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Abstract
Diffusion tensor magnetic resonance imaging is the only non-invasive imaging technique
that allows the discrimination of different matter types as well as the distinction of matter
anatomy. Anatomy investigations are possible because the measured diffusion is stronger
in parallel with boundaries, such as for example cell membranes. For the reconstruction
of complicated anatomies, especially the pathways of neuronal brain fibers, fiber track-
ing methods were developed. The classical streamline tracking methods cannot handle
voxels that contain multiple fiber orientations well. Examples for such multi-orientation
voxels are voxels containing fiber crossing, fiber branching or kissing fibers. The di-
rectional heterogeneity in such voxels cannot be modeled with the simple second order
diffusion tensor used for standard tracking, which can only model one dominating diffu-
sion direction. I have developed a new diffusion simulation based fiber tracking method
that uses time-of-arrival maps to reconstruct the tracts. This method is able to resolve a
lot of problems of the commonly used streamline method. The reconstruction can also
be performed on simulations that use more advanced diffusion models. A first simple
example for such an extension of the diffusion simulation is discussed here.

To use more advanced diffusion models, such as the higher order tensor hierarchy, in
a clinical environment the extensive measurement time required for the data acquisition
for this model needs to be reduced. In my evaluations on gradient encoding schemes
I investigated the required number of encoding directions and the distribution of the
directions for higher order tensor estimations with several quality measures. I was able
to show, that 21 directions are the minimal required number of encoding directions for
the higher order tensor hierarchy model and that the paired off force minimizing gradient
encoding scheme is the best all purpose scheme for diffusion evaluation with second or
higher order tensor models.

Key words: DSBT, Fiber Tracking, Higher Order Tensors,
Gradient Encoding Schemes

Zusammenfassung
Diffusionstensor Magnetresonanz Bildgebung ist das einzige nicht-invasive Bildgebungs-
verfahren, das es erlaubt sowohl verschiedene Gewebearten zu unterscheiden als auch
auf die Gewebeanatomie zu schließen. Rückschlüsse auf die Anatomie sind möglich, da
die gemessene Diffusion stärker parallel zu begrenzenden Strukturen, wie zum Beispiel
Zellmembranen, verläuft. Um komplizierte Anatomien, ins besondere Nervenbahnen im
Gehirn, zu rekonstruieren wurden verschiedene Rekonstruktionsmethoden (so genannte

”Fiber Tracking“-Verfahren) entwickelt. Die klassischen ”Streamline“-Rekonstruktions-
methoden können Voxel mit mehreren Faserorientierungen (zum Beispiel Faserkreu-
zungen oder -verzweigungen) schlecht handhaben. Die in diesen Voxeln vorliegende
Heterogenität der Faserrichtungen kann nicht durch das einfach Tensormodell zweiter
Ordnung, das von Standardrekonstruktionsverfahren benutzt wird, beschrieben werden,
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da es maximal eine dominante Diffusionsrichtung adäquat beschreiben kann. Ich habe
eine neue diffusionssimulationsbasierte Methode zur Rekonstruktion von Nervenbah-
nen entwickelt, die Fasern unter der Verwendung von so genannten “Time-of-Arrival
Maps“ rekonstruiert. Diese Methode ist in der Lage einige Probleme der gebräuchlichen

”Streamline“-Verfahren zu lösen. Außerdem kann dieses Rekonstruktionsverfahren auf
beliebigen Diffusionssimulationen, also auch auf solchen, die kompliziertere Diffusions-
modelle verwenden, aufgesetzt werden. Ein erster Ansatz, eine solche weiterentwickelte
Diffusionssimulation zu definieren, wird hier diskutiert.

Um kompliziertere Diffusionsmodelle, wie zum Beispiel Tensoren höherer Ordnung,
in einem klinischen Kontext zu verwenden, muss die extrem lange Messzeit für die
benötigten Daten reduziert werden. In meiner Betrachtung von Gradientenkodiersche-
mata habe ich die benötigte Anzahl von Gradientenrichtungen und deren Verteilung mit
verschiedenen Qualitätskriterien untersucht. Ich konnte zeigen, dass 21 Richtungen die
minimal benötigte Anzahl an Richtungen für das Tensorhierarchie-Model sind und dass
die paarweise Kräfteminimierung zwischen den Gradientenrichtungen die beste allge-
meine Verteilung für die Auswertung von Tensoren jeder Ordnung liefert.

Schlüsselbegriffe: DSBT, Faserrekonstruktion, Tensoren höherer Ordnung, Gra-
dientenschemata
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1 Introduction

1.1 Motivation
Diffusion weighted (magnetic resonance) imaging is able to measure diffusion inside of
a subject. The relevant molecular movement here is a random displacement of molecules
relative to each other (Brownian motion). Opposed to the commonly known concentra-
tion driven diffusion this movement does not depend on a concentration gradient and is
therefore also termed self-diffusion. The molecules are magnetically labeled prior to the
image acquisition, depending on their position and the direction the diffusion is to be in-
vestigated in. At the time of image acquisition the position of the molecules has changed
due to self-diffusion processes. The resulting local signal change is used to determine the
amount of self-diffusion. The self-diffusion usually follows the path of least resistance,
therefore it is faster parallel to barriers, such as cell membranes, than perpendicular to
them. This phenomenon allows to non-invasively gather information on the structure of
the subject matter from the acquired images. If several images are acquired (at least 6
diffusion weighted ones and 1 without diffusion weighting), the self-diffusion process
can be modeled in 3D, for example with a second order diffusion tensor. From the 3D
tensor important information can be extracted, such as the principal diffusion direction
or the anisotropy of the local diffusion. This allows not only a distinction of matter
types, for example gray and white matter in the brain, but also the distinction of coherent
structures of one matter type, for example different neuronal fiber bundles with different
orientations in the brain white matter. This structural information cannot be acquired
with other non-invasive imaging modalities, which enhances the importance of diffusion
weighted imaging for in vivo studies, for example on humans.

The resolution of diffusion weighted images is relatively coarse, in the order of mil-
limeters, for the distinction of neuronal fibers, which have a diameter in the order of
micrometers. The low resolution allows multiple fiber orientations inside of a measured
voxel. This will cause problems for the standard second order tensor diffusion model,
that is only able to model a single fiber orientation per voxel. Recently more advanced
diffusion models have been proposed to overcome this limitation. These models require
a larger number of diffusion encoding directions. I investigated the number of directions
that is required for the evaluation of higher order tensor diffusion models and the optimal
arrangement of these directions (see chapter 5).

Fiber tracking is a technique to reconstruct fiber bundles in 3D from the measured
diffusion information. Most common techniques are line propagating techniques, which

1



1 Introduction

reconstruct the path of a fiber bundle step-by-step, following the principal diffusion direc-
tion. These methods have difficulties reconstructing the fiber pathways in voxels which
contain more than one fiber orientation because they are based on the voxel wise eval-
uated second order tensor model that cannot adequately represent the diffusion in such
heterogeneous voxels. To overcome the limitations of this tracking method I developed
a front propagating fiber tracking technique that allows the reconstruction of crossing,
branching and curving fibers (see chapter 7). This method is able to resolve a lot of
problems of the commonly used streamline methods by considering a neighborhood of
voxels in the reconstruction of the tract.

1.2 Outline
In chapter 2, the basics of magnetic resonance imaging are explained. First, the physical
phenomena that are the basis for this technique are presented before the basics of mag-
netic resonance image acquisition are discussed in short. The image contrasts that are
used to distinguish different matter types, are introduced before the most common imag-
ing sequences are presented. A measure for imaging quality, the signal-to-noise ratio is
presented before the partial voluming effect that is especially important in the context of
diffusion tensor imaging is explained.

Chapter 3 starts with a short introduction to brain anatomy. The basics of diffusion are
presented, before different diffusion weighting imaging methods are explored.

Different diffusion models can be fit to the signal in a set of diffusion weighted images.
These models, derived scalar values and corresponding visualizations are presented and
discussed in chapter 4. The most common diffusion model is the second order diffusion
tensor which is presented in detail in 4.2. I explored the possibilities for the use of higher
order tensor models for practical application, therefore the two known higher order tensor
models are also presented and discussed in more detail (see 4.3.3).

In the course of my exploration of higher order tensor models, I investigated the in-
fluence of the gradient encoding schemes on the higher order tensor estimation. The
discussions of higher order tensor models in literature (see for example [57, 73]) use
large numbers of gradient encoding directions which require a prolonged data acquisi-
tion. I investigated how the number of required data acquisitions can be reduced to allow
the use of these models in practical applications. Different families of gradient encoding
schemes are presented in chapter 5. An attempt of determining the quality of the indi-
vidual encoding schemes was made in 6. For this evaluation different encoding schemes
were compared, using different quality measures known from literature and developed
by myself.

In chapter 7 methods of fiber tracking, that are used to reconstruct neuronal fiber path-
ways in the brain white matter are presented. My diffusion simulation based tracking
(DSBT) method, which uses time-of-arrival (TOA) maps, is introduced in chapter 8.
This tracking method is based on the simulation of a diffusion process that is governed
by the calculated diffusion tensors and propagates a diffusion front over the data set. The
reconstruction follows the gradient on the so propagated fronts toward the simulation
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1.3 Original Contributions

origin, allowing fiber branching to be handled automatically. This is one of the major
advantages of this approach over more classical tracking methods. Another major ad-
vantage of DSBT is that the tract reconstruction can be based on any kind of diffusion
simulation and is therefore not directly dependent on the second order diffusion tensor.
If a more advanced diffusion model can be used in the simulation to generate more ac-
curate diffusion fronts, the DSBT reconstruction based on these results will return more
accurate fiber tracts. The method can therefore easily be extended to more advanced
diffusion models, as long as a diffusion simulation can be computed with this model.
This extension of DSBT and one possible alternative simulation are discussed in section
8.9.7.

In the last chapter, I will summarize my findings and present questions that are still
open.

1.3 Original Contributions
In my investigations my main focus was on two subjects:

1. The development of a new diffusion simulation based fiber tracking algo-
rithm that uses time-of-arrival maps. This technique consists of three major
steps: the simulation of diffusion, the construction of a time-of-arrival map from
the simulation results and the actual tract reconstruction on this map [Mang05,
Mang05a, Mang05b, Mang06, Gembris07a]. It is able to continue tracking in
regions of fiber crossing or branching, which contain more than one fiber direc-
tion [Mang06, Gembris07a]. The heterogeneity in these multi-directional voxels
presents a problem for commonly used streamline tracking methods, which will
return false reconstructions or aborted tracts. The algorithm is also able to re-
construct curving tracts that cannot be reconstructed by the streamline technique.
A comparison of the results of my algorithm with streamline reconstructions is
given in section 8.9 to illustrate the advantages of the here presented new tracking
method.

2. The qualitative assessment of diffusion weighting gradient encoding schemes
for higher order tensor estimations. After reducing the minimal required num-
ber of encoding directions for the higher order hierarchy estimation to 21 directions
(see section 4.3.3.2), I evaluated how the directions should be distributed over the
unit sphere, so as not to bias the tensor estimation [Mang07, Mang07a]. I dis-
covered that for the minimal number of encoding directions at least two diffusion
weighting factors (greater zero) are required to successfully estimate the tensor
(see section 4.3.3.2). I could show that several quality measures for gradient en-
coding schemes for second order tensor evaluations are either not fit to determine
the quality the higher order tensor estimation or are in general not well suited for
determining the quality of gradient encoding schemes (see chapter 6). Several
other quality measures did allow a classification of gradient encoding schemes for
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1 Introduction

different tensor models. The most promising classification method in the here pre-
sented investigation was a new classification method I proposed in section 6.7, the
evaluation of the signal accuracy. This method allows a clear distinction between
(most) gradient encoding schemes. It was shown that icosahedral and paired off
force-minimizing distributions of encoding directions perform best. The paired
off force-minimization can construct encoding schemes with an arbitrary number
of directions, opposed to the icosahedral encoding schemes that can only be con-
structed for certain fixed numbers of directions. This force-minimizing gradient
encoding scheme is therefore considered the best general purpose scheme in my
investigation.

4



2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is in general a tomographic imaging technique which
is able to acquire detailed images of body tissue. MRI requires no ionizing radiation
(for example x-ray) and is therefore less risky for the patient’s health. During a MRI
scan often a series of parallel slice images of the measured subject is acquired. These
2D images can be used to generate a 3D dataset in post-processing. Volumetric image
acquisition methods were proposed to acquire whole 3D data sets, see for example [62].

Volumetric imaging is not yet commonly used for the measurement of diffusion, which
is the focus of this work. This image acquisition method is therefore not further discussed
here.

One of the advantages of MRI is the ability to image soft tissues and the metabolic
processes therein. This is in general not possible with alternative imaging techniques
such as for example computer tomography.

To measure subject matter with MRI one requires radio frequency pulses, imaging gra-
dients and a strong static magnetic fields. The technique can be used to image specific
molecules in a subject. In clinical MRI the focus is mainly on the protons of hydrogen
(H) atoms. Approximately two thirds of the human body consist of water (H2O) provid-
ing high, almost equally distributed hydrogen nuclei density and therefore good signal
strength over the whole body. To achieve good imaging quality, a stable and homoge-
neous static magnetic field is required. Superconducting electromagnets with additional
‘shimming’ to improve the homogeneity are used to generate a magnetic field suitable
for MR-scanning. In the context of MRI, ‘shimming’ is the name for all procedures used
prior to the actual imaging process to correct for macroscopic inhomogeneities in the
static magnetic field. In clinical applications field strengths of 1.5 Tesla and 3 Tesla are
common for the applied static magnetic field.

In this chapter some basic terms and methods are introduced that will be used through-
out the rest of the text. The magnetic resonance phenomenon that is the foundation of
MRI is explained first. Then, the commonly used basic imaging sequences are intro-
duced before the different imaging contrasts are explained. At the end of this chapter the
signal-to-noise ratio and the partial voluming effects are presented.

2.1 The Magnetic Resonance Phenomenon
Here the magnetic resonance phenomenon is explained using a classical representation
which ignores interactions of the protons with their surroundings. The effect of the

5



2 Magnetic Resonance Imaging

gradients on the protons is explained on a single proton example. Each individual proton
can only produce a minuscule signal but the sum of all protons in the sample is able to
generate significant signal.

A proton has two features that are important in context of MRI (see Fig.2.1). One is
its angular momentum, that is the rotation of the proton around its own axis which is
illustrated as stippled line in Fig.2.1. The other is its magnetic moment caused by the
proton’s rotating positive electric charge, resulting in its behavior as little magnet (see
Fig.2.1(b)).

(a) Arbitrary Orientation (b) Orientation Inside A Magnetic Field

Figure 2.1: The two properties of a proton that are important for MRI are illustrated.

In an environment without an external magnetic field the axis of a proton is arbitrarily
orientated in space (Fig.2.1(a)). On entering the strong static magnetic field of the scan-
ner (B0) the proton will align itself with this field as illustrated in Fig.2.1(b). This state
is the state of equilibrium of the nuclear magnetization under the influence of B0. The
rotating magnetization of a proton is further on simply called ‘spin’.

Due to change in the magnetic field the spin can leave its equilibrium and the axis of
the proton will be oriented at an angle to the axis of B0. Its angular momentum causes
the proton to precess around the axis of B0, if it is not in its state of equilibrium. The
frequency of the precession ω0 is dependent on the applied magnetic field.

ω0 = γ|B0|, (2.1)

where ω0 is the so called resonance or Larmor frequency (usually given in Mega Hertz
(MHz)), γ is the so-called gyromagnetic ratio and |B0| is the magnitude of the static
magnetic field commonly measured in Tesla (T). The Larmor frequency of hydrogen is
42.58MHz at 1T.

The phase of the spin determines its position on the circle that is described by its
precession around the axis of B0. The spin is usually depicted as an arrow in the direction
of the rotation axis of the spin. By convention the Z-axis of the measurement coordinate
system corresponds to the main axis of B0.
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2.2 Image Acquisition

If an additional electromagnetic field at a frequency of ω0 is applied perpendicular to
the static magnetic field B0 for a short time. The spins will leave their equilibrium. This
process is called ’excitation’. The electromagnetic field of short duration that is used for
the excitation is also called radio frequency (RF) pulse. If the duration of the RF pulse is
correctly adjusted, the spin is rotated in a 90 degree angle to B0, it ‘flips’ (see Fig.2.2).
The result of excitation is also referred to as transversal magnetization. After excitation
the spin will return to its equilibrium under the influence of B0. This process is called
‘relaxation’ and allows different matter types to have a distinct imaging contrast allowing
their separation. Relaxation will be discussed in more detail in the section on imaging
contrasts 2.3.

(a) scanner coordinate system (b) rotating reference frame

Figure 2.2: The net magnetization flips into the XY-plane.

In the measurement or scanner coordinate system the spin precesses around the axis
of B0 at Larmor frequency as soon as it leaves its equilibrium. The excited spin will
therefore describe a circle in the XY-plane. During the transition between equilibrium
and transversal magnetization (during the ’flip’) the precession will cause the spin to
describe a spiral around the axis of B0 as illustrated in Fig.2.2(a). To facilitate the de-
scription of the behavior of the spin, the ‘rotating reference frame’ is introduced. It is
assumed that the coordinate system rotates around the Z-axis (the axis of B0) at Larmor
frequency (see Fig.2.2(b)). This allows for the spin vector in this rotating coordinate
system to appear stationary.

2.2 Image Acquisition
The magnetic resonance signal can be described as

S(k) =

∫
ρ(r)exp(i2πkr)dr, (2.2)

with i the imaginary unit (i2 = −1), k = (2π)−1γGt, r the particle position, ρ(r) the
particle concentration, G the ideally rectangular gradient, t the gradient duration and γ

7



2 Magnetic Resonance Imaging

the gyromagnetic ratio that corresponds to the Larmor frequency (γ = 42.58MHz/T−1).
k-space is usually traversed in time. It is also possible to traverse it in gradient magnitude
[17], but this is not done in common image acquisition. The Cartesian image I(r) is the
Fourier-transform of the signal S(k),

I(r) ≈ ρ(r) =

∫
S(k)exp(−i2πkr)dk. (2.3)

k-space is, in other words, conjugate to the Cartesian image space.

Slice Selection And Spatial Coding
In common applications the MRI signals are acquired as 2D images. To be able to
generate a 2D image the signal needs to be dependent on the position of the spins that
generate it. This is achieved by application of additional linear changing magnetic fields
in the signal acquisition.

As long as B0 is homogeneous the spins all have the same Larmor frequency and will
consequently all be excited by the same RF pulse. The application of a monotone linear
changing magnetic field, also called gradient G (G = Gg; with G the strength of the
magnetic gradient field and g its direction), which is independent of the stronger B0,
causes the spins to have individual local Larmor frequencies given by

ω0(r) = γB(r) = γ(|B0|+ G(r)), (2.4)

where G(r) stands for the strength of the gradient magnetic field at position r which is a
spin coordinate. This enables a selective excitation with a tailored RF pulse because the
Larmor frequency is proportional to the total strength of the applied magnetic field B(r)
which is dependent on r.

The applied gradient fields (ideally) only influence the magnetization in Z-direction as
illustrated in Fig.2.3 where the Z-direction corresponds to the axis of the green tube that
stands for the magnet producing the static magnetic field B0. The magnetization vectors
(red) all point along the Z-direction independent on the gradient that was applied. The
strength of the magnetization illustrated in the length of the magnetization vectors varies
depending on the gradient direction.

(a) X-Direction (b) Y-Direction (c) Z-Direction

Figure 2.3: The effect of linear gradient on the static magnetic field B0. Illustration
adopted from [67].
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2.3 Imaging Contrasts

To excite the protons in a certain slice a gradient in Z-direction is applied (Fig.2.3(c))
so that the Larmor frequency of the spins is dependent on their position along the Z-axis.
The RF pulse used for the excitation is tailored to the specific Larmor frequency of the
spins in a specific slice. The width of the slice is determined by the bandwidth of the RF
pulse and the gradient field strength. A narrower bandwidth or a stronger gradient causes
thinner slices if the other parameter (gradient strength or RF bandwidth respectively) is
fixed.

To be able to distinguish between the signal of individual voxels in the slice, two more
gradients are needed. The change in Y-direction is phase encoded and in X-direction
the frequency codes changes. After an RF pulse has excited the spins a gradient in Y-
direction is used to create a linear development in the Larmor frequency. In the following
it is assumed to descend from the top of the magnet. This leads to a phase shift in the
individual spins, which codes the position in Y-direction. When the gradient is turned
off, the phase shift persists. To differentiate pixels in X-direction, a gradient is applied
in this direction. This will cause the strength of the magnetic field to increase from one
side to the other. Here a left to right slope in the magnetic field is assumed. The protons
on the left precess slower then the ones on the right.

When the signal S(k) is measured for a given slice, the gradients generate a frequency
spectrum, high frequencies correspond to the right side of the acquired image, low fre-
quencies to the left side. In k-space the horizontal, kx, is the frequency direction and
the vertical, ky is the phase direction. Each line corresponds to a single signal acquisi-
tion, for each phase gradient a new line is created. The line at ky = 0 corresponds to
the measurement without phase encoding. With a Fourier transform (FT) along the fre-
quency direction, the position in X-direction in image space is decoded. To decode the
phase information, the measurement needs to be repeated several times (once for each
step in Y-direction). Then a second FT can be preformed in phase direction decoding the
Cartesian pixel coordinates. The reconstruction of a complete 2D slice is called 2D FT
reconstruction.

2.3 Imaging Contrasts
MR-measurements are sensitive to specific molecular properties of matter in the mag-
netic field of the scanner, such as for example relaxation times. This makes the non-
invasive distinction of different matter types possible, which is one of the primary ad-
vantages of MR.

There are two kinds of relaxation that give different imaging contrasts:

• the T1 relaxation time is the time needed by the excited spins to return to their
state of equilibrium.

• the T2 relaxation time is the time during which the MR signal decays due to
interactions between nuclei.
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(a) T1 (b) T ∗
2

Figure 2.4: Example images for the two main imaging contrasts.

With these two attributes, different types of matter can be distinguished without use of
contrast agents. In Fig.2.4 examples for both imaging contrasts are shown.

The strength of T1 contrast depends on the time between two excitations (TR). Not all
spins have enough time to realign themselves with B0 when the TR is shorter than the
typical T1 time in the sample. The measured signal is maximal for spins that are aligned
with B0 before the next excitation (light regions in Fig.2.4(a)). The further away a spin is
from its state of equilibrium at the time of refocusing, the lower the signal (darker parts
of Fig.2.4(a)). When TR is long, most spins align themselves with B0 before the next
excitation, the T1 contrast is consequently negligible.

The T2 contrast depends on the time between the excitation pulse and signal (echo)
generation, known as (spin) echo time (TE). After the excitation the spins will dephase.
This loss of phase coherence is matter dependent and caused by interactions of neighbor-
ing spins in an ideal homogeneous magnetic field. The T2 effect is boosted by inhomo-
geneities of the magnetic field. Examples for causes of inhomogeneity are susceptibility
or chemical shift phenomena. Susceptibility gives the extent of magnetization of subject
matter on entering a magnetic field. The chemical shift gives the difference in magnetic
energy levels depending on the molecule environment. The total signal decay, the regular
T2 effect and dephasing caused by gradients, is labeled T ∗

2 . The more dephased the spins
of the nuclei in a voxel are, the weaker their signals in the measurement. The longer TE,
the more time the spins of the nuclei have to dephase. Matter with short T2 time will
therefore return a low signal when the TE is long (darker parts of the Fig.2.4(b)). The
shorter the TE, the weaker the T2 contrast.
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2.4 Imaging Sequences

2.4 Imaging Sequences
In general all MRI sequences consist of 3 parts:

1. excitation

2. spin rephasing

3. echo generation

An echo is an electromagnetic resonance signal emitted from the spins after excitation.
The main difference between the imaging sequences is the way the echoes are produced
by application of specific RF-pulses and magnetic field gradients. A few important se-
quences are briefly discussed in the following sections. The presented sequences acquire
the k-space data line by line on a Cartesian grid. It is possible to acquire the signal fol-
lowing some other acquisition scheme, for example spirals [34]. These techniques will
not be discussed further here.

2.4.1 Spin Echo Sequence
One of the most common imaging sequences is the spin echo sequence. Here the signal is
generated by a spin echo (more accurately the Hahn spin echo [38, 39]). The diagram in
Fig.2.5 shows the different stages of the spins during an echo generation. Important times
in the sequence are given in the top row to facilitate comparison with the gradient and
RF pulse application shown in Fig.2.6 which shows the timing of the image acquisition.

Figure 2.5: The stages of the magnetization in the image acquisition.

The first stage in Fig.2.5 shows the spins before excitation in the state of equilibrium,
aligned with B0. The second stage is the excitation. The spins in one slice are excited by
the application of a 90 degree RF pulse, flipping the spins into the transversal XY-plane,
perpendicular to B0. In the third stage, immediately after the excitation, the spins begin
to dephase due to T2/T

∗
2 relaxation and the imaging gradients [14]. The individual spins

(vectors in Fig.2.5) are not aligned anymore. They precess around B0 with different
frequencies. The higher the frequency (faster rotation), the darker the color. After half
of the TE has passed, a 180 degree RF pulse is applied. This causes the spins to rotate
180 degree about the X-axis. The phase order of the spins is thereby reversed, the one
with the lowest frequency will be first the highest last. Only the phase, not the frequency,
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2 Magnetic Resonance Imaging

Figure 2.6: A diagram depicting a simple spin echo sequence (image adopted from [36]).

of the spin is affected by the second pulse. Therefore, the spins will realign themselves
(rephase) at the echo time (TE) to form the echo.

The k-space is traversed line by line in this sequence. Each line in this simple spin
echo sequence requires one excitation. This means multiple excitations or ‘shots’ are
needed to cover the whole k-space. The spin echo sequence and all sequences that need
multiple excitations to traverse k-space are referred to as multi-shot methods.

The sequence diagram of a simple spin echo sequence is given in Fig.2.6. First, the
phase encoding gradient amplitude Gy,PE is used to target the line in k-space that is to
be acquired. The multiple lines in Gy,PE (see Fig.2.6) and the downward arrow indicate
that the phase encoding gradient is changed stepwise sequentially from its most positive
to its most negative amplitude. One step for each line in k-space. The amplitude of the
frequency encoding gradient Gx,R is constant, to travel along the line in k-space from
sample point to sample point. The signal is acquired at different equally spaced time
points.

The spin echo sequence is not sensitive to static field inhomogeneity that could cause
image distortion. A disadvantage is the relatively long TE, which renders the sequence
more susceptible to motion artifacts. Such motion artifacts can result from any kind of
patient movement for example slight turning of the head, breathing or cardiac motion.

The TR gives the time required for one signal acquisition in a slice. There is some idle
time for the imaging hardware (TR-TE) during a signal acquisition cycle. To increase the
efficiency of the measurement other slices can be excited and measured during this idle
time. This technique is called multi-slice imaging. Another way to improve measurement
time efficiency if a slice needs to be measured repeatedly, is the use of multiple echoes. A
train of rapidly applied 180 degree RF pulses serves to generate repetitive signal echoes,
one for each pulse in the train. The most common multi-echo sequence is the turbo spin
echo (TSE) sequence.
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2.4.2 Gradient Echo Sequence
This sequence uses only the gradients and no RF pulse to generate an echo [93]. After
the excitation pulse the read out gradient GR is applied causing the spins to dephase (see
discussion of T2/T

∗
2 in 2.3). Then the gradient’s polarization is inverted to reverse this

effect and rephase the spins to generate an echo. The sequence is given in Fig.2.7 where
Gss is the slice selection gradient and GPE is the phase encoding gradient. By toggling

Figure 2.7: A diagram of the gradient echo sequence (image adopted from [36]).

GR repeatedly multiple echoes can be generated. The behavior of the spins is similar to
the one during the spin echo sequence illustrated in Fig.2.5.

The measurement time is reduced compared to the spin echo sequence, because no 180
degree RF pulse is required in this sequence and the excitation pulse can have less than
90 degree. If the excitation pulse is reduced (less than 90 degree) the transversal magne-
tization is incomplete because the proton magnetization does not flip into the XY-plane
but precesses at an angle that depends on the excitation pulse relative to the Z-axis. The
signal will therefore be less than the one the perfect 90 degree RF pulse could generate.
The reduced flip angle will result in reduced relaxation time, the proton magnetization
will return faster to their state of equilibrium. The next excitation can, therefore, be ap-
plied sooner reducing the measurement time. The reduction of the total measurement
time reduces the possibility of motion artifacts. To render the sequence even more effi-
cient multiple echoes can be generated by toggling the frequency coding gradient several
times. This sequence is similar to the spin echo sequence, a multi-shot method, which
travels through k-space one line at a time.

2.4.3 Echo Planar Imaging
Echo Planar Imaging (EPI) is a rapid pulsed gradient echo MRI sequence. The technique
collects complete 2D images (slices) with Cartesian k-space coverage. In its simplest
form only one excitation RF pulse is used for the signal acquisition (single shot). Other
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Figure 2.8: EPI sequence timing diagram with an echo train (image adopted from [36]).

imaging techniques read out one line per excitation only and are consequently consider-
ably slower then EPI. This rapid sequence creates echoes, similar to the gradient echo
sequence, by toggling the frequency coding gradient periodically as illustrated in the se-
quence diagram in Fig.2.8. Each echo contains the readout for a whole line in k-space.
The line that is to be read is determined by the phase encoding gradient strength (GPE).
The first line to be read is targeted with the first application of the phase encoding gra-
dient. When the signal for this line is acquired the line is changed by a short phase
encoding gradient pulse (a blib).

EPI images have good imaging quality if no local magnetic field gradients are present
in the investigated subject matter. In brain investigations this would correspond to the
center of the brain. Local gradients as, for example, caused by the paranasal sinuses in
the human head, will cause geometric and signal distortions in the image [36]. The local
gradients add to the applied gradient field and will cause a faulty position reconstruction
for the distorted signal.

2.5 Imaging Quality
The images acquired with MRI are often compromised by either random noise, system-
atic measurement errors or other artifacts that can stem from numerous sources [93, 36].
Some examples are hardware related, such as inhomogeneous magnetic fields or not
well calibrated imaging coils, or sequence related, for example violations of the Nyquist-
Shannon sampling theorem1 or non-optimal measurement parameters. Other artifacts are
caused by image processing or patient movement during the scan.

In the following section the signal-to-noise ratio (2.5.1) is presented as measure for
image quality. Then the partial-voluming effect (PVE) (2.5.2), is discussed in more

1”Exact reconstruction of a continuous-time baseband signal from its samples is possible, if the signal is
bandlimited and the sampling frequency is greater than twice the signal bandwidth.” http:
www.en.wikipedia.org

14



2.5 Imaging Quality

detail because it is of special interest in the context of diffusion evaluations (see chapter
4).

2.5.1 Signal-To-Noise Ratio
Each measured signal S consists of the true MR signal Strue and random noise η,

S = Strue + η. (2.5)

The signal-to-noise ratio (SNR) describes the relation between true signal and random
noise in an MRI experiment. It is more specifically defined as the relation between the
true signal and the standard deviation of the noise:

SNR =
Strue

σ(η)
. (2.6)

SNR is a widely used measure for image quality (the higher, the better). The SNR can
depend on a lot of different measurement and subject parameters.

SNR ∝

{
ρδvδφδs

√
Nv

√
Nφ

√
Nrep

1√
∆vsamp

ω0

}
fMfT , (2.7)

with ρ the nuclei density and δvδφδs the voxel volume. Nv is the number of frequency
coding steps, Nφ is the number of phase coding steps and Nrep is the number of repeated
acquisitions of the image volume. ∆vsamp is the sampling bandwidth, which gives the
range of frequencies for sampling the signal. ω0 is the Larmor frequency. fM is a func-
tion, depending on the imaging sequence parameters such as, for example, flip-angle,
pulse sequence, TE and TR. fT is a function that depends on the properties of the inves-
tigated tissue, for example, T 1 and T 2. Imaging Hardware and subject motion can further
influence the SNR [93]. Here the focus is on the dependence of the SNR on the imaging
resolution. The general diffusion analysis (see chapter 4) and especially fiber tracking
(see chapter 7) requires high resolution images thereby lending the SNR dependence on
the voxel volume special importance. An increased image resolution can be achieved by
reducing the field of view for a given number of voxels or by increasing the number of
voxels for a given field of view. Both methods decrease the individual voxel volume. The
dependence of the SNR on the voxel volume can be easily explained. Random noise is
independent of the measurement and therefore of the voxel volume. Opposed to that the
signal depends on the number of spins inside a voxel which will decrease proportional to
the voxel volume. The SNR will therefore decrease proportional to the intensity of the
true signal.

Averaging over multiple repeated (Nrep) acquisitions is common practice [36] for the
compensation of the loss in SNR caused by the reduction of the individual voxel’s vol-
ume. For more efficient storage the measured signals are added directly, saving a con-
siderable amount of data storage space.

Sav =
1

Nrep

Nrep∑
i=1

Si, (2.8)
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Sav is the signal averaged over Nrep measurements. Si is the signal in the i-th acquisition.
If the mean signal S over a homogeneous region is averaged, the following conclusion
holds [36]:

Sav =
1

Nrep

Nrep∑
i=1

Si =
1

Nrep

(NrepStrue) = Strue. (2.9)

The Gaussian normal distributed (N(0, σ)) noise in each of the Nrep measurements is
statistically independent for the individual measurements. Therefore the noise distribu-
tion’s averaged variance σ2

av(η) adds in quadrature to Sav,

var(Sav) ≡ σ2
av(η) =

1

N2
rep

(Nrepσ
2
av(η)) =

1

Nrep

(σ2
av(η)). (2.10)

It follows that

σav(η) =
σ(η)√
Nrep

. (2.11)

The SNR of the averaged image is therefore

SNR =
Sav

σav(η)
=

√
Nrep

Strue

σ(η)
. (2.12)

In other words, if the noise in the measurement is uncorrelated from one acquisition to the
next, the SNR improves as the square root of the number of repetitions. To avoid errors
introduced during averaging, the individual images should be realigned. Realignment
matches corresponding regions so that the voxels that are averaged (ideally) correspond
to the same region.

The systematic noise which is not statistically independent for each acquisition will
not reduce in the same way. Examples for systematic noise are ghosting and drifts. If the
systematic noise is greater than the random noise, averaging does not improve the SNR
according to (2.12). The gain of additional acquisitions in this case does in general not
warrant for the increase in measurement time.

An approximative estimation of the SNR for an actual image is simple: first, the mean
value of a small region of interest placed inside the most homogeneous region with high
signal intensity in the measured subject is computed (S). Second, the standard deviation
in the largest possible region outside the object (σout), i.e. in the background which only
contains noise, is calculated. The SNR is then given by

SNR =
S

σout
. (2.13)

This estimation of the noise has the problem that the noise in the background has a mean
of zero. The measured signal is usually a magnitude image |S|. The parts of the noise
in the background that would be negative are, therefore, in the magnitude image also
positive. It follows that the mean value in the selected background region is larger zero
and that the corresponding standard deviation of the noise σout is lower than it would
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be if estimated in a large homogeneous region with high signal (for example in a water
phantom) where the true mean corresponds to the true signal value instead of zero. The
estimation of σout inside, for example, the brain is not possible because of the multiple
matter contrasts that allow no homogeneous region large enough for the estimation.

