of failure trace and

has a close relationship to other linear-time relations such as the testing

equivalence defined in [CSZ92], there are processes =we distinguishes which

one wants to treat as equal for most applications. The following example

illustrates the unfavorable effect a purely time-abstract testing environment

has on the distinguishing power of the resulting equivalence.

Example 6.5

Intuitively, the two SPTPs P and Q in Figure 6.7, left, show the same be-

havior. Both PTPs behave as follows: action a is offered and if a is not taken

within a PH distributed delay with representation

α =
[
1 0

]
, T =



−1 1

0 −2


,

action b is enabled, i.e. we can abstract from the order of the two successive

exponential delays. Formally, if we combine the two successive exponential

delays we see that P = ex(P̂) (Q = ex(Q̂)) where P̂ (Q̂) is a copy of P (Q)

6.2 Weighted Trace Equivalence 135

but the outgoing transitions of state u1 (u2) are replaced by a PH transition

s1
α,T

u′
1 (s2

α,U
u′

2, respectively) where

U =



−2 2

0 −1


.

If P and Q are analyzed with respect to weighted traces, they show different

behavior. Assume that ctrǫ(a) = 2, ctrǫ(⊥) = 1 and ctrǫ(b) = 1. The two

SPTPs P ′ and Q′ in Figure 6.7, right, illustrate the corresponding observa-

tions of P and Q. The initial states s1 and s2 are replaced by two initial

states, respectively. With probability 2/3 action a is executed and with prob-

ability 1/3 the PH-transition is performed. For all internal schedulers EP , EQ

and all 0 < t < ∞ we get

we
(ctr,EP)
P (a, t) = 2/3 + 1/3 · 2/3 · F−2(t)

6= 2/3 + 1/3 · 2/3 · F−1(t) = we
(ctr,EQ)
Q (a, t).

Furthermore, P and Q are not HR-trace equivalent. This can be seen by

considering a scheduler D ∈ HR(P) which decides against the initial a tran-

sition but chooses a after the first delay. There is no matching scheduler for

Q. The problem is that D (and also ctr as defined above) simulates environ-

ment conditions that are in some sense not “natural” for a process acting in

continuous time. An external stimulus for P is either already existing (when

P enters its initial state) or provided after a certain delay. However, this is

in contrast to the scenario D and ctr describe.

Figure 6.8 illustrates the behavior of P and Q in case that action a is exter-

nally enabled after two successive exponential delays with rate −3 and −4,

respectively (and b is enabled immediately). The probability to observe a

within t ≥ 0 time units is equal for P ′′ and Q′′ (this is also true for trace b).

It is easily seen that P and Q exhibit equal behavior if external stimuli are

provided after a certain delay (including the zero delay). In the next section

we will define an equivalence that identifies P and Q because it is based on

the assumption that the environment is “timed”, i.e. the environment gives

action inputs after a certain delay.

136 6.3 Delayed Trace Equivalence

1

P ′′

−3−2

−3−1

−2

−1b

b

−4

−4

a

a

1

Q′′

−3−1

−3−2

−1

−2b

b

−4

−4

a

a

Figure 6.8: P ′′ and Q′′ show equal observable behavior.

6.3 Delayed Trace Equivalence

The idea of this section is to enrich the stochastic trace machine with count-

down timers, one for each action. The experimenter can set the timers in

order to determine after which time duration the corresponding action is

supplied by the environment. More precisely, an action, say, b occurs earlier

as an environmental stimulus than action a if the timer of b is set to a lower

value than the timer that corresponds to a (compare Figure 6.9). Therefore,

the process under study might have to wait until one of the current state’s

transitions becomes enabled. Assume, for instance, that the current state of

a PTP has only two outgoing transitions, one labeled by a, and the other one

labeled by b. If now the countdown timer of b expires first, the b-transition

is taken.

Each countdown timer determines the PH distribution of the random time

until the corresponding action input is given. Alternatively, the observer can

decide that an action is immediately available (by setting the timer to zero).

Recall that R is the set of all irreducible PH representations (α, T) with

α · 1 = 1. We describe the action timers by a function

tm : Act∗︸ ︷︷ ︸
interaction history

× Act︸ ︷︷ ︸
timer label

→
(
R∪ {I, B}

)
︸ ︷︷ ︸

delay distribution

6.3 Delayed Trace Equivalence 137

2.0

a

0.0

b

1.2

c . . .
Sand

glass

a

Action

display

Figure 6.9: The delayed trace machine with action countdown timers

where I represents instantaneous availability of an action and B corresponds

to the case where an action is completely blocked. Function tm(σ̃, ·) =: tmσ̃

describes the timer settings after trace σ̃ has been performed. If tmσ̃(a) =

(α, T) ∈ R action a is externally available after a PH distributed delay with

representation (α, T). We require the set

{tmσ̃(a) ∈ R ∪ {I} | a ∈ Act}

to be finite for all σ̃ ∈ Act∗ to avoid technical problems. This is a reasonable

restriction since it means that the process acts in an environment in which

only a finite number of processes want to communicate.

It is important to note that the PH delays for the external availability of an

action start at that moment the last action of trace σ̃ is executed. However,

if the next visible action, say, a is performed external stimuli are given ac-

cording to tmσ̃a. External nondeterminism occurs only if several actions are

immediately available, e.g. tmσ̃(a) = tmσ̃(b) = I and the current state of the

process under study has outgoing transitions labeled by a and b, respectively.

The delayed trace scenario requires a different definition of paths because we

have to record the current phase of all representations tmσ̃(a) ∈ R, a ∈ Act

while

138 6.3 Delayed Trace Equivalence

⋄ the process traverses through several states (via successive PH or τ -

transitions) or

⋄ other timers change their current phase, for example, if tmσ̃(b) ∈ R we

ought to know which action is first externally available (a or b).

We call the execution sequences which emerge in the delayed trace scenario

tm-paths. Let G be the set of functions ph : Act → {0, 1, 2, . . .}∪{∞}. which

record the current phase of each action timer. For k > 0, we set ph(a) = k

if representation tmσ̃(a) = (α, T) is in the k-th phase (i.e. the a-timer has

not yet expired but resides in state k of the Markov chain that corresponds

to (α, T)). In the case that ph(a) = 0, the timer of action a has expired

(i.e. the absorbing state is reached). Clearly, if an action is instantaneously

available, ph(a) = 0. However, if a is blocked because tmσ̃(a) = B we set

ph(a) = ∞.

Definition 6.6 (tm-paths and tm-path fragments)

Let s1, s2, . . . be states of PTP P, e1, e2, . . . ∈
(
R>0 ∪ (Actτ × R≥0)

)
and

ph1, ph2, . . . ∈ G. An infinite or finite sequence

π = (s1, ph1)
e1 (s2, ph2)

e2 . . . or

π = (s1, ph1)
e1 (s2, ph2)

e2 . . .
ek−1 (sk, phk)

is a tm-path of P if the following conditions are true:

1. For i ∈ {1, 2, . . .} (i < k if π is finite) let êi = t if ei = t > 0 and êi = a

if ei = (a, t). The projection s1
ê1 s2

ê2 . . . is an infinite or finite

path of P, respectively.

2. For all i ∈ {1, 2, . . .} (i < k if π is finite) with trace(π↓i) = σ:

(a) for all a ∈ Act:

tmσ(a)





∈ R is of order j implies 0 ≤ phi(a) ≤ j,

= I implies phi(a) = 0,

= B implies phi(a) = ∞.

6.3 Delayed Trace Equivalence 139

(b) ei ∈ R>0 or ei = (a, t), t > 0 implies 6 ∃a ∈ Act with phi(a) = 0,

si
a ,

(c) ei = (a, 0) and a 6= τ implies phi(a) = 0,

(d) ei = (a, t), t > 0 implies a 6= τ , tmσ(a) ∈ R and phi(a) > 0.

As for paths, we require that, if π is finite, sk , sk
τ

and there exists

no action a such that sk
a and phk(a) < ∞. A tm-path fragment is a prefix

of a tm-path. Let path(P, tm) and pathf(P, tm) denote the set of tm-paths

and tm-path fragments of P, respectively.

Informally, the first condition of Definition 6.6 states that if we remove the

information about tm and all delays caused by the timers, the result is a path

of P. Condition 2a) ensures that the sequence ph1, ph2, . . . conforms to the

timer settings tm. Enabled action transitions are always taken immediately

(case 2b), i.e. time can only pass if immediate interaction is not possible.

Condition 2c) makes sure that if a visible action is taken immediately, its

action timer must have been already expired. Finally (case d), if an action

transition is taken after a certain delay, it must be a visible transition (since

invisible action transitions are instantaneous) and the corresponding timer

imposed that delay.

For tm-paths and tm-path fragments we use similar notations as for paths.

For instance, untime(ξ) is a copy of ξ where all timing information is dropped.

Example 6.6

Assume that the outgoing transitions of the initial state s of PTP P are

given by Figure 6.2 on page 122. Furthermore, let tmǫ(a) = (β, U) and

tmǫ(b) = (γ, V). All remaining actions are initially blocked. Then

ξ1 = (s, ph1)
a,2.5

(v2, ph′1),

ξ2 = (s, ph2)
1.6 (v1, ph′2),

ξ3 = (s, ph3)
b,2.9

(v4, ph′3)

140 6.3 Delayed Trace Equivalence

are tm-path fragments where for i ∈ {1, 2, 3} phi corresponds to tmǫ and ph′
1

to tma, ph′
2 to tmǫ and ph′

3 to tmb. For example, ph2(a) = 1 and ph′
2(a) = 2

and (β, U) is of order 2.

If now tmǫ(a) = tmǫ(b) = I there are only three possible path fragments

starting in s:

ξ1 = (s, ph1)
a,0

(v2, ph′
1)

ξ2 = (s, ph2)
a,0

(v3, ph′
2)

ξ3 = (s, ph3)
b,0

(v4, ph′
3)

Note that in the latter case the delayed trace machine which is simulating

the process might encounter external nondeterminism.

Obviously, we need to define a randomized scheduler which resolves the re-

maining nondeterminism based on time-abstract part of the tm-path frag-

ment executed so far3. In the above example, we have, for instance, non-

determinism between the two a-transitions of s and, in case that tmǫ(a) =

tmǫ(b) = I, between all transitions labeled by a or b . Furthermore, if s is the

current state and tmǫ(a), tmǫ(b) ∈ R we do not know if the timer of action

a expires before that one of, say, action b or vice versa. Thus, the sched-

uler must specify discrete distributions for both, the a-transitions and the

b-transitions. In the case that immediate interaction is possible (or if s is un-

stable), a distribution on the successors that can be reached instantaneously

is needed.

We call the pair (s, ph) stable if s is stable and if there exists no a ∈ Act such

that ph(a) = 0 and s a . Furthermore, let

Actτ (ph) := {a ∈ Act | ph(a) = 0} ∪ {τ}

be the set of actions that are externally enabled (with respect to ph).

Definition 6.7 (tm-scheduler)

A tm-scheduler for PTP P is a function
3Recall that we restrict to time abstract schedulers in this chapter.

6.3 Delayed Trace Equivalence 141

F : pathf(P, tm) →
(
(Actτ × disS) → [0, 1]

)

such that for ξ ∈ pathf(P, tm) with last(ξ) = (s, ph) the following conditions

are true:

1. F(ξ)(a, µ) > 0 implies s a µ,

2. whenever (s, ph) is stable then F(ξ) is such that s a implies

∑
µ:s a µ

F(ξ)(a, µ) = 1, i.e. F(ξ)(a, ·) ∈ dis(disS),

3. whenever (s, ph) is not stable then F(ξ) ∈ dis(Actτ (ph) × disS),

4. for all ξ, ξ′ ∈ pathf(P, tm), whenever untime(ξ) = untime(ξ′) then

F(ξ) = F(ξ′).

Let us examine the conditions stated above: The first condition states that

a non-zero probability can only be assigned to outgoing transitions of s.

The second one ensures that if s cannot be left immediately (in which case

the timers resolve external nondeterminism), the scheduler acts as an internal

scheduler, i.e. if the timer of action, say, a expires first and s
a

, F chooses

one of the a-transitions. In the third condition immediate interaction is

possible and the scheduler can either decide for an invisible transition or for

a visible transition which is permitted by both, the experimenter and P.

Finally, we achieve time independence with the fourth condition.

It is important to point out that the tm-scheduler follows a maximal progress

strategy, i.e. F is forced to interact if possible and cannot refuse interaction

with the environment. This stands in contrast to HR-schedulers which are

allowed to choose subdistributions λ with λ⊥ > 0.

A tm-path

π = (s1, ph1)
e1 (s2, ph2)

e2 . . .

is called a (tm,F)-path if π ∈ path(P, tm) respects the decisions of F , i.e.,

for all i ≥ 1 (i < k if π is of finite length k) we require the following:

142 6.3 Delayed Trace Equivalence

Whenever ei = a or ei = (a, t) then there exists µi ∈ disS with µi(si+1) > 0

and F(π ↓i)(a, µi) > 0. A (tm,F)-path fragment is a path fragment of a

(tm,F)-path.

We construct a probability measure Pr(tm,F) in a similar way to Section 6.2

by specifying the probability of cylinder sets of (tm,F)-paths. However, in

the setting of delayed traces, the construction is more complicated than in

the previous sections since we have to incorporate the action timers.

Let us fix P,F and tm. Let C(s,ph) be the cylinder set of all (tm,F)-paths

that start with (s, ph). We define

Pr(tm,F)(C(s,ph)) = ν(s) · Pr(ph, ǫ)

where ν is the initial distribution of P and the probability of an action timer

initialization according to ph is given by

Pr(ph, σ) :=





∏
b:tmσ(b)=(α,T)∈R

α(ph(b)) if ∃b : tmσ(b) ∈ R,

1 otherwise

(6.4)

if the timer settings correspond to tmσ, σ ∈ Act∗.

