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Chapter 1

Introduction

This thesis studies nonparametric estimation techniques for a general regression

set–up under very weak conditions on the covariate process. In particular, regres-

sors are allowed to be high–dimensional stochastically nonstationary processes.

The concept of nonstationarity comprises time series observations of random walk

or long memory type. Admissible processes might “wander off”, but recur any

time they do so. We introduce the first kernel type estimation method for such

nonstationary regressors without restricting their dimension. This set–up is moti-

vated by and generalizes approaches in parametric econometric time series analysis

with nonstationary components. It offers a possible way to extend and test for

linear cointegration.

1.1 Relevance and Literature

There is substantial empirical evidence that many important economic factors

without a deterministic time trend such as real consumer prices, individual con-

sumption, exchange rates, and real GDP are stochastically nonstationary (See e.g.

Meese and Singleton [1982], Kwiatkowski et al. [1992], or Sun and Phillips [2004]).

In Econometric time series literature, though, the study of such nonstationary

time series has been dominated by parametric models. Most commonly, stochasti-

cally nonstationary processes are modeled as integrated or fractionally integrated
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(see the extensive literature on unit root processes started with Dickey and Fuller

[1979] for purely integrated and Phillips [1987] for general ARIMA models; for

fractionally integrated models see Baillie [1996] for a survey and e.g. Diebold and

Rudebusch [1999] among others). For valid inference, though, the decision for a

nonstationary model as opposed to a stationary one must be correct (tests for

unit root can be found in Dickey and Fuller [1981], Phillips and Perron [1988]

or for stationarity against unit root in Kwiatkowski et al. [1992]). In regression

models, structural relationships between nonstationary variables have been exten-

sively studied in the context of cointegration. Introduced in Engle and Granger

[1987], stochastically nonstationary time series are cointegrated if there exists a

linear combination such that the residual is I(0) an thus mostly stationary. This

linear type of cointegration can be easily tested for , e.g. as proposed by Johansen

[1991]. Nonlinear extensions as e.g. in Granger and Hallman [1991], Park and

Phillips [1999], Park and Phillips [2001], or de Jong and Wang [2005] are still rare

in the applied literature as they appear restrictive in fitting a specific parametric

relationship which is hard to test for (see Hong and Phillips [2005]). While eco-

nomic theory often suggests nonlinear responses (see e.g Lewbel and Ng [2005] in

demand), it is often not explicit regarding the functional form (see e.g.Meese and

Rose [1991] for exchange rates). Therefore the simplicity of econometric analysis

so far is not due to simple true models but due to lack of respective more general

tools. There is need for appropriate nonparametric methods in this general setting.

In nonparametric regression the full form of the functional relation between a

response variable and observables is determined from the data. This is in contrast

to parametric models where a global parametric form is prespecified up to a finite

dimensional parameter which is obtained by estimation. In particular, for kernel

type nonparametric estimation techniques we derive point estimates of the struc-

tural relationship by local weighted averages of observations in the neighborhood of

the point of interest. Though for nonparametric estimation to be possible, the vast

class of nonstationary processes is too wide and general comprising deterministic

trends as well as stochastic nonstationarities. In order to apply local smoothing

techniques in the state space, however, the processes cannot “wander off for good”
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with a deterministic trend, but they must recur to any point in their range almost

surely guaranteeing sufficiently many observations for inference. This intuitive

and natural property can be formalized as Harris recurrence – a concept from

Markov chain literature. It relaxes usual stationarity and ergodicity assumptions

but allows for stochastic nonstationarity as of random walk type. Therefore it is

the appropriate framework for nonstationary kernel type inference. While Harris

recurrence puts a restriction on the behavior of the time series in the state domain,

it is more general than assumptions in the time domain such as local stationarity

or mixing, which require a certain alignment of the observed processes in time (For

nonparametric nonstationary estimation in the class locally stationary processes

via spectral density approximations see Dahlhaus [1997] and the rich literature

thereafter)

The idea of Harris recurrence as the key minimal assumption for valid kernel re-

gression techniques with Markov processes was first suggested by Yakowitz [1989].

His analysis, though, was restricted to the positive recurrent case and provided only

consistency results for nearest neighbor estimates in this setting. Phillips and Park

[1998] were the first to move towards possibly null recurrent processes. They used

local time arguments, but their results only applied to one dimensional first order

unit autoregressions. Independently Moloche [2001] and Karlsen and Tjøstheim

[2001] have introduced an estimation framework for regression with general null

Harris recurrent Markov processes. While the first uses embedding techniques,

that require restrictive assumptions and employs existing results from probability

theory literature, the later is more general with different direct techniques. Within

the imperceptibly smaller class of β–null Harris recurrent processes, Karlsen and

Tjøstheim [2001] provide results on consistency and derive asymptotic normality

by inverting a stable recurrence time process. The type of nonstationarity of the

data is captured by a single parameter β, the degree of regular variation in the

tails of the recurrence time process. It also represents the polynomial degree of

the expected stochastic rates of convergence and therefore offers an important way

to compare the nonstationary results to well–known stationary theorems. A com-

parison of the two strains of literature is contained in Bandi [2004]. In general,



4 Chapter 1. Introduction

the literature on nonparametric nonstationary estimation is still quite new and

therefore scarce. Lately there are some papers following the local time approach

such as Bandi and Phillips [2003] and Bandi [2004] studying nonstationary dif-

fusions and Wang and Phillips [2006] with general cointegration type estimation.

Though a partial linear model is examined in Chen et al. [2007] under β–null Harris

recurrence. We also employ the β–null Harris recurrence framework.

In general, however, high–dimensional nonparametric estimation suffers from

standard curse of dimensionality (COD). The more regressors are included the

worse the finite sample behavior. For nonstationary data, in particular, this can

lead to extremely slow rates of convergence, requiring very large sample sizes

for significant results. Furthermore in the nonstationary setting, an additional

even more severe nonstationary curse of dimensionality complicates nonparametric

estimation. For dimensions larger than two, Harris recurrence of joint regressors

is restrictive. In fact, the more regressors are added, the more “unlikely” it is

for the compound process to still fit the framework of Harris recurrence. Most

prominently, a random walk is Harris recurrent only up to dimension two and

transient for any higher dimension. In such cases, the performance of existing

procedures of Karlsen et al. [2007] and Moloche [2001] does not only deteriorate,

but none of them can be applied at all. There is no existing nonparametric method

for such high–dimensional regression in this general setting.

1.2 Model and Approach

In this work, we provide an estimation method which countervails both curses

of dimensionality. To overcome the first, ordinary COD, an additive model is

estimated. In the stationary mixing case, additive models have provided a powerful

technique to overcome this problem and to still maintain high model flexibility.

Denote observations by subscripts and dimension components by superscripts. In

the entire thesis we use the short–hand notation Xjk = (Xj, Xk). Then given a

random design of n joint observations of (X, Y ) ∈ Rd×R, we estimate an additive

conditional mean function m : Rd → R with component functions mj : R → R for
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j = 1, . . . , d and scalar m0 by

Yi = m0 +
d∑

j=1

mj(X
j
i ) + εi for all i ∈ {1, . . . , n} (1.1)

under suitable identification conditions for mj, j = 1, . . . , d. We always assume

there is no concurvity, i.e. for m1, . . . ,md nontrivial we cannot have m1(x
1) +

· · ·+md(x
d) = 0 for all (x1, . . . , xd). The response Y and at least all univariate Xj

and pairs of bivariate marginal components Xjk of the covariate vector X belong

to a specific class of Markov processes, β–null Harris recurrent processes, which

is wide and general enough to include stationary and a wide range nonstationary

processes.

In order to tackle the second nonstationary COD, however, an estimation method

for the additive model must rely on low dimensional components only - at best only

univariate and bivariate ones to include the widest possible class of processes. In a

stationary setting, smooth backfitting introduced by Mammen et al. [1999] fulfills

these requirements as it does not need a full–dimensional estimate in any step

of the method. On this basis, we develop and introduce the generalized smooth

backfitting procedure for a general nonstationary setting.

1.3 Main Results

The main contributions of this thesis are the following. They are stated in order

of importance which does not correspond to their order of appearance in the text.

First nonparametric technique for high–dimensional nonstationary re-

gression

With generalized smooth backfitting we introduce the first valid nonparametric es-

timation method under weakest assumptions on multidimensional covariates. The

essential requirement is only pairwise β–null Harris recurrence which comprises

a significantly larger class of important practical processes than the class of full

β–null Harris recurrent processes where other existing estimation procedures are
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restricted to (see Karlsen et al. [2007]). Therefore it offers a first way to countervail

both, the standard curse of dimensionality but also the more severe nonstation-

ary curse of dimensionality. The generality in type of underlying data, however,

restricts admissible model classes to at most pairwise additive. This implies that

generalized smooth backfitting only yields the best additive fit if the true model is

additive or pairwise additive as in (3.9). For more general true models this is not

guaranteed. In the most general setting, identification is obtained under general-

ized conditional independence assumptions where the residual can also contain a

certain type of stochastic nonstationarity. The exact conditions are stated in As-

sumptions 4.4 and the most general residual form is mentioned in Remark 4 after

Theorem 4.3. We derive the asymptotic expansion of the generalized smooth back-

fitting estimators in Theorem 4.3. This is the main technical result of this thesis.

Components have a rate of convergence and variance of univariate type but gov-

erned by the worst case bivariate nonstationary type. Therefore convergence also

holds jointly for all component functions. In order to achieve asymptotic normal-

ity, the speed of convergence is stochastic due to the nonstationarity of the data.

Section 4.4 contains some considerations on oracle efficiency of the procedure.

First nonparametric estimation method for an additive conditional

mean function with nonstationary data

Depending on the degree of nonstationarity in the covariate vector, we introduce

estimation techniques for additive regression models in this general setting. The

more regressors are compoundly β–null Harris recurrent , say γ with 2 ≤ γ ≤ d

of them, the more general can the true underlying model be, to still obtain the

best additive fit in a projection sense via adapted generalized smooth backfitting.

Thus allowing for higher model generality, rates of convergence and variances are

governed by the worst case γ–wise nonstationary type in each component. The re-

spective method is presented in Section 3.3.2 and its asymptotic expansion is stated

in Theorem 4.5 under the weakest assumptions on the spacial correlation structure

of covariates and residual. It contains standard smooth backfitting (for γ = d) and

generalized smooth backfitting (for γ = 2) as extreme subcases. Adapted gener-
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alized smooth backfitting can yield the closest additive approximation to a fully

general true model only under full β–null Harris recurrence and standard smooth

backfitting. Asymptotic results for this case are stated in Section 3.2. Though

for generality in the fitted model class, the respective procedures lose in efficiency

with methods for increasing γ, by scaling according to higher dimensional types

of nonstationary data. This is briefly discussed in Section 4.4.

First nonparametric generalization of cointegration type models without

restricting the number of covariates

In the special subcase of ε being stationary mixing in (1.1), we estimate an additive

cointegration type relationship. In contrast to the existing more general nonpara-

metric approaches in Karlsen et al. [2007] and in Wang and Phillips [2006], however,

the number of cointegrated regressors is not restricted. Furthermore in order to

obtain the asymptotic results in Theorem 4.4 and Theorem 4.2 only structurally

simple and familiar moment type conditions must be satisfied, if covariates and

residual process satisfy a generalized spacial independence assumption.

These are the fundamental contributions of this thesis. Important secondary

aspects or extensions of the above results are highlighted in the following.

Stationary and nonstationary processes treated with same procedure

In the chosen framework, the presented estimation methods work irrespective of

underlying stationarity or not. While they are stated in the most general form

for nonstationary data, they contain the stationary case as a subcase. Thus other

than in parametric models, there is no pretesting for stationarity required. Our

methods are adaptive to stationarity or nonstationary data. Therefore in this

respect, there is no risk of model misspecification causing invalid inference.

Tailored Procedure for Stationary and Nonstationary covariates

In some high–dimensional economic models, in fact only one of the regressors ap-

pears as nonstationary while all others can be safely assumed as stationary (See e.g.
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the study of Gil-Alaña and Robinson [1997]). With such pre–knowledge about the

type of each regressor, we can improve on the efficiency of the general procedures

as suggested in Section 3.2 and 3.3. With an adapted method, we can estimate

stationary components at stationary rates. Therefore in finite sample studies and

in practice, the suggested tailored method offers a significant improvement under

feasibility aspects.

Uniform convergence results for β–null Harris recurrent processes

In order to show statistical properties of the generalized smooth backfitting estima-

tor, we establish uniform convergence results for density estimators and regression

estimators under the minimal assumption of β–null Harris recurrence. Due to the

lack of exponential inequalities of Bernstein or Hoeffding type in this general set-

ting, the proof of exponential tightness is quite lengthy and involved. As they are

new to the probability literature, Corollaries A.2.2 and A.3 deserve some attention

and might be of interest on their own.