2.5.2 Partial Volume Effect
Partial volume effect (PVE) is a name for all effects caused by the size of a voxel. PVE
especially describes the loss of contrast between two or more adjacent tissues, caused
by lack of image resolution. Low spatial resolution results in heterogeneous voxels that
contain multiple matter types. The signal in such a voxel will represent the signal of the
different matter types, weighted according to their occurrence in the voxel.

It is assumed that the investigated sample contains two separable kinds of matter, A
and B, and SA, respectively SB, is the signal of a voxel (size ∆x) containing only matter
A, respectively B. If a voxel contains both kinds of matter, with a the fraction of the
voxel occupied by tissue A, then the total signal S for this voxel is computed as follows

S = a∆xSA + (1− a)∆xSB. (2.14)

The signal in such a heterogeneous voxel results from averaging, which diminishes the

Figure 2.9: An example for PVE in a voxel with two kinds of matter.

contrast on the border between two matter types. This is illustrated in Fig.2.9. In the top
row the voxels are given. They contain matter A with lower signal and matter B with
higher signal. The signal amplitude is shown as a dark line in the bottom row. The signal
of the center voxel containing both matter types is the average of SA and SB. The ideal
signal that would not diminish the contrast between the matter types is given as dotted
line.
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3 Diffusion Weighted Imaging

When measuring diffusion with MRI techniques the focus is commonly on the Brownian
motion (also known as self-diffusion) of water or more exact of the hydrogen in the wa-
ter molecule. The self-diffusion inside subject matter is in general not free, but hindered
or restricted by anatomy. Membranes for example hinder self-diffusion by troubling the
passage of molecules. Other structures, for example bones, do not let any molecule pass
and restrict the self-diffusion. This influence of the anatomy on self-diffusion allows for
the inference of the anatomy from the measured self-diffusion information. The tech-
nique used for the measurement of self-diffusion is called diffusion weighted imaging
(DWI) and measures the amount of self-diffusion in a given direction. To do that, the
molecules are magnetically labeled before the signal is acquired. The magnetization
from this labeling is reversed prior to the echo generation. Stationary molecules will
return the full signal whereas molecular motion reduces the signal in DWI images.

The only diffusion process of interest in this work is the self-diffusion process. The
term diffusion is therefore used synonymously to self-diffusion in the following text,
except in the section on diffusion basics (3.2).

The focus in this work is on the investigation of brain connectivity, this is therefore
the only part of the human anatomy that is presented in the first section of this chapter.
Then the basics of diffusion are introduced before different diffusion imaging methods
are discussed. The focus is mainly on the differences in interpretation of the measured
results. It has to be kept in mind that different imaging techniques measure different
quantities and these can in general not be compared directly.

3.1 The Anatomy Of Brain Connectivity - An Overview
The cortex is the 2-5 mm thick outermost layer of the brain. It is folded to allow a larger
surface on a relatively small volume. The furrows of this folding are called sulci and
the ridges are known as gyri as illustrated in Fig.3.1. The whole brain is divided in the
middle, forming two (connected) hemispheres. The cortex consists of gray matter (GM),
which is mainly responsible for computation in the brain. GM consists to a large part of
neurons (see Fig.3.2(a)), but may also contain some axons, synapses, dendrites, and glial
cells.

The white brain matter (WM) which is enclosed by the GM consists mainly of axons.
The axons can be viewed as the wiring between the GM’s computational units. WM
axons are often well isolated by myelin sheets that are tightly wrapped around the axon
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3.1 The Anatomy Of Brain Connectivity - An Overview

Figure 3.1: Coronal cut through the brain. The gray matter is the darker outermost
region of the brain. It encloses the white matter. The brain surface is folded producing
sulci (grooves) and gyri (elevations). Image adapted from [82].

(a) (b)

Figure 3.2: The anatomy of a neuron is illustrated in (a). The axon of a neuron is isolated
by a myelin sheath that is wound tightly around the fiber as illustrated in a cut through
the axon in (b). The illustrations were adapted from [89]
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to improve the information transfer (see Fig.3.2(b)). The myelin is the cause of the white
coloring that gave the WM its name. Myelinated axons in the brain have usually a length
of approximately 1-10 cm and 1-10 µm in diameter. They are often organized in bundles
of 2 mm up to 1 cm thickness. The course of the highly organized and well isolated WM
fiber bundles can be investigated with DWI.

The whole brain is suffused with liquid, the so called cerebrospinal fluid. This fluid
has numerous responsibilities, for example the transport of neurotransmitters and the
protection of the brain from increased blood pressure. The brain also contains several
other structures, such as for example the thalamus or the hypothalamus. These important
and complicated structures are not discussed in this basic introduction.

3.2 Diffusion Basics
Diffusion abides to laws similar to heat. It can therefore be described with Fick’s first
law, which is similar to the law of heat conduction,

J = −D∇C. (3.1)

J is the particle flux, D is the diffusion coefficient and ∇C is the particle concentration
gradient, ∂C

∂r with r a coordinate in 3D [22]. According to this equation the particle flux
is proportional to the diffusion coefficient. This is the classical description of diffusion.
The continuity theorem,

∂C

∂t
= −∂J

∂r
, (3.2)

that describes the conservation of mass over time t can be used to derive the diffusion
equation, also known as Fick’s second law [71]

∂C

∂t
= ∇(D∇C). (3.3)

This differential equation gives the time and space dependent change in concentration
opposed to Fick’s first law which is not time dependent.

Self-diffusion is defined as the random movement of molecules in matter. This mo-
tion can be described with the self-correlation function Ps(r|r′, t) [16], which gives the
chance that a molecule will have moved from r to r′ after time t. The total probability of
finding a particle at position r′ at time t is given by

ρ(r′, t) =

∫
ρ(r, 0)Ps(r|r′, t)dr. (3.4)

ρ(r, 0) is here the initial particle concentration in r at t = 0. There is no net concentra-
tion gradient for the self diffusion processes that are (usually) measured with diffusion
weighted MR imaging techniques. A description of the diffusion process abiding the
principle of Fick’s law is still possible substituting the concentration function C with
the concentration probability ρ(r′, t). Now Fick’s first law can be rephrased in terms
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of Ps because the spatial derivatives in this law refer to the particle position r′ after the
diffusion time t.

J = −D∇Ps, (3.5)

with the initial condition
Ps(r|r′, 0) = δ(r′ − r). (3.6)

The continuity theorem is also applicable to this problem because the total conditional
probability is conserved [16]. Combining (3.2) with (3.5) results in a differential equation
similar to Fick’s second law (3.3)

∂Ps

∂t
= ∇(D∇Ps). (3.7)

It is assumed that the diffusion described by the diffusion coefficient D is unrestricted
(free). The average diffusion distance of molecules can, therefore, be quantified with
Einstein’s equation σ =

√
2Dt. If the diffusion is free, the distribution of the molecules

can be described with a Gaussian function

1

σ
√

2π
e−x2/2σ2

, (3.8)

where x is the molecule location. Free diffusion is, therefore, also termed ‘Gaussian
diffusion’

By substituting σ in (3.8) with Einstein’s equation and the molecule location with the
displacement vector r′ − r, the self-correlation function Ps can be given by

Ps(r|r′, t) = (4πDt)−3/2exp
(
−(r′ − r)2/4Dt

)
. (3.9)

If the described diffusion is free Ps 7→ 0 as r′ 7→ ∞. The randomness of the particle
motion in self-diffusion is reflected by the fact that Ps is only dependent on r’ but not on
r.

With the displacement vector R = r′ − r (3.4) can be rephrased in terms of Ps which
is also referred to as ‘(average) propagator’.

Ps(R, t) =

∫
ρ(r, 0)Ps(r|r + R, t)dr. (3.10)

Ps(r|r + R, t) is independent of r in free diffusion. In this case the propagator Ps is
common to all protons in the averaged sample, therefore Ps(R, t) = Ps(R, t). (3.9) can
be rephrased with the propagator formalism from (3.10) as

Ps(R, t) = (4πDt)−3/2exp
(
−R2/4Dt

)
. (3.11)

3.3 k-Space Diffusion Imaging
To measure diffusion the MR signal needs to be sensitized to the movement of molecules
caused by diffusion. This can be achieved by application of two additional gradients in
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Figure 3.3: The effect of diffusion wheighting on the signal. The illustration was ad-
dopted from [67].

the imaging sequence as illustrated in Fig.3.3. The gradients are depicted as large black
arrows in Fig.3.3. The first gradient magnetically labels the protons according to their
position. This additional gradient affects the phase of the spins which is now dependent
on the spin position (‘Dephasing’ in Fig.3.3, the phase is color coded). The effect of this
label is reversed before the images are acquired by a second gradient which is the inverse
of the first one. On stationary molecules the application of the two diffusion weighting
gradients has no effect (purple in ‘Rephaseing’ in Fig.3.3) but for molecules that have
moved the inversion of the magnetic labeling will not be perfect. The phase shift caused
by the first diffusion weighting gradient will not be (completely) reversed. This results
in a reduction of the acquired MR signal. The effect of diffusion is therefore coded
in the signal reduction in the diffusion weighted image compared to the signal without
diffusion weighting.

The diffusion weighted image is sensitive only for diffusion along the axis of the ap-
plied diffusion weighting gradient (left-right in Fig.3.3; yellow boxes). Movement in
other directions (green box) is not detected.

A simple kind of DWI uses the pulsed gradient echo sequence (PGES) [86] to mea-
sure diffusion in k-space. This sequence is based on the spin echo sequence presented
in section 2.4.1. The diagram in Fig.3.3 illustrates the timing of the additional diffu-
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3.3 k-Space Diffusion Imaging
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Figure 3.4: Pulsed gradient echo sequence for diffusion weighted imaging.

sion weighting gradients. First, the spins which are aligned with the B0 gradient field
are flipped into the XY-plane by a 90 degree radio frequency pulse. Now, a diffusion
weighting gradient is applied in a specified direction to label the individual spins with
phase shifts according to their position. At t = TE/2 the phase of the individual spins
is inverted with a 180 degree radio frequency pulse before a second diffusion weighting
gradient, inverse to the first one, is applied to reverse the position dependent labeling.

The signal for a voxel is always a superposition of all the spins in this voxel (with
additional cross-contamination from neighboring voxel signals which is ignored in this
description of the principle). There is no way to distinguish the signal from individual
spins. The individual paths of the molecules are of no consequence, only the total phase
difference at different time points is measured. Therefore, the measured diffusion is an
ensemble-average of the self-diffusion processes in each voxel. The measured signal is
consequently symmetric. There is no difference between the measured signal in direction
g and the signal measured in the opposite direction (−g) because the net displacement
is the same. This allows for a reduction in required measurements since only one of the
two directions on an axis needs to be measured.

The relation between the measurements with (Sg) and without (S0) diffusion weighting
will give the diffusion coefficient in the direction of the diffusion weighting (Stejskal-
Tanner equation):

Sg = S0exp(−bDg) (3.12)

Dg = −1

b
ln(Sg/S0),

g is the normalized direction of the diffusion weighting gradient. b represents the influ-
ence the gradient parameters have on the measurement, in other words the strength of
the diffusion weighting. For an ideal rectangular gradient in the standard pulsed gradient
echo sequence (illustrated in Fig.3.3) b is given by

b = γ2G2δ2(∆− δ/3) (3.13)

with γ the gyromagnetic ratio, G the diffusion gradient magnitude, δ the duration of the
gradient and ∆ the time span from the application of one gradient to the next. Dg in
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3 Diffusion Weighted Imaging

(3.12) is the measured diffusion coefficient. The diffusion coefficient gives the amount
of diffusion in the direction of the diffusion weighting gradient g. Only the apparent
effect of diffusion but not the true diffusion coefficient is measured, because the diffusion
investigated here is not free but hindered. D is therefore also referred to as ‘apparent
diffusion coefficient’. In this theoretical discussion of the measurement techniques it is
assumed that the measurements are not affected by noise. The effects of noise in the data
is discussed in chapters 2 and 4.

3.4 q-Space Imaging
q-Space Imaging (QSI) uses the k-space DWI gradient setup as illustrated in Fig.3.3 to
generate a new imaging contrast that corresponds to molecular motion caused by dif-
fusion. In QSI the diffusion weighting gradients need to be infinitesimal short, so the
diffusion during the gradient application δ can be neglected. In other words, δ � ∆ is a
necessary condition for QSI [17]. This was no requirement for k-space DWI.

QSI is similar to the introduced k-space DWI dependent on two gradient pulses defined
by their magnitude G, duration δ and separation ∆. These properties clearly define the
start and end point of the measured molecule movement over a well defined time ∆, as
long as the movement during gradient application is negligible. Opposed to k in k-space
imaging q is not used to spatially code the MR signal.

QSI measures the net phase shift directly which describes the measured diffusion. The
signal is defined as

S(q) =

∫
Ps(R, ∆)exp(i2πqR)dR. (3.14)

Ps was defined in (3.10) and i again the imaginary unit. R = r′−r is the net displacement
which is in QSI independent of the starting (r) and endpoint (r′). q is defined as q =
(2π)−1γδG. The QSI signal is symmetric. The equation S(q) = S(−q) holds, if the only
difference between both signals is the sign of the orientation g of the diffusion weighting
gradient G.

q determines the diffusion weighting in the measurement. It contains information on
the gradient strength G and duration δ similar to the diffusion weighting factor b in k-
space DWI (see (3.13)). In addition q also contains the direction of the applied gradient
g because G = Gg. An additional multiplication with the gradient direction as in DWI
(see (3.12)) is therefore not necessary.

The QSI signal as defined in (3.14) is not spatially dependent and is therefore aver-
aged over the whole sample. When this pure QSI is combined with k-space imaging
techniques it can be resolved for the individual voxels. Usually the PGES sequence from
k-space imaging is used to implement a spatial resolution.

S(k, q) =

∫
ρ(r)S(q)exp(i2πkr)dr, (3.15)

with S(q) as defined in (3.14) and the other variables as introduced in (2.2). Further on,
I will use the term QSI for this combined imaging technique.
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3.4 q-Space Imaging

QSI is able to measure dynamic displacement whereas k-space DWI measures static
displacement. Therefore, QSI needs, opposed to the ordinary (k-space) DWI interpre-
tation which assumes Gaussian diffusion, not make any assumptions on the underlying
diffusion model in the interpretation of the measurement. A technique that is indepen-
dent of an underlying diffusion model is also termed ‘model-free’. The restrictions on
molecular movement by anatomy causes the average displacement distribution to deviate
from the Gaussian form of free diffusion, rendering model-free methods advantageous.
If the measured diffusion is free Ps is equal to Ps. In this case QSI is equal to k-space
DWI.

QSI is able to find existing restrictions and barriers for the diffusion, characterize
anatomical compartments and resolve multiple fiber orientations. It can assess separately
the effects of change in diffusion time, orientation and length scale on the displacement
distribution depending on the diffusion weighting parameters [7]. This imaging tech-
nique is therefore successfully used in the investigation of static materials [17]. For in
vivo studies, especially on humans, there are some limitations. The required gradient
field and pulse strength present problems for the scanners in clinical use today. This
makes it impossible to meet the condition of infinitesimal short δ in actual measurements
with PGSE sequences.

The development of the STEAM (stimulated echo acquisition mode) sequence [72]
makes real QSI on standard scanners possible. This imaging sequence can not reduce
δ, but is able to allow large ∆, so δ � ∆ is satisfied. A large ∆ may allow spins to
wander between voxels, which might cause blurring in the measurement. As previously
discussed prolonged measurement time allows for more motion artifacts and therefore
presents an additional problem for QSI acquisition. This imaging sequence is not yet
commonly used in clinical application.

Another alternative uses constant twice-refocused balanced echoes in the image acqui-
sition [90]. The use of constant gradients clearly violates the ‘narrow-pulse’ approxima-
tion that is the basis of QSI. The propagator measured in this approach does not measure
the probability density function of spin displacement directly but only the correspond-
ing center-of-mass propagator [90, 65], which can also be used to measure displacement
without the assumption of a Gaussian molecule distribution.
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4 Interpreting The Measured Diffusion

Further processing of the diffusion information is necessary to facilitate its interpretation.
For this purpose several diffusion indices and diffusion models were proposed. In the
first section of this chapter, the most basic model free interpretation method is discussed.
Then, the standard diffusion model, the second order diffusion tensor, is introduced.
Some of the commonly used scalar diffusion measures which can be derived from this
second order tensor model are presented. The second order diffusion tensor model is
based on the assumption of Gaussian diffusion with mono-exponential signal decay. This
assumption is not necessarily valid for the measured diffusion since the measurement
grid is very coarse (see for example [3]). The measured diffusion can therefore contain
the actual diffusion information of several diffusion compartments (PVE), this may result
in a measured diffusion that is non-Gaussian. More advanced evaluation techniques
which address this problem are presented in the last section of this chapter.

4.1 A Simple Interpretation Method
The simplest way to characterize diffusion measured in DWI is based on the apparent
diffusion coefficient (ADC). The ADC is estimated as follows,

ADC = −1

b
ln(Sg/S0). (4.1)

Here b is the diffusion weighting factor, S the diffusion weighted signal and S0 the un-
weighted signal. This definition corresponds to the definition of the self-diffusion coeffi-
cient in (3.12). The ADC describes the apparent diffusion recognizing the fact that mea-
sured diffusion is not free but hindered by barriers such as for example cell membranes.
The measured diffusion coefficient is therefore not a diffusion coefficient as known in
physics but the effect from diffusion, which is hindered by membranes. If free diffusion
is the only motion present in a homogeneous environment, i.e. the measurement is noise
and artifact free, the ADC is equal to the self-diffusion coefficient in the direction corre-
sponding to the diffusion weighting of S. If the diffusion is isotropic (equally strong in
all directions), a scalar ADC is sufficient to describe the diffusion.

If diffusion is anisotropic (not of equal strength for all possible directions) one scalar
ADC is not sufficient for the representation of this diffusion process. If a HARDI data set
with a large number of different diffusion encoding gradient directions is acquired, the
ADC of the individual gradient directions can be used to evaluate the overall diffusion
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4.1 A Simple Interpretation Method

profile. The estimated profile gets more accurate with an increase in diffusion encoding
gradient directions, due to the increased angular resolution of the signal sampling.

Visualization The measured ADC information is hard to comprehend without ade-
quate visualization. An intuitive form of visualization is the so called ADC map. It
associates the measured, scalar ADC value to each voxel and is usually visualized as
intensity map. The ADC can be evaluated and visualized as intensity map for each dif-

Figure 4.1: An example ADC intensity map.

fusion encoding direction separately. More common is a map that codes the mean ADC
as intensity value. In this map the information from the individual acquired directional
images is combined.

This method gives a detailed representation of the measurements. It also gives an
exact representation of the measured signal including the noise. This true representation
of noisy data renders reproduction of the results difficult because of the randomness of
the noise.

A 3D representation of the ADCs in each voxel is also possible. A three dimensional
representation of the local diffusion information in a voxel is called glyph. The ADC
glyph is a deformed sphere. The directions for which the ADC was computed (directions
of the corresponding diffusion weighting gradients) are identified with points sampling a
sphere. The radius of the sphere in each of the sampling points is set equal to the corre-
sponding ADC. An example for a voxel containing a single fiber is given in Fig.4.2(a). It
shows the typical peanut shape (For more on the shape of the ADC glyph and its relation
to the Reynolds tensor glyph (introduced in section 4.2.2) see appendix D.).

The ADC glyph in real data always is a corrupted representation of the underlying
voxel micro-structure. The effect is illustrated in Fig.4.2, where a glyph without noise
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4 Interpreting The Measured Diffusion

(a) Without Noise (b) With Noise

Figure 4.2: ADC glyph for 81 gradient encoding directions.

(Fig.4.2(a)) is given next to a glyph representing the same signal with noise (SNR = 10;
Fig.4.2(b)).

4.2 The Diffusion Tensor
A more compact representation for the measured diffusion process is the second order
3x3 diffusion tensor. This symmetric positive definite tensor D contains only six inde-
pendent components (see Fig.4.3). The diagonal elements of the tensor are related to the
strength of the diffusion in the X-,Y- and Z-direction of the scanner coordinate system,
respectively (see for example [2, 48]). The off-diagonal elements indicate the interde-
pendence of the individual directions.

Therefore, the tensor can be computed from a minimum of one unweighted image and
six diffusion weighed images for each voxel in the data set (see Fig.4.3). The use of sev-
eral unweighted images and a larger number of diffusion weighting gradient directions
will increase the estimation quality (as shown for example in [47] and my more extensive
evaluations later on presented in chapter 5). A simple and explicit way to compute the
diffusion tensor from seven measurements was described in [9]. The measurement of
the required data for the tensor estimation is often referred to as diffusion tensor imaging
(DTI).

The second order tensor is in literature (see for example [2, 92, 48]) defined so that the
directional diffusion coefficient Dg is given by

Dg = gT Dg. (4.2)
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4.2 The Diffusion Tensor

Figure 4.3: The symmetric tensor is illustrated. Each of the nine images gives the tensor
elements, here visualized for a single slice in the data set. The off-diagonal images are
mirrored on the diagonal. There are therefore only six different images (independent
tensor elements). The signal in the diagonal tensor elements is stronger and less noisy
than in the off-diagonal images.

(a) [1 0; 0 0.05] (b) [0.53 0.47; 0.47 0.53]

Figure 4.4: The off-diagonal elements give the tilt of the diffusion glyph. This is illus-
trated in two 2D examples. The tensor elements are given in the subtext of the plots.
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4 Interpreting The Measured Diffusion

This allows the extension of (3.12) for a second order diffusion tensor D to

Sg = S0exp(−bgT Dg) (4.3)

⇔ ln

(
Sg

S0

)
= −

3∑
α=1

3∑
β=1

bgαgβDαβ. (4.4)

Above Dαβ are the elements of the diffusion tensor, b is the diffusion weighting factor,
S0 is the unweighted signal, g the diffusion gradient direction vector. α and β are the
element indices of the gradient vector g and diffusion tensor D that may take any Charte-
sian direction (x, y or z). Sg is the echo signal obtained for the applied diffusion gradient
g with diffusion weighting b.

The tensor can be estimated by solving

BD = Y (4.5)
⇔ D = B−1Y,

with Y a vector containing the logarithmic signal intensities ADC = ln(Sg/S0) (Y =[
ADC

1
, ADC

2
. . . ADC

Ne
]T

. D here is a vector containing the six independent second
order diffusion tensor components. The effects the imaging gradients and the diffusion
weighing gradient pulses have on the signal are embodied in the estimation matrix B
whose elements corresponding to the gradient direction j (j ∈ {1, 2, 3 . . . Ne}, where
Ne is the number of gradient encoding directions used in the estimation.) are defined as
[63],

dj = bgj
αgj

β = b
[

gj
xx gj

yy gj
zz 2gj

xy 2gj
xz 2gj

yz

]
. (4.6)

The complete matrix B has the form:

B =
[
d1, d2, . . . , dNe

]T
. (4.7)

The values on the diagonal of the diffusion tensor give the diffusion strength in the X-,
Y- and Z-direction. The off-diagonal elements give the interdependence of the individual
directions. This is illustrated in Fig.4.4. Where the same tensor shape is given in two
orientations in the coordinate system. The off-diagonal elements determine the tilt of the
tensor.

DTI is up till now only able to measure voxels with a side length larger than one
millimeter on clinical scanners but single axons have a much smaller diameter of few
micrometers. The coarseness of the DTI resolution allow that fibers with different orien-
tations are contained in one voxel, a so called heterodirectional voxel [32]. This hetero-
geneity causes PVE. Each fiber will add to the signal intensity resulting in an averaged
signal for a heterogeneous voxel. Under the assumption that there is no exchange be-
tween individual fiber bundles, the signal S is given by

S =
n∑

i=1

αiFi. (4.8)
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4.2 The Diffusion Tensor

Here, n is the number of fiber bundles contained in a voxel, Fi is the signal produced by
fiber i which is weighed according to its volume fraction αi [3]. To reduce the PVE, one
can increase image resolution at the expense of SNR. The reduction in SNR limits the
increase in image resolution as well as the increase in measurement time. The measure-
ment time increases exponentially with the increase in resolution. If the voxel length is
halved in each direction the scan duration is 28 = (22)3 times prolonged.

The second order tensor is based on the assumption of homogeneous diffusion inside
a voxel. This assumption allows for a maximum of one fiber orientation per voxel. Het-
erogeneous voxels presents a problem because the diffusion in this type of voxel cannot
be adequately approximated by mono-exponential Gaussian diffusion (due to PVE).

4.2.1 Tensor Derived Diffusion Indices
From the second order diffusion tensor several useful scalar diffusion indices can be
derived that characterize the diffusion inside a given voxel. The most commonly used
indices are briefly presented in the following.

4.2.1.1 General Diffusion Indices

General diffusion indices characterize the diffusion processes inside of a voxel as a
whole. The amount of diffusion is characterized but no directional dependence of the
diffusion is explored. These indices can be computed without diagonalization of the
diffusion tensor and can therefore be evaluated very fast.

One of the simplest indices is the trace tr of the diffusion tensor,

tr(D) =
3∑

α=1

Dαα. (4.9)

Here, Dαα are the elements on the diagonal of the diffusion tensor D. The trace is ro-
tationally invariant. In the context of DTI this means that the orientation of the fiber
in relation to the diffusion weighting gradient direction set used in the acquisition is of
no consequence. Since the diagonal elements give the diffusion strength in X-, Y- and
Z-direction, these three gradient encoding directions are sufficient to compute the trace.
If no more advanced evaluation is required, the number of DWI measurements can there-
fore be cut in half.

The mean diffusivity (D̄) is one of the oldest diffusion indices used in DTI. It is defined
as the determinant of the diffusion tensor and therefore also rotationally invariant. A
faster way of computation for this diffusion index is

D̄ =
3∑

α=1

Dαα/3 = tr(D)/3, (4.10)

which can also be computed from a minimum of three DWI images.
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4.2.1.2 Anisotropy

More detailed information on the diffusion inside of a voxel can be acquired with so
called anisotropy indices. These indices describe the dominance of certain diffusion di-
rections over others. The anisotropy information is dependent on the whole tensor. It
is also dependent on the tensor orientation in the coordinate system given by the set of
directions used in the DTI measurements and therefore called ‘rotationally variant’. This
dependence is discussed in more detail in my evaluation of gradient encoding schemes
that will be presented in chapter 5. Anisotropy indices are a popular means for many dis-
ciplines, some examples are the investigation of (degenerating) neuronal disease, brain
development or stroke. In the next paragraphs, the two most prominent anisotropy in-
dices are presented in more detail.

Relative Anisotropy: The relative anisotropy (RA) is proportional to the standard de-
viation of the mean diffusivity from the individual eigenvalues:

RA =

√
3
√

(λ1 − D̄)2 + (λ2 − D̄)2 + (λ3 − D̄)2

tr(D)
. (4.11)

The λ stand for the three eigenvalues of the tensor D. The three eigenvalues represent the
magnitude of the diffusion in the direction of the corresponding eigenvectors. D̄ stands
for the mean diffusivity as previously defined in (4.10). RA can take values between 0
for fully isotropic voxels and

√
2 for highly anisotropic voxels.

Fractional Anisotropy: The fractional anisotropy (FA) is the most commonly used
anisotropy index in clinical application. It is defined as

FA =

√
3

2

(λ1 − D̄)2 + (λ2 − D̄)2 + (λ3 − D̄)2

λ2
1 + λ2

2 + λ2
3

. (4.12)

λ and D̄ are used as previously defined. It can take values from 0 (fully isotropic) to 1
(highly anisotropic), which is one of the reasons this index is preferable over others. Its
interpretation is also slightly different from RA. It is a measure for the diffusion strength
attributed to directional diffusion [6]. To speed up the computation, it can be computed
without actually diagonalizing the estimated the tensor directly from the tensor elements
[41]. It was also shown that the FA is more robust toward noise than RA [40]. The FA
maps have a higher SNR than corresponding RA maps.

4.2.1.3 Directional Information in Scalar Maps

Often not only the scalar diffusion properties but also the principal direction of the diffu-
sion is of interest in an investigation. The directional information facilitates for example
the distinction of individual fiber pathways that lie close together but have different ori-
entations. The primary eigenvector corresponds to the largest eigenvalue. It gives the
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4.2 The Diffusion Tensor

principal diffusion direction that is assumed to correspond to the fiber orientation in this
voxel. The information of a specific diffusion index can be combined with the directional
information from the principal eigenvector. In a combined image the diffusion index is
usually coded in the intensity and the color coding usually represents the three compo-
nents of the primary eigenvector in RGB. This visualization method is illustrated on the
example of a FA map in Fig.4.5. A prominent advantage of combining the FA with color-

(a) (b)

Figure 4.5: In this figure the advantage of color coding the directionality of the measured
diffusion information in a scalar diffusion index is illustrated on the example of FA maps.
The FA is a scalar value that is usually visualized as intensity map in gray scale, as shown
in (a). In (b) the FA is coded in the intensity values and the main diffusion direction is
used for color coding. This allows a more detailed investigation of the diffusion.

coded diffusion direction can be observed in the center of the example images in Fig.4.5
(see enlarged details in Fig.4.6). Here, the gray scale image does not allow the distinc-
tion between the fiber populations of different orientation. Especially the transition from
the top-down (green) fibers of the inferior fronto-occipital tract and the front-back (blue)
fibers of the internal capsule is not distinguishable.

Figure 4.6: The importance of color coding is illustrated on an enlargement of the centers
of the images in Fig.4.5. The transition, for example, of the green and blue fibers in the
center cannot be distinguished from the gray scale image. Some of these regions that are
not distinguishable without color-coding are indicated with white arrows.
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4 Interpreting The Measured Diffusion

4.2.2 Tensor Visualization
To facilitate the interpretation of the diffusion tensor data, it is often useful to visualize it
in 3D. A commonly used method to visualize a second order 3x3 diffusion tensor D is the
Lamé ellipsoid. This glyph’s orientation corresponds to the principal diffusion direction.
The three radii are given by the three eigenvalues λi of the tensor D (see Fig.4.7(a)). The
ellipsoid is computed by solving

x2
a

λ2
a

+
x2

b

λ2
b

+
x2

c

λ2
c

= 1. (4.13)

xi are Cartesian coordinates of a spherical unit vector.

(a) Lamé ellipsoid (b) Reynolds tensor glyph

Figure 4.7: Comparison: Lamé ellipsoid vs. Reynolds tensor glyph

Another possibility to visualize diffusion tensor information is the Reynolds tensor
glyph [43, 66]. The Reynolds tensor glyph will also orient itself according to the principal
diffusion directions. The shape results from the inner product of the diffusion tensor with
spherical unit vectors as described in (4.14).

r = nT Dn = Dαβnαnβ (4.14)
= Dxxn2

x + 2Dxynxny + 2Dxznxnz + Dyyn2
y + 2Dyznynz + Dzzn2

z,

with r the radius of the glyph, Dαβ a tensor element, and nα the Cartesian coordinates of
a spherical unit vector [43]. The projections corresponding to these vectors are ideally
distributed equally over the whole sphere so as not to bias the directionality of the glyph.
This glyph is a peanut shape (see Fig.4.7(b)) which is similar to the ADC glyph (Fig.4.2;
see also appendix D for a description of this similarity). By applying this method, each
point on the surface of the glyph represents the diffusion strength in this direction ac-
cording to (4.2). The diffusivity is accordingly directly proportional to the size of the
glyph.

Both glyphs are similarly orientated along the axis of the eigenvector corresponding
to the largest eigenvalue. The radii in both glyphs for the principal diffusion directions
given by the eigenvectors are equal to the corresponding eigenvalues of the diffusion
tensor.

The handling of large tensor data sets is facilitated by apt coloring of the tensor glyphs.
The orientation of the glyph can be color coded by associating the principal eigenvector
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with RGB values (see for example Fig.4.8). This enables the viewer to directly grasp the
orientation of the individual tensor in a larger tensor field. The tensor field visualization
is often superimposed on an anatomic image of the measured subject to help the user put
the information into context. In addition, the anisotropy can be coded in the intensity
values of the diffusion glyph visualization rendering highly anisotropic regions lighter
than more isotropic ones. This is illustrated in Fig.4.8, where the anisotropy is high, the
ellipsoids are cigar shaped. Some examples are in the red/yellow bows of the corpus
callosum in the center and top of the image. The more isotropic the diffusion inside a
voxel is, the more spherical the corresponding ellipsoid will be. This is illustrated for
example in the (mainly) dark liquor filled ventricles running top-down in the center of
the figure, in which the diffusion is not restricted by any anatomical structures. The mean
diffusivity in this region is still high but equally strong in all directions. This causes the
ellipsoids to overlap, so no clear boundary can be detected here.

Figure 4.8: An example for the tensor visualization of the diffusion with lamé ellipsoids.
For better orientation in the data set the intensity of the ellipsoid glyphs is coded ac-
cording to the corresponding FA values and colored according to the orientation of their
main axis.

4.3 Recent Developments In Diffusion Evaluation
To overcome the limits of the standard second order diffusion tensor model, more ad-
vanced methods for the evaluation of HARDI data sets with a large number of diffusion
encoding directions were proposed. These methods can be separated into two groups, ad-
vanced representation models, for example spherical harmonic decomposition (section
4.3.1) or multi-tensor representations (section 4.3.2), and advanced diffusion models,
such as for example higher order diffusion tensors (section 4.3.3) or multi-compartment
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diffusion models (see for example [4]) (which will not be further discussed here). In the
following, some of these more advanced methods are introduced in more detail.

4.3.1 Characterizing Diffusion With Spherical Harmonic
Decomposition

A spherical harmonic decomposition (SHD) was proposed to characterize diffusion in
HARDI data sets [32]. This approach is motivated by the inherent spherical symmetry
in the HARDI measurements. This symmetry does not distinguish between diffusion in
positive or negative gradient direction, both return the same signal (Sg = S−g).

(a) Y 0
0 (b) Y 0

2 (c) Y 2
2

Figure 4.9: Examples for spherical harmonics

The diffusion measurements can be expressed as a sum of rotations in three dimen-
sional space relative to an unknown principal axis system of the diffusion. When the
corresponding rotation matrices are transformed into a spherical space (e = r, θ, φ, with
r, the radius, θ the polar angle, between a vector and the positive Z-axis, and φ the az-
imuthal angle, relative to the positive X-axis), they are spherical harmonics [32]. Some
examples for spherical harmonics are given in Fig.4.9. In spherical coordinates (θ, φ)
the measured diffusion tensor can be expanded in a Laplace series of spherical harmon-
ics Y M

L :

D(θ, φ) =
∞∑

L=0

L∑
M=−L

aLMY M
L (θ, φ) (4.15)

where D(θ, φ) gives the diffusion in direction (θ, φ). M is the order and L the degree of
the spherical harmonic (Frank refers to L as the order of the spherical harmonic [32]).
The coefficient aLM is given by

aLM =

∫ 2π

0

∫ π

0

D(θ, φ)Y M
L (θ, φ)sin(θ)dθdφ. (4.16)

The odd degree of the spherical harmonics in the decomposition represent asymmetric
parts in the signal which are assumed to be non-physical and, therefore, are considered
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artifacts. Artifacts that may result for example from motion of the subject, eddy currents
or measurement noise can be reduced by considering only the coefficients of even degree
in the evaluation of diffusion. This should improve the evaluation even though the arti-
facts will partially remain in the reconstruction since they affect all degrees of the results
from the SDH.

SHD is able to classify the diffusion in voxels in a HARDI data into three major cat-
egories: isotropic, single-fiber and multiple-fiber components (as illustrated in Fig.4.10)
according to the the spherical harmonics Y M

L used to describe the tensor.