Assume now, that k > 1 and let

ζ = (s1, ph1) E1 (s2, ph2) E2 . . . Ek−1 (sk, phk)

where s1, s2, . . . , sk ∈ S, ph1, ph2, . . . , phk ∈ G and for i ∈ {1, 2, . . . , k − 1}

either

⋄ Ei = {(a, 0)} for some a ∈ Actτ ,

⋄ Ei = {a} × (x, y] for some a ∈ Act, 0 ≤ x < y or

⋄ Ei = (x, y], 0 ≤ x < y.

Cylinder set Cζ is then the set of all (tm,F)-paths

π = (s1, ph1)
e1 (s2, ph2)

e2 . . .

6.3 Delayed Trace Equivalence 143

with ei ∈ Ei for i ∈ {1, 2, . . . , k − 1}. Furthermore, let trace(π↓k−1) = σ,

F(π↓k−1) = λ. and

ζ ′ = (s1, ph1) E1 (s2, ph2) E2 . . . Ek−1 (sk−1, phk−1).

We distinguish the following cases:

1. If last(ζ ′) = (sk−1, phk−1) is stable a race between the outgoing PH

transitions of sk−1 and the action timers of elements of the (finite) set4

A := {a ∈ Act | tmσ(a) = (α, T) ∈ R ∧ sk−1
a }

takes place. This race is reflected by a SPTP Q which is the paral-

lel composition of the following SPTPs. The first component is given

by P ′ = ex(SP , P , ∅, δsk−1
) and the remaining components are

SPTPs Pa = (Sa, a, ∅, δphk−1(a)), a ∈ A, with set of states Sa :=

{0, 1, . . . , l} and5

a = {(i,−Tij , j) | 0 < i, j ≤ l, i 6= j} ∪ {(i,−T0
i , 0) | 0 < i ≤ l}

where tmσ(a) = (α, T) is of order l.

(a) Assume that Ek−1 is an interval (x, y]. A PH transition was taken

before a timer of one of the actions a ∈ A expired. Let SQ be the

set of states of Q and B ⊆ SQ the set of all states for which the

local state u(j) of P ′ fulfills u = sk−1 and for all a ∈ A the local

state ua of Pa is not zero. Furthermore, C ⊆ SQ is the set of all

states for which the local state v(j) of P ′ fulfills v = sk and for

all a ∈ A the local state va of Pa is such that va = phk(a). The

probability that the timer of a reaches phase phk(a) from phase

phk−1(a) and the current state of P changes from sk−1 to sk within

interval (x, y] is given by reachQ(B, C, (x, y]).

Thus, we get

Pr(tm,F)(Cζ) = Pr(tm,F)(Cζ′) · reach
Q(B, C, (x, y]). (6.5)

4Recall that the set {tmσ̃(a) ∈ R | a ∈ Act} is supposed to be finite for all σ̃ ∈ Act
∗.

5Recall that T
0 = −T1.

144 6.3 Delayed Trace Equivalence

(b) If Ek−1 = {a} × (x, y], a ∈ Act then the probability to perform a

within interval (x, y] is composed of three factors:

i. The probability that the a-timer expires earlier than all the

other timers and before a PH transition of sk−1 can be taken

(within (x, y]).

ii. The probability that after a is performed the new timer set-

tings correspond to phk.

iii. The probability that the tm-scheduler decides for a certain

a-transition.

We proceed by calculating the three factors as follows:

i. Consider again SPTP Q of case 1. Let B ⊆ SQ be defined as

above and let D ⊆ SQ be the set of all states for which the

local state v(j) of P ′ fulfills v = sk−1 and the local state va of

Pa is such that va = 0 whereas the local states vb of all Pb,

a 6= b, fulfill vb > 0. Then

p1 := reachQ(B, D, (x, y]) (6.6)

is the sought-after probability.

ii. The probability of an action timer initialization according to

phk is defined as p2 := Pr(phk, σa).

iii. Finally, recall that F(π↓k−1) = λ. The third factor is given

by

p3 :=
∑{∣∣∣λ(a, µ) · µ(sk) | ∃µ : sk−1

a µ
∣∣∣
}

. (6.7)

Putting it all together, we get

Pr(tm,F)(Cζ) = Pr(tm,F)(Cζ′) · p1 · p2 · p3.

2. Now, let (sk−1, phk−1) be unstable. Then Ek−1 = {(a, 0)}, a ∈ Actτ .

This implies that sk−1
a

and phk−1(a) = 0 if a 6= τ . Let p2 and p3

be defined as above except that p2 := 1 if a = τ .

6.3 Delayed Trace Equivalence 145

We set

Pr(tm,F)(Cζ) := Pr(tm,F)(Cζ′) · p2 · p3.

Measure Pr(tm,F) can be extended to a unique probability measure for sets of

(tm,F)-paths (similar as in Section 3.6, page 52). Sometimes, we may take

as sample space the set of all tm-paths instead of the set of (tm,F)-paths by

assuming that sets of paths that are prohibited by E have probability zero.

Moreover, we may write Pr
(tm,F)
P instead of Pr(tm,F).

Definition 6.8 (Delayed Trace Observation)

Let P be a PTP and let the timer settings of the delayed trace machine be

given by

tm : Act∗ × Act →
(
R∪ {I, B}

)
.

Furthermore, let F be a tm-scheduler for P. A delayed trace observation is

a function

de
(tm,F)
P :

(
Act∗ × R≥0

)
→ [0, 1]

such that

de
(tm,F)
P (σ, t) = Pr

(tm,F)
P ({π ∈ path(P, tm) | ∃i : trace(π↓i) = σ,

time(π↓i) ≤ t}).

The set of delayed trace observations of P with respect to tm is defined as

Otm
de (P) = {de

(tm,F)
P | F is a tm-scheduler for P}.

Definition 6.9 (Delayed Trace Equivalence)

Two PTPs P1 and P2 are delayed trace equivalent, written P1 =de P2, iff for

all functions tm : Act∗ × Act →
(
R∪ {I, B}

)

Otm
de (P1) = Otm

de (P2).

Next, we discuss the relationship between failure trace equivalence (compare

Definition 6.4 on page 124) and delayed trace equivalence. If we allow only for

146 6.3 Delayed Trace Equivalence

timer settings that either block an action completely or enable it immediately,

there is a direct obvious relationship between =de and =ftr.

Proposition 6.5

Let P1 and P2 be PTPs. Then P1 =ftr P2 iff for all functions tm : Act∗ ×

Act →
(
{I, B}

)
and all tm-schedulers F1 for P1 there exists a tm-scheduler

F2 for P2 such that

lim
t→∞

de
(ctr,F1)
P1

(σ, t) > 0 ⇐⇒ lim
t→∞

de
(ctr,F2)
P2

(σ, t) > 0.

In the sequel, we will see that the above proposition is no longer valid if

tm : Act∗ × Act →
(
R∪ {I, B}

)
.

Our next objective is the relationship between =de and the relations =HR
tr and

=we.

Proposition 6.6

Relation =de is incomparable to =HR
tr and =we.

Proof.

Neither =we nor =HR
tr implies =de: This is due to the fact that =de is sen-

sitive to the amount of time a visible action is offered to the process

under study: Recall P1 and P2 in Example 6.4 (compare Figure 6.6 on

page 133) with P1 =we P2 and P1 =HR
tr P2 as already shown. It holds

that P1 6=de P2. To see this, assume that the timer of a expires after

an exponential delay, say with rate r = −3. After trace a is performed,

action c is immediately available. Now, consider all observations with

trace ac. In the case of P1 the right a-transition is offered after the PH

transition with rate −1 is taken while in the case of P2 we have rate

−2 for the left a-transition. The two PH representations in Figure 6.6,

right, describe the distribution of the time until trace ac is performed,

6.3 Delayed Trace Equivalence 147

respectively. The probability of observing ac is different in the two

PTPs (independent of the chosen scheduler) as the representations de-

scribe different distributions.

=de does not imply =we or =HR
tr : Let us consider Example 6.5 on page 134.

The two PTPs P and Q in Figure 6.7 are not in =we and not in =HR
tr

as already shown. But P =de Q. To see this, let us first consider an

example. The PTPs P ′′ and Q′′ in Figure 6.8 on page 136 illustrate the

behavior of P and Q if the timer settings are tmǫ(a) = (α, T) where

α =
[
1 0

]
, T =



−3 3

0 −4




and tmǫ(b) = I. It holds that for arbitrary tm-schedulers F and F ′ and

for all t ≥ 0

de
(tm,F)
P (a, t) = de

(tm,F ′)
Q (a, t) and de

(tm,F)
P (b, t) = de

(tm,F ′)
Q (b, t).

This comes from the fact that both, P ′′ and Q′′, perform b after a delay

distributed according to Fα,T and a after a delay distributed according

to Fα,U = Fα,V where

U =



−1 1

0 −2


, V =



−2 2

0 −1


.

Now, in general we argue as follows: Obviously, tmǫ(a) ∈ R is the only

interesting case. Assume that F is the distribution that corresponds

to tmǫ(a). Let X be a random variable with distribution F and let Y

be distributed according to Fα,U = Fα,V . For both, P and Q, trace a

is performed if X < Y and b (if b is immediately possible) otherwise.

Thus, P =de Q.

148 6.3 Delayed Trace Equivalence

Note that =de is also not comparable to failure or ready equivalence since we

can use the same counterexamples as above for a comparison with failure or

ready equivalence.

Obviously, it is possible to define a scheduler class D such that P =de Q

implies P =D
tr Q. More precisely, the scheduler can choose a PH distribution

for each action and this choice exclusively depends on the visible part of the

history, i.e. on the trace (similar as in the case of trace-dependent schedulers,

compare Definition 6.5 on page 129). However, we omit the details here be-

cause a similar construction has been made in the previous section (compare

Proposition 6.3).

One might expect =de to be a congruence with respect to the parallel com-

position of SPTPs because the counterexample we gave for weighted trace

equivalence does not work for delayed trace equivalence. A closer look on

this example (see Figure 6.6 on page133) shows that the idea was to find

SPTPs P1, P2 such that

⋄ P1 and P2 cannot be distinguished by a time-abstract environment

⋄ in the parallel composition with some SPTP Q, a visible action is en-

abled after a delay which has a different distribution in P1 ||A Q and

P2 ||A Q.

Relation =de can “detect” such differences by simulating an environment in

which actions are enabled after a certain delay. For instance, if we choose

timer settings tmǫ(a) = (1,−3) ∈ R, tma(b) = B and tma(c) = I, we get

different distributions for the time to observe trace ac. Thus, P1 6=de P2.

However, =de fails to be a congruence. This is illustrated by the following

counterexample.

Example 6.7

Let us first go back to Figure 6.3 on page 126. The two PTPs P and Q

6.3 Delayed Trace Equivalence 149

1

aa

c c

d e

P1

b f

τ τ

a′ a′

1

aa

c c

e d

τ

b

a′

f

a′

τ

P2

1

a

0.5 0.5

c f

e

Q

Figure 6.10: (P1,P2) 6∈ =we, =te, but P1 =de P2

can only be distinguished if external nondeterminism is resolved probabilis-

tically, for example, if after trace a both, c and f are externally enabled with

a non-zero probability (compare Example 6.2). If we now force the delayed

trace machine to let this nondeterministic choice be unresolved they cannot

be distinguished. This is achieved by adding τ -transitions to the respective

states. The resulting processes P1,P2 are illustrated in Figure 6.10. They

cannot be distinguished by =de. This can be seen from the following consid-

erations: The only interesting case for tmǫ is tmǫ(a) ∈ R ∪ {I}. In the case

of tma two assignments are of interest: tma(c) = tma(f) = I, tma(b) = B or

tma(c) = tma(b) = I, tma(f) = B. Due to symmetry reasons, it is sufficient

to consider one case, say, the former one. Then tmac(e) = I, tmac(d) = B

is the only interesting choice for tmac. It is not hard to see that with this

definition of tm, each tm-scheduler for P1 can find a matching tm-scheduler

for P2 and vice versa. Thus, P1 =de P2.

Now, we examine P1 ||Act Q and P2 ||Act Q (see Figure 6.11). Assume that all

visible actions are always immediately possible. A tm-scheduler for P1 ||Act Q

may choose the right branch in the initial state with probability one. The

subsequent choices are such that both, trace af and trace ace are observed

with probability 0.5. A tm-scheduler for P2 ||Act Q must choose the left branch

with probability one to match the probability of trace ace. But then af has

150 6.3 Delayed Trace Equivalence

1

aa

0.5 0.5

τ c

e

τ

P1 ||Act Q

f

0.5 0.5

c τ τ

1

aa

0.5 0.5

τ c

e

τ

P2 ||Act Q

f

0.5 0.5

c τ τ

Figure 6.11: P1 ||Act Q and P2 ||Act Q

probability zero. Therefore, P1 ||Act Q 6=de P2 ||Act Q.

The above example shows that =de fails to detect different behaviors of unsta-

ble states and one might argue that, if several actions are externally available

at a certain time instant, the nondeterminism between them should be re-

solved by the experimenter. However, this would contradict our intuition

of two actions both having delay zero: The environment of process P might

consist of several components interacting with P. If two of them offer actions

that P is able to respond to, P can decide which one to take. We will discuss

this issue more detailed in the last section (see Remark 6.1).

We now turn to a comparison of phase type bisimulation and =de.

Proposition 6.7

=bs is strictly finer than =de.

