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Abstract. Lossy channel systems (LCSs for short) are models for communicating sys-
tems where the subprocesses are linked via unbounded FIFO channels wh ich might lose
messages. Link protocols, such as the Alternating Bit Protocol and HDLC can be mod-
elled with these systems. The decidability of several verification problems of LCSs has
been investigated by Abdulla & Jonsson [AJ93,AJ94], e.g. they have shown that the
reachability problem for LCSs is deddable while LT L model checking is not. In this pa-
per, we consider probabilistic LCSs (which are LCSs where the transitions are augmented
with appropriate probabilities) as introduced by [IN97] and show that the quest ion of
whether or not a linear time property holds with prob ability 1 is deddable. More pre-
cisely, we show how LTL\x model checking for (certain types of) probabilistic LCSs can
be reduced to areachability problem in a (non-probabilistic) LCS where the latter can
be solved with the methods of [AJ93].1

1 Introd uction

Traditional algorithmic verification methods for parallel systems are limited to
finite state systems and fail for systems with an infinite state space, such as real-
time programs with continuous docks or pragrams that operate with unbounded
data structures or pratocols for processes that communicate via unbounded chan-
nels. Typically, such systems are modelled by a finite state machine that specifies
the control part. The transitions between the control states are equipped with
conditions (e.g. about the values of a counter or a dock or about the messages in
a channel). The behaviour of such a system is then given by a (possibly infinite)
transition system whose global states consist of a contral state and an auxiliary
component whose values range over an infinite domain (e.g. the interpretations
for a counter or a dock or the contents of certain channels). Even a wide range
of verification problems for such infinite systems is undecidable, various authors
developed verification algorithms for special types of infinite systems.

* The second and the third author are partly sponsored by the DFG-Project MA 794/3-l.
1 Here, LTL\x denotes standard linear time logic without next step.
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This paper is concerned with model checking algorithms for communication
protocols where the (sub- )processes are linked via unbounded FIFO channels.
Dealing with per/ed channels, in which case one gets the same expressiveness
as Turing Machines, most verification problems are undecidable [BZ83]. Several
link protocols, like the Alternating Bit Protocol [BSW69] or HDLC [IS079],
are designed to work correctly even for unreliable channels. For such faulty sys-
tems, various verification problems can be solved automatically. Finkel [Fin94]
considered eompletely speeified protoeols modelIed by channel systems where the
channels might lose their first message and showed that the termination problem
is solvable. Abdulla & Jonsson [AJ93] present algorithms for areachability anal-
ysis (see also [AKP97]) and the verification against (certain types of) safety and
eventually properties for lossy ehannel systems (LCSs), i.e. channel systems that
may lose arbitrary messages. Abdulla & Kindahl [AK95] have shown that also
the task of establishing a branching time relation (simulation or bisimulation)
between a LCS and a finite transition system can be automated. Decidability
results for other types of unreliable FIFO systems have been developed e.g. by
Cece, Finkel & Iyer [CFI96] (where channel systems with insertion or duplica-
tion errors are considered) and Bouajjani & Mayr [BM98] (where lossy vector
addition systems are investigated). Even if validating faulty channel systems is
easier than reasoning about perfect channel systems, some verification problems
are still undecidable for unreliable channel systems. Abdulla & Jonsson [AJ94]
show the undecidability of model checking for LCSs against LT L or CT L specifi-
cations or establishing "eventually" properties under fairness assumptions about
the channels.2

We follow here the approach of Iyer & Narasimha [IN97] and consider proba-
bilistic LCSs (PLCSs for short). In PLCSs, one assurnes that the failure rate of
the channels is known and deals with a constant p that stands for the prob ability
that one of the channels loses a message. The other transitions are equipped with
"weights" that yield the probabilities for the possible steps of the global states
and turn the transition system for the underlying LCS into a (possibly infinite)
Markov chain.

For probabilistic systems modelIed by Markov chains, various (deductive and
algorithmic) verification methods have been proposed in the literature, but only
a minority of them is applicable for PLCSs. Most of the algorithmic methods are
formulated for finite Markov chains and hence are not applicable for PLCSs,
see e.g. [VW86,CY88,CC91,CC92,HT92,HJ94,CY95,IN96,BH97]. Even some of

2 To overcome the !imitations of algorithmic verification methods for LCSs due to undecidability
results, [ABJ98] propose (possibly non-terminating) symbolic verification techniques based on a "on
the fly" reachability analysis.
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the axiomatic methods, see e.g. [HS86,JS90,LS92], fail for PLCSs since they are
designed for bounded (or even finite) Markov chains.3

In this paper, we shrink our attention to temporallogical specifications; more
precisely, to specifications given by formulas of proposition al linear time temporal
logic LTL. When interpreting a LTL formula lover the states of a Markov
chain, the probability for 1to hold in astate 5, i.e. the probability measure of all
paths starting in 5 and satisfying I, can be viewed as the "truth value" for 1 in
state 5. Thus, LT L can serve as specification formalism for both qualitative and
quantitative temporal properties. In the former case, a LT L specification just
consists of a LT L formula I; satisfaction of 1 in astate 5 means that 1 holds
for almost alt paths starting in 5 (i.e. with prob ability 1). Lehmann & Shelah
[LS82] present sound and complete axiomatizations for (a logic that subsumes)
LT L interpreted over Markov chains of arbitrary size; thus, the framework of
[LS82) can serve as a proof-theoretic method for verifying qualitative properties
for PLCSs. Quantitative properties can be expressed by a LT L formula 1 and a
lower bound prob ability p; satisfaction in astate 5 means that the probability for
1 is beyond the given lower bound p.4 In [IN97), an approximative quantitative
analysis for PLCSs (i.e. an algorithm for approximating the probabilities for a
LTL\x formula 1 to hold in the initial state of a PLCS) is proposed. Here,
LTL\x means LTL without the next step operator X. This method yields a
model checking procedure for verifying quantitative LTL\x specifications with
respect to a tolerence E but it fails for qualitative properties (because of the
tolerance).5

The main contribution of this paper is a verification algorithm for establishing
qualitative properties specified by LTL\x formulas for PLCSs. We use the w-
automaton approach a la Wolper, Vardi & Sistla[WVS83] and construct an
w-automaton At for the given formula I. Then, we define the product P£' x At
of the given PLCS P£, and the w-automaton At (yielding a new PLCS) and a
formula I' of the form I' = V OO(aj 1\Obj) with atomic propositions aj, bj such
that the probability for 1 to hold for P £, equals the probability for f' to hold for
P£' x At.

For finite Markov chains, it is well-known that whether or not a qualitative
property can be established does not depend on the precise prob ability but just

3 Boundedness of a Markov chain means that there is an upper bound ~ > 0 for the non-zero transition
probabilities. In the Markov chain for a PLCS, the probability for the loss of a concrete message
tends to 0 if the channel length tends to 00; thus, they fail to be bounded.

4 In the branching time framework (where one distinguishes between state and path formulas), the
state formulas typically also assert that the probability for a certain event lies in a given interval;
thus, the state formulas can be viewed as (special types of) quantitative LT L specifications. See
e.g. [HJ94,ASBS95,BdA95].

