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Abstract. [VD98] propose to view a finite nondeterministic process
as a specification for a set of deterministic implementations: its pos-
sible worlds or model space. Refinement amounts to inclusion of pos-
sible worlds. We consider here the extension to infinite processes. We
study the properties of possible worlds semanties, answer in particular
an open quest ion concerning the relation between bisimulation and pos-
sible worlds equivalence and discuss operational aspects.
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1 Introduction

In arecent paper [VD98] Veglioni and De Nicola propose to view a nondeter-
ministic process as a set of deterministic ones: its possible worlds. In this view
nondeterminism is understood as underspecification. Nondeterministic pro cesses
are considered to be specifications and the possible worlds represent the model
space. Refinement can be modelled by indusion between sets of possible worlds.
This not ion of refinement is commonly used for the algebraic specifications of
abstract data types [ONS96,HB85]. It is an interesting concept, as it is consis-
tent with the program design methodology of stepwise refinement where more
concrete specifications have less 'implementation freedom'. In [VD98] the au-
thors consider a simple language BP of finite processes and present a denota-
tional semantics in terms of finite sets of finite deterministic trees as weil as
an axiomatic characterization of the possible worlds semantics. The location of
the possible worlds equivalence in the spectrum of equivalence notions as given
e.g. in [vG90a,vG90b] is determined. We consider here the extension to a wider
dass RBP of processes induding recursion. We give an (infinite) possible worlds
semantics for RBP and study its properties. In particular we deal with the re-
lation between possible worlds equivalence and bisimulation. [VD98] show that
bisimulation implies possible worlds equivalence für finite processes and conjec-
ture that this is not true for infinite processes. In contrast to that we show that
bisimulation implies possible worlds equivalence also for infinite processes. In ad-
dition we discuss problems related with operational possible worlds semantics.
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2 Definitions and elementary facts about metric spaces

2.1 Processes

In this paper we consider sequential nondeterministic processes that are able to
perform actions from a given set Act. An action represents any activity of a
system at a chosen level of abstraction.
A domain A of sequential nondeterministic processes can be represented as a
labelled transition system, i.e. a pair (A, -+), where A is the dass of processes
and -+~ A x Act x A is the action relation. We write p ~ q for (p, a, q) E-+.
The set of initial actions of p is

I (p) = {a E Act : p ~ q for some q}

On A a variety of semantic equivalences have been investigated. [VD98] show
how possible worlds refinement for finite processes fits into the spectrum of equiv-
alences as e.g. presented in [vG90a,vG90b].

We extend the dass BP of [VD98] by recursion to model infinite behaviour
and thus obtain the dass RBP of processes given by

- 0 E RBP
- a.P E RBP (prefix) for all a E Act, P E RBP
- X E RBP for all X E I df
- P + Q E RBP (sum) for all P,Q E RBP
- fix (X = P) for all XE Idf, PE RBP such that X is guarded in P

Here I df is a set of identifiers. An occurrence of X E I df is free in P iff it does not
occur within a subterm of the form fix X = Q. X E I df is guarded in P iff each
free occurrence of X in P is in the scope of aprefix operation. For P, Q E RBP,
X E Idf, P[X/Q] denotes the process where each free occurrence of X in P is
substituted by Q. P is dosed if it is without free occurrences of variables. RBP
will be regarded as a labelled transition system with the transitions a.P ~ P,
P+Q ~ P' if P ~ P' or Q ~ P', fix(X = P) ~ P' if P[X/ fix (X = P)] ~ P'.
Let M be a set and Cl : I df -+ M a map,U E M

Cl[X/U]Y = { ~(Y) ~i~~~
The function giving the set of initial actions for a process P is defined as follows:
let INIT = {ClICl : Idf -+ P(Act)}. Then I: RBP -+ (INIT -+ P(Act)) is
given by

I(O)(Cl) = 0
I(a.P)(Cl) = {a}
I(Jix(X = P))(Cl) = Ifpp,x(Cl)
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I(X)(Cl) = Cl(X)
I(P + Q)(Cl) = I(P)(Cl) U I(Q)(Cl)



where lfPp,x(a) is the least fixed point of Pp,x(a) : P(Aet) -+ P(Act) given
by Pp,x(a)(U) = I(P)(a)[X/U).
Let P E RBP, a EIN IT. The relation 0 C RBP x IN IT is given as follows