1.4 Outline

This thesis is structured as follows. The second chapter presents the fundamental

framework for estimation and the basic form of local smoothers in this general set-

ting. In order to provide a thorough picture of the considered class of processes,

certain concepts and notations of Markov theory must be introduced. Though

the emphasis is on motivation and intuition how they facilitate our problem, while

some technical properties are included only in the Appendix. The focus is on β–null

Harris recurrence as the appropriate framework for kernel smoothing. Furthermore

form and properties of general multidimensional kernel estimators are discussed,

where features and specifics of the nonstationary setting are highlighted. With the

basic notions at hand, the subsequent third chapter introduces the new estimation

techniques. Depending on the degree of nonstationarity in the covariate process

and on how close an additive model is to true model, respective estimation strate-

gies are introduced. With generalized smooth backfitting we provide an estimation
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procedure under the weakest assumptions on the covariates. Since it requires only

pairwise β–null Harris recurrence as minimal assumption, it is the first valid esti-

mation method for a vast class of high dimensional time series models. Chapter 4

contains the major convergence and asymptotic results. The focus is on the most

interesting asymptotic expansions in the case of full β–null Harris recurrence and

pairwise β–null Harris recurrence of the covariate vector. For completeness, inter-

mediate cases are briefly treated under Extensions. Furthermore two practically

interesting special cases are studied. We conclude the chapter by remarks on effi-

ciency. In the Chapter 5, a simple simulation study shows that the method works

in finite samples. the estimated five dimensional random walk model could not be

estimated by general existing methods. The last chapter sums up. As the studied

field of research is quite new, we conclude with an outlook for further research.

All proofs as well as major technicalities are contained in the Appendix, which

also comprises the formal statement of some basic notions and tools from Markov

theory.
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Chapter 2

Motivation and Basic Framework

In this chapter we introduce necessary tools and concepts for conducting non-

parametric kernel type smoothing with stochastically nonstationary processes. In

particular, in the first section we study β–null Harris recurrent processes as the

appropriate framework for estimation. Series of discrete observations in this class

of processes comprise all strictly and weakly stationary as well as nonstationary

time series with potentially infinite, time dependent variance of unit root or long

memory type. For deriving certain stochastic properties and for a thorough un-

derstanding, some notions and results from Markov theory are needed. These are

presented with an emphasis on meaning and role of the employed techniques, while

technical details and exact definitions of most of the Markov chain properties can

be found in the Appendix. Comprehensive references for notions from Markov

theory are Meyn and Tweedie [1993] and Nummelin [1984]. Furthermore in the

second section, form and peculiarities of kernel estimators in this general setting

are examined. These are fundamental in Chapter 3 for establishing estimation

methods for an additive structural relationship as in (1.1).

2.1 Motivation, Intuition and Some Notation

Let {Xi}n
i=1 be an aperiodic φ–irreducible Markov chain on the state space

(
R,Bd

)
with transition probability P . Let the region of estimation G = G1×. . .×Gd ⊆ R =
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R1× . . .×Rd ⊆ Rd be compact. Irreducibility essentially ensures that the Markov

chain does not degenerate to a subspace of the original space R. Technically it

implies that for any set A ∈ R with φ(A) > 0 it is
∑

n P n(x, A) > 0 for any

starting point x ∈ R. Hence φ indicates, if a set can be reached by the process

or not. For inference, only sets of positive φ measure are of interest. Throughout

the paper, we assume that supp(φ) has non–empty interior1. Denote the class of

non–negative measurable functions with φ–positive support by E+. Then also a

set A ∈ R is in E+ if for the indicator function it is 1A ∈ E+.

It is not intrinsically natural that the process lives in a bounded set - though this

is inevitable for technical reasons in the estimation procedure. Note that G can

be chosen sufficiently large such that there are a sufficiently many data points

for nonparametric inference in G. Denote by ∂Gh the h ring boundary of G in

the following sense x ∈ ∂Gh iff ‖x− c‖ ≤ hC1 for any c from the boundary ∂G.

Furthermore write for the h ring interior G̊h = inth(G) := G\∂Gh.

2.1.1 Small Sets and Feller Chains

To ease notation, we use the following short–hand notation: For any non–negative

measurable function η and any measure λ the operator kernel η⊗ λ is defined by:

η⊗ λ(x, A) := η(x)λ(A), for all (x, A) ∈ (Rn,Bn). For some general operator ker-

nel P denote: Pη(x) :=
∫

A
P (x, dy)η(y) is a function, λP (A) :=

∫
Rn λ(dx)P (x, A)

is a measure and λPη(x, A) :=
∫

A

∫
Rn λ(dx)P (x, dy)η(y) is a real number. Before

we can introduce the concept of β–null Harris recurrence, we need some basic

notions from Markov theory.

Definition 2.1 (Small Sets and Functions). A function η ∈ E+ is small if there

exist a measure λ, a positive constant b > 0 and an integer m ≥ 1 such that:

Pm ≥ bη ⊗ λ . (2.1)

A set A is small if 1A is small. Then every φ–positive subset of this set will also

1This condition is formally required to ensure that every Feller chain is a T-chain [Meyn and
Tweedie, 1993] Theorem 6.0.1 (iii)
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be small. If the measure λ satisfies (2.1) for some η, b and m, then we call λ a

small measure.

Every φ–irreducible Markov chain has at least one small set (and see (A.1)).

Small sets play an important role in describing the stability structure of a Markov

chain. In the following, they will be essential for operationalizing estimation proce-

dures. Small sets exist in abundance, in fact the entire R can be covered by small

sets. Though in general for estimation, size and form of small sets are a–priori

unknown but depend on the observed but unknown underlying process. And all

interesting properties of one small set are not specific to it but also hold for all

other small sets. This has been shown in Chen [1999b]. In practice, however, we

need to know how to identify small sets, in particular when they come up explicitly

in an estimation procedure. For a random walk any compact set is small, but in

general this is not the case. However, if X is assumed to be Feller, then every

small set is compact2.

Definition 2.2 (Feller Chains). A chain is called Feller, if Ph(x) =
∫

P (x, dy)h(y)

is continuous for all h continuous.

Thus Feller processes satisfy a continuity assumption for the transition probabil-

ity operator. This constraint offers a minimal way of establishing a link between

stability of the chain and topology of the space. The Feller property guarantees

small sets which are compact - hence “manageable” in practice. Most processes

of practical interest in fact satisfy the Feller property. In particular, the random

walk or α–stable processes are within the class of Feller processes (see Feller [1971]

and Jakob [2001]).

2Since the support of the irreducibility measure of the chain is assumed to have non–empty
interior, every Feller chain is also a T-chain. The exact definition of a T–chain is not important
for our purpose (see Meyn and Tweedie [1993] chapter 6, page 127 ff.), however, we just profit
from one important property: For a T-chain every compact set is petite(Theorem 6.2.5.ii in Meyn
and Tweedie [1993]), where petite is a generalization of small.
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2.1.2 β–null Harris Recurrence

Kernel type estimators consist of weighted local averages yielding pointwise esti-

mates. Therefore intuitively there must be “sufficiently many” observations avail-

able in the neighborhood of any point in the range G to conduct consistent non-

parametric inference. More precisely, as sample size increases, locally the number

of data points should also grow to infinity at a certain rate. Obviously for evanes-

cent processes, which eventually “wander off to infinity” this is not the case - they

cannot be treated with local nonparametric estimation concepts. Thus data from

time series with a deterministic trend must be correctly de–trended first to be

admissible. An appropriate framework excludes cases of evanescence, but is still

general enough to allow for processes having some kind of stochastic nonstationar-

ity. In the Markov chain literature the concept of Harris recurrence captures these

desired properties.

Definition 2.3 (Harris Recurrence). A process X is Harris recurrent, if it returns

almost surely to any neighborhood Nx,h = {y | ‖y − x‖ ≤ h} of any x ∈ Rd for

any h with φ(Nx,h) > 0.

The classes of non-evanescent and Harris recurrent processes are identical. See

[Meyn and Tweedie, 1993] Theorem 9.2.2.ii for a formal proof of equivalence be-

tween the two concepts. In this sense, Harris recurrence is a minimal requirement

for nonparametric Kernel type inference. Note that Harris recurrence only implies

that with probability one, the process will recur to any point in its range. The

expectation of this recurrence time, however, can be and generally is infinite. In

a diffusion setting, Harris recurrence is essentially equivalent to the nonpositivity

of the generator of the diffusion semigroup. This is shown in Bandi and Phillips

[2004].

Furthermore Harris recurrent processes come with some useful additional prop-

erties we will exploit in the following. Harris recurrence allows to construct a

split chain which decomposes the original Markov chain into blocks of indepen-

dent identically distributed parts (see Appendix A.1). The number of these in-

dependent parts T (n) corresponds to how often the process regenerates. These
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resulting blocks U1, . . . , UT (n) play the role of iid observations in sums for asymp-

totic central limit theorem arguments. Thus for any type of estimation procedure,

their stochastic number T (n)
a.s.→ ∞ plays the central role of the effective sam-

ple size in asymptotic considerations. Hence rates of convergence are generally

path–dependent stochastic determined by T (n) compared to deterministic n for

stationary data. Since with probability one, it is T (n) ≤ n, estimators for nonsta-

tionary data will converge slower than in the stationary case, where the relation

holds with equality. Though generally, the number of regenerations T (n) of an

underlying process is not observable. To compensate for this, we introduce the

observable quantity

TC(n) :=
n∑

i=0

1C(Xi) (2.2)

for C ∈ E+, which counts the number of times the process hits a set C. Further-

more for an irreducible Markov chain, small sets play the role of a pseudo–atom,

where the process recurs and (3.4) holds with equality and b = 1. Therefore if C

is small, TC(n) and T (n) are asymptotically equivalent in the following sense

TC(n)

T (n)

a.s.−→ c (2.3)

with c > 0 constant (Remark 3.5. in [Karlsen and Tjøstheim, 2001]).

A general Harris recurrent process is nonstationary. Therefore it has no station-

ary distribution or density function to be estimated nonparametrically. But Harris

recurrence ensures the existence of a unique (up to a multiplicative constant) in-

variant measure π to which the transition probabilities converge to in a certain

sense (See Appendix A.1 for its formal construction). If this invariant measure has

a density function, it is the object which can be estimated by a kernel type density

estimator. It should be noted the invariant measure π and the irreducibility mea-

sure φ are equivalent in the sense that φ = aπ for a ∈ R+. Distinguish between

two fundamentally different cases: X is positive recurrent if the invariant measure

is finite and with some appropriate scaling can be transformed into a probability

measure. If the invariant measure is no longer finite but only σ–finite the process

is only null recurrent. The later case is technically more intricate. Restricted to
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a small set C, however, the invariant measure is always finite, i.e. π(C) < ∞
(See [Meyn and Tweedie, 1993], Proposition 5.6.page 73). Therefore the invariant

measure density on small sets πC(x) := π(x)
π1C

is well defined and the exact form of c

in (2.3) is determined as π1C . It is assumed throughout the paper that any invari-

ant measure is absolutely continuous with respect to Lebesgue measure. And for

convenience, the Radon-Nikodym derivatives are also called densities in the null

recurrent case. Furthermore in the following, any support is with respect to the

respective invariant measure.

Simple Harris recurrence only yields stochastic rates of convergence for estima-

tors, where distribution and size of T (n) have no a priori known structure but

fully depend on the underlying process. Though by imposing a slight regularity

condition on the regeneration structure of the process, we get a much simpler and

more familiar polynomial form.

Definition 2.4 (β–null Harris recurrence). The chain (Xi) is β–null recurrent

if there exists a small non–negative function f , an initial measure λ, a constant

0 < β ≤ 1 and a slowly varying at infinity3 function Lf such that

Eλ

[
n∑

i=0

f(Xi)

]
∼ 1

Γ(1 + β)
nβLf (n) for n −→∞ , (2.4)

where Eλ denotes the conditional expectation given that the initial distribution of

X0 is λ.

Note that β is a global parameter characterizing the type of nonstationarity of

the chain (Xi). In particular it is not specific to the choice of the small function

f . This is a simple consequence of Orey’s theorem. A detailed proof is given in

Karlsen and Tjøstheim [2001] Lemma 3.1. In practice, β–null Harris recurrence

does not appear to be a severe constraint, since examples of Harris recurrent but

not β–null Harris recurrent processes are still to be found (See Chen [2000] and

Darling and Kac [1957]). But the gain of the assumption is substantial. For a small

set C and a β–null Harris recurrent chain, we have the asymptotic equivalence

Eλ(T (n)) � Eλ(TC(n)) � nβL(n) , (2.5)

3A function L is slowly varying at infinity if limλ→∞
L(λx)
L(λ) = 1 for all x
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with f = 1C in the above definition. Thus effective sample sizes in estimation

are on average of order nβL(n). Furthermore β–null Harris recurrence allows to

capture the entire degree of nonstationarity in a single parameter 0 < β ≤ 1,

where β decreases with increasing nonstationarity of the process. If a process is

stationary or positive recurrent, β is 1, for a univariate random walk β is 1/2,

and for two independent random walks the compound β is zero (See Kallianpur

and Robbins [1954] and Resnick and Greenwood [1979]). In any higher dimension

d ≥ 2 a random walk is transient.

Assuming β–null Harris recurrence restricts the tail behavior of the recurrence

time of the process to be a regular varying function. Therefore β–null Harris

recurrence can be equivalently defined as below.

Definition 2.5. Let τ0 be the recurrence time of the process X. Then X is β–null

Harris recurrent if

Pλ (τ0 > n) =
1

Γ(1− β)nβLs(n)
(1 + o(1)) , (2.6)

where Ls is a slowly varying at infinity function depending on s, the function part

of the atom kernel in (A.1). The initial measure λ is a dirac point mass at an

arbitrary point of regeneration X0 = x.