5 The tolerance ~ specifies how precise the approximated value should be. I.e. the difference between
the computed value q' and the precise prob ability q far the formula to hold in the initial state of
the given PLCS is at most ~.
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Fig.l. An infinite (bounded) Markov chain

on the topology of the underlying directed graph [HSP83]. More precisely, quali-
tative properties oft he type f' = V OD(aj 1\Obj) can be established by analyzing
the bottom strongly connected components. This does not longer hold when we
deal with infinite (bounded or unbounded) Markov chains. For an example, con-
sider the system of Figure 1. The qualitative property stating that So is visited
infinitely many times cannot be established unless p ~ ~.6 To avoid a scenario
as for the Markov chain in Figure 1 with p < 1/2 where areachability anal-
ysis cannot help for establishing qualitative properties, we make an additional
assumption about the underlying PLCS and require probabilistic input enabled-
ness. This assumption allows us to reduce the quest ion of whether a qualitative
property specified by a formula f' as above is satisfied to areachability prob-
lem in the underlying (non-probabilistic) LCS where the latter is solvable with
conventional methods [AJ93,AKP97].

The reason why we do not deal with the next step operator will be explained
in Section 4. Roughly speaking, the lack of next step ensures the invariance of
the formulas with respect to losing a message. This is essential für characterizing
the prob ability for f to hold for a PLCS p.c by the prob ability for the above
mentioned formula f' in the product system p.c x Af. (See Lemma 2.)

Organization of the paper: In Section 2 we briefly explain our notations
concerning Markov chains and linear time logic LT L\x with its interpretation
over Markov chains. The definitions of LCSs and PLCSs and related notations
are given in Section 3. Our model checking algorithm is presented in Section 4.
Section 5 concludes the paper.

Throughout the paper, we work with a finite non-empty set AP of atomic
propositions which we use in the context of labelIed Markov chains, LT L\x for-
mulas and LCSs. The reader should be familiar with basic notions of prob ability
theory, see e.g. [FeI68,Bre68J, further on with the main concepts of the temporal
logic and model checking approach, see e.g. [CES86,Eme90,MP92J, and also with
the connection between temporallogic and w-automaton, see e.g. [Th090,Var96].

6 This observation follows with standard arguments of Markov chain theory ("random walks"). For
p < ~, the prob ability to reach 50 from 5k is pk 1(1 - p)k < 1.
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2 Preliminaries: Markov chains and LTL\x

In the literature, a wide range of models for probabilistic processes is proposed.
In this paper, we deal with (discrete time, labelled) Markov chains which is
one of the basic models for specifying probabilistic systems. We briefiy explain
our notations concerning Markov chains and linear time logic LT L\x with its
interpretation over Markov chains.

Markov chains: A Markov chain over AP is a tuple M = (5, P, L) where 5
is a set of states, L : 5 ----t 2AP a labelling function which assigns to each state
5 E 5 a set of atomic propositions and P : 5 x 5 ----t [0,1] a transition probability
function such that for all 5 E 5: P(s, t) > 0 for at most countably many states
t E 5 and 2:tES P(s, t) = 1.

Execution sequences arise by resolving the probabilistic choices. Formally,
an execution sequence in M is a nonempty (finite or infinite) sequence 1f =
50,51,52, ... where Si are states and P(Si-l, Si) > 0, i = 1,2, .... An infinite
execution sequence 1f is also called a path. We denote by word( 1f) the to 1f as-
sociated sequence of atomic propositions, i.e. word(1f) = L(so), L(SI), L(S2), ....
The first state of 1f is denoted by first(1f). 1f(k) denotes the (k + l)-th state of
1f, i.e. if 1f = 50,51,52, ... then 1f(k) = Sk. ReachM(s) denotes the set of states
that are reachable from 5, i.e. ReachM(s) is the set of states 1f(k) where 1f is a
path with first(1f) = s. PathM(s) denotes the set of paths 1f with first(1f) = 5

and Pathfin,M(S) denotes the set of finite paths starting in s. For 5 E 5, let
EM(s) be the smallest a-algebra on PathM(s) which contains the basic cylinders
{1f E P athM (5) : p is aprefix of 1f} where p ranges over all finite execution se-
quences starting in s. The probability measure ProbM on EM(s) is the unique
measure with

ProbM { 1f E PathM(s) : p is aprefix of 1f} = P(p)

where P(so, 51, ... , Sk) = P(so, sd . P(Sl, 52) ..... P(Sk-l, Sk). If it is clear from the
context, we omit the subscript M and briefiy write Path(s), Reach(s), etc ..

Linear Time Logic LT L\x:

LTL\x formulas are build from the above gramm ar where a is an atomic propo-
sition (a E AP) and U the temporal operator "until". As usual, operators for
modelling "eventually" or "always" can be derived by <> f tt U fand
Df = -.<>-.f. The interpretation of LTL\x formulas over the paths and states
of a Markov chain is as follows. Let M = (5, P, L) be a Markov chain over AP.
The satisfaction relation (denoted FM or briefiy F) for path formulas is as in
the non-probabilistic case, i.e. it is given by: 1f F a iff 1f(0) F a, 1f F ft 1\ h iff
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1r F fi, i = 1,2, 1r F -'f iff 1r F fand 1r F ftUh iff there exists k ~ 0 with
1r t i F ft, i= 0, 1, ... , k - 1 and 1r t k F h.7

For sE 5, we define the "truth value" p~(j) (or briefly Ps(j)) as the measure
of all paths that start in sand satisfy f, i.e. Ps(j) = Prob {1r E Path(s) : 1r F f}.
The satisfaction relation for the states (also denoted FMor F) is given by s F f
iff Ps(j) = 1.

3 Probabilistic Lossy Channel Systems

We recall the definitions of (non-probabilistic and probabilistic) LCSs as in-
troduced by [AJ93] and [IN97]. A LCS models the behaviour of a number of
processes which communicate over certain unreliable channels. The control part
of a LCS is specified by a finite state machine with (conditional) action-labelled
transitions. The transitions can either be labelled by T (which stands for an au-
tonomous (internal) move for one ofthe processes) or by a communication action
c?m (where a process receives message m from channel c) or c!m (where a process
sends message m via channel c). The global behaviour depends on the current
control state sand the contents of the channels. While the enabledness of the
internal actions T and the output actions c!m just depends on the control state,
enabledness of an input action c?m requires that m is the first message of c and
that the current control state s has an outgoing transition labelled by c?m.

The effect of an input action c?m is that the first message m is removed from
c while the output action c!m inserts m at the end of c. The internal action T does
not change the channel contents. Moreover, in each global state, any messages
in a channel can be lost in which case the control state does not change.