(O,a) E 0, (X,a) E 0, (a.P,a) E 0 if (P,a) E 0
(PI + P2, a) E 0 if I(Pd(a) n I(P2)(a) = 0 and (Pi, a) E 0, i = 1,2
(jix(X = P), a) E 0 if (P, a) E 0

We call a process P deterministic if (P, a) E ° for all a. In [VD98J the meaning
of BP is given in terms of the algebra of labelIed trees T = (Aet, T, 0, ., +) where

° is the empty tree
. : Act x T -+ T is the prefixing operator
+ ;T x T -+ T is the operator joining two trees at the root

T jinbran is the subclass of finitely branching trees. The meaning function
((.)) :BP -+ P(T) is given by [VD98)

((O))={o}
((P + Q)) = ((P)) * ((Q))

((a.P)) = {a. x: x E ((P))}

where * :P(T) x P(T) -+ P(T) is given by

Tl * T2 = UtiET, tl * t2
tl * t2 = {tl + t2} if I(td n I(t2) = 0, I gives the branches of the root.
(a . t~ + tn * (a . t~ + t~) = (a . t~ * (t{ * tn) u (a . t~ * (t~ dn)

2.2 Metrie Spaces

We recall some basic facts from (metric) topology. We presuppose the notions of
metric space, isometry, Cauchy sequence in a metric space, limit, compactness,
completeness of a metric space and the theorem that each metric space has a
unique completion. A n-ary function f : Mx ... x M -+ N is called non-distance-
increasing iff

A non-distance-increasing function f ; Mx ... x M -+ N, where (N, dN) is a
complete metric space has a unique extension to the completion of Mx ... x M.
f : Mx ... x M -+ N is called contractive iff there exists a constant c, 0 :::;c < 1
such that dN (j(XI, ... ,xn), f(YI, ... ,Yn)) :::;c . maXi=l. ..n dM (Xi, Yi)'
The fixed point theorem by Banach/Cacciopoli states that every contractive
function f : M -+ M on a complete metric space M has a unique fixed point in
M. We will make use of several constructions involving metric spaces.
If A is a set and (M, dM) a metric space then
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{
I ifai-b
1.. d ( )'f - b for all2 M X, Y 1 a-

(A x M, dAxM) with dAxM((a, x), (b, y))

(a,x),(b,y) E A x M

- (Pnco(M),dH) with
Pnco(M) = {U r;;; M : U i- 0, U compact} and the Hausdorff metric

dH(X, Y) = max{ sup inf d(x, y), sup inf d(x, y)}
xEX yEY yEY xEX

for X, Y E Pnco(M)

1£ (M, dM) is a discrete space then Pnco(M) = Pnj(M) where

Pnj(M) = {U r;;; M, U i- 0, U finite}

Our intention is to associate with each process P E RBP a compact set of
deterministic trees. The following theorems turn out to be useful.

Theorem 1. Let (M, d) be ametrie space. If X r;;; Pnco(M) is compact then
UAEX A E Pnco(M).

Theorem 2. Let (M, dM), (N, dN) be metric spaces. f :M x M ---+ Pnco(N) a
non-distance-increasing function. We put for U, V E Pnco(M)

j(U, V) = U f(u, v)
uEU,vEV

then

i) j(U, V) is a nonempty compact subset of N for all U, V E Pnco(M).
ii) dH(j(U, V), j(U', V')) :::;max(dH(U, U'), dH(V, V'))
for all U, V E Pnco(M), i.e. j : Pnco(M) x Pnco(M) ---+ Pnco(N) is non-
distance-increasing.

Proof. i) we first observe that {f(u, v)lu E u, v E V} is anonempty compact
set for U, V E Pnco(M), from where the statement follows by theorem 1.
ii) standard ealculations.