Furthermore if (2.6) holds, then it is:

sup (p ≥ 0 : Eλτ
p
0 < ∞) = β , (2.7)

with λ as in (2.6). This is an easy consequence of the definition above (See Proof

of Lemma 3.4. in Karlsen and Tjøstheim [2001]). Thus other than for β = 1,

the expectation of the recurrence time is not finite. Though generally for p small

enough, Eλτ
p
0 is finite.

If the tail of the recurrence time is a regular varying at infinity function fulfilling

(2.6), this implies the recurrence time process to be a stable increasing process

with index β. Inversion yields the asymptotic distribution of T (n). Höpfner and

Löcherbach [2000] show, if X is β–null Harris recurrent, we have the asymptotic

distribution

T (n)
D−−→ nβL(n) gβ (2.8)
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where gβ is distributed according to a Mittag–Leffler distribution Mβ. The dis-

tribution family Mβ generalizes the exponential distribution and is discussed in

detail e.g. in Jayakumar and Suresh [2003]. Thus according to the split chain con-

siderations before, it is not surprising that additive functionals of β–null Harris

recurrent processes converge to Brownian motion subject to an independent time

change according to Mβ (See (A.10) and Höpfner and Löcherbach [2000]).

Examples. Besides the random walk up to dimension two, the class of β–null

Harris recurrent processes contains other important classes of processes. Lin-

ear stationary ARMA and but also ARIMA models fit into the framework. But

also nonlinear autoregressive time series are β–null Harris recurrent under certain

conditions (See e.g. example 3.1 in Karlsen and Tjøstheim [2001] for a specific

case). Furthermore long memory models like all types of fractionally integrated

ARFIMA(d) models are contained, irrespective of if they are stationary or nonsta-

tionary, i.e. d ∈ [0, 1] is admissible (see Wang and Phillips [2006]). And general

infinitely divisible processes like α–stable processes for 1 < α ≤ 2 and dimension

less or equal than α, are β–null Harris recurrent with β = 1− 1
α

(See Sato [1999]).

These include α–stable processes with fat tails and thus infinite variance but finite

mean plus Brownian motion. Certain Feller processes as generalizations thereof

are also in the considered class (See Schilling [1998]). Another β–null Harris re-

current class of processes of interest for modeling exchange rates or real prices in

bubble periods is given by

Xt = 1{|Xt−1|≤M}g(Xt−1) + 1{|Xt−1|>M}Xt−1 + et (2.9)

for some finite M > 0 and some measurable function g finite on |x| ≤ M . This

process behaves like a random walk for large Xt’s. Furthermore mean reverting

processes like the Ornstein–Uhlenbeck process dXt = −aXt dt+ dWt for a ≥ 0 are

β–null Harris recurrent. Conditions on diffusion models satisfying β–null Harris

recurrence are discussed in Höpfner and Löcherbach [2000], Examples 3.5. and

Bandi and Phillips [2004]. Other examples of β–null recurrent processes are the

first order threshold model studied in Meyn and Tweedie [1993], page 503ff and

the exponential autoregressive process looked at in Cline and Pu [1999].



2.1 Motivation, Intuition and Some Notation 19

Remarks. Like for standard α–mixing, also β–null Harris recurrence is hard to

test for formally. Though as common in time series analysis some plausibility

checks, e.g. for no trend, might undermine that β–null Harris recurrence is an

appropriate framework for given observations. But essentially it has to be assumed

as the minimal abstract framework for nonparametric kernel estimation. Though

within the class of β–null Harris recurrent processes, it might sometimes be of

interest to determine the type of nonstationarity β from the data. A direct way

to estimate β can be derived from the asymptotic equivalence (2.8). For Feller

processes, small sets are compact. Thus setting

β̂ =
ln(TC(n))

ln(n)

with C small yields a strongly consistent estimator (See Karlsen and Tjøstheim

[1998] Lemma 3.1 for a proof). The rate of convergence, however, is quite slow

requiring large finite sample sizes for meaningful results. Furthermore according

to (2.8), the asymptotic distribution is of log–transformed Mittag–Leffler type

Mβ depending on the estimated parameter of interest β. Alternatively, since β

is the polynomial order of a regular varying function for some tail distribution, a

standard Hill estimator (see Hill [1975]) may be applied to estimate β. However, as

in its usual domain of application extreme value theory, convergence is extremely

slow. This is not improved by the fact that for n observations (Yi, Xi) there are

effectively only TC(n) ' nβL(n) observations for the recurrence time process. Thus

unless sample size is huge, such attempts might be of limited practical use. As a

third way to estimate β, an empirical version of the expectation in (2.7) could be

checked for finiteness with varying values of p.

It should be noted here, that in our estimation methods and their asymptotic

expansions in Chapter 3 and 4, the parameter of nonstationarity β does not enter

results explicitly. It only appears in the asymptotic choice of bandwidth. But in

finite samples, a local choice of bandwidth might be more favorable anyway which

requires no pre–knowledge of β (See Chapter 5 for details).
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2.1.3 Nonparametric Curse of Dimensionality

As seen in the examples above and in general, with an increasing number of co-

variates, the compound process becomes transient and is very unlikely to fit the

framework of Harris recurrence for d ≥ 2. Hence in these cases the existing results

of Karlsen and Tjøstheim [2001], Karlsen et al. [2007] and Moloche [2001] can no

longer be applied and there is no existing method of estimation. So in contrast

to the standard curse of dimensionality in nonparametric estimation, this second

nonstationary curse of dimensionality does not only deteriorate the performance

of nonparametric estimation but does in fact prevent any estimation at all for high

dimensional problems. Why local smoothing techniques suffer from the standard

curse of dimensionality can be illustratively explained. When increasing the di-

mensionality of the problem, the kernel windows must be made wider to offset

the exponentially sparser density of the data points. This causes slower rates of

convergence with increasing d. The nonstationary more severe curse of dimension-

ality, however, is due to generality in the type of underlying data and not a result

of the generality in the applied method of estimation. When adding degrees of

freedom by increasing dimensionality for a process without a fixed stationary law,

the process can cluster for a very long time in a specific region of the space while

leaving others more or less empty. Thus for very low dimensions already, regener-

ation can no longer be guaranteed almost surely. Thus β–null Harris recurrence

cannot be fulfilled anymore. While the standard curse of dimensionality can be

circumvented by restricting the structural model class as additive, dealing with the

nonstationary curse of dimensionality is rather new to the econometric time series

literature. In order to countervail the nonparametric curse of dimensionality, an

estimation method should avoid full–dimensional objects. If it is solely built of

one–and two dimensional marginal objects, we only need β–null Harris recurrence

in these components which is by far less restrictive than requiring β–null Harris

recurrence for the full dimensional vector of covariates. This is why pairwise β–null

Harris recurrence plays an important role in Chapter 3 and 4.
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2.2 Nonparametric Kernel Estimators and Pecu-

liarities for Nonstationary Data

When observing a multivariate nonstationary process X on a fixed bounded set

G, available data points of different marginal component processes within G are

generally different - in particular the amount of data points and the actual elements

differ asymptotically depending on the type of nonstationarity of the marginal

processes. Set

Jj =
{
i ∈ {1, . . . , n} |Xj

i ∈ Gj

}
and Jjk =

{
i ∈ {1, . . . , n} |Xjk

i ∈ Gjk

}
(2.10)

and Jf analogously for the full dimensional process X ∈ G. Then in general

|Jf | ≤ |Jjk| ≤ |Jj| ≤ n and Jj 6= Jk and Jjk 6= Jjk′ for j 6= k 6= k′. Thus the

amount of data points decreases with increasing dimension and when a Xjk
i is in

Gjk for i ∈ Jjk this does not at all imply that also Xjl
i is in Gjl for i ∈ Jjk. This

will be important for balancing bias terms in the generalized backfitting procedure

presented later on. See Figure A.1 in the Appendix for an illustration. Generally

we aim to choose G large enough – in applications containing as much of the

empirical support as possible. If βj = βk, then it is asymptotically |Jj| � |Jk| if Gj

and Gk are small. Actual elements of |Jj| and |Jk|, however might in general not

coincide. If types of nonstationarities differ, not even the amount of observations

will asymptotically be the same. In a stationary setting such complication does not

arise since asymptotically speeds for different components are all of the same order

n. Hence there it is not problematic to use the index set of the full dimensional

process X for all marginal component processes. In our setting this is generally too

restrictive as will be explained below. Denote nj = T j
Gj

(n) = |J j| and njk and nf

analogously. If Gj is small for Xj, then nj � nβj
asymptotically and πj(1Gj

) < ∞.

Furthermore for a multivariate β–null Harris recurrent process X on G, the re-

currence frequency can still vary across each univariate component and generally

decreases from univariate to bivariate to multivariate subcomponents. This is even

true if G is small, since only asymptotically TG(n) � nf � T (n) (See (2.3)).Thus

generally, the number of independent blocks of observations and hence the effec-

tive asymptotic samples size varies for each one–dimensional direction and tends
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to infinity at slower rates for higher dimensions (See Subsection 2.1.2 and the

Appendix A.1 for details). Denote by T (n), T j(n) and T jk(n) the number of re-

currence times of the processes X ∈ G, Xj ∈ Gj and Xjk ∈ Gjk. Set (τ j
l )

T j(n)
l=1 the

sequence of recurrence times for the marginal process Xj, and (τ jk
l )

T jk(n)
l=1 for Xjk

and (τ f
l )

T (n)
l=1 for X respectively. Denote τ j

T j(n)+1
= n. Then define the index sets

Ij(X
j) = Jj(X

j) and

Ijk(X
j) =

T jk(n)⋃
l=1

{
i ∈ Jjk|τ jk

l = τ j
η ≤ i ≤ τ j

η+1 ≤ τ jk
l+1, for the smallest η ≥ l

}
If (X

j) =

T (n)⋃
l=1

{
i ∈ Jf |τ f

l = τ j
η ≤ i ≤ τ j

η+1 ≤ τ f
l+1, for the smallest η ≥ l

}
(2.11)

While the formal definitions look quite complicated, the main points are illustrated

in Figure 2.1. If type of index set and type of process coincide, the definition of

the index sets keeps all observations. Thus for Xj the index set Ij comprises all

observations i = 1, . . . , nj. Tough if the types do not match, some observations

might be omitted for coordinating speeds among the involved dimensions. In

summations the involved processes for the index set appear as summands - thus

for ease of notion we can leave them out in the following. Generally for a fixed

process Xj it is If ⊆ Ijk ⊆ Ij, and Ij 6= Ik and Ijk 6= Ijk′ for j 6= k 6= k′. If

βj = βk, then it is asymptotically |Ij| = |Ik|. Since in practice recurrence times

are not observable, operationalize the choice of index sets by the asymptotically

equivalent hitting times T j
Cj

(n) for a small set Cj ⊆ Gj. Then T j
Cj

(n) � T j(n)

asymptotically. The same holds for all other directions and dimensions. If G is

small for X then any of its coordinatewise projections Gf
j or Gf

jk are small for

respective component directions and generally Gf
j ⊆ Gj. If we choose G according

to the data, the easiest choice is according to the full dimensional X

Gf = Gf
1 ⊗ . . .⊗ Gf

d . (2.12)

Selecting G is a tradeoff: Choose it big enough not to miss many observations,

choose it small enough such that still πj(1Gj
) < ∞. In the sequel, there will be

the prominent case, where only pairwise properties between covariates are used
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Figure 2.1: The schematic figure shows time points of observations in Gjk or any

of its coordinatewise projections, marked by bars for the univariate marginal pro-

cesses on the axis, for the bivariate process on the diagonal. Thus on all axes they

mark the index set Jjk. Points of recurrence for the respective process are marked

with colored circles. Then observations in the shaded regions comprise the index

set Ijk in the respective direction. And numbered braces denote the number of

independent blocks.
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and known. For generalized smooth backfitting we work with only pairwise β–null

Harris recurrent processes, where recurrence of higher dimensional components of

or the full covariate vector is generally not the case. For this, we need to work in

pairwise adapted sets for each j = 1, . . . , d

G(j) = G(j)
1 ⊗ . . .⊗ G(j)

j−1 ⊗ Gj ⊗ G(j)
j+1 ⊗ . . .⊗ G(j)

d , (2.13)

where Gjk is chosen according to Xjk, and G(j)
k is its coordinate projection in

direction k on Gk with k 6= j. Set Gjk = G(j)
k = Gj for j = k. Here the scaling

occurs according to the highest dimensional available object where the amount of

data grows to infinity with increasing sample size. A full dimensional G with this

property is in this general setting not available.

The basic underlying estimation technique will be kernel smoothing with product

kernels. Denote

Kh (Xi − x) =
1

hd

d∏
j=1

K

(
Xj

i − xj

h

)
(2.14)

where Xi = (X1
i , . . . , Xd

i ) and K is a standard kernel function. The bandwidth h

depends on the recurrence frequency of X. It is generally larger than the marginal

bandwidth choices hj for Xj. Due to possible different recurrence structures, not

only each univariate direction has in general a different bandwidth hj 6= hk for

j 6= k, but also bivariate and higher components need special bandwidth choices

different from the usual product of involved single dimensional bandwidths i.e.,

hjk 6= hjhk in general.

Assumption 2.1. 1. The univariate kernel K is symmetric about 0 and

bounded. It has compact support on Sj = [−cj, cj] with Sj ⊆ Gj. So

the Kernel can in fact depend on j, which, however, will subsequently be

suppressed in notation.