Figure 4.10: The different orders of SHD are illustrated here. L and M corresponds to the
spherical harmonic basis Y L

M . The degree of the decomposition L indicates the underly-
ing voxel fiber structure as indicated on the right. Odd degrees of the decomposition are
assumed contain only artifacts. This graphic is taken from [32].

The first two categories (isotropic and single-fiber) can be adequately described by the
regular second order diffusion tensor. The third category contains heterodirectional vox-
els, in this case the fiber orientation cannot be determined without specific assumptions
on the fiber structure. Frank suggests the use of previous knowledge on the local anatomy
to determine the fiber constellation with the highest probability [32]. If the number of
fiber populations with different orientation in a heterodirectional voxel is given or cho-
sen, their constellation can be reconstructed with the multi-tensor fit approaches similar
to the one discussed in the next section.

4.3.2 Multi-Tensor Approach
This technique uses a given number of second order diffusion tensors to represent the
measured diffusion. It is based on the definition of the measured signal in case of multiple
fiber populations inside a single voxel (see (4.8)):

Sg = S0 ∗
∑

αiFi(g) (4.17)

= S0 ∗
∑

αiexp(−bgT Dig). (4.18)
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Here, αi is the volume fraction corresponding to fiber population i. This fiber bundle
produces the signal Fi(g) for the gradient direction g. The diffusion that corresponds to
this fiber bundle can be adequately described with the corresponding second order tensor
Di. As before, b stands for the diffusion weighting factor, Sg is the DWI signal and S0 is
the image without diffusion weighting. The difference between the signal estimated for
a given tensors set and the measured signal is minimized to determine the set of tensors
and volume fractions that describes the measured signal best. In [91], a given number
of equally anisotropic cigar shaped tensors is used in the optimization. The individual
tensors are assumed to be equal in shape to reduce the number of free parameters for the
optimization, so the problem is solvable. A detailed description of the gradient descend
used in this optimization is given in the appendix of [91]. Another approach [54] assumes
that each voxel has some isotropic component that accounts for PVE in the measurement
and two anisotropic components. Adding an isotropic tensor allows the two anisotropic
tensors used in this approach to be relatively sharp cigars without diminishing the quality
of the estimated multi-tensor signal fit to the measured signal. The measured signal is
‘sharpened’ by the subtraction of the isotropic components. This facilitates the fitting of
highly anisotropic tensors to the remaining sharp signal. To ensure numerical stability
of the optimization process the number of anisotropic tensors used in [54] was limited to
two.

4.3.3 Generalized Diffusion Tensor Imaging
Another approach is describing the diffusion process with a generalized diffusion equa-
tion that uses higher order tensors (HOT) in the characterization of the diffusion pro-
cess [74, 73, 57]. Non-Gaussian diffusion in heterodirectional voxels can be described
with these HOTs. The HOT description of the diffusion in heterodirectional voxels can
be more clearly represent multiple prominent diffusion directions than common DTI or
even most HARDI reconstruction techniques [57]. HOT is still mainly used for probabil-
ity density function (PDF) plots representing the individual voxels’ diffusion profile. The
HOT formalisms can be divided into two basic categories according to their data analy-
sis techniques. The single HOT model [73] relies on the analysis of the ADC (similar to
SHD) whereas the HOT hierarchy [57] is consistent with QSI.

4.3.3.1 The Single Higher Order Tensor Model

The single HOT model proposed by Özarslan and Mareci [73] assumes that the diffusion
is restricted to the real-valued magnitude signal information. For the computation of this
HOT model the Stejskal-Tanner relation is generalized to higher order tensors enabling
straight forward calculation of all the coefficients with a least-squares fitting routine. A
single HOT is fitted to the HARDI data:

Sg = S0exp(−bgαgβ...Dαβ...). (4.19)

This equation is a direct extension of (4.3). The estimation matrix is accordingly gen-
eralized to contain the elements Bαβ... = −bgαgβ... similar to the second order tensor
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estimation matrix defined in (4.6). This tensor model is only defined for even tensor
orders (odd orders are assumed to contain only artifact similar to the ones in the SHD).
The tensor is symmetric similar to the second order tensor. This means all permuta-
tions of the indices are the same (Dαβγδ = Dαβδγ = . . .). The symmetric HOT has
[(n+1)(n+2)]/2 independent elements, with n the order of the tensor. The elements of
lower order tensors of this model are related to the elements of the tensor of higher order
and can therefore be easily computed from higher order tensor elements without refitting
of the signal [73]. This facilitates a comparison of the results of different tensor orders.
Some higher order anisotropy measures [74] were proposed to facilitate the interpreta-
tion of the data. The scalar measures can be used similar to the FA maps in the second
order tensor evaluations.

Liu et al did show that models based on ADC analysis are mathematically self-incon-
sistent in presence of non-Gaussian diffusion [59]. ADC relies on the assumption that
the MR-signal decays mono-exponentially as a function of a single b-value (ADCg =
b−1ln(Sg/S0)). In the presence of non-Gaussian diffusion a mono-exponential decay
does not exist for every diffusion encoding gradient direction. The ADC in these cases is,
therefore, not well defined. This is the reason for problems of ADC based reconstruction
methods, for example the insufficient reconstruction of the underlying fiber orientations
in heterodirectional voxels [59]. In spite of this, the model can still be used to determine
heterogeneous regions and obtain at least some information on the fiber constellation
successfully [26].

4.3.3.2 The Higher Order Tensor Hierarchy

The HOT hierarchy model developed by Liu et al is based on q-space imaging [58, 57,
59]. The signal S is interpreted, similarly to the introduction in 3.4, as

S = S0

∫
Ps (R, ∆) exp (−iqR) dR. (4.20)

i is the imaginary unit (i2 = −1), q = γδG and R = r′−r as defined in 3.4. If the random
variable R is distributed asymmetrically the signal S is complex valued according to
(4.20) [59].

S/S0 is the characteristic function of the random variable R with the probability den-
sity function Ps (R, ∆). The cumulants of the random variable R can be used to expand
the characteristic function to:

S

S0

= exp

(
(−i)Q1

j1
qj1

1!
+

(−i)2Q2
j1j2

qj1qj2

2!
+ · · ·+

(−i)nQn
j1j2...in

qj1qj2 . . . qjn

n!

)
(4.21)

The coefficients Qn
j1j2...in

are the nth order cumulants of R,

Q(n)
j1j2...jn

≈ n!D(n)
j1j2...jn

∆. (4.22)

∆ is the separation time of the two diffusion gradients and δ the duration of the individual
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gradients. Then (4.21) can be rewritten as:

S = S0exp(
∞∑

n=2

ingj1
gj2

...gjn
D(n)

j1j2...jn
b(n)). (4.23)

Dn is the tensor of order n and bn is the diffusion weighting factor that corresponds to
the tensor order n. g is the diffusion encoding gradient direction with components jn

(j ∈ x, y, z). The diffusion weighting factors in (4.23) are an extension of (3.13) for an
arbitrary tensor order n.

bn = γnGnδn(∆− n− 1

n + 1
δ), (4.24)

They do depend on the measurement parameters δ, ∆, γ and G used in the data acquisi-
tion (as defined in section 3.3) but only b2 is equal to the diffusion weighting factor used
as parameter for the MR-scanner.

The equation system that needs to be solved to estimate the diffusion tensors is similar
to (4.5). The rows of the estimation matrix B have to be adjusted to support the larger
number of b-factors. The row corresponding to direction i is given by:

di =
[
b2gi

xxb
2gi

yy · · · jb3gi
xxx · · · − b4gi

xxxx · · ·
]
. (4.25)

This tensor model is evaluated on the complete complex-valued measured signal. All
other advanced evaluation methods work on the magnitude signals only. The model does
not make any assumptions on the diffusion process [57]. Consequently, all higher order
tensors, odd and even ordered, are important to the reconstruction.

This tensor model is able to reconstruct the fiber orientation accurately. An advantage
in this model is the handling of asymmetric fiber constellation, such as Y-shaped fiber
branching. The asymmetric diffusion properties needed to resolve this geometry are
revealed in the signal phase. If the phase is ignored, as it is done in other models, the
asymmetry information is lost. In the HOT hierarchy this information is stored in tensors
of odd order. The asymmetry of the resulting PDF for the reconstruction seems to be
a clear violation of the principle of microscopic detailed balance, this principle needs
to be broken down in voxel imaging for an accurate representation of the non-Gaussian
diffusion process [59]. The non-Gaussianity of the measured diffusion originates from
the limited spatial imaging resolution that results in PVE in heterogeneous voxels and
the fact that the measured diffusion is not free but hindered.

The asymmetric parts of the signal are coded in the imaginary part of the complex
signal which will be zero if the signal is completely symmetric. Symmetric structures
such as crossing fibers are coded in the real part of the signal. The incorporation of the
odd order tensors will cause a shift in the diffusion profile. For a Y-shaped fiber, for
example, the two lower corners of the square glyph in Fig.4.11(b) are forced inwards by
the odd order tensor to form the Y. A comparison of glyphs corresponding to different
parts of the hierarchy is given in Fig.4.11. All glyphs in Fig.4.11 correspond to the same
Y-shaped anatomy. Fig.4.11(a) shows the corresponding disc shaped second order glyph
that allows only one dominating diffusion direction. This direction does not correspond
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(a) 2nd Order (b) 2nd And 4th Order (c) 2nd, 3rd And 4th Order

Figure 4.11: The influence of the odd order tensor on the PDF is illustrated.

to any arm of the Y-shape. In Fig.4.11(b) only even order tensors from the hierarchy
are used to reconstruct the anatomy, resulting in a symmetric square shape similar to
a glyph corresponding to fiber crossing. The corners of this glyph correspond to the
orientations of the upper two arms of the Y-shape. The even order tensor information
is always symmetric therefore the asymmetric Y-shape cannot be reconstructed. The
complete reconstruction with even and odd order tensors is shown in Fig.4.11(c). The
two lower corners are forced inwards to form the Y-shape.

The reconstruction of Y-shaped fibers is only relevant if the Y clearly dominates the
voxel. This is usually not the case in the voxel size that can be acquired in DTI today.
The three arms of the Y will usually dominate over the small region where the fiber is
actually branching. Even though the voxel volume in images acquired today are probably
too large to render the case of Y-shaped fibers important, the ability to handle asymmetric
diffusion is a theoretical advantage of this tensor model over the previously presented
single HOT model.

The HOT hierarchy of maximal tensor order four has 31 independent tensor elements.
31 is, therefore, the minimal required number of encoding directions. To improve the
stability of the tensor estimation, several diffusion weighted measurements with different
weighting factors were suggested [57].

Results From My HOT Hierarchy Evaluations It is a property of this hierarchical
model that all real part information is contained in the even order tensors and all infor-
mation from the imaginary part of the signal in the odd order tensors [58]. I was therefore
able to estimate the tensors for this model from two smaller equation systems, one for
each part of the signal (real and imaginary). A row of the even order estimation matrix
is for example given by:

di =
[
b2gi

xxb
2gi

yy · · · − b4gi
xxxx · · ·

]
. (4.26)

This will reduce the maximal required rank in the estimation matrix. The estimation
matrix needs to have a rank equal the maximal number of independent tensor elements
that are to be estimated by one of the equation systems (even or odd order).

rank = max(
N∑

n=2j

(n + 1)(n + 2)

2
,

N∑
n=2j+1

(n + 1)(n + 2)

2
), j = 1...N/2. (4.27)
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rank gives the required rank for the estimation matrix, n is the tensor order and N
is the maximal tensor order used in this evaluation. The minimal number of required
gradient encoding directions is reduced with the rank of the estimation matrix. For a
maximal tensor order of four the required number of directions is reduced from 31 (6
for the second order, 10 for the third and 15 for the fourth) to 21 (6 plus 15). The
imaginary part of 21 acquired directions is more than enough for the estimation of 10
independent elements of the third order tensor. This is a considerable improvement in
the required number of measurements and therefore also reduces the time needed for the
data acquisition.

Liu showed in [57] that he could reconstruct the HOT hierarchy with a single b-factor
greater zero. However, a single b-factor is only sufficient if a large number of encoding
directions (Ne ≥ 200) is used. In my investigations I found that for a low number of
encoding directions (Ne < 100) the equation system for the tensor estimation with a
single b-factor does not have full rank. If the rank of the estimation matrix is not full,
the tensors cannot be estimated, because no unique solution exists. When at least two b-
factors larger zero are used, the rank of the estimation matrix is always full. The use of at
least two b-factors larger zero is advantageous because two acquisitions of a low number
of encoding directions with different b-factors are usually faster than one acquisition
with a considerably larger number of encoding directions. The optimal choice of the two
b-factors still needs to be determined.

4.3.3.3 Visualization Of The Higher Order Tensors

For the visualization of the HOT hierarchy diffusion profile an established technique, vi-
sualizing the probability density function (PDF) P corresponding to the diffusion model
can be used. First, a unit sphere around the origin (0,0,0) is generated. Each point on the
sphere represents a direction r in 3D space. Then the PDF corresponding to the tensor
representation of the DTI signals, is evaluated for each of these directions. The result is
the radius rad of the glyph in the direction r.

rad(r) = P (r) (4.28)

This glyph representation has great similarities with the Reynolds glyph for second order
tensors (4.14).

The PDF of the single HOT approach is given by the estimated tensor. The surface is
therefore computed with

P (r) = D(r) =
3∑

α=1

3∑
β=1

...Dαβ...rαrβ.... (4.29)

This equation is a straight forward generalization of the Reynolds glyph (4.14).
The PDF for the HOT hierarchy can be described by a Gram-Chalier series [64] which

is a common method for the definition of a PDF of a random variable with its higher
order statistics. The PDF of r for the HOT hierarchy is therefore defined as

P (r) = N(0, Q(2)
kl )(1 +

Q(3)
klmHklm(r)

3!
+

Q(4)
klmnHklmn(r)

4!
+ . . .) . (4.30)
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(a) Single HOT (b) Synthetic Phantom
(XY-Plane)

(c) HOT Hierarchy

Figure 4.12: An example for the two kinds of HOT glyph for a pair of orthogonally
crossing fibers. The HOTs were estimated from simulated data sets without noise and an
force-minimizing encoding scheme [50] with 81 directions. (b) shows a cross-sectional
cut through the synthetic phantom evaluated here (image adopted from [57]). The posi-
tion of the evaluated voxel is indicated by the stippled line.

N(0, Q(2)
kl ) describes the normal density distribution with covariance matrix, Q(2)

kl , and
zero mean. The notation QklmHklm(r) is used as short form of the Einstein summation
convention,

QklmHklm(r) =
3∑

k=1

3∑
l=1

3∑
m=1

QklmHklm(r). (4.31)

Hi1i2...in(r) is the n-th order Hermite tensor [64]. The Hermite tensors up to order four
are given using the Einstein summation rule described in (4.31):

Hk = N(0, Q(2)
kl )−1

Hkl = HkH l −N(0, Q(2)
kl )−1

Hklm = HkH lHm −HkN(0, Q(2)
lm)−1 (4.32)

Hklmn = HkH lHmHn −HkH lN(0, Q(2)
mn)−1 + N(0, Q(2)

kl )−1N(0, Q(2)
mn)−1.

A comparison of the diffusion glyphs for both HOT models illustrates the superiority
of the reconstruction of the diffusion orientation in the HOT hierarchy. Fig.4.12 com-
pares the two HOT models for a voxel containing two orthogonally crossing fibers. This
fiber constellation is symmetric and should, therefore, be reconstructible for the single
HOT model as well as for the HOT hierarchy. The glyph corresponding to the single
HOT (Fig.4.12(a)) does not much resemble the input geometry (Fig.4.12(b)). The main
axes of the PDF glyph do not correspond to the fibers in Fig.4.12(c). The HOT hierarchy
PDF glyph on the other side reconstructs the fibers accurately. Another example is given
in Fig.4.13. This asymmetric Y-shape is not resolvable for the single HOT model. It
is therefore not surprising that Fig.4.13(a) and Fig.4.13(b) have not much in common.
The HOT hierarchy glyph is for this case also able to reconstruct the axes of the fibers
accurately.
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(a) Single HOT (b) Synthetic Phantom
(XY-Plane)

(c) HOT Hierarchy

Figure 4.13: A comparison of the diffusion glyphs of the two presented HOT models
for a splitting fiber. The HOTs were estimated from simulated data sets without noise
and an force-minimizing encoding scheme [50] with 21 directions. (b) shows a cross-
sectional cut through the synthetic phantom used to simulate the data evaluated here
(image adopted from [57]). The position of the evaluated voxel is indicated by a stippled
square.

Fig.4.14 compares the different HOT models for different numbers of encoding di-
rections. The directions corresponding to extrema in the PDF surface are color coded.
The coordinates of the extrema are translated into RGB values. This pronounces the
deviation of the reconstructed diffusion directions from the one in the input signal in
Fig.4.14(a). It can be seen that the reconstructed diffusion directions for the single HOT
model Fig.4.14(b) do not correspond well to the input diffusion directions (Fig.4.14(a)).
Even with an increase in measured directions, which should result in an increased recon-
struction quality, there is no improvement in the reconstruction of the orientations. The
directions reconstructed by the HOT hierarchy Fig.4.14(c) fit the input directions much
better and some increase in quality is observable with an increase in encoding directions.
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(a) Input

(b) Single HOT

(c) HOT Hierarchy

Figure 4.14: A comparison of the diffusion glyphs. The lines give the extrema of the
corresponding reconstructed PDF, which correspond to dominating diffusion directions.
In (a) the input glyph is given. Below the evaluation with the single HOT (b) and the
HOT hierarchy (c) are given with an increasing number of encoding directions from left
to right (Ne = 21, 30, 46, 81, 126). The evaluations were performed on simulated data
sets with SNR 20 and an force-minimizing encoding scheme [50].

45



5 Gradient Encoding Schemes

For DTI the number of diffusion weighting gradient directions has to be at least equal to
the number of free parameters in the chosen tensor model. In the following, ‘encoding
direction’ or ’gradient directions’ is used as short form of ‘diffusion weighting gradient
direction’.

For the tensor estimation a linear equation system of the form

D = B−1Y (5.1)

has to be solved (see section 4.2 for more details). The vector D contains the indepen-
dent tensor elements to be estimated. The dimension of D depends on the tensor model
that is used. B is the estimation matrix describing the diffusion weighting. It contains
the information on the encoding directions used in a gradient encoding scheme (GES).
For details on the construction of the estimation matrix see chapter 4. Y contains the
measured signal (ln(Sg/S0)). The estimation matrix B needs to have full rank to guar-
antee the existence of an unique solution for (5.1) [88]. It was proposed that to ensure
high quality estimation results, the distribution of the encoding directions over the sphere
should well approximate equidistribution [47, 49, 76, 84]. It is argued that a set of di-
rections that is well distributed over the unit sphere will optimize the tensor estimation
results for an arbitrary tensor orientation.

For the investigation of chosen known fiber bundles, or parts thereof, one can use
prior knowledge on the anatomy to optimize the quality of the estimated tensor for the
chosen fiber orientation. A strategy to do so was proposed by Peng and Arfanakis [80].
This method performs better for the chosen fiber orientation but the quality decreases
significantly for fibers that are not aligned with the chosen orientation. The method is
therefore only suitable for the investigation of certain preselected fiber bundles or pieces
thereof which are similarly oriented. It cannot be used for whole brain investigations and
is especially unsuitable for the investigation of tracts for which the fiber orientation is
not known prior to the measurement.

The goal of my work is the identification of well performing GES for arbitrary fiber
orientations. Therefore, I concentrate on the optimization of the equidistribution of the
gradient directions over the whole sphere to allow good tensor estimation for any tensor
orientation.

The ideal diffusion encoding scheme would sample the unit sphere at an infinitesimally
large number of points to guarantee that all directions are equally well represented [10].
This ideal cannot be achieved in actual discrete measurements, this is why each encoding
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scheme is only an approximation of the ideal sphere-sampling. Today, it is also not
possible to generate a true equidistribution for an arbitrary number of points on a sphere.
This is as far as I know still one of the unsolved problems in mathematics [30].

There are many ways to generate a gradient encoding scheme with a sufficiently high
number of directions. In the following, some of the encoding schemes known from
literature will be presented.

5.1 Polyhedral Encoding Schemes
A natural way to achieve a regular distribution over the unit sphere is to resort to ge-
ometry, especially to regular polyhedra. The family of regular polyhedra includes, for
example, the tetrahedron, the cube, the octahedron and the icosahedron. The encoding
schemes based on these geometric structures choose their encoding directions to be ei-
ther the vertices of a polyhedron or the ones of a related refinement, which generate more
regular distributed points on the sphere. The so constructed gradient encoding schemes
can be combined to create new encoding schemes with even more directions (see for
example in [10, 52]).

(a) Order 1 (b) Order 2 (c) Order 4

Figure 5.1: This figure shows some examples for the triangulation of the regular icosa-
hedron as means for mesh refinement.

Here, I concentrate on geometric constructions based on the regular icosahedron (see
Fig.5.1(a)) consisting of twelve vertices and twenty triangular faces. Each vertex of a
regular symmetrical polyhedron has a corresponding vertex on the opposite hemisphere.
These two points can be connected by a straight line through the approximated sphere’s
origin. Under the assumption that Sg = S−g only the vertices on one hemisphere are used
in the GES. The vertices of the regular icosahedron, therefore, correspond to six non-
collinear gradient directions. This GES with six directions is often used for the estimation
of the standard second order diffusion tensor. It has been shown that no gradient encoding
scheme with the minimal required six diffusion gradient directions is superior to the
regular icosahedron for the computation of the second order diffusion tensor [10, 42, 70].

When the icosahedral mesh is refined by triangulation (see Fig.5.1 and 5.2(b)), the
number of encoding directions is Ne = 5n2 + 1, with n the order of the triangulation
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(n = 1, 2, 3, ...). n2 is the number of new faces after triangulation for each old face [42].
The sampling of the sphere is improved with increased triangulation order.

Other methods of refinement that are usually also referred to as icosahedral GES are
presented in the following. Their relation to the regular icosahedron is illustrated in
Fig.5.2. One refinement method exploits the dual relationship between the regular icosa-
hedron and the dodecahedron whose vertices correspond to the centroids of the regular
icosaeder’s faces (see Fig.5.2(c)). The transformation of the regular icosahedron to a
regular dodecahedron increases the number of encoding directions from six to ten.

By bisecting the edges of icosahedral polygons new regular shapes are created, which
can be used to find encoding schemes with more directions. An example with 15 direc-
tions results from the edge bisection of the basic regular icosahedron (see Fig.5.2(d)).
The geometry of the spherical fullerene, C60, also known as bucky (soccer) ball, is the
result of vertex truncation, skipping certain vertices of a refined icosahedral mesh. The
corresponding point distribution was shown to be a true equidistribution on the sphere
[23]. An example for a combination of direction sets to generate GES with even more
directions is a scheme with 16 directions that results from the combination of the icosa-
hedral and dodecahedral vertices.

In the illustrations in Fig.5.2 it can be seen that not all refined meshes result in equally
well distributed sets of vertices. For example, the vertices resulting from edge bisec-
tion (Fig.5.2(d)) are not optimally spread, i.e. the distance between the vertices is not
maximal. The vertices of the icosahedron which was used as base for this refinement
lie in a ‘hole’ of the new mesh, the surrounding new vertices have each four neighbors
but do not include the old vertices. The dodecahedron (Fig.5.2(c)) seems to have similar
‘holes’, but vertices in this refinement are overall well spread. This phenomenon needs
to be taken into account. The estimation based on an encoding scheme resulting from
bisection might be biased because of the inferior spread of directions even though it is
related to the generally well spread family of icosahedral encoding schemes.

(a) Regular
Icosahedron

(b) Triangulation (c) Dual Relationship (d) Edge Bisection

Figure 5.2: Examples for the refinement of the icosahedral mesh. The dots give the
position of the vertices of the refinement.

The icosahedral schemes in general are straight forward and easy to compute but they
also have a major disadvantage. They are restricted in Ne. They cannot produce an arbi-
trary number of encoding directions. This is a disadvantage when the encoding scheme
is supposed to minimize the number of encoding directions and thereby measurements.
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Figure 5.3: The points show the 126 encoding directions over the sphere that correspond
to half the vertices of a refined icosahedron.

The minimal number of encoding directions does not necessarily coincide with the Ne

of an icosahedral scheme. Also the quality of the approximation of an equidistribution
on the sphere with the icosahedral refinements is limited [23, 85]. This can be geomet-
rically explained for the triangulation with the observation that the spherical triangles,
resulting from the refinement, do not all cover equal areas [85]. This observation can be
transferred to the other refinements since they are all related to the icosahedral triangu-
lation. The vertices of the basic icosahedron, the basic dodecahedron and the bucky ball
(Icosa30; a certain truncated triangulation of the basic icosahedron) are equidistributed
over the sphere.

The GES whose directions are related to the regular icosahedron are referred to as
Icosa further on. An example GES with 126 directions is given in Fig.5.3.

5.2 Analytical Schemes
One drawback for the geometrical encoding schemes is that they are only able to generate
an arbitrary fixed number of encoding directions. To overcome this limitation and allow
a reduction of the encoding direction overhead analytical methods for the distribution of
an arbitrary number of directions were proposed.

Wong and Roos proposed to compute the components of the gradient vectors as fol-
lows [94]:

gz(d) =
1

Ne

(2d−Ne − 1) (5.2)

gx(d) = cos

( √
Neπ

sin(gz(d)

) √
1− gz(d)2

gy(d) =
√

1− gz(d)2 − gx(d)2.

Here, Ne is the total number of encoding directions and d is the index of the directions
(d = 1, 2, . . . , Ne). A large Ne is needed to get (reasonably) well distributed directions
(Ne � 6). For smaller Ne the encoding directions are not well spread. This method is
referred to as Ana1 in the results section. An example is given in Fig.5.4(a).
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(a) Ana1 (b) Ana2

Figure 5.4: The points illustrate the distribution of the 126 encoding directions over the
sphere as result of the analytical GES generation algorithms.

The second analytical method presented here was proposed by Staff and Kuijlaars [85]
and delivers a very good approximation of equidistribution for a chosen number of points
on the unit sphere. It was inspired by the geometry of the perfectly distributed bucky ball.

gx(d) = cos(φ(d)) ∗ sin(arccos(h(d)))

gy(d) = sin(φ(d)) ∗ sin(arccos(h(d)))

gz(d) = cos(arccos(h(d)))

h(d) = −1 + 2 ∗ d− 1

Ne − 1
(5.3)

φ(d) =

{
0 if d ∈ {1, Ne}
mod(φ(d− 1) + 3.6√

Ne∗(1−h(d)2)
, 2π) else ,

with Ne and d as defined before. This algorithm requires at least 10 directions to com-
pute a satisfactory spread set of points. The distribution is best for Ne larger 30. The
corresponding GES are named Ana2 later on. An example direction set is plotted in
Fig.5.4(b).

5.3 Numerically Optimized Encoding Schemes
An alternative to the previously discussed GES creation methods is the distribution of
Ne gradient directions on the unit sphere by numerical optimization according to a given
criterion. In the following, some of the more prominent examples known from literature
are presented.

5.3.1 Minimum Force Approach
The idea of the minimum force approach is to obtain a distribution of gradient directions
which maximizes their separation by minimizing the corresponding forces between them
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[42, 49]. To do so, each gradient direction is associated with two projected points on the
sphere (g and -g) as illustrated in Fig.5.5(a). An electrostatic force is assumed to exist
between all thus defined points on the sphere. This force is proportional to the distance
between the points, g. The total force for the whole GES is equal to the sum of the forces
between the individual points. This translates to the following optimization criterion:

ε =
2Ne∑
i=1

2Ne∑
j=1

1

‖g(i) − g(j)‖
. (5.4)

The algorithm stops rearranging the directions when the sum of the force between the
points (

∥∥g(i) − g(j)
∥∥)is minimal that means, the energy ε is maximized. The repulsion

between the points is illustrated in Fig.5.5(a). The point corresponding to the inverse
gradient direction is considered in the optimization process. Members of this encoding
scheme family are labeled ForcePairs(Ne) in the following. An example for a Force-
Pairs126 GES is shown in Fig.5.6(a).

(a) ForcePairs (b) ForceSingle

Figure 5.5: An example for the repulsion between the points on the sphere.

From mathematics a similar approach for the distribution of points on a sphere is
known [30]. This approach does not use pairs connected through the origin in the op-
timization but optimizes the position of the individual points with the criterion in (5.4).
The repulsion between the individual points is illustrated in Fig.5.5(b). The positions of
the inverse gradient directions are not considered during the optimization of the direc-
tions. The so generated GES are called ForceSingle(Ne) further on. An example GES
with 126 directions is plotted in Fig.5.6(b).

Both force-minimizing problems have multiple local minima. The optimization will
return a distribution that is close to the global minimum [30] but cannot guarantee to
return the actual global optimum. Approaches to find the global minimum have been
introduced but all of them are unable to guarantee to return the global minimum for an
arbitrary number of directions and are therefore disregarded in the following evaluations.
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5 Gradient Encoding Schemes

(a) ForcePairs (b) ForceSingle

Figure 5.6: An example for an force minimizing direction sets with 126 directions.

5.3.2 Minimal Condition Number Algorithm
A different approach minimizes the condition number of the estimation matrix B to gen-
erate an encoding scheme [84]. The condition number is an indicator for the quality of
an equation system which is solved numerically [88]. In the context of tensor estimation,
it is an upper boundary for the error propagation from the right hand side of estimation
equation system (5.1) to the tensor elements [84, 88].

The condition number can be easily computed from singular value decomposition of
the estimation matrix B = UΣVT with U a column orthogonal matrix, Σ a diagonal matrix
containing the singular values of B and V a square orthogonal matrix. The condition
number κ is equal to the relation between the maximal and minimal singular value [88]:

ε = κ(B) =
max(σ)

min(σ)
. (5.5)

The so optimized schemes are called ”Cond(Ne)” in the following evaluations. An ex-
ample GES with 126 directions is shown in Fig.5.7.

Figure 5.7: An example for a Cond GES with 126 directions.
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6 Determining The Quality Of
Encoding Schemes

To determine which encoding scheme to use in a DTI or HARDI measurement, one needs
to quantify its quality. The term ‘quality’ in this context means the ability to estimate a
given tensor accurately from noisy data. In this chapter, several quality measures known
from literature are presented. Some of these are evaluated for second or higher order
tensor models later on. New quality measures are also investigated and compared with
the established ones.

6.1 The Evaluated GES
For the condition number evaluation, the different gradient encoding schemes were eval-
uated for the single HOT model (section 4.3.3.1) up to order eight, which requires an
estimation matrix with rank 45. The HOT hierarchy (section 4.3.3.2) was evaluated up
to order six, requiring a rank of 49. These two maximal tensor orders were chosen be-
cause the number of independent tensor elements (rank) for both HOT models are close
to each other for better comparison. The signal accuracy evaluation did investigate both
HOT models for a maximal tensor order of four only.

The HOT hierarchy model could be successfully evaluated for only two different b-
factors. The quality indices with two b-factors were of the same order of magnitude as
the one for the ten b-factor estimation matrices used here. The actual condition number
depends on the choice of b-factors. Since the optimal choice of b-factors is not yet
defined, the b-factors used in this evaluation were computed according to (4.24) for δ
= 30 ms, ∆ = 40 ms and G increasing from 4 to 40 mT/m in ten equidistant steps (as
suggested by Liu et al in [57]). This results in a maximal b-factor of ∼3100 s/mm2

corresponding to the second order tensor.
The condition number does not change for the single HOT model when multiple b-

factors are used in the measurement. The condition number investigation of this tensor
model was therefore performed for one b-factor only to allow faster computation. For
the signal accuracy evaluation the same 10 b-factors used for the HOT hierarchy are used
for all evaluated tensor models.

The Icosa GES cannot generate an arbitrary number of directions, because they are
determined by the geometry of the regular icosahedron. The evaluation presented here
is focused on a range of directions that can be measured on standard scanners in a rea-
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6 Determining The Quality Of Encoding Schemes

sonable time span (less than an hour for one acquisition of a whole brain dataset with
common voxel size ∆x (∆x > 1mm3)). Schemes with Ne = 15, 16, 21, 30, 46, 81, 126
were selected for the investigation. The minimal Ne was chosen to be 15 because this is
the minimal required number of encoding directions for HOT evaluations (single HOT of
order four). In section 6.4 and 6.6 Ne = 6, 10 were included in the second order tensor
evaluation. All other GES were generated for these Ne to allow direct comparison.

No averaging was used since there is no reasonably small common multiple for the
evaluated Ne. Jones showed that an increase in Ne outperforms an increase in the number
of averages if the number of measurements is the same [47]. This question is therefore
not further investigated here. Instead, I concentrated on the direct comparison of different
GES creation methods for the same Ne.

The numerically optimized schemes vary with each optimization. I evaluated all nu-
merically optimized schemes 100 times, each time initialized with a new set of random
directions. The evaluation showed that the performance of each force-minimizing GES
was close to the mean over all evaluations (which is in accordance with, for example,
Staff and Kuijlaars [85]). Only one exemplary optimization for ForceSingle and Force-
Pairs was used for the evaluation of GES quality because the individual optimizations
are so very similar. The most variable GESs are Cond schemes. The representative GES
from this family was selected so that its behavior in the evaluation is close to the mean
over 100 optimizations.

All evaluations were performed with MATLAB 1) on standard PCs. The numerically
optimized schemes were evaluated with the code available from the internet2 or exten-
sions thereof. The code for the calculation of the regular, even order, icosahedral triangu-
lations was also taken from the internet 3. The computations for all presented numerical
optimization methods were terminated when the relative change between two succes-
sive optimization function values was less then 10−6, or the maximum of 106 function
evaluations or iterations was reached.

The Cond schemes were obtained by employing both, the standard second order esti-
mation matrix and the higher order B-matrices, in the optimization function. The result-
ing schemes have full rank for all tensor models evaluated here regardless of the matrix
used in the optimization as long as Ne is larger than the number of independent tensor el-
ements. I found that the condition number and its standard deviation have approximately
the same values for both approaches. The computation was considerably faster when the
second order tensor estimation matrix was used in the optimization, which is why this
matrix was employed for the generation of the Cond GES used here.

1Developed by the MathWorks, Inc.; MATLAB Version 7.1.0.246 (R14) Service Pack 3.
2Available on the homepage of Dr. Peter Batchelor, http://www.cs.ucl.ac.uk/staff/p.batchelor/dti-

directions/dti-directions/.
3MATLAB schript sphere-tri.m from www.koders.com.
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6.2 Known Indices

6.2 Known Indices
This chapter starts with the presentation of quality measures for the second order diffu-
sion tensor estimation known from literature. Different ways to quantify the quality of
an encoding scheme were proposed, some are based on the quantification of the error
propagation in the estimation process [42, 76, 84] and others on the quality of the spread
of the GES directions [52, 70].

6.2.1 Total Variance
An index ν to quantify the stability of the tensor estimation was proposed by Papadakis et
al [76]. ν is a scalar measure which is proportional to the total variance of the diffusion
tensor in an isotropic medium if all DWI were measured with the same b-factors. To
generate ν, the covariance matrix F of the inverse estimation matrix B−1 (F = B−1B−T )
needs to be computed, first. F describes the propagation of uncorrelated errors in the
estimation from the ADC vector Y (see (4.5)) to the elements of the diffusion tensor D.
A property of covariance matrices is that their diagonal elements give the variance of the
individual random variables. Here the investigated random variables are the rows B−1

which contain information on the gradient encoding directions. The total variance of the
tensor D is the sum the variance of its elements, that is the sum of the diagonal elements
of F. The index ν is then defined for the second order tensor as follows:

ν = tr(F) + F44 + F55 + F66. (6.1)

Note that F for the second order tensor model is a 6x6 matrix and the diagonal elements
give the variance of the 6 tensor elements of the 3x3 diffusion tensor. Because the off-
diagonal elements appear twice in the second order diffusion tensor, their corresponding
error terms (Fii , i ∈ 4, 5, 6) need to be added to the trace. The rotationally invariant
index measures the stability of the linear equation system (4.5) in the presence of noise.

