
Reihe Informatik. TR-2008-003

Kernel-Level Interception and
Applications on Mobile Devices

Michael Becher and Ralf Hund

Department of Computer Science, University of Mannheim, Germany

May 2008

Abstract

The techniques of kernel-level system call interception are well known today
for many different operating systems. This work starts with transferring these tech-
nique to the Windows CE type of operating systems. Afterwards, two current
problems are solved. The first solution uses the technique for dynamic malware
analysis with a sandbox approach, extending previous solutions in terms of ef-
fectiveness. The second solution enhances the expressiveness of security policies
by implementing the concept of a reference monitor on the operating system level.
Windows CE based devices are now enabled to enforce sophisticated security poli-
cies without the need to change the underlying operating system.

1 Introduction

The world of mobile devices is different from the common personal computer world,
especially regarding its security properties [5]. A particular problem for the future
is the inherent capability of generating costs for a user. Therefore, it is necessary to
explore possibilities to prevent, that users of mobile phones will lose their confidence
into their devices and the mobile world in general. This technical report contributes to
the solution of this problem. It will describe a solution that enhances the expressiveness
of security policies in a way that enables more fine-grained policies on the one hand and
more global policies on the other hand. This is achieved by implementing the concept
of a reference monitor on the level of the operating system. Another contribution is to
the analyzing side of mobile device security, implementing a more general possibility
of dynamic malware analysis with a sandbox approach. Both contributions happen to
be based on the same foundation, the technique of kernel-level interception that will be
described first.
The paper is structured as follows. It gives a short introduction into the world of mobile
security in Section 2 and an introduction into the Windows CE type of mobile operating
systems in Section 3. Section 4 transfers the technique of kernel-level system call
interception (KLI) to Windows CE. The evaluation in Section 5 proves the technique
as effective and complete. The sandbox approach is described in Section 6. Section 7
sketches the enhancement of security policies on mobile devices.

1

The presented results are work in progress, mainly for two reasons. First, we are con-
vinced that the kernel-level sandboxing approach in Section 6 will cover all incarna-
tions of future Windows CE malware, but we cannot prove that claim because of the
lack of real malware samples. The virus Dust is the only interesting malware for Win-
dows CE today. And second, we know about the usefulness of a policy enhancement
in Section 7 implemented as an add-on, but we are missing some empirical results that
will be addressed in the future.

2 Mobile Security

The increasing ubiquity of smartphones and other mobile devices has turned them into
interesting attack targets. The increasing processing power and the use of desktop-like
operating systems on these devices has made them susceptible to the same threats of
malicious software (malware) which prevail throughout the desktop and server world.
Malware for mobile phones is a topic of increasing importance since the middle of 2004
when the Dust virus appeared. Since then, some surveys of mobile phone malware has
been published, that will be summarized in the next subsection. After that, details of
three phases of malware are shown.

2.1 Surveys of Malware for Mobile Devices

The earliest of current surveys deals mostly with Palm OS malware [7]. Peikari [25]
gives an overview also of Windows Mobile and Symbian OS malware. An extensive
overview covering nearly all malware of its writing time was given by Shevchenko
[30]. Example trojans have been developed by Emm [9] and Molitor [19]. Bachfeld [3]
gives an overview over the filtering activities of German mobile operators and assumes,
that the malware threat is currently only relevant from the perspective of the anti-virus
companies. It ends with a test of Symbian OS anti-virus programs.
Töyssy and Helenius [31] list infection routes and some examples of malware. But
their focus is on countermeasures and media perception.
The latest survey was given by Hypponen [14]. It shows in an illustrative comic car-
toon, how many repetitions of an installation attempt (via Bluetooth) could even break
down the resistance of a security-conscious user.

2.2 Phases of Malware

The main phases of malware are seen here as infection of the device, spreading, and
malicious functionality. Making itself permanent on the device is not named here,
because it is supposed, that malware can perform most malicious actions directly after
infection.

2.2.1 Infection

Infection possibilities, especially of Windows CE, have been investigated in detail by
Mulliner [22, 23] and Leidner [16].

2

Malware infection for such devices can be categorized according to the user interaction,
that is necessary for the malware to infect the system. This results in four distinct
classes:

• The most benign interaction is asking the user, whether it is allowed to be in-
stalled or to spread, clearly indicating its possible malicious behavior. This is the
typical behavior of proof-of-concept malware.