Proof. If we restrict to SPTPs the inclusion of the following proposition is

a direct implication of Theorem 7.1 (on page 159) and Proposition 7.3 (on

page 163). However, for the general case we have to show that if P =bs Q

then for all functions tm and all tm-schedulers F1 for P there exists a tm-

6.3 Delayed Trace Equivalence 151

scheduler F2 for Q such that

Pr
(tm,F1)
P ({π ∈ path(P, tm) | π↓k∈ Ξη})

= Pr
(tm,F2)
Q ({π ∈ path(Q, tm) | π↓k∈ Ξη})

(6.8)

for all sets Ξη of tm-path fragments. Here, η is a sequence

η = (A1, ph1) E1 (A2, ph2) E2 . . . Ek−1 (Ak, phk)

where ph1, ph2, . . . , phk ∈ G and for i ∈ {1, 2, . . . , k − 1} either

⋄ Ei = {(a, 0)} for some a ∈ Actτ ,

⋄ Ei = {a} × (x, y] for some a ∈ Act, 0 ≤ x < y or

⋄ Ei = (x, y], 0 ≤ x < y.

and A1, A2, . . . , Ak are equivalence classes of a bisimulation equivalence re-

lating P and Q. The proof of Equation (6.8) is by induction on k and goes

along very similar lines as that of Lemma 3.1

It remains to prove strictness. Consider P and Q in Figure 6.7 on page 134.

As already shown in the proof of Proposition 6.6 we have P =de Q. But

P 6=bs Q because the successor states of s1 and s2 cannot be related by any

phase type bisimulation R. This is because u1 and u2 have PH transitions

with different distributions leading to equivalence class [u′
1] = [u′

2].

Finally, we remark that, in general, P 6=de ex(P). Intuitively, this comes

from the fact that a tm-scheduler F can make different choices in states

representing different phases of a state. However, we prove a similar result

as stated in Theorem 4.1 (see page 76). As opposed to the situation in

Theorem 4.1 we are now able to observe that in PTP P action transitions

are taken after remaining for a certain amount of time in a state. Thus, all tm-

path fragments in ex(P) are a prefix of a P-observable path fragment (where

we adapt the definitions of Section 4.3 in the obvious way). Consequently,

152 6.3 Delayed Trace Equivalence

operator contr replaces every maximal subsequence

(s
(k1)
1 , ph1)

e1 (s
(k2)
2 , ph2)

e2 . . .
ej

(s
(kj+1)
j+1 , phj+1)

of a tm-path fragment ξ with

⋄ s1 = si, ki ∈ {1, 2, . . . , ns1} for 1 ≤ i ≤ j,

⋄ e1, . . . , ej−1 ∈ R>0 if j > 1,

⋄ s1 6= sj+1 if ej ∈ R>0,

⋄ kj+1 ∈ {1, 2, . . . , nsj+1
}

by

(s1, ph1)
e (sj+1, phj+1)

where

e =





∑j
i=1 ei if ej ∈ R>0,

(a, t) with t =
∑j−1

i=1 ei + t′ if ej = (a, t′) ∈ Actτ × R≥0.

It is not hard to see that for a P-observable path fragment ξ ∈ pathf(ex(P), tm)

we have contr(ξ) ∈ pathf(P, tm).

Example 6.8

Recall Example 4.2 on page 72. Let

(s(1), ph1)
0.2

(u(1), ph2)
0.3

(u(2), ph3)
a,0.5

(s(1), ph4)

be a tm-path fragment in Q = ex(P). Then

contr(ξ) = (s, ph1)
0.2

(u, ph2)
a,0.8

(s, ph4) ∈ pathf(P, tm).

In a similar way to Section 4.3 (see page 75) we define for a given cylinder

set Cζ , |ζ | = k of tm-paths in P that ex(Cζ) is the set of all tm-paths π ∈

path(ex(P), tm) for which there exists j ≥ k such that π↓j is P-observable

and contr(π↓j) is the prefix of length k of a path in Cζ . Let Ctm
P be the set of

all such cylinder sets.

6.4 Chapter Summary 153

The following Theorem highlights the relationship between =de and the ex-

operator. The proof details can be found in Appendix A.2. They are similar

to those of Theorem 4.1.

Theorem 6.1

Let P be a PTP and tm : Act∗ × Act →
(
R ∪ {I, B}

)
. Then for each tm-

scheduler F ′ for P there exists a tm-scheduler F for ex(P) such that for all

Cζ ∈ Ctm
P

Pr
(tm,F ′)
P (Cζ) = Pr

(tm,F)
ex(P) (ex(Cζ)).

Note that the opposite direction of the theorem is also true if we consider

a tm-scheduler for ex(P) whose decisions are based on the P-history only.

We omit the details here as they require a Definition of P-observation-based

tm-schedulers and as they are similar to those in Section 4.3.

6.4 Chapter Summary

In this chapter, two kinds of button pushing experiments are examined, both

having a direct relationship to failure trace equivalence (compare Proposi-

tion 6.1 on page 125 and Proposition 6.5 on page 146). From the point of

view of Chapter 5, we use novel classes of schedulers, namely schedulers re-

solving external nondeterminism on the basis of the visible part of the process

history. But here the “scheduler decision” is hidden behind the controllers of

the weighted trace machine and the countdown timers of the delayed trace

machine, respectively. These machine-based definitions are advantageous for

the way a PTP is considered in this chapter: an open system using its visible

actions to communicate with the environment. We fix the environment and

observe the behavior of the processes to decide whether they respond in the

same way or not.

Both relations are proven to be incomparable to the relations defined in Chap-

ter 5 and reasons for their diverseness are given. Additionally, both relations

154 6.4 Chapter Summary

fail to have the congruence property with respect to parallel composition.

However, both are strictly coarser than phase type bisimulation.

Theorem 6.1 elucidates the relationship between P and ex(P). The fact that

all representatives s(j) ∈ Sex(P) of a state s ∈ SP inherit the action transitions

of s is now clearly proven. Moreover, the ”equivalence” of P and ex(P) is

formalized by Theorem 6.1. The reason why the relationship between P and

ex(P) is best clarified by using the delayed trace machine is that the operator

ex takes into account that actions may be not be available immediately but

after a certain amount of time.

We conclude this chapter with two remarks.

Remark 6.1

A closer look at the counterexamples, which prove that neither =we (see

Example 6.4 on page 132) nor =de (see Example 6.7 on page 148) are con-

gruences with respect to parallel composition, might suggest to consider an

extension of the trace machine which has both action controllers and action

countdown timers. But what is the intuitive meaning of setting the delay

of an action timer to zero and the action’s controller to a non-zero value?

In case of weighted trace semantics we interpreted the weights as follows: If

action a has weight w but action b has weight 2w, the probability for b to

be externally available is twice as high as that of a. For processes acting

in continuous time, this expresses that b is provided more often (and thus

within smaller time intervals) than a. But if the exact time instant is known

at which a and b are provided, weights are needless even if both, a and b, are

immediately available. In this case, it is an internal decision of the process

which action is taken (a or b).

Remark 6.2

It is important to point out that the experimenter’s interface that is used

to determine the process’ environment conditions is far from representing

all the possible ways external stimuli are given. Consider, for instance, the

6.4 Chapter Summary 155

1

α,T

a

P

1

a β,U

b

Q

1

α,T β,U

b

α,T

a b
α,T

P ||{a} Q

Figure 6.12: PTP Q constitutes an interaction environment for P.

two processes P and Q in Figure 6.12. If Q and P synchronize over A =

{a} action b is offered only if the delay X ∼ F(α,T) of P is greater than

delay Y ∼ F(β,U) of Q. No matter which controller position or countdown

timer values are used, Q cannot be simulated by the machines defined so far.

The environment’s decision depends on the residence time of P. But this

motivates the idea of the next chapter in which we simulate the environment

of a PTP by another process instead of an experimenter. Obviously, the more

environments we can use to test a process the more probable it becomes that

the resulting equivalence is a congruence. However, this comes on the cost

of a larger class of “tests” that have to be carried out. We conclude that

the set of process environments that are simulated by the weighted/delayed

trace machine is too small with regard to congruence properties.

Chapter 7

Testing Semantics

7.1 Overview

Testing theory for concurrent processes is based on the seminal work of De

Nicola and Hennessy [DH84]. A testing scenario for a process P is simulated

by the parallel composition P ||Act T of P and a test process T (basically

another process but equipped with a set of “success” states or actions). In

the case of success states, P has “passed the test” if P ||Act T reaches a state

for which the component corresponding to T is a success state. In the case of

success actions, the successful pass of the test is determined by the execution

of a success action. Two processes are testing equivalent if one passes a test

if and only if the other one does.

In this chapter, we develop a testing theory for PTPs by extending the theory

developed in [DH84] to our setting. In contrast to the previous chapter,

⋄ the testing equivalence is restricted to SPTPs since parallel composition

is only defined for SPTPs,

⋄ we are no longer interested in trace observations but in the execution

of a success action instead,

⋄ since T branches probabilistically, we are now able to define that a

set of external stimuli are given with a certain probability (compare

Remark 6.2),

156

7.1 Overview 157

⋄ we do not need to define a new classes of schedulers resolving the re-

maining nondeterminism of P ||Act T but can resort to the set HR.

We keep from =we and =de the following assumptions:

⋄ SPTPs are regarded as open systems, i.e. we compare the success prob-

abilities of two SPTPs for fixed environment conditions. As in the pre-

vious chapter we can informally say that P is equivalent to Q if for all

environments E

Observations(P operates in E) = Observations(Q operates in E).

Here, E is represented by a test process T and an observation corre-

sponds to a function which gives success probabilities.

⋄ External nondeterminism may occur in the parallel composition P ||Act T .

⋄ The environment of the process under consideration is time-aware and

probabilistic.

⋄ We assume maximal progress, i.e. P cannot refuse interaction with T

in stable states (this is formalized below).

For time-abstract frameworks, equivalences based on test processes enjoy

several properties related to congruence. At least for internal, external and

probabilistic choice as well as synchronous parallel, many relations are a

congruence (e.g. compare [Seg96, KN98, Low93] and the references therein).

An overview of the most important work on testing theory for time-abstract

probabilistic models is given in [Wol04]. It includes a comparison and sum-

mary about [CSZ92, Chr90, Seg96, JY95, JY02, LS91]. Further interesting

results for the time-abstract setting can be found amongst others in [Low93,

SV03, KN98, KCS98]. For stochastic models acting in continuous time, only

little work has been done in the area of testing: In [BC00] and the follow-up

papers [Ber07, BB07] testing equivalences are defined for stochastic mod-

els without nondeterminism and with delays linked to actions. Synchronous

parallel composition is achieved by assuming that the duration of an action

158 7.2 Testing Equivalence

is determined by exactly one of the two communication partners. Bernardo

shows several congruence properties of a testing equivalence based on the

simulation of a non-probabilistic environment (see [Ber07]). In our setting

we have to deal with nondeterminism and the parallel composition opera-

tor for SPTPs is realized by synchronization on instantaneous transitions.

Moreover, we deal with general tests (time-aware und probabilistic).

7.2 Testing Equivalence

In this thesis, we follow the idea of [Seg96] and use actions instead of states

to report success. Let Θ = {θ1, θ2, . . .} be a countable set of visible success

actions with Θ ∩ Act = ∅.

Definition 7.1 (Test Process)

A test process is a SPTP T over action set Actτ ∪ Θ such that

s θ s′ ∧ θ ∈ Θ =⇒ s′ is a deadlock state.

The above definition stipulates that after success has been reported the ex-

periment is over and, on the contrary, if P performs an infinite path while

running in parallel with T it does not pass the test.

We synchronize over Act while testing a SPTP. Obviously, this assumption

is appropriate since we are not interested in the visible behavior that T

performs independently of P. Furthermore, we assume a strengthening of

the maximal progress assumption: the parallel composition is considered as

performance closed and if a state in the compound process has an outgoing

transition labeled by a visible action, this transition is enabled immediately.

We remove all PH transitions of states that can execute an action transition.

More precisely, let P|T be the SPTP that is a copy of P ||Act T but for all

states s of P ||Act T with s we remove all transitions s
α,T

s′.

Definition 7.2 (Testing Observation)

Let P be a SPTP, T a test process and D an HR-scheduler for P|T . A testing

7.2 Testing Equivalence 159

observation is a function

te
(T ,D)
P : Θ × R≥0 → [0, 1]

such that

te
(T ,D)
P (θ, t) = PrD({π ∈ path(P|T) | ∃i, ∃σ ∈ Act∗ : trace(π↓i) = σθ,

time(π↓i) ≤ t}).

The set of testing observations of P with respect to T is defined as

Ote(P, T) = {te
(T ,D)
P | D is an HR-scheduler for P|T }.

Definition 7.3 (Stochastic Testing Equivalence)

Two SPTPs P1 and P2 are testing equivalent, written P1 =te P2, iff for all

test processes T

Ote(P1, T) = Ote(P2, T).

Since the definition of the testing relation differs to that in [Seg96] only in

that it is time-aware, the following proposition follows directly.

Proposition 7.1

Two probabilistic automata P1 and P2 are related by =te iff they are testing

equivalent with respect to [Seg96].

Our next objective is the relationship between =te and the relations defined

to far. Since =te is only defined for SPTPs we restrict to this subclass of

PTPs for the comparison.

Theorem 7.1

Let P and Q be SPTPs. Then

P =te Q =⇒ P =de Q.

160 7.2 Testing Equivalence

Proof. Let us start with a counterexample that proves strictness. Consider

Figure 6.10 on page 149. It holds P1 6=te P2 if we assume a test process

T which is a copy of Q but finally executes success actions θ1 and θ2 after

trace ace and af , respectively (compare also Figure 6.11 on page 150 and

Example 6.2 on page 125). From Example 6.2, P1 =de Q.