The adaptation of this quality index would be a straight forward extension of (6.1) for
HOT estimation matrices. The original F was computed from the second order estima-
tion matrix which did not contain a b-factor (see (4.7), the gradient information can be
multiplied with b later). If the b-factor is incorporated in the estimation matrix, then the
index ν is dependent on the value of this b-factor. Since the estimation matrix for the
HOT hierarchy needs to contain more than one b-factor, this index will have problems
for inter-model comparison.

6.2.2 Relative Encoding Advantage Factor
The relative encoding advantage factor (REAF) criterion was developed by Hasan et al
as extension of the index presented in 6.2.1 to determine the estimation advantage in the
diffusion tensor calculations of a given GES over the Icosa scheme with six encoding
directions that correspond to the vertices of the regular icosahedron [42]. The Icosa6
scheme is the optimal GES with the minimal required 6 encoding directions (see for
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example [70]).

REAF(GES) =
6

Ne

∗ ν(Icosa6)

ν(GES)
, (6.2)

REAF relates the total variance (ν, see (6.1)) of a given encoding scheme to the total
variance of the Icosa scheme and multiplies the result with 6/Ne to account for the in-
crease in measurement time caused by the increase in directions. The higher the REAF,
the better the encoding scheme (GES) compared to the Icosa scheme with six directions
(Icosa6). This index is only applicable for the second order diffusion tensor estimation
since the Icosa scheme with six directions cannot be used directly for higher order tensor
estimation (see chapter 4).

The optimal schemes for the individual HOT models and tensor orders have not been
found, an extension of this index is therefore not trivial. Even if the optimal schemes
were known, the index values would not allow an inter-model comparison since the op-
timal reference schemes would be fixed and not necessarily the same for each model.
The reservations toward ν that were presented in section 6.2.1 extend to this extended
version.

6.2.3 The Condition Number Of The Estimation Matrix
The condition number, as defined in (5.5), was proposed as a criterion for encoding
scheme quality [84]. The lower the condition number, the lower the corresponding upper
boundary for the error propagation in the tensor estimation. Batchelor et al showed that
the condition number of GESs for the second order diffusion tensor estimation, which
are not related to the Icosa scheme, change when the direction set is rotated [10]. They
concluded that the rotationally invariant Icosa schemes would be suited best for the sec-
ond order tensor estimation because of their rotational invariance. In addition, the Icosa
schemes all have a condition number of

√
10/2 ≈ 1.5811, which corresponds to the opti-

mal theoretical scheme discussed in the introduction of this chapter [10]. The suitability
of the condition number as a GES quality measure was questioned previously (see for ex-
ample [46]). One problem is its rotational dependence. Another one is the interpretation
of the condition number as upper boundary, not smallest upper boundary. A low mean
condition number does not guarantee a well spread distribution of points on the sphere.
This can be seen, for example, in the plot of the Cond GES in Fig.5.7. To represent the
variability of the condition number, the GES that is to be evaluated is rotated and the
maximal, minimal and mean condition number over all rotations are considered in the
classification of the GES [10].

6.2.4 Guaranteed Anisotropic Sensitivity
A different idea is the classification of GES according to how well their encoding direc-
tions are spread out (see for example [52, 70]). This is done by taking a look at the angles
between the of gradient directions g. The guaranteed anisotropic sensitivity (GAS) is a
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possible measure for the angular distance [52],

GAS = min(VDP2
max − VDP2

min). (6.3)

VDP stands for the Vector Dot Product between an average vector and each gradient
direction in the scheme. The average vector is the average of a gradient vector and
its nearest neighbor. VDPmax indicates the largest angular distance between an arbitrary
direction in the scheme and the nearest neighbor for a given gradient vector. VDPmax will
decrease as the minimal angle between a chosen direction vector and the other directions
of the GES, θmin, increases, which is equivalent to a more regular distribution of gradient
directions. It was also suggested to use also the minimal VDP as a quality measure [52].

6.3 Total Variance Of The Second Order Tensor
Estimation

The total variance as defined in section 6.2.1 is evaluated for the second order tensor
model. All GES families presented in chapter 5 are evaluated with 46 encoding direc-
tions. The estimation matrix used in this evaluation does not contain any b-factor. The ro-

Icosa Ana2 ForceSingle ForcePairs Ana1 Cond
0.142 0.143 0.142 0.142 0.147 0.118

Table 6.1: ν is evaluated for different GES with Ne = 46.

tationally invariant results of the evaluation are shown in Tab.6.1. The condition number
minimizing GES is clearly favored by this classification method. The force-minimizing
GES and the Icosa scheme show similar results for this index. Ana2 performs similar to
these schemes whereas Ana1 has a slightly higher total variance.

6.4 Classification By Condition Number For Higher
Order Tensor Models

The condition number is a widely used criterion for the determination of GES quality
(see also 6.2.3). Opposed to other quality measures, it is directly applicable to all kinds
of tensor model estimations, since they all estimate their tensors by solving a linear
equation system and the condition number is a property of this system [88]. The degree
of rotational variability was used in addition to the mean condition number to determine
the quality of a GES because of the rotational variance of this index [10]. A scheme is
considered of good quality when the mean condition number is low and the variability
of the condition number ([maximal - minimal] condition number) is also low.

For each of the computed encoding schemes, the rotational variance was evaluated
by rotating the entire scheme around all three main axes individually and evaluating the
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6 Determining The Quality Of Encoding Schemes

condition number of the scheme’s estimation matrix for each rotation. The rotation angle
varied from 0 to π in steps of 0.001. The comparison of the GES is based on the minimal,
maximal and mean condition number.

The rotational variability of the individual GES is illustrated with error bars in the
following figures. The ends of the error bars give the minimal and maximal condition
number over all evaluations. The differences in rotational variance of the condition num-
ber for the encoding schemes which can be seen, for example, in Fig.6.2 illustrate that
the mean value of the condition number alone is not a good quality measure.

Second Order Tensor
Some of the here presented schemes were investigated with the condition number as
quality measure before (see for example [10, 52]). Here I present a more comprehensive
comparison of the condition number for second order tensor estimation matrices. Since
the focus in this work is on the higher order tensor models, the results for the second
order tensor are only briefly presented. In Fig.6.1 some basic observations can be made:
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Figure 6.1: The mean condition number evaluation results for the standard second order
tensor estimation. The bar for Ana1 with Ne = 15 was interrupted to allow the dis-
crimination of the small differences in the condition number for the better performing
GES.

1. The Ana1 GESs require a high Ne (Ne ≥ 46) to produce an acceptable condition
number.
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2. The mean condition number for the Cond GESs does not improve with increased
Ne. It is practically constant.

3. The ForceSingle GES performs similar to ForcePairs for Ne ≥ 30. For lower Ne

the ForcePairs GES performs better.

4. The mean condition numbers of the Icosa GESs and the force-minimizing ones lie
close together for all Ne ≥ 15. This is also true for ForcePairs for lower Ne (not
shown here, [10]).

5. The condition number for the Icosa GESs is constant (κ = 1.5811) for all Ne [10].

A more detailed view of the evaluation that also considers the variability of the condition
number, can be obtained from Fig.6.2. The Icosa GESs are rotationally invariant, their
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Figure 6.2: A more detailed look at the condition number evaluation results for the stan-
dard second order tensor estimation previously presented in Fig.6.1. The error bars in
this figure give the minimal and maximal condition number encountered in all evaluated
rotations. The length of these error bars gives the span of values for the corresponding
condition number. Here, the bars for the Ana1 evaluations with Ne = 15, 16, 21, and 30
are omitted to enhance the relatively small differences of the better performing GES.

condition number is constant. The variability of the condition number for the Cond GESs
is almost the same, independent of Ne, for all members of this family. For all other GES
a stabilization (reduced variability) is observable with an increase in Ne. A table with
all the condition values for the second order tensor estimation is given in the appendix in
Tab. A.1.
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Higher Order Tensor Models
Here, I present the results for the single HOT of order four and the HOT hierarchy with
maximal order four in detail. This is the tensor order that is required to resolve for ex-
ample fiber crossing inside heterogeneous voxels. Even higher order evaluations will
sharpen the described diffusion profile but voxels for which orders higher than four give
necessary additional information are sparse [55]. For the complete higher order evalua-
tion results see appendix A.

The Icosahedral GES For HOT Model Estimations

Batchelor et al recommend the use of the Icosa schemes whose condition number for
the estimation of the second order diffusion tensor is rotationally invariant [10]. In my
investigation on GES for HOT estimation the Icosa encoding schemes were found to be
in general sufficient for the evaluation of the single HOT model up to order eight (45
independent tensor elements) and the HOT hierarchy up to order six (49 independent
tensor elements) with at least two b-factors greater zero. Higher tensor orders were
not evaluated for this study. However, not all schemes of the Icosa family are fit for
the estimation of arbitrary higher order tensor models. The bucky-ball scheme with 30
encoding directions (Icosa30) could only estimate the single HOT model up to order 4,
which requires the encoding matrix to have a rank of 15. It did not reach the full rank of
28 needed to estimate the single HOT of order six.

Ne Ana1 Ana2 Cond Icosa ForceSingle ForcePairs
30 - 172,0 2192,2 - 28134,3 10,3
46 30,2 20,8 81,3 10,2 38,1 10,0
81 14,8 9,9 42,3 10,0 9,9 9,9

126 12,4 9,9 31,2 10,1 9,9 9,9

Table 6.2: The mean condition numbers for the GES evaluation of the single HOT model
of order 6.

The mean condition numbers for the estimation matrix of the single HOT model (order
six) is given in Tab.6.2. The analytical scheme Ana1 is also not able to generate a full-
rank estimation matrix for this tensor model with 30 directions. In fact, the condition
number for all GESs but the ForcePairs scheme are very high for Ne = 30, these GES
should therefore not be used. For Ne ≥ 46 the Icosa scheme returns reasonably low
mean condition numbers. If Ne ≥ 81, the mean condition number for all but the Cond
GES are acceptable but, overall, the ForcePairs GES performs best. The inability of the
Icosa GES with 30 directions to produce a full rank estimation matrix for an arbitrary
tensor order indicates that the spread of the gradient encoding directions is not the only
important GES quality factor. Otherwise, the (mathematically) perfectly equidistributed
Icosa scheme with 30 directions [23] should be optimal.

The rotational invariance of the condition number for Icosa encoding schemes [10,
42, 75, 81] cannot be confirmed for higher order tensor evaluations. In my experiments
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different stabilization behavior for differently constructed icosahedra could be observed.
This can be seen in Tab.6.3 and 6.4 where the mean condition number does not always
decrease with an increase in Ne. Here, the condition number results are given for the
Icosa GES for HOT hierarchy and single HOT of order four. The mean condition num-
ber as well as the minimal and maximal condition number over all rotations is given.
The observations are also illustrated in Fig.6.4 and 6.6. There is no guaranteed improve-
ment with increased Ne. For example, the variability of the condition number (error bar:
minimal and maximal condition number) for the estimation of higher order tensors with
‘Icosa30’ in Fig.6.4 is higher than the one for ‘Icosa21’. The same is true for ‘Icosa126’
in comparison with ‘Icosa81’ and for ‘Icosa16’ compared to ‘Icosa15’ in Fig.6.6. The
schemes, that are based on an even order regular subdivision (‘Icosa21’ and ‘Icosa81’)
of the regular icosahedron, evaluated here seem to stabilize better for both higher order
tensor models than other Icosa GES and therefore are preferable for higher order tensor
estimations.

Ne Icosa
max min mean

21 499044 484104 489747
30 503308 483747 492999
46 498680 484135 489616
81 490279 484850 486702

126 498055 484188 489392

Table 6.3: The condition number results for the Icosa GES evaluation the HOT hierarchy
of order four.

Ne Icosa
max min mean

15 5,36 4,09 4,95
16 7,44 6,19 6,86
21 3,85 3,80 3,82
30 3,88 3,82 3,84
46 3,85 3,80 3,82
81 3,80 3,76 3,77

126 3,85 3,79 3,81

Table 6.4: The condition number results for the Icosa GES evaluating the single HOT
model of order four.

Further investigations might clarify, whether the differences are systematic and de-
pendent on the construction rules for the individual schemes, which would result in the
classification of sub-families inside the group of Icosa schemes. The performance dif-
ferences between the different Icosa schemes for higher order tensor estimation might
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indicate systematic differences, which could also affect the second order tensor estima-
tion.

The Condition Number Evaluation For The HOT Hierarchy Model

Condition Number (HOT Hierarchy Order 4)
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Figure 6.3: The mean condition number over all evaluated rotations for the HOT hierar-
chy. The value for Cond21 is very high and interrupted in this graph to show the small
differences of the better performing GES more clearly.

The results for the HOT hierarchy in Fig.6.3 show that most GES approach a common
target condition number of approximately 486000. Only the mean condition number
of the Cond GES does not approach this optimum. In fact the mean condition number
for this GES does not converge with increasing Ne. This behavior is similar to the ob-
servations made in the standard second order tensor condition number evaluation (see
Fig.6.2). The Ana1 GES needs larger Ne (Ne ≥ 46) before the corresponding condition
numbers start approaching the target condition number. All other GES whose condition
numbers converge toward the target condition number outperform the Ana1 GES. It is
therefore rejected. The Ana2 GES shows a low mean condition number, especially for
Ne larger 30. The ForceSingle GES performs similar to the ForcePairs GES if the Ne is
at least twice the number of independent tensor elements (here 2*21=42). The Icosa and
ForcePairs GESs perform best in this evaluation. Their superiority is also observable in
the second order tensor evaluation in Fig.6.2. A more detailed look at the best perform-
ing GES is taken in Fig.6.4. The error-bars give the value span for the condition number
that was observed in the evaluation of the rotational dependence. As expected, the mean
condition number of the ForceSingle GES approaches the value for ForcePairs, when Ne

larger than twice the minimal required number of directions (Ne > 42 = 2 ∗ 21). The
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Figure 6.4: A more detailed comparison of the mean condition number for the HOT
hierarchy estimation with the best performing GES is given. In addition to the mean
condition number the span of values for the rotational dependent condition numbers is
given in the error-bars whose ends correspond to the minimal and maximal condition
number over all evaluated rotations. The Y-axis starts at 470000 and is interrupted at
555000 to enhance the differences between the GES.

mean condition number over all rotations for Ana2 is especially for Ne > 30 close to the
condition number of Icosa and ForcePairs but Ana2 is always more rotationally variant.
Even though the mean condition numbers for the Icosa and ForcePairs GES lie very close
together, the ones that correspond to ForcePairs are in general lower. The exact condi-
tion number values are given in Tab. A.6 - A.8, in the appendix. The rotational variance
for the ForcePairs GES is also considerably lower than for the Icosa GES. ForcePairs is
therefore preferable for the HOT hierarchy estimation.

Results From The Condition Number Evaluation For The Single HOT Model

Figure 6.5 shows the mean condition numbers for the single HOT evaluations. The ana-
lytical schemes are not able to generate a GES that can estimate the single HOT model
of order four with the minimal required Ne of 15. Ana1 can only be used if Ne > 16 and
is not recommended for Ne = 21 because of the relatively high condition number (see
Tab.A.4). For Ne < 30 for which the tensor estimation with the Ana2 GES would be pos-
sible the condition number is too high for this GES to be recommendable (see Tab.A.4).
These high condition numbers are not shown in Fig.6.5 so as not to mask small differ-
ences in the better performing GES. The Cond GES produces high condition numbers
for Ne < 46 (see Tab.A.4) which are therefore also omitted from Fig.6.5. Force single
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Figure 6.5: The mean rotationally dependent condition number for the single HOT model
estimation. The comparatively high condition numbers for Cond and Ana1 with Ne =
15 − 30 as well as ForceSingle, and Ana2 with Ne = 15 − 21 are omitted in this graph
to allow the distinction of relatively small differences in the better performing GES.

has a low condition number for Ne ≥ 30 (Tab.A.5) but a higher one for low Ne. The
results for lower Ne are therefore not shown in Fig.6.5. Only the Icosa and ForcePairs
schemes are able to produce estimation matrices with relatively low condition numbers
for Ne smaller than 30 (Tab.A.5). For Ne smaller than 21 the ForcePairs GES clearly
outperforms the Icosa GES (see also Fig.6.6). For Ne at least twice the minimal required
15 the ForceSingle GES performs similarly to the ForcePairs schemes. This corresponds
to the observations made for HOT hierarchy and second order tensor evaluations.

Summary And Discussion
All my condition number evaluations showed that both force-minimizing GESs have
similar performance if Ne is larger than twice the number of individual tensor elements.
The analytical GESs, especially Ana2, perform well for large Ne, even though they are
more dependent on the rotation of the GES. The condition number of the Cond GES does
in general neither converge to the target condition number nor stabilize with increasing
Ne. The condition number of the Icosa GES is rotationally variant for HOT evalua-
tions. The mean condition number and the variability of the condition number over all
evaluated rotations is lower for the ForcePairs GES than for the Icosa scheme for HOT
estimation matrices. For the second order tensor the Icosa GES performs slightly better
than ForcePairs. Overall, the best performing GES is the ForcePairs scheme.
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Figure 6.6: A more detailed comparison of the best performing GES for the single HOT
estimation is given. The bars corresponding to GES with relatively high condition num-
bers are omitted here to enhance the differences of the GES with lower condition number.
To improve the comparability the span of values for the rotationally dependent condition
numbers is given in the error-bars which indicate the minimal and maximal condition
number over all evaluated rotations.

The condition number can be applied to all estimation matrices but the results show
significant model-dependent differences hindering cross-tensor-model comparison. Only
relative changes can be used for cross-tensor-model evaluations. For a better classifica-
tion of GES a diffusion-model independent criterion would be desirable.

6.5 Spread Of Directions
The idea to use the distribution of the encoding direction as a measure for GES quality
was previously explored, for examples see section 6.2.4. Here, I investigate two distance
measures, the angle da between the directions g:

da = arccos(gT
i gj) (6.4)

and the electrostatic energy de between the projected points on the sphere,

de =
∑

i

∑
j

1

|gi − gj|
. (6.5)

Both distance measures are stored in Ne ×Ne distance maps for each GES.
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6 Determining The Quality Of Encoding Schemes

The assumption of symmetry of the DWI signal (S(g) = S(−g); see sections 3.3 and
3.4) make a consideration of the inverse encoding directions on determining the quality
of the distributions over the unit sphere necessary. The distance maps were, therefore
investigated for direction sets consisting of the original GESs and their inversions.

Clustering In The Gradient Directions
The complete set of directions for the investigated GES with Ne = 126 is given in
Fig.6.7. The original directions are given in blue and the inverted ones in red. The di-
rections of the Ana2 GES are well distributed over the unit sphere if only the directions
computed by the algorithm (and not their inversions) are taken into account. The points
are arranged in a spiral from pole to pole (see Fig.5.4(b)). When the inverse directions
(−g) are added to the computed ones (g), the points form two complementary spirals
(Fig.6.7(b)) which cross each other several times on their way from one pole to the other.
In these regions of crossing, the points are closer to each other than in other regions, they
cluster. These clusters obviously reduce the quality of the approximation of equidis-
tribution over the sphere. The other well distributed direction set without inversion is

(a) Icosa (b) Ana1 (c) Ana2

(d) Cond (e) ForceSingle (f) ForcePairs

Figure 6.7: The distribution of the diffusion encoding directions for the different GES
families with Ne = 126. The blue dots represent the original directions and the red ones
their inversion.

generated by the ForceSingle GES (Fig.6.7(e)). Since the inverse is not considered in the

66



6.5 Spread Of Directions

optimization of ForceSingle, the points and the corresponding inversions are arranged in
pairs (see Fig.6.8). The pairs draw closer to each other when Ne increases but they gener-
ally do not overlap. The Cond and Ana1 GES are not well distributed before the inverse
directions are considered. For the irregular distribution of the Cond GES the overall dis-
tribution does not improve when the inverse directions are taken into account but usually
even more clusters are created with the inverse directions (Fig.6.7(d)). The directions
of the Ana1 GES (Fig.6.7(b)) are distributed over a hemisphere, the consideration of the
inverse directions, therefore, does not change the relative amount of clustering. The clus-
tering in each hemisphere is equal for Ana1 and the number of points close to the border
between the hemispheres is comparably low the amount of additional clustering in these
regions is, therefore, also low. The only schemes that have no problem whatsoever with
clusters or pairs when the inverse encoding directions are taken into consideration are the
ForcePairs (Fig.6.7(f)) and the Icosa GES (Fig.6.7(a)) that arrange their directions under
consideration of their inversions.

(a) Ne = 121 (b) Ne = 6400

Figure 6.8: The clustering pairs in the ForceSingle GES (gradient directions (in blue)
and their inversions (in red)). The direction sets were taken from the homepage of Robert
Womersley (http://web.maths.unsw.edu.au/˜rsw/sphere/).

Results From The Angle Investigation
In the angle maps it can be observed that all GESs cover the same interval in the angle
histograms in Fig.6.9. The angles are restricted to π/2, this means angles between the
gradient directions greater π/2 are identified with the corresponding lower angle of their
inversion.

Of the evaluated schemes with Ne = 81 the ForcePairs GES is the one with the most
regular angular distribution. The number of point pairs increase linearly with the angle
between them for this GES. This indicates that the distribution of the directions is also
very regular. The Icosa GES has the highest number of direction pairs with an angle
of approximately π/2, closely followed by the ForcePairs GES. The Icosa GES has in
comparison with ForcePairs two jumps in its histogram. The first is between the first
and second angle interval and the second between the last two intervals. These jumps
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(a) Icosa (b) Cond

(c) Ana1 (d) Ana2

(e) ForceSingle (f) ForcePairs

Figure 6.9: The histogram of the angular distribution for GESs with Ne = 81 for each
creation method.
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allow for the Icosa scheme to have less direction pairs with small angles and more with
large angles between them in comparison with the regular ForcePairs distribution. The
Cond GES has in comparison with the other GES a large number of pairs with a small
angles between them, similar to ForcePairs. In contrast ForceSingle, Ana2 and Ana1
have a comparably low number of direction pairs with small angles. These schemes have
similar to the Icosa GES a jump between the first two histogram intervals but the second
jump from the Icosa histogram is missing for these schemes. The two histogram intervals
corresponding to higher angles (da > π/2) for the ForceSingle and Cond GES contain
approximately the same number of point pairs. For the analytical GES the difference in
these intervals is also relatively small.

More pairs with a small angle between them might indicate clustering as described in
section 6.5 but there is no obvious clustering for ForcePairs (see Fig.6.7). Instead the
lower number of large angles between the directions and a high number of point pairs
in the center angle interval around π/4 seems to correspond to the clusters observed in
section 6.5. Further distinctions between the GES are not possible with the histogram
information. It is, for example, not possible to determine which analytical GES is su-
perior. The ForcePairs and Icosa GES have the largest number of direction pairs with
large angles and are therefore, under the assumption that this indicates a low amount of
clustering, the best performing GES in this investigation. The Icosa GES has more pairs
with large angles and less pairs with small angles. This indicates that this scheme is
preferable over the ForcePairs.

A problem with using the angle as classification criterion is that equal angular dis-
tribution does not translate into equal distributions of the points on the sphere due to
the curvature of the surface. The value of a classification criterion based on the angle
between the directions is therefore not clear.

Results From The Electrostatic Energy Investigation
The differences in the electrostatic energy are more prominent (illustrated in Fig.6.10 for
Ne = 81). Clustering in the directions causes the energy in the individual GES directions
to be stronger.

The clusters in the other GESs cause increased energy between the clustered direc-
tions. The differences between GESs with and without clusters in the energy-histogram
are manifested mainly in a small number of high energy points as can be seen in Fig.6.10.
The Cond scheme has in comparison with the Ana2 results a low maximal energy value

Icosa Cond Ana1 Ana2 ForceSingle ForcePairs
0 392 324 192 204 0

Table 6.5: Number of point pairs with an energy value greater four.

but the number of clustering direction pairs (de > 4) in this GES is the highest in this
investigation (see Tab.6.5). The Ana2 GES has the most extreme clusters, producing
the largest energy values but the number of clustering points is the lowest one from all
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(a) Icosa (b) Cond

(c) Ana1 (d) Ana2

(e) ForceSingle (f) ForcePairs

Figure 6.10: The electrostatic energy histograms for the GES directions and their inver-
sions.
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(a) Icosa (b) Cond

(c) Ana1 (d) Ana2

(e) ForceSingle (f) ForcePairs

Figure 6.11: Details from the electrostatic energy histograms in Fig.6.10 for the GES
directions and their inversions.
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clustering GES. The maximal energy value in the Ana1 GES is the lowest one for a
clustering GES but the number of clustering points is high in comparison. ForceSingle
produces in comparison with the other clustering GES a low number of clustering pairs
and a medium maximal energy value.

As first classification criterion I propose the number of clusters. The higher this value
the worse the GES. Second is the maximal energy value which should be low. The first
criterion clearly disqualifies the Cond GES and possibly also the Ana1 scheme. Ana1
has the lowest maximal energy value of clustering GES in this evaluation and is therefore
prefered according to the second proposed criterion. It is not immediately clear if a low
maximal energy value outweighs a larger number of clusters. This also complicates the
classification of the Ana2 and ForceSingle GES because both schemes produce a similar
number of clusters (slightly more for ForceSingle) but the maximal energy values for
these GES are very different (far higher for Ana2). It needs to be determined if a high
maximal energy value outweighs a lower number of clusters to determine, which of these
two GES is favorable over the other.

The comparison of the regions in the histograms corresponding to the energy-interval
[0, 4] are very similar for all GES as shown in Fig.6.11. No further classification of the
clustering GES is possible from this detailed view.

There are only two types of GES without clusters, the Icosa GESs and the ForcePairs
schemes. Both have very similar energy histograms that are restricted to the interval
[0, 4] (see Fig.6.10 and 6.12). This shows the relation of both GESs. For six encoding di-
rections, for example, the ForcePairs scheme will approximate the vertices of the regular
icosahedron [10]. A distinction in the quality between these two GES from the energy
histograms is not possible with this criterion. This is illustrated on the direct comparison
of these GES in Fig.6.12. The ForcePairs GES has slightly more direction pairs with
low energy [0,0.5] than the Icosa scheme but also slightly more in a higher energy value
interval [3.5]. It is not clear which of these aspects weighs stronger and therefore also
not clear which GES should be preferred.

For some of the GESs with clusters, such as the analytical schemes and the ForceSingle
GES, the spread of the clusters improves with an increase in Ne. The spread of the cluster
pairs reduces the number of high energy points in relation to the low energy parts. For
the GESs without clusters (icosa and ForcePairs), the relative distribution of the energy
values does not change with an increase in encoding directions.

From these results I conclude that the preferable GESs are the Icosa and ForcePairs
schemes since they are well distributed and unaffected by the inverse directions. The
other schemes all have high energy clusters when the inverse directions are considered
in the evaluations.

Summary And Discussion
If the inverse of the gradient encoding directions are taken into account the points on a
sphere that are associated with these directions might form clusters. These clusters dis-
turb the equidistribution of the points over the surface of a sphere. The directions Ana1
and Cond show clusters even without the consideration of the inverse directions. The
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Figure 6.12: The energy histograms of the best performing GESs are directly compared.

directions of the ForceSingle and Ana2 GES cluster with their inversions. The Force-
Pairs and Icosa GES are unaffected by clusters because their directions are distributed to
approximate an equidistribution over the sphere with their inversions.

The investigation of the angle histogram indicates that the angle could be used to
determine clustering in the GES. The Icosa GES is considered best in this investigation
followed closely by the ForcePairs GES. The value of quality criteria that are based
on the angular distribution of the directions is not clear because equal angular distance
cannot be directly translated into equal distance of the points on the surface of a sphere.

My evaluation of the electrostatic energy between the points of the different GES
clearly favors the ForcePairs and the Icosa GES over all others. The ForceSingle and
Cond GESs produce similar histograms. No clear preference can be given to either one
of these two schemes because it is not clear if a larger number of low energy values
outweighs the considerably larger absolute energy value for a small number of points.
The two analytical GES show comparable performance but the Ana2 scheme performs a
little better in comparison.

The energy evaluation clearly shows more differences for the individual types of GES
than the investigation of the angle between the direction pairs. This distance measure
is therefor preferred over the angular distance. Even though they both favor the same
GESs.
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6 Determining The Quality Of Encoding Schemes

6.6 Classification By Diffusion Index Estimation Quality
Jones suggested to evaluate an encoding scheme by simulating DTI measurements and
assessing the accuracy of diffusion measures derived from the second order tensor esti-
mated from the simulated results [47]. Significant differences in the tensor estimation
quality, depending on the orientation of the fiber bundle in the simulation, were discov-
ered. Following the example of Jones I investigated the tensor estimation quality for a
larger number of GES by comparison of the noise free tensor with the estimation result
from a noisy simulated measurement. The standard deviation of tensor derived diffusion
indices such as FA, trace or the principal diffusion direction could be used to determine
the estimation quality. Here, I concentrated on the accuracy of the FA computed from the
estimated second order tensor as defined in (4.12). This value is of special interest for
diagnostic purposes for example in stroke treatment as well as critical for fiber tracking
since it is commonly used as tract termination criterion.

For this evaluation I simulated the data by estimating the signal Ŝ from a given input
tensor Dinput, unweighted signal S0 and b-factor:

Ŝ = S0exp(−BDinput) (6.6)

This kind of simulation is often used in literature (see for example [53, 47]). Here,
two exemplary tensors, one cigar shaped with eigenvalues of 0.0020, 0.0002 and 0.0002
(see Fig.6.13(a)) and one oblate with eigenvalues of 0.0020, 0.0020 and 0.0002 (see
Fig.6.13(c)) tensor, were used as input. The elements of the tensors used are given in the
appendix C.1. Since the isotropic tensor (ball shaped) has no directionality, the quality
of the corresponding estimation does not depend on the orientation of the tensor relative
to the GES directions. This case is therefore not considered in the following evaluations.

(a) Cigar (YZ) (b) Cigar (XZ) (c) Oblate (YZ) (d) Oblate (XZ)

Figure 6.13: The two input tensor used in the simulation (each viewed in YZ and XZ
plane).

To determine the orientation dependent estimation quality the input tensors are rotated
in the reference frame. The azimuth angle for the rotation θ ranges from 0 to 2π and the
zenith angle φ from 0 to π. Both angles are increased in steps of 0.1rad. For each of those
2016 rotations the signal was estimated for the different gradient encoding directions in
the individual GES with (6.6). A b-factor of 1000 s/mm2 was used. Random noise
(Noiseσ) with a mean of zero and standard deviation σnoise is added to this ideal, noise
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6.6 Classification By Diffusion Index Estimation Quality

free signal,
σnoise = S0/SNR. (6.7)

If no noise is added to the signal, all GES reconstruct the input tensor perfectly. The
aim of this investigation is the evaluation of the noise sensitivity of the tensor estimation
depending on the GES used in the signal acquisition, adding noise is therefor necessary.
The noise is added according to the following equation (Rician Noise):

Ŝnoisy =
√

(Re(S) + Noiseσ)2 + (Im(S) + Noiseσ)2. (6.8)

The signal S is considered complex because the concept of a rotating reference frame
as introduced in section 2.1 is transferred to the signal S. To remove the oscillations at
the Larmor frequency ω0 from the signal, that is to transform the signal into the rotating
reference frame, the signal needs to be demodulated with ω0 which results in a split of
the actually measured signal into two parts of a complex signal.

The demodulation corresponds to a multiplication of the signal with a sinu-
soid or cosinusoid with a frequency at or near ω0 (section 7.3.3 in [36]).

The real part is the signal demodulated with the cosinusoid with frequency ω0 and the
signal in the imaginary part is demodulated with the corresponding sinusoid. The imag-
inary part of the complex signal Ŝ contains no significant information for the standard
second order tensor and can therefore be assumed to be zero for this case:

Ŝnoisy =

√
(Re(S) + Noiseσ)2 + Noise2

σ. (6.9)

The noise in both parts of the signal is independent but has the same standard deviation
and mean.

The measurements were simulated for several SNR levels (SNR = 5, 10, 15, 20, 25,
30) which are considered typical for DTI acquisitions [47, 53]. To enable a more ac-
curate comparison, the same noise pattern was added to the simulated measurements
for the individual GES. 100 repeated measurements with individual noise patterns were
simulated for each set of directions and the average FA over 100 repetitions and 2016
rotations of the input tensor was compared. For the individual repetitions, the standard
deviation of the FA over all rotations was evaluated. The mean of this value and the span
between the maximal and minimal standard deviation over 100 repetitions was also used
for a comparison. Even if the mean FA value suggests a good estimation, one can not
put a lot of trust in the result if the corresponding standard deviation is large for a certain
GES. The GESs were evaluated for Ne = 6, 10, 15, 16, 21, 30, 46, 81, 126.

Results Of The FA Reconstruction Accuracy
For comparison, the ‘ground truth’ was defined to be the noise free tensor from which
the simulated signal was computed. The behavior of the different GES were similar for
the different SNR levels. The FA values computed from the estimated tensors approach
the ground truth with increasing SNR but the relative improvement in the estimation
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results depending on the number of encoding directions used in the GES was similar
independent of the applied noise. The results are therefore exemplarily illustrated on the
evaluation for a SNR of 15 in Fig.6.14 and 6.15.

The analytical methods and the ForceSingle scheme were only able to produce GESs
for a higher number of encoding directions (Ne � 6). The schemes with six encoding
directions produced by these algorithms resulted in very nearly singular estimation ma-
trices, which is why they should not be used with such low Ne. In this study the two
analytical and the ForceSingle GESs are evaluated for Ne ≥ 10.

The evaluated mean FA for the Cond GES does not converge toward the ‘ground truth’
value with increasing Ne. Directions are added to this GES in an (almost) random fash-
ion. Therefore, the estimation quality does not improve systematically.

All GES but the Cond scheme will converge toward a common mean FA value with
increasing Ne (see Fig.6.14 and 6.15). This target value is lower than the ‘ground truth’.
This phenomenon can be explained by the added noise. When there is a clear domi-
nance of one eigenvalue (cigar-shaped tensor), very few of the GES directions will show
diffusion. For the directions that do not correspond to the dominant diffusion direction
(direction of the eigenvector that corresponds to the dominant eigenvalue) no change due
to diffusion can be detected. Added noise is very likely to increase the detected change
in these directions. This will reduce the dominance of the change caused by actual dif-
fusion and thereby the FA. The same is true for two dominating eigenvalues, especially
when they strongly dominate the third.

The Icosa, Ana2 and both force-minimizing GESs estimate the tensors quite accu-
rately. Surprisingly, no clear advantage of the far better distributed ForcePairs or Icosa
GES over the other well performing GESs is observable for Ne ≥ 10 in my evaluation.
This indicates that the equidistribution of the directions and their inverse over the sphere
is not as important as previously assumed (see for example [47, 49, 76, 84]). This is
especially true for a larger number of encoding directions (Ne � 21). There is not much
improvement in the second order tensor estimation quality for the well performing GESs
when the number of encoding directions exceeds 21. This result is similar to the results
from Jones for the ForcePairs GES [47]. I showed that this is also true for less optimally
organized schemes. In Tab.6.6 and 6.7 the results for different GESs with 30 encoding
directions are shown. The difference between the Icosa, Ana2 and force-minimizing
GESs is only slight. The standard deviation will be further reduced with an increase of
encoding directions but the improvement in the FA values is minimal.

