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Abstract

The realm of approaches to operational descriptions and equivalences for concur-
rent systems in the literature leads to aseries of different attempts to give a uniform
characterization of what should be considered as abisimulation, mostly in an alge-
braic and/or categorical framework. Meanwhile the realm of such approaches calls
itselffor comparison and/or unification. We investigate how different abstract char-
acterizations of bisimulations are related and how suitable they are to encompass
the various concrete notions of bisimulation.

1 Introduction

Bisimulation was introduced by Milner and Park [24,28] in order to identify
processes that cannot be distinguished by an external agent. Since then a large
variety of notions of "bisimulation" have been studied, e.g. on labelled tran-
sition systems [13,26,7,14], on event structures [15,29,17,10,31], and on petri
nets [18,3,6,12]. Abramsky [2]extends the notion of bisimulation to transition
systems with divergence.

Degano, De Nicola, and Montanari [11] remark that "the realm of approaches
to operational descriptions and equivalences for concurrent systems in the
literat ure calls for unification."
Joyal, Nielsen, and Winskel[19] write: "There are confusingly many models
for concurrency and all too many equivalences on them. To an extent their
representation as categories of models has helped explain and unify the ap-
parent differences. But hitherto this category-theoretic approach has lacked
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any convincing way to adjoin abstract equivalences to these categories of
models."

By now aseries of different attempts have been made to give a uniform char-
acterization of wh at should be considered as abisimulation, mostly in alge-
braic and/or categorical framework [5,2,11,19,20]. Meanwhile this realm of
approaches to abstract characterization in the literat ure calls itself for com-
parison and/or unification. The purpose of this paper is to investigate how
these abstract characterizations can be classified, how they are related and
how suitable they are to encompass the concrete not ions of bisimulation. In
part these results have been presented in [22].

The paper is organized as follows: In section 2 we summarize the above men-
tioned approaches for an abstract characterization of bisimulation. As the
framework of Aczel and Mendler [5] appears to be the most general one we
take it as a point of reference and relate the remaining approaches with it.
This can be done straightforwardly for all views except for the one of Joyal,
Nielsen and Winskel [19]. This method is dealt with in sections 3 and 4. As an
application we consider in section 5 the modelling of a variety of bisimulations
on event structures in an abstract setting.

2 Definition of the abstract bisimulation concepts

The various not ions of bisimulation in the different models of concurrency can
be considered as derivat ions of Milner's definition of bisimulation on transition
systems as formulated e.g. in [25]' which we recapitulate in section 2.1. In the
following sections we introduce the abstract characterizations of Aczel and
Mendler [5]' Degaho, De Nicola, and Montanari [11]' Malacaria [20]' Abramsky
[2] and Joyal, Nielsen, and Winskel [19].

2.1 Transition systems and Milner's bisimulations

We make frequent use of the following category of transition systems.

Definition 2.1 Let L be a set 0/ labels.

(1) A transition system over L is a triple T = (3,~, is), where
3 is a set 0/ states,
~ ~ 3 x L x 3 is the transition relation and
is is the initial state.

Occasionally we are not interested in the initial state, we then consider
transition systems T = (3, ~) without initial state.
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(2) The category TL has as objects transition systems T = (5, --+, is) over
L. Let Ta = (So, --+, iso) and'TI = (51, --+, iS1) be transition systems
over L. A map 0- : So ---+ 51 is a morphism iff

(i) 0-( iso) = iSl and
(ii) for all s, s' E So, l E L : s ~ s' implies o-(s) ~ o-(s').

(3) Let 7 E L denote the silent action. Let A : L ---+ L * be the function

i := {l ; l i= 7

E ; l = 7,

where E denotes the empty word.
(4) On a transition system T = (5, --+, is) over L an additional transition

relation ~ ~ S x L * x 5 is defined as follows:

Definition 2.2 Let Ta = (So,--+,iso) and 'TI = (51, --+, isJ be transition
systems over some set of labels L. A relation R ~ So X 51 is a

strong bisimulation, iff for all (s, t) E R, l E L:
(i) if s ~ s' in Ta then t ~ t' in 'TI and (s', t') E R for some t' E 51, and
(ii) if t ~ t' in 'TI then s ~ s' in Ta and (s', t') E R for some s' E So.
weak bisimulation, iff for all (s, t) E R, l E L:

(i) if s ~ s' in Ta then t =b. t' in 'TI and (s', t') E R for some t' E 51, and

(ii) ift ~ t' in 'TI then s =b. s' in Ta and (s', t') ER for some s' E So.

These definitionscarry over to transition systems without initial states.

2.2 The view of Aczel and Mendler [5}

Aczel and Mendler [5] prove that "every set-based functor on the category
of classes has a final coalgebra". To establish this result they introduce the
general notion of F-bisimulation, where F is an endofunctor on Class. We
transfer this definition to the category Set, call it AM-bisimulation and define
in addition a notion of backward-forward AM-bisimulation. As we will show
in this paper AM-bisimulation (seen in a slightly broader sense) is adequate
to capture a great variety of concrete instances of bisimulation and seems to
be the most promising abstract characterization.

A coalgebra for an endofunktor F on a category C is a pair (A, a) consisting of
an object A and a morphism a :A ---+ F(A) of C. A morphism 0- : A ---+ B in C
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A ---_I B

ß

FO"FA--- ...•., FB

Fig. 1. Definition of homomorphism.

A R

ß

F1r1
FA~,--- FR F1r2--- ...•..FB

Fig. 2. Definition of AM-bisimulation.

An ~1r1, ... ,1rd Rn (1r2, ... ,1r2~ Bn

fE

A R 1r2----.B

Fig. 3. Compatible relation R.

is a homomorphism between coalgebras (A, a) and (B, ß) iff ß 0 0" = (FO")0 a
(see figure 1). Coalgebras and homomorphisms constitute a category, denoted
by CF'

Example 2.3 Let L be a set of labels. Let F := P(L x _) be the endofuncior
on Set, where P denotes the powerset operator.

(1) Any coalgebra (A, a) in SetF can be seen as a transition system T(A,a:) =

(A, --+) without initial state and vice versa, where x ~ Xl in T(A,a:) iff
(l, Xl) E a(x).

(2) With each coalgebra (A, a) in SetF one may associate its "inverse coal-
gebra" (A, a-), where a- : A -t P(L x A) and (l, x) E a-(xl) : -{:::=}

(l, Xl) E a (x ).

Definition 2.4 (1) Let F be an endofunctor on Set. A coalgebra (R,,,) is an
F-bisimulation between coalgebras (A, a) and (B, ß), iff R ~ A x Band
the projections 7['1 : (R,,,) -t (A, a) and 1r2 : (R,,,) -t (B, ß) of R on A
resp. Bare homomorphisms, i. e. the diagram in figure 2 is commutative.

(2) Let F := P(L x _) be the endofuncior on Set from example 2.3.
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(a) An AM-bisimulation is a F -bisimulation for this special funcior.
(b) A backward-forward AM-bisimulation is an AM-bisimulation (R,,)

between coalgebras (A, a) and (B, ß), such that (R, ,-) is an AM-
bisimulation between (A, a-) and (B, ß-).

The translation of coalgebras into transition systems and vice versa carries
over to the morphisms of the categories. Here we obtain:

Lemma 2.5 Let L be a set of labels, let F = P(L x _) be the endofunctor
on Set from example 2.3. A map 0" : A -+ B is a homomorphism between
coalgebras (A, a) and (B, ß) ijj for the transition systems T(A,o:) and T(B,(3)

holds

(i) if x ~ x' in T(A,o:) then O"(x) ~ O"(x') in T(B,(3) and

(ii) if y ~ y' in T(B,(3) and there'exists x E A with y = O"(x), then there

exists some x' E A with y' = O"(x') such that x ~ x' in T(A,o:).

PROOF. straightforward.

Lemma 2.6 Let (A, a) and (B, ß) be coalgebras to F = P(L x _) on Set.

(1) Let R ~ A x B, define,: R -+ FR, where V(x,y), (x',y') ER, 1 E L:

(1, x', y') E ,(x, y) : {:::=} (1, x') E a(x), (l, y') E ß(Y).

Then for alt (x, y) ER:

(F1fl o,)(x,y) ~ (ao1fd(x,y), (F1f2 0l)(x,y) ~ (ß01f2)(X,y).

(2) Let (R,,) bean AM-bisimulation between (A, a) and (B, ß). Then for alt
(x', y') ER:

(F1flO,-)(X', y') ~ (a-01fl)(X', y') and (F1f201-)(X', y') ~ (ß-01f2)(X', y').

PROOF. straightforward.

Let (A, a) and (B, ß) be coalgebras for the functor F = P(L x J on Set:
then obviously R ~ A x B is a strong bisimulation between T(A,o:) and T(B,(3)

iff R can be turned into a coalgebra (R, I)' such that the diagram in figure 2
commutes, i.e. (R,,) is an AM-bisimulation between (A, a) and (B, ß).

If the sets A and B consist of the terms of some (process) language with a
set of operators, e.g. ~ = {stop, a., +, II}, then A and B mayaIso be viewed
as ~-algebras. In this situation one may ask when a strong bisimulation R
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between T(A,a) and itself, that is an equivalence, is a congruence. More general
the quest ion is when a strong bisimulation R between T(A,a) and T(B,ß) is
"compatible" with I;. Here we call R ~ A x B compatible with I; if (ai, bi) E
R,i = 1,2, ... ,n, implies(jA(al,a2, ... ,an),fB(b1,b2, ... ,bn) E R for every
n-ary operator symbol 1E I;. It is easy to see that R ~ A x B is compatible
with I; iff R can be turned into a I;-algebra, such that for every n-ary operator
symbol 1E I; the diagram in figure 3 commutes.

Thus a relation R ~ A x B is

a strong bisimulation iff it can be turned into a coalgebra that displays the
same behaviour as (A, a) and (B, ß) and

compatible with I; (a congruence) iff it can be turned into a I;-algebra
that displays the same behaviour as (A, I;) and (B, I;).

2.3 The view 01Degano, De Nicola, and Montanari (ll)

Degano, De Nicola and Montanari [11] remark that "the realm of approaches
to operational descriptions and equivalences for concurrent systems in the
literature calls for unification .... At an appropriate level of abstraction many
of the semantics proposed so far can be recast within a common framework
based on the following four step procedure:

(1) Define, e.g., in a syntax driven way, elementary transitions which describe
the immediate evolutions of the system from each state.

(2) Obtain descriptions of system evolutions from a given initial state, by
defining system computations as paths in the transition system and give
them a tree structure.

(3) Introduce observations over system computations to abstract from un-
wanted details and decorate the tree above with observations to obtain
what we call an observation tree.

(4) Compare labelled trees (e.g., via bisimulations) to determine which terms
have an equivalent behaviour according to the introduced observations."

Degano, De Nicola and Montanari [11] define the concept of an observation
structure and introduce four types of bisimulation of decreasing distinguishing
power for observation structures to capture the essence of "bisimulation" :
strong bisimulation, branching bisimulation, weak bisimulation and jumping
bisimulation.

Observation structures differ from transition systems with labels in some set
D by the fact that labels are attached to nodes instead of edges.
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Definition 2.7 Given a set D of observations, an observation structure is a
triple 0 = (5,~,0), where

5 is a set of nodes,
~ ~ 5 x 5 is the transition relation and
o : 5 ~ D is an observation function mapping nodes into observations.

An observation structure with start state is a quadruple 0 = (5,~, 0, is),
where (5,~, 0) is an observation structure and is E 5 is astate such that any
node can be reached from iso is is called start state.

Given an observation structure 0 = (5,~, 0, is) with start state we often
denote the underlying observation structure (5, ~, 0) also by O.

Definition 2.8 Given an observation structure (5,~, 0), a symmetrie rela-
tion R on 5, such that r Rs implies o(r) = o(s), is a

strong bisimulation if r R sand r ~ r' implies that there exists s', with s ~ s'
and r' Rs'.

branching bisimulation if r R sand r ~ r' implies that there exist
So, SI, ... , Sn, n ;:: 0, with s = So ~ ... ~ Sn and r R Si for i < n and
r' Rsn.
weak bisimulation if r R sand r ~ r' implies that there exist SO,SI, ... , Sn,
with s = So ~ ... ~ Sk ~ ... ~ Sn, 0 < k :::; n, and o(so) = O(Si) for
0< i:::; k, O(Si) = o(sn) for k < i < n and r' Rsn.

jumping bisimulation if r R sand r ~ r' implies that there exists s', with
s ~* S' and r' Rs'.

The question arises, how the observation structure approach is related to the
coalgebraic setting of [5]. Degano, De Nicola, and Mont~nari [11] argue that

(1) the observation structure is more flexible and general than the transi-
tion system as the labelling of anode can be the observation of a whole
computation and

(2) consequently e.g. strong and branching bisimulation on' observation struc-
tures are generalizations of the terms introduced on transition systems.

However, the framework of transition systems has been extended very early to
allow for arbitrary labelleling of transitions and in [5] the labelling can be taken
from some arbitrary set. An observation structure can be easily transformed
into a transition system and based on this transformation bisimulation on ob-
servation structures turns out to be a special case of bisimulation on transition
systems.

Remark 2.9 Let 0 = (5,~, 0, is) be an observation structure over D with
start state. Choose s tt 5 and put
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s
T5(0) : ta

So7
c
"\

Sl • S2

Fig. 4. An observation structure 0 and its associated transition system TS(O).