Definition 1. (cf. [AJ93]) A Lossy Channel System (LCS) is a tuple .c
(Scontrol,so,L, Ch, Mess, Y) where
• Scontrol is a finite set 0/ control states,
• So E Scontrol is an initial control state,
• L is a labelling function, i.e. L : S control--+ 2AP,
• Chis a finite set 0/ channels,
• M ess is a finite set 0/ messages,
• Y ~ ScontrolX Act x Scontrol
where SendAct = {C!m : cE eh, m E Mess}, RecAct = {c?m : cE Ch, m E
M ess} and Act = SendAct u RecAct U {T }.B

7 Here, 1r t k denotes the k-th suffix of 1r, i.e. the path 1r(k), 1r(k + 1), 1r(k + 2), ....
B The finite representation of a LCS in the sense of Definition 1 just specifies the control part. Since

the loss of messages does not affect the control state, transitions obtained by losing a message are
not specified by the transition relation '-+.
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The (global) behaviour of a LCS can be formalized by an action-labelled
transition system (which might have infinitely many states). We use the action
set Äctf = Act u {t'c,i : e E eh, i = 0,1,2, ... } where the auxiliary labels t'c,i
denote that the i-th message of channel e is lost. The global states are pairs
5 = (s, w) consisting of a control state sand an additional component w that
gives rise about the channel contents. Formally, w is a function eh ----7 M ess*
which assignsto each channel e a finite string w.e of messages. We use the symbol
o to denote both the empty string and the function that assigns to any channel
e the empty string. For e E Mess*, ci- 0, first(e) is the first message in e. lei
denotes the length of e; i.e. 101= 0 and Imi ... mkl = k. w[e := x] denotes the
unique function w/ : eh ----7 M ess* with w/.e = x and w'.d = w.d for d i- e. The
total channellength Iwl is defined as the sum over the lengths of the contents of
the vector w; i.e. Iwl = LCECh Iw.el. Further on, 151= Iwl and 5.e = w.e for the
global state 5 = (s, w). The transition system associated with £ is

TS(£) = (Sglobal, ----7, L, 50)

where Sglobal = Scontrol X (eh ----7 M ess*), 50 = (so,0) is the initial global state
and L((s,w)) = £(s) for all (s,w) E Sglobal' Furthermore the transition relation
----7 ~ Sglobal X Äcte x Sglobal is the smallest set such that, for w = mIm2 ... mk:

c!m c!m
• If 8 '-+ t then (8, w) ---t (t, w[c := ml ... mkm)).

c?m c?m
• If 8 '-+ t and k 2 1 then (8, w[c := mml ... mk)) ~ (t, w).

l .
• If k 21 and i E {1, ... ,k} then (8,W) ~ (8,W[C:= ml ... mi-lmi+l ... mk)) .

• If 8 Y t then (8,W) ~ (t,w).

We write 5 ~ t iff 5 fe,i) t for some e and i and 5 ~ iff 5 ~ t for some global
state t. We define aet(5) to be the set of actions a E Aet that are enabled in the
global state 5. Formally, aet( 5) = {a E Aet : 5 ~}. In what follows, we require
that in all global states at least one action is enabled. This is guaranteed by the
requirement that, for any contral state s, there is some action a E SendActU{r}
and control state t with s y t.g

Definition 2. (cf. [IN97]) A PLCS is a tuple P£ = (£, Pcontrol, tp) where £ is
aLeS, tp E]O,1[ the failure probability and

Pcontrol : Scontrol X Aet x Scontrol ----7 [0,1]

a function with Pcontrol(S, a, t) > 0 ijj s y t.

The Markov chain associated with a PLCS P£ = (£, Pcontrol, tp) arises by
augmenting the transitions of the transition system TS(£) with probabilities.

9 Note that far any contral state 8 where the system has terminated we may assume that there is a
r-loop, i.e. 8 Y 8.
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First, we define the probabilities for the action-labelled transitions. Then, we
abstract from the action-labels and deal with the probabilities Pglobal (5, t) to move
from 5 to t via any action. In any global state 5 where 15/ #- 0, the probability for
losing one of the messages is p where all transitions 5 le,i) t have equal probability.
The other transition probabilities (for the transitions labelIed by actions exE Act)
are derived from Pcontrol (that assigns "weights" to the transitions) with the help
of the normalization function v : Sglobal --+ JR>o which is defined by:

v((s,w)) = L Pcontrol(S,ex)
aEact( (s,w))

where Pcontrol(S, ex) = 2:t Pcontrol(S, ex,t).l0 The conditional probability (under
the assumption that no message will be lost in the next step) for an ex-labelled
transition (s, w) ~ (s', w') is given by the "weight" Pcontrol(S, ex,s') divided by
v( (s, w)). We define the action-labelled transition prob ability function Pglobal:
Sglobal X ÄCtl X Sglobal --+ [0,1] as folIows. If exE Act, (s, w) ~ (s', w'), Iwl #- 0
then

Pglobal ( (s, w), ex,(S', W')) = vt(;:)). Pcontrol(S, ex,S').

l .
For the loss of a message, corresponding to the transition 5 ~ tU, we define

p
Pglobal(S, £c,i, t) = ~

For the global states with empty channels we put Pglobal ( (s, 0), ex,(s', w'))
Pcontrol(S,ex,s')jv((s,0)). In all remaining cases, we define Pglobal(S,ex,t) = O.
We define

Pglobal (5, ex) L Pglobal (5, ex' t), Pglobal (5, t)
tESglobal

L Pglobal(S, ex' t).
aEActl

The Markov chain12 associated with PI:, is MC(PI:,) (Sglobal,Pglobal,L,sO)
where Pglobal is viewed as a function Sglobal X Sglobal --+ [0,1]. Dealing with
LTL\x as formalism for specifying qualitative properties for PLCSs, we deal
with the satisfaction relation PI:, F f iff So FMC(PL:) f where So = (so,0) is the
initial global state of MC(PI:,).

10 Since we assume that any control state s has at least one transition s Y t for some a E SendActU{ T},
the normalization factor 1/( (s, w)) is always > O.

11 Note that 151 =1= 0 because we cannot lose a message from the empty channel.
12 To be precisely, we deal with a pointed Markov chain by which we mean a Markov chain that is
endowed with an initial state. For simplicity, we briefly refer to "pointed Markov chains" as "Markov
chains" .
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4 Model checking

In this section, we describe a LTL\x model checking procedure for PLCSs. More
precisely, the input of our algorithm is a PLCS p.c and a LTL\x formula f;
the output is "yes" or "no" depending on whether or not p.c F f. The basic
idea of our method is the reduction of the LTL\x model checking problem to a
reachability problem in a (non-probabilistic) LCS where the latter can be solved
with the methods proposed in [AJ93] or [AKP97].

Before we explain how our algorithm works we briefly sketch the algorith-
mic methods that have been developed for verifying finite probabilistic systems
against LT L formulas.

Courcoubetis & Yannakakis [CY88] deal with finite Markov chains and present
an algorithm that is based on a recursive procedure that successively removes
the temporal modalities from the formula (i.e. replaces each subformula 9 whose
outermost operator is a temporal operator, e.g. U, by a new atomic proposition
ag) where at the same time each state 5 of the underlying Markov chain M is
splitted into the two states (5, ag) and (5, ,ag). The transition probabilities in
the new Markov chain Mg are computed with the help of the probabilities Ps(g)
for the path formula g. This method is very tricky and elegant for finite Markov
chains but it seems to be not adequate for infinite systems (like PLCSs) since it
would require the computation of infinitely many transition probabilities.