The standard deviation of the FA value over all evaluated rotations of the Cond GES
is as unpredictable as the corresponding FA (Fig.6.14 and 6.15). The convergence of the
mean FA value to the ‘ground truth’ starts for the Ana1 GES only for Ne ≥ 15 as illus-
trated in Fig.6.14 and 6.15. The corresponding standard deviation first increases before
it starts decreasing with the other well performing GES for Ne ≥ 16. This behavior was
to be expected since the Ana1 GES is meant for large Ne. The standard deviation of the
FA is below 0.04 for Ne ≥ 21 for the Icosa, Ana2 and force-minimizing GESs. Ana1
is comparable to these GES if Ne ≥ 46. The standard deviation of the ForceSingle and
ForcePairs GESs is very similar for all Ne that allow an evaluation with the ForceSingle
GESs (Ne � 6). This indicates that the advantage of more directions does not directly
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(a) Evaluation of the mean FA values.

(b) The mean standard deviation of the FA evaluation.

Figure 6.14: The evaluation results for a tensor with one dominating eigenvalue (cigar-
shaped tensor). The analytical and ForceSingle GESs require larger Ne, and can there-
fore not be used for the estimation with Ne = 6.
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(a) Evaluation of the mean FA values.

(b) The mean standard deviation of the FA evaluation.

Figure 6.15: The evaluation results for a tensor with two equally large eigenvalues
(oblate tensor). The analytical and ForceSingle GES cannot be used to estimate the
second order tensor with Ne = 6.
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translate to better sampling of the unit sphere since the sampling of the sphere with
ForceSingle for Ne is similar to the sampling with ForcePairs with Ne/2.

GES min(FA) mean(FA) max(FA) std(FA)
Icosa 0.8618 0.8684 0.8763 0.0273
Ana2 0.8605 0.8695 0.8748 0.0279

ForceSingle 0.8620 0.8651 0.8747 0.0273
ForcePairs 0.8602 0.8683 0.8759 0.0260

Table 6.6: The tensor estimation results for a cigar shaped tensor for the best performing
GESs with Ne = 30.

GES min(FA) mean(FA) max(FA) std(FA)
Icosa 0.612 0.619 0.629 0.030
Ana2 0.611 0.621 0.627 0.029

ForceSingle 0.610 0.617 0.625 0.028
ForcePairs 0.611 0.620 0.627 0.028

Table 6.7: The tensor estimation results for an oblate shaped tensor for the best perform-
ing GESs with Ne = 30.

Summary
The Cond GES was found to be ill suited for the second order tensor estimation. Opposed
to the other evaluated GES, the results of the Cond evaluation do not converge toward
a common FA value. The analytical schemes and the ForceSingle GES require a larger
number of encoding directions (Ne ≥ 10) for the second order tensor evaluation. Ana1
is only comparable in quality to the other GESs if Ne ≥ 46. The Icosa, Ana2 and
both force-minimizing GESs did result in a good quality FA estimation and were equally
suited for the second order tensor evaluation with Ne ≥ 21. There was no obvious
advantage of the ForcePairs and Icosa GES over the less well distributed direction sets,
which indicates that equidistribution is not the most important quality for a GES.

6.7 Evaluation Of The Signal Representation
Until now no meaningful scalar value similar to FA could be defined for the HOT hier-
archy model. Liu et al attempted to define such an diffusion index [Liu07] but could not
yet define an index with a clear physical meaning. Without a scalar diffusion index for
the HOT hierarchy the classification by diffusion index estimation quality that was per-
formed in section 6.6 for the second order tensor model cannot be directly extended to
higher order models. For the single HOT model a diffusion index similar to the FA exists
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[74], but the possible extension of the evaluation from section 6.6 was not investigated
here.

A new classification method is proposed that determines the accuracy of the signal
representation to quantify the quality of the GES. In this method the estimated signal
is used for the comparison instead of a scalar diffusion index. As input the tensors of a
HOT hierarchy for a voxel with two orthogonally crossing fibers was chosen. This tensor
was estimated from simulated data [57]. The tensor elements are given in C.2. A voxel
with orthogonal crossing fibers was chosen for this evaluation because both HOT models
should be able to reconstruct such a fiber constellation. Without noise, the input tensor is
perfectly reconstructed with the HOT hierarchy model (deviation smaller 1e−13 for both
even order tensors and smaller 1e−7 for the tensor of order three).

The input tensors were used to estimate the ‘ground truth’ signal Ŝ for a given set
of directions. The signal is estimated with (6.6). The estimation of the ‘ground truth’
signal is necessary to be able to evaluate different tensor models. Here, single HOT, HOT
hierarchy and the standard second order tensor model are estimated.

To determine the quality of the tensor representation, the signal, corresponding to
the estimated tensor, ŜR is estimated similar to the ‘ground truth’ signal in (6.6). The
estimated signal from the individual tensor models is compared to the ‘ground truth’
signal (|ŜR − Ŝ|). The results will show the accuracy of the signal representation of the
chosen tensor model and the difference in accuracy of the representation depending on
the chosen GES.

To investigate the rotational dependence of the signal representation, the original HOT
hierarchy input tensors were rotated in 3D space, before estimating the ground truth
signal. A total of 512 rotations were evaluated. The azimuth angle for the rotation θ
ranges from 0 to 2π and the zenith angle φ from 0 to π. Both angles are increased in
steps of 0.2rad.

All tensor models were estimated from data with 10 b-factors ranging for the second
order case from 31s/mm2 to 3092s/mm2 (as described in section 6.1). The additional
b-factors will not contain much new information for the second order tensor and single
HOT model estimation but will stabilize the results similarly to averaging of measure-
ments with the same b-factor. The data set with ten b-factors is used in all evaluations
for a better comparability of the results.

The following plots show the mean signal deviation (mean error ε̄) over all signals
normalized with the unweighted signal S0 for each rotation as defined by

ε̄ =
1

s

s∑
i=1

|Ŝi
R − Ŝi|
S0

. (6.10)

Here, s is the number of acquired signals for each rotation and Ŝi and Ŝi
R are the ‘ground

truth’ signal and the estimated signal for the acquisition i for a given rotation of the GES.
The mean error over all directions ε̄ is evaluated for each rotation to investigate the

dependence of the accuracy of the signal representation on the tensor orientation relative
to the GES directions. The corresponding standard deviation is used to evaluate the
variability of the signal representation in the encoding directions for each rotation. A
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GES is considered to be of good quality if the signal accuracy is high (low mean error)
and the variation in the signal accuracy is low. The second criterion outweighs the first
one because a known error is easier to handle if it is approximately constant.

Noise-Free Evaluation
At first, the accuracy of the signal representation was investigated without noise. The
findings are illustrated on the evaluations of a voxel containing two orthogonal crossing
fibers for Ne = 21.

(a) Mean Deviation: Second Order Tensor (b) Std Deviation: Second Order Tensor

Figure 6.16: The evaluation of the accuracy of the signal representation of the second
order tensor with 21 directions.

(a) Mean Deviation: HOT Hierarchy (b) Std Deviation: HOT Hierarchy

Figure 6.17: The evaluation of the accuracy of the signal representation of the HOT
hierarchy model with 21 directions.
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(a) Mean Deviation: Single HOT (b) Std Deviation: Single HOT

Figure 6.18: The evaluation of the accuracy of the signal representation of the single
HOT model with 21 directions.

The differences in signal accuracy for the individual GES in an evaluation without
noise can be explained as directional bias in the GESs. A GES prefers orientations on
the sphere that are more closely sampled over others. This non-uniform sampling will
cause the signal in higher sampled regions to have more effect in the tensor estimation
than the signal in lower sampled ones. The tensor representation is therefore biased. This
bias will also show in the signal estimated from the tensor representation ŜR thereby
affecting the evaluated signal accuracy. The directional bias is dependent on the spread
of the directions and is more clearly observable without noise. In noisy data the mean
error not only describes the directional bias but also the noise dependency of the signal
accuracy.

GES Single HOT Second Order Tensor HOT Hierarchy
Icosa 0.0185 0.0162 0.0003

ForceSingle 0.0191 0.0168 0.0003
ForcePairs 0.0185 0.0162 0.0003

Cond 0.1610 0.0692 0.0020
Ana2 0.0207 0.0178 0.0003
Ana1 0.0226 0.0186 0.0003

Table 6.8: Maximum of the ε̄ over all rotations.

The evaluations show that the signal accuracy is best for the HOT hierarchy (maximal
ε̄ is 0.002), followed by the second order tensor model (maximal ε̄ is 0.07) and the single
HOT model (maximal ε̄ is 0.2). A complete comparison of the maximal ε̄ over all rota-
tions is given in Tab.6.8 for all evaluated GES (with Ne = 21) and tensor models. The
GES with the largest maximal ε̄ over all rotations is always the Cond GES. The Icosa and
Force GES produce the smallest maximal ε̄ for all tensor models. For the HOT hierarchy
all GES but the Cond scheme produce an equally low ε̄.
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GES Single HOT Second Order Tensor HOT Hierarchy
mean std mean std mean std

Icosa 0.0185 0.0000 0.0161 0.0001 2.68E-4 0.15E-4
ForcESinglE 0.0184 0.0002 0.0159 0.0003 2.75E-4 0.31E-4

ForcEPairs 0.0185 0.0000 0.0161 0.0001 2.65E-4 0.14E-4
Cond 0.0962 0.0097 0.0185 0.0063 3.23E-4 1.84E-4
Ana2 0.0192 0.0011 0.0165 0.0008 2.61E-4 0.23E-4
Ana1 0.0185 0.0012 0.0159 0.0010 2.67E-4 0.32E-4

Table 6.9: Mean and standard deviation of the ε̄ over all rotations.

The results of this signal accuracy evaluation are shown in Tab.6.9 and in Fig.6.16-
6.18. The results for the HOT hierarchy are very accurate. There is, therefore, not much
difference in the mean of ε̄ over all rotations for the individual GES because ε̄ for this
tensor model is in general very low as shown in Tab.6.8 and Fig.6.17. The mean of ε̄ over
all rotations in Tab.6.9 is highest for the Cond GES which also has the highest standard
deviation of ε̄ and is therefore the most rotational variant scheme for this tensor model.
The mean of ε̄ over all rotations is very similar for all other GES but the corresponding
standard deviation clearly favors the Icosa and ForcePairs schemes.

For the single HOT evaluation the contrast between the Cond GES with a large di-
rectional bias and the other GESs is more prominent in Tab.6.9. The Ana2 scheme has
the second largest mean ε̄ over all rotations and gradient directions. The corresponding
standard deviation of ε̄ is not low in comparison with, for example, the corresponding
standard deviation for the Icosa scheme or the force-minimizing GESs. The Ana2 GES
is, therefore, also more rotationally variant than other schemes. The mean ε̄ for the Icosa,
ForcePairs and Ana1 GESs are the same in this evaluation. The higher standard deviation
of ε̄ shows the higher rotational variability of the Ana1 scheme in comparison with Icosa
and ForcePairs. The mean ε̄ for the ForceSingle evaluation is slightly lower than the ones
for the Icosa and ForcePairs GESs. The higher standard deviation of ε̄ for the ForceSingle
evaluation shows that the Icosa and ForcePairs GES are less rotationally variable. The
Icosa and ForcePairs GES are therefore preferable because the lower standard deviation
of ε̄ outweighs the slightly higher mean ε̄ over all rotations.

The evaluation of the second order tensor model allows conclusions similar to the
ones from the investigation of the single HOT investigation. The contrast between the
rotationally more variant GES and the less variant ones is prominent in the plot of the
results of the second order tensor evaluation (Fig.6.16).

The difference between the well suitable GES and stronger rotationally dependent
schemes is reduced if a larger number of encoding directions is used because all GES
show less variability with an increased number of encoding directions. This is illustrated
in Fig.6.19 on the example of a crossing voxel evaluated with the ForcePairs GES. As
expected, the variability of the signal representation decreases with an increase in the
number of encoding directions for all evaluated tensor models. The signal accuracy
is less dependent on the orientation of the fibers relative to the GES directions with
improved sampling of the sphere by the GES (more directions). The mean ε̄ over all
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(a) Mean Deviation: Second Order (b) Mean Deviation: HOT Hierarchy

(c) Mean Deviation: Single HOT

Figure 6.19: The signal accuracy for ForcePairs GESs with increasing Ne.

rotations is approximately constant, independent of the number of encoding directions.
To explain the difference in the signal accuracy, the ADC glyph for the corresponding

noise free estimated signals is investigated (see Fig.6.20). The glyphs of the second order
tensor model (Fig.6.20(b)) is a disc which is dented in its center (an extension of the
peanut shape for a single fiber voxel). The glyph for the HOT hierarchy (Fig.6.20(c)) is,
similar to the ADC glyph of the input signal (Fig.6.20(a)), more square than the one for
the second order tensor. The glyph for the single HOT model (Fig.6.20(d)) is also square
but indented at the sides which pronounces the corners of the glyph. This glyph is also
smaller than the ADC glyph corresponding to the input signal. The ADC glyph derived
from the second order tensor is larger than the input glyph because it is not square but
round. The diagonal that corresponds to the diagonal of the square ADC glyph derived
from the input signal is similar in the second order ADC glyph.
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(a) ADC Input (XY) (b) ADC Second Order Tensor
(XY)

(c) ADC HOT Hierarchy (XY) (d) ADC Single HOT (XY)

Figure 6.20: The ADC glyph corresponding to the different tensor model derived signals
for Icosa81 without noise in XY-plane.

Evaluation With SNR 20
In the second evaluation, Gaussian noise was added to both parts of the complex ‘ground
truth’ signal as shown in (6.8). The resulting SNR for the unweighted signal was 20.
The mean error and the corresponding standard deviation are shown in Fig.6.21-6.23.
The difference in rotational dependence for the individual GES is not as prominent in the
evaluation with noise. Noise will distort the reconstructed signal and therefore blur the
small differences between the individual GES. This blurring is especially prominent for
the HOT hierarchy evaluation for which all GES except the Cond scheme did perform
very good in the evaluation without noise.

The results in Tab.6.10 show that the HOT hierarchy is able to represent the input
signal even in noisy data with more accuracy than the other tensor models (maximal
ε̄ is 0.05). The difference between the maximal ε̄ for the individual tensor models is
considerably reduced. The maximal ε̄ for all tensor models are again results from the
Cond GES evaluation.

The largest mean ε̄ for all tensor models is also result of the investigation of the Cond
GES. This largest mean ε̄ value corresponds to the largest standard deviation of ε̄, similar
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GES Single HOT Second Order Tensor HOT Hierarchy
Icosa 0.062 0.053 0.048

ForceSingle 0.063 0.058 0.045
ForcePairs 0.062 0.052 0.048

Cond 0.196 0.104 0.054
Ana2 0.064 0.053 0.048
Ana1 0.066 0.053 0.043

Table 6.10: Maximum of the mean error over all rotations on noisy data.

(a) Mean Deviation: Single HOT (b) Std Deviation: Single HOT

Figure 6.21: The evaluation of the accuracy of the signal representation of the single
HOT model with 21 directions and SNR 20.

(a) Mean Deviation: Second Order (b) Std Deviation: Second Order

Figure 6.22: The evaluation of the accuracy of the signal representation of the second
order tensor with 21 directions and SNR 20.
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(a) Mean Deviation: HOT Hierarchy (b) Std Deviation: HOT Hierarchy

Figure 6.23: The evaluation of the accuracy of the signal representation of the HOT
hierarchy model with 21 directions and SNR 20.

GES Single HOT Second Order Tensor HOT Hierarchy
mean std mean std mean std

Icosa 0.062 0.0000 0.049 0.002 0.042 0.0018
ForceSingle 0.062 0.0002 0.051 0.002 0.040 0.0017

ForcePairs 0.062 0.0000 0.047 0.003 0.043 0.0017
Cond 0.135 0.0085 0.055 0.006 0.045 0.0022
Ana2 0.062 0.0010 0.048 0.002 0.042 0.0013
Ana1 0.062 0.0014 0.049 0.003 0.039 0.0014

Table 6.11: Mean and standard deviation of ε̄ over all rotations on noisy data.

to the evaluation without noise. The single HOT evaluation clearly shows the increased
rotational variability (higher standard deviation of ε̄) for the Ana1, Ana2 and ForceSingle
GESs in comparison with the ForcePairs and Icosa schemes in Tab.6.11. The high stan-
dard deviation of ε̄ is considered worse than a low mean ε̄ value. Therefore, the ForceSin-
gle and Ana1 GESs are considered worse than the Icosa and ForcePairs schemes. The
ε̄ values and the standard deviation of the error over all directions for each rotation are
plotted in 6.21.

Such a clear distinction is not possible for the other two models in Tab.6.11. This is
also illustrated in Fig.6.22 and 6.23. For the second order tensor the ForcePairs inves-
tigation did result in the lowest mean ε̄ but the larger standard deviation suggests that
other GES, for example the ForceSingle scheme, will be preferable. In the HOT hier-
archy investigation the analytical schemes are less rotationally dependent than the Icosa
and force-minimizing GESs. The results for the individual GES lie close together for
these two models in the evaluation without noise. Therefore, the performance loss for
the Icosa and ForcePairs GES here is attributed to noise which blurs the results for the
individual GES.

The improvement in signal accuracy with an increase in Ne is more prominent in
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the investigation with noise as illustrated in Fig.6.24. For the HOT hierarchy model
(Fig.6.24(b)) not only a decrease in variability but also a decrease in ε̄ is observable
with an increase in Ne. For the single HOT model the variability does decrease with an
increase in Ne but the mean ε̄ is approximately constant for all GES (mean ε̄ is 0.06).
For the second order tensor the scheme with Ne = 30 has a higher mean ε̄ value than the
evaluation with Ne = 21 which decreases again for higher Ne. The standard deviation
for this tensor model evaluation does always decrease with an increased Ne.

(a) Mean Deviation: Second Order (b) Mean Deviation: HOT Hierarchy

(c) Mean Deviation: Single HOT

Figure 6.24: The signal accuracy for ForcePairs GESs with increasing Ne on noisy data.

Summary
The Cond GES was found to be disadvantageous for all evaluated tensor models. Also,
the Ana1, Ana2 and ForceSingle schemes could be discarded because the other schemes
give a better signal fit in the evaluation without noise.

The signal fit is best for the HOT hierarchy model (max ε̄ is 0.05 in the evaluation of
the noisy signal) and worst for the single HOT diffusion representation (max ε̄ is 0.2 in
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the investigation on the noisy signal). An increase in directions will reduce the rotational
variability of the signal fit (standard deviation of ε̄), independent of the added noise.

6.8 Summary And Discussion Of The GES Evaluations
Most evaluated quality measures did recommend the Icosa and Force Pairs GESs and
discarded the Cond scheme. This is in accordance with the second order tensor evalu-
ations in literature (see for example [10, 47]). The only evaluation that did prefer the
Cond GES was the total variance (section 6.3). The Cond GES is universally rejected
in the literature and by the other classification methods evaluated here. The total vari-
ance is, therefore, rejected as quality measure for GESs. With this disqualification of
the total variance the extended version REAF (section 6.2.2) is also rejected because all
reservations toward the total variance also apply to REAF.

Even if the total variance did not prefer the Cond GES, an inter model comparison of
the results would be problematic because of the b-factor dependence of this quality index.
The different models require different b-factors and the HOT hierarchy even introduces
a new b-factor model with the b-factors of higher order. This will render the results very
individual for each model and the applied b-factors. The inter model comparison is also
problematic for REAF because the optimal GES for the individual model are not known.
The basis for the encoding advantage therefore needs to be determined first to be able to
evaluate this quality measure.

The condition number as quality index is also not usable for an inter model comparison
because this value varies dramatically depending on the estimation matrix of the model.
Opposed to REAF this quality index is directly applicable for all here evaluated tensor
models.

The results from the second order tensor condition number evaluation (see section 6.4,
Fig.6.1) show that the condition number was much lower (similar to the one for Force-
Pairs) for ForceSingle when Ne was at least twice the number of independent elements
in the tensor model that was to be estimated.

The preferred GESs in this evaluation were Icosa and ForcePairs. For higher order
tensors evaluations the condition number is not constant for the Icosa GES but rotation-
ally variant similar to the condition numbers for other GES for all tensor models. The
mean condition number of ForcePairs GES is for higher order tensor models lower and
less rotationally variant than the one for Icosa GES. The ForcePairs GES is therefore
preferred.

The analytical schemes did perform well for large Ne, especially for Ana1 the Ne

need to be very large (Ne ≥ 46) for this scheme to be comparable to the other well
performing ones. The Ana2 GES is performing similarly to the Icosa and ForcePairs
GES for Ne ≥ 30. The mean condition number of the Cond GES does not improve
systematically with an increase in Ne, it stays comparably high. This scheme is therefore
rejected.

Differences in the behavior of the condition number for the Icosa scheme that are
dependent on the construction of the directions were observable for the higher order
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tensor evaluations (section 6.4). The hypothesis of a systematic difference in the Icosa
schemes could not be confirmed in my extensive second order tensor diffusion index
estimation quality evaluation (section 6.6) but the differences for this simple diffusion
model could be too small for relatively high Ne to be observable.

The Cond GES is the only scheme for which the FA value in the evaluation in section
6.6 does not converge. This GES is rejected because, especially, for the cigar shaped
tensor in Fig.6.14, the FA value reconstructed by this scheme is not close to the ’ground
truth’. Ana1, Ana2 and ForceSingle require Ne ≥ 10 to be able to estimate the second
order tensor model but then do perform well. All GES but the Cond scheme perform
similarly well for Ne ≥ 21. Icosa and ForcePairs are preferred because they can also
handle Ne ≤ 10 well.

The classification by diffusion index estimation quality (section 6.6), contradicts the
results for the GAS index (see section 6.2.4) published in [52], the Icosa16 does not
provide better results than Icosa15. The GAS index was therefore not considered here.

The hypothesis that GES that have approximately equidistributed directions over the
sphere perform better than others could not be confirmed in the second order tensor
evaluation presented in section 6.6. There was no difference between the Icosa and
ForcePairs GESs and the other evaluated schemes observable for higher Ne.

The consideration of the inverse gradient directions in the evaluation of the spread
of the encoding directions show the reason for some phenomena observed in the other
evaluations of the GES. All GES but the Icosa and ForcePairs schemes contain direction
clusters if the inversion is taken into account. With an increase in Ne the clustering pairs
in ForceSingle and Ana2 grow closer and the clusters loose importance. The clusters
can explain why the ForceSingle GES behaves similar to ForcePairs with Ne/2 in the
condition number evaluation (section 6.4). The clustering pairs of directions and their
inversions lie close together. The inverse encoding directions, therefore, do not improve
the coverage of the whole sphere, opposed to the inversions in ForcePairs. If Ne is larger
than twice the number of independent tensor elements the less optimal sampling of the
sphere with ForceSingle has no grave effect on the GES quality. The Cond and Ana1
schemes cluster even before the inverted directions are considered. The clustering with
inverse directions does not affect Ana1 as dramatically as the Cond GES because the
directions of this scheme are distributed on a hemisphere, additional clusters might only
occur on the border of the hemisphere. The clustering with inverse directions in the Cond
scheme is as random as the initial directional distribution.

The quality measures that are based solely on the encoding directions (angle and elec-
trostatic energy in section 6.5) could find the well performing criteria but could not
clearly distinguish between the individual clustering GES. The value of an angle based
quality measure is not clear since a well angular distributed scheme does not necessar-
ily approximate an equidistribution of the points on a sphere surface. The angle quality
measure is therefore disregarded. The energy index (section 6.5) is able to show more
differences between the non-optimal GES than the angle. Even so the classifications
of the other schemes differ considerably from the other evaluations, especially for the
ForceSingle GES which is considered comparable to the preferred GESs for large Ne in
the condition number evaluation (section 6.4), but does not perform well in the energy
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evaluation (section 6.5). The energy index is therefore also disregarded.
The evaluation of the signal accuracy (section 6.7) is able to support all findings from

previous classification attempts that were not discarded or disregarded. This quality mea-
sure can clearly show an advantage of the force-minimizing and icosahedral GES over
the analytical ones which was not as clear previously. This method is the only one that
can be directly applied to all tensor models and possibly also to other signal represen-
tations (for example SHD or the multi-tensor model) to allow a direct comparison. The
evaluation of the signal representation is therefore the most promising of the GES qual-
ity measures evaluated here. To determine the full capability of this quality measure an
optimal set of input tensors needs to be defined. In addition to a comparison of GES a
comparison of the evaluated tensor models is also possible with this quality measure.

The accuracy of the signal fit is dependent on the number of b-factors that are used
and will improve with an increase in b-factors. For better comparability I did evaluate
all tensor models on a dataset with 10 b-factors. This high number of b-factors is not
suitable for practical application but it is not to be expected that the relative behavior
of the individual GES will depend much on the number of b-factors. The comparison
should therefore not depend on the individual choice of b-factors. The optimal number
and choice of b-factors for the HOT hierarchy is still undetermined. This is a topic for
future investigations. The actual accuracy might decrease with the number of b-factors
but it is to be expected that the fit will remain superior to the other two models if evaluated
on the same data set, with the same b-factors.

The signal accuracy can only be evaluated for specific input tensors. It needs to be
determined if the relative accuracy between the different GES changes depending on the
input tensor. A change was not observable in my investigations but another set of input
tensors might provide one. The optimal set of input tensors needed to classify the tensor
estimation quality of a GES needs to be determined.

The new classification by signal accuracy is able to clearly identify the Cond GES as
worst GES. Also a distinction between ForceSingle, the analytical GESs and the better
performing Icosa and ForcePairs GESs is possible with and without noise. The difference
in the evaluation without noise can be explained by direction encoding bias. Especially
clustering GES prefer some diffusion directions (the clustering ones) over others and,
thereby, introduce a directional bias to the signal.

The ForcePairs and Icosa GES are generally the schemes with highest quality. From
the condition number results for HOT models (section 6.4) show an advantage of For-
cePairs for HOT estimations. This and the fact that Icosa is not able to produce an
approximate equidistribution over the sphere with an arbitrary number of encoding di-
rections, led me to the conclusion that the ForcePairs GES is the best GES for general
use. This scheme is closely followed by the Icosa GES. Ana2 shows also reasonably
good performance but since the other two GES clearly outperform this scheme for lower
Ne it is disregarded. The Ana1 GES is discarded the same as the Cond scheme, even
though the Ana1 scheme is the better of these two.
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An important question in the investigation of the brain concerns the connectivity of indi-
vidual gray matter (GM) regions. The neurons in the GM are connected with each other
and other parts of the organism by axons that form the so called white matter (WM; for
more detail on the anatomy of the brain see section 3.1). The understanding of brain
connectivity in itself is an interesting subject for scientific pursuit but the connectivity
information of individual patients could also be used for diagnostic purposes. Connec-
tivity evaluations are for example used to monitor and predict the course of degenerating
neuronal diseases such as Alzheimers. Information on connectivity can also be important
for surgery planning. The surgeon can base his decision on where to cut in brain tumor
removal not only on his own experience but also on the connectivity information which
tells him where important fiber pathways most likely pass the tumor.

Before DTI was available there were only invasive means to investigate brain connec-
tivity. In nonhuman primates, for example, connectivity between anatomically separate
brain regions could be detected by injecting tracers into one region and observing the
transport of these tracers postmortem. This technique can identify a connection between
individual synapses but this type of study is not feasible on living human subjects. The
postmortem preparation of the brain that does not disturb the fiber pathways is also not
trivial. This is especially true for fibers that do not run in parallel with the cuts in the
prepared brain. Since the brains of different species differ significantly, the tracer results
from animal studies cannot be applied to humans directly.

The human brain could, previous to the discovery of DTI, only be investigated post-
mortem by gross dissection or histological staining [15]. The information that can be
gained from human postmortem studies is limited, since WM tracts start deteriorating
directly after death. All the above methods are not suitable for diagnostic purposes. De-
generation studies on patients with documented brain lesions are a kind of in-vivo study
on humans. These studies can in general not be transferred to other patients, because
lesions are highly individual.

The discovery of DTI enabled non-invasive in vivo studies on human subjects. In
early experiments it was observed that water diffusion in fibrous tissue, such as brain or
muscle, is stronger in the direction of the fibers then perpendicular to them [12]. It is
assumed that the diffusion is hindered by the fibers’ membranes. From the diffusion in-
formation one can therefore infer the direction of the fibers contained in the subject. The
reconstruction of whole fiber pathways from this information is termed fiber tracking. At
the moment fiber tracking is the only non-invasive method for the investigation of GM
connectivity in living human subjects.

92



7.1 Established Tracking Methods

A lot of different methods were proposed for the reconstruction of the fiber tracts from
the discrete voxel-based diffusion information. Some of the more established methods
are presented in the section 7.1.

7.1 Established Tracking Methods
Several fiber tracking methods are known from literature. The most established and
oldest approach is the so called streamline method, which is based on line propagation.
This method will be presented in more detail in section 7.1.1. The problems of this
basic tracking method are discussed in 7.1.1.2 and some alternative front propagating
tracking approaches are introduced in short in section 7.1.2. All tracking is inaccurate
because of measurement noise and PVE. The reconstructed fibers therefore may deviate
from the actual anatomy and are therefore referred to as ‘fiber tracts’. The inaccuracy
led to the development of fiber tracking methods that determine the probability that a
reconstruction corresponds to an actual tract. The most prominent probabilistic fiber
tracking methods are presented in 7.1.3.

7.1.1 Streamline Tracking
The oldest and most commonly used family of tracking algorithms for neuronal path-
ways is based on line propagation, so called streamline techniques ([8], [20], [61] and
[68]). Streamline tracking (SLT) is based on the assumption that all fiber populations in
a voxel are aligned along a single orientation. Under this assumption the principal eigen-
vector which belongs to the largest eigenvalue of the diffusion tensor corresponds to the
direction the diffusion is strongest in the evaluated voxel. To reconstruct a fiber path-
way, one simply has to follow these principal eigenvectors from voxel to voxel. Since
the direction of the principal eigenvector d is ambiguous, the tracking is started in both
possible directions (d and -d) from the origin of reconstruction. The line propagation in
the reconstruction has to be terminated at some point because of the finite length of the
fibers [69]. Without formal criteria the propagation may continue infinitely.

7.1.1.1 Tract Termination

The most intuitive criterion for tract termination is an anisotropy threshold. In voxels
with low anisotropy, such as for example voxels containing brain gray matter, no coherent
tract orientation is reconstructible and the principal eigenvector direction will be more
sensitive to noise errors. The fractional anisotropy in brain gray matter is typically lower
0.2, hence an anisotropy threshold of 0.2 is a popular choice for this termination criterion
(see for example [69]). The tract is terminated when the anisotropy in the current voxel
is below the chosen threshold.

Anatomically plausible tracts are usually smooth. The assumption of Gaussian dif-
fusion inside a voxel prohibits sharp turns in the fiber orientation. A threshold for the
angle between the principle eigenvectors in two successive voxels is generally used as a
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smoothness criterion to prohibit sharp turns in the tract which would violate this assump-
tion [69]. Sharp turns that would violate the smoothness criterion might be caused by a
sharp U-turn in a fiber that cannot be resolved in the given data resolution (voxel size)
or by fiber crossing where the fiber that corresponds to the reconstructed tract is domi-
nated by a larger fiber bundle. In the case of crossing fibers the smoothness criterion is
especially important to avoid false tract reconstruction.

7.1.1.2 Known Problems

The SLT algorithm has some drawbacks. It is relatively sensitive towards noise in the
acquired data because it uses only the principal eigenvector for the tract reconstruction.
All measured data is to some extend subject to measurement noise. The noise sensitivity
of fiber tracking methods is therefore an important issue which needs to be taken into
account when interpreting the tracking results. For example, the actual principal eigen-
vector and the vector corresponding to the second largest eigenvalue could switch places
in the measured tensor because of noise. This exchange would cause the reconstruction
to follow the wrong vector leading to false results. In a voxel with low anisotropy the dif-
fusion represented by a compromised tensor could become even lower, which could lead
to a violation of the FA threshold and an abrupt stop in the reconstruction of the tract. In
addition, errors along the reconstructed path are accumulated, causing even slight errors
to result in faulty reconstructions. The error increases with the tract length.

Another drawback of the SLT algorithm is the fact that it only follows one fiber tract
on leaving a voxel, thereby providing a one-on-one mapping between voxels, rendering
the reconstruction of tract branching impossible. A fixed step length in the reconstruction
will cause problems reconstructing curving fiber pathways accurately [61]. The tract is
not able to follow the curvature accurately. The reconstructed tract will deviate more
from the path of the curving fiber with each step of the reconstruction. This is illustrated
with the tract of red arrows in Fig.7.1 which deviates from the fiber (long black arrow)
that is to be reconstructed.

To improve the reconstruction especially for curving tracts the FACT (fiber assignment
by continuous tracking) algorithm was developed [68]. FACT works on a continuous
vector field instead of a discrete one. Each reconstruction step starts in the point the
reconstructed tract enters the next voxel. This results in a more accurate reconstruction
of the pathways since the reconstructed trajectory is more flexible. As shown in the
example in Fig.7.1, the tract (marked squares) reconstructed with FACT in the right
illustration follows the fiber pathway (long black arrow) accurately.

To further improve tracking, especially in the presence of curving tracts, the recon-
struction along a tract can be propagated with small steps of predefined size [8, 20]. The
direction of the next step is then determined by distance-averaging the principal eigen-
vector orientations of the surrounding voxels. This will result in an even smoother tract.
In more rigorous approaches averaged diffusion tensors are used to determine the fiber
orientation instead of averaged eigenvectors. The directions computed from averaged
tensors are more accurate because the effects of noise on the eigenvector (as discussed in
the beginning of this section) can be reduced in comparison with the averaged eigenvec-
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Figure 7.1: The thick dark arrow represents the fiber that is to be reconstructed. The
tract reconstructed with steps of equal size (in red) deviates from the fiber that is to be
reconstructed. It can be seen that the reconstruction on a continuous vector field (thin
black arrows) track the path of the fiber more accurately. The graphic was adapted from
[68].

tor approach.
The limitations in the measurement accuracy allow fibers with a diameter of 1-10 µm

to cross, kiss or branch inside of a voxel which has usually a side length of one to sev-
eral millimeters. The estimated diffusion tensor in such a voxel represents the averaged
signal of all individual fibers (partial voluming effect, see section 2.5.2) because only the
total diffusion inside the voxel’s boundaries can be measured. The different fiber orien-
tations a voxel contains can therefore not be distinguished in the second order diffusion
tensor used to commonly evaluate DTI data. This presents a general problem for fiber
reconstruction because the primary eigenvector of a tensor representing the averaged sig-
nal does not necessarily correspond to the orientation of a real fiber. Therefore, recon-
struction will be inaccurate or fail completely in voxels containing more than one fiber
orientation. These partial voluming effects may also result in less anisotropic tensors,
for example in regions of fiber crossing as illustrated in Fig.7.2, causing premature ter-
mination of the tract reconstruction. A way to adapting the basic algorithm to overcome
some of these PVE related problems has been suggested for example in [28]. Here, the
algorithm continues tracking in the neighborhood of the voxel the previous reconstruc-
tion terminated in because of low anisotropy. If the low anisotropy is confined to a small
region, it can be bridged by this type of neighborhood tracking.