Tree(T): E

y~
(sO,a,sl) (SO,b,Sl)

Obs( Tree(T)): E-L

(so, a~a \, b, SI)'

Fig. 5. A transition system which cannot be turned into an observation structure.

5' := 5 U {s} and

-'" ~ 5 X D x 5, where s ~ s' ijj (s = sand s' = is and d = o(is)) or

(s =1= sand s -+ s' and o(s') = d.)

We call T 5(0) = (5', -'", s) the transition system associated with O. Figure 4
shows an observation structure 0 with its associated transition system T 5(0).
Please note that the graph structure is basically preserved by the transformation
and that it is obvious how to obtain 0 from T 5(0).

By the above it is clear that observation structures (with start state) can
be considered as coalgebras for the functor F(X) = P(D x X) over the cate-
gory Set, i.e. in the coalgebraic setting of [5]. Conversely there are very simple
transition systems which cannot be turned into an observation structure while
preserving the graph structure, see the transition system Tin figure 5. How-
ever, one may transform the reachable part of a transition system with initial
state into a tree (Tree(T) in figure 5) which can then be turned into an ob-
servation structure (Obs( Tree(T)) in figure 5) by moving a label from an edge
to the node it points to and by introducing some dummy observation at the
start state.

Degano, De Nicola, and Montanari [11] write "strong and branching equiv-
alences are straightforward generalizations of the corresponding not ions over
labelIed transition systems." From the above point of view, however, one ob-
tains the following results:

Lemma 2.10 Let 0 = (5, -+, 0, is) be an observation structure over D with
start state.

(1) 1f R ~ 5 x 5 is a strong bisimulation on 0 then R is a strong bisimulation
on T5(0).

(2) 1f R ~ 5 x 5 is a strong bisimulation on T5(0) and r Rs implies o(r) =
o(s) then Ru R-1 is a strong bisimulation on O.
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(3) Let r, sES with o(r) = o(s).
There is a strong bisimulation R on 0 with r R s iff there is a strong

bisimulation R ~ S x S on TS(O) with r Rs.

PROOF. 1. , 2. and 3. ":::}" are obvious.

Let R be a strong bisimulation onTS(O) with r R s. Remove from R all pairs
(rl, Sl) with o(rl) :j::. o(sd. The resulting relation R is nonempty. R := RUR-l
is a strong bisimulation on 0 : let rl R Sl and rl -+ rz with o(rz) = d. Hence

d . ~ ~ d.
rl -" rz m TS(O). As rl RSl or Sl Rrl we get Sl -" Sz m TS(O) for sorne Sz,
and rzRsz or szRrz. Hence o(sz) = d and rzRsz.

We will now turn to the concept of weak bisimulation on observation structures
and show that it can also be subsumed in the coalgebraic setting.

Definition 2.11 Let 0 = (S, -+, 0, is) be an observation structure over D
with start state iso Consider the transition system TS(O) = (S', -", s) from
remark 2.9. For alt observations d E D let Pathd denote the set of alt simple z
directed paths in T S( 0) where alt transitions are labelled with d. Each set
Pathd is pariialty ordered by the subpath relation. Let s ..!!.", s' be a transition in
T S (0), that is located on two maximal paths Pl and Pz in Pathd. Then s ..!!.", s'
is either the first transition in both Pl and Pz or neither the first transition
in Pl nor the first transition on pz. Hence we may define a transition system
TSr(O) := (S', -', s) with labels in Du {T}, where

s ~ s' iff s ..!!.", s' is not the first transition in a maximal path of Pathd and

s -.:;.s' iff s ..!!.", s' is the first transition in a maximal path of Pathd.

Figure 6 shows an observation structure 0 with its associated transition sys-
tems TS(O) and TSr(O).

Lemma 2.12 Let 0 = (S, -+, 0, is) be an observation structure over D. If
R ~ S x S is a weak bisimulation on 0 then R is a weak bisimulation on
TSr(O).

PROOF. Let rRs and r ~ r' in TSr(O).

case 1: a :j::. T, a = d'. Hence r -+ r' in 0 and o(r')
bisimulation on 0 there exist so, Sl, ... , Sn with

d'. As R is a weak

s = So -+ ... -+ Sk -+ ... -+ Sn, 0 < k :::;n,

z A path is simple iff every edge oeeurs at most onee.
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0:

TS(O) : s

al b c c c c
So ---+ SI ---+ S2 ---- S3 ---+ S4 ---+ S5

TSr(O) :S

al b C T T T
So ---+ SI ---+ S2 ---- S3 ---+ S4 ---+ S5

Fig. 6. An observation structure 0 and its associated transition systems.

and o(so) = O(Si) for 0 < i ~ k and O(Si) = o(sn) for k < i < n and
r' Rsn. Hence o(r) = o(s) = O(Si) for 0 < i ~ k and d' = o(r') = o(sn) for
k < i < n. Le. in TSr(O) we have

r r r d' r rS = So ~ SI ~ ... ~ Sk ~ Sk+l ~ ... ~ Sn

<1'and obtain therefore S ~ Sn and r' R Sn'
case 2: a = T. Hence there must be d E D with o(r) = o(s) = o(r') = d. As

R is a weak bisimulation on 0 there exist So, SI, ... , Sn with

S = So -+ ... -+ Sk -+ ... -+ Sn, 0 < k ~ n,
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and o(s) = o(so) = o(Sn) = O(Si) for 0 < i < n and r' Rsn. I.e. in T5r(0)
we have

r r r r
S = So ----r ..• ----r Sk ----r ..• ----r Sn

and obtain therefore S ~ Sn and r' R Sn'

The definition of weak bisimulation on observation structures from [11] re-
quires that for related states (r, s) E R holds: if there is a transition r -t r'
then there is at least one transition starting in S.3 This is not required for
Milner's weak bisimulation on transition systems if the transition is labelled
with T. Therefore in general a weak bisimulation R on the transition system
T5r (0) of an observation structure 0 does not induce a weak bisimulation
on 0 including the pairs of R - see example 2.13.

Example 2.13 Consider the observation strueture 0 = ({is, r1, r2, sd, {is -t
r1, is -t SI, Ir1 -t r2}, {o(is) = e, 0(r1) = 0(r2) = O(Sl) = d}). Then R =
{(is, is), (r1, sd, (r2, sd} is a weak bisimulation on T5r(0). But there is no
weak bisimulation R on 0 with (r1' SI) ER: 0 includes the transition r1 -t r2,
but there is no transition starting at SI'

However Degano, De Nicola and Monatari [11] write: "Our version of weak
equivalence requires the same sequence of observations (possibly with stutter-
ing) along the corresponding paths." In this sense the states r1 and SI in the
observation structure 0 of example 2.13 should be weakly equivalent as they
have - up to stuttering - the same sequence of observations. So we propose to
change the definition of weak bisimulation on observation structures in order
to adjust it to the verbal description. It turns out that then the equivalence
to Milner's definition can be established.

Given an observation structure (5, -t, 0), a symmetrie relation R on 5, such
that r Rs implies o(r) = o(s), is a w-bisimulation if r Rs and r -t r' impli es
that there exists So, SI, ... ,Sn, with s = So -t ... -t Sk -t ... -t Sn, 0 ::; k ::;
n, and o(SO)= o(Si) for 0 ::; i ::;k, o(Si) = o(Sn) für k < i < n and r' R Sn'

Remark 2.14 Please note that our definition of w-bisimulation is still dif-
ferent from jumping bisimulation, as e.g. in ease of jumping bisimulation a
transition r -t r' with observations o( r) = d and o(r') = d' may be matehed
with transitions s -t SI -t Si with observations o( s) = d, o( Si) = d' and
o(sd = e tf; {d, d'}, which is not possible with w-bisimulation. But obviously
w-bisimilarity implies jumping bisimilarity.

Lemma 2.15 Let 0 = (5,-t, 0, is) be an observation structure over D with
start state.

3 This is due to the requirement 0 < k in definition 2.8.
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(1) 1f R <:;;; S x S is a w-bisimulation on 0 then R is a weak bisimulation on
TSr(O).

(2) 1f R <:;;; S x S is a weak bisimulation on TSr(O) and r Rs implies o(r) =
o(s) then Ru R-1 is a w-bisimulation on O.

(3) Let r, sES with o(r) = o(s).
There is a w-bisimulation R on 0 with r R s iff there is a weak bisim-

ulation R <:;;; S x S on TSr(O) with r Rs.

PROOF.

(1) See the proof of lemma 2.12.
(2) Let w.o.l.g. r R s. Let r -+ r' in 0 with o(r) = d and o(r') = d'.

case 1: d = d'. Then r ~ r' in TSr(O). As R is a weak bisimulation for
some s' we have S ~ s' in TSr(O) and r' Rs'. I.e. s(~)*s'. Hence
o(s') = o(s) = d and there exist SO,SI, ... ,Sn : d = o(s) = o(sn) =
O(Si), i = 1 ... n, and Sn = s', n ~ O.

case 2: d =J d'. Then r ~ r' in TSr(O). As R is a weak bisimulation for

some s' we have sb s' in TSr(O) and r' Rs'. I.e. s(~)* ~ (~)*s'.
Hence there exist So, SI, ... ,Sn: So = sand Sn = s' with

in TSr(O). Hence d = o(s) = O(Si) for 0 < i ::;k and d' = o(r')
o(Sn) = O(Si) for k < i < n.

(3) Analogous to the proof of 3. in lemma 2.10.

As the coalgebra framework also covers the case of weak bisimulation on
transition systems - see [4] - it follows that observation structures with w-
bisimulation can be modelled in the coalgebraic setting of [5].

[11] sketch how event structures can be turned into different observation trees
by varying the observation function. It is an open question which bisimulations
on event structures precisely can be modelled with these observation structures
and the proposed bisimulations on observation structures. To our knowledge
this question is also open for other models of concurrency.

2.4 The view of Malacaria (20j

Malacaria [20] studies simulation and strang bisimulation as observational
equivalences on transition systems in an algebraic context. The aim of his

12



approach is to get rid of the "syntactical nature" of the definition of observa-,
tional equivalences and to give abstract algebraic tools "to characterize these
equivalences as mathematically as possible" .

On the one hand [20] intro duces a category of transition systems T Malacaria'
that has as objects transition systems T = (S, ----+) over some set of labels L
without an initial state. A morphism from Ta = (So, ----+) to Tl = (SI, ----+)
is a mapping CJ : So -+ SI with s ~ s' in Ta implies CJ( s) ~ CJ( Si) in Tl,
s, s' E So, l E L.

On the other hand [20] defines a category A-CBA of actions over complete
atomic Boolean algebras and shows that there are (contravariant ) functors
between T Malacaria and A-CBA that define a (contravariant) equivalence
between these categories.

Definition 2.16 (1) A complete atomic Boolean algebra A is a Boolean
algebra A = (A, A, V) which is complete, i.e. each subset V ~ A has an
inf and a sup, and is atomic, i. e. there exists a nonempty subset At(A)
of A such that the following properties hold:
(a) Vv E A, a E At(A): a 1:. v:::} (aAv = 0).
(b) Vv i=- 0 E A 3a E At(A) : a ::;v.

(2) Let A = (A, A, V) be a complete atomic Boolean algebra, let L be a set.
An action over A is a pair (A, a) such that a : L x A -+ A is a map with

(i) a(l,O) = 0 for alll E Land
(ii) a(l, VV) = vVEva(l,v) for alll E L, V ~ A.
(3) Let T = (S, ----+) be a transition system over L without an initial state.

With T (20j associates an algebra Ac(T) := (P(S), a), where
P(S) is the powerset of S considered as complete atomic Boolean algebra
with n and U as meet resp. join and

a : L x P(S) -+ P(S) is a map with a(l, V) := {s E S 13s' E V : s ~
Si}, l E L, V ~ S.
A subalgebra A' of Ac(T) is a set A' ~ P(S) such that: for any v E

V ~ A' and for any l E L the elements 0, S, UV, nV, ,V, and a(l,v)
are in A'.

(4) With an action (A, a) over a complete atomic Boolean algebra A {20}
associates a transition system Trans(A, a) := (At(A), ----+), where

s ~ s' : ~ s::; a(l, Si).

Consequently one may interprete a transition system Ta = (So, ----+0) as an
algebra and obtain from this algebra a transition system which is isomorphie
to Ta. The resulting transition system Tl = (SI, ----+1) from Alg(Ta) is

SI := At(P(So)) = {{ s} I s E So} as states and
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Ae(7ö) :

a,b

o
Fig. 7. Transformation of a transition system into an algebra and vice versa.

{s} ~1 {s'} : ~ {s} <;;; o:.(l,{s'}) as transition relation.

Figure 7 illustrates these two transformations. In the above representation of
a transition system as an algebra (P( 5),0:.) the map 0:. yields for astate s' all
immediate predecessors, i.e. all states from which s' can be reached via a single
transition. This construction is dual to the coalgebraic view of [5] where the
coalgebra gives for each state the information on the immediate successors.

In order to be able to give an algebraic characterization of bisimulation [20]
considers a restricted not ion of of strong bisimulation. For a strong bisimu-
lation R between transition systems 7ö = (So, --+0) and Tr = (SI, --+r) it
is requested that for every state So E So there must exist a bisimilar state
SI E 51, i.e. astate such that (so, SI) E Rand vice versa. This restriction is
not strong, as we are usually interested in transition systems with an initial
state i and may ignore states that cannot be reached from i. We will call this
bisimulation Mal-bisimulation. Using the translation from transition systems
into algebras [20] gives a characterization of bisimulation:

Theorem 2.17 Transition systems 7ö, Tr are in Mal-bisimulation iff Ae(7ö)
and Ae(Tr) have an isomorphie subalgebra.