An alternative method is based on the w-automaton approach proposed by
Vardi & Wolper [Var85,VW86]. This approach has been used later by several
other authors, see e.g. [CY95,IN96,dA97,BK98a]. The basic idea behind the w-
automata theoretic approach can be sketched as folIows. The starting point is
a probabilistic system 5, e.g. described by a Markov chain or Markov decision
process, and a linear time formula f. Using well-known methods, one constructs
an w-automaton At for the formula fand defines a new probabilistic system
5 x At by taking the "product" S x At of Sand At. From the acceptance
condition of At, a set V' of states in S x At can be derived such that the
probability that f holds in astate 5 agrees with the probability for a certain
state 5' in 5 x At to reach astate in V'.

Similar ideas are used in the tableau-based method of Pnueli & Zuck [PZ93]
where the "product" of the probabilistic system and the "tableau" for f (obtained
from the Fischer-Ladner closure of J) is analyzed.

In this paper, we follow the approachs of [dA97,BK98a] and use a determin-
istic Rabin automaton to get an alternative characterization of the prob ability
that a LTL\x formula f holds in aglobaI state.13

13 [dA97,BK98a] deal with finite probabilistic systems with non-determinism, i.e. Markov Decision
Processes rather than Markov chains. It is still open whether or not a non-deterministic w-automaton
would still be sufficient for our purposes as it is the case for finite Markov chains [CY95,IN96].
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We recall the basic definitions and explain our notations. A deterministic
Rabin automaton A is a tuple (Q, qo, Alph, 6,AccCond) where
• Q is a non-empty finite set of states,
• qo E Q is the initial state,
• Alph is a finite alphabet,
• 6 : Q x Alph ----+ Q is the transition function,
• AccCond is the acceptance condition, i.e. AccCond ~ 2Q x 2Q.

An infinite sequence p = Po, PI, P2, . .. E QW is said to satisfy the acceptance
condition of the automaton A (denoted p 1= AccCond) iff there exists (A, B) E
AccCond such that inf(p) ~ A and inf(p) nB -# 0. Here, inf(p) denotes the
set of automaton states that occur infinitely often in p.
A run r of A over an infinite word ao, al, a2, ... E Alphw is a sequence r =

qo, ql, q2, ... E QW (starting in the initial state qo of A) with qi+l = 6(qi, ai)
for all i :2: O. A run r of A is called accepting iff r 1= AccCond. A word a =
ao, al, a2 ... E Alphw is called accepted iff there is an accepting run r over a. Let
AccWords(A) denote the set of accepting words.
It is well-known [WVS83,Saf88,VW94] that, for any LT L formula f (in par-

ticular, for any LTL\x formula) with atomic propositions in AP, a deterministic
Rabin automaton Af with the alphabet Alph = 2AP can be constructed such
that AccW ords(Af) is exactly the set of infinite words a = ao, al, ... over 2AP

where f is true.14 The product M x Af of a Markov chain M = (5, P, L) and the
automat on Af is defined as follows.

Mx Af = (5 X Q,P',L')

where L'( (5, q)) = L(s) and

{
P(s t) if p = 6(q, L(t))

P'((s,q),(t,p)) = 0' otherwise.

Let AccCond = {(Aj,Bj) : j = 1, ... ,k} be the acceptance condition of Af.
Hence we define Aj = 5 x Aj, Bj = 5 x Bj. Let V; be the smallest set such that
V; ~ Aj and ReachM xAj (v') ~ V;, ReachM xAj (v') nBj -# 0 for all v' E V;.15 Let
V' = V{u ... u Vr As in [dA97,BK98a] it can be shown that
(*) ProbM{JrEPathM(s): Jrl=f}=ProbMXAj{JrEPathMXAj(S'): JrI=0V'}.
for all states 5 E 5. Here, 5' denotes the state (5, 6(qo, L(s))) and Jr 1= OV' is an
abbreviation of "Jr will eventually reach astate of V'''. Thus, the test whether
Ps(J) = 1 can be done by first computing Af and then performing a probabilistic
reachability analysis in the product M x Af to check whether

14 Here, satisfaction of LT L formulas interpreted over infinite words over 2AP is defined in the obvious
way.

15 The existenee of such a set V; ean be shown with the help of Tarski's fixed point theorem for
monotonie set-valued operators.
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(**) ProbMXAf{7r E PathMXAf(S') : 7r 1=<>V'} = 1.
For finite Markov chains, the latter (the test of (**)) can be done with non-
probabilistic (graph theoretical) methods.16 In OUf case, where we deal with
infinite Markov chains obtained by a PLCS (i.e. Markov chains of the form M =
MC(P.c)), condition (*) still holds but it is not clear (at least not for the authors)
how to test condition (**). The problem is that the reachability algorithm of-
[AJ93] (or [AKP97]) cannot be applied since the underlying transition system of
the so obtained Markov chain MC(P.c) x At might not be the transition system
of a LCS (see Remark 1). For this reason, we do not deal with the product
MC(P.c) x At but switch to the product of the PLCS p.c and the automaton At
(which yields a new PLCS p.c x At) and then show how to apply conventional
methods for areachability analysis in the LCS .c x At to reason about the
probabilities in MC(P.c x At).

4.1 The product of a PLCS and an w-automaton

In the sequel, let p.c be a PLCS and A a deterministic Rabin automaton with
the alphabet 2AP where the components of p.c and Aare as before; i.e. p.c =
(.c, Peontrol,~) and A = (Q, qo, 2AP, b, AccCond) where.c is as in Definition 1 and
AccCond = {(Aj, Bj) : j = 1, ... , k}.

Definition 3. p.c x Adenotes the PLCS (.c x A, PA,~) where

.c x A = (Seontrol X Q, (so,Po), LA, Ch, Mess, YA)

withpo = b(qo,L(so)), LA((s,q)) = L(s) and

(s,q) YA (t,p) iff SYt andp=b(q,L(t))

and, if (s, q) YA (t, p) then PA( (s, q), Ci, (t, p)) = Peontrol( s, Ci, t).

We use the notation (s,w,q) E Seontrol X (Ch -+ Mess*) x Q rather than
((s, q), w) for the global states in MC(P.c x A).

Remark 1. The Markov chain MC(P.c x A) induced by p.c x A differs from the
product MC(P.c) x A. We assurne that q # q'. We regard the loss of messages
in both constructions. Let q' = b(q,L(s)) and w : Ch -+ Mess* such that
w.c = ml ... mi-lmimi+l ... mk and w' = w[c := ml ... mi-lmi+l ... mk]. In
MC(P.c) x A, the state (s, w, q) can move to (s, w', q') (via the action fe,i), but
possibly not to the state (s, w', q). In MC(P.c x A), we have

( ) fc i ( ')s,w,q --'--rA s,w,q .