Any tracking result also depends on the choice of the initial reconstruction seed, the
so called region of interest (ROI). This makes the results hard to reproduce since the
manual definition of a ROI on a given anatomical landmark differs from investigator to
investigator and even for one investigator from day to day and acquisition to acquisition.
The image contrast can differ in each measurement rendering accurate ROI placement in
multiple data sets very difficult. Differences in the ROI used as origin for the fiber track-
ing result in sometimes drastically different reconstructed tracts because slight variations
in the ROI might include neighboring fibers into the tracking results or exclude fibers on
the border of the anatomy. To avoid this problem a so-called multi-ROI approach was
suggested [20, 87]. This method first performs a brute force streamline reconstruction,
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Figure 7.2: The effect of tensor averaging is illustrated by two crossing fibers. On the
fibers the diffusion glyphs are cigar shaped. In the intersection of the fiber pathways the
shape gets more spherical, that is less anisotropic. The fiber running from left to right
(red) is slightly dominating the top-down (green) pathway. This plot was generated with
the TensorViewer of the MedInria software package [29].

each voxel in the dataset is a seed voxel for a streamline reconstruction. The results are
filtered by the application of one or multiple ROIs (see Fig.7.3). This filtering approach
allows the use of a relatively large ROI for a crude selection of the anatomy that is to be
investigated (see Fig.7.3(b)). This crude selection is then refined with additional ROIs as
illustrated in Fig.7.3(c).

(a) Unfiltered (b) One ROI (c) Two ROIs (d) ROI Positions

Figure 7.3: Tract reconstruction with ‘brute force’ (a) and filtering of the results with
one (b) or multiple ROIs (c). The positions of the ROIs are marked on an axial FA slice
in (d).

7.1.2 Front Propagating Methods
An alternative to the streamline tracking approach that in its basic form reconstructs only
one-on-one connections between voxels uses front propagating methods to establish fiber
connections [18, 44, 56, 78, 79]. These methods use the fast marching technique from
level set theory [83] to propagate fronts that evolve at a rate determined by the diffusion
information. Some examples for front propagators are the principal eigenvector of the
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diffusion tensor [78, 79] and a probability measure for the primary diffusion direction
[18]. When a point in the evaluated data set is passed over by the propagating front,
the so called ‘time of arrival’ (TOA) is stored in a map. From this TOA map, paths
can be reconstructed with a gradient descend through the data set. The descend starts
from the outermost front and tracks back toward the origin of the front propagation. The
position of the front is determined in each iteration step. To do so the speed of the front
propagation speedF needs to be calculated in each candidate. One possible definition of
the speed of the propagated front for the easiest case that uses the principal eigenvector
λ1 in the propagation is given by:

speedF (r) = FA(r) ∗ |λ1(r)n(r)|, (7.1)

n(r) is the normal of the front in candidate r. FA(r) is the anisotropy in r. The front
is propagated fastest in regions where n and λ1 are collinear. A candidate is a point
neighboring the actual diffusion front that might be passed over by the front in the actual
iteration (gray in Fig.97). A candidate is passed over by the front if the arrival time T (r)

T (r) = T (r′) +
|r− r′|

speedF (r)
(7.2)

is smallest for all candidates. r′ is a point on the actual front. The dependence of the front
propagation on speedF ensures a rapid propagation in the dominant diffusion direction
λ1. This propagation is also illustrated in Fig.7.4. This reconstruction method allows for

(a) Iteration t (b) Iteration t+1

Figure 7.4: Illustration of the front propagation with the fast-marching technique. The
front propagation depends on the normal of the front (n(r)) and the principal eigenvec-
tors in the individual voxels (lines through the points). This figures are adapted from
[78].

tract branching, which presents a problem for the standard SLT. Branching fibers reunite
automatically in the backtracking reconstruction. It is also able to continue tracking
in regions with low anisotropy that would prevent SLT reconstruction. These methods
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return a possibly large number of fiber tracts. It is therefore advisable to assess the
probability that a reconstructed tract corresponds to an actual anatomical neuronal fiber
bundle to select the important tracts from the reconstruction. Some probability measures
for this purpose are presented in the next section.

7.1.3 Probabilistic Tracking
All fiber tracking algorithms make the assumption that the acquired data is not affected
by noise. This is of course unrealistic in data sets resulting from actual measurements.
Each reconstruction step on the tract is therefore subject to a certain amount of uncer-
tainty because of noise in the data. Similar to the error, the uncertainty will accumulate
with each step of the reconstruction. This means uncertainty will increase with the dis-
tance from the initial ROI. An additional source of uncertainty in the reconstruction is the
incomplete modeling of the diffusion signal with for example the simple second order
tensor model. The inaccuracy can be illustrated when tracking results starting in point
A and ending in B are compared with the results starting in B. The tracking is not bi-
jective, i.e. the results from the second experiment will not necessarily return to A. To
classify the reliability of the reconstruction, the probability of the reconstructed tract can
be specified, for example with the methods presented in [13, 18, 45]). The so generated
probability maps can be used to discard reconstructions with low probability. The meth-
ods for the construction of these probability maps are numerous. Some more prominent
methods are presented in more detail in the following paragraphs. Note that probabilistic
tracking methods only quantify the support of an connection between two points based
on the evaluated data. They do not answer the question whether a connection exists at all
in real life.

A local method that characterizes the accuracy of a voxel’s diffusion tensor representa-
tion was introduced by Jones in [45]. This approach uses ‘bootstrapping’ [27] to generate
a large number of DTI data sets from a given number of data acquisitions. Bootstrapping
is a method from statistics that creates ‘new data sets’, the so-called bootstrap samples,
by randomly combining the voxel data from several individual measurements. These ran-
dom estimations of the DTI data sets can be used to generate voxelwise statistics. A spe-
cial local probability measure was proposed by Jones that describes the uncertainty of the
primary eigenvector of the diffusion tensor (in [45] called ‘95 percent confidence angle’)
by evaluating a voxelwise statistic over the principal eigenvectors from all bootstrapping
samples. The ‘cone of uncertainty’ was proposed as visualization for this statistic The
orientation of this glyph corresponds to the mean principal eigenvector direction over all
bootstrap samples. A cones whose cross section corresponds to the confidence angle is
used to illustrate the possible deviation from this mean. The slimmer the cone, the more
confidence can be put into the accuracy of the tensor representation. This method gives
the local uncertainty of the diffusion representation.

A visualization method for local probability values along reconstructed fibers is the use
of stream tubes [95] or hyper streamlines [24]. Both are glyphs that add local diffusion
information to the principal eigenvector direction coded in the reconstructed streamline.
The cross sections of such a tract representation usually give information on the two
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smaller eigenvectors of the local diffusion tensors. The previously mentioned ‘cone of
uncertainty’ could also be combined with these tract-glyphs to visualize the local uncer-
tainty along the tract. This visualization method allows local assessment of the probabil-
ity only. The probability of a connection between point A and a distant point B cannot
be directly determined from this local information.

To determine the probability of an actual connection between two points A and B a
global measure of connectivity needs to be defined (for examples see [13, 77]). If there is
no uncertainty in the local fiber directions, the probability of a connection is equal to one
if SLT can reconstruct a fiber tract starting in A and reaching B. The probability is zero
otherwise. To accommodate the uncertainty in the diffusion direction several diffusion
direction samples are randomly generated from the local probability density functions
(PDFs) with Monte Carlo methods, similarly to the previously presented bootstrapping
approach. The diffusion direction samples might deviate from principal diffusion direc-
tion, depending on the PDF. The SLT algorithm is started in A for each sample. By
counting the amount of so reconstructed tracts passing through the individual voxels and
dividing this number with the total number of tracking evaluations, each voxel can be
assigned a probability value for its connection with the starting point A. By adjusting
the termination criteria for the tracking algorithm as suggested in [13, 77], a connec-
tivity measure can even be computed for regions that would not have been reached by
standard tracking, such as brain gray matter. The probability values are used to separate
the highly improbable reconstructions from more realistic tracts if the thresholds for the
tract termination are lowered. An example evaluation is given in Fig.7.5. In Fig.7.5(a)
the probability values are given for each slice and laid over the corresponding FA maps
(Fig.7.5(b) gives a close-up of the slice containing the single voxel ROI). This map shows
a connection of the marked ROI with relatively distant regions. The probability decreases
with the distance from this ROI. It is hard to gather usable 3D information from this set
of probability slides. A 3D visualization of the probability values with high probability
values is given in Fig.7.5(c).

Ehricke et al use local PDFs to determine regions of fiber crossing or branching [28].
Where ordinary SLT reconstructions would terminate, secondary tracts are reconstructed
in neighboring voxels and connected with the previously terminated tract pieces. The so
produced tracts are enriched with an index that determines the probability that an arbi-
trary point on a reconstructed tract is actually connected to the tracking seed. This global
probability measure weights the value of the local PDF with the probability of the pre-
viously reconstructed path. This guarantees that the probability will decrease along the
reconstructed tract, which corresponds to the observation that tracking errors accumulate
during the tracking process (see 7.1.1.2). Opposed to the previously discussed methods,
this approach does not establish its probability values by statistics over the results of re-
peated SLT reconstructions. The probability value in this method is only dependent on
the local PDF and the probability of the previous reconstruction.
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(a) Probabilities Over FA

(b) Probabilities Over FA
(Seed Slice)

(c) 3D Probability

Figure 7.5: The results of a probabilistic tracking method (overlayed on a FA map),
generated with the FSL/FDT [31] software package.
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The idea of investigating neuronal connectivity by simulating anisotropic diffusion has
been explored previously [11, 33, 51]. Similar to the fast marching methods described
in section 7.1.2, this approach is based on expanding fronts. Diffusion Simulation Based
Tracking (DSBT) generates expanding fronts by simulating the spread of a virtual con-
centration peak. The simulation numerically solves the diffusion equation which de-
scribes a natural physical phenomenon. The propagation of the front is determined by
the measured diffusion tensor information, which reflects the anatomy of the measured
subject. This approach exploits the whole tensor information of the evaluated neighbor-
hood and is accordingly more robust against noise and more reliable in the reconstruc-
tion, opposed to the front propagating fast-marching techniques that most often use the
principal eigenvector for the front propagation.

8.1 The Basic Algorithm
The DSBT algorithm reconstructs trajectories based on the idea that a simulated diffu-
sion will be stronger in directions corresponding to the course of neuronal fibers. This
is similar to the assumption underlying all DTI and DWI measurements. According to
this assumption the maximal spread of the front of the simulated diffusion can be as-
sumed to correspond to the course of the actual neuronal fibers. The algorithm consists
of three major steps. First, a virtual concentration peak is generated in a user defined
region of interest. This concentration then dispenses during a simulation process. Iso-
concentration surfaces are extracted from the simulation results and termed ‘diffusion
fronts’. From these fronts, the fiber tracts are reconstructed. The tracts need to satisfy
termination criteria similar to the ones used in SLT reconstructions (see section 7.1.1.1)
to exclude anatomically implausible tracts.

In [51] this basic idea was implemented by successive simulation of diffusion for a
short fixed time period on coherent points, i.e. points satisfying the termination criteria.
The coherent points on the diffusion front of a simulation are future simulation seed
points. Two succeeding points (one on the diffusion front and the other the simulation
origin) are connected with a straight line. This way the fiber tracts are built up recursively.
One of the main advantages of DSBT over SLT methods is the intrinsic handling of fiber
branching. The backtracking reconstruction that connects the outermost diffusion front
with the simulation origin allows for fibers to unite on the way. This is a common trait
of all front propagating methods.

101



8 Diffusion Simulation Based Tracking

My new DSBT method evaluates the simulated diffusion over several time steps. Sim-
ply bridging the distance between the simulation seed and the points on the outermost
diffusion front similar to the approach in [51] would result in tracts that might lack in
curving details. To avoid this, a time of arrival (TOA) map is used in the reconstruction.
TOA maps have been used successfully in previously published front propagating fiber
tracking methods (see section 7.1.2). In the TOA map the time of flooding, that is the
time the diffusion front reaches a point, is stored for each point in the evaluated data
set. With a gradient descend on this TOA map the fiber tracts are reconstructed. The
individual steps of the algorithm are discussed in more detail in the following sections.

For the illustration of the DSBT algorithm, here, only single voxel ROIs are used in
the explanations and evaluations. An extension to ROIs that encompass multiple voxels
is straight forward. DSBT, as described here, is evaluated successively for each voxel in
the ROI to compute the complete reconstruction.

8.2 The Simulation
In the simulation step the diffusion equation (see also section 3.2),

∂C

∂t
= ∇ · (D∇C), (8.1)

is solved numerically. Here C is the user defined particle concentration, t is a fixed
constant time step and D is the diffusion tensor computed from the measurements. C
is high in a selected region of interest (ROI) and (approximately) zero elsewhere. The
definition of the initial concentration peak C (t = 0) is discussed in more detail in the
following section. The simulation is performed for several time steps to propagate the
diffusion front over the evaluated region.

8.2.1 Initialization Of The Concentration Peak
Before the simulation can begin the particle concentration needs to be initialized for all
grid points. The initialization is a peak over a user defined ROI. The initial peak should
fit the user defined ROI as well as possible. This means the sides of the peak should be as
steep as possible for an accurate reconstruction. Flatter sides might, especially for small
ROIs, result in artificial enlargement of the ROI. This is illustrated in Fig.8.1 for a single-
voxel ROI. The dirac-like initialization on the left has a concentration value greater zero
only in the user defined ROI. All reconstructed tracts are therefore connected with this
ROI directly. The diamond shape in the top view of this initialization (see Fig.8.1(c)) is
a result of the interpolation for the visualization between the high concentration value in
the center of the peak and the surrounding background with a concentration of zero. The
bell-shaped Gaussian initialization on the right has a wider base. The reconstructed tracts
originating from an enlarged ROI will not necessarily be connected to the original user
defined ROI, which would in the here discussed example be the center point of Fig.8.1 .
This renders the tracking results less accurate.
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(a) (b)

(c) (d)

Figure 8.1: The flattening of the sides of the initial peak will enlarge the ROI that is
used in tracking. This is illustrated in the comparison of an Dirac-like peak (left) with
a Gaussian peak (right). In the lower row of images the size of the projected ROI is
illustrated. The size of the ROI corresponding to the Gaussian peak corresponds to the
outermost ring in (d). The size of the ROI in (c) is exactly one voxel.
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The ideal dirac-like initialization is not as smooth as the bell-shaped one. This can
cause problems in the simulation process which are discussed later on in section 8.5

8.2.2 Implementation
For the computation of the simulation two possibilities were explored. First, FEMLAB
[19] which is based on Matlab (The MathWorks, Inc.; Version 7.1.0.246 (R14) Service
Pack 3), was used. Second, the SG2 library [1] developed in the research group ‘Sim-
ulation in Technology’ at the University of Heidelberg, Germany (directed by Prof. Dr.
G. Wittum) was employed. Both methods evaluate the simulated diffusion on a discrete
data grid.

FEMLAB: Femlab uses a finite elements method (FEM) to approximate the exact so-
lution of the partial differential equation (PDE that describes the diffusion process (8.1)).
The FEMLAB software allows easy definition of the initial concentration and uses well
tested algorithms. A problem with this software is the handling of dirac-like initializa-
tions. This type of initialization is not continuous and can therefore not be handled by
the FEMLAB solver directly. The solver smooths the initialization prior to the first simu-
lation step, which results in subzero concentration values at the base of the concentration
peak. These subzero regions will decrease with each simulation step but they still present
problems in the computation of the TOA maps because they cause a non-monotone de-
crease in the concentration values. The resulting effects will be more clear when the
TOA map has been introduced in more detail in the following section. Subzero regions
could be avoided by smoothing the initial peak, flattening the peak’s sides. This is equal
to smoothing the edges of the ROI which leads to artificial enlargement of the ROI as
discussed before, especially with single voxel ROIs.

SG2: The SG2 [1] solver used in the final implementation was customized for this
project by Dr. D. Logashenko (Steinbeis Research Center 936, Oelbronn-Duerrn, Ger-
many). The equation (8.1) is solved numerically with an initial concentration of

Cinit(r) =

{
1 if r ∈ ROI
0 else

(8.2)

as illustrated in Fig.8.1(a). On the boundaries of the evaluated volume a stationary con-
centration value of zero is chosen. To compute a solution of the diffusion problem (8.1)
that is comparable to the analytical solution, the PDE needs to be discretized on a (finer)
grid. The numerical solution will converge towards the analytical one as the discretiza-
tion control volume size that corresponds the voxel size on the discretization grid ap-
proaches zero.

The discretization methods used here are the implicit Euler method on the primary grid
which corresponds to the input data grid, in time and the vertex-centered finite-volume
(FV) method (also referred to as box method, for example in [35]) for the secondary
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grid of control volumes in space. The control volume grid is defined so that each data
point is the centroid of a rectangular control volume. The sides of the control volume are
equal to the spatial distance of the data points on the primary (discretization) grid in the
individual directions, this means they are equal to the voxel size in the data acquisition.
The FV method computes the concentration change that is the sum of all incoming and
outgoing particle flux to determine the new concentration values (Cnew = Cold + flux).
The particle flux needs to be evaluated for this control volume with the flux function:

J = −D∇C. (8.3)

It is sufficient to only evaluate the flux through the faces of the control volume.

Ff (C) =

∫
f

J · n dfi, (8.4)

Ff (C) is the flux through the control volume face f , fi are the points on this face and n
is the corresponding outer normal vector. The integral in (8.4) is approximated by

Ff (C) = |f |(Jfc · n), (8.5)

with Jfc the flux function evaluated in the centroid of the control volume face f and
|f | the size of the face. The required concentration gradients are computed with finite
differences as illustrated for the top face in a 2D example in (8.6) and Fig.8.2. The
concentration gradient in the opaque green star in Fig.8.2 can be computed with

∂C

∂y
=

C(r(0,1))− C(r(0,0))

hy

(8.6)

∂C

∂x
=

1

2

(
C(r(1,0))− C(r(0,0))

hx

+
C(r(0,1))− C(r(−1,1))

hx

)
. (8.7)

The position r(0,0) is the center of the control volume, r(1,0) its neighbor to the right and
r(0,1) the data point on top. hx is the length of the control volume in X-direction, hy the
one in Y-direction. These equations are illustrated in Fig.8.2. The blue points are the
data points r that are used to compute the derivatives. The derivative in Y-direction is
computed from the central difference of the two blue neighboring points r(0,0) and r(0,1).
In X-direction the derivative is the mean of two differences (non-opaque green stars).
The formula in (8.7) should only be used if the off-diagonal element in the diffusion
tensor (Dxy) is smaller zero. Otherwise, the points r(0,0), r(0,1), r(1,1) and r(−1,0) are used
in the differences.

The large linear equation system which results from the discretization is solved with
BiCGSTAB [5] iterations, preconditioned with the geometric multi-grid method with
ILU smoothers. This choice of solver allows reasonably fast, efficient, and stable com-
putation. Note that the matrix of the discretized linear system can be asymmetric because
of changing anisotropy of the data set. Therefore, we apply BiCGStab instead of CG to
solve the system. The multigrid method [37] is used to further speed up the computation.
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Figure 8.2: The approximation of the flux with finite differences is illustrated.

This C++ based SG2-simulation is not only more than ten times faster than the FEM-
LAB simulation but also allows the use of dirac-like initializations without artifacts. SG2
does not produce non-monotone, subzero concentration values. To compensate for small
artifacts caused by the non-continuous dirac-like initialization, the results of the first
simulation step are discarded.

8.3 The TOA Map
From the simulation results a TOA map is constructed. This map contains the time stamp
corresponding to the simulation step in which each individual point was reached by the
diffusion front. The detection of the diffusion front is of special interest in the TOA
map construction and will therefore be discussed in more detail. The front detection in
TOA map based DSBT is slightly more complicated than in other front-propagating fiber
tracking techniques (see Fig.8.3). In the fast-marching approach, for example, there is no
data point in between two adjacent fronts. Opposed to this, the diffusion front in DSBT
can pass over multiple points in the same direction during a simulation step. In the DSBT
approach proposed in [51] the front is classified by a constant threshold. This is sufficient
in this case since there is only one simulation time step. In the case of multiple time steps,
the concentration on the diffusion front is time dependent and might underrun a chosen
constant threshold. This is illustrated in Fig.8.4. With a solver that is stable enough
not to produce artificial negative concentration values the threshold can be chosen to be
close enough to zero not to let that happen. Otherwise the subzero regions discussed
before in section 8.2 present a problem. Even for the more stable SG2 simulation results,
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(a) (b)

Figure 8.3: A comparison of the TOAs of the fast marching method (a) and the DSBT
method (b). The DSBT method covers more data points in one time step. The steps in the
TOA are wider than in the one created by the fast-marching technique.

Figure 8.4: The concentration (colored curves) may underrun a constant threshold (sti-
pled line) if several time steps are evaluated.
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classification with a fixed threshold close to zero is not advisable because the distance
between the diffusion fronts of two successive simulation steps varies considerably. The
gap to the previous front gets narrower for each time step. I therefore evaluated other
time step dependent concentration thresholds TH for the determination of the diffusion
front.

TH = maxc(t) ∗ k: maxc(t) is the maximal concentration value encountered in the
simulation step t. k is a constant that describes the position of the concentration threshold
in relation to maxc(t). This method produces an expansion covering (almost) the whole
evaluated volume, depending on the chosen k (see Fig.8.5(a) and 8.5(d)). For small k
few time steps are enough to cover the whole volume. The flooded region, in this case, is
large for each time step, especially so for the first time step. Even if the k is adjusted, so
that the flooded regions are in general smaller, the region for the first step remains large
in comparison.

TH = maxc(t)k
t/const: This method results for const = 100 in an expansion covering

(almost) the whole evaluated volume. There is still some variance in the breadth of the
different TOA fronts (see Fig.8.5(b) and 8.5(e)).

TH = maxc(t) ∗ kt/tmax: This function will return a regular expansion but it will not
cover the whole volume in the same time the previous functions do (see Fig.8.5(c) and
8.5(f)).

In Fig.8.3 the thresholding of the concentration peak is illustrated in the lower row for
the first four simulation time steps on a vertical cut through a 2D concentration peak.
The threshold of the peak in time t is plotted as stippled line in the same color as the
concentration peak in time t. In the upper row the resulting TOA map for a maximum
of 20 time steps is shown. The coloring in both plots in each column is the same for
the individual time steps. The regions covered by a single diffusion step have individual
widths as can be seen in Fig.8.5. This is easily observable in the top views given in
Fig.8.5(a)-8.5(c).

To have even more controll over the distance between adjacent fronts, a histogram
based classification was evaluated. A concentration histogram for a given time step is di-
vided into equally sized concentration intervals (see Fig.8.6). Until a predefined minimal
number of points is reached, the interval corresponding to the next largest concentration
is flooded. This method guarantees a minimal number of flooded points per time step.
Only data points that were not flooded previously are considered on building the his-
togram to guarantee that additional points are flooded in each time step. This histogram
based method proved useful for the evaluation of the FEMLAB simulations since the
concentration threshold for these results needed to be very high to avoid problems with
value dips caused by non-monotone concentration decrease. For the more stable results
gained from SG2 the threshold TH = maxc(t) ∗ (1 − 99.9%)t/10 returns well spaced
diffusion fronts with a relative small region covered in the first time step and is less
computational intensive than the histogram based classification.
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(a) (b) (c)

(d) (e) (f)

Figure 8.5: The detection of the diffusion fronts illustrated on the example of isotropic
diffusion in 2D. The main difference between the methods is the size of the flooded region
for the individual time steps.

Figure 8.6: The method of histogram classification is illustrated here. The classification
threshold is chosen to guarantee a predefined minimal number of points to be flooded in
each time step.
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8.4 The Gradient Descend
In the next step of the algorithm the actual tract reconstruction takes place. A tract is
reconstructed by following a gradient, starting from a point on the outermost diffusion
front in the TOA map, and descending from there toward the simulation origin which
corresponds to the center of the initial peak (see Fig.8.7). The backtracking character
of this reconstruction handles fiber branching conveniently. The arms of the branches
reunite automatically on the way back to the origin. The maximal amount of branches
that is admissible in a reconstruction is predefined by the user. The number of allowed
branches determines the required computation time.

Figure 8.7: The gradient descend reconstructs a tract from the outermost front (dark red)
in the TOA map toward the simulation origin (dark blue). The different time stamps in
the TOA map are illustrated as colored bars.

A first idea for the computation of the gradients was to compute them directly on the
TOA map entries. The tract is then reconstructed by following the negative gradient
direction toward the simulation origin. When the distance between two adjacent fronts is
small enough, as for example in the fast-marching TOA maps (see Fig.8.3), this gradient
can be computed by central differences of the map entries. In the case of TOA map based
DSBT this is generally not the case.

An other idea is to connect the points on adjacent fronts with straight lines, in analogy
to the DSBT in [51]. This will result in a very large number of possible tracts because
all points in the radius given by the smoothing conditions might give a valid connection,
as illustrated in Fig.8.8. The gradient descend starts in a point on the outermost front
(red star). All straight connections with the next diffusion front, which do not violate
the smoothness criteria, need to be evaluated (red triangle). In the next step, all possible
connections to the next inner diffusion front need to be investigated for all points on the
diffusion front inside the triangle, defined by the smoothness conditions (green stars)
and so on until the diffusion seed is reached. Of all these possible tracts, the ones that
connect a point on the outermost diffusion front with the simulation seed, need to be
evaluated. The number of possible tracts (Tpossible) increases at most exponentially with
the number of time stamps (tmax) in the TOA map (Tpossible = N tmax , with N the number
of connections possible in the given smoothness restrictions). This number is reduced
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Figure 8.8: The increase in possible tracts for each simulation time step is illustrated
here.

due to the decrease in the surface corresponding to the next smaller time stamp in the
TOA but still it remains large. Not only does the large number of possible connections
between two adjacent diffusion fronts present a problem for the individual connections.
Bridging between diffusion fronts causes the tracking results to encompass more unlikely
connections that would have terminated in between the diffusion fronts. Actual pathways
might also be excluded because detailed curving between the diffusion fronts is ignored,
causing the reconstruction to violate the smoothness criteria. All in all, the reliability
of the tracking results is considerably reduced by such a straight connection in between
diffusion fronts that are several voxels apart.

Figure 8.9: The concentration values of all points flooded the first time in a time step
(blue striped region, between stippled lines) is used to compute the concentration values.
The region between the red lines was previously flooded and is therefore not considered
in this step.
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The question of interpolation on the TOA map needs to be addressed to get better
determined pathways between two adjacent diffusion fronts. The interpolation on the
sparse grid of diffusion front points is not trivial and requires additional computations to
generate the gradients on the TOA map time stamps. An alternative is the use of con-
centration gradients computed from simulation results (see Fig.8.9). The concentration
values from the simulation step that first reaches a point is stored to compute the con-
centration gradient later on with simple direct differences. This easy generation method
reduces the required amount of computations. The gradient in the simulation seed is set
to zero. The concentration gradient was preferred for this DSBT method because of its
easy and fast computability.

8.5 Problems With The Single Simulation Approach
Artifacts will occur if only one simulation is used to propagate the front over the whole
data set. There are two very prominent artifacts that prevent DSBT from expanding over
a whole data set in one go.

Firstly, the fact that the diffusivity outside the fiber tracts is nonzero because of noise
or anatomy causes bleeding of the diffusion fronts outside the actual tracts. The prob-
lems this bleeding may cause are illustrated on the example of two synthetic fiber path-
ways. In simple cases, as illustrated in Fig.8.10, the bleeding artifacts can be filtered
by thresholding the anisotropy similar to the tract termination criterion presented in sec-
tion 7.1.1.1. The simulation results are only considered in voxels with high anisotropy
(see Fig.8.10(b)). More complicated tract structures lead to more problematic bleeding

(a)

(b)

Figure 8.10: The simulation and therefore the TOA map will bleed into the background
if diffusivity outside of the fiber is not ideally zero (a). The background can be filtered by
thresholding the anisotropy, as shown in (b).
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artifacts. This is illustrated on the example of a spiral fiber in Fig.8.11. The diffusion
is following the tract nicely in the beginning but because of bleeding throughout the
background the inner part of the spiral is reached by the bleeding diffusion front before
the diffusion front that follows the spiral path reaches it. Filtering the resulting fronts
with an FA threshold will not greatly improve the results because faulty TOA entries
will remain on the tract. The faulty TOA entries will cause faulty gradients which will
not follow the path of the fiber that is to be reconstructed but the course of the bleeding.
The reconstruction will fail in these faulty TOA regions. Since the transition between
gradients following the fiber and the ones following the bleeding direction are in gen-
eral non-smooth, the tract reconstruction will be terminated where true and faulty TOA
entries meet.

(a) (b)

Figure 8.11: The simulated diffusion in (a) is bleeding into the background and from
there again into the spiral. (b) shows that the bleeding in the background can be masked
by anisotropy thresholding but on reentering the tract it will cause problems for the
tracking algorithm. The region where the diffusion is entering the inner winding of the
spiral through the background is indicated with an arrow in each image.

Anisotropy thresholding could in theory also be applied during the simulation pro-
cess or as a preprocessing step preventing ‘background bleeding’ completely. In the
preprocessing the tensor entries of a tensor in a voxel with low anisotropy might be set
to zero. The so applied anisotropy threshold might affect the simulation results since
the complete tensor information in the evaluated neighborhood is considered during the
simulation process. It needs to be evaluated how grave the difference in the simulation
results is and whether the early application of the anisotropy threshold shows advantages
over the thresholding used in the here presented implementation.

Secondly, the initial concentration needs to be increased to be able to cover the whole
data set with one simulation. For a dirac initialization this will increase the distance be-
tween the concentration value in the ROI and the background concentration of zero. This
will increase the artifacts, caused by the non-continuous dirac-like initialization. To gain
a more stable simulation result the initialization needs to have smoother transitions to the
background causing the previously discussed artificial expansion of the user defined ROI
(see Fig.8.1). This results in a gap between the reconstructed tract and the user defined

113



8 Diffusion Simulation Based Tracking

ROI that needs to be bridged. Tracking is usually performed in more than one direc-
tion starting in the ROI. Bridging the gap, which results from widening of the peak, can
cause non-smooth connections between the tract pieces. The phenomenon is illustrated
in Fig.8.12.

(a) TOA Map

(b) Discretized

(c) Example Tracts

(d) Connection To ROI

Figure 8.12: An illustration of the straight line bridging of the gap between the boundary
of the initial peak (dark blue on the right) and the original ROI (white dot). (a) shows
the TOA map of a simple fiber example. This map is discretized to the data grid in (b). In
(c) two exemplary reconstructed tracts are plotted in gray over the TOA map. In (d) the
trackts are connected to the original ROI with a straight line.

Fig.8.12(a) shows a TOA map which is the basis of the tract reconstruction. The
background is masked by anisotropy filtering. No tracking is possible here therefore no
TOA values are computed in the background. The individual time steps are marked with
individual colors. The center of each expanding front is the original seed (white point).
The fronts are therefore less curved the further they are away from this seed. Due to
discretization the fronts run in parallel to each other (orthogonal to the axis of the fiber)
from the second times step onwards. The discretization eliminates low curvature of the
individual fronts. In Fig.8.12(c) two exemplary tracts are shown overlayed on the TOA
map. The tracts run smoothly until they reach the outer boundary of the initial peak
(dark blue region on the right). The gap between the boundary of the initial peak could
be bridged with a straight line as illustrated in Fig.8.12(d) by the dotted extensions of
the fibers. For the tract that runs in the center of the fiber the straight connection to the
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original ROI is a direct extension of the tract and no smoothness criteria are violated.
This straight connection with the original ROI is not necessarily smooth as illustrated on
the second fiber in Fig.8.12(d). An angle a exists between the reconstructed tract and the
straight line connecting the tract to the original ROI. If this angle a is to large (larger than
the smoothness criteria permit) the reconstruction cannot be smoothly connected to the
original ROI by a straight line. This gap could in theory be bridged with the concentration
gradient of the initial peak but this connection will not depend on the underlying anatomy
because the peak has not yet started to diffuse. The concentration gradient can therefore
not establish reliable connections with the user defined ROI.

8.6 Successive Simulations
To overcome the problems of the single simulation approach, successive simulations are
performed on subgrids which cover a small region in the data set. The definition of a

Figure 8.13: The subgrid is a small region in the data volume.

subgrid is illustrated in Fig.8.13 in 2D. Lx is the length of the data grid in X-direction
(Lx = #x∆x with #x the number of voxels and ∆x the size of the voxels in x direction).
Lxsub is the length of the subgrid, which is smaller than the data grid (Lxsub = αLx with
α ≤ 1). Ly and Lysub are defined in the same way. Throughout the tract reconstruction
the size of the subgrid is fixed for all simulations.

The subregions need not have the same voxel resolution as the original data set but
can be regridded to any resolution. Therefore, α can be chosen arbitrarily. As mentioned
before in the description of the SG2 simulation solver in section 8.2.2, the accuracy of
the simulation results increases with an increase in subgrid resolution that is the number
of voxels in the subgrid #xsub in each dimension because the resulting reduction in the
individual subvoxel volume corresponds to a reduction in the control volume size. The
subgrid resolution #xsub is the same for all subgrids in a tract reconstruction.

In the tract reconstruction the simulation is now evaluated on overlapping subgrids.
The first subgrid is constructed to have the centroid of the user defined ROI voxel as
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center. On this subgrid, all steps of the reconstruction are performed (section 8.2-8.4).
The end points of the tract pieces that were reconstructed in this region are used as
future simulation seeds. For each of these future simulation seeds a new subregion with
a simulation seed as centroid is defined. On this new subgrid all steps of DSBT are
also evaluated. The corresponding tract piece end points are again considered as future
seeds. In this fashion successive simulations are performed along the fiber that is to be
reconstructed until DSBT has evaluated all future simulation seeds.

The tract pieces are later on concatenated to form the whole fiber tract reconstructions.
The successive evaluation is illustrated in Fig.8.14. The reconstruction starts at the left-
most black dot which depicts the original ROI. The red line represents the reconstructed
tract. It consists of individual pieces that are connected at the black dots which repre-
sent the simulation seeds. The simulation results are represented in this illustration as
black lines that give the outermost diffusion front. Points that would cause the tract to
turn back toward the last simulation seed are excluded from the evaluation, because the
smoothness criteria do not allow sharp turns in the tracts. The plane that divides the sim-
ulation results into points that are ignored (stippled line in the second simulation result)
and points that need further processing (black line), is depicted by a dotted black line.
The arrows that are attached to this line indicate the side of the plane that contains the
points that are to be further processed. The simulations can have multiple extrema as
illustrated on the right of Fig.8.14. Multiple extrema will cause branching in the tract.

Figure 8.14: This graphic illustrates the successive evaluation of the diffusion simulation
on small subregions. The simulation results are depicted as black lines that represent the
outermost diffusion front. The black dot marks the simulation origin. The red line stands
for the reconstructed tract piece. From the second simulation onward, the number of
points, that can be part of a valid tract, are reduced because of the smoothness criteria.
The reduction of the points is illustrated with the dotted black cutting plane. The arrows
attached to this plane indicate, which part of the diffusion front will be considered in the
evaluation.

To avoid that the boundary condition (concentration is zero on the boundary; see sec-
tion 8.2.2) affects the simulation results that are used for further processing in the recon-
struction a boundary of #b voxel is chosen to surround the subgrid that is used in the
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tracking #xuse as illustrated in Fig.8.15. The subgrid voxel (also known as subvoxel)
resolution in each dimension is, therefore, #xsub = #xuse + 2#b.