Example 2.18 Consider the transition system 7ö in figure 7 and the transi-
tion system Tr:= ({tO,tl,t2,t3},{to ~ tl,to ~ t2,tO ~ t3,},tO). 7ö and
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Ti are Mal-bisimilar. The sets

T~ := {0, {so}, {SI}, {S2}, {so, SI}, {So, S2}, {SI, S2}, {so, SI, S2, S3}},

T{ := {0, {to}, {tl, t2}, {t3}, {ta, tl, t2}, {ta, t3}, {h, t2, t3}, {tl, t2, t3, t4}}

are isomorphie subalgebras 0/ Ae(7ö) resp. Ae(Ti).

The above view adds an interesting perspective to the understanding of the na-
ture of bisimulation. Clearly every not ion of bisimulation in some model ~ that
can be described in the coalgebra framework and yields a Mal-bisimulation can
be characterized via the isomorphie subalgebra paradigma.

2.5 The view 0/ Abramsky (2)

As part of a general program "domain theory in logical form" Abramsky
[2] provides a general relationship between domain theory and operational
notions of observability. In particular [2] defines a domain V that allows for
a (fully abstract) characterisation of (partial resp. finitary) bisimulation on
transition systems with divergence. We consider the question how this view of
bisimulation is related to the coalgebraic approach of [5].

Definition 2.19 (1) A transition system with divergence is a structure T =
(5, Aet, ----+, t) where
5 is a set 0/ proeesses or agents,
Act is a set 0/ atomie actions,
----+ ~ 5 x Act x 5 is the transition relation and
t ~ 5 is apredicate.

Write s t iff sEt and s J- iff s tf. t . s t means "s may diverge" while s J- is
read as "s definitely eonverges". Galt a transition system T terminating
ifft= 0.

(2) A (finite) synchronization tree is a transition system T = (5, Aet, ----+,t) ,
where
• (5, ----+) is a direeted tree with a root rES (in the graphtheoretical

sense) and
• the set 5 is finite.

(3) Let States be some countable set. Synch(Act) denotes the set 0/ alt finite
synchronization trees T = (5, Act, ----+, t) with 5 ~ States.

Remark 2.20 Obviously a transition system with divergence ean be seen as
an objeet in SetF and vice versa.

Definition 2.21 Let 7ö = (So, Act, ----+, t) and Ti = (51, Act, ----+, t) be tran-
sition systems with divergence over the same set 0/ actions Act.
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(1) A partial bisimulation is a relation R ~ So X SI, such that for all (s, t) E
R, a E Act:

(i) if s ~ Si in Ta then t ~ t' in Ti and (Si, t') E R for some t' E SI,
and

(ii) if s.t. then
(t.t. and t ~ t' in Ti implies s ~ Si in Ta and (Si, t') E R for some
Si E So.)

(2) For s E So, t E SI

S [:;:;pb t iff there exists a partial bisimulation R with sR t.

s [:;:;fb t iff for all S E Synch(Act) holds: r [:;:;pb s =? r [:;:;pb t,

where r is the root of S.
[:;:;fb is called finitary bisimulation.

Both relations, i.e. partial and finitary bisimulation, are reflexive and transitive
but not symmetrical. Partial bisimulation implies finitary bisimulation, but
not vice versa.

Example 2.22 Let

Ta := ({Si li EIN}, Act, {So ~ Si I i ;:::I}, 0) and

Ti := ({ti li E IN} U {u}, Act, {to ~ ti I i ;:::I} U {to ~ u}, 0)

be transition systems with divergence. Here So [:;:;fb to, So gpb to, and to gfb So.

Remark 2.23 Obviously partial bisimulation and Milner's strong bisimula-
ti on coincide on terminating transition systems and can hence be viewed as
AM-bisimulation.

The not ion of partial bisimulation is used in [2] to define a category of tran-
sition systems with divergence:

Definition 2.24 Let Act be a countable set of actions.

The objects ofT Abramsky are the transition systems with divergence over Act.
Let Ta = (So, Act, --+, t) and Ti = (SI, Act, --+, t) be objects ofT Abramsky'
A map 0' : So -7 SI is a morphims between Ta and Ti, iff

Vs E So : s [:;:;fb O'(s) 1\O'(s) [:;:;fb S.

Abramsky defines in [2] a dass of so-called finitary transition systems with
divergence, which are transition systems with divergence that satisfy the two
axiom schemes
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(BN) 0 ViEl <Pi ::; V JEFin(I) 0 VjEJ <Pj (<Pi E Lw)
(bounded non-determinancy) and

(FA) /\JEFin(I) <> /\jEJ <Pj ::; <> /\iEl <Pi (<Pi E Lw) (finite approximability),

where I is some index set, Fin(I) is the set of finite subsets of I and Lw is a
finitary subset of a domain logic Loo in the sense of [1]. In [2] it is shown that
partial and finitary bisimulation coincide on finitary transition systems with
divergence.

Remark 2.25 Let (Ai, ai), i = 0,1, be coalgebras in SetF such that their
related transition systems are finitary. Then for Si E Ai, i = 0,1 :

So ~ fb SI ijj there is an AM- bisimulation (R,,) between

(Ao, ao) and (Al, (1) with (so, sd E R.

Definition 2.26 Let Act be a countable set of actions. Let V be defined as
the initial solution (in SFP) of the domain equation

where po is Plotkin's powerdomain with empty set.

Abramsky shows in [2] that for any transition system with divergence T over
a countable set Act there is a mapping [ ] : T -+ V such that for all states
s, t of T:

S ~fb t ~ [s] ~'D [tl

Remark 2.27 Let (A, ai), i = 0,1 be coalgebras in SetF such that their
related transition systems are finitary. Then AM-bisimulation can be charac-
terized by V in the following sense: for Si E A, i = 0,1,

[so] ~'D [SI] ijj there is an AM-bisimulation (R,,) between

(Ao, ao) and (Al, (1) with (so, SI) E R.

There is yet another aspect that makes the comparison between these two
approaches interesting. In [2] the object V is also considered as transition
system with divergence (V, Act, ---+, t) defined by

S ~ s': ~ <a,s'>E sand
st: ~ 1- E s.
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This transition system D is a final object in T Abramsky and for transition
systems Ti, i = 0,1, in T Abramsky holds: for all states Si of Ti

where fini : Ti -+ D are the unique morphisms in T Abramsky' Combining
this with remark 2.25 one obtains:

Remark 2.28 Let (Ai, ai), i = 0,1 be coalgebras in SetF such that their
related transition systems are finitary. Then for Si E Ai, i = 0, 1 :

fino(so) = fin1(Sl) iff there is an AM-"bisimulation (R,,) between

(Ao, ao) and (Al, (1) with (so, SI) E R.

H ere equality holds because of remark 2.23.

Analogously it can be shown, see e.g. [5,4], that ClassF, where F = P(ActxJ,
has a final object 0 and that for two coalgebras (A, ai) and Si E Ai, i = 0, 1,

fino(so) = fin1(Sl) iff there is an F-bisimulation (R,,) between

(Ao, ao) and (Al, (1) with (so, SI) E R,

where fini : (Ai, ai) -+ 0 is the unique morphism in ClassF, hence

Remark 2.29 for coalgebras (Ai, ai), i = 0,1, in SetF with associated fini-
tarytransition systems and Si E Ai, i = 0,1 :

1f we conversely consider terminating transition systems Ti and states Si of Ti,
i = 0,1, then we may summarize as follows:

and if interpreted as coalgebras

For terminating finitary transition systems we obtain

In the above we freely interpreted coalgebras as (terminating) transition sys-
tems and vice versa. Both approaches, Acel and Mendler [5] and Abramsky
[2], work in a categorical framework. So the question arises if this switching of
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Fig. 8. Transition systems Ta and Ti.

view can be captured also on the categoricallevel such that the results about
the characterization of bisimulation are maintained.

It is easy to see that the obvious mapping from SetF to T Abramsky that
associates a terminating transition system with a coalgebra and is the identity
mapping on morphisms is a functor under which remark 2.25 remains valid.

To go from T Abramsky to SetF one cannot use the simple interpretation of a
terminating transition system as a coalgebra as can be seen by example:

Example 2.30 Consider the (finitary) transition systems Ta and Ti from fig-
ure 8, where we assume that all states converge. In the category T Abramsky
exists a morphism a from Tl to To, take for example a(ti) := Si, 0 :::; i :::;3.
But there is no morphism from Ti to Ta in SetF.

Hence to establish a functor from T Abramsky to SetF we proceed as follows.
Let TermFinT be the full subcategory of TAbramsky which consists of ter-
minating finitary transition systems. Let T = (S, Act, ---+,0) be an object of
TermFinT and put

S := {[S]fb I SES}, where [S]fb denotes the equivalence dass of s with
respect to ~ fb, and
[S]fb ~ [t]fb : ~ 3s' E [S]fb, t' E [t]fb: s' ~ t' in T.

Lemma 2.31 Let Ti = (Si, Act, ---+i, 0), i = 0, 1, be objects ofTermFinTS,
let a : So -7- Sl be a morphism from Ta to Ti. Then G defined as

G(Ta) := (So, ---+0) and
G(a)[p]fb := [j(p)]fb

is a funetor from TermFinTS to SetF. For Si E Si, i = 0, 1,
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So [;;;;fb SI iff there is an AM-bisimulation (R,,) between

G(7O) and G(Ti), such that ([SO]fb, [sl]fb) E R.

PROOF. We prove first that G(O") is a morphism in SetF using the charac-
terization of lemma 2.5.

To show condition (i) let [x]fb ~o [X']fb be a transition in G(7O). Then there
exist some x E [X]fb, x' E [X']fb with x ~o x' in 70. As 0" is a morphism in
TermFinTS we obtain x [;;;;pbO"(x). Therefore there exists some y' E SI such
that O"(x) ~1 y' in G(Ti) and x' [;;;;pb y'. Using again that 0" is a morphism
we get x' [;;;;pb O"(x'). Thus O"(x') [;;;;pb y' and therefore [O"(X)]fb = [O"(x)]fb ~1

[Y']fb = [O"(X')]fb = [O"(X')]fb'

Now let [y]fb ~1 [Y']fb be a transition in G(Ti), where [y]fb = G(O")[X]fb for
some [x]fb E So. Then there exist some fJ E [y]fb, fJ' E [Y']fb with fJ ~1 fJ'.
As X [;;;;pb O"(x) and [y]fb = [O"(X)]fb we obtain fJ [;;;;pb x. Thus there exists
some x' E So with x ~o x' and fJ' [;;;;pb x', i.e. we have [X]fb ~o [X']fb' As
x' [;;;;pbO"(x') we obtain furtheron [O"(X')]fb = [fJ']fb'

If R ~ So X SI is a partial bisimulation with (s, t) E R then eR, i), where

R := {([P]fb, [q]fb) I (p, q) E R} and
(a, [P']fb, [q']fb) E i([P]fb, [q]fb) : {::::::} [p]fb ~o [P']fb, [q]fb ~1 [q']fb,
where a E Act and ([p]fb, [q]fb), ([P']fb, [q']fb) E R,

is an AM-bisimulation between G(7O) and G(Ti) with ([S]fb, [t]fb) E k

If (R,,) is an AM-bisimulation between G(7O) and G(Ti) with ([S]fb, [t]fb) E
R. Then

R := {(p', q') I p' E [P]fb, q' E [q]fb, ([P]fb, [q]fb) ER}.

is a partial bisimulation with (s, t) E R.

Hence we obtain a result analogous to (*) in remark 2.29:

Corollary 2.32 Let Ti = (Si, Act, ----7i, 0) be objecis 0/ TermFinT, Si E
Si, i = 0,1. Then

20



Q

p----.-X

lf
q----.-Y

Fig. 9. Path lifting condition

2.6 The view of Joyal, Nielsen, and Winskel [19}

Joyal, Nielsen, and Winskel [19] write: "There are confusingly many models
for concurrency and all too many equivalences on them. To an extent their
representation as categories of models has helped explain and unify the appar-
ent differences. But hitherto this category-theoretic approach has lacked any
convincing way to adjoin abstract equivalences to these categories of models."
[19] then pro pose to characterize bisimulation in a category tM of models via
a subcategory IP of tM of "path objects". Such a path object represents "a
particular run or history of a process" .

Definition 2.33 Let tM be a category of models, let IP be a category of path
objecis, where IP is a subcategory of tM.

(1) A path is a morphism p : P --t- X from an objeci P in IP to an object X
in tM.

(2) In tM a morphism f : X --t- Y is called IP-open, iff whenever there are
objects P, Q and a morphism m : P --t- Q in IP and paths p : P --t- X, q :
Q --t- Y, such that f 0 p = q 0 m, then there exists a path r : Q --t- X with
rom=p andfor=q.

Figure 9 illustrates this "path lifting condition". IP-open morphisms in-
clude all the identity morphisms and are closed under composition.

(3) Two objecis Xl and X2 of tM are called IP-bisimilar, iff there exists an
objeci X in tM and IP-open morphisms h :X --t- Xl and h :X --t- X2.

In categories tM with pullbacks the relation IP-bisimilarity is transitive and
therefore an equivalence relation. One can finde categories with pullbacks for
transition systems, synchronization trees, event structures, transition systems
with independence and petri nets e.g. in [19,27].