• The next category are the standard questions at installation procedures for (un-
signed) software. The user might be accustomed to them because of previous
installation procedures, that he performed. This is the standard way, how tro-
jan horses get installed, usually by seducing the user with social engineering
techniques, that he really wants to install the offered software (e.g., the “Free
Worldcup After-Party Ticket - just install”).

• The third category is an action, that is common behavior when using a mobile
phone. An example is the MMS buffer overflow found by Mulliner [20], that
only requires the user to open the MMS. If a virus spreads by sending MMS
messages to the contacts of a user, the recipients see an MMS message from a
known sender, and it is probable, that they open it.

• The most dangerous type of malware is a smartphone worm, that is able to spread
without any user interaction. This would be the worst case concerning mobile
phone security, but as of today, no such type of malware is known.

2.2.2 Malicious Functionality

Once on the device, the malware can perform its malicious action. The possibilities
for these actions under Windows Mobile comprise the entire system functionality [16].
For Symbian OS since version 9 (containing the Platform Security Architecture) it is
assumed to be more difficult for malware to perform malicious actions on the device.

2.2.3 Spreading

Spreading in the wireless LAN is simple for devices running the Windows Mobile op-
erating system, as they announce themselves when connecting to the network. For
other devices it is necessary to actively scan for new targets. The different character-
istics of the spreading process are discussed by Mickens and Noble [18], who propose
an extension of the usually used Kephart-White model for modeling spreading between
locally related devices (WLAN or Bluetooth).

2.3 Windows CE Security

2.3.1 Vulnerability Research

A first low-level publication about Windows CE was at Black Hat Europe 2003 by de
Haas [8]. Besides some hardware information, the talk summarizes typical security
flaws of that version, and presents the “Wallaby Patch Tool” custom boot loader for the
HTC Wallaby, that is able to copy device memory to the SD card and to remove the
device PIN.

3

In the same year Fogie [10] published information about reverse engineering of mobile
binaries. The focus is on ARM assembler and the IDA Pro Disassmbler, but the target
is a Windows CE executable file.
In Black Hat talk “Pocket PC Abuse”, Fogie [11] presents a keyboard logger, the pos-
sibilities of hidden programs, and code to trigger a hard reset.
The topic of shellcode generation is dealt with by Mulliner [21], Hurman [13], and in
Phrack magazine [29]. These works use Windows CE version 4.2 as a basis.
The work of Asselineau and Hospital [2] deals with the use of the C API in order
to infect a process, and with the limitations of exploitability at the kernel level. It
proposes the transfer of the concept of capabilities from Symbian OS as a solution,
and mentions a solution based on virtual machines. It concludes with a statement on
currently available anti-virus and personal firewall programs. They would not offer
sufficient protection, because:

1. “the defensive process has the same rights as the malicious process, therefore it
can be terminated by the latter”, and

2. the anti-virus engines would be insufficient. And it would be impossible to deal
with a sufficient complete signature database. Even the behavior-based detection
is discarded by the authors, because the operating system would already need
too much of the limited resources of the device.

Fogie [12] presents vulnerabilities of third-party software for Windows Mobile, sub-
divided into "Password Exposure Bugs", "Data Protection Programs", and "Miscella-
neous Information Disclosure Bugs". Conclusions for increased security are password
protection of the device, encryption of data with a proven security scheme, the advice
to store as few data as possible on the device, and finally the advice to use computer
security common sense also on mobile devices.
Finally, Windows Mobile version 5 has been investigated recently [16, 6]. These works
further add a robust framework around the topics of low-level shellcode.

2.3.2 Exploited Vulnerabilities

Only one remote code exploit is known so far for Windows Mobile. It is a buffer
overflow in the handler program of MMS messages [20]. It is described in more detail
in [22].
The user receives an MMS message with a specially crafted header field, that will
trigger a buffer overflow, when the MMS is processed by the message handler process
tmail.exe. The header field will be read, when the user opens the MMS for reading.
The buffer overflow is not executed, when the MMS is unread in the inbox.
The exploit today is the only known example of an infection of the third type (cf. Sub-
section 2.2). Updated version for the message handler are available and can be down-
loaded for protecting the device against possible malware, that exploits the vulnerabil-
ity.

2.4 Conclusion

It can be concluded, that the authors disagree on the impact of mobile malware. To this
day, there has not been a major mobile malware outbreak. This might be due to the

4

missing homogenous operating system base, as there is no dominant operating system
today. Another reason might be the usage patterns of mobile phones, that often does not
involve installation of additional software on the phone. And a third reason can be seen
in the missing interest of malware authors to write malware for mobile devices. All of
today’s known malware either is proof-of-concept software or requires user interaction
for installation on the mobile phone.
But the future will show, in which direction the field of mobile security will develop.