2. Furthermore K as well as K(u) ·uk has to be Lipschitz-continuous for any x

and any power k < 2p + 1 with Lipschitz constant L > 0, where p indicates

the number of partial derivatives possible for the conditional mean function

m.



2.2 Nonparametric Kernel Estimators 25

Since for general β–Harris recurrent processes no such thing as a stationary den-

sity exists, kernel density estimators converge to the corresponding more general

object, the density of the invariant measure under suitable assumptions (See The-

orem 5.1. Karlsen and Tjøstheim [2001] for exact conditions). In this sense the

unique invariant measure serves as a generalization of a stationary distribution.

Following the reasoning in the previous section, the appropriate scaling of the

usual marginal kernel density estimator π̂j(x
j) has to be slightly modified. Paying

for the potentially nonstationary character of the marginal process Xj, the appro-

priate scaling in contrast to the usual kernel density estimate is to be adaptively

stochastic by the number of effective iid observations, thus by the number of regen-

erations (T j(n))
−1

instead of the usual (n)−1. For β–Harris recurrent processes the

usual law of large numbers cannot hold anymore, but there exists a more general

analogue in the quotient limit theorem (A.11), which guarantees convergence of a

quotient of two stochastic components under quite general assumptions.

Kernel density and conditional mean estimators are defined on Gj, Gjk or Gf

bounded as

π̂(x) =
1

T (nf )

∑
i∈If

Kh(Xi − x) (2.15)

π̂j(x
j) =

1

T j(nj)

∑
i∈Ij

Khj
(Xj

i − xj) (2.16)

m̂j(x
j) =

∑
i∈Ij

Khj
(Xj

i − xj)Yi∑
i∈Ij

Khj
(Xj

i − xj)
=

1

T j(nj)
·
∑

i∈Ij
Khj

(Xj
i − xj)Yi

π̂j(xj)
,(2.17)

where the norming function depends on the recurrence frequency of the respec-

tive processes. The above definitions can be operationalized according to (2.2)

with appropriate small sets. In the univariate case the numerator of the kernel

density estimator (2.16) can be regarded as a local time estimator. In higher

dimensions local time does not exist any more, but the numerator can still be

interpreted as an occupation time like object (see [Phillips and Park, 1998]).

Thus occupation time quantities are defined as L̂j(x
j) =

∑
i∈Ij

Kxj ,hj(Xj
i ) and
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L̂jk(x) =
∑

i∈Ijk
Kxjk,hjk

(Xjk
i ). Since it is in general

π
(k)
j (xj) =

∫
G(j)

k

πjk(x
jk)dxk 6= πj(x

j) (2.18)

πf
j (xj) =

∫
G(f)

k

π(x)dx−j 6= πj(x
j) , (2.19)

Define π
(k)
j = πjk = πj for j = k. We also need to introduce

π̂
(k)
j (xj) =

1

T jk(njk)

∑
i∈Ijk

Khjk
(Xj

i − xj) =
L̂

(k)
j (xj)

T jk(njk)
=

∫
G(j)

k

π̂jk(x
jk) dxk (2.20)

m̂
(k)
j (xj) =

∑
i∈Ijk

Khjk
(Xj

i − xj)Yi∑
i∈Ijk

Khjk
(Xj

i − xj)
=

1

T jk(njk)
·
∑

i∈Ijk
Khjk

(Xj
i − xj)Yi

π̂
(k)
j (xj)

=
∑
i∈Ijk

Khjk
(Xj

i − xj)Yi

L̂
(k)
j (xj)

. (2.21)

Set π̂
(k)
j = π̂jk = π̂j for j = k. Analogously derive π̂f

j (xj)) and m̂f
j (x

j) from the

full dimensional process X

π̂f
j (xj)) =

1

T (nf )

∑
i∈If

Kh(X
j
i − xj) =

L̂f
j (x)

T (nf )
=

∫
Gf
−j

π̂f (x) dx−j (2.22)

m̂f
j (x

j) =

∑
i∈If

Kh(X
j
i − xj)Yi∑

i∈If
Kh(X

j
i − xj)

. (2.23)

Note that the nonstationary character for the estimators in (2.20) and (2.21) is

determined by the two–dimensional type βjk. The estimators in (2.20) and (2.21)

have nonstationary type β = βf . Hence in their asymptotic behavior the first bi-

variately governed pair has a univariate rate with bivariate nonstationary character

from the data, i.e. π̂
(k)
j (xj)) − π

(k)
j (xj) = bias + OP ((T jk(njk)hjk)

−1/2) + oP (h2
jk)

where the bias vanishes under suitable technical assumptions with order h2
jk in the

interior (See Karlsen and Tjøstheim [2001]). For (2.20) and (2.21) the statement

holds with nonstationary with rate (T (nf )h)1/2 � (nβ
fh)1/2 and bias of order h2.

For the rest of the paper we will suppress indices in n when appearing in recurrence
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times and hitting numbers of small sets, e.g. we write T j(n) instead T j(nj) for

ease of notation.

As in a stationary setting, since G or all G(j) are bounded, near the boundary of

the support the standard kernel estimator is poor and has considerable boundary

specific bias. This is because the kernel density estimator has no knowledge of

the boundary and may, in general, assign probability mass outside the support.

Therefore we need to slightly modify the usual kernel without harming its essential

nonnegativity. This is common practice in kernel estimation on compact sets. We

introduce the modified kernel

Kv,h(u) =
Kh(u− v)∫

Gj
Kh(w − v)dw

(2.24)

Note that for the use of modified kernels, extra attention has to be paid to the

kernel moments. It is∫
Gj

Kxj ,hj
(uj)duj = 1 for all xj ∈ G̊j

2cjhj
(2.25)

and depends on xj otherwise. Thus the corresponding Kernel constants are defined

as

κl(u) =

∫
Gj

(u− v)l Khj
(u− v)∫

Gj
Khj

(w − v) dw
dv.

Easy calculations show that there are three different cases

κl(u) =


∫
Gj

vlK(v) dv for u ∈ G̊j,2cjhj∫
Gj

vlK(v) dv + O(hj
l+1) for u ∈ ∂Gj,2cjhj

\∂Gj,cjhj∫
Gj

(u− v)lKhj
(u− v) dv + O(hj

l+1) for u ∈ ∂Gj,cjhj

.

From now on denote by G̊j,hj
= G̊j,2cjh the interior of interest and by ∂Gj,hj

=

∂Gj,2cjh. The modified kernels only have an influence at boundary points u ∈
∂Gj,2cjh, where they differ from usual kernel constants. Analogously, kernel con-

stants κ2
l =

∫
Gj

(u − v)l(Khj
(u, v))2 dv are defined. For the rest of this paper all

kernels are modified kernels.
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Chapter 3

Estimation

In this chapter we introduce nonparametric estimation techniques for a structural

additive model (1.1) in a β–null Harris recurrent framework. Countervailing the

standard curse of dimensionality, we impose additivity of the unknown function.

Aiming to circumvent the nonstationary curse of dimensionality, developed esti-

mation techniques are of smooth backfitting type (See Mammen et al. [1999]). The

appropriate estimation method for a given problem must be selected according to

the degree of nonstationarity in the covariate vector and according to how close

the true model is to an additive structural relationship. From standard smooth

backfitting in Section 3.2. to generalized smooth backfitting in Section 3.3 minimal

requirements on the compound covariate process can be relaxed remarkably, but

also the admissible generality in the true model decreases.

3.1 Choice of the Type of Estimation Technique

To overcome the ordinary curse of dimensionality in nonparametric statistics, the

problem is modeled additively. In a usual stationary mixing setting, there are

several kernel based techniques how to fit additive models: classical backfitting in

Buja et al. [1989] and Tibshirani and Hastie [1990], marginal integration by Linton

and Nielsen [1995] and Tjøstheim and Auestad [1994], smooth backfitting by Mam-

men et al. [1999], and the two–step local partitioned regression (LPR) approach by
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Christopeit and Hoderlein [2006]. Though apart from backfitting type estimators,

all other procedures are based on a full–dimensional nonparametric regression pi-

lot estimate. In our setting in particular, this would require the full dimensional

process X to be Harris recurrent, which is generally too restrictive. In contrast and

with hope to countervail the nonparametric course of dimensionality, backfitting

avoids fitting a full dimensional regression estimate. The estimation procedure is

iterative where for classical backfitting in each step only one component is updated

while all others remain fixed. Therefore in fact, only one–dimensional smoothing

is applied. Asymptotic theory for classical backfitting, however, suffers from the

difficulty that the estimate is defined as the limit of the iterative backfitting al-

gorithm for which there is no explicit closed form available. Although Opsomer

and Ruppert [1997] and Opsomer [2000] could show some theoretical results under

restrictive conditions on the design densities, asymptotic inference under general

assumptions is still an open issue. Furthermore classical backfitting fails to reach

the oracle efficiency bound i.e., additive components are not estimated with the

same accuracy as if the other components were known. The bias of one additive

component depends strongly on all other directions. Even some moderate corre-

lation between covariates may cause the estimator to collapse and diverge. And

for classical backfitting to work, rather strong conditions have to be fulfilled. In

total, for general β–null Harris recurrent data, it seems more advisible to chose a

more robust technique as a starting point for estimation.

Smooth backfitting estimates (SBE) are defined as minimizers of a smoothed

least squares criterion. From this, the backfitting iteration algorithm can be de-

rived, according to which the estimates are calculated. Thus asymptotic analysis

is simplified, since the estimate is explicitly defined. In view of Mammen et al.

[2001], the SBE can also be seen as an orthogonal projection of the data vector

onto the space of additive functions. Furthermore, under weak assumptions the

SBE reaches efficiency and is furthermore robust, easy to calculate and fast (see

Mammen and Park [2005], Haag [2006] and Yu et al. [2007]). As with classical

backfitting, the SBE does not need full–dimensional estimates. But in contrast

smoothing occurs with respect to all other covariates resulting in a more robust
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estimator. Therefore it avoids not only the ordinary stationary curse of dimension-

ality but also offers a way to countervail the nonstationary curse of dimensionality.

Since it requires only one and two–dimensional marginal processes to be pairwise

Harris recurrent, a smooth backfitting type estimator appears to be the most suit-

able choice for a recurrent setting.

3.2 Standard Smooth Backfitting for Nonsta-

tionary Covariates

Assume throughout this section that the regression model has additive form as

in (1.1). Furthermore all mentioned densities of invariant measures exist and are

finite on G or any of its subspaces. And the regression functions mj are in the

respective weighted L2
πj

(Gk) spaces.

For all stationary data processes identifiability in population is achieved by∫
Gj

mj(x
j)πj(x

j)dxj = 0 , (3.1)

for all j = 1, . . . , d. In this standard stationary case, the smooth backfitting esti-

mators (SBE) for component functions (m̃0, . . . , m̃d) are then obtained as solutions

of the following system of integral equations

m̃j(x
j) = m̂j(x

j)− m̃0,j −
∑
k 6=j

∫
Gk

m̃k(x
k)

π̂j,k(x
j, xk)

π̂j(xj)
dxk (3.2)

m̃0,j =

∫
Gj

m̂j(x
j)π̂j(x

j)dxj∫
Gj

π̂j(xj)dxj
=

1

n

n∑
i=1

Yi (3.3)

where m̂j is a marginal Nadaraya–Watson pilot estimator as defined in (2.17) and

π̂jk and π̂j are standard Kernel density estimators of the respective stationary

densities. The form of m̃0,j is determined such that (m̃1, . . . , m̃d) satisfy sam-

ple analogue versions of the norming conditions in (3.1). Note that estimates

are obtained from univariate and bivariate quantities only. Contrary to ordinary

backfitting, smooth backfitting involves some additional smoothing which makes
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it more robust. In particular, no restriction on the correlation structure of the

covariates is needed in order to obtain estimates with a well–determined asymp-

totic distribution. In the stationary case, the form of (3.2) can be additionally

motivated via a projection argument as the corresponding first order conditions

for obtaining the best additive fit to the data in a suitably π̂–weighted empirical

L2 norm. Smooth backfitting estimates are the best additive locally weighted least

squares approximation to the data

(m̃j)
d
j=0 = arg min

f0,...,fd

∑
i∈I

∫
G

(
Yi − f̃0 − f̃1(x

1)− . . .− f̃d(x
d)
)2

Kx,h(Xi)dx(3.4)

under the operationalized version of the norming constraint (3.1)

n∑
i=1

∫
Gj

m̃j(x
j)Kxj ,h(X

j
i )) dxj = 0 for j = 1, . . . , d . (3.5)

Solving (3.4) under (3.5) leads to a first order conditions of the following form∑
i∈I

∫
G−j

(
Yi − m̃0 − m̃1(x

1)− . . .− m̃d(x
d)
)
Kx,h(Xi)dx−j = 0 ,

for each component function m̃j, j = 1, . . . , d at xj ∈ G̊j. With this and standard

kernel calculations, the backfitting equations (3.2) are easily derived. Detailed

calculations are shown in Mammen et al. [1999].