Using the category TL of definition 2.1 as category of models and Bran the
full subcategory of TL which has finite synchronisation trees with at most
one maximal branch as objects as category of path objects [19] show that
Bran-bisimulation models precisely Milner's strong bisimulation. Modifying
the category of transition systems [9] captures Milner's weak bisimulation,
trace equivalence, testing equivalence, barbed bisimulation and probabilistic
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p~l~
Fig. 10. Path-IP-bisimulation, illustration for condition (i).

bisimulation as IP-bisimulation. On event structures, petri nets and transition
systems with independence [19,27] introduce a new notion of bisimulation the
so-called strong history preserving bisimulation and characterize it in terms
of IP-bisimulation.

Remark 2.34 As Bran-bisimulation and Milner's strong bisimulation coin-
cide on the category TL AM-bisimulation can be viewed as an instance of
IP -bisimulation. 4

To obtain a logic characteristic of IP-bisimulation Joyal, Nielsen, and Winskel
propose in [19] a second characterization of bisimulation in terms of category
theory.

Definition 2.35 Let IM be a category of models, let IP be a small category of
path objects, where IP is a subcategory of IM, let I be a common initial object of
IM and IP.

(1) Two objects Xl and X2 of IMare called path-IP-bisimilar iff there is a set
R of pairs of paths (Pl,P2) with common domain P, so PI : P --+ Xl is a
path in Xl and P2 : P --+ X2 is a path in X2, such that
(0) (/'1, /'2) E R, where /'1 : I --+ Xl and /'2 : 1--+ X2 are the unique paths

starting in the initial object,
and for all (PI, P2) E Rand for all m : P --+ Q, .where m is in IP, holds
(i) if there exists ql : Q --+ Xl with ql 0 m = PI then there exists q2

Q --+ X2 with q2 0 m = P2 and (ql, q2) E R (see figure 10) and
(ii) if there exists q2 : Q --+ X2 with q2 0 m = P2 then there exists ql

Q --+ Xl with ql 0 m = PI and (ql, q2) E R.
(2) Two objects Xl and X2 are strang path-IP-bisimilar iff they are path-IP-

bisimilar and the set R further satisfies:
(iii) 1f (ql' q2) E R, with ql : Q --+ Xl and q2 : Q --+ X2 and m : P --+ Q,

where m is in IP, then (ql 0 m, q2 0 m) ER, see figure 11.

4 In [21] we discuss some subtle differences between Bran-bisimulation and AM-
bisimulation.
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Fig. 11. The new condition for strang Path-IP-bisimulation.

Sometimes the set R is called a (strong) path-fP-bisimulation between the ob-
jects Xl and X2.

On transition systems strong bisimulation can be modelled as (strong) path-
Bran-bisimulation [19]. For event structures (strong) history preserving bisim-
ulation can be captured by (strong) path-Pos-bisimulation 5 [19].

Remark 2.36 As (strong) path-Bran-bisimulation and Milner's strang bisim-
ulation coincide on the category TL AM-bisimulation can be viewed as an
instance of (strong) path-fP-bisimulation.

Joyal, Nielsen and Winskel [19] give the following relations between fP-bisimu-
lation and path-fP-bisimulation:

Theorem 2.37 (1) Let ~ be a category of models, let fP be a small category
of path objects, where fP is a subcategory of~, let I be a common initial
object of IM and fP.

If two objects Xl and X2 of ~ are fP-bisimilar, then Xl and X2 are
strong path-fP bisimilar.

(2) Let ~ be the subcategory of rooted presheaves in [fPoP, Set]. Rooted pre-
sheaves Xl, X2 are strong path-fP-bisimilar iff they are fP-bisimilar.

3 From path-fP-bisimulation to AM-bisimulation

In this section we study the following question: Let ~ be a category of models,
let fPbe a small subcategory of ~ of path objects, such that fPand ~ have
a common intial object I. Let Xl and X2 be objects in ~. Is there a way
to associate coalgebras (A, ad with Xi, i = 1,2, such that Xl and X2 are
path-fP-bisimilar iff (Al, al) and (A2, (2) are AM-bisimilar?

We show in the following that indeed we can define an operator T from ~
to the coalgebras in SetF such that two objects in ~ are path-fP-bisimilar iff

5 For the definition of the category Pos see section 5.
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Fig. 12. Defining the transitions of Tpath-rp.

the corresponding coalgebras are AM-bisimilar. This result shows that AM-
bisimulation is aleast as powerful as path-IP-bisimulation.

Theorem 3.1 Let ~ be a category of models, let IP be a sm all subcategory of
~ of path objects, such that IP and ~ have a common initial object I. There
exists an operator T : ~ -+ SetF such that:

Objects Xl and X2 0/ ~ are (strong) path-IP-bisimilar iff there exists a (back-
ward-forward) AM-bisimulation (R,,) between (A, a) := T(XI) and (B, ß) :=
T(X2) with (~l, ~2) E R, where ~l : I -+ Xl and ~2 : I -+ X2 are the unique
pathes from I to Xl resp. X2.

PROOF. We define for each object X of ~ a labelled transition system
Tpath-rp(X) = (5, a) in SetF over the set of labels UP,Q E rp {( m, P, Q) Im E
Mor(P,Q)} :

5:= {p: P -+ X I PE IP,pE HomlI1(P,X)},
(m, P, Q, q) E a(p) :~ q 0 m = p, see figure 12.

Let Xl and X2 be path-IP-bisimilar. Then there exists a set R consisting of
pairs of paths (PI, P2) with common domain P. We define a map , : R -+ FR
and show that (R,,) is an AM-bisimulation between (A, a) and (B, ß). Let for
all (PI,P2), (ql,q2) ER, Pi: P -+ Xi, qi: Q -+ Xi, i = 1,2, m E Mor(P,Q)

Let (m, P, Q, qd E (a01fI)(PI, P2)' Then (m, P, Q, qd E a(PI) and therefore qlo
m = PI' As (PI,P2) E R this implies by condition (i) ofthe definition ofpath-IP-
bisimulation that there is some q2 : Q -+ X2 with q2 om = P2 and (ql, q2) E R.
Thus we have (m,P,Q,ql,q2) E ,(PI,P2) and hence (m,P,Q,qd E (F1fIO
, )(PI, P2)'

Let (m, P, Q, qd E (F1f1 0 ,)(PI,P2). Then there exists some q2 : Q -+ X2
such that (m,P,Q,ql,q2) E ,(PI,P2). By the above definition of, this implies
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ql 0 m = PI' By definition of Tpath-IP(Xl) we get (m, P, Q, ql) E a(pd and
therefore (m, P, Q, ql) E (a 01rl)(Pl,P2).

Assume furtheron that the set R is a strong path-IP-bisimulation between Xl
and X2. In order to pove that the constructed AM-bisimimulation (R,,) is
backward-forward it is enough to show (a- 0 1rd ~ (F1rl 0,-) - see lemma
2.6.

Let (m,P,Q,Pl) E (a- 0 1rd(ql,q2)' Then we have (m,P,Q,Pl) E a-(ql)
and therefore (m, P, Q, qd E a(Pl)' Thus by definition of (A, a) we get the
equation ql 0 m = PI' As (ql, q2) E R we get by (iii) that (ql 0 m, q2 0 m) E R.
By definition of, we obtain (m, P, Q, ql, q2) E ,(ql 0 m, q2 0 m). This implies
(m, P, Q, ql 0m, q2 0m) E ,- (ql' q2) and we get finally by the equation ql 0m =
PI that (m, P, Q, PI) E (F1rl 0 ,-)(ql, q2)'

Now let (R, ,) be an AM-bisimulation between (A, a) and (B, ß), such that
(/'1, /'2) E R. As R may relate paths PI and P2 with different domains we define
a subset of R to establisch the path-IP-bisimilation:

Obviously we have (/'1, /'2) ER'. Now let (PI, P2) ER', m E M or(P, Q) for
some object Q in IP and ql : Q --+ Xl a path, such that ql 0 m = PI' This
implies (Pl,P2) ER and (m,P,Q,ql) E (a01rl)(Pl,P2)' As (R,,) is an AM-
bisimulation there exists some q2 : Q --+ X2 with (m,P,Q,ql,q2) E ,(Pl,P2)'
Therefore we get (m, P, Q, q2) E ß(P2) and thus by definition of (B, ß) we have
q2 0 m = P2. As ql and q2 have the same domain and (ql, q2) E R we conclude
(ql, q2) E R' and thus R' fullfills condition (i).

Assume furtheron that the AM-bisimulation (R, ,) is backward-forward. To
show condition (iii) let (ql, q2) E R', i.e. ql and q2 are paths with the same
domain Q, let m E M or(P, Q). Then ql 0 m E M or(P, Xl)' By definition of
the operator Tpath-IP we get (m,P,Q,ql) E a(ql om). This impli es

Thus there exists some P2 : P --+ X2 such that (m, P, Q, ql om,P2) E ,-(ql, q2)'
As R is a backward-forward AM-bisimulation we get (m, P, Q,P2) E ß-(q2)
and therefore (m, P, Q, q2) E ß(P2)' With the definition of Tpath-IP we conclude
q2 0 m = P2. Thus (ql 0 m, q2 0 m) E R'. 0

Consequently any concrete not ion of bisimulation on some model IM for con-
current processes that can be captured by the framework of [19]' i.e. for which
two objects are bisimilar iff there is a path-IP-bisimulation between them in the
corresponding category, can be given a characterization in terms of coalgebras
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and hence transition systems. However the transition systems obtained by the
above construction are rather abstract and not related directly to the intuitive
understanding of the given bisimulation. For a not ion of bisimulation on some
model there are often some quite natural ways of defining an operator T that
associates a transition system with an object in some model ~ such that two
objects 01, O2 are bisimilar iff the corresponding transition systems T(Od
and T( O2) are bisimilar, see e.g. [23]. We deal with such "natural" operators
in the next section.

4 From AM-bisimulation to path-IP-bisimulation

We now consider the question: let B be a concrete notion of bisimulation in
some category ~ of models, that can be modelled as AM-bisimulation, i.e. there
is an operator T : ~ -+ Setp, where F is the functor F(X) = P(L x X) for
some set of labels L, such that objects Xl and X2 of ~ are B-bisimilar iff
T(Xl) and T(X2) are AM-bisimilar. Und er which conditions can we model B
as path-IP-bisimulation for some path category IP? The AM-bisimulation is a
path-Bran-bisimulation in the category TL (see remark 2.36) but the question
is to find a subcategory IPof ~ that enables us to give a characterization of B
as path-IP-bisimulation in the category ~.

The following result suggests to take as objects of the category IPthose objects
X which have a "final reachable" state in T(X). If it is then possible to select
morphisms for IP such that the operator T is "connecting" to the category IP
then the desired characterization can be concluded.

Let ~ be a category of models, let IP be a small subcategory of ~ of path
objects, such that IPand ~ have a common initial object I. Let L be a set of
labels, T an operator which associates to each object X from ~ a transition
system T(X) = (5, --+, is) in TL. We call the operator T eonnecting to IP iff
the following conditions Cl - C5 hold:

Cl: T evolves into a functor from ~ to TL.
C2: For all P E IP holds: there exists astate f in the transition system
T(P) = (5, --+, is) such that 'IIx E 5 : x --+* f. We choose one of these
states and call it the final reaehable state f of T(P).

C3: Let X be an object of ~ and SI ~ S2 ~ ... an-~ Sn, n ::::1, be a
derivation in T(X), such that SI is the initial state of T(X). Then there
exists an object P in IP, such that T(P) has a derivation tl ~ t2 ~
... an-~ tn, where tl is the initial and tn the final reachable state of T(P).
Furtheron for any object Y of ~ with a derivation Ul ~ U2 ~ ... an-~ Un

in T(Y), where Ul is the initial state of T(Y), there exists a morphism
p: P -+ Y in ~ such that T(p)(ti) = Ui, i = 1,2, ... ,n.
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q2 = m2 0 ... 0 mn-1

qn-1 = mn-1

Pn

Fig. 13. Illustration for the proof of lemma 4.1

C4: For derivations of length n = 1 the initial object I can be choosen as
object P of [p in condition C3.

C5: Let P and Q be objects of [P,X an object of IM, p : P ~ X, q : Q ~ X
morphisms in IM, m : P ~ Q amorphisms in [P.Let t1 ~ t2 ~ ... ~ tn
be a derivation of T( P), where t1 is the initial state and tn the final reachable
state of T(P). Then holds:

q 0 m = p {=? VI::; i ::;n : T(q 0 m)(ti) = T(p)(ti). (1)

Lemma 4.1 Let IM be a category of models, let [P be a small subcategory of IM
of path objeets, such that [P and IM have a common initial object I. Let X be
an object in n We define

Tp,D1(X) := (5, ----+, '-x)

as the transition system over L := UP,QEP{(m,P,Q) Im E Homp(P,Q)},
where

5 := {p : P ~ X I P E [P, P E H omD1 (P, X)}.
(m,P,Q) fi 2p ----+ q:{=? q 0 m = p, see gure 1 .

'-x is the morphism from I to X.

The operator Tp,D1is conneeting to [P.

PROOF. Let f : Xl ~ X2 be a morphism in IM. Choosing Tp,D1(f)(p) := fop,
where p : P ~ Xl is astate of Tp,D1(X1) and P is an object in [P, turns the
operator Tp,D1 into a functor. As final reachable state of the transition system
Tp,D1(P) take the identity of P, i.e. idp.