3 The Windows CE Operating System

This section introduces some aspects of the Windows CE operating system, that will
be used in the following section to implement kernel-level interception. It will explain
the way system calls are implemented in Windows CE, the concept of protected server
libraries, and give some details about the operating system’s kernel data structures.

3.1 Windows CE System Calls

From the user-level perspective, Windows CE provides the well known Win32-API
interface with some minor exceptions. Hence, many user space programs written for
Windows NT based operating systems can be easily ported to Windows CE. In contrast
to user space, the kernel is different from those of other Windows operating systems.
Especially the way system calls are processed is different.
System calls are typically implemented by executing special software interrupts like
int2e in Windows NT. Some versions also use the special sysenter instruction that
is provided by the x86 instruction set. Subsequently, a handler function is executed in
the kernel, the requested system call is processed and finally the kernel gives execution
back to the initiator of the system call in user space. The requested function and the
parameters are given by the parameters of the interrupt call and the user space stack.
Windows CE uses a slighty different approach. Although the ARM processor archi-
tecture provides an interrupt instruction SWI, the transition from user space to kernel
space is achieved by jumping to a specially crafted invalid memory address, consist-
ing of a architecture-dependent fixed offset, an APISet number and a method number.
Consequently, the exception dispatcher will be executed and check whether the address
is assigned to a certain system call. Therefore, a special area of the memory is reserved
for such system call traps (called the kernel trap area). On ARM processors this area
is located between the memory addresses 0xF0008000 and 0xF0010000, and kernel
trap adresses can be obtained by the formula

0xF0010000− ((ApiSetID� 8) |MethodID)∗4

3.2 Protected Server Libraries

Windows CE loads device drivers as non-privileged user-mode processes [24]. As a
consequence, system calls are processed in separate processes, whose execution must
take place in the kernel, so the parameters must be passed to kernel space.
Each device driver process which exports system call APIs has to register its own
APISet first by calling the special functions CreateAPISet and RegisterAPISet.

5

The parameters consist of an arbitrary name with a length of 4 bytes, the number of
exported functions, a method pointer table to the corresponding handler functions, and
a pointer to a signature table being a bitmask of 32 bits, where the various bits indicate
whether a certain argument is a pointer or not. The number of different APISets is
limited to 32, where the lower 16 identifiers are reserved for the kernel. In a traditional
client/server model the caller and the server run in separate threads. Windows CE dif-
fers and lets threads migrate between both processes in a system call for the sake of
performance. Therefore, the current process of a thread does not necessarily have to be
the thread’s owner. This information can be obtained by calling GetCurrentProcess,
GetOwnerProcess and GetCallerProcess. The latter returns the caller process of
the current protected server library (PSL) API, while GetOwnerProcess obtains the
process which really owns the thread making the function call.
As shown in figure 1, a system call in its original form goes through the following
stages:

1. The program initiates an API call by invoking the designated export in a DLL
(usually CoreDLL).

2. The DLL jumps to the corresponding kernel trap address. This step is omitted,
if the program performs the jump itself.

3. The kernel exception dispatcher extracts the APISet and method number, switches
to the process belonging to the APISet and jumps to the requested method by
checking the method pointer table. At this stage, arguments which are tagged
as pointers in the signature table will be adjusted from addresses relative to slot
zero to global adresses.

4. After the method has finished, it returns to the exception handler.

5. A context switch to the caller process takes place and execution continues. To
understand how it is possible to hook API calls on a kernel-mode level, one has
to know which relevant data structures are maintained by the kernel, that can be
altered.

3.3 Internal Kernel Data Structures

Each APISet contains all its information in a CINFO structure. This includes all the
parameters that were passed to CreateAPISet as well as the dispatch type. Currently,
Windows CE distinguishes handle-based from implicit APISets, the former ones being
direct system calls while the latter ones are attached to handles such as files, sockets,
and so on. An implicit API is identified by its APISet identifier and method identifier.
In contrast, a handle-based API is given by its handle and the method identifier. In order
to access each implicit APISet’s data, the kernel maintains an array that holds all CINFO
structures. A pointer to this array can be found in the UserKInfo array which is always
located at the fixed offset 0xFFFFCB00 on the ARM architecure. Since even the kernel
mode APISets are being registered when the system boots, all the relevant pointers
are contained in writable pages. Thus, they can simply be altered and redirected to
different functions. On the other hand, for each handle there is a CINFO structure that
is allocated when the handle is created and deallocated when it is being closed.
For the pupose of completely intercepting system calls, the attached CINFO pointer
must be changed after its creation. As every handle is being created in an implicit API

6

call (such as CreateFile, socket) those functions will need some special handling
in order to hook the method of the handle they return. But this special handling does
not prevent the hooking of all system calls.