16 One just has to check whether all states reachable from the state s' via an execution sequence that
does not pass V' can reach a V' -state.

11



Thus, P'( (s, w, q), (s, w', q)) = 0 < Pglobal((S, W, q), (S, W', q)) is possibleY This
signifies that it is possible that the underlying graph of MC(P £) x A cannot be
obtained by the transition system of aLeS .•

We now assurne that A= At is a deterministic automaton for a LTL\x
formula f. Recall that pr:U) denotes ProbM {lf E PathM(s) : 7f FM f}.

Lemma 1. Let 5 be a global state in P£ and 5' = (5, <5(qo, L(s))). Then,

p~C(PC)U) = p~C(PLXAf)U).

Proof. For every path 7f = (so,WO)(SI,Wl)(S2,W2)'" in MC(P£) and for every
i E INo the state (Si+1, Wi+1) can be reached from (Si, Wi) via different actions;
this means that we can have transitions (Si, Wi, qi) ----t (Si+1, Wi+1, qi+1) with
qi+1 = qi in the case of a loss of a message or qi+l = <5(qi, L( Si+1)) in all other
cases. Thus, a path in MC(P £) induces a set of according paths in MC(P £ x A).18
If we mark the transitions with labels and construct an action-labelled Markov
chain from MC(P £) we can show that there is a one-one relation between the
paths in this action-labelled Marcov chain and the paths in the Markov chain
MC(P£ x A).

After that, we will show that the probability of a measurable subset of paths
in MC(P £) equals the prob ability of an "associated" measurable subset of paths
in MC(P£ x A). We will explain later what we mean by "associated" set.

The to the Markov chain MC(P £) associated action-labelled Markov chain
MCaction(P £) is defined by:

MCaction(P £) = (Sglobal, Act£, Pglobal, L, SO)

where Sglobal, L, SO, Act£ are as before and Pglobal is regarded (as in the ongl-
nal definition, see Page 8) as action-labelled transition prob ability function. In
MCaction (P £) we deal with action labelled paths of the form:

(so, wo) ~ (SI, Wl) ~ (S2, W2) ~ ...

In the sequel we need the projection of a path 7f' in MCaction(P £ x A) to a path
7f in MCaction(P £). We denote this projection by pr, i.e. if 7f' = (so, wo, qo) ~
(SI, Wl, ql) ~ ... then

pr(7f') = (so, wo) ~ (SI, Wl) ~ ...

The definition of pr for a path 7f E MC(P £ x A) (this path has no action labels)
is obvious.

17 Note that the control state (which consists in I:- x A of a contral state in I:- and an automaton state)
does not change if a message is lost.

18 The reader should notice that we do not make a difference between finite or infinite paths here, i.e.
every (finite or infinite) path induces such a set.
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Claim 1: Let 1r E PathMCaction(P£)' Then there exists exactly one path 1r' E
PathMCaetion(P£x.A) with pr(1r') = 1r.
Proof:

For every path 1r= (so, wo) ~ (SI, Wl) ~ (S2, W2) ... in MCaetionep £)
we can construct a path 1r' = (so, wo, Ö(qo, L(so))) ~ (SI, Wl, ql) ~
(S2, W2, q2) ... where qi for i E INo is uniquely defined because of the action
labels. Obviously we have pr(1r') = 1r.

As we already mentioned, a path in MC(P £) induces a set of according paths
in MC(P £ x A). Let 1rbe a path in MC(P £), then we will denote the set of accord-
ing paths in MC(P£ x A) by ll(1r) and we have ll(1r) = {1r' E PathMC(PLxA)
pr(1r') = 1r}. Clearly, we have word(1r') = word(1r) for every path 1r' E ll(1r).

Claim 2:
Let Ll be a measurable subset of PathMC(P£) (5). Then,

a) the set Ll' = U1rELlll(1r) is a measurable subset of PathMC(Pc.xA)(5'),
and
b) ProbMC(Pc.)(Ll) = ProbMC(Pc.xA)(Ll').

Proof:
a) Naturally, a path in MC(.) induces a set of paths in MCaetion(-) and
we denote this set by llaetion(1r) for a path 1r. It is also clear that for a
measurable subset Ll in PathMc the set U1rELlllaetion(1r) is measurable and
that ProbMc(Ll) = ProbMCaetioJU1rELl llaetion(1r)).
Now, let Ll be a measurable subset of PathMC(Pc.) (5). Since we have a
one-one relation19 between the paths in MCaetion(P£) and the paths in
MCaetion(P£ x A) we get that Li = U1rELl{1r'E PathMCaetion(PC.xA)(5') :
pr(1r') = ir, irEllaetion(1r)} is a measurable subset of PathMCaction(PLxA) (5').
Thus, we get Ll' = U1rELl{1r'E PathMC(Pc.xA)(5') : pr(1r') = 1r} is a mea-
surable subset of PathMC(PC.xA) (5').
b) Let B be a basic cylinder with prefix p. Then,

ProbMC(PC.xA)( U {1r' E PathMC(P£xA)(5') : er' is aprefix of1r'}) =
er'EIl(p)

L ProbMC(PC.XA){1r' E PathMC(PC.XA)(5') : er' is aprefix of 1r'} =
er'EIl(p)

L ProbMCaction(P£xA)( U {ir' E PathMCaetion(PC.xA)(5') :
er'EII(p) (j'Eilaction(er')

(j' is aprefix of ir'}) =

19 In Claim 1 we only have shown the direction from MCaetion(PL:) to MCaetion(PL: x A). We have
not shown the other direction since it is easy to see.
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L L ProbMCaetionep.cxA){ir' E PathMCaetion(p.cxA)(S') :
(T'EII(p) ä' EIIaetion((TI)

cl' is aprefix of ir'} =
L ProbMCaetion(P.c) {ir E PathMCaetion(P.c) (s) : 0- is aprefix of ir}

äEIIaetion(P)

where ir and 0- are the uniquely defined paths in MCaction(P£) to ir' and
0-' (see Claim 1). The last equation holds because of the definition of PA,
Claim 1 and the fact that a path in MC(P £) induces a set of paths in
MC(P£ x A).

L ProbMCaetion(P.c){irEPathMCaetion(P.c)(s): 0- is aprefix ofir} =
äEIIaetion(P)

ProbMC(P.c)({7r E PathMC(P.c)(s): pis aprefix of7r})

Thus we get for every measurable set LJ:

ProbMC(p.c)(LJ) = ProbMC(P.cxA) (LJ') .