We only give a proof sketch here and refer to Section A.3 of the appendix

for the proof details. The idea is that given P1 =te P2, timer settings tm

and tm-scheduler F1 a test process Ttm is constructed which offers actions

with the same probability as they are offered in the testing scenario with

timer settings tm. We construct a scheduler D ∈ HR(P ′
1|Ttm) (where P ′

1 is a

modified copy of P1) which resolves the remaining nondeterminism in P ′
1|Ttm

in the same way as F1 resolves nondeterminism of P1 acting under timer

settings tm. Then we prove that trace observations of P1 with respect to tm

and F1 have the same probability in P ′
1|Ttm under scheduler D. Test process

Ttm is enriched by success actions θσ which are used to report that trace

σ has been performed (the enriched copy of Ttm is denoted by T ′
tm). From

P1 =te P2 we get P ′
1 =te P ′

2 (where P ′
2 is a modified copy of P2) and there

exists a scheduler E ∈ HR(P ′
2|Ttm) such that

te
(Ttm,D)
P ′

1
(θσ, t) = te

(Ttm,E)
P ′

2
(θσ, t).

Finally, the same construction is used for P2 to define a tm-scheduler F2 which

decides in the same way as E does in P2|Ttm (that is, trace σ is performed

with the same probability within [0, t] for all t ≥ 0) and derive

de
(tm,F1)
P1

(σ, t) = de
(tm,F2)
P2

(σ, t)

for all σ ∈ Act∗, t ≥ 0.

The following proposition highlights the relationship between =te and =we as

well as =te and =HR
tr (on the set of all SPTPs).

7.2 Testing Equivalence 161

Proposition 7.2

=te is incomparable to =we and =HR
tr .

Proof.

=we 6⊆=te: Consider the two PTPs in Figure 6.4 on page 127. In Example 6.3 we

proved that P =we Q. A test process that can be used to distinguish P

and Q by =te is constructed by modifying process T in Figure 6.4. We

add transitions labeled by θac and θbf , respectively, emerging from the

two states which are reached by trace ac and bf , respectively. Now,

consider a scheduler D1 ∈ HR(P|T) which decides for the synchronous

a-transition if P is in the left one of its initial states and for the syn-

chronous b-transition if P is in the right one. Then for all t ≥ 0

te
(T ,D1)
P (θac, t) = 0.5 and te

(T ,D1)
P (θbf , t) = 0.5.

A matching scheduler D2 ∈ HR(Q|T) has to choose the a-transition in

the left one of Q’s initial states to match probability 0.5 for trace ac.

But then te
(T ,D2)
Q (θbf , t) 6= 0.5. We conclude that no scheduler for Q|T

can match the observations under D1 and P 6=te Q follows.

=te 6⊆=we: Consider Figure 6.7 on page 134. In Example 6.5, we proved that

P 6=we Q. To see that P =te Q we consider three kinds of test processes.

1. T initially offers no transition labeled by a and no PH transition

followed by a. In this case, we get directly that P|T and Q|T

perform success actions of T with the same probability. The only

possibility to synchronize with T is the b-transition which is in

both processes possible after two exponential delays with param-

eters −1 and −2.

162 7.2 Testing Equivalence

2. T initially offers an a-transition (without any delay). Then both,

P and Q, immediately perform a without any delay. Again success

actions of T are carried out with the same probability.

3. T offers an a-transition after a PH distributed delay X. Then

both, P|T and Q|T , perform an a if X < Y where Y is the

sum of two random variables exponentially distributed with pa-

rameters −1 and −2. Otherwise, if X > Y , both can perform b

after Y time units (if b is offered by T). Figure 6.8 on page 136

shows an example where a is offered after two exponential delays

(with parameters −3 and −4). So, again we get the same success

probabilities in P|T and Q|T .

It is easy to see that all remaining kinds of test processes cannot be

used to distinguish P and Q. Hence, P =te Q.

=HR
tr 6⊆=te: This can be seen by the counterexample in Figure 6.3 on page 126.

Obviously, P =HR
tr Q. In Example 6.2 on page 125 we argued that

P =we Q by defining appropriate controller settings ctr. For =te we

use a similar idea. If we put P and Q in parallel with process T

(Figure 6.3, right) we get the same trace observations as P and Q under

ctr, respectively. If we now assume that in T the two transitions labeled

by e and f are both followed by a transition with label θ ∈ Θ , we can

choose a scheduler for P|T such that θ is performed with probability

one (for all time bounds t ≥ 0) but there is no scheduler for Q|T such

that θ executed with probability p > 0.5. Thus, P 6=te Q.

=te 6⊆=HR
tr : A counterexample showing that P =te Q does not imply P =HR

tr Q is

given in Figure 6.7 on page 134. It holds that P =te Q (compare case

“=te 6⊆=we”). From Example 6.5 we know that P 6=HR
tr Q and hence

7.3 Chapter Summary 163

=te 6⊆=HR
tr .

Note that the same counterexamples can be used to prove that =te is incom-

parable to =fa and =re.

Proposition 7.3

Bisimulation equivalence is strictly finer than testing equivalence, i.e. let P

and Q be SPTPs. Then

P =bs Q =⇒ P =te Q.

Proof. The inclusion follows directly from Lemma 3.1 and the fact that =bs

is a congruence (see Proposition 4.1) because if we measure the probability

that a certain success action is performed within [0, t] we take the probability

of the union of cylinder sets induced by sets Ξη (see Lemma 3.1).

For the opposite direction we refer to Figure 1.1. Obviously, P and Q are

related by =te but there is no bisimulation relation that can relate the initial

distributions of P and Q. There is no equivalent state to the initial one

(ones) of P (of Q).

7.3 Chapter Summary

This chapter focused on the definition and classification of a testing equiv-

alence for SPTPs. We relied mostly on Segala’s testing approach [Seg96]

and extended it to SPTPs. As expected, the testing relation turned out to

be strictly finer than the trace relation and strictly coarser than bisimula-

tion. The same classification holds for probabilistic automata. Moreover,

the testing relation is also strictly finer than =de since it is based on a more

flexible class of testing scenarios. Strictness comes from the fact that =de is

no longer sensitive to different trace combinations if invisible transitions are

164 7.3 Chapter Summary

T

1

−3

aa

θ2θ1

1

P|T

−3−2

−3

−1

−3

a

a

a

a

θ1

θ2

1

Q|T

−3−1

−3

−2

−3

a

a

a

a

θ1

θ2

Figure 7.1: P̂ =bs Q̂ but P = ex(P̂) 6=te Q = ex(Q̂)

added (compare Figure 6.10 on page 149). But this distinction is crucial for

the congruence property to hold which does so for =te.

Let us conclude with the question if =te can be lifted on PTPs by the use

of ex, i.e. let =̃te be the relation on PTPs that identifies P1 and P2 iff

ex(P1) =te ex(P2). We show that =bs 6⊆ =̃te by considering the two SPTPs P

and Q in Figure 6.7 on page 134. As explained in Example 6.5, we assume

that P = ex(P̂) and Q = ex(Q̂). It holds that P̂ =bs Q̂ because the PH

transitions represent the same distribution. However, P and Q are not in

=te because they can be distinguished by test process T (compare Figure 7.1,

left). To see this assume that an HR-scheduler D for P|T chooses {1, 0} in

the upper right state with the two outgoing a-transitions and {0, 1} in the

lower left one (to reach the state with success action θ1 and θ2, respectively).

The probability to perform θ1 in P|T is then given by

te
(T ,D)
P (θ1, t) =

3

5
(1 − e−5t) =

3

5
· F−5(t).

But this (sub-)distribution cannot be achieved by any HR-scheduler for Q|T

because the convolution of F−4 and F−5 (or a mixture of this convolution

with F−4) leads to different distributions (having different moments than
3
5
· F−5(t)) no matter which branching probabilities are chosen. Therefore,

P 6=te Q.

7.3 Chapter Summary 165

Let us finally remark that it is possible to extend =te on the set of PTPs by

restricting to P-observation-based schedulers. We leave this as future work

and claim that this leads to a “natural” testing relation on PTPs.

Chapter 8

Conclusion

We have introduced the concept of phase type processes which form a very

general class of models including, for instance, the class of labeled transition

systems, probabilistic automata and interactive Markov chains. The main

difference lies in the use of phase type transitions which are enabled after a

phase type distributed delay. We considered time-aware schedulers to resolve

nondeterministic choices based on the process history and made use of matrix

operations based on the Kronecker product to give formal semantics in terms

of path probabilities.

In the style of [Her02], a parallel composition operator for the subclass of

single phase type processes has been presented which maintains the usual

interleaving semantics. We have defined the ex-operator to show that this is

not possible in the case of states having several phases. More precisely, there

is, in general, no “natural” operator for the parallel composition of PTPs.

The ex-operator provides the possibility to consider a PTP on a less abstract

level. The phases each state has to pass through until it is left are added

as extra states. The operator is useful in many respects because it sharpens

the understanding of several problems related to phase type processes. It is

important to point out that the operator applied to a PTP, say, P induces a

class of P-observation-based schedulers and that ex(P) should be analyzed

with respect to this class. This restriction is necessary because otherwise the

behavior of ex(P) may be different from that of P which leads to undesirable

166

167

R1 \ R2 =HR
tr =we =de =te =bs

=HR
tr Def. 5.2

Fig. 6.3

Fig. 6.6

Fig. 6.3

Fig. 6.6

Fig. 6.3

Fig. 6.6

Fig. 5.2

=we Fig. 6.4 Def. 6.3
Fig. 6.4

Fig. 6.6

Fig. 6.4

Fig. 6.6

Fig. 6.6

=de Fig. 6.7
Fig. 6.7

Fig. 6.10

Def. 6.9 Fig. 6.10 Fig. 6.7

=te Fig. 6.10 Fig. 6.10
⊂

Th. 7.1

Def. 7.3 Fig. 6.7

=bs

⊂

Prop. 5.2

⊂

Prop. 6.4

⊂

Prop. 6.7

⊂

Prop. 7.3

Def. 3.7

Table 8.1: The classification of the different notions of equivalence

effects on the notions of equivalence (for instance, ex(P) and P are not

bisimilar). However, with this restriction we could establish Theorem 3.1

that proves the equality of ex(P) and P. We leave as future work the further

analysis of the ex-operator and P-observation-based schedulers. Another

interesting starting point for future work is the definition of an operator

that transforms a SPTP into a PTP having less states by combining several

successive PH transitions to a single one.

We also defined various relations to decide whether two PTPs are equivalent

on a certain level of abstraction or not. In the case of trace equivalence,

168 Conclusion

different notions arise by varying in the type of scheduler that serves to resolve

the nondeterministic choices. We classified schedulers according to various

criteria: time-aware vs. time-abstract ones, deterministic vs. randomized

ones, history-dependent vs. stationary ones, and total vs. partial ones.

Surprisingly, in most cases there is no correlation between the containment

relation of the scheduler classes and the distinguishing power of the induced

notions of trace equivalence. An overview of the results is given in Table 5.1

(see page 95).

For all remaining trace-based notions of equivalence we stick to time-abstract

history-dependent schedulers and compared the different notions with respect

to their distinguishing power as well. An overview is given in Table 8.1. It

includes a comparison with bisimulation equivalence for PTPs which is, as op-

posed to the remaining relations, sensitive to τ -transitions. However, none of

the counterexamples concerning =bs make use of τ -transitions. Instead they

rely on the fact that bisimulation-like relations are sensitive to the branching

structure of the process whereas linear-time relations explore the possible

execution sequences. The table is read as follows: Each entry corresponds to

a comparison

“R1

?
⊂ R2”

and it either contains one or two references to counterexamples or it contains

the ⊂-sign and the number of the theorem or proposition where it is shown.

The entries of the diagonal refer to the definition of the relation.

The phase type process modeling paradigm raises a great variety of questions

from which a significant part has been answered in this thesis.

Bibliography

[ALS84] David Assaf, Naftali A. Langberg, and Thomas H. Savits. Mul-

tivariate phase-type distributions. Operations Research, Vol.

32:688–701, 1984.

[ARM98] Adam Arkin, John Ross, and Harley H. McAdams. Stochastic

kinetic analysis of developmental pathway bifurcation in phage

lambda-infected escherichia coli cells. Genetics, 149(4):1633–48,

1998.

[Asm03] Søren Asmussen. Applied Probability and Queues. Springer,

2003.

[Bai98] Christel Baier. On the Algorithmic Verification of Probabilistic

Systems. Habilitation, Universität Mannheim, 1998.

[BB87] Jos C. M. Baeten and Jan A. Bergstra. Ready-trace seman-

tics for concrete process algebra with the priority operator. The

Computer Journal, 30(6):498–506, 1987.

[BB07] Marco Bernardo and Stefania Botta. A survey of modal logics

characterizing behavioral equivalences for nondeterministic and

stochastic systems. Mathematical Structures in Computer Sci-

ence, 2007+. To appear.

[BC00] Marco Bernardo and Rance Cleaveland. A theory of testing for

Markovian processes. In Proc. CONCUR 2000, number 1877 in

LNCS, pages 305–319. Springer, 2000.

169

170 BIBLIOGRAPHY

[BCDK00] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Pe-

ter Kemper. Complexity of memory-efficient kronecker opera-

tions with applications to the solution of markov models. IN-

FORMS J. on Computing, 12(3):203–222, 2000.

[BD04] Mario Bravetti and Pedro R. D’Argenio. Tutte le algebre in-

sieme: Concepts, discussions and relations of stochastic process

algebras with general distributions. In C. Baier, B. Haverkort,

H. Hermanns, J.-P. Katoen, and M. Siegle, editors, Validation of

Stochastic Systems, volume 2925 of Lecture Notes in Computer

Science, pages 44–88. Springer, 2004.

[Ber07] Marco Bernardo. Non-bisimulation-based markovian behavioral

equivalences. Journal of Logic and Algebraic Programming,

2007+. To appear.

[BG96] Marco Bernardo and Roberto Gorrieri. Extended Markovian

process algebra. In Proc. CONCUR 1996, number 1119 in LNCS,

pages 315–330. Springer, 1996.