4 Kernel-Level System Call Interception

This section will give the implementation details of our solution. It starts with the
environment that a solution has to respect and introduces afterwards two of the main
aspects of our solution, the prolog/epilog methods and design decisions for positioning
the sandbox within operating system and user programs.

4.1 Environment

Methods to hook into system calls in the kernel space have been widely studied and
documented for Linux and Windows NT based operating systems. Those techniques
often involve hooking a variety of tables which are used in the process of a system call
such as interrupt tables and system service tables. Another approach is the so called
direct kernel object manipulation. While those common methods generally also apply
to the Windows CE operating system, they are heavily constricted by the wide presence
of read only memory (ROM) on a mobile device. But these problems have been solved
for mobile devices [17], defining the basis for our solution.
A mobile device typically contains a flash ROM memory holding the operating system
along with the manufacturer’s drivers and additional software. This portion of the
memory is not writable and thus cannot be altered in order to hook certain events. It
should be noted, that it is possible to flash the ROM. However, this is beyond the scope
of our work and might be researched as future work. Besides the read-only memory,
a device also contains writable memory such as SDRAM or writable flash memory
(writable in the sense that it can be modified at runtime).
Windows CE does not copy executable code from ROM to RAM. Instead, it executes
code directly in the ROM (called “execute in place”), making it impossible to alter
that code. As the instuctions are copied to the CPU cache while being executed, there
might be a possibility to change the code in the cache and thus bypass the read-only
memory. But this is highly dependent on the device’s hardware and may result in a
unstable solution.

4.2 Prolog and Epilog

Our approach substitutes the method table pointer with a pointer of our own. This
can be seen in the lower part of figure 1, where the original call and the hooked call
take different ways beginning at the method table pointer. We generated a stub for
every system call, each stub consisting of about 30 assembler instructions and some
additional data. Each system call is redirected to its individual stub function with our
specially crafted method pointer. The stub prepares the entry of a common prolog
function that is the same for all methods.
Subsequently, the prolog decides whether the API call is to be hooked. If that is the
case, then all the relevant information of the system call (such as method identifier
and parameters) are passed to a special thread which resides in the target applications

7

Handle Object CINFO Pointer APISet Array CINFO Pointer

System CallCall Prolog

Prolog

Call Epilog

EpilogKernelHookServiceDLL

API Call

Kernel

Core DLL

Exception Handler

Kernel Trap

Method Table PointerCINFO

Application

PSL Process Handler

Stubs

...