In a nonstationary setting, however, generally the number of data points in a

fixed bounded set is of different order for different covariates of different directions

and dimensions. However, if the full–dimensional process X is β–null Harris re-

current, we can restrict the space to Gf and its coordinatewise projections and still

have sufficiently many data points for inference. Then accordingly, all marginal

and estimated objects should be constructed from the scale of corresponding full–

dimensional objects as in (2.22) and (2.23). When replacing π̂j by π̂f
j , π̂jk by π̂f

jk

and m̂j by m̂f
j , we can use standard backfitting (3.2). In this setting, the projection

character remains valid as a projection on the space of functions

Hf =
{

m ∈ L2
π(Gf )| ∃(m1, . . . ,md) ∈ L2

πf
1

(Gf
1 )× . . .× L2

πf
d

(Gf
d ) :

m(x) = m1(x
1) + · · ·+ md(x

d) for all x ∈ Gf
}
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Though it comes at a cost of neglecting a substantial amount of data not in Gf .

Furthermore, we will see, that obtained rates of convergence are slow.

3.3 Generalized Smooth Backfitting (GSBE)

If we weaken the assumption on the covariates to only pairwise pairwise β–null

Harris recurrence, the class of processes admissible for estimation is substantially

larger than the one of full β–null Harris recurrent processes, required for a fully

nonparametric regression or standard smooth backfitting. In order to construct a

general nonparametric backfitting type procedure, (3.2) shows that β–null Harris

recurrence must at least hold for all two–dimensional components. While for all

classes of γ–wise β–null Harris recurrent processes with 2 ≤ γ ≤ d a smooth

backfitting procedure can be introduced, the weakest and most general setting

of γ = 2, pairwise β–null Harris recurrence, is the most interesting setting and

deserves the main focus.

3.3.1 Generalized Smooth Backfitting for at least Pairwise

β–null Harris Recurrent Covariates

Under pairwise β–null Harris recurrence, only univariate and bivariate components

have an invariant measure, higher dimensional objects are generally not recurrent

anymore. In order to obtain smooth backfitting type estimates in this setting, we

take a corresponding suitable adaptation of the defining integral equations (3.2)

as starting point. Then the generalized smooth backfitting estimates (m̃j)
d
j=1 are

defined as solutions to

m̃j(x
j) =

∑
k 6=j

(
1

d− 1

(
m̂

(k)
j (xj)− m̃

(k)
0,j

)
−
∫
G(j)

k

m̃k(x
k)

π̂j,k(x
j, xk)

π̂
(k)
j (xj)

dxk

)
(3.6)

m̃
(k)
0,j =

∫
Gj

m̂
(k)
j (xj)π̂

(k)
j (xj)dxj =

1

T jk(n)

∑
i∈Ijk

Yi (3.7)

where π̂
(k)
j , m̂

(k)
j and π̂j,k have the same type of nonstationarity βjk and therefore

the same bandwidth and speed of convergence as defined in (2.20), (2.21) and in
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the bivariate jk version of (2.16). For component j, the estimation relevant region

is G(j), the product of coordinatewise projections of relevant pairs, defined in (2.13)

which might be different for each j. For any k 6= j it still is m̂
(k)
j (xj)

P→ mj(x
j)

under suitable additional assumptions with speed of bivariate nonstationary type

(nβjkh)−1/2. The matching norming conditions in population are∑
k 6=j

∫
Gj

mj(x
j)π

(k)
j (xj)dxj = 0 , (3.8)

for all j = 1, . . . , d. Since the estimator is constructed on the basis of pairwise

data, the asymptotic results will confirm the intuition that bivariate types of non-

stationarity govern the large sample behavior. Therefore speeds of convergence

are significantly faster then in the standard backfitting case. But in general on the

other hand, generalized smooth backfitting estimates can no longer yield the best

overall additive fit as obtained from (3.4). Since recurrence is only guaranteed for

only univariate and bivariate components, the projection character of SBE can

only prevail in a weakened pairwise sense. This is not a deficit of the estimator

but due to the difficulty of the underlying data. Therefore the underlying model

must truly at least be additive in pairs of components, i.e. of the form

Yi =
∑
j 6=k

mjk(X
jk
i ) + εi , (3.9)

for SBE to still yield a sensible approximation to the truth. Then SBE produces the

best pairwise additive approximation to (3.9) for each component j by projecting

orthogonally via

[µk|jmjk](x
j) =

∫
G(j)

k

mjk(x
jk)

πjk(x
jk)

π
(k)
j (xj)

dxk , (3.10)

for j 6= k on

Hjk =

{
m ∈ L2

πjk
(Gjk)| ∃(mj, mk) ∈ L2

π
(k)
j

(G(k)
j )× L2

π
(j)
k

(G(j)
k ) :

m(x) = mj(x
j) + mk(x

k) for all x ∈ Gjk

}
(3.11)
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for each k, where in the case k = j it is Hjj = Hj = L2
πj

(Gj), and adding up the

results. The corresponding system of population equations to this approximation

are for j = 1, . . . , d

E(Yi|Xj
i ) = mj(X

j
i ) +

∑
k 6=j

E(mjk(X
jk
i )|Xj

i ) . (3.12)

Therefore, since a best fit is merely achieved in a pairwise sense (3.10), in general,

correlation structures beyond pairwise correlation cannot be captured within the

estimation procedure and must be regulated through additional assumptions. If

all regressors are stationary, (3.6) reduces to (3.2) and the norming constraint (3.8)

to (3.1). Thus standard smooth backfitting equations are a subcase of generalized

smooth backfitting.

We obtain the backfitting estimates as solution to (3.6) via iteration. Start at

an arbitrary initial guess m̃
[0]
j , e.g. the Nadaraya–Watson estimator m̃

[0]
j = m̂j.

Then denote the rth step iterate of the jth component with m̃
[r]
j . Hence iterate

according to

m̃
[r]
j (xj) =

1

d− 1

∑
k 6=j

(
m̂

(k)
j (xj)− m̃

(k)
0,j

)
−
∑
k<j

∫
G(j)

k

m̃
[r]
k (xk)

π̂j,k(x
j, xk)

π̂
(k)
j (xj)

dxk −

−
∑
k>j

∫
G(j)

k

m̃
[r−1]
k (xk)

π̂j,k(x
j, xk)

π̂
(k)
j (xj)

dxk (3.13)

until a convergence criterion is fulfilled. In the simulation study we employ a

standard quotient condition for termination.

Note that
∑

k 6=j m̃
(k)
0,j is only different from zero, when the norming condition

(3.8) is violated. If we set directly

m0 =
d∑

j=1

1

d− 1

∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Yi , (3.14)

an appropriate sample mean type expression, the centering term m̃
(k)
0,j can be omit-

ted from the algorithm.
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Remarks. The last equation of (3.2) is only correct on the entire support G(j)

for boundary modified kernels (2.24). If standard kernels are used instead, then

the equation still yields the true solution in the interior G̊, but on the boundary,

relation (2.20) does not hold any more. Instead of using boundary modified ker-

nels, we can also directly generalize the defining backfitting equations for standard

kernels

m̃j(x
j) =

∑
k 6=j

(
1

d− 1

(
m̂

(k)
j (xj)− m̃

(k)
0,j

)
−
∫
G(j)

k

m̃k(x
k)

[
π̂j,k(x

j, xk)

π̂
(k)
j (xj)

− π̂k,[j+](x
k)

]
dxk

)

with

π̂k,[j+](x
k) =

∫
Gj

π̂j,k(x
j, xk)dxj∫

Gj
π̂

(k)
j (xj)dxj

and m̃
(k)
0,j =

∫
Gj

m̂
(k)
j (xj)π̂

(k)
j (xj)dxj∫

Gj
π̂

(k)
j (xj)dxj

. (3.15)

For boundary modified kernels and in the interior, the boundary adaptation

π̂k,[j+](x
k) yields zero contribution in the algorithm due to the norming constraint

(3.8) and can be omitted as in (3.6).

If the compact set G(j) is not a rectangle, relation (2.20) is not fulfilled. Therefore

for generally shaped G(j), the algorithm still works if the norming condition (3.8)

is applied after each iteration step. While convergence can still be achieved, the

bias behavior, however, is nonstandard and not even determined in the stationary

setting. Therefore G(j) is assumed to be rectangular throughout the paper.

3.3.2 Adapted Generalized Smooth Backfitting for at least

γ–wise β–null Harris Recurrent Covariates

Although the extreme cases of full β–null Harris recurrence and pairwise β–null

Harris recurrence are of main practical interest, intermediate cases of γ–wise β–

null Harris recurrence provide useful insight and complete the picture. Define γ

as the maximal number of components in the covariate vector X, such that all
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possible permutations of γ dimensional compound component processes are still

β–null Harris recurrent. Assume we have a γ–wise β–null Harris recurrent process.

If the process is fully β–null Harris recurrent, we have γ = d, if it is only pairwise

β–null Harris recurrent, it is γ = 2. Intermediate cases have 2 < γ < d. In order

to treat all these cases simultaneously, we need to introduce some notation. Set

κ as multiindex in Rd with κl ∈ {0, 1} for all l = 1, . . . , d and |κ| =
∑d

l=1 κl = γ,

indicating the dimensions involved by 1 and dimensions left out by 0, where there

always are γ dimensions involved. Furthermore put

λ(κ) = {l|κl = 1, l = 1, . . . , d} , (3.16)

and λj(κ) = {l|κj = 1 and κl = 1, l ∈ {1, . . . , d} \ {j}} and λjk =

{l|κjk = 1 and κl = 1, l ∈ {1, . . . , d} \ {j, k}}. When projecting a function

mk ∈ L2
πk

(Gk) on L2
πj

(Gj), for nonstationary data with γ–wise β–null Harris

recurrence, an orthogonal projection in the appropriate conditional expectation

sense looks like [µ
(λjk)

k|j mk](x
j) =

∫
mk(x

k)
π

(λjk)

jk (xjk)

π
(λj)

j (xj)
dxk. Though for γ > 2 there

are
(

d
γ−2

)
different versions to construct such a projection since then λjk 6= ∅ for

j 6= k. Therefore for each component function generalized smooth backfitting

yields
(

d
γ−2

)
estimates under γ–wise β–null Harris recurrence indexed by λjk

m̃
(λjk)
j (xj) =

∑
k 6=j

(
1

d− 1

(
m̂

(kλjk)
j (xj)− m̃

(kλjk)
0,j

)
(3.17)

−
∫
G

(jλjk)

k

m̃
(λjk)

k (xk)
π̂

(λjk)

j,k (xj, xk)

π̂
(kλjk)
j (xj)

dxk

)

m̃
(kλjk)
0,j =

∫
G

(λjk)

j

m̂
(kλjk)
j (xj)π̂

(k)
j (xj)dxj =

1

T jkλjk(n)

∑
i∈Ijkλjk

Yi .

To obtain a single final estimate take the pointwise arithmetic mean or median of

(m̃
(λjk)
j )λjk for each component j. The matching norming conditions in population

are ∑
k 6=j

∫
Gj

mj(x
j)π

(kλjk)
j (xj)dxj = 0 , (3.18)
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for all j = 1, . . . , d. If all regressors are stationary, (3.17) reduces to (3.2) and the

norming constraint (3.18) to (3.1). Thus ordinary backfitting is also a subcase of

generalized backfitting under γ–wise β–null Harris recurrence .

Under γ–wise β–null Harris recurrence , the data allows to control correlation

structures up to order γ within the SBE procedure as defined in (3.17). Thus

if the underlying covariates show a “nicer” nonstationary behavior than in the

pairwise β–null Harris recurrent case, we need less extra assumptions to regulate

higher order correlation structures. Furthermore the underlying model can be

more general than (3.9). In fact, (3.17) yields a sensible additive approximation

for γ–wise additive functions. In population for j = 1, . . . , d this corresponds to

E(Yi|Xj
i ) = mj(X

j
i ) +

∑
k 6=j

E(mjkλjk
(X

jkλjk

i )|Xj
i ) . (3.19)



Chapter 4

Asymptotic Results

In this chapter the main asymptotic results are stated. The focus is on the prac-

tically most interesting extreme cases: smooth backfitting for a full–dimensional

β–null Harris recurrent vector of covariates and generalized smooth backfitting for

at least pairwise β–null Harris recurrent regressors. In a nonstationary setting,

generally the difficulty of the problem with different data for different directions

and dimensions will affect the result through the type of β to which the backfitting

estimation technique is scaled, while keeping the univariate structure in rates and

variances as in stationary smooth backfitting. From the construction of generalized

smooth backfitting, it is clear that we cannot do better in terms of data and thus

in type of nonstationarity than in the worst bivariate case. For standard smooth

backfitting even the generally much smaller and thus less favorable full dimensional

type of nonstationarity β governs procedure and results. Therefore, although rates

and variances have the form as for one–dimensional marginal smoothers, generally

we cannot expect full oracle behavior of the estimates as in the stationary case.

For a true additive model, the asymptotic expansion of GSBE in Section 4.2 is

obtained under the weakest assumptions and yields the most efficient results in an

oracle sense even if covariates are γ–wise β–null Harris recurrent with 2 < γ ≤ d.

Asymptotic results for the generalized smooth backfitting adapted to γ–wise β–

null Harris recurrence are mentioned for completeness in the Section Extensions.

Here we study how more information about the type of underlying data, can im-
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prove efficiency of the estimation procedure. Of practical interest is in particular

a tailored procedure for covariates with known stationary and nonstationary com-

ponents which has nice small sample properties. For all proofs we refer to the

Appendix.