With Claim 1 and Claim 2 we get

p~C(p.c)(J) = ProbMC(P.c) {7rE PathMC(P.c)(s) : 7rF f}
= ProbMC(P.c) {7r E PathMC(P.c)(s): word(7r) E AeeWord8(At)}

= ProbMC(p.cxAf) {7r'E PathMC(P.cXAf)(s'): word( 7r')EAeeW ord8(At)}
= p~C(P.cXAf)(J)

•
For the construction M x At, the projection of a path 7r in M x At to the

automaton states yields a run in At which is accepting iff 7rF f. Unfortunately,
the projection of the paths in MC(P £ x At) to the automaton states does not
yield a run in At since the loss of a message (more precisely, a step of the form
(8, w, q) ~ (8, w', q) where 5(q, L(8)) =1= q) does not correspond to a transition
in At. However, the loss of a message does not affect the control and automat on
state and hence can be viewed as a stutter step. Since we do not deal with the
next step operator and since the atomic propositions only depend on the control
components (but not on the channel contents), the formula f is insensitive with
respect to such stutter steps [BCG88]. Thus, 7r F f iff r is accepting where r
is the run induced by the sequence of automaton states that results from 7r by
removing all stutter steps.

Let Aj = Scontrol X Aj, Bj = Scontrol X Bj. In the sequel, we treat Aj, Bj as
atomic propositions with the obvious meaning; e.g. Aj E LA( (s, q)) if (8, q) E Aj.
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Lemma 2. For any path 7r in MC(Pi.: x Af):

7rF f iff 7rF V OD(Aj !\ OBi).
l-::;j-::;k

Proof. We denote by =st the stuttering equivalence relation for infinite sequences
x = XO,Xl,X2, ... over an arbitrary set X; i.e. -st is the smallest equivalence
relation on XW which identifies all sequences x = Xo, Xl, ... , Xi-I, Xi, Xi+l, ...
and x' = Xo, Xl, ... , Xi-I, Xi+l," . where Xi = Xi+l' Let a = ao, al, ... and a' =
a~, a~, ... be infinite sequences over 2AP. It is weIl known that in absence of
the next step operator X stuttering equivalent sequences over a set of atomic
propositions satisfy the same linear time formulas [BCG88]. Hence,

(1) If a st a' then a F f iff a' F f.
(2) Let p, p' E Qoo. If P st p' then p F AccCond iff p' F AccCond.
Let 7r be a path in MC(P i.: x Af) and 7r(i) = (8i, Wi, Pi)' For any i, we

choose some Qi E Act U {fPO such that 7r(i) ~ 7r(i + 1). Note that there
are infinitely many indices i with Qi =J. f as we only deal with finite channel
contents which means that we only can have a finite number of f's consecu-
tively. Let (80', w~,p~), (81" w~,p~), ... be the sequence that results from 7r by
removing the i-th tuple 7r(i) = (8i,Wi,Pi) if Qi = f. Let a = L(80),L(81),' .. ,
a' = L(80'),L(81')"", P = PO,Pl,'" and p' = p~,p~, .... We have (8i,Pi) =
(8i+l,Pi+l) for all indices i with Qi = f. Thus, a -st a' and p st p'. By defi-
nition of Pi.: x Af, we have P~+l = 8(p~, L(8i+l')), i = 0,1,2, .... Thus, p' is a
run over a'. Hence, a' F f iff a' E AccWords(Af) iff p' FAccCond. By (1)
and (2) 7rF f iff a F f iff a' F f iff p' F AccCond iff p F AccCond. Clearly,
p F AccCond is an equivalent formulation for 7rF Vj OD(Aj!\ OB;) .•

4.2 Probabilistie input enabledness

Because of Lemma 1 and Lemma 2 we can shrink our attention to formulas of the
form V OD(aj!\ Obj) where aj, bj are atomic propositions. We aim at a condition
that allows to establish qualitative properties specified by formulas of this type
by analyzing the graph of the underlying LCS. For this, we need a condition that
allows us to abstract from the concrete transition probabilities. In contrast to the
finite-state case, for infinite Markov chains, the precise transition probabilities
might be essential for establishing qualitative properties.

Example 1. The Markov chain of Figure 1 can be viewed as the Markov chain
associated with a PLCS consisting of a single control state s, one channel c, one
message m, the transition s G sand the failure prob ability p = p. Then, the
state Sk of Figure 1 represents the global state (s, mk) in which the total channel

20 The reader should be aware of the notation of £; {£} stands for the set {£e,i, c E eh, i E {I, 2 ... }}.
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length is k. The qualitative property stating that the initial global state So is
visited infinitely often holds for p ;::::1/2 but not for p < 1/2 .•

The problem in the above example is that, for p < 1/2, with non-zero prob-
ability, the channels grow in an "uncontrolled" way. To prevent such situations,
we shrink our attention to probabilistic input enabled PLCSs. Probabilistic input
enabledness is a condition which ensures that with probability at least 1/2 any
global state 5 moves within one step to aglobai state t where Itl = 151 - 1 and
which guarantees that alm ost all executions visit infinitely many global states
where all channels are empty (see Lemma 3). In particular, it ensures that with
probability 1 any message m received in a certain channel c will either be lost or
will be consumed by a process (via the action c?m).

The formal definition of probabilistic input enabledness can be viewed as
a probabilistic "variant" of the standard not ion of input enabledness for 1/0-
automata, see [LT87,Lyn95]. In fact we work with a slightly different meaning of
input enabledness. For I/O-automata, communication works synchronously and
input enabledness guarantees that the output of messages cannot be blocked.
This effect is already obtained for systems where the communication works asyn-
chronously (as for LCSs). Our not ion of input enabledness can be viewed as a
condition that asserts some kind of "channel fairness" as it rules out the patho-
logical case where a certain message m (produced and send by a process via the
action C!m) is totally ignored (i.e. never lost nor consumed via the action c?m).
We adapt the not ion of input enabledness for I/O-automata (which asserts that
in any (global) state all input actions are enabled) for PLCSs in such a way that,
for any global state 5 where 151 ;:::: 1, the prob ability for any input action c?m is
"sufficiently" large.

Definition 4. A PLCS p.c is called probabilistic input enabled iff for all s E
Scontrol and all cE eh, mE Mess:

Pcontrol(S, c?m);:::: (1 - 2p) . ( L Pcontrol(S, a)) .
oESendActU{ T}

It should be noticed that any PLCS with failure prob ability p ;::::1/2 is proba-
bilistic input enabled. Clearly, with p.c, also the product p.c x A is probabilistic
input enabled. In the sequel, we assume that p.c = (.c, Pcontrol, p) is a proba-
bilisticinput enabled PLCS where .c is as in Definition 1.

Let 50 = {s E 5g1obal : 151 = O} be the set of all global states where all channels
are empty. We write 1r F 0050 to denote that 1r passes infinitely many global
states in 50, i.e. 11r(i) I = 0 for infinitely many indices i.
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Lemma 3. Por alt global states 5:

L Pglobal (5, t) > ~.
t

Itl=lsl-l

and Prob{1r E Path(s) : 1r F 0<>50 } = 1.