implicithandle−based

original callhooked call

original call

hooked call

Figure 1: Kernel-Level System Call Interception

8

address space where they are further processed. It has to be noted, that this approach
was chosen because of simplicity and the fact, that we also try to hook API calls in
userpace via import address patching. A kernel-mode only sandbox would handle all of
the hooking in kernel space instead. Additionally, there is no kernel debugger available
which makes it rather hard and time-consuming to find errors in kernel-mode code.
Therefore, some parts of the hook handling are processed directly in the application
process.
The advantage of having a generic hook handler is its compact and portable nature as
opposed to individual handlers, which tend to be a rather bloated solution. More code
ultimately leads to more bugs and of course, the main disadvantage is simply the high
number of system calls, which makes development very time-consuming. However,
it has to be known which method is to be called when executing the generic prolog.
This is exactly the task of the stub, whose code is also always the same but replicated
for each API function with its individual data such as APISet identifier and method
identifier.
To go into detail, a hooked system call goes through the following stages:
1. When system call is dispatched by the exception handler, the corresponding function
address is extraced from the method pointer, which was previously patched by the
sandbox. Thus our individual stub instructions are being executed rather than the real
function. As explained above, the kernel switches to the address space of process of
the PSL, this has to be taken into account when dealing with pointers.
2. The task of the stub is to prepare and call our generic prolog function. Special
attention has to be paid to the fact that we must not alter certain registers as they might
hold some of system call’s arguments or might be used later on. Therefore the first
step is to save all registers to the stack, followed by setting up the arguments of the
prolog, which are the APISet identifier and method identifier as well as a pointer to the
current stack where the register values were stored. On ARM processors, the first four
arguments are passed in the registers R0-R3, whereas the rest is stored on the stack.
Additionally, the registers R4-R12 have to be preserved through function calls.
3. First of all the prolog checks which process has initiated the system call. If this
process is not sandboxed, then it returns immediately. Furthermore, kernel-hooking
might be deactivated for single threads under certain circumstances. In this case it also
returns. For instance we only hook the first level of system calls, because system calls
within system calls are not of interest. We only care about the sandboxed application
and not the way system calls are implemented in a PSL, so this is ignored. More-
over, a system call might already have been hooked in user space by IAT. Generally
speaking, the way the generic handler is implemented has to be well thought through,
otherwise the kernel might quickly hang in an endless loop when a hooked system call
performs system calls itself. In case the prolog has decided to hook the call, it writes
the parameters to a shared memory region and indicates, that there is a system call to
be executed by triggering a special event, causing the special thread in the applica-
tion address space to further process the hook. This includes extracting and logging
the parameter information of the call. When finished, a second event is triggered that
awakes the sleeping kernel-mode hook. Events are indicated using standard interpro-
cess communication functions such as global mutexes or global events. Eventually the
prolog returns, register values are restored from the stack and the original system call
is performed.
4. In case the system call was hooked, the stub also prepares the entry of a generic
epilog hook function after the call was performed. The epilog goes through the same

9

stages as the prolog. In some situations, it might also modify the return value of a
system call. For instance, this could be necessary when the sandbox wants to hide its
presence.

4.3 Sandbox Positioning

Our sandbox solution consists of two different DLLs, one being responsible for user-
level hooking (IAT) and the other taking care of kernel-level hooking. This separation
is a consequence of the layout of Windows CE system calls and the fact that there
might be several processes being sandboxed at one time. In this case, there has to be a
consistent interface which is exactly what the kernel hook DLL provides. The kernel-
level DLL is loaded on initialization of a sandboxed process by the user-level library.
Subsequently, both parties initialize themselves.
It is a vital point where the kernel-level DLL is positioned in memory. As previ-
ously explained, system calls are executed in many different processes. Therefore,
our generic hooking code has to be accessible from every such process, because the
kernel switches to its address space before performing the call. One solution is to in-
ject the DLL into every PSL process. However, we have chosen to rather inject into the
nk.exe process only and use global addresses instead. Because the kernel switches
the thread into kernel-mode before performing the system call, our code will always be
accessible. One just has to take into account, that the prolog and the epilog may only
use local stack variables because global variables are relative to slot zero and hence
not correctly mapped since a different address space is active. In order to inject into
nk.exe, the sandbox uses the undocumented PerformCallback4 function which ex-
ecutes code in another process just like in a system call. Therefore, we execute the
LoadLibrary function in the process of nk.exe with a global pointer which points to
the name of our kernel-hooking DLL. The well known CreateRemoteThread API is
not available on Windows CE.

4.4 Preventing Kernel Mode

It might be important to prevent other programs from entering kernel mode. This is
especially true for the two applications in the following sections. The sandbox wants
to hide its presence from other programs, so that investigated malware does not alter
its behavior because of the sandbox. And the reference monitor is only effective, if it
is the only process besides system processes, that has superior access to the operating
system.
Fortunately, there are only a limited number of ways for doing this. The separation
between user mode and kernel mode is effective in Windows CE, so the only way to
enter kernel mode is to use a system call. And all system calls are hooked by our
solution, so we are always able to prevent a program from entering kernel mode, if
all ways into kernel mode are intercepted. It can simply be returning an appropriate
error code for an unsuccessful system call. This is some kind of suspicious behavior,
but a program in user mode cannot distinguish any further between the presence of a
sandbox and the possibility that the device just does not allow kernel mode.
The simplest way to gain kernel mode privileges is to call the SetKMode function which
is provided by Windows CE. Apart from that, an application might also register its
own APISet and perform a system call. Because system calls are always executed in

10

kernel mode, the application temporarily has full privileges. Both examples have to
be handled and the remaining approaches must be taken into account for a dependable
solution.

5 Evaluation: Completeness

There are two aspects when considering completeness: interception of every system
call and recognition of the system call’s signature (i.e., its parameters). We describe
the solution for both aspects in the following.