Let X be an object of IM. Für n = 1 condition C3 holds übviously for the initial
object. For n > 1 consider a derivation SI ~ S2 ~ ... ~ Sn in Tp,D1(X),
where SI is the initial state. By the above definition of the operator Tp,D1 there
exist path objects Pi, morphisms Pi : Pi ~ X, 1 ::; i ::;n, and morphisms
mj : Pj ~ Pj+l, 1 :::;j ::; n - 1, such that
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(1) aj = (mj, Pj, Pj+l)' 1 :S j :S n - 1,
(2) Pj+l 0 mj = Pj, 1 :S j :S n - 1 and
(3) PI = I, ml = iP2 : I -+ P2"

Choose as path objeet P = Pn. Let qi := rr~;:;;fmk : Pi -+ Pn for 1 :S i :S n.
Then ql = iPn and Pn = idpn" Thus in TIP,It1(Pn) we find the derivation ql =

ai a2 an-~ (fi )i Pn ---=-+ q2 ---=-+ . . . qn see gure 13 .

Let Y be an objeet of IM with a derivation

in TIP,It1(Y), where Ul is the initial state of TIP,It1(Y). We obtain:

(1) Ui E H omlt1(Pi, Y), 1 :S i :S n,
(2) Ul = iX : I -+ Y and
(3) Ui = Ui+l 0 mi, 1 :S i :S n - 1.

Let P, Q be objeets of IP, X an objeet of IM, P : P -+ X, q : Q -+ X morphisms
• !vi P Q h" IP L ai a2 an-I bm U I, m: -+ a morp Ism m . et PI ---=-+ P2 ---=-+ ... ---t Pn e a
derivation in TIP,It1(P), where PI is the initial state and Pn is the final reaehable
state of TIP,It1(P). As in the proof of eondition 3 we have some information on
the strueture of TIP,It1(P) :

(1) aj = (mj, Pj, Pj+l) , where mj E H omlP(Pj, Pj+l), 1 :S j < n - 1, for
objects Pi E IP, 1 :S i :S n,

(2) Pi E H omlt1(Pi, P), 1 :S i :S n,
(3) PI = land ml = iP2 : I -+ P2,
(4) Pn = P and Pn = idp, and
(5) Pj = Pj+l 0 mj, 1 :S j :S n - 1.

Let TIP,It1(q0 m)(Pi) = TIP,It1(P)(Pi) for 1 < z < n. Choosing i = n we have
Pn = idp, thus we obtain:

q 0 m = q 0 m 0 idp

= q 0 m 0 Pn

= TIP,It1(q0 m)(Pn)

= TIP,It1(P)(Pn)

= po Pn

= p"
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- _._----~-----------------------------------

As we need initial states and a rich structure of morphisms for connecting
operators we use the category TL as a link between the category of models
[11, where we study a concrete notion of bisimulation, and the category SetF,
where the concept of AM-bisimulation was introduced.

Definition 4.2 Let 'Ti = (5, ----h, sd and T2 = (T, -+2, td be transition
systems in TL, (A, a) the coalgebra with 'T(A,a.) = (5, -+1) and (B, ß) the
coalgebra with 'T(B,ß) = (T, -+2) .

• 'Ti and T2 are AM-bisimilar iff there exists an AM-bisimulation (R, ')') be-
tween (A, a) and (B, ß) with (SI, t1) E R .

• 'Ti and T2 are backward-forward AM-bisimilar iff there exists an AM-bisi-
mulation (R, ')') between (A, a) and (B, ß) with (SI, td E Rand (R, ')'-) is
an AM-bisimulation between (A, a-) and (B, ß-).

Theorem 4.3 Let [11 be a category 0/ models. Let B be abisimulation on [11,
which an operator T : [11 ---+ TL models as AM-bisimulation.

1/ there exists a sm all subcategory IP 0/ [11, such that IP and [11 have a common
initial object 1 and the operator T is connecting to IP, then objects Xl and X2
0/ [11 are path-IP-bisimilar iff T(X1) = (5, -+, SI) and T(X2) = (T, -+, t1)

I are AM-bisimilar (iff Xl, X2 are B-bisimilar).

PROOF. Let (R, ')') be an AM-bisimulation between T(X1) = (5, -+, SI)
and T(X2) = (T, -+, td with (SI, t1) E R. To obtain a path-IP-bisimulation
R' between Xl and X2 we consider astate (s, t) in (R, ')') which is reachable
from (SI, t1). Let

be a derivation of (s, t). With the projections 1f1and 1f2we obtain derivations
al a2 an-~ d al a2 an-~ . T() ()SI ----=-+ S2 ----=-+ . . . Sn an t1 ----=-+ t2 ----=-+ . . . tn m Xl resp. T X2 .

By condition e3 there exists an object P of IP,such that T(P) has a derivation
al a2 an-l F h h . h' P X'U1 ----=-+ U2 ----=-+ ... -+ Un° urt eron t ere eX1st morp lsms Pi: ---+ i, Z =

1,2, such that T(P1)(Uj) = Sj and T(P2)(Uj) = tj, j = 1,2, ... , n.

Let M(s, t) be the set of all pairs of morphisms (PI, P2), which can be obtained
from a reachable state (s, t) in (R, ')') in the way described above. Le. first
consider all dervations of (s, t), second all objects P of IP corresponding to
a derivation, and finally any pair of morphims (P1,P2), which maps T(P) on
T(X1) resp. T(X2) in the way described above. We claim that the set

R' := U M(s, t)
(s,t)ER, (s,t) reaehable
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is a path-!P-bisimulation between Xl and X2. Condition C4 implies (~l, ~2) E
R', where ~i : I --+ Xi, i = 1,2.

Let (P1,P2) E R' with Pi : P --+ Xi, i = 1,2, for some P in !P. Let m : P --+ Q
be some morphism in !P, ql : Q --+ Xl be a path in IM such that ql 0 m = PI'
Using the definition of R' we obtain the following derivations:

in (R, ')') :

in T(X1) :

in T(X2) :

in T(P) :

By definition of R' holds T(pd(uj) = Sj, j = 1,2, ... ,n, and T(P2)(Uj)
tj, j = 1,2, ... ,n. As T(m) is a morphism in TL, there exists a derivation

in T(Q): T(m)(ud ~ T(m)(u2) ~ ... ~ T(m)(un).

Condition C2 implies that there exists a final reachable state f in T(Q).
Therefore we obtain a derivation

T(Q) T( )( ) an an+5 an+k-l fin : m Un ---'-'-7Vn+l . .. --7 Vn+k = .

Combining these derivat ions ofT(Q) we obtain - using the morphismus T(q1)
and PI = ql 0 m - a derivation

As (R, ')') is an AM-bisimulation, there exist derivations

in (R, ')'): (sn, tn) ~ (T(Q1)(Vn+1), tn+1) a
n
+5 ... an+k)l (T(ql)(Vn+k), tn+k)

and

for states tn+1, ... , tn+k E T(X2). Thus by condition C3 there exists a mor-
phismus q2 : Q --+ X2 such that T(q2) 0 T(m)(uj) = tj, j = 1,2, ... , n, and
T(q2)(Vn+j) = tn+j, j = 1,2, ... , k. This implies by condition C5: q2 0 m = P2.
By construction we have (q1, q2) ER'.

Let R' be a path-!P-bisimulation between Xl and X2, let T(XI) = (5, --71,Sl)
and T(X2) = (T, --72, tl), let (A, a) and (B, ß) be the coalgebras with T(A,Q) =
(5, --71) and T(B,ß) = (T, --72)'
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Let P be an object of IP, f be the final reachable state of T( P), X be an object
of IM and p: P --+ X a path. Reach(p, P, X) := T(p)(j) denotes the image of
the final reachable state f in the transition system T(P) under the morphism
T(p). Let

R := {(s, t) I 3P E IP,(PI,P2) E R' :

PI : P --+ Xl, P2 : P --+ X2,

S = Reach (PI, P, Xd, t = Reach (P2, P, X2)}.

Let (s, t), (s', t') E R, let P, Q be objects of IP, let (PI,P2), (ql, q2) E R', such
that s = Reach(PI,P,XI), t = Reach(P2,P,X2), s' = Reach(ql,Q,XI), t' =
Reach(q2,Q,X2). Define

(a,s',t') E ,(s,t)
iff there exists a morphism m : P --+ Q, such that

PI = ql 0 m,
P2 = q2 0 m and
T(m)(j) ~ 9 is a transition in T(Q), where f is the final reachable state
ofT(P) and 9 is the final reachable state ofT(Q).

We claim that (R,,) is an AM-bisimulation between (A, a) and (B, ß) with
(SI, tl) E R.

Due to condition C4 we have (SI, tl) E R. Let (a, s') E (ao1Td(s, t). As (s, t) E
R there exists an object P E IP and morphisms PI : P --+ Xl, P2 : P --+ X2

such that s = Reach(PI,P,XI), t = Reach(P2,P,X2) and (PI,P2) E R'. Let

be a derivation of the final reachable state Un from the initial state UI' Then
we obtain

a derivation for s. As (a, s') E a(s) we get

By condition C3 there exists an object Q in IPsuch that we find a derivation

where VI is the initial state and Vn+l is the final reachable state of T(Q).
Furtheron there exist morphisms m : P --+ Q with T(m)(uj) = Vj, j =
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1,2, ... , n, and ql : Q -t Xl with T(qd(Vj) = T(pd(Uj), j = 1,2, ... , n,
and T(ql)(Vn+l) = s'. This implies with condition e5 that ql 0 m = PI'
As R' is a path-IP-bisimulation, there exists a morphism q2 : Q -t X2 with
q2 0 m = P2 and (ql, q2) ER'. Thus (Reach (ql, P, Xl), Reaeh (q2,Q, X2)) E R,
where s' = Reaeh(ql,Q,Xd and (a,s', Reaeh(q2,Q,X2)) E ,(s,t). Therefore
(a, s') E (F1rl 0 ,)(s, t).

Let (a,s') E (F1rl o,)(s,t). Then there exists some t' E B with (a,s',t') E
,(s, t). By definition of Rand, we obtain: there exist objects P and Q in
IP, morphisms PI : P -t Xl, ql : Q -t Xl and a morphism m : P -t Q
such that holds: s = Reaeh (PI, P, Xd, s' = Reaeh (ql' Q, Xl), PI = ql 0 m,
T(m)(f) --!:..t g is a transition in T(Q), where f is the final reachable state of
T(P) and g is the final reachable state of T(Q). This implies s = T(Pl)(f) =
T(ql 0 m)(f) --!:..t T(ql)(g) = s' in (A, a) and thus (a, s') E (a 0 1rl)(S, t). 0

For an operator T the property "connecting to IP" is not sufficient to ensure
the equivalence between backward-forward AM-bisimulation and strong path-
IP-bisimulation, as the following example shows:

Example 4.4 Consider the eategory TL with the path eategory Bran, defined
in section 2.6. Choose as operator T the identity Id on TL' T is eonnecting
to Bran. For the transition systems Ta and Ti from figure 8 holds: by theo-
rem 3.1 Ta and Ti are strong path-Bran -bisimilar, as the transition systems
Tpath-Bran(Ta) and Tpath-Bran(Ti) are the same. But there is no backward-
forward AM-Bisimulation (R, ,) between Ta and Ti with (so, to) E R.

Remark 4.5 It is an open problem whether for an operator T whieh is con-
neeting to some path eategory IP baekward-Iorward AM-bisimulation implies
strong path-IP-bisimulation in general.

By lemma 4.1 there always exists a connecting operator for any category fM of
models with subcategory IP.TIP,1l1 and any other operator T which is connecting
to IPyield the same bisimulation in the following sense:

Corollary 4.6 Let fM be a category 01models, let IP be a small subcategory of
fM of path objects, such that IP and fM have a eommon initial object I. Let T be
a connecting operator to IP, let Xl and X2 be objects of fM.
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5 An application: bisimulations on event structures

Let Act be a set of actions. A (prime) event structure E = (E, ::;,U, l) over the
set of actions Act consists of a set of events E, a causal dependency relation
::; ~ E x E, which is a partial order, an irreflexive and symmetrie conflict
relation U ~ E x E and a labelling function l : E --7 Act, which together
satisfy: For all e E E the set -l- (e) := {e' E Eie' ::; e} is finite and for all
d, e, fEE holds: if d ::; e and dU! then eUf.

An event structure is called finite if its set of events is finite. An event structure
is called confiict-free if its conflict relation is the empty set. Call a set X ~ E
a configuration of E iff X is a finite set, leftdosed in E and for all e, fEX
holds: -, eUf. Sometimes we consider a configuration X itself as event structure
(X,::; n(X x X), 0, llx), Conf(E) denotes the set of all configurations of an
event structure E. Two events el, e2 E E are called concurrent, el co e2, iff
they are not related by ::; or U.

The category EAct has as objects the prime event structures E = (E,::;, U, l)
over Act, where E ~ Ev for some "universal" set Ev of events. Let E =
(E, ::;E,UE,lE) and F = (F, ::;p,Up, lp) be objects of EAct' A total map "7 :

E --7 F is a morphism from E to F iff for all e E E: lE(e) = lp("7(e)),
\/X E Conf(E) : "7(X) E Conf(F) and \/X E Conf(E) \/e, e' EX: "7(e) =
"7 ( e') ::::}e = e'.