3 A domain of trees

The mapping (0) can be viewed as a mapping from BP to Pnj(Tjinbran/~)
where ~ denotes bisimulation. We propose to model RBP by Pnco(D) where
D is the completion of the metric space T jinbran/~: The natural metric on
T d ( ) - . f{ 1 . (n) - (n)} h (n) d h fjinbran, T t1, t2 - m 2n . t1 - t2 w ere t enotes t e n-cut 0 t,
carries over to T jinbran/ ~ and yields an incomplete metric space. The completion
(,1,5) of (T jinbran/~, dT) is a suitable basis for a semantics of RBP. (,1,5) can
be given an alternative, more flexible charaeterization as follows. Let CMS be
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the category where the objects are complete metric spaces and the arrows are
non-distance-increasing functions. The functor F : CMS --t CMS given by
F(M) = {0} U Pnco(Act x M) and F(J) = )"U.{(a, f(m)) : (a, m) EU}. It is a
weIl known fact that F has a unique fixed point in CMS [dBZ82,MCZ91] that
can be obtained as the metric completion (D, d) of Ui>o Di where Do = {0},
Di+l = F(Di) i 2: o. As Di is discrete for i 2: 0, we have Di+1 = {0}UPnf(A x
Di) for i 2: O. Ui2:0 Di consists of finitely branching trees of finite height.

Theorem 3. (D, d) and (.1,0) are isometrie.

Proof. Show that (.1,0) is fixed point of F.

By standard arguments D can be turned into a 17-algebra. 17 consists of the
operators 0, +, and . as follows

- 0: corresponds to the empty tree 0
- +: Ui>O Di x Ui>o Di --t Ui>O Di
t1 + t';:= t1 U t2 - -

- .: Act x Ui>o Di --t Ui>o Di
a.t:={(a,t)} -

+ and . are non-distance -increasing on Ui>O Di and may hence be uniquely
extended to D. The initial actions function Iwill also be used for trees in D and
is given by 1(0) = 0 and 1(t) = {a : (a, x) E t for some x E Ui>O Di} for t E
Ui>o Di• For t = lim tn E D we choose some € < ~ and determi~e N such that
d(t~, t) < ~ for all n 2: N. We put 1(t) = Uk>N 1(td. The subset Dd ~ D of
deterministie trees is given by Dg = {0} and f~r i 2: 0
D1+1 = {0} U {U E Pnf(A x D1): VaVbVxVy (a,x) E U 1\ (b,y) EU=> a -j. b}

Dd is the completion of U Df. t E Ui>O Di is root deterministie iff
VaVbVxVy (a, x) E t 1\ (b, y) E t => a -j.-b.

4 Denotational infinite possible worlds semantics for
RBP

In [VD98] the denotational possible worlds semantics for P E BP is a (finite) set
of (finite) deterministic trees in T, its possible worlds. We propose (Pnco(D), dH)
as semantic domain for possible worlds semantics of RBP. The semantics of BP
is given in [VD98] using the mapping *, see section 2. We use here a slightly
modified operator @ that coincides with * in the case of (sets of) deterministic
trees.

Definition 1. Let tE Ui>O Di. We put
rdet(0) = {0} and rdet(t)-= { UaEI(t){(a,T): (a,T) E t} } t -j. 0
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Definition 2. Let tl, tz E Ui2:0 Di be root deterministic.

tl 0 tz = { U {(a,x): (a,x) E tl V (a,x) E tz} }
aEI(t, )uI(t2l

For tl, tz E Ui>o Di we put tl @ tz = U 'Erd,,(,,) t 0 t'.
- t' Erdet( t2 1

Lemma 1. Let tl, tz E Ui>ODi be deterministic trees. Then tl 0 tz contains
only deterministic trees and- tl * tz = tl 0 tz.

Theorem 4. Lettl,tz,t~,t~ E Ui2:0Di, then

Hence @can be canonically extended to D x D.

Theorem 5. Let Tl, Tz be nonempty compact sets of trees in D then

i) Tl @ Tz := Uti ETi tl @ tz is a nonempty compact subset of D
ii) @: Pnco(D) x Pnco(D) -+ Pnco(D) a non-distance-increasing function.

Proof. By theorem 2 and theorem 4.

Let ENV = {o-Io- : Idf -+ Pnco(D)} be the set of environments. The meaning
function ((.)) : RBP -+ ENV -+ Pnco(D) is given by

((0))(0-) = {0} ((X))(o-) = o-(X)
((a.P))(o-) = {{(a, t)}: t E ((P))(o-)} ((PI + Pz)) (0-) = ((PI))(o-) @((Pz))(o-)
((Jix(X = P)))(o-) = fix pp,x(o-)

where fix pp,x(o-) is the unique fixed point of the contractive mapping
pp,x(o-) : Pnco(D) -+ Pnco(D) defined by pp,x(o-)(T) = ((P))O-[X/T].