5.1 Interception

The most important part is to see every system call. This is achieved through the
technique depicted in Figure 1. We change the central pointer for the data structures to
point to our own data structures, and there is no other way for a program to enter kernel
mode when using system calls. However, there are several special cases to consider:
handle-based system calls and our own services.
Handle-based system calls load the kernel space addresses at the handle’s creation time.
Therefore, it is necessary to change the addresses there, so that these system calls do
not circumvent our system. An example system call is CreateFile, where pointers
to handle-based system calls (such as ReadFile, WriteFile) are maintained in an
individual CINFO structure which is connected to the handle object. Hence, one has to
patch the handle right after it was created.
Another special case is our own KernelHookServiceDLL. It provides some services
that are necessary for the system, but that are not intercepted.

5.2 Signature Recognition

The signatures of the system calls can be found in the header files of the shared Win-
dows CE source code that is distributed with the Platform Builder. These header files
can be parsed. The system calls are grouped into different API sets. These are docu-
mented as comments in the header files. The sourcecode can be parsed with a tool like
doxygen and the actual signatures can be assigned to the system call in its correspond-
ing APISet.
There are some undocumented system calls that are not present in the shared source
header files. A typical examples are the GWES (graphics, window and event subsys-
tem) API functions. All of these are intercepted, but it might happen that their signature
is unknown. This case requires manual effort to locate the signature. This can be solved
by using a debugger (like IDA Pro) and decompiling the library file.

6 Dynamic Malware Analysis

This section shows the first application of the kernel-level interception technique to
help analyzing mobile malware. It will embed the result into the current state of dy-
namic analysis, analyze the mobile malware sample Dust, and show how an automatic
analysis is useful even with a limited number of malware samples.

11

mov lr, pc

ldr pc, [r11, #-24] ; find first file

Figure 2: Excerpt of Dust Source Code

6.1 Related Work

This application of kernel-level interception contributes to the field of dynamic mal-
ware analysis. It manifests itself as an analysis module for a dynamic malware analysis
system for mobile phone networks [5]. This previous work describes an analysis mod-
ule that uses the technique of import address table (IAT) patching. It logs a system call
when a program uses the techniques that are supposed to be used. This is comparable
to the DLL injection techniqe that CWSandbox uses [32]. Both approaches are not able
to see direct jumps into the kernel that are necessary to analyze some malware samples.
The malware Dust is nearly half of the currently known Windows CE malware and it
uses this technique of direct jumps.
TTAnalyze [4] uses a different approach to analyze a sample. They use a processor
emulator with a defined interface for intercepting system calls and are able to see
every system call, regardless what the sample did to call it. Our solution is different
in terms of applicability on real devices. It can be used on any real device where the
investigated sample is not able to detect the presence of an emulator.

6.2 Analysis of Mobile Malware “Dust”

At the current time there is only few malware known for the Windows CE operating
system. One trojan is called Brador1 that opens a backdoor on the device and sends
the device’s IP address to the malware author [28]. The virus Crossover2 is an exam-
ple of cross-platform malware that are able to run on different platforms. Crossover
uses the .NET application framework and can be executed on Windows CE and Win32
platforms because of the executable’s binary compatibility. It checks for the platform
during startup and executes different code depending on the platform [26].
A third malware example is Dust3. Its source code was published [27], so we could
use this malware to validate our analyzer. Dust does not use the import address table
to access the system calls, because it cannot be sure that the host program uses the
same system calls as itself. Instead, it calculates the addresses with the formula of
Subsection 3.1 and directly jumps to these addresses. An example can be seen in
Figure 2, where the program counter is set to a value of the stack that was previously
set to the address of FindFirstFileW.
We used a device with Windows CE version 5. The original Dust sample did nothing.
It assumed to run in kernel mode, as it was common in previous versions of Windows
CE. So we added a call to SetKMode to make it work. An excerpt of the analysis can be
seen in Figure 3. The system call #7 is the log of the source code excerpt in Figure 2.
The succeeding system calls exactly reflect the source code.

1also known as Backdoor.WinCE.Brador.a
2also known as MSIL/Cxover.A
3also known as Virus.WinCE.Duts.a with different character order in its name

12

ID System Call Arguments
7 FindFirstFileW (direct) lpFileName=*.exe

8 SC_CreateFileForMapping (direct) lpFileName=Dust.exe ...

9 FindNextFileW (direct) hFindFile=420704 ...

10 SC_CreateFileForMapping (direct) lpFileName=Sample.exe ...

Figure 3: Excerpt of Dust Analysis

7 Security Policy Enhancement

This section applies the kernel-level interception technique to the field of security poli-
cies. It shows, how the technique can be used to enhance the expressiveness of current
security policies and additionally how to implement recent related work in a more gen-
eral way.