A pomset is the equivalence dass [E] of a finite and conflict-free event struc-
ture E where we take isomorphism of EAct as equivalence relation. PomAct
denotes the set of all pomsets which can be derived from EAct' Let E be an
event structure, X = {el, e2,"" en} E Conf(£) a configuration of E. We
call the sequence ele2'" en a derivation of X, iff there exist configurations
Xo, Xl,"" Xn E Conf(E) with Xo = 0, Xn = X and Xi\Xi-l = {eJ, i =
1,2, ... ,n. Let ele2 ... en be a derivation of X, fth ... fn be a derivation of
Y. These derivations are equal, ele2 ... en rv hh ... fn, iff there exists an iso-
morphism "7 : X --7 Y of EAct with "7(ele2 ... en) := "7(el)"7(e2) "7(en)
fth ... fn' Der(X) denotes the set of all equivalence classes [ele2 en] of
derivations of a configuration X, Der Act := UXEConf(E),EEEActDer(X).

Lin denotes the full subcategory of EAet which consists of conflict free event
structures (E, ::;,0, l), where E is a finite set and the dependency relation is
a total order.

Let E = (E, ::;E,0, lE), M = (M, ::;M, 0, lM) be finite event structures with
E nM = 0 and ::;M= {(rn, m) Im E M}. Then F := E; M denotes the event
structure (EUM, ::;p,0, lEUlM), where e ::;p f iff e = f or (e E E and fE M)
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or e '5:E f. Call an event structure

a step, where Mi = (Mi, '5:Mi ,0, li) are event structures, Mi are finite sets, Mi
are pairwise disjoint and '5:Mi= {(m, m) Im E Mi}. For an event e of an event
structure E let

{
I -J-{e}={e}

deptht;(e) :=
1 +max{depth[ (I) I f E-J- {e}, f =I- e} otherwise.

Let S := MI; M2; ... ;Mn, be a step, where all Mi are different from the
empty event structure, let e be an event of S. Then e E Mi ~ depths(e) =
i, i E {I, 2, ... , n}. Thus the representation of a step by nonempty event
structures Mi is uniquely determined. Step denotes the full subcategory of
EAct which consists of steps as objects.

Call Pos the full subcategory of EAct which has as objects those conflict free
event structures (E, '5:,0, l) where E is a finite set.

5.1 Concrete bisimulations on event structures

The various notions of bisimulation on event structures are usually defined
in terms of transition relations on the configurations of an event structure.
Let E = (E, '5:, U, l) be an event structure over Act, let X, X/ E Conf(E) be
configurations of E.

X ----t X', iff X ~ X'.
X ~ X', iff a E Act, X ~ X', X/\X = {e}, l(e) = a.
X ~ X', iff M E tN~ct, X ~ X', Ve,f E X/\X: e =I- f =} ecof and

Va E Act : M(a) = I{e E X/\X Il(e) = a}l.
X ~ X', iff pE POmAet, X ~ X/ and p = [X/\X].

Let E, F be event structures. A relation R ~ Conf(E) x Conf(F) with (0,0) E
R is called

interleaving bisimulation iff V(X, Y) E R, a E Act :
(i) X ~ X/ =}3Y' E Conf(F) : Y ~ Y/, (X/, Y/) ER, and
(ii) Y ~ Y/ =} ::lX/ E Conf(E) : X ~ X', (X/, Y/) E R.
bf-bisimulation (this definition is due to [17]' where it is called backward-
forward bisimulation) iff it is an interleaving bisimulation and
V(X/, Y/) E R, a E Act :

(i) X ~ X/ =} ::lY E Conf(F) : Y ~ Y/, (X, Y) E R, and
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(ii) Y ~ Y' ~ :lX E Conj(£) :X ~ X', (X, Y) E R.
step bisimulation iff V(X, Y) E R, M E Nfct :
(i) X ~ X' ~ :lY' E Conj(F) : Y ~ y', (X', Y') E R, and
(ii) Y ~ Y' ~ :lX' E Conj(£) :X ~ X', (X', y') E R.
pomset bisimulation V(X, Y) E R, pE PomAct :
(i) X ~ X' ~ :lY' E Conj(F) : Y ~ Y', (X', Y') E R, and
(ii) Y ~ Y' ~ :lX' E Conj(£) :X ~ X', (X', Y') E R.
weak history preserving bisimulation [16] iff V(X, Y) ER:
(0) there exists an isomorphism between

(X, 5:.En(X x X), 0, lElx) and (Y, 5:.Pn(Y x Y),0,lplY),
(i) X --+ X' ~ :lY' E Conj(F) : Y --+ Y', (X', Y') E R, and
(ii) Y --+ Y' ~ :lX' E Conj(£) :X --+ X', (X', Y') E R.

A set R of tripies (X, Y, Tl) with (0,0, O) E R, where X E Conj(£), Y E
Conj(F) and Tl :X -+ Y is an isomorphism in EAct, is called

history preserving bisimulation iff V(X, Y, Tl) E R
(i) X --+ X' ~ :lY' E Conj(F), Tl' : Y --+ Y', Tllx = Tl, (X', Y', Tl') E R,

and
(ii) Y --+ Y' ~ :lX' E Conj(£), Tl' :X --+ X', Tllx = Tl, (X', Y', Tl') E R.
strong history preserving bisimulation [19]

iff it is a history preserving bisimulation and V(X', Y') E R, a E Act :
(i) X --+ X' ~ :lY E Conj(F), Tl' : Y --+ Y', Tllx = Tl, (X, Y, Tl) E R, and
(ii) Y --+ Y' ~ :lX E Conj(£), Tl' :X --+ X', Tllx = Tl, (X, Y, Tl) E R.

5.2 Modelling with AM-bisimulation

The above summerized notions of bisimulation can be viewed as AM-bisimu-
lation in the following sense: For each notion B of bisimulation we give an
operator TB from the category EAct of event structures to a suitable category
TB of transition systems with initial states such that two event structures
£1, £2 are B-bisimilar iff TB(£d and TB(£2) are AM-bisimilar.

~nt(£) := (Conj(£), --+int, O) is a transition system over Lint := Act, where
X ~int X' iff X ~ X'.
Tstep(£) := (Conj(£), --+step, O) is a transition system over Lstep := Nfct,
where X ~step X' iff X ~ X'.
Tpom(£) := (Conj(£), --+pom, O) is a transition system over Lpom := POmAet,
where X ~pom X' iff X ~ X'.
Twhp(£) := (Conj(£), --+whp, O) is a transition system over Lwhp := POmAet
where X ~whp X' iff X <;:; X' and p = [X'].
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Thp(£) := ({Der(X) I X E Conj(£)}, -7hp, E) is a transition system over
Lhp := Der Aet, where

AM-bisimulation and backward-forward AM-bisimulation do not coincide for
the transition systems T*(£), where * E { ini, siep, pom, hp }. It is an open
problem whether AM-bisimulation and backward-forward AM-bisimulation
coincide in the case of the operator Twhp.

Event structures £ and F are (interleaving, step, pomset )-bisimilar, iff T*(£)
and T*(F) are AM-bisimilarfor * E (ini, siep, pom). Moreover £ and F are bf-
bisimilar iff Tint(£) and ~nt(F) are backward-forward AM-bisimilar. In [23]
we showed: event structures £ and F are weak history preserving bisimilar
(history preserving bisimilar) iff Twhp(£) and Twhp(F) (Thp(£) and Thp(F))
are AM-bisimilar. Moreover £ and F are strong history preserving bisimilar
iff Thp(£) and Thp(F) are backward-forward AM-bisimilar.

5.3 Modelling wiih P-bisimu1aiion and paih-P-bisimulation

Joyal, Nielsen, and Winskel considered in [19] (strong) history preserving
bisimulation on event structures and gave a modelling as path-P-bisimulation.
We give here a modelling of interleaving and step bisimulation in this setting
and discuss also pomset, bf- and weak history preserving bisimulation.

There are two different ways to model a concrete not ion of bisimulation on
event structures as P-bisimulation resp. path-P-bisimulation: On the one hand
we can choose a category P of path objects and try to show directly that the
concrete not ion of bisimulation and P-bisimulation resp. path-P-bisimulation
coincide. On the other hand we can take the modelling of a concrete bisim-
ulation as AM-bisimulation by an operator T from section 5.2, choose some
category P of path objects and try to show that the operator T is connecting
to P. In the following we will demonstrate both approaches.

Theorem 5.1 Event structures are Lin-bisimilar iff ihey are inierleaving bi-
similar.

PROOF. Let £1 = (EI, :SI, ~1,lt), £2 = (E, :S2,~2,12) be Lin-bisimilar. Then
there exists an event structure £ = (E,:S,~, l) and Lin-open morphisms Pi :
£ -t Ei, i = 1,2. We claim that
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is an interleaving bisimulation between £1 and £2. As ° E Conf(£) we obtain
(O, O) E R.

Let (Pl(X),P2(X)) E RforsomeconfigurationX E Conf(£), letpl(X) ~ Y'
be a transition in £1. From PI (X) E Conf (£r) we construct an event structure
P = (P, :;p,~p, lp), where P := X, :;p is a linearization Of:;l n (X x X),
~p := ° and lp := irlx. Let e be the event in {e} = Y'\Pl(X). Let Q :=
(Q, :;Q,0,lQ) be an event structure, where Q := Pu {e}, \:je E Q: e:;Q e
and \:je, f E P : e :;Q f : <===} e:;p f, ~Q := ° and \:je E P : lo(e) := lp(e)
and lo( e) := a. Both P and Q are objects in Lin.

Let P : P ---7£, m : P ---7Q and q : Q ---7£1 the morphisms with

• \:je E P: p(e) := e,
• \:je E P: m(e):= e and
• \:je E P: q (e) := PI (e), q(e) = e.

Then we have PI 0 P = q 0 m. As PI is Lin-open, there exists a morphism
r : Q ---7 £ with rom = P and PI 0 r = q. Thus Y := r(Q) = X U {r(e)} E
Conf(£), Pl(Y) = Y', and X ~ Y is a transition between configurations in
£. As P2 is amorphism, P2(X) ~ P2(Y) is a transition in £2. By definition
of R holds (Pl(Y),P2(Y)) = (Y',P2(Y)) E R.

Let now R ~ Conf(£) x Conf(F) be an interleaving bisimulation between £1
and £2. Let Tint(£) = (Conf(£), a) and ~nt(F) = (Conf(F), ß) be the related
coalgebras. Let for all (X, Y), (X', Y') E R

(a, X', y') E 1(X, Y) :<===} (a, X') E a(X), (a, y') E ß(Y).

We claim that unfolding this coalgebra (R, 1) into a tree Sand constructing
from S an event structure £ with morphism Pi : £ ---7Ei, i = 1,2, makes a £1
and £2 Lin-bisimilar.

The synchronization tree S = (5,~, s) of (R, 1) is defined as follows:

is astate of S iff (Xl, Yl) = (O, O) ~ (X2, Y2) ~ ... ~ (Xn, Yn) is a
derivation in (R, 1). There is a transition

in S iff (Xn, Yn) ~ (Xn+l, Yn+l) is a transition in (R, 1). ((O, O)) is the initial
state of S. The event structure £ = (E,:;,~, l) associated with S = (5,~, s)
is constructed as

E:= 5\{s},
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e ::; f : ~ (e, 1) E Tran*, where Tran* is the reflexive and transitive
closure of Tran := {(e, 1) I e ~ f for an action a}.
e~f : ~ ,(e::; f V f ::; e) and
l(e) = a : ~ e = ((Xl, Yi), (X2, Y2), ... , (Xn, Yn)) 1\ (Xn-l, Yn-l) ~
(Xn, Yn).

Let PI : E -t EI, P2 : E -t E2 be the maps with

• PI ( ((Xl, Yl), (X2, Y2), , (Xn, Yn)) ) := e iff {e} = Xn \Xn-l, and
• P2( ((Xl, Yl), (X2, Y2), , (Xn, Yn)) ) := e iff{e} = Yn\Yn-l.

We claim that PI and P2 are Lin-open.

We first show that PI is a morphism in EAct' By construction of (R, ')') we
have: (X, Y) ~ (X', Y') implies X ~ X'. Thus PI preserves labels. A
configuration C in E with n 2': 1 elements is a set

C = { ((0,0), (X2, Y2)),

((0,0), (X2, Y2), (X3, Y3)),

and
n+l

Pl(C) = U Xi\Xi-l = Xn+l E Conf(El).
i=2

Let e, e' be events of Ci=- 0 E Conf(E) with Pl(e) = Pl(e'). Then

e = ((0,0), (X2, Y2), (X3, Y3), , (Xi, Yi)) and
e' = ((0,0), (X2, Y2), (X3, Y3), , (Xj, Yj)),

2 ::; i, j ::; ICI + 1. Assume i i=- j. Let w.o.l.g. i < j. Then on the one hand
Xi ~ Xj-l and therefore Pl(e) = Pl(e') E Xi' On the other hand Xj\Xj_l =
{PI (e)} = {PI (e')} - contradiction. Therefore we have i = j and thus e = e'.

Finally we prove that PI is Lin-open. Let P = (P, ::;p, 0, lp) and Q = (Q,::;Q
,0, IQ) be objects in Lin, let P : P -t E, m : P -t Q, q : Q -t EI be morphisms
with q 0 m = PI 0 p. We show the existence of amorphisms r : Q -t E with
P = rom and q = PI 0 r by induction on n := IQI - IPI.