[BH97] Christel Baier and Holger Hermanns. Weak bisimulation for

fully probabilistic processes. In Proc. CAV 1997, volume 1254 of

LNCS, pages 119–130, 1997.

[BHHK03] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and

Joost-Pieter Katoen. Model-checking algorithms for continuous-

time markov chains. IEEE/ACM Transactions on Software En-

gineering, 29(7), 2003.

[BHR84] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory

of communicating sequential processes. J. ACM, 31(3):560–599,

1984.

BIBLIOGRAPHY 171

[BKHW05] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Ver-

ena Wolf. Comparative branching-time semantics for markov

chains. Inf. Comput., 200(2):149–214, 2005.

[Bre99] Pierre Bremaud. Markov chains, Gibbs fields, Monte-Carlo sim-

ulation and queues. Springer-Verlag, New York, 1999.

[Buc94] Peter Buchholz. Exact and ordinary lumpability in finite markov

chains. Journal of Applied Probability, 31:59–75, 1994.

[BW82] Manfred Broy and Martin Wirsing. On the algebraic specifica-

tion of finitary infinite communicating sequential processes. In

Proceedings of IFIP TC2 Working Conference on Formal De-

scription of Programming Concepts II, pages 171–196. North

Holland Publ. Company, 1982.

[Chr90] Ivan Christoff. Testing equivalences and fully abstract models

for probabilistic processes. In Proceedings of CONCUR 1990,

number 458 in LNCS, pages 126–140. Springer, 1990.

[CM99] Christian Commault and Stephane Mocanu. Sparse representa-

tions of phase-type distributions. Communications in Statistics

– Stochastic Models, 15(4):759–778, 1999.

[CSZ92] Rance Cleaveland, Scott Smolka, and Amy E. Zwarico. Testing

preorders for probabilistic processes. In Proceedings of ICALP

92, number 623 in LNCS, pages 708–719. Springer, 1992.

[dA97] Luca de Alfaro. Formal verification of probabilistic systems. Phd

thesis, Stanford University, 1997.

[Der70] Cyrus Derman. Finite state Markovian decision processes. Aca-

demic Press, New York, 1970.

172 BIBLIOGRAPHY

[DH84] Rocco De Nicola and Matthew Hennessy. Testing equivalences

for processes. Theoretical Computer Science, 34(1–2):83–133,

1984.

[ERKN99] Amani El-Rayes, Marta Kwiatkowska, and Gethin Norman.

Solving infinite stochastic process algebra models through

matrix-geometric methods. In J. Hillston and M. Silva, editors,

Proc. 7th Process Algebras and Performance Modelling Work-

shop (PAPM’99), pages 41–62. University of Zaragoza, 1999.

[Fel68] William Feller. An Introduction to Probability Theory and its

Applications, Vol. I. John Wiley & Sons, Inc., 1968.

[FPS98] Paulo Fernandes, Brigitte Plateau, and William J. Stewart. Ef-

ficient descriptor-vector multiplications in stochastic automata

networks. Journal of the ACM, 45(3):381–414, 1998.

[Gaj96] Magdalena Gajewsky. Kombination von stochastischen Prozes-

salgebren mit Phasentyp-Verteilungen. diploma thesis, TU

Berlin, 1996.

[GHR92] Norbert Gotz, Ulrich Herzog, and Michae Rettelbach. Tipp –

a language for timed processes and performance evaluation. re-

port Technical Report 4/92, IMMD VII, University of Erlangen-

Nurnberg, 1992.

[GS82] Geoffrey Grimmett and David Stirzaker. Probability and Random

Processes. Oxford University Press, London, 1982.

[Hav98] Boudewijn R. Haverkort. Performance of Computer Communi-

cation Systems: A Model-Based Approach. John Wiley & Sons,

Inc., 1998.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for

Quantified Quality., volume 2428 of LNCS. Springer, 2002.

BIBLIOGRAPHY 173

[Hil94] Jane Hillston. The nature of synchronisation. In Proceedings

of the Second International Workshop on Process Algebras and

Performance Modelling, pages 51–70, 1994.

[Hil96] Jane Hillston. A Compositional Approach to Performance Mod-

elling. Cambridge University Press, 1996.

[HJ89] Hans Hansson and Bengt Jonsson. A framework for reasoning

about time and reliability. In IEEE Real-Time Systems Sympo-

sium, pages 102–111, 1989.

[HK00] Holger Hermanns and Joost-Pieter Katoen. Automated composi-

tional markov chain generation for a plain-old telephone system.

Sci. Comput. Program., 36(1):97–127, 2000.

[Hoa80] C. A. R. Hoare. A model for communicating sequential processes.

In On the Construction of Programs, pages 229–254. 1980.

[HT92a] D.T. Huynh and L. Tian. On some equivalence relations for prob-

abilistic processes. Theoretical Computer Science, 17(3):211–234,

1992.

[HT92b] Dung T. Huynh and Lu Tian. On some equivalence relations for

probabilistic processes. Fundam. Inform., 17(3):211–234, 1992.

[HZ05] Qi-Ming He and Hanqin Zhang. A note on unicyclic representa-

tions of phase type distributions. Stochastic Models, 21(2):465–

483, 2005.

[HZ06] Qi-Ming He and Hanqin Zhang. Spectral polynomial algorithms

for computing bi-diagonal representations for phase type distri-

butions and matrix-exponential distributions. Stochastic Models,

22(2):289–317, 2006.

[JL96] Chris Jedrzycki and Victor C. M. Leung. Probability distribu-

tion of channel holding time in cellular telephony systems. In

174 BIBLIOGRAPHY

Proceedings of the 46th IEEE Vehicular Technology Conference,

1996.

[JS90] Chi-Chang Jou and Scott A. Smolka. Equivalences, congruences,

and complete axiomatizations for probabilistic processes. In Pro-

ceedings on CONCUR, pages 367–383, New York, NY, USA,

1990. Springer-Verlag New York, Inc.

[JT88] Mary A. Johnson and Michael R. Taaffe. The denseness of phase

distributions. Research memorandum, Purdue University, 1988.

[JY95] Bengt Jonsson and Wang Yi. Compositional testing preorders

for probabilistic processes. In Proc. 10th IEEE Int. Symp. on

Logic in Computer Science, pages 431–441, 1995.

[JY02] Bengt Jonsson and Wang Yi. Testing preorders for probabilistic

processes can be characterized by simulations. Theor. Comput.

Sci., 282(1):33–51, 2002.

[KCS98] K. Narayan Kumar, Rance Cleaveland, and Scott Smolka. In-

finite probabilistic and non-probabilistic testing. In Proceedings

of the 18th FST and TCS Conference, number 1530 in LNCS,

pages 209–220. Springer, 1998.

[KEBC05] Mads Kœrn, Timothy C. Elston, William J. Blake, and James J.

Collins. Stochasticity in gene expression: From theories to phe-

notypes. Nat Rev Genet, 6(6):451–464, June 2005.

[KN98] Marta Kwiatkowska and Gethin Norman. A testing equivalence

for reactive probabilistic processes. In Proc. EXPRESS 1998,

ENTCS, 1998.

[Low93] Gawin Lowe. Representing nondeterminism and probabilistic be-

haviour in reactive processes. Technical Report Technical Report

TR-11-93, Oxford University, 1993.

BIBLIOGRAPHY 175

[LR99a] Guy Latouche and Vaidyanat Ramaswami. Introduction to

Matrix Analytic Methods in Stochastic Modeling. ASA-SIAM,

Philadelphia, 1999.

[LR99b] Guy Latouche and Vaidyanat Ramaswami. Introduction to Ma-

trix Analytic Methods in Stochastic Modelling. ASA & SIAM,

1999.

[LS91] Kim G. Larsen and Arne Skou. Bisimulation through probabilis-

tic testing. Information and Computation, 94:1–28, 1991.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Lecture

Notes in Computer Science Vol. 92. Springer-Verlag, 1980.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall,

Inc., 1989.

[MSZ00] Avishai Mandelbaum, Anat Sakov, and Sergey Zeltyn. Empir-

ical analysis of a call center. Technical report, Technion, Israel

Institute of Technology, 2000.

[Neu81] Marcel Neuts. Matrix-geometric solutions in stochastic models.

John Hopkins University Press, Baltimore, 1981.

[O’C99] Colm Art O’Cinneide. Phase-type distributions: Open problems

and a few properties. Stochastic Models, 15(4):731–757, 1999.

[OH83] Ernst-Rüdiger Olderog and C. A. R. Hoare. Specification-

oriented semantics for communicating processes. In Proceedings

of ICALP, pages 561–572, 1983.

[PF95] Vern Paxson and Sally Floyd. Wide area traffic: the failure

of Poisson modeling. IEEE/ACM Transactions on Networking,

3(3):226–244, 1995.

[Phi87] Iain Phillips. Refusal testing. Theor. Comput. Sci., 50(3):241–

284, 1987.

176 BIBLIOGRAPHY

[Pla84] Brigitte Plateau. De l’evaluation du paralllisme et de la syn-

chronisation. Phd thesis, Universit de Paris XII, Orsay (France),

1984.

[PLS00] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisim-

ulation for probabilistic systems. Lecture Notes in Computer

Science, 1877:334+, 2000.

[Pnu85] Amir Pnueli. Linear and branching structures in the semantics

and logics of reactive systems. In Proceedings of the 12th Collo-

quium on Automata, Languages and Programming, pages 15–32,

London, UK, 1985. Springer-Verlag.

[Pri95] Corrado Priami. Stochastic pi-calculus. The Computer Journal,

38(7):578–589, 1995.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons, 1994.

[Seg95] Roberto Segala. Modeling and verification of randomized dis-

tributed real-time systems. Phd thesis, Massachusetts Institute

of Technology, 1995.

[Seg96] Roberto Segala. Testing probabilistic automata. In Proceedings

of CONCUR 1996, volume 1119 of Lecture Notes in Computer

Science, pages 299–314. Springer, 1996.

[SL95] Roberto Segala and Nancy Lynch. Probabilistic simulations for

probabilistic processes. Nordic Journal of Computing, 2(2):250–

273, 1995.

[Ste95] William J. Stewart. Introduction to the Numerical Solution of

Markov Chains. Princeton University Press, 1995.

BIBLIOGRAPHY 177

[Sto02] Mariëlle I.A. Stoelinga. Alea jacta est: verification of probabilis-

tic, real-time and parametric systems. PhD thesis, University of

Nijmegen, the Netherlands, April 2002.

[SV03] Mariëlle I.A. Stoelinga and Fritz W. Vaandrager. A testing sce-

nario for probabilistic automata. In Proc. of ICALP 2003, vol-

ume 2719 of LNCS, pages 407–418. Springer, 2003.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concur-

rent finite-state programs. In Annual Symposium on Foundations

of Computer Science (FOCS), pages 327–338. IEEE CS Press,

1985.

[vGla90] Rob J. van Glabbeek. The linear time-branching time spectrum.

In Proceedings on Theories of Concurrency: Unification and Ex-

tension, pages 278–297. Springer-Verlag, 1990.

[vG93] Rob J. van Glabbeek. The linear time - branching time spectrum

II. In Proceedings of the 4th International Conference on Con-

currency Theory, volume 715 of LNCS, pages 66–81. Springer-

Verlag, 1993.

[vGSST90] Rob J. van Glabbeek, S. A. Smolka, B. Steffen, and C. Tofts.

Reactive, generative, and stratified models of probabilistic pro-

cesses. In Logic in Computer Science, pages 130–141, 1990.

[WBM06] Verena Wolf, Christel Baier, and Mila Majster-Cederbaum.

Trace semantics for stochastic systems with nondeterminism. In

Proc. of the fourth Workshop on Quantitative Aspects of Pro-

gramming (QAPL), volume 164 of ENTCS, pages 187–204, 2006.

[WM05] Olaf Wolkenhauer and Mihajlo Mesarović. Feedback dynamics

and cell function: Why systems biology is called systems biology.

Molecular BioSystems, 1(1):14–16, 2005.

178 BIBLIOGRAPHY

[WMB05] Verena Wolf, Mila Majster-Cederbaum, and Christel Baier.

Trace machines for observing continuous time Markov chains. In

Proc. of the third Workshop on Quantitative Aspects of Program-

ming Languages (QAPL), volume 153 of ENTCS, pages 259–277,

2005.

[Wol04] Verena Wolf. Testing theory for probabilistic systems. In Man-

fred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,

and Alexander Pretschner, editors, Model-Based Testing of Reac-

tive Systems, volume 3472 of Lecture Notes in Computer Science,

pages 233–275. Springer, 2004.

Appendix A

Proofs

A.1 Proof of Proposition 6.3

Proposition A.1

Let P1 and P2 be PTPs. P1 =we P2 implies P1 =TR
tr P2.

Proof. Assume that P1 =we P2. Now, let D1 be a trace dependent sched-

uler for P1 and let σ ∈ Act∗. According to Defintion 6.5 there exist values

z⊥, za, zb, . . . ∈ R≥0 such that the above conditions are fulfilled. Since these

values depend on σ and D1 we might sometimes write zD1,σ
a instead of za

and zD1,σ
⊥ instead of z⊥ in the remainder of the proof. We perform a button

pushing experiment using the weighted trace machine and assume controller

settings ctrσ(a) := za = zD1,σ
a for a ∈ Act, ctrσ(⊥) := z⊥ = zD1

σ (⊥). Then for

each path fragment ξ with trace(ξ) = σ the normalization constant N(ξ, ctr)

which is used to calculate the probability of a weighted trace observation

equals

N(ξ, ctr) = ctrσ(⊥) +
∑

a∈Act

last(ξ)
a

ctrσ(a) = z⊥ +
∑

a∈Act

last(ξ)
a

za = N.