4.1 Standard Smooth Backfitting for Nonsta-

tionary Covariates

In this subsection we present the base case scenario when the full process is β–

null Harris recurrent. In this class of processes we can obtain asymptotic results

without further restrictions on the dependence structure among the covariates or

for the estimated functions in a nonstationary framework. Furthermore even if

the underlying model is not additive, it yields the best additive fit. However,

when requiring β–null Harris recurrence for full X, only the standard curse of

dimensionality is reduced, while the nonstationary curse of dimensionality remains

the same as for standard regression with non–additive m.

Assumption 4.1. Let X be an irreducible aperiodic Markov chain, which is β–

Harris recurrent of type β. The invariant measure π has a Radon–Nikodym deriva-

tive with respect to Lebesgue measure which is finite on G = Gf . The invariant

density π is bounded and has continuous second partial derivatives. Furthermore

π is bounded away from zero.

Note that πf (G) < ∞ is obtained if G is small for X. Therefore in general, the

choice of G is difficult, since size and form of G is determined by the process X.

Though if X is Feller, any compact G is small.

Under Assumption 4.1, we can construct all relevant objects according to the full

dimensional process as in (2.11),(2.12), (2.22), and (2.23). Thus in this setting,

when replacing π̂j by π̂f
j , π̂jk by π̂f

jk and m̂j by m̂f
j , standard smooth backfitting

algorithm from (3.2) does not need any modification to directly be a sequence

of iterated projections. The generalized smooth backfitting reduces to standard

smooth backfitting. With this procedure, however, we can only manage to reduce
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the standard stationary type curse of dimensionality, whereas the nonparamet-

ric curse of dimensionality remains untouched. This is intuitively clear, when we

restrict all marginal univariate and bivariate processes to the full dimensional com-

mon set of data Gf and all estimators have the same but full dimensional type of

nonstationarity β. Therefore the speed of convergence for the smooth backfitting

estimator is governed by the occupation time L̂f
xj ,h

for the full dimensional process.

Other than for stationary data, this implies that through the standardization with

X we might lose a substantial amount of data for univariate and bivariate compo-

nents. Therefore the procedure cannot be oracle as soon as one of the covariates

is nonstationary.

For identification of the estimation problem (3.2) the dependence structure be-

tween regressors X and the residual ε must be restricted. In our general poten-

tially nonstationary setting usual conditional independence assumptions only have

a meaning with respect to an appropriate invariant measure. Furthermore to have

a controllable asymptotic behavior of estimators, the compound chain (X, ε) on

G × G0 must satisfy certain assumptions.

Assumption 4.2.

1. The compound chain (X, ε) is a φ–irreducible β–null Harris recurrent Markov

chain with transition probability operator P and density πfε of the invariant

measure, where πε
f (x) =

∫
G0

πfε(x, ε) dε > 0 for all x ∈ G and πε
f (G) < ∞.

2. µε|f (x) = 0 and σ2
ε|f (x) < ∞ for all x ∈ G, where both quantities are de-

fined with respect to invariant measures µε|f (x) =
∫

ε
πfε(x,ε)

πε
f (x)

dε and σ2
ε|f (x) =∫

ε2 πfε(x,ε)

πε
f (x)

dε.

3. The marginal transition probability operator Px of X is independent of any

initial distribution. And for sets Ah ∈ B∞(Rd+1) with limh→0 Ah = ∅ it is for

the compound transition probability lim supξ→x limh→0

∫
P ((ξ, ε), Ah) |ε| dε =

0 for all x ∈ G.

4. ε has bounded support G0 and the set Ḡ ⊗ G0 is small for (X, ε), where G is

defined as inth(Ḡ) = G.
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5. The second partial derivatives of the function m exist and are Lipschitz con-

tinuous.

Finiteness of the measure πε
f on G in Assumption 4.2.1 implies that the asymp-

totic behavior of the compound process (X, ε) is dominated by the β–null structure

of the X component (see Karlsen et al. [2007], Lemma 6.1.). It is πf (x) = c πε
f (x)

with c constant. Thus πε
f also inherits differentiability properties of πf from As-

sumption 4.1. In Assumption 4.2.2 the identifying conditional independence cri-

terion is specified. All subsequent assumptions are needed to control the asymp-

totic behavior of the compound chain. Assumption 4.2.3 states a local uniform

continuity assumption on the transition probability operator P , which allows to

control and simplify the variance part in the smoothing as shown in Lemma 5.1. in

Karlsen and Tjøstheim [2001]. All these assumptions 4.2.1 - 4.2.3 can be regarded

as somehow natural and/or minor technical restrictions. In contrast, however,

Assumptions 4.2.4 might appear artificial and technical. Smallness, however, is

crucial for controlling stochastic terms of the form fx(Xi, εi) = Kh,x(Xi)εi for

x ∈ Gf in the estimators. Under Assumption 2.1 on the smoothness of the kernel,

f is in particular bounded and therefore small and thus special (see Proposition

5.13. in Nummelin [1984]). This implies

sup
y∈G×G0

Ey

τ∑
i=1

Kh,x(Xi)εi < ∞ for all x ∈ G . (4.1)

With Assumption 3.5 also f̃x(Xi) = Kh,x(Xi)m(Xi) is special for each x ∈ G and

fulfills (4.1). Note, that weakening the condition towards unbounded support and

subexponential tails is not admissible, as trimming techniques in the proofs would

fail. Compare that in Karlsen et al. [2007] equivalent pointwise conditions were

needed to obtain central limit theorems in such a general framework.

Remark 4.1. Note that Assumptions 4.2 only require a conditional independence

condition with respect to invariant measures. Thus short term dependence between

residual and covariates is admissible as long as it vanishes asymptotically. This is

a much weaker requirement than full independence (see Examples 6.1. and 6.2. in



4.1 Standard Smooth Backfitting for Nonstationary Covariates 43

Karlsen et al. [2007] for examples of asymptotically but not fully independent resid-

uals). Thus in Econometric terms, we can identify the model under endogeneity.

The problem remains well–posed as long as dependence vanishes asymptotically.

This is opposed to results in the iid case, where any form of endogeneity directly

leads to ill–posedness of the problem requiring regularization methods and thus

a yielding severely deteriorated small sample behavior (compare Carrasco et al.

[2003]).

If ε is ergodic and fully independent of X, we can omit the boundedness and

smallness assumption. It is of particular interest to have a closer look at models

with ε stationary, since these cases can be regarded as an additive cointegration

type model. The more regularity ε offers, the more familiar turn the conditions

to the stationary case. Under full independence between ε and X, the catalogue

of Assumptions 4.2 simplifies to moment conditions for ε being α–mixing and the

smallness condition can be avoided.

Assumption 4.2*

1. X and ε are independent β–null Harris recurrent Markov chains

2. ε is ergodic strongly α–mixing with mixing rate satisfying
∑

l l
[2/k]∨1αl <

∞, µ(ε) =
∫

επε(ε) dε = 0 and
∫

ε4(k+1)πε(ε) dε < ∞ with k ≥ 1.

3. For sets Ah ∈ B∞(Rd) with limh→0 Ah = ∅ the transition probability of X

fulfills lim supξ→x limh→0 P ((ξ), Ah) = 0 for all x ∈ G.

4. The second partial derivatives of the function m exist and are Lipschitz con-

tinuous.

Remark 4.2. If all moments on the residual process are finite, it is sufficient if

there exists a δ > 0 such that
∑

l α
1−δ
l < ∞ for the mixing coefficients.

Note that in general we need the existence of at least the 8th moment. In the

error term. Though if ε is strictly stationary linear, the moment conditions in

Assumption 4.2* can be relaxed.



44 Chapter 4. Asymptotic Results

Remark 4.3. If ε is strictly stationary linear, it can be written as εi =
∑∞

k=0 akei−k

with coefficients
∑

k |ak| < ∞ and e strictly stationary with Ee0 = 0, Ee4
0 < ∞, and

φ–mixing1 with
∑

l φ
1/2
l < ∞. These conditions can replace Assumption 4.2*.2.

Note that these conditions are trivially fulfilled for ei iid.

We define the Nadaraya-Watson smooth backfitting estimators

m̃j(x
j), j = 1, . . . , d as the iterative solution of the set of equations (3.6)

and the normalization (3.8). With m̃0 = 1
T (n)

∑
i∈I Yi centering can be omitted in

the algorithm. Asymptotic properties of the estimators are stated in the following

theorem.

Theorem 4.1. Let the model be additive as in (1.1) and Assumptions 1-3 hold.

The bandwidth sequence must satisfy n
−(β

4
+ε)

f � h � n
−(β

5
+ε)

f with ε > 0 arbitrarily

small. Then the algorithm (3.13) converges with geometric rate and the smooth

backfitting estimators m̃j(x
j), j = 1, . . . , d have the following asymptotic expansion√

L̂f
j (x

j)h
(
m̃j(x

j)−mj(x
j)−Bj(x

j)
) D−−→ N

(
0, σ2

j (x
j)

κ2
0(x

j)

κ0(xj)2

)
(4.2)

with variance

σ2
j (x

j) =

∫
ε2

πf
jε(x

j, ε)

πfε
j (xj)

dε

and bias consisting of two major parts Bj(x
j) = BA

j (xj) + BB
j (xj). With A the

backfitting operator matrix as in (A.15), the bias parts BA
j (xj) and BB

j (xj) have

the form

BB
j (xj) = h

κ1(x
j)

κ0(xj)
m′

j(x
j)− bj + h2κ2(x

j)

κ0(xj)

(
(I − A)−1B̄

)
(j)

(xj) (4.3)

BA
j (xj) = µf

(jε)

(
Kxj ,h(X)⊗ T fε(n)

L̂f (xj)

)
. (4.4)

Under the stated choice of bandwidth the asymptotic bias BA
j vanishes. For the

deterministic bias BB
j it is bj = oP (h2) in G and B̄(x) = (b̄1(x

1), . . . , b̄d(x
d))T with

1See Hall and Heyde [1980], page 277 for an exact definition of φ–mixing
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component functions b̄j for j ∈ {1, . . . , d} defined by

b̄j(x
j) =

κ2(x
j)

κ0(xj)

(
1

2
m′′

j (x
j) +

m′
j(x

j)

π(x)

∂π(x)

∂xj

)
Remarks. 1. The vector of component estimates (m̃A

1 (x1), . . . , m̃A
d (xd))

converges even jointly to the multivariate normal distribution

N (0, diag(σ1(x
1), . . . , σd(x

d))) with 0 ∈ Rd. Covariances vanish

asymptotically.

2. The unusual restriction from above on the bandwidth is due to the non-

stationarity in the data. With this and Assumption 3.3. about the sec-

ond derivatives, the stochastic bias BA
j vanishes (See Karlsen and Tjøstheim

[2001] Theorem 5.3. and Karlsen et al. [2007] Theorem 5.5.). Furthermore

under the upper bound on the bandwidth it is
√

L̂f
j (x

j)h BB
j (xj) = oP (1)

for all xj, causing the bias to disappear (See Karlsen and Tjøstheim [2001],

proof of Theorem 3.5). Thus the speed of convergence in Theorem 4.1 can

be arbitrarily close to but never attains n−
2
5
β under the stated choice of

bandwidth.

3. The result holds more generally for a model with transformed error term gε(ε)

when replacing ε in Assumption 4.2 by gε(ε) and gε is bounded and L1(R+).

Then Theorem 4.1 holds with asymptotic bias as BA
j (xj) = µ(jε)(Kxj ,h(X)⊗

gε(ε))
T fε(n)

L̂f (xj)
and variance σ2

j (x
j) =

∫
gε(ε)

2 πjε(x
j ,ε)

πε
j (xj)

dε. With considerations in

Karlsen et al. [2007], Section 6.4., and Mammen and Nielsen [2003], results

can be even further extended to models with heteroscedastic error terms.

4. In this setting, the underlying model does not have to be additive. Even if it

is not, (m̃j)
d
j=0 are optimal in the sense of an additive projection on L2

π the

best additive fit.

5. In the special case of one nonstationary regressor and all other regressors

stationary, the nonstationary rate dominates in all component functions.
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The marginal variance σ2
j (x

j) of the jth additive component is exactly the vari-

ance of the one–dimensional smoother. It can also be regarded as the projection

of σ2
ε , the variance of the iid-parts in the ε split chain, onto Xj in the following

sense: E [σ2
ε |Xj = xj].

As in the stationary case, the deterministic bias BB
j of the Nadaraya–Watson

type smooth backfitting estimator consists of three main parts. In addition to

the marginal Nadaraya–Watson bias hκ1(xj)
κ0(xj)

m′
j(x

j) + 1
2
h2 κ2(xj)

κ0(xj)
m′′

j (x
j) there is the

constant shift bj from a difference in population centering as in (3.8) and centering

with the population counterpart. Furthermore there exists a design density de-

pendent part
(
(I − A)−1B̄

)
(j)

(xj). The term bj converges to zero asymptotically

since it holds that∫∫
mj(x

j)πj(u)Kh,xj(u) du dxj

=

∫
uj∈∂Gj

hC1

∫
mj(x

j)πj(x
j)(Kh(x

j, uj)−Kh(x
j − uj)) dxj duj + O(h2) = O(h) .

and the second term is of order O(h2) because κ1(x
j) is zero at interior points

xj. To stress the projection character of b̃j(x
j) = ((I − A)−1B̄)(j)(x

j) with ι =

(1, . . . , 1) ∈ R1×d it is:

(̃b0, b̃1(x
1), . . . , b̃d(x

d)) = arg min
b1,...,bd

∫
(ιB̄(x)− b0 − b1(x

1)− · · · − bd(x
d))2π(x) dx .