Proof. Für the proüf üf the first part we define fSet(s)

{I, ... , Isl} } and v'(s) = L Pcontrol(S, a).
aESendActu{ T}

{ fc,i c E eh, i E

t

Itl=lsl-l

P () D..!:..I
global 5, t L L Pglobal(5, a, t)

t aEÄct[
Itl=lsl-l

L ( L Pglobal (5, a, t) + L Pglobal (5, a, t))
I aE(Set(s) aERecAct

Itl=lsl-l

Dei L .£ +
aE(set(s) 151

1-g:>L L v(s). Pcontrol(S, a, t)
I aERecAct

Itl=lsl-l

Dei 1- g:>
= g:> + L v(S). Pcontrol(S, a)

aERecAct

1-g:>
g:> + V(S)

Def
=g:>+

V'(S) +

L Pcontrol (5, a)
aERecAct

1- g:>

L Pcontrol(S, a)
aERecAct

L Pcontrol(S, a)
aERecAct

g:>. v'(s) + g:>. L Pcontrol(S, a) + L Pcontrol(S, a)
aERecAct aERecAct

v'(s) + L Pcontrol(S, a)
aERecAct

g:> • L Pcontrol (5, a)
aERecAct

V'(S) + L Pcontrol(S, a)
aERecAct

g:> • V'(S) + L Pcontrol(S, a)
aERecAct

V'(S) + L Pcontrol(S, a)
aERecAct
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p. v'(s) + v'(s) - v'(S) + L Pcontrol(S, a)
aERecAct

V'(S) + L Pcontrol(S, a)
aERecAct

1-p
1- v' (5) . ---------

v'(s) + L Pcontrol(S, a)
aERecAct

Let Ci= c?m be an arbitrary element of RecAct. Then,

1-p 1-p
1- v'(s) . --------- > 1- v'(s) . ------

v'(s) + L Pcontrol(S, a) - v'(s) + Pcontrol(S, Ci)
aERecAct

1- P> 1- v'(s) . -------
- v'(s).(1+1-2p)
1
2

For the second part it suffices to show that p(s) = 1 for all global states 5

where p(s) = Prob{Jr E Path(s) : Jr 1= <>50}'We put p(k) = min{ p(s) : 5 E
5global, 151:::::k} for k E INo. Then, 1 = p(O) ::::::p(l) ::::::.... Let 5 E 5global, 151= k
where k ::::::1. Then,

p(S) = L P global (5, t) . p(t) + L P global (5, t) . p(t)
I I

ItIE{k,k+1} Itl=k-l

> L P global (5, t) . p(k + 1) + L P global (5, t) . p(k - 1)
I I

ItIE{k,k+l} Itl=k-l

::::::(1 - Q(k, k - 1)) . p(k + 1) + Q(k, k - 1) . p(k - 1) ,

where Q(k, k - 1) = min{P global (5, t) : 5, t E 5global, 151= Itl + 1 :::::k}. By Lemma
3 we get Q(k, k - 1) ::::::~. Let p = infk:2:1 Q(k, k - 1). Then,

p(k) ::::::(1 - p) . p(k + 1) + p. p(k - 1) .

We can now define an operator F : (INo ----+ [0,1]) ---+ (INo ----+ [0,1]) such that
F(J)(k) = (1 - p) . f(k + 1) + p. f(k - 1). Obviously we get F(p) :::::p. For the
least fixpoint of F, denoted by Ifp(F), we get the situation as in Figure 1, which
is known in the literature as random walk. There Ifp(F)(k) can be viewed as the
prob ability to reach So from Sk, and (since p ::::::~) we get Ifp(F)(k) = 1 for all
k ::::::1. Thus, we get Ifp(F) 1 and since p ::::::Ifp(F) we finally get p( k) = 1 for
all k ::::::1.•
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We now show how, for probabilistic input enabled PLCSs, qualitative prop-
erties specified by a formula l' = V 00 (aj 1\ Obj) can be established by proving
a qualitative eventually property OU where U is a finite set of control states.
For showing that Ps( OU) = 1, we use areachability analysis in the underlying
(non-probabilistic) LCS.21 More precisely, the set U is defined by means of the
bottom strongly connected components (BSCCs for short) of the directed graph
G0(.c) whose nodes represent the global states (s,0) and whose edges represent
the reachability relation between them. The condition Ps( OU) = 1 can shown to
be equivalent to Ps( OU) = 0 where U characterizes all global states (s,0) that
belong to a BSCC of G0(.c) and that are not contained in U. To check whether
Ps( OU) = 0, it suffices to show that the global state s cannot reach aglobaI state
(71,0) where 71E U.

Definition 5. Let.c be aLeS as in Definition 1. We define

where the relation ~ £, ~ S control X S control is given by s ~ £, t ijj the global state
(t,0) is reachable from the global state (s,0) in T5(.c).

If U ~ Scontrol then we write s ~£, U ijj S ~£, U for some u E U. s r£' U
denotes that there is no u E U with s ~ £, u.

Notation 1. For any global state s, we define IIBscc(s) to be the set of paths
Jr E Path(s) such that, for some BSee C of G0(.c), all global states (f, 0), fE C,
are visited infinitely often.

Lemma 4. For all global states s:

Prob(IIBscc(s)) = 1.

Proof. We define a set r by

r= u
t,u

P global (t,U»O

where rt,u = {Jr E Path : tE inf(Jr),u tf:- inf(Jr)}
First we show that Prob(rt,u(s)) = 0 (see the following Claim). We will use

this fact to show that the prob ability of the paths which are not in rand which
satisfy 0050 is 1. With the help of this fact and two observations we finally can
show that Prob(IIBscc(s)) = 1.

21 We write Ps( <>U) to denote the probability for the global state 5 to reach aglobai state of the form
(u, w) for some u E U.
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Claim: Let t, u be global states such that Pglobal(t, u) > O. Let rt,u be defined
as above, i.e. rt,u = {7r E Path : tE inf(7r), u 1- inf(7r)}. Then, for all global
states 5:

Prob(rt,u(s)) = 0 .
Proof: We define a set

r:,u = {7rE Path : tE inf(7r),7r(i) #- u Vi E:IN}.

In a very similar manner as in [BK98b] we define a set

Qs = {p E Pathfin(s) : p(i) #- t,p(i) #- u, i = 1, ... , Ipl-l, last(p) = t}

where Ipl denotes the length of the finite path p and last(p) denotes the last
element in the finite path p. It is obvious that

r:,u(S) = U pr:,u(t) .
pECJ.s

Now we have to show that

Prob(r:,u(t)) = o.

Since Pglobal(t, u) > 0 we get

2: P(p) ::;2: Pglobal(t, r) = 1 - Pglobal(t, u) .
pECJ., r#u

Further on we have

Prob(r:,u(t)) = 2: P(p) . Prob(r:,u(t)) .
pECJ.,

Thus we get

Prob(r:,u(t)) ::; (1- Pglobal(t, u)) . Prob(r:,u(t)) .

It follows that
Pglobal(t, u). Prob(r:,u(t)) ::; O.

and since Pglobal(t, u) > 0 we have

Prob(r:,u(t)) = 0

We now show that Prob(rt,u(S)) = O. It is easy to see that

rt,u ~ Upr:,u(t)
p
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where p ranges over all finite paths such that last(p) = t and there is some
j < Ipl with pU) = u and p(l) i= u for l = j + 1, ... , [pi - 1 and pU - 1) = t.
It follows that Prob(rt,u(s)) ~ Lp P(p). Prob(r;,u(t)) where p ranges over the
paths described above. Since Prob(r;,u(t)) = 0 we get Prob(rt,u(s)) = 0 for
all global states s. 0

We know now that Prob(rt,u(s)) = 0 for all global states s. In the sequel we
will investigate the paths that are not in r. For a path 1r which is not in r it
follows that, for all tE inf(1r) and for all u with Pglobal(t, u) > 0 deduces that u
is an element which appears infinitely often on the path 1r, e.g. u E inf(1r).