The idea of the proof is to construct a trace dependent scheduler D2 for P2

179

180 A.1 Proof of Proposition 6.3

such that for all t ≥ 0 and all σ ∈ Act∗

trD1
P1

(σ, t) = trD2
P2

(σ, t). (A.1)

This is done in two steps. First we construct an internal scheduler E1 for

P1 based on the decisions of D1. Since P1 =we P2 there exists a matching

internal scheduler E2 for P2. Based on E2 we construct D2 and show that

Equation A.1 holds.

i) An internal scheduler E1 is defined as follows: If last(ξ) is stable we let,

for all a ∈ Act,

E1(ξ)(a, µ) := D1(ξ)(a,µ)
D1(ξ,a)

if D1(ξ)(a, µ) > 0 and E1(ξ)(a, µ) := 0 otherwise. But then if D1(ξ, a) >

0 we have that

D1(ξ)(a, µ) = D1(ξ, a) · D1(ξ)(a,µ)
D1(ξ,a)

Def. 6.5
= za

N
· E1(ξ)(a, µ)

= ctrσ(a)
N(ξ,ctr)

· E1(ξ)(a, µ).

(A.2)

If last(ξ) is unstable and N = N(ξ, ctr) > 0, we have from Defini-

tion 6.5 values pξ
a for each a ∈ Act with last(ξ) a . For µ ∈ dis(S1),

a ∈ Act we put

E1(ξ)(a, µ) :=






D1(ξ)(a,µ)
D1(ξ,a)

· pξ
a if D1(ξ)(a, µ) > 0,

0 otherwise.

This yields for D1(ξ)(a, µ) > 0 that

D1(ξ)(a, µ) = D1(ξ, a) · D1(ξ)(a,µ)
D1(ξ,a)

Def. 6.5
= za

N
· pξ

a · D1(ξ)(a,µ)
D1(ξ,a)

= ctrσ(a)
N(ξ,ctr)

· E1(ξ)(a, µ).

(A.3)

A.1 Proof of Proposition 6.3 181

Finally, we set

E1(ξ)(τ, µ) :=






D1(ξ)(τ,µ)
D1(ξ,τ)

if D1(ξ)(τ, µ) > 0,

0 otherwise.

If D1(ξ, τ) > 0 and N > 0 we get with E1(ξ) =: ϑ

D1(ξ)(τ, µ) = D1(ξ, τ) · D1(ξ)(τ,µ)
D1(ξ,τ)

Def. 6.5
=

(
z⊥
N

+
∑

a∈Act

last(ξ)
a

za

N
· (1 − pξ

a)
)
·E1(ξ)(τ, µ)

=
(

ctrσ(⊥)
N(ξ,ctr)

+
∑

a∈Act

ctrσ(a)
N(ξ,ctr)

· ϑ⊥
a

)
·E1(ξ)(τ, µ)

=
(
pe + pi

)
·E1(ξ)(τ, µ)

(A.4)

where pi and pe are defined as in Equation (6.2) (see page 120). If N =

N(ξ, ctr) = 0 then D1(ξ, τ) = 1 which yields E1(ξ)(τ, µ) = D1(ξ)(τ, µ)

for all µ and pe = 1, pi = 0.

It is easy to check that E1 is an internal scheduler (compare Defini-

tion 6.1 on page 118). Moreover, with the Equations (A.2)-(A.4) we

get that

a) π ∈ path(P) is a D1-path iff π is a (ctr, E1)-path.

b) Pr(ctr,E1) = PrD1

(A.5)

where statement b) can be shown by induction on the length k of cylin-

der sets Cκ(J1, . . . , Jk) of D1-paths.

ii) Let E2 be an internal scheduler for P2 such that we
(ctr,E1)
P1

= we
(ctr,E2)
P2

.

We construct a trace dependent scheduler D2 ∈ HR(P2) as follows:

Let σ = trace(ξ), and µ ∈ disS2 . If last(ξ) is stable we define for all

a ∈ Act

D2(ξ)(a, µ) :=





ctrσ(a)
N(ξ,ctr)

· E2(ξ)(a, µ) if N(ξ, ctr) > 0,

0 otherwise.

182 A.1 Proof of Proposition 6.3

If last(ξ) is unstable and E2(ξ) =: ϑ, the probability that D2 decides

for a ∈ Act is defined by

D2(ξ, a) :=





ctrσ(a)
N(ξ,ctr)

· (1 − ϑ⊥
a) if N(ξ, ctr) > 0,

0 otherwise.

Furthermore, if ϑa(µ) > 0 we put

D2(ξ)(a, µ) := D2(ξ, a) · ϑa(µ)
1−ϑ⊥

a
,

and D2(ξ)(a, µ) = 0 otherwise. Thus,

D2(ξ)(a, µ) = D2(ξ, a) · ϑa(µ)
1−ϑ⊥

a

= ctrσ(a)
N(ξ,ctr)

· ϑa(µ)

= ctrσ(a)
N(ξ,ctr)

· E2(ξ)(a, µ).

(A.6)

In the case that last(ξ) =: s is unstable we let

D2(ξ, τ) :=






ctrσ(⊥)
N(ξ,ctr)

+
∑

a∈Act,

s
a

ctrσ(a)
N(ξ,ctr)

· ϑ⊥
a if N(ξ, ctr) > 0,

1 otherwise

and for ϑτ (µ) > 0

D2(ξ)(τ, µ) := D2(ξ, τ) · ϑτ (µ),

and D2(ξ)(τ, µ) = 0 otherwise.

It holds that D2 ∈ TR. To see this, assume that for all σ ∈ Act∗ we

choose zD2,σ
a := zD1,σ

a for a ∈ Act and zD2,σ
⊥ := zD1,σ

⊥ in Definition 6.5

(and get the same normalization constant N). Then, if ξ is stable and

N = N(ξ, ctr) > 0, we calculate

D2(ξ, a) =
∑

µ

D2(ξ)(a, µ) =
ctrσ(a)

N(ξ, ctr)
=

zD1,σ
a

N
=

zD2,σ
a

N

A.1 Proof of Proposition 6.3 183

and

D2(ξ)
⊥ = 1 −

∑
a∈Act

s
a

D2(ξ, a)

= 1 −
∑

a∈Act

s
a

ctrσ(a)
N(ξ,ctr)

= ctrσ(⊥)
N(ξ,ctr)

=
z
D1,σ

⊥

N
=

z
D2,σ

⊥

N
.

If ξ is unstable and last(ξ) = s a , we set pξ
a := 1 − ϑ⊥

a where ϑ :=

E2(ξ). If N = 0 we have D2(ξ, τ) = 1. If N > 0 we calculate

D2(ξ, τ) = ctrσ(⊥)
N(ξ,ctr)

+
∑

a∈Act

s
a

ctrσ(a)
N(ξ,ctr)

· ϑ⊥
a

=
z
D1,σ

⊥

N
+

∑
a∈Act

s
a

z
D1,σ
a

N
· (1 − pξ

a)

=
z
D2,σ

⊥

N
+

∑
a∈Act

s
a

z
D2,σ
a

N
· (1 − pξ

a)

and

D2(ξ, a) = ctrσ(a)
N(ξ,ctr)

· (1 − ϑ⊥
a)

= z
D1,σ
a

N
· pξ

a = z
D2,σ
a

N
· pξ

a.

Therefore, the conditions of Definition 6.5 hold and D2 ∈ TR.

Similar as for D1 and E1, the following statements can be derived from

the definition of D2 and Equation (A.6):

a) π ∈ path(P) is a D2-path iff π is a (ctr, E2)-path.

b) Pr(ctr,E2) = PrD2

(A.7)

where b) requires an induction on the length k of cylinder sets Cκ(J1, . . . , Jk)

of D2-paths.

184 A.2 Proof of Theorem 6.1

It remains to show that trD1
P1

= trD2
P2

. Let σ ∈ Act∗, t ≥ 0. Then

trD1
P1

(σ, t) = PrD1({π ∈ path(P1) | π is a D1-path and

∃i : trace(π↓i) = σ, time(π↓i) ≤ t})

Eq. A.5
= Pr(ctr,E1)({π ∈ path(P1) | π is a (ctr, E1)-path and

∃i : trace(π↓i) = σ, time(π↓i) ≤ t})

= we
(ctr,E1)
P1

= we
(ctr,E2)
P2

= Pr(ctr,E2)({π ∈ path(P2) | π is a (ctr, E2)-path and

∃i : trace(π↓i) = σ, time(π↓i) ≤ t})

= PrD2({π ∈ path(P2) | π is a D2-path and

∃i : trace(π↓i) = σ, time(π↓i) ≤ t})

= trD2
P2

(σ, t).

This proves that P1 =we P2 implies P1 =TR
tr P2.

A.2 Proof of Theorem 6.1

Theorem A.1

Let P be a PTP and tm : Act∗ × Act →
(
R ∪ {I, B}

)
. Then for each tm-

scheduler F ′ for P there exists a tm-scheduler F for ex(P) such that for all

Cζ ∈ Ctm
P

Pr
(tm,F ′)
P (Cζ) = Pr

(tm,F)
ex(P) (ex(Cζ)).

Proof. We construct F as follows: Let ξ ∈ pathf(ex(P), tm) and let ξ′ be the

maximal prefix of ξ that is P-observable. Then

F(ξ)(a, µ) := F ′(contr(ξ′))(a, µ′) (A.8)

A.2 Proof of Theorem 6.1 185

where µ′(u) · γu(j) = µ(u(j)) for all u, j ∈ {1, . . . , nu} (compare also Defini-

tion 4.2 on page 71). F is a tm-scheduler because, if ξ′ is the maximal prefix

of ξ that is P-observable and last(ξ) = (s(j), ph), last(ξ′) = (v(i), ph′) then

⋄ s = v,

⋄ s(j) a µ if and only if s a µ′ where µ′(u) · γu(k) = µ(u(k)) for all u,

k ∈ {1, . . . , nu},

⋄ (s(j), ph) is stable if and only if (s, ph′) = last(contr(ξ′)) is stable.

We now proceed by induction on the length k of ζ . For timer settings tmσ,

σ ∈ Act∗, the probability of timer initialization ph is given by Pr(ph, σ)

(compare Equation 6.4 on page 142). Let k = 1 and let Cζ = C(s,ph), i.e.,

C(s,ph) is the set of all tm-paths starting with (s, ph). Then ex(C) is the set

of all tm-paths in ex(P) starting with (s(i), ph), i ∈ {1, . . . , ns} and

Pr
(tm,F ′)
P (C(s,ph)) = Pr(ph, ǫ) · νP(s)

= Pr(ph, ǫ) ·
∑ns

i=1 νP(s)γs(i)

= Pr(ph, ǫ) ·
∑ns

i=1 νex(P)(s
(i))

= Pr
(tm,F)
ex(P) (ex(C(s,ph))).

Now, let π ∈ Cζ), |ζ | = k, π↓k= ξ and trace(ξ) = σ. Furthermore, we assume

that ζ = ζ ′ E (sk, phk), last(ζ ′) = (sk−1, phk−1). We distinguish the following

cases:

1. If (sk−1, phk−1) is stable a race between the outgoing PH transitions of

sk−1 and the action timers of the elements of the (finite) set

{a1, . . . , am} := {a ∈ Act | tmσ(a) = (α, T) ∈ R ∧ sk−1
a }

186 A.2 Proof of Theorem 6.1

takes place and is reflected by SPTP

Q = P ′ || Pa1 || . . . || Pam

as defined above (see page 143).

(a) Assume that E ⊆ R>0. For ex(P) we are interested in the measure

of the set of all tm-paths in ex(P) that are of the form

(s
(j0)
k−1, phk−1)

t0 (s
(j1)
k−1, ph′

1)
t1 (s

(j2)
k−1, ph′

2)
t2 . . .

ti−1 (s
(ji)
k−1, ph′

i)
ti (s

(l)
k , phk)

where i ≥ 0,
∑i

h=0 th ∈ E, j0, j1 . . . , ji ∈ {1, . . . , nsk−1
}, 1 ≤

l ≤ nsk
and ph′

1, ph′
2 . . . , ph′

i ∈ G. We start ex(P) with initial

distribution γsk−1
and reach a representative of sk before one of

the SPTPs Pa, a ∈ {a1, . . . , am} reaches state 0 (recall that Pa is

the component of Q that describes the behavior of the a-timer).

Let Q′ be the parallel composition of

P ′′ := (Sex(P), ex(P), ∅, γsk−1
)

and the SPTPs Pa1 , . . . ,Pam . Furthermore, let B′, C ′ ⊆ SQ′ with

B′ := {(u(j) || ua1 || . . . || uam) | j ∈ {1, 2, . . . , nu},

u = sk−1 ∧ ua1 , . . . , uam > 0}

C ′ := {(u(j) || ua1 || . . . || uam) | j ∈ {1, 2, . . . , nu},

u = sk ∧ ua1 , . . . , uam > 0}

.

Then

Pr
(tm,F)
ex(P) (ex(Cζ))

= Pr
(tm,F)
ex(P) (ex(Cζ′) · reach

Q′

(B′, C ′, E).

A.2 Proof of Theorem 6.1 187

But since P ′ and P ′′ have the same generator matrix (and so have

Q and Q′) it holds that

reachQ(B, C, E) = reachQ′

(B′, C ′, E)

and thus

Pr
(tm,F)
ex(P) (ex(Cζ)) = Pr

(tm,F)
ex(P) (ex(Cζ′) · reach

Q′

(B′, C ′, E)

= Pr
(tm,F)
ex(P) (ex(Cζ′) · reach

Q(B, C, E)

ind. hyp.
= Pr

(tm,F ′)
P (Cζ′) · reach

Q(B, C, E)

= Pr
(tm,F ′)
P (Cζ)

where B and C are defined as above.