The explicit form of the projection part in the deterministic bias BB
j (xj) is

(
(I − A)B̄

)
(j)

(xj) =
1

2
m′′

j (x
j) +

m′
j(x

j)

πj(xj)

∂πj(x
j)

∂xj

+
∑
k 6=j

∫
Gk

(
1

2
m′′(xk) +

m′
j(x

j)

πjk(xjk)

∂πjk(x
jk)

∂xj

)
πjk(x

jk)

πj(xj)
dxk .

In total, the deterministic bias BB
j is of order o(h2) in the interior of the estimated

compact set as in the stationary case. In the stated form above this is not obvious

at first glance. But by symmetry of the kernel, κ1(x
j) is zero for xj ∈ G̊j,h.

Therefore all O(h) terms vanish in the interior.
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It can be shown that h2bj,n = O(1). This is a consequence of the centering

constraint in the algorithm, which causes lower order terms to be zero. This term

is constant over xj and does therefore only affect the level and not the shape

of the estimator. It originates from the fact that the empirical version of the

normalization (3.8) used in the algorithm and the actual theoretical normalization

(3.8) are different in finite samples and only asymptotically equivalent.

The stochastic bias BA
j vanishes with oP (h2) under the stated bandwidth as-

sumptions (See Karlsen et al. [2007]). With stronger independence assumptions

on the error term as below, it can be omitted.

If we enforce the independence assumption between Xj and ε, from conditional

independence to full independence, we can avoid the artificial boundedness and

small set assumption and have more familiar moment conditions. If in addition ε

is assumed to be stationary, also the variance is no longer only a second moment

with respect to an invariant measure but with respect to the stationary density of

ε, hence a “real” variance.

Theorem 4.2. Let the same set of assumptions as in Theorem 4.1 hold, but replace

Assumptions 4.2 by Assumptions 4.2*. Choose the bandwidth as n
−(β

4
+ε)

f � h �

n
−(β

5
+ε)

f with ε > 0 arbitrarily small. Then the algorithm (3.13) converges and we

get the following asymptotic expansion for the smooth backfitting estimates (m̃j)
d
j=1√

L̂f
j (x

j)h
(
m̃j(x

j)−mj(x
j)−BB

j (xj)
) D−−→ N

(
0, σ2

j (x
j)

κ2
0(x

j)

κ0(xj)2

)
(4.5)

with deterministic bias as in 4.3 and variance

σ2
j (x

j) = σ2
j =

∫
ε2πε(ε) dε ,

where πε is the stationary density of ε.

Here the stochastic bias BA
j as in (4.4) is zero under Assumptions 4.2*. The

same result also holds under milder moment conditions as in Assumption 4.2* as

specified in Remark 4.3.
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4.2 GSBE

In the subsection before, we managed to reduce the stationary curse of dimensional-

ity via standard smooth backfitting for the additive model while the nonstationary

curse remained untouched. Therefore the resulting speed of convergence is quite

slow governed by the full dimensional β. The final version of the generalized back-

fitting estimation procedure (3.6), however, contains just one–and two dimensional

marginal components. Thus under some mild additional assumptions, we cannot

only increase the speed of convergence to be of two–dimensional nonstationary β

type, but even more importantly increase the treatable class of processes substan-

tially from full β–null Harris recurrent to just pairwise β–null Harris recurrent

processes. If the underlying model is additive, we derive the asymptotic results.

Naturally, all assumptions are restrictions on pairwise components only.

Assumption 4.3. Let X be an irreducible aperiodic Markov chain. All univariate

possible pairs of bivariate marginal processes Xjk are β–null Harris recurrent with

parameter βjk. Their respective invariant measure has a Radon–Nikodym deriva-

tive πjk with respect to Lebesgue measure. Any bivariate invariant density πjk is

bounded and has continuous second partial derivatives on Gjk. Furthermore any

πjk is bounded away from zero.

Finiteness of bivariate and univariate invariant measures is achieved, if Gjk and

Gj are small. Then for any component j we choose the space composed of pairwise

coordinate projections G(j) as defined in (3.11) as space of estimation.

Please note that theses assumptions do not restrict the pairwise correlation

structure of the covariates. Pairwise β–Harris recurrence does not rule out or re-

strain dependence of regressors. Furthermore, pairwise β–Harris recurrence is truly

weaker than full dimensional β–Harris recurrence. For example, a d–dimensional

vector of random walks is pairwise β–Harris recurrent independent of the correla-

tion structure between the covariates - while it is not fully β–Harris recurrent for

d ≥ 2 unless covariates are substantially correlated.

Identification and asymptotic expansion of generalized smooth backfitting esti-

mates (3.6) can be obtained by the following assumptions.
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Assumption 4.4. For any bivariate marginal process Xjk with j, k = 1, . . . , d we

assume:

1. The compound chain (Xjk, ε) is a φ–irreducible Harris recurrent Markov

chain with transition probability operator Pjkε and density πjkε of the invari-

ant measure, where πε
jk(x

jk) =
∫
G0

πjk,ε(x
jk, ε) dε > 0 for all xjk ∈ Gjk and

πε
jk(Gjk) < ∞

2. µε|jk(x
jk) = 0 and σ2

ε|jk(x
jk) < ∞ for all xjk ∈ Gjk where both quantities are

defined with respect to invariant measures µε|jk(x
jk) =

∫
ε

πjkε(x
jk,ε)

πε
jk(xjk)

dε and

σ2
ε|jk(x

jk) =
∫

ε2 πjkε(x
jk,ε)

πε
jk(xjk)

dε.

3. The marginal transition function Pjk is independent of any initial distribu-

tion. And for sets Ah ∈ B∞(R3) with limh→0 Ah = ∅ it is for the compound

transition probability: limh→0 lim supξ→xjk

∫
P ((ξ, ε), Ah) |ε| dε = 0 for all

xjk ∈ Gjk.

4. ε has bounded support G0 and the set Ḡjk ⊗ G0 is small for (Xjk, ε), where

inth
(
Ḡjk

)
= Gjk.

5. The second partial derivatives of the function m exist and are Lipschitz con-

tinuous.

The same remarks as for Assumption 4.2 apply. In particular Remark 4.1 about

well–posedness of the problem under short–run endogeneity also applies. Further-

more it is also in this general setting of particular interest to have a closer look at

models with ε stationary, since these cases can be regarded as an additive cointe-

gration type model. If ε is α–mixing and independent of each pair of covariates,

identification requirements simplify to moment conditions.

Assumption 4.4*

For every bivariate marginal process Xjk we have:

1. Xjk and ε are independent Harris recurrent Markov chains
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2. ε is ergodic strongly α–mixing with mixing rate satisfying
∑

l l
[2/k]∨1αl <

∞, µ(ε) =
∫

επε(ε) dε = 0 and
∫

ε4(k+1)πε(ε) dε < ∞ with k ≥ 1 .

3. For sets Ah ∈ B∞(R2) with limh→0 Ah = ∅ the transition probability of Xjk

fulfills lim supξ→x limh→0 P ((ξ), Ah) = 0 for all x ∈ Gjk.

4. The second partial derivatives of the function m exist and are Lipschitz con-

tinuous.

If moments of all order exist Remark 4.2 applies also here. Note that in general

we need the existence of at least the 8th moment in the error term. Though if

ε is strictly stationary linear, the moment conditions in Assumption 4.4* can be

relaxed.

Remark 4.4. If ε is strictly stationary linear, it can be written as εi =
∑∞

k=0 akei−k

with coefficients
∑

k |ak| < ∞ and e strictly stationary with Ee0 = 0, Ee4
0 < ∞, and

φ–mixing2 with
∑

l φ
1/2
l < ∞. These conditions can replace Assumption 4.4*.2.

These conditions are trivially fulfilled for ei iid.

Though in contrast to the full dimensional β–null Harris recurrent case, we need

an additional assumption for controlling the bias term in order to reach consistency

of the estimation procedure.

Assumption 4.5. Assume that for all Xjl
i there exists a Xjk

i such that mk(X
k
i ) =

ml(X
l
i) for i ∈ Ijk and j 6= k 6= l.

This implies that on the domain G(j) all component functions must have the same

range. Implicitly, therefore the size of G(j)
k can be restricted to fit Assumption 4.5.

If pairs of covariates are correlated and are close in type of nonstationarity the

requirement is mild. If the model entirely consists of trigonometric component

functions as in the simulation study, Assumption 4.5 is trivially fulfilled. Alter-

natively to Assumption 4.5 in some case as e.g. it might advisible to impose a

parametric restriction on the component functions outside small sets. See Figure

2See Hall and Heyde [1980], page 277 for an exact definition of φ–mixing
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A.1 in the Appendix for a discussion and Subsection A.2.3 for a discussion with

technical details.

For each component function mj it will be the worst case bivariate nonstation-

ary type jk0 dominating the asymptotic behavior. Therefore set βj+ = βjk0 =

mink 6=j βjk, nj+ = njk0 as defined in Section 2.2 and the respective bandwidth hj+

for all j = 1, . . . , d. Then we get the following closed form expansion.

Theorem 4.3. Let the model be additive as in (1.1) fulfilling the centering con-

dition (3.8) and let Assumptions 2.1, 4.3, 4.4, and 4.5 hold. The bandwidth

sequence must satisfy n
−(βj+

4
+ε)

j+ � hj+ � n
−(βj+

5
+ε)

j+ for ε > 0 arbitrarily small.

Then the algorithm (3.13) converges with geometric rate and for the estimators

m̃j(x
j), j = 1, . . . , d we find√

L̂
(k0)
j (xj)hj+

(
m̃j(x

j)−mj(x
j)−Bj(x

j)
) D−−→ N

(
0, σ2

j+(xj)
κ2

0(x
j)

κ0(xj)2

)
(4.6)

with variance

σ2
j+(xj) =

∫
ε2

πk0
jε (xj, ε)

π
(k0)
j (xj)

dε

and bias consisting of two major parts Bj(x
j) = BA

j (xj) + BB
j (xj) with

BB
j (xj) = hj+

κ1(x
j)

κ0(xj)
m′

j(x
j) +

1

2
h2

j+

κ2(x
j)

κ0(xj)
m′′

j (x
j) +

(
(I − A)−1B̄

)
(j)

(xj)− bj,n(4.7)

BA
j (xj) = µ((j+)ε)(Kxj ,h(X)⊗ idε)

T (j+)ε(n)

L̂j+(xj)
(4.8)

Under the stated choice of bandwidth the asymptotic bias BA
j vanishes. For the

deterministic bias BB
j , A is the backfitting operator matrix as in (A.15) and B̄(x) =

(b̄1(x
1), . . . , b̄d(x

d))T and component functions b̄j for j ∈ {1, . . . , d} defined by

b̄j(x
j) = h2

j+

[(
bj +

∑
k 6=j

∫
G(j)

k

bjk(x
k) +

πjk(x
k)

π
(k)
j

dxk

)]
(xj) .

The exact form of these bias components is given right below. Most importantly

it is b̄j = O
(
h2

j+

)
. Furthermore the centering constant bj,n is given by bj,n =
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µ(j)

(
Φ̂jm̂j

)
where the centering operator is defined in (A.15), and it is h2

j+bj,n =

O(1).

The exact form of the bias is

bj(x
j) =

κ2(x
j)

κ0(xj)

(
m′

j(x
j)

π
(k)
j (xj)

π
(k)
j

′(xj)

)

bjk(x
jk) =

κ2(x
j)

κ0(xj)

(
m′

k(x
k)

πjk(xjk)

∂πjk(x
jk)

∂xk

)
Remark 4.5. 1. Here the underlying model must at least be pairwise additive

as in (3.9).

2. The stated result also holds with a slight modification in some constants

under some milder assumption than Assumption 6. If we assume instead

that
∫

Ajk
ml(x

l)πl(x
l) dxl < ∞ for j 6= k 6= l where the area of integration

Ajk is defined by the correlation between components (Xjk) and X l. Details

are contained in the proof in the appendix.

3. The vector of component estimates (m̃A
1 (x1), . . . , m̃A

d (xd)) converges jointly

to the multivariate normal distribution N (0, diag(σ1+(x1), . . . , σd+(xd)))

with 0 ∈ Rd. Covariances vanish asymptotically.

4. The result also holds more generally for a model with transformed error term

gε(ε) when replacing ε in Assumption 5.3 by gε(ε). Then Theorem 4.3 holds

with modified asymptotic bias BA
j (xj) and variance σj(x

j) as described in

remark 3 after Theorem 4.1.

5. In the special case of one nonstationary regressor and all other regressors sta-

tionary, the nonstationary rate dominates in all component functions. Since

such a process can be easily shown to also be fully β–null Harris recurrent,

we can proceed with the easier algorithm as in the subsection before and

reach the same result.

The marginal variance σ2
j+(xj) of the jth additive component is in form exactly

the variance of the one–dimensional smoother. Though the rate of convergence
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is of univariate character in its form but governed by the worst case bivariate

nonstationarity type βj+ for each component function.