In particular, this means that for 1r tt rand t E inf(1r) it follows that
Reach(t) ~ inf(1r). Let II denote the set of all paths which are not in rand where
infinitely often astate in 50 is reached, e.g. II = {1r E P ath \ r : 1rF 0050}'

Thus,
Prob(II(s)) = 1

for all global states 5 by Lemma 3 and the above Claim.
Let 1rE II. Then,

(1) inf(1r) n 50 i= °
(2) Vs E inf(1r) n 50 : Reach(s) ~ inf(1r)

Since Prob(II(s)) = 1 and by (1) and (2) we get Prob(IIBscc(s)) = 1. •

Notation 2. Let aj, bj E AP and Aj = {s E Scontrol : aj E L(s)}, Bj = {sE
Scontrol : bj E L(s)}. Let Uj be the union of alt BSCCs C of G0(£) such that
C ~ Aj and C n Bj i= 0, j = 1, ... , k, and U = UI U ... U Uk; consequently U
is the union of alt BSCCs C of G0(£) such that, for alt j E {1, ... , k}, either
C ClAj or C n Bj = O.

Lemma 5. For alt global states 5:

Ps(OU) + Ps(OU) = 1

Proof. With the definition of Ps( OU) and Lemma 4 we get

Ps(OU) + Ps(OU) = Prob{1r E Path(s) : (1r F OU) V (1rF OU)}
= Prob{1r E IIBscc(s) : (1r F OU) V (1rF OU)}
=1

Lemma 6. For alt contral states 8:

Prob {" E Path( (s, 0» : " 1= lS"OD(a; /\ Ob;) }

21

1 ijj 81+£ U.



Proof. It is easy to see that 1r F OD( aj /\ Obj) iff 1r F OUj for any path
1r E IIBscc(s). By Lemma 4 and Lemma 5, we get:

PS(Vl::;j::;kOD(aj/\Obj)) = Ps(OU) = 1-ps(OU).

Hence, PS(Vl::;j::;kOD(aj/\Obj)) = 1 iffps(OU) = O. Since any global state
(Ti, w) can reach the state (Ti,0) (via losing all messages), we have Ps(OU) = 0
iffs cannot reach aglobai state of the form (Ti, 0) where Ti E U.•

4.3 The model checking algorithm

Combining Lemma 1, 2 and 6 we get the following theorem which builds the
basis of our model checking algorithm.

Theorem 1. Let P £ = (£, Pcontrol,p) be a probabilistic input enabled PL CS
where £ is as in Definition 1, f a LTL\x formula and Af a deterministic Rabin
automaton for f. Let U' be the union of all BSCCs C' of the directed graph
G0(£ x Af) such that, for all j E {I, ... , k}, either C' g Aj or C' n Bj = 0.
Then,

P£ F f iff s~ Yt:.xAf u' .
Here, s~ = (so, 8(qo, L(so))) denotes the initial control state of £ x Af and Aj, Bj
are as in Lemma 2.

With all the above preliminaries, we are now able to formulate our model
checking algorithm. (see Figure 2). The input is a probabilistic input enabled
PLCS P£ and a LTL\x formula f. First, we construct a deterministic Rabin
automaton Af for fand the LCS £ x Af. Then, we compute the reachability
relation "vtt:.xAf for the LCS £ x Af which yields the graph G0(£ x Af). For this,
we may apply the methods of [AJ93] (or [AKP97]).

Using standard methods of graph theory, we calculate the BSCCs ofthe graph
G0(£ x Af) and obtain the set U' (defined asin Theorem 1). Finally, we check
whether the initial control state s~ of £ x Af can reach anode of U' with respect
to the edge relation "vt t:.xAf"

5 Conclusion and future work

We have shown that, for probabilistic input enabled PLCSs, model checking
against qualitative LTL\x specifications is decidable. This should be contrasted
with the undecidability of LTL model checking far (non-probabilistic) LCSs
[AJ94].22 Thus, adding appropriate transition probabilities to a LCS, can be

22 Note that in the probabilistic setting, a linear time formula f is viewed to hold in astate s iff f holds
on almost allpaths starting in s (but f might be wrong on some paths) while, in the non-probabilistic
case, f is viewed to be correct for astate s iff f holds on all paths starting in s.
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Input: a probabilistic input enabled PLCS PI:- = (I:-, Pcontrol, p) and a LTL\x
formula f

Output: if PI:- 1= f then yes else DO

Method:
1. Compute the deterministic Rabin automaton Af for the formula f.
2. Compute the LCS I:- x Af.
3. Compute the reachability relation """cxAf (which yields the graph

G0(1:- x Af)).
4. Compute the set V' (defined as in Theorem 1) by means of the BSCCs

in G0(1:- x Af).
-I

5. If s~ rCXAf U then return yes else return DO.

Fig. 2. The LT L\x model checking algorithm

viewed as a technique to overcome the limitations of algorithmic verification
that are due to undecidability results.

Whether or not the probabilistic input enabledness is a necessary condition is
still open. The correctness of our method is based on the observation that, with
probability 1, a BSCC C of the graph G0(.c) is reached and that all states of C
are visited infinitely often. This property holds for probabilistic input enabled
systems (see Lemma 6) but is wrong for general PLCSs as we have seen in
Example 1.

In this paper, we used the interpretation of a PLCS by a (sequential) Markov
chain as proposed in [IN97]. This model is adequate e.g. if the underlying parallel
composition for the processes that communicate via the channels is a probabilistic
shuffie operator in the style of [BBS92]. This kind of parallel composition assumes
a scheduler that decides randomly (according to the "weights" specified by the
function Pcontrol) which of the pro cesses performs the next step. Alternatively,
the global behaviour of a PLCS could be described by a model for probabilistic
systems with non-determinism (such as concurrent Markov chains [Var85] or the
more general models of [BdA95,Seg95,BK98aJ), where the non-determinism can
be used to describe the interleaving behaviour of the communicating processes.

Unfortunately, we cannot report on experimental results. The implementa-
tion of our algorithm (combined with the methods of [AJ93] or [AKP97J), case
studies and a complexity analysis will be future topics. Moreover, we intend to
investigate how our algorithm can be modified for probabilistic systems with
non-determinism and an interpretation of LT L\x formulas over PLCSs that in-
volve (process) fairness, i.e. an interpretation in the style p.c 1= f iff f holds with
prob ability 1 for any fair scheduler. Another future direction is to study a CT L *-
like temporallogic that combines LT L\x and the branching time logic of [HS86]
where state formulas of the form Vf (asserting that f holds with prob ability 1)
are considered.
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