For the SG2 sovlver #b = 6 was chosen. This is more than enough since this solver is
very accurate and the boundary only affects the voxels next to the boundary in a dramatic
way. With the SG2 solver the effect of the boundary condition is less dramatic than the
one in the FEMLAB solver, which requires a border of at least 10 subvoxel in each
direction.

Figure 8.15: To avoid effects of the boundary condition a border is introduced to the
subgrid.

8.6.1 Known Problems
In the next paragraphs I want to discuss some known problems of the successive evalu-
ation of subgrids and their solutions. The problems can usually be solved by tuning the
parameters of the tracking algorithm.

8.6.1.1 Branching in the First Simulation

To controll the computation time the maximal number of branches in each subgrid eval-
uation is fixed for the reconstruction. Only the first few points, in a list sorted according
to their distance to the seed in descending order, are considered as future simulation
seeds. Points with the same distance from the seed that exceed the permitted number of
branching are ignored.

If the amount of branching is restricted to, for example, two branches it is highly
probable that two points that are close to each other on the diffusion front are chosen
as seeds for further simulations. This is not a problem for the reconstruction in later
subgrid evaluations but for the initial subgrid this could lead (in the case of an ellipsoid
diffusion profile) to a dominance of one of the directions corresponding to the principal
diffusion orientation over the other since the distance from the original seed points is
usually the same for both directions and a small region surrounding the extrema. The
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number of allowed branches was, therefore, increased for the first simulation to increase
the probability that all major diffusion directions are considered.

The selection of future seed points is in part chance because only a fixed number of
points is chosen depending only on their distance from the simulation seed, not their
actual position. This behavior could be improved if further criteria are used to select
the future seed points. For example, a minimal distance between the points could be
enforced or a local minimum in the surface of the outermost diffusion front could be
used to separate two future seed points. A weighting of the distance with FA value in the
possible future seed could also be used, so that tract pieces ending in more anisotropic
regions are preferred. This should keep the tract closer to the more anisotropic center of
the fiber.

8.6.1.2 Falsely Isotropic Diffusion Simulation

The simulation parameters (duration of a single simulation step and number of these
steps) have to be tuned with care. A small number of short simulation steps may result
in falsely isotropic TOA maps if the anisotropy is not very strong, since a certain amount
of change in the position of the simulated diffusion is needed take effect on the extracted
diffusion front that is stored in the discrete TOA map. If the change in a simulation time
step to small (less than a voxel) this change will not register in the TOA map.

DSBT can (to some extend) still reconstruct some fibers on isotropic TOA maps and
will not terminate straight away as other tracking algorithms do if their parameters are
chosen inadequately. The FA value of the measured diffusion tensors do not determine
the falsely isotropic TOA and therefore are not necessarily low. This is the reason why
no tract termination criterion is violated in the beginning of the reconstruction and the
reconstruction is not aborted. The reconstruction starts in the first simulation by selecting

(a) straight fiber (b) curving fiber

Figure 8.16: When the simulated diffusion is isotropic, the fiber will be reconstructed as
straight line until a boundary is reached. The effect is most prominent in curving fibers
(b).

the points on the isotropic diffusion front by chance because all points have the same dis-
tance to the seed point. From the so selected points the tracking will continue in a straight
line until the border of the fiber is reached (as illustrated in Fig.8.16(b)). Here, the re-
construction will change direction and follow another straight line until it meets another
fiber boundary or it terminates because smoothness criteria are violated. The smoothness
criteria that are applied to the tracts prefer straight reconstructions and therefore will en-
force, if possible, the selection of points on a straight path as future seeds. Especially
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in straight fibers (see Fig.8.16(a)) it is almost impossible to determine if the simulated
diffusion was isotropic from the reconstructed tracts. Even in curving tracts it is in ac-
tual reconstructions not always obvious. To avoid falsely isotropic simulation results the
simulation time and the number of simulation steps need to be chosen appropriately. A
good choice is a minimum of 20 simulation steps with a simulation time of 0.001s which
covers an isotropic subgrid corresponding to 15 × 15 × 1.6 data voxels in the synthetic
datasets evaluated in the results section 8.9.

8.7 Tracking Acceleration
The computation time for the complete reconstruction grows exponentially with the in-
crease in simulation seeds, i.e. branches, for this tracking algorithm. To reduce com-
putation time, the number of simulation seeds needs to be minimal. A first step in this
direction allows only a low number of branches for the tract reconstruction. This does
reduce the total computation time dramatically but even with a low number of branching
(allowed branches = 2), the total computation time is dependent on the tract length and
can be several days, with a simulation time of approximately 43s on a subgrid (see sec-
tion 8.6 for more on subgrids) that covers 15 x 15 x 1.6 voxels in a regridded resolution of
65 x 65 x 65. The tracking time on the so computed simulation results is approximately
0.117s.

The isotropic regridding of the subgrid results in a finer resuolution in Z-direction in
comparison with the X- and Y-direction. In the reconstruction of 3D geometries this
might bias the tracking results. For the here presented theoretical evaluation it has no
effect.

All evaluations were performed on a PC with on an Intel Quad-Core Xeon E5320 pro-
cessor with 1.86GHz and 4GB RAM. Only one processor was used for each evaluation,
parallel processing could therefore also provide further acceleration of the algorithm.

To accelerate the evaluation on a single processor more termination criteria were de-
veloped, which will be discussed in the following. It is important to note that the aim of
these criteria is the reduction of computation time, not the elimination of anatomically
improbable tracts. When the computation time is irrelevant, more accurate results might
be achievable without the following criteria.

8.7.1 Subgrid Resolution
The speed of the simulation is dependent on the resolution of the subgrid, that is the
number of subgrid voxels. The actual resolution of the subgrid in the data dimension is
assumed to be constant (10% of the datagrid dimension). Subgrid resolution here means
the number of subvoxels in each dimension. A simulation time step of 0.001s and and
20 successive simulation steps are used in this evaluation. For an isotropic subgrid res-
olution of 65 a complete simulation takes approximately 25s. For an isotropic subgrid
resolution of 45 it takes approximately 12s and for a subgrid resolution of 33 approxi-
mately 5s. The time that is required for the tract reconstruction on the simulation results
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is always considerably less than 1s. It is approximately 0.1s for an isotropic subgrid res-
olution of 65, 0.03s for a resolution of 45 and 0.005 for a resolution of 33. The number
of subvoxels will determine the stepsize in the gradient descend which corresponds to
one subvoxel length. The higher the subvoxel resolution, the smaller the steps. The time
needed for the complete evaluation naturally increases with the number of subvoxels
since this increases the number of points to be processed. One has to find a good trade
off between subvoxel resolution and reconstruction time. Usually an isotropic subgrid
resolution between 33 or 45 is sufficient. The number of subvoxels should be odd and to
allow the maximal use of multigrids it should ideally be 2c + 1 (with c a constant).

The size and resolution of the evaluated subgrid needs to be chosen to match the other
simulation parameters. If it is too small or the resolution is too low, most of the sim-
ulated diffusion fronts will be discarded since only those fronts are considered that lie
completely inside the evaluated subgrid (without considering the subgrid border) to avoid
influence of the border conditions and to be able to consider the complete shape of the
front. The influence of the subgrid resolution on the tracking results is also discussed in
section 8.9.1.2.

8.7.2 The Similarity Tract Termination Criterion
This tract termination criterion is used to reduce the number of similar tracts in the re-
construction. If two tracts are considered similar they are merged so that only one tract
is further propagated.

If two tract pieces end in the same data grid voxel they are tested for similarity. To
determine the similarity the last few steps in both tract reconstructions are compared.
If the distance between the tracts in these few steps is below a given threshold they
are considered similar. In this case the tracts will be merged in this point and continue
along the same path. The tracking needs not be further propagated for both tract pieces
simultaneously because they will follow (approximately) the same path. The tracking
is continued on the first tract piece reaching the point of merger. The reconstruction is
aborted at the first simulation seed after the tracts overlap for tracts which will reach the
point of merger at a later time in the reconstruction.

The abortion of similar tracts will influence the results because similar tracts are not
necessarily completely equal from the point of merger onward. Detailed tract variations
are lost because one of the tracts is aborted, if two similar tracts are merged. My in-
vestigations did show that this kind of tract reduction does not affect the reconstruction
severely on the evaluated synthetic data sets as is shown later on in section 8.9.1.1. DSBT
with the similarity tract termination does still reconstruct the fibers completely but not
with as many individual tracts.

The merging of tracts is illustrated in Fig.8.17 where two tracts merge because the dis-
tance d is smaller than a chosen threshold Cs. The tract on top is aborted after the merger,
the lower one continues. The simulation seeds are again given by black dots (similar to
Fig.8.14) and the reconstructed tract pieces are given by red lines. The direction of the
successive reconstruction is indicated by small black arrows on dotted lines that deter-
mine which parts of the simulation results are to be considered for the reconstruction.
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Figure 8.17: Merger of the path of two tracts that are similar (d < Cs).

This is implemented with a map containing all processed simulation endpoints and the
corresponding reconstruction keys, which identify the reconstructed tract piece. When a
reconstruction of a tract piece is finished, the endpoints that are to be added to the queue
of simulation seeds are compared to this map. If there is an entry, the reconstructions
might be similar. The endpoint of the similar tract is not added to the queue awaiting fur-
ther processing and the tract is classified as aborted. The classification is also described
in Alg.:1. Here tract[] is an array containing the points of the current tract piece.

Algorithm 1 Similarity (tract, previouslyReconstructedTracts)
1: endVoxel = tract[end]
2: reference = previouslyReconstructedTracts[endVoxel]
3: if reference is empty then
4: return false
5: else
6: for i = 0 to 2 do
7: p1 = tract[i]
8: p2 = reference[i]
9: if |p1, p2| ≥ Cs then

10: return false
11: return true

The array reference[] contains a tract the was previously reconstructed and ends in
the same data voxel. The map previouslyReconstructedTracts[] contains
all reconstructed tract pieces. The tract pieces can be accessed by the voxel they end
in (endVoxel) which is the identifying key in this map. If no previous reconstruction
ends in the same voxel as the current one reference will be empty. In line 6 to 10
of Alg.:1 the last three reconstruction steps on both tract pieces are compared. In line 9
|p1,p2| stands for the distance between the coordinate vectors of p1 on the current
tract and p2 on the previously reconstructed tract. If Alg.:1 returns TRUE the recon-
struction continues for both tract pieces. Otherwise the reconstruction for the current
tract piece is aborted because it is merged with the previously reconstructed tract piece.
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The criterion was evaluated on a synthetic branching fiber from the PISTE data sets
[25]. More information on the data set is given in the results section 8.9. For Cs =
1e−4 the number of aborted tracts is approximately three percent of the total number of
reconstructed tracts. The number of abortions increases to approximately ten percent for
Cs = 0.1. The total computation time for the reconstruction is still several days with an
isotropic subgrid resolution of 33. The threshold was further increased to Cs = 1, which
led to an abortion rate of approximately 90 percent and a computation time of 8.5 hours.
This also drastically reduces the number of tracts. I chose Cs = 0.5 for the evaluation
because this value presents a good trade-off between the number of reconstructed tracts
and speed. The effect of the similarity threshold on the tracking results is also discussed
in section 8.9.1.1.

8.7.3 Global Smoothness Tract Termination
A global smoothness criterion was introduced to accelerate DSBT on the synthetic data
sets. This criterion is used to eliminate tracts with strong curving by thresholding the an-
gle between the averaged tract piece directions (see Fig.8.18). This criterion will reduce
the number of tracts, thereby reducing the computation time.

α

pp_seed
p_seed

seed

d
1

d
2

Figure 8.18: The global smoothness depends on the angle α between the average tract
directions di. The first tract reconstructs a path between pp seed and p seed. The second
one starts in p seed and ends in seed.

The average tract direction vector di (i ∈ 1, 2) is computed by subtracting the coor-
dinate vectors of the end point and origin of a tract piece. The average tract direction
vector is normalized to a length of one (di = di/|di|). The dot product of the average
normalized tract direction vectors of two adjoining tract pieces is related to the angle α
separating them (8.8).

cos(α) = d1.d2 (8.8)

To guarantee a maximal angle between two tract pieces, the tracts are terminated if
cos(α) > TH . To allow all kinds of curving tracts, the threshold TH should equal
zero. To allow no curving, it should be one. Tract pieces that do not satisfy this global
smoothness condition are discarded.

This criterion does not reduce the number of tracts as dramatically as the similarity
threshold. The improvement of the computation time, therefore, is relatively small. The
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global restriction of curving might prevent the reconstruction of the strong curving fiber
pathways. This restrictive parameter therefore needs to be carefully tuned. The expected
advantage of the restriction needs to outweigh the effect on the tracking. In practice this
criterion is not very effective. Only few tracts are terminated even if the threshold is high
(TH = 0.9 corresponds to a maximal angle of 25.8 degrees). The gain does not justify the
additional computation time required to apply this criterion. It was therefore rejected.

A variation of this criterion might be usable to restrict branching in regions of crossing
with a relatively small angle between the crossing fibers. In such cases the tracking will
follow all possible directions from the region of crossing, causing the reconstructed tract
to branch and generate false positive connections. An example can be seen in section
8.9.3. The criterion would need to use the mean direction over several simulations, ren-
dering the tract less flexible. The advantage of such a restrictive criterion needs to be
carefully investigated in the future.

8.7.4 Look-Up-Table
The reconstruction with DSBT is compared to the SLT method very time consuming. To
accelerate the actual tract reconstruction, the simulation results for all possible subgrids
(one for each voxel in the data set) can be computed in a preprocessing step. This reduces
repeated computations of simulations originating in the same voxel. This is especially
important for extensive evaluations with multiple ROIs on a single data set. The pre-
computed subgrid results are stored in a look-up-table (LUT). The ideal LUT for DSBT
would contain the complete simulation results for overlapping subregions (similar to the
ones used in the successive evaluation described in section 8.5), one corresponding to
each voxel in the data set, thereby evading restriction of the tracking algorithms by re-
stricting the data. This, however, leads to extensive usage of hard disc storage space
(a little over 30 GB for a 192x192 pixel slice with subregions containing 103 data grid
voxels (subgrid voxel size = data grid voxel size) and evaluated for 20 simulation steps),
rendering the ideal LUT unsuitable for the goal of efficient fiber tracking on commonly
available computers. To reduce the amount of storage needed, a TOA map is computed
from the simulation results and stored for each subgrid instead of the original simulation
results (TOA-LUT). The whole simulation result for a subgrid with an isotropic subgrid
resolution of 10 and 20 time steps consists of 20.000 concentration values (type double)
plus 20.000 time values (type float), whereas the TOA map only contains 1.000 time
values (type float). Additional gradients contain 3.000 values (type float). Using a TOA-
LUT with additional gradients therefore saves approximately 93 percent of the storage
needed per subgrid.

The TOA map in a subgrid with low diffusion contribution in the simulation seed
(centroid) is not important for the reconstruction. Its contribution to the reconstruction
(if there is one) is covered in the neighboring subgrids with stronger diffusion profiles
that also contain this voxel with low diffusion contribution. The computation time for an
entry corresponding to a subgrid with low diffusion contribution, evaluated for second
order diffusion tensor data in the TOA-LUT, is roughly 24 seconds in Matlab/Femlab
and approximately 2 seconds in SG2.
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To make the LUT computation even more efficient means to identify these low diffu-
sion contribution subgrids to avoid computation of superfluous entries need to be defined.
For the identification of low diffusivity subgrids, the diffusion tensor corresponding to
the simulation seed (centroid) of each subgrid needs to be classified according to the cor-
responding diffusion profile. The simulation seed has a large influence on the diffusion
inside a subgrid because this is where the initial concentration peak is defined for the
simulation (see section 8.2). The voxels surrounding the simulation seed in the subgrid
have their own corresponding LUT entries, for which they are the centroid, and therefore
need not be considered in the classification of the current subgrid.

There are several choices for the classification parameter. One possibility for the clas-
sification of diffusion tensors is the mean diffusivity (see (4.10)). Another way to clas-
sify the diffusion in this context is the fractional anisotropy (see (4.12)). In fiber tracking
isotropic regions have low fractional anisotropy and are of no interest. In the tracking
process a fractional anisotropy threshold is used as termination criterion for reconstructed
tracts. When this parameter is set in the LUT, it should be selected sufficiently low be-
cause it can not be lowered later on without recomputation of the LUT. The anisotropy
threshold for the elimination of surplus LUT entries cannot exceed the threshold used for
tracking.

The filtered LUT will be irregular, meaning that not every voxel in the data set has
a corresponding LUT entry. This irregularity has to be considered when tracking is
performed on the LUT data. For the tracking process only ‘reachable’ LUT-entries are
important. An entry is reachable if at least one of its 26 possible neighbors on the 3D data
grid exists. The application of the previously discussed filtering criteria make it possible
that LUT-entries have no neighbors. These isolated subgrids can be eliminated prior to
LUT generation with a simple preprocessing step. The filter criterion is a threshold for
the a scalar diffusion index used to eliminate surplus LUT entries. This index can be
easily computed for the whole data set. If for a given voxel all 26 neighbors have index
values below this threshold, the voxel is isolated. The isolated voxels are disregarded in
the LUT.

The LUT contains only entries for non-isolated subgrids with high diffusion index
values. This will save computation time by reducing the number of unnecessary simula-
tions as well as storage space. The computations for the LUT are still time consuming
and therefore only advisable for datasets requiring more extensive connectivity investi-
gations that evaluate the tracking algorithm in several ROIs.

8.7.5 Propagator Approach
Another possibility to accelerate the tracking replaces the computationally costly simu-
lation step with a simpler evaluation of the propagator. The propagator can be used as a
crude approximation of the diffusion front corresponding to a short simulation step. For
the standard second order tensor, the propagator is an ellipsoid. This ellipse has only one
dominant orientation when it is cigar shaped and an infinite number of equally dominant
directions in any other case (disc or sphere). The algorithm would work similarly to the
SLT method and also have the same problems (see also sections 7.1.1.2 and 8.9). The
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advantage of handling, for example, crossing fibers cannot be resolved by this kind of
propagator approach since the propagators in the region of crossing do (in general) not
correspond to the direction of the fiber tracts. An example is given in Fig.8.26, where the
orientation of the ellipsoids is the average of the two orientations of the ellipsoids that ac-
tually correspond to the fiber tracts. The fibers that are reconstructed from the propagator
can only follow this false orientation. The distortion can be reduced for small regions of
crossing by interpolation of the propagators. The distorted orientation can be somewhat
corrected by the interpolation. In the case of orthogonal crossing the propagator can be-
come disc-shaped. In this case it would be impossible to determine a dominant direction
from the propagator. Two points on the surface of the propagator would be chosen by
chance. I rejected the idea of a second order tensor propagator based DSBT variation
because all the advantages this method has over SLT, especially the handling of crossing
and curving tracts (see section 8.9 for a comparison of the reconstruction results), would
be lost.

Propagators for more advanced diffusion representations might overcome these prob-
lems. The advantage of such a propagator approach over a simulation based reconstruc-
tion needs to be investiagted.

8.8 Implementation
The implementation follows the three steps of the DSBT algorithm that were presented in
section 8.2-8.4. Each step is implemented in its own class. An overview over the classes
is given in Fig.8.19. The individual steps are coordinated and information is passed on
in the main DSBT method. A more detailed description is given in the flow chart 8.20.
Here, the class structure is color coded. This makes it easier to determine, which step
is performed by which module of the implementation and where the modules interact.
This chart also gives a short overview over the individual steps of the algorithm that were
discussed in more detail in the previous sections.
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Figure 8.19: An overview over the class structure of the implementation.

8.9 Tracking Results
The DSBT algorithm introduced here was evaluated on synthetic DTI data for validation
purposes. The Phantom Images for Simulating Tractography Errors (PISTE) proposed
and published by Deoni and Jones [25] were used because they cover a large range of
fiber tracts which may cause problems for commonly used reconstruction methods. The
tracts were generated by simulating a DTI measurement with 30 DWI and 4 unweighted
images. A ForcePairs GES with 30 directions was used. The TE in the simulated mea-
surements was 90ms. A b-factor of 1000s/mm2 was chosen. The T2 time on the tract is
65ms and 95ms in the background. The data grid for the here evaluated data sets has a
size of 150 × 150 × 16 voxels with isotropic voxel side length. For the diffusion simu-
lation of DSBT the preprocessed tensors were used as input. Some of the reconstructed
geometries are presented in the following. To demonstrate the big advantages that DSBT
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Figure 8.20: A flow chart of the algorithm. The steps are color and shape coded, ac-
cording to the class they belong to: green - rectangular corresponds to the main DSBT
method; red - round rectangles correspond to BuildMapSG2; dark red - oval, corre-
sponds to the SG2 simulation and blue - stretched circle corresponds to GradientDe-
scendOnFront. The small red signs (F) mark the path taken when the loop condition or
the condition in the corresponding diamond is false, the green signs (T) mark paths for
true conditions.
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has over commonly used tracking methods and also to illustrate the problems of the in-
dividual fiber constellations, a comparison of the tracking results of DSBT and SLT is
included in this discussion of DSBT tracking results.

In the following evaluations the DSBT algorithm allows tenfold branching in the orig-
inal seed voxel. In other voxels the branching is restricted to two. The simulation was,
unless stated otherwise, evaluated on a subgrid of 33 voxels, including a margin of six
voxels on all sides, the total subgrid covers a region of 15 × 15 × 1.6 voxels (α = 0.1)
in the original data resolution. The FA threshold for the tracts was set to 0.35 (FA in the
background is 0.3). A threshold of 0.8 was chosen for the tract smoothness (see section
7.1.1.1). The similarity threshold for the acceleration of the reconstruction was 0.5 for all
simulated data sets, unless explicitly given otherwise. The simulation time was 0.001s,
evaluated for 20 time steps.

The SLT results used to contrast the DSBT reconstructions were produced by DTI-
Studio (v2.4). This program was not able to reconstruct tracts for ROIs with a fixed size
of one voxel. The ROIs need to have a fixed size of two-by-two voxels inplane (XY)
which is larger than the single voxel ROIs used by DSBT. The SLT algorithm considers
every voxel in the dataset as a start for the reconstruction and reconstructs one tract per
voxel. The results are then filtered with a selected ROI, so only tracts that connect to the
ROI are included in the reconstruction. An example diffusion parameter file, containing
all tracking parameters, is given in appendix B.

The coordinate of the ROI voxel for the DSBT evaluation is given as 〈x, y, z〉. The
position of the ROI is given in Matlab coordinates which start from 1 instead of 0 (C++).

8.9.1 Branching
The simulated fiber in this data set consists of a branching fiber. Each arm of this fiber
has an individual FA value as can be seen in Fig.8.21(a). The ROI was placed on the non-
branching end of the fiber as shown in Fig.8.21(a). The reconstructed tracts are plotted
in red over the FA map of the reconstructed fiber. The single voxel ROI for DSBT

(a) ROI (b) DSBT (c) SLT

Figure 8.21: The tracking results for a simulated branching fiber.

〈134, 70, 8〉 lies completely inside of the two-by-two voxel ROI used by SLT. 8.21(b)
gives the results for DSBT and 8.21(c) for SLT. The SLT results can only reconstruct
one arm of the branching fiber with 81 tracts, whereas the DSBT algorithms reconstructs
both arms with 3593 tracts.

The SLT tract is a straight line without any detail curving. The DSBT reconstruction
is in general not as straight as the SLT results. The simulation results allow slight varia-
tions of the principal diffusion directions. The individual tracts can therefore be slightly
curved. This also leads to wider reconstructed paths (see Fig.8.21(b)) because curving
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leads to detailed differences in the tracts and may therefore lead to more reconstructed
tracts (not filtered by similarity threshold). The differences will accumulate along the
tract path. In real data, fiber bundles are usually narrower than in the here evaluated
synthetic data sets. The reconstruction should therefore not have room for much curving
inside the fiber pathway, which is why the curving inside the tract is not considered a
disadvantage.

8.9.1.1 Influence Of The Similarity Constraint

The similarity threshold causes one of two tracts whose differences are smaller than
the given threshold to abort reconstruction (see also section 8.7.2). This pruning of
the tracts will diminish the details in the reconstruction and improve the reconstruc-
tion time. Usually, the speedup outweighs the loss of detail but one needs to be aware
of this tradeoff. The absolute number of cropped tracts is not important for the advan-
tage. The earlier the tracts are cropped, the higher the speedup since each tract piece
allows for m new tracts, with m the number of allowed branches. The gain is there-
fore mlengthuncut−lengthcut ∗ reconstructionT ime(tractP iece). The effect of the similarity

(a) Similarity = 0.5 (b) Similarity = 1.0

Figure 8.22: The influence of the similarity termination criterion on the reconstruction.

threshold is illustrated on the comparison of an evaluation with a similarity threshold of
0.5 in Fig.8.22(a) and one with a threshold of 1.0 in Fig.:8.22(b). For the higher thresh-
old the number of tracts is reduced as expected but still both arms of the branching tract
are reconstructed. With a similarity threshold of 1.0 the reconstruction of 937 tracts (in-
cluding 695 cropped ones) is complete in 2 hours and 41 minutes. With the reduced
threshold of 0.5, the reconstruction of 3593 tracts (including 2346 cropped ones) takes 8
hours and 44 minutes. The trade off between the number of tracts, level of detail in the
reconstruction, and speed needs to be considered on tuning this threshold.

8.9.1.2 The Influence Of The Subgrid Resolution

The influence of the subvoxel size, that is the reconstruction step length, on the results
is illustrated on the example of the branching fiber in Fig.8.23. All results in presented
in this figure used the same tracking parameters except for the subgrid resolution. The
subgrid resolution determines how many subvoxels are contained in the subgrid of fixed
size in the data domain. The larger the sub grid resolution, the smaller the subvoxels.
The subvoxels influence the length of the reconstruction steps on the reconstructed tract
pieces because the step is equal to the maximal subvoxel side length. All evaluations in
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(a) subgrid size 33 (b) subgrid size 45 (c) subgrid size 65

Figure 8.23: The influence of the subvoxel size on the results illustrated on a simulated
branching fiber.

Fig.8.23 had a 6 subvoxel boundary surrounding the subgrid. For the tracking therefore
only 21, 33 and 53 subvoxels were used.

The corresponding computation times for a single subgrid evaluation are 4.7s/0.005s,
14.9s/0.026s and 43.5s/0.117s for simulation/tract reconstruction. The evaluation takes
longer for the higher resolution because more subvoxels need to be processed. The sim-
ulation takes only between 1.3e−4s and 1.6e−4s per subvoxel. There is no significant
difference in the time required per subvoxel but the time required to process the same
region in the data domain (one subgrid) varies considerably with the resolution.

The number of reconstructed tracts is diminished with increasing subgrid resolution.
The reason for this is the interaction between subvoxel resolution and similarity con-
straint. With higher subvoxel resolution, the tracts are stopped by the same similarity
threshold earlier, thereby preventing more tracts than clipping further along the recon-
struction. The tracts on a high resolution subgrid are more similar because the points on
the outermost front (the possible future seed points) lie closer together in the data domain
because one subvoxel distance is less. A subvoxel in the isotropic subgrid resolution of
65 has size 0.23 × 0.23 × 0.025 in the data domain, whereas the subgrid resolution of
33 generates subvoxels of size 0.45× 0.45× 0.049. This causes the corresponding tract
pieces to be closer to each other as well, rendering them more similar. The similarity
constraint should therefore be tuned to match the subvoxel resolution of an evaluation.
A high subgrid resolution should be matched with a low similarity threshold.

8.9.2 Orthogonal Crossing
This data set contains two fibers crossing at an 90 degree angle. Each fiber has an in-
dividual FA value. The ROIs for the evaluation are chosen on the ends of the fibers as
illustrated in Fig.8.24(a). The ROIs for DSBT 〈134, 88, 8〉 and 〈88, 134, 8〉 are again
completely inside the ROIs used for the SLT evaluation. The reconstructed horizontal
tracts in the fiber with higher FA value (white in 8.24(a)) are plotted in red. The vertical
tracts originating in the second ROI on the fiber with lower FA is plotted in green.

The SLT method returns 183 filtered tracts with both ROIs (135 in the horizontal fiber
and 48 in the vertical one). DSBT reconstructs 158815 tracts in the horizontal fiber and
1534 in the vertical one.

The tracking along the vertical path (lower FA) with SLT stops in the region of fiber
crossing, as shown in Fig.8.24(c). The eigenvector of the tensors in this region is dom-
inated by the horizontal tract with the higher FA. This is also illustrated in Fig.7.2. The
second order diffusion glyphs in this figure (ellipsoid) are colored according to the di-
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(a) ROI (b) DSBT (c) SLT

Figure 8.24: The tracking results for two orthogonally crossing fibers.

rection of the corresponding principal eigenvector, red codes the horizontal orientation,
green the vertical direction. The glyphs on the two tracts outside the intersection are
very slim and cigar shaped. Approaching the region of crossing the effect of tensor av-
eraging is clearly observable in the widening of the glyphs to a more spherical shape. In
the intersection the dominance of the horizontal direction is only slight but clearly visi-
ble. This dominance allows the horizontal reconstruction to continue undisturbed. The
smoothness conditions do not allow the tract to curve at a sharp angle, which is why the
vertical tract stops and does not enter the horizontal fiber path.

DSBT reconstructs both fibers completely (see Fig.8.24(b)). This algorithm is not
based on principal eigenvalues, therefore the dominance of the horizontal fiber does not
prevent the reconstruction of the vertical tract. The green DSBT reconstruction of the
vertical fiber with lower FA value fans out in the region of crossing. The fanning is
caused by the dominance of the horizontal fiber. Without smoothness criteria the recon-
struction would turn from the vertical fiber into the horizontal one as soon as it reaches
the region that is horizontally dominated (center in Fig.7.2). The possible next diffusion
seeds on the outermost diffusion front need to be smoothly connected to the current re-
construction to satisfy the smoothness criteria. Therefore, only slow curving tracts are
possible. The path the tracts take across the region of crossing is ambiguous since the
direction of the extrema of the diffusion fronts, the horizontal, is excluded by the smooth-
ness criteria. The first few of the infinitely large number of points on the diffusion front
with equal distance to the simulation seed, satisfying the smoothness criteria, are chosen
as future simulation seeds. The front points with the same distance are ordered arbitrar-
ily, the point selection is therefore not deterministic. In a region, such as the crossing
in Fig.7.2, the details of the tracking results may differ but in a more global context the
two individual fibers will always be reconstructed. The tracts do not require different FA
values to be separable, opposed to the example reconstruction on a similar data set in
[51].

131



8 Diffusion Simulation Based Tracking

8.9.3 Straight Crossing
In this data set two fibers with individual FA values cross at an angle smaller 40 degree.
The ROIs are positioned at one end of each fiber as illustrated in Fig.8.25. The coordi-
nates for the DSBT ROIs are 〈138, 91, 8〉 and 〈137, 57, 8〉. The tracts originating in the
fiber with higher FA value are plotted in red and the ones reconstructing the fiber with
lower FA in green over the corresponding FA map.

(a) ROI (b) DSBT (c) SLT

Figure 8.25: The tracking results for a straight crossing fibers.

The SLT returns 228 tracts in total (18 red and 210 green). DSBT reconstructs 9626
red and 11785 green tratcs.

The smoothness criteria allow due to the small angle between the tracts a change of
fibers (from one arm to the other) in the reconstruction. In Fig.8.25(c) both SLT recon-
structions change the fiber in the region of crossing. No fiber is accurately reconstructed.
The path of the SLT reconstructions can be explained with a look at the diffusion tensors
in the crossing region (see Fig.8.26). The principal axis of the averaged tensors in the
region of crossing is horizontal, this region can therefore only be traversed in left-right
direction by the SLT method.

Figure 8.26: A detailed view of the tensors in the region of crossing. This plot was
generated with the TensorViewer of the MedInria software package [29].

In the DSBT reconstruction at least one fiber is reconstructed from beginning to end
(see red tract in Fig.8.25(b)). The red tract is pushed toward the fiber with lower FA in
the region of crossing because of the horizontal diffusion profile. A small portion of the
reconstructed fiber bundles which are close to the second fiber in the intersection will
branch into this fiber. The secondary branch is reconstructed until the fiber ends, leading
to a false positive connection with the bottom-left fiber end. The fiber with the lower
FA value is dominated in the region of crossing. The diffusion front is preferring the
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dominating fiber, therefore, the tract reconstruction that starts on the fiber with lower FA
(green in Fig.8.25(b)) will follow the fiber with higher FA after the crossing region. The
effect of the region of crossing is for DSBT not as dramatic as in the SLT reconstruction.
The false positive reconstructions could be filtered with multiple ROIs similar to the
brute force SLT approach shown in Fig.7.3 or with prior knowledge of the FA in the
individual fibers [51].

8.9.4 Curve Crossing and Kissing
In this section two fiber constellations are discussed. One is a dataset consisting of two
curving fibers which cross each other in a low angle. The other contains two curving
fibers that touch each other in the center. Both fiber pairs contain two fibers with indi-
vidual FA values.

The tensor profiles of these two cases are similar in the regions that contain both
fibers. This kind of fiber constellation is therefore termed ambiguous because two inter-
pretations of the tensor profiles (curved kissing and curved crossing fibers) are possible
in the region the fibers touch. The ambiguousness of the tensor profiles can be seen in
the tensor plots of both cases shown in Fig.8.27.

The FA map underlying the principal diffusion orientation (white lines) in Fig.8.27 are
color coded (see section 4.2.1.3). Red indicates a horizontal orientation of the diffusion
tensors. The background, where the FA is low in comparison no color coding is applied
(the background is black). The differentiation between these two cases is very difficult
for tracking algorithms. In both cases the merging tracts are represented by horizontal
tensors in the region the fibers touch. The FA value is different for the individual fibers.
They can, therefore, be visually distinguished in Fig.8.28(a) and 8.29(a).

The ROIs for the DSBT reconstruction for the curved crossing fibers are 〈130, 82, 8〉
and 〈122, 74, 8〉. The reconstructed plots for curved crossing fibers are for both recon-
struction methods colored in green if they start in the fiber with higher FA and red if they
start in the fiber with low FA. SLT returns 47 red reconstructed tracts and 13 green ones.
DSBT reconstructs 236 red and 337 green tracts.

The curved crossing fibers cross at a small angle, a change in fibers is therefore, as
discussed in section 8.9.3, possible without violation of the smoothness criteria. SLT
is not able to reconstruct any fiber accurately in this constellation. The dominant fiber
will change into the minor one after the overlapping region. The SLT result resembles a
kissing fiber constellation more than a crossing one.

DSBT reconstructs both fibers. Both fibers branch after the region of crossing resulting
in a false positive for each tract that could to be filtered with additional ROIs.

The ROIs for the DSBT reconstruction of the kissing fiber data set are 〈140, 69, 8〉 and
〈140, 86, 8〉. The reconstructed plots for curved crossing fibers are for both reconstruc-
tion methods plotted red if they start in the fiber with higher FA and green if they start in
the fiber with low FA. The SLT method returns 63 red tracts and 3 green ones. DSBT is
able to reconstruct 3852 red and 2342 green tracts.

For the kissing fiber data set the dominant fiber (higher FA, red tract) in Fig.8.29 is
accurately reconstructed with both tracking methods. The minor fiber (green tract) is not
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(a) Curved Crossing Position (b) Curved Crossing Detail

(c) Kissing Position (d) Kissing Detail

Figure 8.27: Curved crossing and kissing fibers have an ambiguous tensor profile. The
first column gives the position of the detailed plots in the second column in the data set.
The plots were created with the Camino software [21].