7.1 Problem Description and Related Work

Current security policy implementations on real mobile devices only enable coarse-
grained policies. Especially, there are only few possibilities to restrict data network
usage. The current expressiveness is to disallow an access to a certain API completely,
to allow it unrestricted (for every run of the program or for the current session), and
to ask every time that an API is called. Especially the last option can be very tedious
for the user when the program uses many consecutive calls to a certain API. It would
be useful to enhance the expressiveness of security policies to allow at once a certain
number of events, e.g., a number n of messages or amount x kBytes of data.
Recent work [15] solves the problem for the Java 2 Micro Edition (J2ME) that is present
on almost all of today’s mobile phones. They implement an extension of an open-
source J2ME virtual machine. The extension must be present at compile time of the
virtual machine and must afterwards be incorporated into the device.
Our solution is different in two ways. First, it is applied at the deeper level of the
device’s operating system, not on a virtual machine level. Therefore, it can be used for
native programs, enabling a broader application. Second, it can be applied to existing
devices without changing the operating system. That means, we implement the concept
of a reference monitor [1] as a flexible solution that can be applied to existing devices
as an add-on in contrast to a major change of the operating system. This solution will
be described in the next subsection.
Currently out of scope is the question of how the security policy finds its way from the
specification into our system. At the moment, we simply assume that it is present.

7.2 Problem Solution

We are able to use the previous parts of this paper as building blocks for our solu-
tion. And without loss of generality we use the example of data network access in the
following.
Subsection 5.1 proved that we are able to intercept all system calls. Of course, this
includes any system calls to access the data network. And every access to the data
network must use a system call. Therefore, our solution will see every access to the

13

data network and is able to apply access restrictions by a security policy. Embedded
into our solution of Figure 1, the reference monitor would be implemented in the prolog
function of KernelHookServiceDLL.
Our solution has superior rights compared to the monitored programs, because it works
in kernel mode. Therefore, we must prevent that other programs switch into kernel
mode. Normal programs do not need to switch into kernel mode, therefore it is no
restriction of functionality when disallowing kernel mode. As we proved in Subsection
4.4, it is possible to completely disallow access to kernel mode with our solution.
When the policy is active, it is necessary to match the calling process with its corre-
sponding security policy that the reference monitor holds in a list for every policy of
the system. As described in Subsection 3.2, this is done with GetCallerProcess in a
reliable way.
We now have a reference monitor in place, that can be used to effectively enforce se-
curity policies concerning data network usage. But the system is able to perform more
functions. A fundamental problem in the Windows CE world is the lack of any rea-
sonable type of security policy. Other systems like Symbian OS or J2ME implement
concepts like private persistent data spaces for every program, API grouping and sev-
eral trust levels, with selective access to API groups depeding on the trust level. Our
system is able to add these concepts to Windows CE. With the same techniques as
restricing data network usage, it is possible to restrict access to certain parts of the
persistent storage to certain processes and therefore programs.
Additionally, it is possible to restrict the access to cost-generating functions like mes-
saging or phone functions. So, it is useful to globally restrict access to these functions.
For example, the Internet browser on mobile devices is likely to be an increasingly
important attack vector with the increasing prevalence of data network usage. But the
Internet browser does not need to access messaging (or phone) functions. And likely
does no other program, with the notable exception of signed - and therefore trusted -
programs. So it is useful to restrict the possibility to send messages to the messaging
process and the possibility to initiate phone calls to the phone handler process. This
way, many of the expected problems of upcoming mobile malware can be solved, and
our solution is able to accomplish this.

8 Conclusion and Future Work

We introduced the technique of kernel-level system call interception for the Windows
CE type of operating systems and explained, how this technique is able to solve two
current problems, one in the area of dynamic malware analysis with a sandbox ap-
proach, the other one in the area of enhaning the expressiveness of security policies.
For future work, we will address the completion of our policy enhancement system in
order to be a versatile solution. Some performance evaluation will quantitatively prove
our intuitive impression, that our solution works efficiently. Additional future work
will be the application of our dynamic analysis solution to analyze real-world malware
samples for Windows CE, as soon as they appear.

Acknowledgements

This research was kindly supported by T-Mobile Deutschland.

14

References

[1] James Anderson. Computer Security Technology Planning Study, 1972.