In case of n = 0 the morphism m is bijective: m is injective, because P E
Conf(P). As IPI = IQI we know that m is surjective. As the map m-l preserves
labels and maps configurations of Q on configurations of P and is injective on
Q, m-l is a morphism in EAet. We choose r := po m-l and obtain: rom =
po m-l 0 m= P and PI 0 r = PI 0 po m-l = q, because q 0 m= PI 0 p.
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Now let IQI - IPI = n + 1. Let e be the maximal event in Q, let Q' :=
(Q', 'S.',0, l'), where Q' := Q\{e}, 'S.':= 'S.Q n (Q' x Q'), l' := lQtQ" Let m' :
p ~ Q' be the morphism with m'(e) := m(e) for all e E P and q' : Q' ~ £1
be the morphism with q'(e) := q(e) for all e E Q'. Obviously q' 0 m' = PI 0 p,
and by the induction hypothesis there exists a morphism r' : Q' ~ £ with
p = r' 0 m' and q' = PI 0 r'. The morphism r' maps Q' to a configuration
C E Conf(£), where

C = { ((0,0), (X2, Y2)),

((0,0), (X2, Y2), (X3, Y3)),

k = IQ'I, Pl(C) = Xk+l and q'(Q) = pl(r'(Q)) = Xk+1'

As there is a transition Q' ~ Q in Tint (Q) there is a transition q( Q')
Xk+l ~ q(Q) in Tint(£I)' R is an interleaving bisimulation, (Xk+l, Yk+l) E R,
hence there exists a configuration Y' E C(£2) with (q(Q), Y') E R, where
Yk+1 ~ Y' is a transition in Tint(£2)' Ey definition of"Y there is a transition
(Xk+l, Yk+l) ~ (q(Q), Y') in (R,"Y) and thus an event

in the event structure £. Let Ve E Q' : r(e) := r'(e) and r(e) := f. This map
r is the desired morphism.

Remark 5.2 To prove theorem 5.1 one could use the results of !19j concerning
open maps and the corefiection between the category SAct of synchronization
trees and EAct' In this setting one obtains easily that there exists a span of
Bran-open maps in SAct ijj there exists a span of Lin-open maps in EAct -
but it remains to prove that synchronisation trees SI and S2 associated with
event structures £1 and £2 are Bran-bisimilar, i. e. strong bisimilar, ijj the
transition systems Tint(£I) and Tint(£2) are strong bisimilar. This involves
again the technique of unfolding transition systems into synchronization trees.

Lemma 5.3 The operator Tint is connecting to Lin.

PROOF.

Cl: Let £ and :F be event structures, TJ : £ ~ :F be a morphism in EAct'
Defining Tint(TJ)(X) := TJ(X), where X E Conf(£), turns Tint into a functor
from EAct to TAct.
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C2: Let P = (P, :S, 0, l) be an objeet of Lin. The configuration P is reaehable
from all states of ~nt(P).

C3: Let SI ~ S2 ~ ... ~ Sn, n 2: 1, be a derivation of a transition
system. Let P = (P,:S, 0, l) be a path objeet in Lin, where

P := {(SI, S2), (SI, S2, S3),"" (SI, S2, S3, ... Sn)},
(SI, S2, , Si) :s (SI, S2,' .. , Sj) : ~ i:S j und
l( (SI, S2, , Si)) := ai-I, 2 :s i :s n.

Let £ be an event strueture with derivation Ul ~ U2 ~ ... ~ Un in
~nt(£), where Ul = 0 is the initial state of Tint(£). The map p : P ---+ X with
P((SI,S2"",Si)) '- ei is the desired morphism, where {ei} = Ui\Ui-l, i =
2, ... ,n.

C4: The empty event strueture fullfills eondition C3.

C5: Let P and Q be objeets of Lin, £ be an event strueture, p : P ---+ £, q :
Q ---+ £ morphisms in EAct, m : P ---+ Q a morphism in Lin. Let 0 ~ {eI} ~
... an-~ {eI, e2, ... , en-l} be a derivation in ~nt(P), where {eI, e2, ... ,en-d is
the final reaehable state of ~nt(P). Let for all configurations {eI, e2, ... ,ei} E
Conf(P), (~nt(q) 0 ~nt(m)){e1, e2, ... , ei} = ~nt(p){e1, e2, ... , ei}, 0 :s i :s
n-l. Then we have (qom)(ei) = p(ei) for all 1 :s i:S n-1 and thus qom = p.

Corollary 5.4 Let £1, £2 be event struetures in EAct' The following are equiv-
alent:

(1) £1 and £2 are interleaving-bisimilar.
(2) ~nt(£d and ~nt(£2) are AM-bisimilar.
(3) £1 and £2 are Lin-bisimilar.
(4) £1 and £2 are path-Lin-bisimilar.
(5) £1 and £2 are strong path- Lin -bisimilar.
(6) TLin,EAet (£d and TLin,EAct (£2) are AM-bisimilar.
(7) TLin,EAct (£1) and TLin,EAct (£2) are baekward-forward AM-bisimilar.
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PROOF. 1 {:}2: See seetion 5.2.

1 {:} 3: Theorem 5.1.

3 :::}5: Theorem 2.37.

5 :::}4: By definition.

4 {:} 2: Theorem 4.3, Tint is eonneeting to Bran, see lemma 5.3.

4 {:} 6: Theorem 3.l.

5 {:} 7: Theorem 3.1.

Remark 5.5 Neither Lin-bisimulation nor (strong) path-Lin-bisimulation co-
incide with bf-bisimulation.

Theorem 5.6 Event structures in EAct are step bisimilar ijj they are path-
Step-bisimilar.

PROOF. We use the eharaeterization of step bisimulation as AM-bisimula-
tion and apply theorem 4.3 in order to obtain a path-Step-bisimulation. We
have to show that Tstep fullfills all five eonditions, where IM = EAct, IP=Step
and L = lN~ct.

Cl: Let £, F be event struetures, TJ: £ ---7 F a morphism in EAct' Defining
Tstep(TJ)(X) := TJ(X), where X E Conf(£), turns Tstep into a functor from
EAct to T INAct.o

C2: Let S = (5,::::::,~,l) = MI; M2; ... ;Mn, n ;:::0, be a step, where Mi =
(Mi, ::::::M; ,0, li)' Choose 5 as final reaehable state. Let X E Conf(S). Then
5\X = R U U~=k+lMi for some set R ~ Mk, where k E {I, 2, ... , n}. Let
A(a) := [{e E R [l(e) = a}l, and Ai(a) '- I{e E Mi+l Il(e) = a}l, i =
k, k + 1, ... , n - 1, a E Act. Then

is a derivation from X to 5 in Tstep(S).
C3 LAI A2 An-l > 1 b d' . . t 't': et SI --=+ S2 --=+ ... --+ Sn, n _ , e a envatlOn m a ransl IOn
system of T INAet .

o
Let S = (5, ::::::s,~s, ls) = MI; M2; ... ;Mn-I, where Mi = (Mi, ::::::M;,0, li),

::::::M;= {(m, m) Im E Mi}, Mi pairwise disjoint, Va E Act, VI ::::::i ::::::n - 1 :
Ai(a) = I{e E Mi Ili(e) = a}1 be a step. In Tstep(S) we find a derivation

° Al M A2 M M As An-l 5--=+ 1--=+ lU 2--=+ ... --+ ,

where ° is the initial state and 5 the final reaehable state of Tstep(S).
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Let £ = (E, -:5:.E,~E, lE) be an event structure with a derivation Xl =° Ä X2 Ä X3 Ä ...An-)l Xn in Tstep(£). For the sets Mi and
Xi+1 \Xi we obtain Va E Act : Ai(a) = I{e E Mi Ili(e) = a}1 = I{e E
Xi+! \Xi IlE( e) = a} I, 1 -:5:. i -:5:. n - 1. Thus there exists bijective maps
Pi : Mi -+ Xi+! \Xi with lE(pi(e)) = li(e) for all events e E Mi, i =
1,2, ... , n - 1. We claim that P := U~:llPi is the desired morphism from 5
to £.

P preserves labels and is injective on configurations of 5. As the sets Xn
are confiict free, this holds for p(Y) ~ Xn, where Y E Conf(5). Thus it
remains to show that the image of a configuration Y E Conf(5) is leftclosed
in E.
Let e E p(Y) for a configuration Y E Conf(5), let e' -:5:.Ee and e' =1= e. As

Xn is leftclosed we have e' E Xn. As e' -:5:.Ee, there exists j E {I, 2, ... , n-l}
with e' E Xj, e tJ. Xj. Thus we obtain for the events f, f' E S with pU) =
e, pU') = e' that f' -:5:.sf. As Y is a configuration, f' E Y and pU') = e' E
p(Y). This implies VI -:5:.i -:5:.n: Tstep(p) (Uj<i Mi) = Uj<iPi(Mi) = Xi+!.

C4: The empty event structure fullfills condition e3.
C5: Let 51 and S2 be steps, let £ be an event structure, m : SI -+ 52, P : 51 -+

£ and q : S2 -+ £ morphisms. Let ° = Xo Ä Xl Ä X2 Ä ...~ Xn
be aderviation in 51, where Xn is the final reachable state of 51'
Let '110 -:5:. i -:5:. n: (Tstep(q) 0 Tstep(m)) (Xi) = Tstep(p)(Xi)' Then we have

for i = n : (Tstep(q) 0 Tstep(m))(Xn) = Tstep(p) (Xn). As P, q and mare
injective on configurations we obtain for all e E Xn : (q 0 m)(e) = p(e),
l.e. q 0 m = p.

Example 5.7 Path-Step-bisimulation and strong path-Step-bisimulation do
not coincide. Consider the event structures £ and F from figure 14. The dotted
lines between the circles around the events mean that all events inside one
circle are in confiict with all events inside the other circle.

£ and F are step-bisimilar and thus by theorem 5.6 path-Step-bisimilar. But
there exists no strong path-Step bisimulation between £ and F. Assume that
R is a strong path-Step bisimulation between £ and F. Then for R holds:

"(01,02) ER:" Consider the event structure 0 := ({gl,g2},0,0,lo), which
consists of two concurrent events gl and g2, where lO(gl) := a, lO(g2) := b. 0
is a step. 01 : 0 -+ £, where 01(gl) := e1, 02(g2) := e2, and 02 : 0 -+ F, where
02(gl) := h, 02(g2) := h are morphisms in EAct' Hence (01,02) E R.

"(010 m1, 020 m2) ER:" Let P := ({g'}, {g' -:5:.Pg'}, O, lp(g') := a). m1 : P -+
0, where m1(g') := gl, is amorphisms in Step. As R is a strong path-Step
bisimulation, we obtain (01 0 m1, 02 0 m2) E R.

"q1 0 m2 = (010 m1) gives the contradiction:" Let Q := ({g~, gn, -:5:.Q,O, lQ) be
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The event structure E :
..........................................

• • • •e~j eb e:j~ e1j2

• • • •
eC ea eC eij3 5 6

•
eC9

The event structure :F :

• • • •
ff f~j f:j~ f7j

• • • •
/3 /5 /g ftj

•/9

Fig. 14. Step-bisimilar event structures £ and :F.

the event strueture, where lQ(gn := a, lQ(g~) := c and g~ ~Q g~. We define
morphisms

m2 : P -+ Q, m2(g') := g~,
ql : Q -+ E mit ql (gn := el und ql (g~) := e3.

Obviously ql 0 m2 = (01 0 md, but there is no morphismus q2 : Q -+ :F with
q2(gn = h.
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,------------------_.- --------------------------------------,

H. •. ha
1

Fig. 15. Tpom, Twhp und Thp cannot evolve into functors.

Corollary 5.8 Step-bisimulation and step bisimulation do not coincide.

PROOF. Assurne that Step-bisimulation and step bisimulation coincide. As
the event structures £ and :F of example 5.7 are step bisimilar, they are Step-
bisimilar. Hence by theorem 2.37 they are strong path-Step-bisimilar.

Corollary 5.9 Let £1, £2 be event structures in EAct' The following are equiv-
alent:

(1) £1 and £2 are step-bisimilar.
(2) Tstep(£I) and Tstep(£2) are AM-bisimilar.
(3) £1 and £2 are path-Step-bisimilar.
(4) TStep,EAct (£1) and TStep,EAct (£2) are AM-bisimilar.

PROOF.

1 {:}2: See section 5.2.

1 {:}3: Theorem 5.6.

3 {:}4: Theorem 3.1.

Lemma 5.10 The operators Tpom, Twhp and Thp (introduced in section 5.2)
are not connecting to any subcategory IP of EAct'

PROOF. Let 9 and H be the event structures offigure 15. 'T/ : 9 -+ H, where
'T/(gd = h1 and 'T/(g2) = h2, is a morphism in EAct' In TL there exists no mor-
phism from T*(Q) to T*(H), where * E {pom,whp,hp}, L E {[Pos]' DerAct}.
Hence the operators Tpom, Twhp and Thp do not yield functors.

For the category ECAct of event structures with consistency relation Joyal,
Nielsen, and Winskel characterize in [19] (strong) history preserving bisimula-
tion with the path category PosC, which consists of all finite event structures
without any confiict:

Theorem 5.11 (1) Event structures in ECAet are strang history preserving-
bisimilar iff they are PosC-bisimilar.
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(2) Event structures in ECAct are (strong) history preserving bisimilar iff
they are (strong) path-PosC-bisimilar.