(a) ROI (b) DSBT (c) SLT

Figure 8.28: The tracking results for curved crossing fibers.

completely reconstructed by SLT.
In contrast, DSBT is able to reconstruct both fibers completely. The minor fiber will

split as the fibers are dividing again on the left of the plot. Some part of the green
tract will falsely follow the dominant fiber with higher FA, resulting in a false positive
reconstruction. This false positive can again be filtered by application of an additional
ROI for the green tract. The dominant fiber is accurately reconstructed by the red tract.

The ambiguity of the kissing and curved crossing fiber cannot be resolved by DSBT
but the fibers are opposed to the SLT reconstruction, both reconstructed in both cases.
The low angle between the two fibers allows for branching of the tracts into both fibers
in the region of crossing. The resulting false positives need to be removed by filtering
with destination ROIs.
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(a) ROI (b) DSBT (c) SLT

Figure 8.29: The tracking results for a kissing set of fibers.

8.9.5 Spiral
The last data set explored here contains a single spiraling fiber with high FA value. The
chosen ROI for DSBT is 〈129, 61, 8〉 as shown in Fig.8.30(a). Reconstructed tracts are
plotted red for both reconstruction methods. SLT returns 193 tracts for the chosen ROI.

(a) ROI (b) DSBT (c) SLT

Figure 8.30: The tracking results for a spiraling fiber.

DSBT reconstructs 23391 tracts.
Spiraling tracts are especially problematic for SLT. The curving is not accurately re-

constructed by this method. The SLT reconstruction stops after half a turn, as shown in
Fig.8.30(c). The length of the reconstruction is always half a turn, independent of where
tracking is started on the spiral. The abortion of the tract results from a continuous drift
toward the outside of the fiber pathway. SLT is not able to follow the relatively high
curvature of the fiber with its discrete reconstruction steps.

The DSBT reconstruction has less problems with the reconstruction and follows the
fiber further, as shown in Fig.8.30(b). The reconstruction did use an isotropic subgrid
resolution of 45 with a border of 12 subvoxels. There is no tendency to drift observably
and the spiral is reconstructed to the end. In the very end of the spiral, the random ten-
sor orientations prohibit further reconstruction as illustrated in the tensor plot in Fig.8.31.
The diffusion tensors are here depicted as cubes, the side lengths correspond to the eigen-
values. In the innermost turn the discrete tensor resolution is not able to follow the strong
curving fiber, so the very end of the fiber cannot be reached by the reconstruction.

8.9.6 Conclusion from the Comparison
The tracts that were reconstructed with DSBT curve more than the straight lined SLT
reconstructions. In my evaluation I considered a tract to be of good quality if it did
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Figure 8.31: The tensor glyphs of the inner end of the spiral tract show a random orienta-
tion that prevents further reconstruction. This plot was generated with the TensorViewer
of the MedInria software package [29].

reach the end of the synthetic fiber because no formal tract quality measures are known
from literature. Opposed to the SLT reconstruction, the DSBT reconstruction reaches
both ends of the branching fiber. It is therefore considered superior. DSBT also handles
curving and crossing fibers better than SLT. The quality of the reconstruction for crossing
fibers is largely dependent on the angle between the fibers. A relatively small angle
will lead to false positive reconstructions for DSBT, whereas the reconstruction fails
completely in SLT (not one fiber is accurately reconstructed, see Fig.8.25(b)). False
positives for DSBT means that the reconstruction might follow all of the arms from the
region of crossing. By application of additional ROIs the problem of false positives can
be resolved. The false positives are therefore not considered grave enough to negate
the correct reconstruction (in red) of one of the straight crossing fibers. The application
of filtering ROIs is common practice in fiber tracking. The reason why DSBT is able to
resolve the problematic regions where SLT fails is that it takes a larger neighborhood into
account when the direction for the next step is calculated. The neighborhood information
keeps the reconstruction from deviating from the fiber in regions of crossing and allows
smoother curving in the spiral fiber. A disadvantage for the DSBT is the large number
of required computations which translates into longer evaluation time. The considerable
improvement in the reconstruction warrants the investigation of further possibilities to
speed up the TOA map based DSBT method.

8.9.7 Discussions
In this section I would like to discuss possible interpretations of the tracking results and
possible extensions to more advanced diffusion models.

Probabilistic Interpretation of the Results

The results of a DSBT reconstruction can also be interpreted in a probabilistic context.
Similar to probabilistic tracking algorithms known from literature (see section 7.1.2).
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The number of reconstructed tracts connecting a data point to the ROI gives a measure
for the support of this connection by the data. To get a probability measure the num-
ber of tracts connecting a point with the seed point is divided by the total number of
reconstructed tracts.

Cropping of the tracts especially with the similarity measure (see section 8.7.2) will
influence the number of tracts passing through a voxel. The number of cropped tracts,
whose similar tract connects the investigated point to the ROI, needs to be added to the
tract count to establish the support for a connection.

Extending DSBT For Advanced Diffusion Models

As shown in section 4.3, new diffusion representations and models were recently devel-
oped to improve the handling of non-Gaussian diffusion in voxels that contain multiple
fiber populations. The superior modeling of diffusion suggests that more accurate track-
ing results could be derived from these models. Some attempts have been made to do
fiber tracking using advanced diffusion representation (see for example [18]).

My DSBT algorithm is based on a simulation of diffusion, the actual reconstruction
works only on the TOA maps. This algorithm will therefore reconstruct tracts from any
simulation result. I started exploring a simulation that uses more than the diffusion tensor
information [Mang08].

The basic idea for our approach is based on an ADC interpretation of diffusion. We
do not attempt to model the diffusion prior to the simulation, instead the ADC is com-
puted for each measured gradient encoding direction (4.1). These ADC values give the
strength of the diffusion in the corresponding directions. The ADCs for the individual
gradient directions are interpolated to generate a set of ADCs that corresponds to a fixed
equidistribution of directions used in the evaluation. This set of ADCs is computed for
each voxel in the measured data set and is used to determine the particle flux in the
data points. The resulting diffusion can be asymmetric (see Fig.8.32). Branching fibers
should therefore be resolvable even in single voxels. The interpolation is performed with
finite differences as illustrated in Fig.8.32. The approximation of the flux for the multi-
directional case of HARDI data sets is a direct extension of (8.6). The approximated flux
is given by:

∂uc

∂t
= k

Nd∑
d=1

[ADCf (uf − uc)]− [ADCb(uc − ub)]

h2
d

. (8.9)

u is the particle concentration in a certain point, k is a constant scaling factor, d is the
direction index and Nd is the number of evaluated directions. uf and ub are computed by
linear interpolation of the concentration values of the neighboring points (along the green
lines in Fig.8.32). ADCf is the interpolation of the ADCs in the evaluated direction d in
point c and the point corresponding to uf . The ADC corresponding to uf is generated
by linear interpolation of the ADC values in the neighboring grid points (along the green
lines in Fig.8.32). ADCb is similarly defined. The simulated diffusion is allowed to be
asymmetric since ADCf and ADCb need not be equal, opposed to the measured ADCs.
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Figure 8.32: The interpolations needed for the more advanced diffusion simulation are
illustrated here in a 2D scheme for one exemplary gradient direction d. The flux (8.9) is
estimated for the point in the center, marked with a yellow star. The points on the fiber
are given in blue, the ones on the background in orange. The 2D diffusion ellipsoid, cor-
responding to the second order diffusion tensor, illustrates the corresponding (Gaussian)
diffusion profiles. The ADCs, corresponding to direction d (ADCf ), and −d (ADCb)
are illustrated with red arrows. They are computed by linear interpolation, first between
neighboring data points along the green lines, and then along the gray dotted line.

The ADCs for the gradient direction (gray dotted line) are illustrated as red arrows of
different length in Fig.8.32.

The lack of modeling in this simulation approach is both risk and chance. As previ-
ously mentioned in the ADC discussion (see section 4.1), the ADC is a combined repre-
sentation of noise and signal. The simulation results might therefore be more susceptible
to noise. Since the ADC values are interpolated some of the random noise should be
canceled (see discussion of SNR in section 2.5.1). The effect of noise might therefore
not be very dramatic. The dependence of the tracking results on noise still needs to be
determined in more elaborate evaluations.
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In this chapter I want to summarize my findings. The results are ordered according to
their presentation in the previous text. In the second part of this chapter, open questions
to the individual subjects are presented and discussed.

9.1 Summary

9.1.1 Higher Order Tensor Models
I could show that by estimating the even and the odd order tensors in the HOT hierarchy
model [57] with separate equation systems, the minimal required number of encoding
directions for the HOT hierarchy, up to a tensor order of four, could be reduced from
31 (6+10+15 independent tensor elements) to 21 (6+15 independent tensor elements).
This reduces the number of required diffusion weighted measurements by over 30%. In
addition, I showed that two b-factors are sufficient to estimate the tensors for this HOT
hierarchy model. This reduced the required measurement time dramatically since the
method was previously only published using 10 b-factors. The optimal choice of these
two b-factors still needs to be determined.

The phase in EPI measurements is much too distorted to be of use for the HOT hier-
archy estimation. But still the even order tensors only hierarchy is a useful tool for the
investigation of heterodirectional voxels which contain multiple fiber orientations. Fiber
crossings can be adequately resolved and the fiber orientation is accurately reconstructed
opposed to the single HOT model [73].

9.1.2 Gradient Encoding Schemes
I showed that angular distance is not a good quality measure for GES quality. The evalu-
ation of several quality measures from literature showed that they are not suitable for the
evaluation of GES quality for higher order tensor models. The b-factor dependence of
quality measures, like the condition number, render a direct comparison between higher
order tensor models impossible because the HOT hierarchy requires, opposed to the sin-
gle HOT model, at least two b-factors greater zero (when a low number of encoding di-
rections (smaller 200 [57]) is used. The choice of the b-factors can gravely influence the
b-factor dependent quality indices. For the HOT hierarchy, a interdependence between
the two b-factors was observable. The single HOT model requires only one b-factor. The
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corresponding quality indices therefore change with the b-factor but the interdependence
of the chosen b-factors is no problem for this model. The different uses of b-factors allow
only intra model evaluation of the quality indices.

Different methods for the classification of GES were investigated, the most success-
ful method was the evaluation of the signal accuracy in section 6.7. This method can
be evaluated for all tensor models and is not only a tool for the classification of GES
quality but can also be used to investigate the model accuracy. This method supports
the results from all other evaluations, especially from the condition number evaluation
(section 6.4) and the gravity distance (section 6.5). It disqualifies Cond, Ana1 and Ana2
as best possible general purpose GES.

The second order tensor evaluation of the GES quality by classification of estimation
quality (section 6.6) showed that the ForceSingle GES is not well equipped for the second
order tensor estimation with less than twelve directions. This scheme is therefore not a
candidate for best all purpose GES.

My investigation of model accuracy shows the superiority of the Icosa and ForcePairs
GES. Of these two, ForcePairs is the only GES that is able to generate an arbitrary num-
ber of equally well distributed encoding directions, which is an advantage if the number
of directions needs to be minimized due to restrictions in the available measurement time.
This practical advantage led to my decision to favor ForcePairs over Icosa.

9.1.3 Fibertracking
In chapter 8, I introduced a new fiber tracking method which is based on the simulation
of diffusion and uses time-of-arrival maps to store the simulation results. I did show that
practical limitations prohibit successful tractography with only one simulation process,
even if a large number of simulation steps is evaluated (see section 8.5). One limiting
factor is the concentration on the simulated diffusion front. The virtual concentration
peak which will diffuse during the simulation process will get wider and shallower with
each simulation time step. Since the background concentration value is due to the numer-
ical solver never exactly zero, the diffusion front needs to be extracted by thresholding
the concentration value. At one point, the concentration on the diffusion front will be
indistinguishable from the background concentration, since the initial peak has a limited
hight. A second problem that occurs when DSBT tries to use only one large simulation
is bleeding of the diffusion front through the background. For example, in the recon-
struction of a tight U-shaped fiber starting in one leg of the U, the second leg can be
reached by diffusion which courses through the background (low FA) faster than by the
one following the U-shape. This leads to problems in the reconstruction (see Fig.8.11)
because the TOA and therefore the gradients will be faulty (not correspond to the course
of the fiber) in these regions of bleeding. To overcome the problem with single simu-
lation DSBT, I chose a series of successive simulations to reconstruct the tracts. The
simulation process is evaluated on a given subgrid. All steps of DSBT (simulation, TOA
map generation and gradient descend) are performed on this subgrid and the endpoints of
the so reconstructed tract pieces are used as future simulation seeds. The individual tract
pieces are smoothly connected at their fusion points (end = future seed). This restriction
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to a smaller evaluation region reduces the effects caused by bleeding and render a initial
concentration peak with limited hight sufficient.

This implementation of DSBT is very time consuming. One of the reasons for this is
that each simulation step requires several seconds computation time. The reduction of
the subgrid resolution accelerates the computation time because the amount of subvoxels
that need to be handled in a single simulation is reduced. This reduction, on the other
hand, results in larger reconstruction steps because of the increased suboxel size.

An advantage of DSBT is that it allows branching of the tract in each simulation. The
number of tracts and therefore the number of simulations increases exponentially (cs,
with c the number of allowed branches and s the number of steps).

Since the simulations are the most time consuming part of DSBT, I explored several
criteria for the reduction of tract pieces and thereby simulations (see section 8.7.2 and
8.7.3). The simulation cannot be replaced by computationally cheaper second order
diffusion propagator methods (see section 8.7.5) since this would reduce DSBT to a
streamline technique. I could successfully apply a similarity criterion to accelerate the
reconstruction (see section 8.7.2). This criterion will terminate the reconstruction in
a tract if its deviation from a previously reconstructed tract is smaller than a chosen
threshold. If extensive investigations are to be performed on a data set, a look-up-table
(LUT) containing the TOA maps can be generated to avoid computationally expensive
simulation during the investigation (see section 8.7.4). The computation of the LUT is
expensive and therefore only advantageous for extensive investigations of several fiber
populations.

I could show, on the results from synthetic fiber tracts, that DSBT is able to resolve
complicated fiber constellations. Especially curving, crossing and branching tracts are
resolvable with DSBT (see section 8.9). In the comparison with SLT results, the improve-
ment of the reconstruction with DSBT becomes more clear. SLT has, especially with
crossing and curving fibers, considerable problems which can be nicely resolved with
DSBT. The advantages in the reconstruction warrant further investigations to optimize
the speed of the evaluation. Especially parallel processing promises further speedup.

Fibers crossing in a small angle might cause branching in the reconstructed tracts. The
branches will follow every possible fiber direction, causing false reconstructions. These
false positive connections can be filtered by application of additional ROIs. The accurate
reconstruction in these complicated cases therefore needs some prior knowledge but is
still an improvement to SLT.

A particularly interesting field of research in the context of fiber tracking is tracking on
advanced diffusion representations or models (see for example section 4.3). DSBT has
the great advantage that the actual tracking is performed on simulation results, therefore,
if a diffusion simulation can be performed on the advanced diffusion data, DSBT can
be used for tracking on the data. More accurate diffusion representation promises more
accurate simulation results and therefore more accurate tracking. In chapter 8.9.7, I
discuss a first approach for a more advanced simulation.
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9.2 Open Questions

9.2.1 Higher Order Tensor Models
HOT evaluations promise to be valuable for more advanced diffusion evaluations. Espe-
cially the HOT hierarchy [57] is promising. But the question which b-factors should be
used is still under investigation. I could show that at least two b-factors should be used
for this model but could not yet determine which b-factors are optimal.

Another question regarding the HOT hierarchy is the measurability of the phase infor-
mation. Especially in EPI the phase is too distorted to be used in the HOT hierarchy. The
question whether more advanced measurement techniques such as SNAILS [60] could be
used to measure the phase information with sufficient quality is still under investigation.
But even the even order HOT hierarchy (without odd order tensors and therefore without
phase information) is a useful tool to evaluate fiber crossings, since these are resolvable
by even order and the orientation of the fibers is accurately represented, opposed to the
single HOT model [59].

To be usable in a clinical environment, it would be good to be able to extract the
important information from the HOT hierarchy and display them in scalar maps, similar
to, for example, the FA maps that are derived from the second order tensor model [Liu07].
For some of the higher order tensors diagonalizations have been proposed to compute the
eigenvalues. The interpretation of these higher order eigenvalues is currently not clear,
which makes the interpretation of eigenvalue based scalar measures impossible. The
usability of other scalar values which are based on, for example, the shape of the PDF is
still under investigation.

9.2.2 Gradient Encoding Schemes
I showed in the second order evaluation (see section 6.6) that the improvement resulting
from more than 30 gradient encoding directions for this model does not warrant the ad-
ditional measurement time. The findings are in accordance with Jones [47] who showed
a similar result for the ForcePairs GES only. The question whether the higher order ten-
sors have an preferred number of encoding directions and if so what number should be
chosen needs to be further investigated.

At the moment, no universal quality measure for GES is available. The evaluation of
the signal accuracy (see section 6.7) could be used as such. An optimal set of tensors or
fiber constellations should be defined to be able to use the signal accuracy evaluation in
a standardized fashion. This should make an objective evaluation of GES and diffusion
models possible.

9.2.3 Fibertracking
To be usable in clinical context, the DSBT tracking algorithm needs to be faster. I showed
that the algorithm is able to resolve synthetic fiber constellations that present unsolvable
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9.2 Open Questions

problems for commonly used SLT methods (see section 8.9). Improving the reconstruc-
tion speed for DSBT is therefore a worthy goal. Parallel processing, for example, could
be used to speedup the computation.

The question how earlier anisotropy thresholding (before or during the simulation pro-
cess) affects the simulation results needs to be investigated. If the results are not affected
in a negative way, the early thresholding might lead to an improvement in computation
time because more isotropic diffusion tensors (the ones that are artificially set to zero)
occur in the evaluation.

Different approaches to define a simulation on advanced diffusion representations need
to be evaluated. In section 8.9.7, I discussed a first simple method. More advanced
methods should be able to further improve the tracking results.

The possibility to use a propagator corresponding to an advanced diffusion represen-
tation instead of a diffusion simulation needs to be evaluated. This method might present
a way to use advanced diffusion models in DSBT without the need to define new simu-
lation methods.

A formal quality criterion for the classification and comparison of fiber tracts would
be desirable. I proposed a crude measure on synthetic data sets that considers a recon-
struction successful if the fiber was completely reconstructed (end to end). This quality
measure clearly needs refinement. The question whether curving tracts are inferior to
straight ones is for example not taken into account. This approach to measure quality is
also only applicable to synthetic fiber reconstruction where the start and end of a fiber is
known.
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A Tables With Results From
GES-Evaluation

This chapter contains tables with the actual condition number evaluation results dis-
cussed in chapter 5. The discussion in this chapter was mainly supported by figures
illustrating the data in the following tables. The detailed tables are supplied to allow the
interested reader to explore the data by himself.

First, the results for the standard second order tensor are presented in Tab. A.1. More

Ne Ana1 Ana2 Cond Icosa ForceSingle ForcePairs
15 7.7641 1.7201 1.6870 1.5811 1.5992 1.5939
16 2.9924 1.6914 1.6878 1.5811 1.5903 1.5812
21 2.4863 1.6727 1.6880 1.5811 1.6022 1.5811
30 2.7475 1.6251 1.6924 1.5811 1.5878 1.5846
46 1.7755 1.6056 1.6937 1.5811 1.5838 1.5811
81 1.6429 1.5928 1.6950 1.5811 1.5818 1.5815

126 1.7711 1.5881 1.6942 1.5811 1.5818 1.5816

Table A.1: The mean condition number evaluated for the second order tensor.

detailed information can be gathered from the minimal and maximal condition number
encountered in the rotational dependent evaluation. This additional information is given
in Tab. A.2 and A.3.

Ne Ana1 Ana2 Cond
max min mean max min mean max min mean

15 8.395 6.510 7.764 1.892 1.631 1.720 2.001 1.335 1.687
16 3.625 2.169 2.992 1.815 1.630 1.691 2.009 1.338 1.688
21 2.931 1.858 2.486 1.802 1.631 1.673 1.990 1.330 1.688
30 2.939 2.255 2.748 1.655 1.609 1.625 2.002 1.326 1.692
46 1.915 1.599 1.776 1.630 1.600 1.606 1.999 1.324 1.694
81 1.731 1.599 1.643 1.600 1.591 1.593 2.000 1.323 1.695

126 1.889 1.672 1.771 1.591 1.588 1.588 1.999 1.324 1.694

Table A.2: The condition number evaluated for the second order tensor.
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Ne Icosa ForceSingle ForcePairs
max min mean max min mean max min mean

15 1.581 1.581 1.581 1.633 1.546 1.599 1.603 1.560 1.594
16 1.581 1.581 1.581 1.602 1.581 1.590 1.581 1.581 1.581
21 1.581 1.581 1.581 1.619 1.591 1.602 1.581 1.581 1.581
30 1.581 1.581 1.581 1.589 1.586 1.588 1.588 1.573 1.585
46 1.581 1.581 1.581 1.586 1.583 1.584 1.581 1.581 1.581
81 1.581 1.581 1.581 1.582 1.581 1.582 1.582 1.580 1.582

126 1.581 1.581 1.581 1.583 1.582 1.582 1.583 1.581 1.582

Table A.3: The condition number evaluated for the second order tensor (continued).

After the second order tensor the higher order tensors for both the single HOT and the
HOT hierarchy model are presented. For the higher order evaluations only the detailed
tables containing the minimal and maximal as well as the mean condition number are
given.

Ne Ana1 Ana2 Cond
max min mean max min mean max min mean

15 - - - - - - 146.53 68.50 98.89
16 - - - 73.20 56.71 63.07 140.90 64.09 91.58
21 25.74 11.21 16.69 29.36 22.31 24.82 74.50 27.61 42.12
30 16.72 10.14 12.10 5.26 3.84 4.39 15.13 8.26 11.31
46 7.08 4.46 6.23 4.00 3.59 3.74 8.99 3.90 6.26
81 4.93 3.69 4.12 3.84 3.63 3.71 9.93 3.40 6.40

126 5.20 3.70 4.28 3.79 3.67 3.72 8.12 2.96 5.20

Table A.4: The condition number evaluated for the fourth order single HOT model.
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A Tables With Results From GES-Evaluation

Ne Icosa ForceSingle ForcePairs
max min mean max min mean max min mean

15 5.35 4.08 4.95 8771.09 5521.51 6848.44 4.74 3.81 4.37
16 7.44 6.19 6.85 16917.09 12476.68 14083.18 3.79 3.75 3.76
21 3.85 3.79 3.81 44.10 32.03 39.45 3.85 3.79 3.81
30 3.88 3.81 3.83 3.93 3.61 3.75 3.79 3.71 3.75
46 3.85 3.79 3.81 3.81 3.71 3.75 3.77 3.74 3.75
81 3.79 3.75 3.77 3.76 3.73 3.75 3.76 3.74 3.75

126 3.84 3.79 3.81 3.76 3.74 3.75 3.75 3.74 3.75

Table A.5: The condition number evaluated for the fourth order single HOT model.

Ne Ana1 Ana2
max min mean max min mean

21 973936 566689 843736 603460 510643 540383
30 1084100 701624 902154 546500 483532 501999
46 682398 470225 600551 514631 485427 492376
81 550847 506203 523415 497680 485537 488312
126 610028 514886 555034 491764 485533 486987

Table A.6: The condition number evaluated for the fourth order HOT hierarchy (even
order estimation matrix).

Ne Cond Icosa
max min mean max min mean

21 1918078 831798 1285663 499044 484104 489747
30 1028004 534892 770927 503308 483747 492999
46 1025588 433263 691815 498680 484135 489616
81 1102011 416280 740454 490279 484850 486702

126 1063696 438137 703462 498055 484188 489392

Table A.7: The condition number evaluated for the fourth order HOT hierarchy (contin-
ued).

Ne ForceSingle ForcePairs
max min mean max min mean

21 535887 505818 526518 499022 484114 489822
30 494302 489012 491882 489924 480836 487031
46 488038 486056 487270 487199 485233 485817
81 486115 485413 485867 486150 484974 485524

126 486145 485513 485735 486160 485300 485641

Table A.8: The condition number evaluated for the fourth order HOT hierarchy (contin-
ued).
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Ne Ana1 Ana2 Cond
max min mean max min mean max min mean

30 - - - 218.5 126.9 172.0 3719.2 1237.2 2192.2
46 40.0 17.2 30.2 25.1 17.1 20.8 172.1 36.5 81.3
81 18.6 11.8 14.8 10.5 9.8 9.9 88.8 14.0 42.3

126 14.7 10.7 12.4 10.1 9.8 9.9 57.3 11.4 31.2

Table A.9: The condition number evaluated for the sixth order single HOT model.

Ne Icosa ForceSingle ForcePairs
max min mean max min mean max min mean

30 - - - 39831.4 22262.6 28134.3 11.0 9.7 10.3
46 10.5 9.9 10.2 42.6 33.5 38.1 10.1 9.9 10.01
81 10.2 9.7 10.0 10.0 9.8 9.9 9.9 9.8 9.9

126 10.4 9.7 10.2 9.9 9.8 9.8 9.9 9.9 9.9

Table A.10: The condition number evaluated for the sixth order single HOT model (con-
tinued).

Ne Ana1 Ana2
max min mean max min mean

81 201.8E+9 174.7E+9 193.3E+9 179.1E+9 176.2E+9 176.9E+9
126 224.5E+9 187.3E+9 201.8E+9 177.6E+9 176.4E+9 176.6E+9

Table A.11: The condition number evaluated for the sixth order HOT hierarchy (even
order estimation matrix).

Ne Cond Icosa
max min mean max min mean

81 843.4E+9 180.4E+9 477.2E+9 180.4E+9 173.3E+9 177.1E+9
126 104.2E+10 206.5E+9 512.0E+9 185.4E+9 171.0E+9 178.0E+9

Table A.12: The condition number evaluated for the sixth order HOT hierarchy (contin-
ued).

Ne Cond Icosa
max min mean max min mean

81 177.4E+9 176.5E+9 177.0E+9 177.0E+9 176.3E+9 176.6E+9
126 177.1E+9 176.3E+9 176.8E+9 177.0E+9 176.4E+9 176.7E+9

Table A.13: The condition number evaluated for the sixth order HOT hierarchy (contin-
ued).
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A Tables With Results From GES-Evaluation

Ne Ana1 Ana2
max min mean max min mean

46 840E+17 679E+14 482E+15 18487 10169 15487
81 431 237 317 385 248 355

126 311 184 268 162 150 158

Table A.14: The condition number evaluated for the eighth order single HOT model.

Ne Cond Icosa
max min mean max min mean

46 83462 25669 53426 192 172 186
81 8474 5591 7103 156 150 153

126 6740 1309 4420 158 148 154

Table A.15: The condition number evaluated for the eighth order single HOT model
(continued).

Ne ForceSingle ForcePairs
max min mean max min mean

46 47240 36002 40128 190 176 182
81 577 409 505 154 150 151

126 152 150 151 150 149 149

Table A.16: The condition number evaluated for the eighth order single HOT model.
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B DTI-Studio Evaluation Parameters

Here the parameter file used in the diffusion evaluation in section 8.9 is given. Only the
input image file (InputImgFile) needed to be customized for the individual data sets. The
ROIs could not be stored but needed to be drawn by hand individually.

//--- Begin of ".dpf" file ---//
Begin
ImageWidth: 150
ImageHeight: 150
ImageSlices: 16

ProcSliceStart: 0
ProcSliceEnd: 15

FieldOfView(X): 150
FieldOfView(Y): 150

// PixelSize(X): 0.9766 //This is an optional field
// PixelSize(Y): 0.9766

SliceThickness: 1

B-Value: 1000

Begin_Of_Gradient_Table
1: 0, 0, 0

2: 1.0000000e+00, 0.0000000e+00, 0.0000000e+00
3: 1.6602059e-01, 9.8612229e-01, 0.0000000e+00
4: -1.0996723e-01, 6.6380222e-01, 7.3977958e-01
5: 9.0124247e-01, -4.1911276e-01, -1.1002960e-01
6: -1.6902341e-01, -6.0108326e-01, 7.8110819e-01
7: -8.1471083e-01, -3.8586304e-01, 4.3284637e-01
8: 6.5603543e-01, 3.6601977e-01, 6.6003564e-01
9: 5.8224081e-01, 8.0033101e-01, 1.4305917e-01
10: 9.0018861e-01, 2.5905428e-01, 3.5007335e-01
11: 6.9329922e-01, -6.9830138e-01, 1.7807686e-01
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B DTI-Studio Evaluation Parameters

12: 3.5685283e-01, -9.2361909e-01, -1.3994229e-01
13: 5.4314069e-01, -4.8812644e-01, -6.8317697e-01
14: -5.2514443e-01, -3.9610894e-01, 7.5320716e-01
15: -6.3921641e-01, 6.8923334e-01, 3.4111549e-01
16: -3.2996618e-01, -1.2998668e-02, -9.4390325e-01
17: -5.2402882e-01, -7.8304307e-01, 3.3501843e-01
18: 6.0876050e-01, -6.4974438e-02, -7.9068893e-01
19: 2.2005524e-01, -2.3305851e-01, -9.4723779e-01
20: -3.9993182e-03, -9.0984488e-01, -4.1492926e-01
21: -5.1070107e-01, 6.2663321e-01, -5.8865544e-01
22: 4.1383657e-01, 7.3670906e-01, 5.3478880e-01
23: -6.7893109e-01, 1.3898589e-01, -7.2092683e-01
24: 8.8394873e-01, -2.9598283e-01, 3.6197901e-01
25: 2.6199515e-01, 4.3199201e-01, 8.6298403e-01
26: 8.7981966e-02, 1.8496209e-01, -9.7879937e-01
27: 2.9395753e-01, -9.0686897e-01, 3.0195637e-01
28: 8.8704480e-01, -8.9004495e-02, -4.5302288e-01
29: 2.5697700e-01, -4.4296036e-01, 8.5892313e-01
30: 8.5992863e-02, 8.6692805e-01, -4.9095925e-01
31: 8.6325470e-01, 5.0414875e-01, -2.5007378e-02

End_Of_Gradient_Table

InputImgFile: C:\DICOM_DTIStudio\KissingREC

InputImgOrder: Gradient_By_Gradient
// Slice_By_Slice or Gradient_By_Gradient
End
//--- End of ".dpf" file ---//

In the tensor estimation a background threshold of ten was chosen all other parameters
were set to default. The tracking allowed a curvature of 70 degrees. The FA threshold
used in the tracking was 0.35 equal to the FA value used by DSBT.
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C Input Tensors For Simulations

Here the tensors used in the simulations in section 6 are given.

C.1 Second Order Tensors
These tensors were used in section 6.6.

The cigar shaped tensor:

 2e− 3 −6.88e− 7 2.06e− 6
−6.88e− 7 0.231e− 3 1.43e− 6
2.06e− 6 1.43e− 6 0.231e− 3

 .

The oblate shaped tensor:

 2e− 3 −1.3737e− 6 1.3748e− 6
−1.3737e− 6 1.1154e− 3 8.8522e− 4
1.3748e− 6 8.8522e− 4 1.1141e− 3

 .

C.2 HOT Hierarchy Tensors
The tensors for the HOT hierarchy up to order four for a voxel containing two orthogonal
crossing fibers. These tensors are used in section 6.7.

The second order tensor Dij:

 0.0014 −1.1839e− 6 −1.3729e− 6
−1.1839e− 6 0.0014 3.9717e− 7
−1.3729e− 6 3.9717e− 7 2.2957e− 4

 .

The third order tensor Di,j,k:

k = 1:

−0.0066e− 7 0.0323e− 7 −0.0557e− 7
0.0323e− 7 −0.1173e− 7 0.0439e− 7
−0.0557e− 7 0.0439e− 7 0.0236e− 7

,

k = 2:

 0.0323e− 7 −0.1173e− 7 0.0439e− 7
−0.1173e− 7 0.0704e− 7 0.0678e− 7
0.0439e− 7 0.0678e− 7 −0.0499e− 7

,
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C Input Tensors For Simulations

k = 3:

−0.0557e− 7 0.0439e− 7 0.0236e− 7
0.0439e− 7 0.0678e− 7 −0.0499e− 7
0.0236e− 7 −0.0499e− 7 0.2180e− 7

.

The fourth order tensor Di,j,k,l:

k = 1 and l = 1: 1.0e− 8 ∗

 0.7409 0.0001 −0.0036
0.0001 −0.0950 0.0011
−0.0036 0.0011 0.0073

,

k = 2 and l = 1: 1.0e− 9 ∗

 0.0014 −0.9503 0.0106
−0.9503 −0.0033 −0.0147
0.0106 −0.0147 −0.0038

,

k = 3 and l = 1: 1.0e− 10 ∗

−0.3638 0.10620.7338
0.1062 −0.1468− 0.0383
0.7338 −0.0383− 0.0132

,

k = 1 and l = 2: 1.0e− 9 ∗

 0.0014 −0.9503 0
−0.9503 −0.0033 −0.0147
0.0106 −0.0147 −0.0038

,

k = 2 and l = 2: 1.0e− 8 ∗

−0.0950 −0.0003 −0.0015
−0.0003 0.7283 0.0010
−0.0015 0.0010 0.0067

,

k = 3 and l = 2: 1.0e− 10 ∗

 0.1062 −0.1468 −0.0383
−0.1468 0.1006 0.6670

0 0.6670 −0.1031

,

k = 1 and l = 3: 1.0e− 10 ∗

−0.3638 0.1062 0.7338
0.1062 −0.1468 −0.0383
0.7338 −0.0383 −0.0132

,

k = 2 and l = 3: 1.0e− 10 ∗

 0.1062 −0.1468 −0.0383
0 0.1006 0.6670

−0.0383 0.6670 −0.1031

,

k = 3 and l = 3: 1.0e− 10 ∗

 0.7338 −0.0383 −0.0132
−0.0383 0.6670 −0.1031
−0.0132 −0.1031 0.0555

,
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D The Relationship Between The ADC
Glyph And The Reynold Tensor
Glyph

The ADC glyph described in section 4.1 has the shape of a peanut similar to the Reynolds
tensor glyph presented in section 4.2.2. The Reynolds tensor glyph is derived by sam-
pling the tensor D with a given number of unit vectors sampling a sphere. The radius r
of the resulting glyph in the sampling points corresponding the the direction g is given
by

r(g) = gDgT . (D.1)

The ADC is defined as ln(Sg/S0)/ − b), where S0 is the unweighted image b is the
diffusion weighting factor and Sg the diffusion weighted signal. With (4.2) the following
equalities hold:

Sg = S0exp(−bgDgT ) (D.2)
Sg/S0 = exp(−bgDgT )

ln(Sg/S0) = −bgDgT

ln(Sg/S0)/− b = gDgT = ADC.

.

The definition of the direction dependent radius of the Reynolds tensor glyph (D.1)
and the ADC are therefore the same.

In the case of noise free signal the ADC and the Reynolds tensor glyph are the same,
otherwise, the ADC glyph is distorted. This distortion will cause the ADC glyph to
deviate from the true peanut shape as illustrated in Fig.4.2. The sampling of the tensor
in noisy data is distorted, therefore the shape is inaccurate. If the tensor is first fit to the
noisy data and then represented by the Reynolds tensor glyph the surface will be smooth
because the noise in the individual sampling directions is modeled by the tensor and not
taken from the measurement directly.
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∗
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