(b) Assume that E = {a} × (x, y], a ∈ Act, x < y. As stated above

the probability to perform a within interval (x, y] is composed of

three factors (compare also page 144):

i. The probability that the a-timer expires earlier than all the

other timers and before a PH transition of sk−1 can be taken

(within (x, y]).

ii. The probability that after a is performed the new timer set-

tings correspond to phk.

iii. The probability that the tm-scheduler decides for a certain

a-transition.

For ex(P) we split up Pr
(tm,F)
ex(P) (ex(Cζ)) in the same way, i.e., into

three factors according to i–iii. We prove that each factor is the

same for Pr
(tm,F ′)
P (Cζ) and Pr

(tm,F)
ex(P) (ex(Cζ)).

i. Consider the probability that the a-timer expires earlier than

all the other timers and before a PH transition of s can be

188 A.2 Proof of Theorem 6.1

taken (within (x, y]). According to the construction of the

modified PTP Q this probability equals reachQ(B, D, (x, y])

where D is defined as above. For ex(P) we are interested in

the measure of the set of all tm-paths of the form

(s
(j0)
k−1, phk−1)

t0 (s
(j1)
k−1, ph′

1)
t1 (s

(j2)
k−1, ph′

2)
t2 . . .

ti−1 (s
(ji)
k−1, ph′i)

a,ti (s
(l)
k , ph′)

where i ≥ 0, x <
∑i

h=0 th ≤ y, j0, j1 . . . , ji ∈ {1, . . . , nsk−1
},

1 ≤ l ≤ nsk
and ph′

1, ph′
2 . . . , ph′

i, ph′ ∈ G (note that for the

first factor the timer initialization ph′ is arbitrary). We use

Q′ to calculate the probability that corresponds to this set

and define

D′ :=
{
(u(j) || ua1 || . . . || uam) | j ∈ {1, 2, . . . , nu}

u = sk−1, ua = 0, ub > 0, b ∈ {a1, . . . , am} \ {a}
}
.

It holds that reachQ′

(B′, D′, (x, y]) is the sought-after proba-

bility because the elements of D′ correspond to the situation

in which an a-transition of sk−1 is immediately enabled. A

comparison with case 1b), factor i (see page 144) shows that

p′1 := reachQ′

(B′, D′, (x, y]) = reachQ(B, D, (x, y]) = p1

where we use again that P ′ and P ′′ have the same generator

matrix (and so have Q and Q′).

ii. Let us consider the probability that after a is performed the

new timer settings correspond to phk. Obviously, this factor

equals p2 = Pr(phk, σa) := p′2 for both, P and ex(P).

iii. For the third factor we make use of the definition of F . Let ξ̂ ∈

pathf(tm, ex(P)) be such that contr(ξ̂) = ξ′ and let F ′(ξ′) =

A.2 Proof of Theorem 6.1 189

λ′, F(ξ̂) = λ. Note that all tm-path fragments ξ̂ that are

of interest for ex(C) fulfill contr(ξ̂) = ξ′ or their maximal P-

observable prefix does and F ’s choice is the same for all such

path fragments. We compute

p3 =
∑

{|λ′(a, µ′) · µ′(sk) | ∃µ′ : sk−1
a µ′|}

Eq. A.8
=

∑
{|λ(a, µ) · µ′(sk) | ∃µ′ : sk−1

a µ′

∧ ∀l : µ′(sk) · γsk
(l) = µ(s

(l)
k)|}

=
∑

{|λ(a, µ) ·
nsk∑
l=1

γsk
(l) · µ′(sk) | ∃µ′ : sk−1

a
µ′

∧ ∀l : µ′(sk) · γsk
(l) = µ(s

(l)
k)|}

Def. 4.2
=

nsk∑
l=1

∑
{|λ(a, µ) · µ(s

(l)
k) | ∃µ :

∀j ∈ {1, . . . , nsk−1
} : s

(j)
k−1

a µ|}

:= p′3.

We conclude that

Pr
(tm,F)
ex(P) (ex(Cζ)) = Pr

(tm,F)
ex(P) (ex(Cζ′) · p

′
1 · p

′
2 · p

′
3

ind. hyp.
= Pr

(tm,F ′)
P (Cζ′) · p

′
1 · p

′
2 · p

′
3

= Pr
(tm,F ′)
P (Cζ′) · p1 · p2 · p3

= Pr
(tm,F ′)
P (Cζ).

2. Now, let (sk−1, phk−1) be unstable. Then E = {(a, 0)}, a ∈ Actτ . This

implies that sk−1
a and phk−1(a) = 0 if a 6= τ . Let p2, p′2,p3 and p′3

be defined as above except that p2 := 1 and p′2 := 1 if a = τ . With the

190 A.3 Proof of Theorem 7.1

same arguments as for the case 1b), i and ii,

Pr
(tm,F)
ex(P) (ex(Cζ))= Pr

(tm,F)
ex(P) (ex(Cζ′) · p

′
2 · p

′
3

= Pr
(tm,F ′)
P (Cζ′) · p2 · p3

= Pr
(tm,F ′)
P (Cζ)

which completes the whole proof.

A.3 Proof of Theorem 7.1

Theorem A.2

=te is finer than =de.

Proof. Let us now prove that P1 =te P2 implies P1 =de P2. The idea is

to construct a test process Ttm which simulates the enviroment conditions

described by the timer settings tm. The proof consists of five steps. In the

first step, we extend P1 and P2 by action transitions with labels za, a ∈ Act

which are used to communicate to Ttm that P1 performed action a. This

means that timer settings change from tmσ to tmσa and Ttm has to give input

stimuli according to tmσa. The modified processes are called P ′
1 and P ′

2.

The second step is concerned with the construction of the test process Ttm.

In the third step an HR-scheduler for P ′
1|Ttm is defined which simulates the

decisions of tm-scheduler F1 for P1. Then, in step four, we prove by induction

on the length of a cylinder set of paths that P ′
1|Ttm under D produces trace

observations with the same probability as P1 under F1 does. Finally (step

five) we show P1 =te P2 implies P1 =de P2 by adding success actions to Ttm.

1. Assume that P1 and P2 are SPTPs. For i ∈ {1, 2}, we construct a

modified version P ′
i of Pi as follows: Each transition s a µ, a ∈ Act of

A.3 Proof of Theorem 7.1 191

Pi is replaced by transitions s a δu and u za µ where u = u(s, a, µ)

is a fresh state and za is a fresh action. Thus, the state space is extended

by the set {|u | u = u(s, a, µ), s a µ, a 6= τ |} and the set of actions by

{za, a ∈ Act}.

Obviously,

P1 =te P2 ⇐⇒ P ′
1 =te P

′
2

and

P1 =de P2 ⇐⇒ P ′
1 =de P

′
2.

2. Suppose that tm : Act∗ × Act →
(
R ∪ {I, B}

)
represents the timer

settings for the delayed trace machine. We construct a test process Ttm

as the union of SPTPs Tσ, σ ∈ Act∗ in the following way. Firstly, for

each σ process Tσ is given by

Tσ := T a1
σ || T a2

σ || . . . || T an
σ

where

{a1, a2, . . . , an} = {a ∈ Act | tmσ(a) ∈ R ∪ {I}} =: Act(tmσ) 6= ∅.

Recall that we impose the constraint that Act(tmσ) is finite. If Act(tmσ) 6=

∅ then Tσ consists of a single absorbing state without any outgoing

transitions.

If tmσ(a) = (α, T) then SPTP T a
σ = (Sa

σ,
a
σ,

a
σ, ν

a
σ) is defined

as follows:1

⋄ Sa
σ := {i | −1 ≤ i ≤ k} where k is the order of (α, T),

⋄
a
σ := {(i, Tij , j) | i, j ≥ 1, i 6= j} ∪ {(i,T0

i , 0) | i, j ≥ 1, i 6= j},

1We briefly write (s, (α, T), s′) instead of (s, (α, T), δs′) and (s, a, s′) instead of (s, a, δs′).

192 A.3 Proof of Theorem 7.1

⋄
a
σ := {(0, a,−1)},

⋄ νa
σ is such that νa

σ(i) = α(i) if 1 ≤ i ≤ k and νa
σ(i) = 0 otherwise.

Intuitively, T a
σ performs action a after a PH delay with representation

(α, T). If tmσ(a) = I then SPTP T a
σ = (Sa

σ, a
σ, a

σ, νa
σ) performs

a immediately, i.e. Sa
σ = {0,−1}, a

σ = {} , a
σ = {(0, a,−1)},

νa
σ(0) = 1 and νa

σ(−1) = 0.

We add superscript a to indicate the elements of Sa
σ. We write, for

example, ia instead of i for i ∈ Sa
σ. Furthermore, let the elements of

Tσ = T a1
σ || T a2

σ || . . . || T an

σ

be given by (Sσ, σ, σ, νσ) and elements of Sσ have the form

s = (ia1 || ia2 || . . . || ian) if Act(tmσ) = {a1, a2, . . . , an}. In order to

achieve ∩σ∈Act∗Sσ = ∅, we rename the states of Tσ as follows: let

(σ, ia1 || ia2 || . . . || ian) be state (ia1 || ia2 || . . . || ian) ∈ Sσ.

Now, Ttm := (Stm, tm, tm, νtm) is constructed from the Tσ’s as

follows:

⋄ Stm := ∪σ∈Act∗Sσ,

⋄ tm := ∪σ∈Act∗ σ,

⋄ tm := (∪σ∈Act∗ σ) ∪ Z where2

Z := {(s, za, νσa) | s = (σ, ia1 || ia2 || . . . || ian) ∈ Sσ,

∃l : a = al, i
a = −1},

⋄ νtm := νǫ.

2Recall that for a set A we extend distribution α ∈ dis(A) on set B ⊃ A by letting

α(s) = 0 if s ∈ B \ A.

A.3 Proof of Theorem 7.1 193

This means that in Ttm for all σ and all a process Tσ is connected to

Tσa via a za-transition.

Obviously, for each ξ ∈ pathf(Ttm) with last(ξ) = (σ, ia1 || ia2 || . . . || ian)

and

trace(ξ) = b1zb1b2zb2 . . . bmzbm or (A.9)

trace(ξ) = b1zb1b2zb2 . . . bm−1zbm−1bm (A.10)

it holds that Act(tmσ) = {a1, a2, . . . , an} and σ = b1b2 . . . bm in the case

of A.9 and σ = b1b2 . . . bm−1 in the case of A.10. Moreover, all path

fragments of P ′
1|Ttm containing at least one visible action have traces

of the form A.9 or A.10.

3. The next step is to connect path fragments of P ′
1|Ttm and tm-path

fragments of P1 in order to define a scheduler for P ′
1|Ttm. The time

until an action, say, a is enabled in Ttm is represented by k single

phased PH transitions if the order of tmσ(a) is k. In contrast to that

a tm-path of P1 captures this time delay in one step and hides the

phase changes of the action timer. Moreover, action transitions are not

followed by a z-transitions as in P ′
1|Ttm. We modify the elements of the

set pathf(P ′
1|Ttm) in the following way:

Let ξ ∈ pathf(P ′
1|Ttm).

⋄ Whenever s a s′ za s′′ is a part of ξ for some a ∈ Act these

two transitions are replaced by s a s′′. Note that this removes

za completely from all path fragments since it does not occur in

any other way.

194 A.3 Proof of Theorem 7.1

⋄ Whenever ξ contains a maximal subsequence of the form

v|(σ, ia1 || ia2 || . . . || ian) t1

v|(σ, ja1 || ja2 || . . . || jan)
t2 . . .

tN

v|(σ, la1 || la2 || . . . || lan) a

v′|(σ, kb1 || kb2 || . . . || kbm)

(A.11)

i.e. P ′
1 remains in its current state whereas Ttm performs PH

transitions until action a can be carried out synchronously, we

replace this subsequence by

v|(σ, ia1 || ia2 || . . . || ian)
a,t

v′|(σ, kb1 || kb2 || . . . || kbm)

where t =
∑N

h=1 th. Note that an HR-scheduler D for P ′
1|Ttm has

nothing to decide in intermediate stable states since no action

transition is possible in these states (but D has to decide which

of the a-transitions of v is taken).

⋄ Whenever ξ contains a maximal subsequence of the form

v|(σ, ia1 || ia2 || . . . || ian)
t1

v|(σ, ja1 || ja2 || . . . || jan)
t2 . . .

tN−1

v|(σ, la1 || la2 || . . . || lan)
tN

v′|(σ, la1 || la2 || . . . || lan)

(A.12)

i.e. P ′
1 remains in its current state whereas Ttm performs PH

transitions and finally P ′
1 executes a PH transition, we replace

this subsequence by

v|(σ, ia1 || ia2 || . . . || ian) t v′|(σ, la1 || la2 || . . . || lan)

where t =
∑N

h=1 th. Again an HR-scheduler D for P ′
1|Ttm has

nothing to decide in the intermediate stable states.

A.3 Proof of Theorem 7.1 195

Let c̃ontr(ξ) denote path fragment ξ after the three modifications and

let p̃athf(P ′
1|Ttm) denote the set of all such path fragments c̃ontr(ξ).

The partial function f : p̃athf(P ′
1|Ttm) → pathf(P1, tm) is defined in-

ductively by

f(v|(ǫ, ia1 || ia2 || . . . || ian)) = (v, ph)

where for all a ∈ Act(tmǫ) = {a1, a2, . . . , an} we have ph(a) = ia ≥ 0

(from the definition of the initial distributions νa
ǫ we have that initially

ia ≥ 0). Furthermore, if c̃ontr(ξ), c̃ontr(ξ′) ∈ p̃athf(P ′
1|Ttm) and

c̃ontr(ξ) = c̃ontr(ξ′)
e

v|(σ, ia1 || ia2 || . . . || ian)

we define

f(c̃ontr(ξ)) = f(c̃ontr(ξ′)) ê (v, ph)

where again for all a ∈ {a1, a2, . . . , an} we have ph(a) = ia ≥ 0 and

ê = e if e = (a, t) or e = t, ê = (e, 0) if e ∈ Actτ . f(c̃ontr(ξ)) is

undefined whenever the states ia or event e do not fulfill the above

conditions or if f(c̃ontr(ξ′)) is undefined.