It is easy to translate the second result of theorem 5.11 far the category EAct
and to obtain the following:

Corollary 5.12 For event structures £1 and £2 in EAct are equivalent:

(1) £1 and £2 are (stong) history preserving bisimilar.
(2) £1 and £2 are (strong) path-Pos-bisimilar.
(3) Tpos,EAct (£1) and Tpos,EAct (£2) are (backward-forward) AM-bisimilar.

Hence (strong) history preserving bisimulation on event structures is an in-
stance of bisimulation to which theorem 4.3 does not apply but which has a
characterization as a path-IP-bisimulation.

Remark 5.13 It is an open question whether it is possible to model step,
pomset, weak history preserving and bf-bisimulation in the open map approach
of (19J.

5.4 Limitations of the AczeljMendler approach

In this section we give two examples of concrete bisimulations which show the
limitations of the AczeljMendler approach. There exist difficulties in viewing
general pomset bisimulation and partial word bisimulation as coalgebras.

Generalized pomset bisimulation was introduced in [18] as a notion of equiva-
lence for petri nets. In [15]' example 7.4, this kind of bisimulation was studied
for event structures, without a formal definition. Here we transfer the defini-
tion from petri nets to prime event structures.

Let £, F be event structures. A relation R ~ Conf(£) x Conf(F) is called

gpomset bisimulation iff (0,0) E Rand for all (X, Y) E R holds:
(.) .fX al X a2 an X . fTl (CO) th Y al y; a2 an .v..1 1 ~ 1 ~ . . . --'-'-7 n 1n .L int Go en ~ 1 ~ . . . --'-'-7 I. n 1n

Tint(F) with [Xn \X] = [Yn\Y] and (Xi, Yi) E R for all 1 ::; i ::;n and
(1.1.) .f Y al y; a2 an 1.7 . fTl ('L) th X al X a2 an X .1 ~ 1 ~ ... --'-'-7 I. n 1n .L int .r en ~ 1 ~ ... --'-'-7 n 1n

Tint(£) with [Xn \X] = [Yn\Y] and (Xi, Yi) E R for all 1 ::; i ::;n.

[£]gpom denotes the equivalence dass of an event structure £ to gpomset bisim-
ulation in the category EAct. GPomAct is the set of all these equivalence dasses.

Let £ be an event structure. For X E Conf(£) let U£(X) := {f E E 13e E
X : eUf}, define E' := E\(X U UE(X)). £\X := (E', ::;n (E' x E'), U n (E' x
E'), lIE') denotes the "sub-event structure" of £ induding all events from
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which a finite subset may be added to X in order to get a larger configuration.
For configurations and "sub-event structures" of £ holds, see [23]:

(1) Let £1 := £\X far some configuration X E Conj(£), XI E Conj(£/).
Then X u XI is a configuration of £.

(2) Let XI, X" E Conj(£) with XI ~ X". Define £1 := £\XI and X :=
X"\XI. Then X is a configuration of £1.

In order to model gpomset bisimulation in the coalgebraic framework of [5]
one has to find an operator Tgpomwhich associates with an event structure £ =
(E, ~,~, l) a transition system Tgpom(£) such that £1 and £2 are gpomset bisimi-
lar iff Tgpom(£1) and Tgpom(£2) are AM-bisimilar. In the following we present an
operator Tgpom that satisfies these requirements. Tgpom(£) = (Conj(£), --+,0)
is the transition system over L := POmAct x Act+ x CPomAct' where

[XI\X] =p,

::ln~ 1, ::lXl,X2, Xn-l E Conj(£) :

X ~ Xl ~ Xn-l ~ XI in 1int(£),

Theorem 5.14 Event structures £ and F are gpom-bisimilar iffTgpom(£) and
Tgpom(F) are AM-bisimilar.

PROOF. Let £ and F be prime event structures. Let Tgpom(£) = (Conj(£),
--+1,0) and Tgpom(F) = (Conj(F), --+2,0), (A, a) the coalgebra with T(A,o) =
(Conj(£), --+d and (B, ß) the coalgebra with T(B,ß) = (Conj(F), --+2).

Let R be a gpomset bisimulation between £ and F. Let for (X, Y), (XI, Y/) E

R

(p, ala2" . an, C, XI, y/) E "Y(X, Y) : -{::::::}(p, ala2 an, G, XI) E a(X),

(p, ala2 an, C, Y/) E ß(Y).

Let (p, ala2' .. an, C, XI) E (a 0 7T'd(X, Y). Then (p, ala2 ... an, T, X') E a(X)
and thus by definition of Tgpom we obtain a derivation X ~ Xl ~ ... Xn-l
~ Xn = XI in 1int(£). Furtheron holds: [XI\X] = p and G = ([£\Xi]gpom)7==-1.
As R is a gpomset bisimulation there exists a derivation Y ~ Yl ~ ... ~

Yn in 1int(F) with [Xn \X] = [Yn\Y] and (Xi, Yi) E R for all 1 ::; i ~ n.
Thus p = [Yn\Y] and (XI, Y/) E R. For each 1 ~ i ~ n - 1 let 14 :=
{(X, Y) I ::l(X,Y) ER: Xi ~ X, Yi ~ Y,X = X\Xi, Y = Y\Yi}. As R is a
gpomset bisimulation and (Xi, Yi) E R the sets Rare gpomset bisimulations
between £\Xi and F\Yi. Hence [£\Xi]gpom = [F\Yi]gpom for 1 ~ i ~n-1. This
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implies (p, ala2 ... an, C, Y') E ß(Y) and we get (p, ala2 ... an, C, X', Y') E
I'(X, Y). Hence (p, ala2 ... an, C, X') E (Y7rl 0 1') (X, Y). Lemma 2.6 gives the
other inclusion.

Now let (R,I') be an AM-bisimulation between (A, a) and (B, ß) with (0,0) E
R. Let (p, ala2 ... an, C, X', Y') E I'(X, Y) be a transition in (R, 1'). Then there
are transitions (p, ala2 ... an, C, X') E a(X) and (p, ala2 ... an, C, Y') E ß(Y),
i.e. there exist derivations X ~ Xl ~ ... Xn-l ~ Xn = X' in ~nt(£)
and Y ~ YI ~ ... ~ Yn = Y' in ~nt(F), where [£\Xi]gpom = [F\Yi]gpom
for 1 :S i :S n - 1, as both transitions have the same "C" as label. Let R be
a gpomset bisimulation which establishes [£\Xi]gpom = [F\Yi]gpom, 1 :S i :S

n-l - - - -n - 1. Let R(p,ala2 ...an,G,X',Y',X,Y) := Ui=l {(X U Xi, Y U Yi) I (X, Y) ERd the
union of all these relations, where we add the events of Xi resp. Yi to obtain
configurations of £ resp. F. We claim that

R:=Ru u
(p, ala2 ... an, C, X', Y') E I'(X, Y),

(X, Y), (X', Y') E R,

is a gpomset bisimulation between £ and F.

As (0,0) E R we obtain (0,0) E k Now let (X, Y) E k

First we deal with the case that (X, Y) E R. Let X ~ Xl ~ ... ~ Xn be
a derivation in ~nt(£). Then (p, ala2 ... an, C, X') E a(X), where p = [X'\X]
and C = ([£\Xi]gpom)7==-r As (R,I') is an AM-bisimulation there exists some
configuration Y' E Conf(F) with (p, ala2 ... an, C, Y') E ß(Y) and (X', y') E
R. Thus be definition of Tgpom there exists a derivation Y ~ YI ~ ... ~
Y' in ~nt(F) with [Y'\Y] = p and C = ([F\Yi]gpom)~r By construction of
R we have (Xi, Yi) E R for all 1 :S i :S n - 1.

If (X, Y) ~ R then there exists some relation of type R(p,ala2 ...an,G,X',Y',X,Y)

(see above) with (X, Y) E R(p,ala2 ...an,G,X',Y',X,Y)' As the corresponding set Ri
is a gpomset bisimulation conditions (i) and (ii) of gpomset bisimulation hold
for Ri and thus for k

However the definition of Tgpom(£) exhibits the following drawback: in order

d fi h .. X (p,ala2...an,G) X' k l' . f hto e ne t e transitIOns ---+ we ma e exp ICIt use 0 t e gpomset
bisimulation by referring to [£\Xi]gpom in C. While this might be considered
not important in the case of finite event structures, the construction may
become awkward in the infinite case, as can be seen in the following exam-
pIe, where we need the "global" information [£]gpom in order to obtain the
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transition relation for Tgpom(E) :

Example 5.15 Let E = (E, :::;,0, l) be the event structure with E := {ei li 2:
1}, ei:::; ej : ~ i:::; j, l(ei) = a for all i 2: 1. Let Xi := {ej E Elj:::;
i}, i 2: O. There is e.g. a transition in Tgpom(E) from Xi to Xi+2' The label
of such a transition is (p, a2, G), where p = [X2] and G = ([E]gpom)' Hence in
order to define Tgpom(E) we make use of [E]gpom' In particular the labelling of
a transition from Xi to Xi+2 contains the infinite object [E]gpom'

Lemma 5.16 The operator Tgpom is not connecting to any subcategory IP of
EAct'

PROOF. Analogous to the proof of lemma 5.10: take again the event struc-
tures 9 and 1{ of figure 15.

Remark 5.17 It is an open question whether AM-bisimulation and backward-
forward AM-bisimulation for the transition systems Tgpom(E) coincide.

Let p, q E PomAct be pomsets. p is less sequential than q, denoted by p :::;q,
iff there exist event struetures E = (E, :::;E,0, lE) E p, F = (F, :::;F,0, lF) E q
and a bijective map f : E --7 F such that 'lie E E : lE(e) = lF(J(e)) and
'lie, e' E E : e :::;Ee' ~ f(e) :::;Ff(e'). Let E, F be event struetures. A relation
R ~ Conf(E) x Conf(E) with (0,0) E R is ealled

partial word bisimulation [30] iff for all (X, Y) E R, p E PomAct holds:
(i) X ~ X' ~ ::lY' E Conf(F), q E PomAct : Y ~ Y', (X', Y') E R,

q :::;p and
(ii) Y ~ Y' ~ ::lX' E Conf(F), q E PamAct : X ~ X', (X', Y') E R,

q:::; p.

Theorem 5.18 Let E and F be event structures.

Let Tpom (E) = (Conf(E), ---71,0) and Tpom(F) = (Conf(F), ---72,0), let (A, a)
be the coalgebra with T(A,o.) = (O(E), ---71) and (B, ß) be the coalgebra with
T(B,ß) = (Conf(F), ---72)'

E and F are partial ward bisimilar iff there exists a coalgebra (R, "() with
(0,0) E R, such that for (A, a) and (B, ß) holds:

(i) (a 0 11"1)~ (F1I"10 "(),

(ii) if (p, X', Y') E "((X, Y) and (p, X') E (a 0 11"1)(X, Y) then
(q, Y') E (ß 0 11"2)(X, Y) for some q :::;p,

(iii) (ß 0 11"2)~ (F1I"20 "() and
(iv) if (p, X', Y') E "((X, Y) and (p, Y') E (ß 0 11"1)(X, Y) then

(q, X') E (a 0 11"1)(X, Y) for some q :::;p.
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PROOF. Let R be a partial word bisimulation between E and F. Let for all
(X, Y), (X', Y') E R, r E PomAct

(r, X', Y') E ,(X, Y) : {=:::} (p, X') E a(X), (q, Y') E ß(Y),

p::; q V q ::;p, r = max{p, q}.

Then (R,,) is the desired coalgebra. The proof of the other implication is
straightforward .

The conditions (i) and (iii) are weaker than the ones required by AM-bisimula-
tion; however (ii) and (iv) are stronger than those of AM-bisimulation. Hence
we argue that partial word bisimulation cannot be viewed as AM-bisimulation.

Remark 5.19 It is an open question whether it is possible to model gpomset
and partial word bisimulation in the open map approachoj (19J.

6 Conclusion

We have shown how the various approaches to an abstract characterization of
bisimulation relate to each other. It turns out that AM-bisimulation is the most
flexible abstract characterization. The results obtained for event structures can
be easily transferred to petri nets and other models of computation.

The not ion AM-bisimulation gives a new perspective on the phenomen "bisim-
ulation" : While Milner intro duces bisimulation as a relation which he inter-
prets as "a kind of invariant holding between a pair of dynamic systems" [24]'
AM-bisimulation itself is a dynamic system.

Apart from serving as an abstract ion the coalgebraic setting allows to compare
- via bisimulation - objects that stem from different models of computation
in the following sense: let 011 and 012 be models of computation with not ions
BI, B2 of bisimulation. For i = 1,2 let Ti : O1i--+ Setp for some F(X) =
P(L x X), such that for Xi, Yi E O1iholds: Xi "'Bi Yi iff T(Xi) and T(Yi) are
(backward-forward) AM-bisimilar. We may then compare objects Xl E 011
and X2 E 012 by investigating the relationship between T(Xl) and T(X2).

When dealing with a concrete notion B of bisimulation in a context of a process
calculus with a set L: of operators, the question arises under which conditions
B is compatible with the operators of L:. Hence it is interesting to know which
abstract settings are suitable to handle this question. We briefly sketched the
issue for the coalgebraic setting. It is not difficult to see that the quest ion can
be easily handled in the algebraic view of [20]. Recently there are attemps to
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Information and

treat the problem in the open map approach [8]' where it is requested that
the operators can be turned into functors preserving open maps.

Work is in progress that investigates the limitations of the open map ap-
proach, e.g. step bisimulation on event structures that can be modelled as
AM-bisimulation does not fit into the open map approach.
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