[2] Roderick Asselineau and Jean-Marc Hospital. Bewertung der Sicherheit von mo-
bilen Endgeräten unter Windows CE. Misc, 1:17–23, 2006.

[3] Daniel Bachfeld. Wurmflug. c’t, 13:156–163, 2006.

[4] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dynamic
Analysis of Malicious Code - TTAnalyze. Journal of Computer Virology, 2006.

[5] Michael Becher and Felix C. Freiling. Towards Dynamic Malware Analysis to
Increase Mobile Device Security. In Proc. of SICHERHEIT, 2008.

[6] Michael Becher, Felix C. Freiling, and Boris Leidner. On the Effort to Create
Smartphone Worms in Windows Mobile. In Information Assurance and Security
Workshop, 2007, pages 199–206, 20-22 June 2007.

[7] Claudio Beltrametti and Reto Calonder. Malware on Mobile Devices. Master’s
thesis, FH Chur, October 2004.

[8] Job de Haas. The phone in the PDA - Pocket PC Phone edition security. In Black
Hat Briefings Europe, May 2003.

[9] David Emm. The Changing Face of Malware. In Proceedings of the IWWST,
2005.

[10] Seth Fogie. Embedded Reverse Engineering: Cracking Mobile Binaries. In DEF
CON, August 2003.

[11] Seth Fogie. Pocket PC Abuse. In Black Hat, July 2004. Black Hat.

[12] Seth Fogie. Airscanner vulnerability summary: Windows Mobile fails the test.
(IN)SECURE Magazine, 8:41–51, September 2006.

[13] Tim Hurman. Exploring Windows CE Shellcode, June 2005.

[14] Mikko Hypponen. Malware goes Mobile. Scientific American, pages 70–77,
2006.

[15] Iulia Ion, Boris Dragovic, and Bruno Crispo. Extending the Java Virtual Machine
to Enforce Fine-Grained Security Policies in Mobile Devices. ACSAC, pages
233–242, 2007.

[16] Boris Leidner. Voraussetzungen für die Entwicklung von Malware unter Win-
dows Mobile 5. Master’s thesis, RWTH Aachen, February 2007. (in German).

[17] Dmitri Leman. Spy: A Windows CE API Interceptor, October 2003.

[18] James W. Mickens and Brian D. Noble. Modeling epidemic spreading in mobile
environments. In WiSe ’05: Proceedings of the 4th ACM workshop on Wireless
security, pages 77–86, New York, NY, USA, 2005. ACM Press.

[19] Sören Molitor. Mobiles unter Beschuss - Viren und Verwandte auf Handys, June
2004.

15

[20] Colin Mulliner. Advanced Attacks Against PocketPC Phones. In DEF CON,
August 2006.

[21] Collin Mulliner. Exploiting PocketPC. In What The Hack, Jul 2005.

[22] Collin Mulliner. Security Analysis of Smart Phones. Master thesis, UCSB, 2006.

[23] Collin Mulliner and Giovanni Vigna. Vulnerability Analysis of MMS User
Agents. In ACSAC ’06: Proceedings of the 22nd Annual Computer Security
Applications Conference on Annual Computer Security Applications Conference,
pages 77–88, Washington, DC, USA, 2006. IEEE Computer Society.

[24] John Murray. Inside Microsoft Windows CE. Microsoft Press, Redmond, WA,
USA, 1998.

[25] Cyrus Peikari. PDA attacks, part 2: airborne viruses - evolution of the latest
threats. (IN)SECURE Magazine, 4:32–41, October 2005.

[26] Cyrus Peikari. Analyzing the Crossover Virus: The First PC to Windows Hand-
held Cross-Infector, March 2006.

[27] Cyrus Peikari, Seth Fogie, and Ratter/29A. Details Emerge on the First Windows
Mobile Virus, September 2004.

[28] Cyrus Peikari, Seth Fogie, Ratter/29A, and Jonathan Read. Reverse-Engineering
the First Pocket PC Trojan, October 2004.

[29] san. Hacking Windows CE. Phrack Magazin, 6(63), July 2005.

[30] Alisa Shevchenko. An overview of mobile device security, September 2005.

[31] Sampo Töyssy and Marko Helenius. About malicious software in smartphones.
Journal in Computer Virology, 2(2):109–119, 2006.

[32] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward Automated Dynamic
Malware Analysis Using CWSandbox. IEEE Security and Privacy, 5(2):32–39,
2007.

16