Remark 1. ((P)) consists of deterministic trees for closed P.

Example 1. Let P = ]ix(X = a.O + a.X) and Q = a.O + ]ix(X = a.X) then
((P)) consists of infinitely many worlds while ((Q)) has two possible worlds as
shown in figure 1.

Definition 3. Let P, Q E RBP be closed processes. Q is a possible worlds re-
jinement 0] P, written P 5:D Q iff ((Q)) t;;:; ((P)). P and Q are possible worlds
equivalent, P =D Q, iff ((P)) =( (Q)).

Example 2. P 5:D Q where P, Q are taken from example 1.

6



((p)) =
a

. .. ,
a

Fig.1.

Al:P+Q=Q+P
A3: (P + Q) + R = P + (Q + R)

(X)(er) = er(X)
(P1 + Pz)(er) = (P1)(er) + (Pz)(er)

5 Properties of the infinite possible worlds refinement

5.1 Axioms

Lemma 2. The possible worlds semantics satisfies the foltowing axioms: Let
P, Q be closed processes
AO: a.P + a.Q ::::a.P
A2: P+P= P
A4:(P+Q)=P
A5: a.(b.P + b.Q + R) = a.(b.P + R) + a.(b.Q + R)
A6: fix (X = R) = R[X/ fix (X = R)]
where R E RBP and X is the only variable occuring free in R.

Proof. The axioms Al to A5 were already established by [VD98] and carry over
to infinite processes. A6 is established by uniqueness of fixed points of contractive
maps in Pnco(D).

5.2 (0) and 0
We associate with each closed P E RBP a meaning in D, i.e. (P), and relate
the set of trees «P)) with the tree (P).
Definition 4. Let Env = {er : I df -+ D}o :RBP -+ Env -+ D is given by
(O)(er) = I/)

(a.P)(er) = a. (P)(er)
(jix(X = P»)(er) = fix epp,x(er)
where jixp,x(er) is the unique fixed point of the contmctive mapping
epp,x(er) :D -+ D where epp,x(er)(t) = (P)er[X/t]

Theorem 6. Let P be a deterministic process, er E Env.

«P))(Ö") = {(P)(er))

where Ö"(X) = {er(X)} jor alt XE I dj. In pa'rticular «P» = {(P)} for alt closed
deterministic P.
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Praof. by structural induction and uniqueness of fixed points for contractive
maps.

Definition 5. Let t E Ui;::O D;, I(t) = {al, ... ,an}.

t(a) := {tl: (a, tl) E t} a E Act
n

det(t):= {U{(ai,x) where X E det(t'),t' E t(ai)} }
-;=1

det(t) is non-distance-increasing on Ui;::O Di and can hence be extended to D

Theorem 7. Let P E RBP, u E Env.

((P))6- = det( (P)u)

in particular ((P)) = det( (P)) for alt closed processes P where 6-(X) = det( a(X))

Praof. by structural induction and uniqueness of fixed points of pp,x(ä-).

5.3 Possible worlds and bisimulation

In [VD98] it is shown that two finite processes P, Q are possible worlds equivalent
if they are bisimular. [VD98] conjecture that this result does not hold in the
infinite case. We show that for all P, Q E RBP P "-' Q implies P =D Q.

Definition 6. env = {a: Idf ~ Tfinbran}. Let tr: RBP ~ env ~ Tfinbran

tr(O)(a) = t0 tr(X)(u) = u(X)
tr(Pl + P2)(u) = tr(Pd(u) + tr(P2)(u)

where fX,Q(a)(t)= tr(Q)a[X/t]

tr(a.P)(u) = a. tr(P)(u)
tr(fix(X = Q))(u) = fix fX,Q(a)

T finbran can be viewed as a transition system in a straightforward way. Let
F: Tfinbran/~ ~ D be given by F([t]~) = limn-+oo(Fn[t(n)]) where t(n) is the
n-cut of t, i.e. the subgraph of all nodes of depth ::::;n and Fn is defined by
Fn([t0]) = 0, Fn([t]~) = {(a, Fn-dt']~) : t ~ tl} for t with 1 ::::;heigh(t) ::::;n.
Please note that Fn([t(n)]) is a Cauchy sequence in D.