Now, we are able to define HR-scheduler D for P ′
1|Ttm if a tm-scheduler

F1 for P1 is given. Let ξ be a path fragment of P ′
1|Ttm, last(ξ) = s =

v|(σ, ia1 || ia2 || . . . || ian) and trace(c̃ontr(ξ)) = σ. Then D(ξ) = λ is

such that

⋄ if there exists a with ia = −1 and s za µ then λ(za, µ) = 1,

⋄ if s τ and ia > 0 for all a ∈ {a1, a2, . . . , an}, v a then λ⊥ = 1,

⋄ if iak ≥ 0 for 1 ≤ k ≤ n and {b ∈ Actτ | v b , ib = 0} =

{b1, b2, . . . , bm} 6= ∅ then f(c̃ontr(ξ)) ∈ pathf(P1, tm) and λ is

defined as follows: Let λ′ := F1(f(c̃ontr(ξ))). Transition

s
bk u|(σ, ja1 || ja2 || . . . || jan) = s′, bk 6= τ, 1 ≤ k ≤ m,

196 A.3 Proof of Theorem 7.1

is chosen with probability λ(bk, s
′) := λ′(bk, µ) if u = u(v, bk, µ)

and

jal =






ial if al 6= bk

−1 otherwise,

for all l ∈ {1, . . . , n}. However, if bk = τ then transition s τ µ,

is chosen with probability λ(τ, µ) := λ′(τ, µ′) if

µ′(v′) = µ(v′|(σ, ia1 || ia2 || . . . || ian))

for all v′. All remaining transitions have probability zero.

By using the fact that F1 is a tm-scheduler, it can be shown that

D ∈ HR(P ′
1|Ttm).

4. The next step is concerned with the proof of the fact that for all σ =

a1a2, . . . , an ∈ Act∗, σ′ = a1za1a2za2 . . . anzan we have

PrD({π ∈ path(P ′
1|Ttm) | ∃i : trace(π↓i) = σ′, time(π↓i) ≤ t})

= Pr(tm,F1)({π ∈ path(P1, tm) | ∃i : trace(π↓i) = σ, time(π↓i) ≤ t}.

This is shown by going back to the cylinder set construction for prob-

ability measures. Let Cζ be a cylinder set of tm-path in P1 and let

Ξζ ⊆ pathf(P1, tm) be the set of tm-path fragments (as defined above).

We set

ẽx(Cζ) := {π ∈ path(P ′
1|Ttm) | ∃j : f(c̃ontr(π↓j)) ∈ Ξζ}.

We prove by induction on the length k of ζ that for all such cylinder

sets Cζ

PrD
(
ẽx(Cζ)

)
= Pr(tm,F1)

(
Cζ)
)
.

A.3 Proof of Theorem 7.1 197

Let tmǫ = {a1, a2, . . . , an} and ζ = (v, ph). For k = 1 we get

Pr(tm,F1)
(
C(v,ph)

)
= νP1(v) ·

∏
a:tmǫ(a)=(α,T)∈R α(ph(a))

= νP ′
1
(v) ·

∏n
j=1 ν

aj
ǫ (ph(aj))

= νP ′
1
(v) · νtm(ǫ, ph(a1) || ph(a2) || . . . || ph(an))

= PrD
(
ẽx(C(v,ph))

)

where the product equals 1 if there exists no action a ∈ Act(tmǫ) with

tmǫ(a) ∈ R. If now k > 0, trace(ζ) = σ and

ζ = (s1, ph1) E1 (s2, ph2) E2 . . . Ek−1 (sk, phk),

ζ ′ := (s1, ph1) E1 (s2, ph2) E2 . . . Ek−2 (sk−1, phk−1),

we distinguish three cases:

(a) If Ek−1 = {a} × (x, y], x < y (and therefore t ∈ Jk−1, s) we

recall modification A.11 and let Act(tmσ) =: {a1, a2, . . . , an},

v := sk−1|(σ, phk−1(a1) || phk−1(a2) || . . . || phk−1(an)).

v′ := sk|(σ, phk(a1) || phk(a2) || . . . || phk(an)).

Furthermore, we define A>0 as the set of all states of the form

sk−1|(σ, ka1 || ka2 || . . . || kan)

such that kb > 0 for all b ∈ {a1, . . . , an}, v
b and Aa is the set

of all such states in which T a
σ is in state 0, i.e. ka = 0. Then

PrD
(
ẽx(Cζ)

)
= PrD

(
ẽx(Cζ′)

)
· p′1 · p

′
2 · p

′
3

where

p′1 = reachP ′
1|Tσ

v (A>0, Aa, (x, y]).

198 A.3 Proof of Theorem 7.1

The probability that Ttm changes its state according to phk is given

by

p′2 = νσa(σ, phk(a1) || phk(a2) || . . . || phk(an)).

which equals p2 (see Equation 6.4).

The probability p′3 that D decides for an a-transition in v such

that P ′
1 reaches state u(sk−1, a, µ) multiplied by µ(sk) does, by

contruction of D, only depend on the choice of F1(ζ) and equals

p′3 =
∑{∣∣∣F1(ζ)(a, µ) · µ(sk) | ∃µ : sk−1

a µ
∣∣∣
}

= p3.

Note that this includes the execution of the za-action. Now, com-

pare the definition of p1 in Equation 6.6 on page 144 for the con-

struction of the measure Pr(tm,F1) (case 2(a)). It holds that equals

p′1 = p1, i.e. the probability that the a-timer expires earlier than

all other timers and before a PH transition of sk−1 can be taken

(within (x, y]). In both cases we consider the race between the

PH transitions of sk−1 and PH transitions labeled by

{(δi, T) | sk−1
a′

, tmσ(a′) = (α, T), ph(a′) = i}.

For Pr(tm,F1) the probability that the transition associated to tmσ(a)

wins this race within (x, y] is calculated by the construction of Q′

on page 144. The part of the generator matrix of Q′ which ex-

presses the race in state sk−1 equals the part of P ′
1|Tσ’s generator

for set A>0 ∪ Aa.

Using the induction hypothesis we combine

PrD
(
ẽx(Cζ)

)
= PrD

(
ẽx(Cζ)

)
· p1′ · p′2 · p

′
3

= Pr(tm,F1)
(
Cζ′

)
· p1 · p2 · p3

= Pr(tm,F1)
(
Cζ

)
.

A.3 Proof of Theorem 7.1 199

(b) Assume that Ek−1 = (x, y],0 ≤ x < y. From modification A.12

(see page 194) we know that P ′
1 performed a PH transition from

sk−1 to sk while Ttm reached state (σ, jb1 || jb2 || . . . || jbm) from

state (σ, ia1 || ia2 || . . . || ian) within Tσ where phk−1(bl) = jbl, 1 ≤

l ≤ m, phk(ah) = iah , 1 ≤ h ≤ n. This means that

Act(tmσ) = {b1, b2, . . . , bm} = {a1, a2, . . . , an}.

Hence, without loss of generality we write (σ, ja1 || ja2 || . . . || jan)

for (σ, jb1 || jb2 || . . . || jbm). Let

v := sk−1|(σ, ia1 || ia2 || . . . || ian).

v′ := sk−1|(σ, ja1 || ja2 || . . . || jan).

Then

PrD
(
ẽx(Cζ)

)
= PrD

(
ẽx(Cζ′)

)
· reachP1|Ttm

v (A, {v′}, Ek−1)

where

A =
{(

sk−1|(σ, la1 || la2 || . . . || lan)
)
| ∀a ∈ {a1, a2, . . . , an} :

la ≤ 0 =⇒ sk−1
a

}
.

But by construction this equals the probability reachQ(B, C, (x, y])

in Equation 6.5 on page 143. Therefore, our statement also holds

in this case, i.e.

PrD
(
ẽx(Cζ)

)
= PrD

(
ẽx(Cζ)

)
· reachP1|Ttm

v (A, {v′}, Ek−1)

= Pr(tm,F1)
(
Cζ′

)
· reachQ(B, C, (x, y])

= Pr(tm,F1)
(
Cζ

)
.

(c) Finally, if If Ek−1 = {(a, 0}, a ∈ Actτ the situation is similar to

the first case. If a 6= τ , the probability p2 of timer initialization

200 A.3 Proof of Theorem 7.1

according to phk equals

p′2 = νσa(σ, phk(b1) || phk(b2) || . . . || phk(bm)).

where Act(tmσa) =: {b1, b2, . . . , bm}, and the branching probability

p′3 according to -scheduler D equals

p3 :=
∑{∣∣∣F1(ζ)(a, µ) · µ(sk) | ∃µ : sk−1

a µ
∣∣∣
}
. (A.13)

If a = τ the p′2-term (p2-term) drops out and the statement follows

directly.

Hence, for all cylinder sets Cζ

PrD
(
ẽx(Cζ)

)
= Pr(tm,F1)

(
Cζ)
)
.

But then for all σ = a1a2, . . . , an ∈ Act∗, σ′ = a1za1a2za2 . . . anzan it

holds that

trDP ′
1|Ttm

(σ′, t)

=PrD({π ∈ path(P ′
1|Ttm) | ∃i : trace(π↓i) = σ′, time(π↓i) ≤ t})

=Pr(tm,F1)({π ∈ path(P1, tm) | ∃i : trace(π↓i) = σ, time(π↓i) ≤ t}

= de
(tm,F1)
P1

(σ, t).

(A.14)

5. In the final step we incorporate success actions θσ in Ttm. Each tran-

sition sσ
za νσa, sσ ∈ Sσ is replaced by sσ

za µσa with µσa(s) =

0.5 · νσa(s) for all s ∈ Sσa and µσa(wσa) = 0.5. Here, wσa are fresh

states having a single transition which is a loop labeled by θσa. Note

that the number of fresh states wσa is countable (as the number of such

transitions is countable) and therefore we have countably many success

actions. Let Θ be the set of all such success actions and let T ′
tm denote

A.3 Proof of Theorem 7.1 201

the modified version of Ttm. We assume that scheduler D′ is defined on

T ′
tm|P

′
1 such that D′ decides as D ∈ HR(Ttm|P

′
1) does but chooses the

success action θσ with probability one in wσ (for all fresh states wσ).

Then for all σ = a1a2, . . . , an ∈ Act∗, σ′ = a1za1a2za2 . . . anzan it holds

that

te
(T ′

tm,D′)

P ′
1

(θσ, t)

= PrD
′

({π ∈ path(P ′
1|T

′
tm) | ∃i :

trace(π↓i) = σ′θσ, time(π↓i) ≤ t})

= 0.5n · PrD({π ∈ path(P ′
1|Ttm) | ∃i :

trace(π↓i) = σ′, time(π↓i) ≤ t})

= 0.5n · trDP ′
1|Ttm

(σ′, t)

if θσ ∈ Θ . If σ ∈ Act∗ is such that θσ 6∈ Θ then trDP ′
1|Ttm

(σ′, t) = 0.

Moreover, since P ′
1 =te P ′

2 there exists E ′ ∈ HR(P ′
2|T

′
tm) such that for

all θσ ∈ Θ , t ≥ 0

te
(T ′

tm,D′)
P ′

1
(θσ, t) = te

(T ′
tm,E ′)

P ′
2

(θσ, t).

Now, let E be a scheduler for P ′
2|Ttm which decides as E ′ does (except

that E is not defined on path fragments containing a state wσ). But

then for all σ = a1a2, . . . , an ∈ Act∗, σ′ = a1za1a2za2 . . . anzan , t ≥ 0

trDP ′
1|Ttm

(σ′, t) = 1
0.5n · te

(T ′
tm,D′)

P ′
1

(θσ, t)

= 1
0.5n · te

(T ′
tm,E ′)

P ′
2

(θσ, t)

= trEP ′
2|Ttm

(σ′, t).

(A.15)

if θσ ∈ Θ . If σ ∈ Act∗ is such that θσ 6∈ Θ we get

trDP ′
1|Ttm

(σ′, t) = trEP ′
2|Ttm

(σ′, t) = 0

which completes the final step.

202 A.3 Proof of Theorem 7.1

The remainder of the proof is as follows: We define a tm-scheduler F2 for P2

in a similar way as D is defined for P ′
1|Ttm (given F1) in the third step. More

precisely, F2 resolves the remaining nondeterminism of P2 (while P2 is tested

with timer settings tm) in the same way as E resolves nondeterminism in

P ′
2|Ttm. As before, it follows by induction that trEP ′

2|Ttm
and de

(tm,F2)
P2

assign the

same probability to trace observations. We derive for all σ = a1a2, . . . , an ∈

Act∗, σ′ = a1za1a2za2 . . . anzan

trEP ′
2|Ttm

(σ′, t)

= PrE({π ∈ path(P ′
2|Ttm) | ∃i : trace(π↓i) = σ′, time(π↓i) ≤ t})

= Pr(tm,F2)({π ∈ path(P2, tm) | ∃i : trace(π↓i) = σ, time(π↓i) ≤ t}

= de
(tm,F2)
P2

(σ, t).

(A.16)

Combining Equation A.14, A.15 and A.16 yields

de
(tm,F1)
P1

(σ, t) = trDP ′
1|Ttm

(σ′, t) = trEP ′
2|Ttm

(σ′, t) = de
(tm,F2)
P2

(σ, t), (A.17)

for all σ ∈ Act∗, t ≥ 0, and the proof is complete.