Lemma 3. Let P E RBP, Xl, X2, .•• , Xn E Idf the identifiers that aceur free
in P and Pb ... , Pn E RBP be closed. Let T E env with T(Xi) = tr(Pi) and
a E Env with a(Xi) = F([tr(Pi)]~). Then (P)a = F([tr(P)T]~)

Lemma 4. Let P, Pl, ... ,Pn E RBP and Xl, ... , Xn E Idf, Xi =I Xj, identi-
fiers in P, a E Act. If Xl, ... , Xn are guarded in P then P[Xd Pl, ,Xn/ Pn] ~
Q implies the existence of pI E RBP s. t. P ~ pI and P'[Xd Pl, ,Xn/ Pn] =
Q

Proof. [BMC94]
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Lemma 5. Let P E RBP, a E Act, iJ E Env. If P ~ P' then tr(P)(iJ) ~
tr(P')( iJ).

Proof. struetural induetion and lemma 4.

Lemma 6. Let P E RBP and Xl,"" Xn the identifiers that occur free in P.
Let iJ E Env such that tJ(Xi) = Pi where Pi E RBP is closed. If Xl, ... , Xn
are guarded in P then for all t' E T jinbran if tr(P)iJ ~ t' then there exists
P' ERBP, P' closed such that P[XdPl, ... ,Xn/Pn] ~ P' and tr(P') = t'

Praof. struetural induetion and lemma 4

Lemma 7. R = {(Q, tr(Q)) Q ERBP closed} is abisimulation between
(RBP, Act, -r, P) and (Tjinbran, Act, -r, tr(P)).

Praof. by theorem 5 and lemma 6.

Theorem 8. Let P, Q ERBP be closed processes. If P ~ Q then P =D Q

Praof. by theorem 7, lemma 3 and lemma 7.

6 Operational characterization

[VD98] assoeiate with p E BP an operational meaning PW (p) eonsisting of all
graphs h that are isomorphie to a minimal deterministie graph 9 satisfying
R(g) = p and q ~ q', q E N(g) ~ :3q" E N(g) : (q,a,q") E E(g) and q ~ q".
Theorem 1. in [VD98] states: given proeesses p, q E BP then ((q)) ~ ((p)) iff
PW(q) ~ PW(p).
For infinite proeesses [VD98] remark:
'... that infinite processes are already considered in the operation al characteriza-
tion, in fact it is not restricted to finite transitions systems. ... . We also have
that:

strictIy refines
7r
Jla

o

though they are bisimilar. Notice, in fact, that the process on the left admits
only two possible worlds .... Unfortunately, Definition 3 (the definition of PW)
cannot be directly used for infinite pracesses; it is not sufficiently abstract fOT
loops.
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For example

is not equivalent to o
However, this can be easily resolved by choosing a graph equivalence weaker

than isomorphism. '
Now consider e.g. the two pro cesses P, Q from example 1. The process graph of
P is GI whereas the process graph of Q is

Hence in the view of [VD98]

PW(P)= Ia,0 PW(Q) = ra,~
o

would coincide under the assumed weaker notion of graph equivalence, but
((P)) =I- (( Q)). Hence such an operational semantics is not equivalent to the
denotational semantics. Moreover, we claim that P and Q are inherently differ-
ent. Q exhibits underspecification once, whereas P exhibits underspecification in
every recursion step. See [MC98] for furt her discussion of operational semantics.

7 Extensions and related work

It is not difficult to see that concatenation can be easily incorporated into our
setting. As [VD98] we considered a standard binary 'choice'. It should be noted
that the approach can be extended to an infinite summation operator E. The
language thus obtained would then include the coffee machine example of [VD98]:
cof + cof.cof + ... = Ei?:.Icofi. More details are given in [MC98].
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As already suggested in [VD98] the possible worlds concept can be used to
obtain a whole spectrum of possible worlds notion, as e.g. trace possible worlds
equivalence and so forth. Another track of transfer of the possible worlds idea
leads to other models of computation as e.g. true concurrency models provided
we extend the language RBP by concurrency features. More details can be found
in [MC98].
The idea of interpreting certain choices by a set of trees instead of branching
is not new. It can be found in [Rou85], where a CSP-type language with two
versions of 'nondeterminism' is used. The one is interpreted by branching the
other by yielding a set of trees. For a finite set of actions [Rou85] establish
the relation between the Hennessy Milner Logic HML and Pe(T) where Pe(T)
denotes the closed sub sets of the pseudometric space T of trees.
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