As in the stationary case, the deterministic bias BB
j of the Nadaraya–Watson

smooth backfitting estimator consists of three main parts. In addition to the

marginal Nadaraya–Watson bias hj+
κ1(xj)
κ0(xj)

m′
j(x

j) + 1
2
h2

j+
κ2(xj)
κ0(xj)

m′′
j (x

j) there is the

constant shift bj,n from norming and centering and the design density dependent

part
(
(I − A)−1B̄

)
(j)

(xj). We pay a price for nonstationarity as the entire deter-

ministic bias BB
j is of order o(h2

j+) in the interior of Gj instead of the significantly

faster o(h2
j) in a stationary setting. Furthermore as generally no full dimensional π

exists as in the previous subsection, the design dependent deterministic bias part

resembles its counterpart in the full–dimensional β–null Harris recurrent case in

form, but lacks its projection interpretation. Furthermore, it can be shown that

h2
j+bj,n = O(1). As before, this is a consequence of the centering constraint in the

algorithm, which causes lower order terms to be zero. This term is constant over

xj and does therefore only affect the level and not the shape of the estimator. It

originates from the fact that the empirical version of the normalization used in

the algorithm and the actual theoretical normalization (3.8) are different in finite

samples and only asymptotically equivalent.

The stochastic bias BA
j vanishes with oP (h2

j+) under the stated bandwidth as-

sumptions (See Karlsen et al. [2007]). With stronger independence assumptions

on the error term as below, it can be omitted. If we enforce the independence as-

sumption between Xj and ε, from conditional independence to full independence,

we can avoid the artificial boundedness and small set assumption and have more

familiar moment conditions. If in addition ε is assumed to be stationary, also the

variance is no longer only a second moment with respect to an invariant measure

but with respect to the stationary density of ε, hence a “real” variance.

Theorem 4.4. Let the same set of assumptions as in Theorem 4.3 hold, but replace

Assumptions 4.4 by Assumptions 4.4*. Choose the bandwidth as n
−(βj+

4
+ε)

j+ �

hj+ � n
−(βj+

5
+ε)

j+ for ε > 0 arbitrarily small. Then the algorithm converges and we
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get the following asymptotic expansion for the smooth backfitting estimates (m̃j)
d
j=1√

L̂
(k0)
j (xj)hj+

(
m̃j(x

j)−mj(x
j)−BB

j (xj)
) D−−→ N

(
0, σ2

j (x
j)

κ2
0(x

j)

κ0(xj)2

)
(4.9)

with deterministic bias as in 4.7 and simplified variance

σ2
j (x

j) = σ2
j =

∫
ε2πε(ε) dε ,

where πε is the stationary density of ε.

In this setting the stochastic bias BA
j is zero. The same result also holds under

milder moment conditions as in Assumption 4.4* as specified in Remark 4.4.

4.3 Extensions

If we have more knowledge about the nonstationarity character of the covariates,

a more tailored method yields better results.

4.3.1 Adapted GSBE to γ–wise β–null Harris Recurrence

In Assumptions 4.3, 4.4 and 4.4*, replace the pair of components j, k by a set of

components λ as defined in (3.16), indicating the γ jointly β–null Harris recurrent

covariates, and set (λj) as superscript for (k). Assume that this modified set of

assumptions holds and that generalized smooth backfitting is conducted according

to (3.17). Then the additional assumption for controlling the bias is weaker than

in the pairwise β–null Harris recurrent case with Assumption 4.5. Assume that λj

is fixed for estimation in (3.17), then set.

Assumption 4.6. Assume that for all Xjl
i with l /∈ λj there exists a Xjk

i with

k ∈ λj such that mk(X
k
i ) = ml(X

l
i) for i ∈ Ijλj

.

This is fulfilled if on
⊗d

k=1

(
G(j,λj)

k ∪
⋃

l 6=k A
(jkλjk)

l

)
all component functions have

the same range. Here A
(jkλjk)

l are “outside” of G(λ) and appear due to nonmatching
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index sets in the bias expansions. See Figure A.1 in the Appendix for an illustra-

tion. An exact definition can be found in Section A.2.3. For each pair (j, k) with

k ∈ λj, the set A(j)
k :=

⋃
l 6=k A

(jkλjk)

l contains all X l
i where l /∈ λj with the “wrong”

index set i ∈ Ijλj
, which are no longer within the small set G(jλj)

l . Implicitly,

the size of G(jλj)
k can be restricted to fit Assumption 4.6 via assumptions on the

component functions only. If pairs of covariates, however, are correlated and are

close in type of nonstationarity, the requirement on the component functions is

mild, as X l
i with l /∈ λj and i ∈ Ijλj

is more likely to be within the small set G(jλj)
l

and A(j)
k is comparatively small. If the model entirely consists of trigonometric

component function as in the simulation study, Assumption 4.6 is trivially fulfilled.

For each component function mj, it will be the worst case γ–wise nonstationary

type of covariates jλj,0 dominating the asymptotic behavior. Therefore set βj+ =

minλj
βjλj , nj+ = njλj,0

, and the respective bandwidth hj+ for all j = 1, . . . , d.

Then we get the following closed form expansion.

Theorem 4.5. Let the model be additive as in (1.1) fulfilling the centering condi-

tion (3.18) and let Assumptions 2.1 and 4.6, and modifications of Assumptions

4.3 and 4.4 as described right above hold. The bandwidth sequence must sat-

isfy n
−(βj+

4
+ε)

j+ � hj+ � n
−(βj+

5
+ε)

j+ for ε > 0 arbitrarily small. Then the algo-

rithm (3.13) converges with geometric rate and for the estimators m̃NW
j (xj), j =

1, . . . , d we find√
L̂

(λj,0)
j (xj)hj+

(
m̃j(x

j)−mj(x
j)−Bj(x

j)
) D−−→ N

(
0, σ2

j+(xj)
κ2

0(x
j)

κ0(xj)2

)
with variance

σ2
j+(xj) =

∫
ε2

π
λj,0

jε (xj, ε)

π
λj,0

j (xj)
dε

and bias consisting of two major parts Bj(x
j) = BA

j (xj) + BB
j (xj) with

BB
j (xj) = hj+

κ1(x
j)

κ0(xj)
m′

j(x
j) +

1

2
h2

j+

κ2(x
j)

κ0(xj)
m′′

j (x
j) +

(
(I − A)−1B̄

)
(j)

(xj)− bj,n

BA
j (xj) = µ((j+)ε)(Kxj ,h(X)⊗ idε)

T (j+)ε(n)

L̂j+(xj)
.
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Under the stated choice of bandwidth the asymptotic bias BA
j vanishes. For the

deterministic bias BB
j , A is the backfitting operator matrix as in (A.15) and B̄(x) =

(b̄
(λ1)
1 (x1), . . . , b̄

(λd)
d (xd))T and component functions b̄

(λj)
j for j ∈ {1, . . . , d} defined

by

b̄
(λj)
j (xj) = h2

j+

[(
b
(λj)
j +

∑
k 6=j

∫
G

(jλjk)

k

b
(λjk)

jk (xk) +
π

(λjk)

jk (xk)

π
(λj)
j

dxk

)]
(xj) .

The exact form of these bias components is given right below. Most importantly it

is b̄
(λj)
j = O

(
h2

j+

)
. Furthermore the centering constant bj,n is given by bj,n =

µ
(λj)

(j)

(
Φ̂

(λj)
j m̂

(λj)
j

)
where the centering operator is defined in (A.15), and it is

h2
j+bj,n = O(1).

The exact form of the bias is

b
(λj)
j (xj) =

κ2(x
j)

κ0(xj)

(
m′

j(x
j)

π
(λj)
j (xj)

π
(λj)
j

′(xj)

)

b
(λjk)

jk (xjk) =
κ2(x

j)

κ0(xj)

(
m′

k(x
k)

π
(λjk)

jk (xjk)

∂π
(λjk)

jk (xjk)

∂xk

)
.

Remark 4.6. 1. Remarks 3 and 4 after Theorem 4.3 apply in the same fashion.

2. Here the underlying model must at least be γ–wise additive. Then SBE

delivers the best additive fit in the sense of (3.19)

3. The stated result also holds with a slight modification in some constants

under some milder assumption than Assumption 4.6. Assume instead that∫
A

(jkλjk)

l

ml(x
l)π

(jlλj)
l (xl) dxl < ∞ for all l /∈ λj. This can be achieved if ml

is special on A
(jkλjk)

l , which is e.g. the case for A
(jkλjk)

l small for X l. Details

are contained in the proof in the appendix.

Structurally the same comments apply as for Theorem 4.3 but in a λ–modified

version. As before, if ε is stationary independent to Xλ we get a simplified version

of Corollary 4.5.
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Theorem 4.6. Let the same set of assumptions as in Corollary 4.5 hold, but

replace Assumptions 4.4 by λ modified Assumptions 4.4*. The bandwidth sequence

must satisfy n
−(βj+

4
+ε)

j+ � hj+ � n
−(βj+

5
+ε)

j+ for ε > 0 arbitrarily small.. Then the

algorithm converges and we get the following asymptotic expansion for the smooth

backfitting estimates (m̃j)
d
j=1√

L̂
(λj)
j (xj)hj+

(
m̃j(x

j)−mj(x
j)−BB

j (xj)
) D−−→ N

(
0, σ2

j+(xj)
κ2

0(x
j)

κ0(xj)2

)
with deterministic bias as in Corollary 4.5 and simplified variance

σ2
j+(xj) =

∫
ε2πε(ε) dε ,

where πε is the stationary density of ε.

4.3.2 Asymptotic Independence – Stationary and Nonsta-

tionary Covariates

For stationary data, if covariates are independent, an (additive) regression can be

separated, i.e. regressing each covariate separately yields the same marginal result

as a joint regression. In a β–null Harris recurrent setting, identification and (gen-

eralized) smooth backfitting estimates are obtained in terms of invariant measures.

Therefore the appropriate notion of independence in this context should also be

with respect to invariant measures. For two β–null Harris recurrent processes, we

define weak asymptotic independence as follows.

Definition 4.1 (Weak Asymptotic Independence). Suppose Xjk is β–null Harris

recurrent . Then Xj and Xk are asymptotically independent if the joint invari-

ant measure factors into the product of the two marginal projections of the joint

measure.

πjk = c1 · π(k)
j ⊗ π

(j)
k , (4.10)

where c1 > 0 is a constant.
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Weak asymptotic independence requires independence between components only

on the long run, while in the short term there might be dependence. It is therefore

more general than strict independence in every time point.

If one part of the covariates , w.l.o.g. take Xd1 , is asymptotically independent of

the others Xd2 with X = (Xd1 , Xd2), SBE estimation can be conducted separately.

Other than in a stationary setting, using this information for nonstationary data

can imply a significant improvement in speed for the estimation of all component

functions. In this case, the backfitting projection operators in (3.2) and (3.6) sepa-

rate for Xd1 and Xd2 . Therefore estimation can be conducted completely separate

the first d1 components and the second d2 components according to standard or

generalized SBE. Then results for standard SBE in Theorems 4.1 and 4.2 require

only Xd1 and Xd2 to be β–null Harris recurrent with βd1 or βd2 respectively and

mixed components out of the two blocks pairwise β–null Harris recurrent. Fur-

thermore the governing type of nonstationarity is βd1 for the first block and βd2

for the second block. This can be a significant improvement in speed while still

yielding the best additive approximation to a fully general true model. Under

GSBE results in Theorems 4.3 and 4.4 remain unchanged, but Assumption 4.5 is

easier to fulfill.

Checking for weak asymptotic independence, however, seems a hard task in gen-

eral. The concept might be of most practical relevance, in a stricter form as defined

below, when one block of covariates is stationary and another low dimensional

block is β–null Harris recurrent. Such situations frequently occur in economics,

where economic theory delivers plausible guidance about which components can

be modeled stationary and which might be nonstationary – for example, in term

structure models as described in Tsay [2002] Section 2.9, or if the real price of

one good depends on the real price of another good, take gas and oil, and some

other stationary factors, say technological change and infrastructure parameters.

Asymptotic independence (first defined in Karlsen et al. [2007] Definition 6.1.)

captures that asymptotically the impact of stationary parts not only separates

from but vanishes from the nonstationary ones.

Definition 4.2 (Asymptotic Independence). Suppose Xjk is β–null Harris re-
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current . Then Xj and Xk are asymptotically independent if the joint invariant

measure factors into the product of the two respective marginal invariant measures.

πjk = c2 · πj ⊗ πk , (4.11)

where c2 > 0 is a constant.

Note that asymptotic independence is a weaker assumption than independence if

one of the components is stationary. A simple intuition is, if one process X is non-

stationary β–null Harris recurrent and another Z is stationary, then asymptotically

in the long run, Z cannot have a significant influence on X. But at a specific time

point t, there might be dependence between X and Z (See Karlsen et al. [2007]

Example 6.1 and 6.2. for examples of asymptotic independence but short–term

dependence). Under asymptotic independence, speeds of convergence towards the

invariant measures and support of both sides in (4.11) must coincide, which can

only be fulfilled if one marginal component is stationary. If π
(z)
x (G§) < ∞, asymp-

totic independence holds (See Lemma 6.1. in Karlsen et al. [2007]).

Denote all stationary variables by Z ∈ Rd2 with joint density 0 < p < ∞ and

p ∈ C1(R+), all other components X ∈ Rd1 can be nonstationary β–null Harris

recurrent with density of the invariant measure π and parameter β. X and Z are

asymptotically independent. For ease of exposition all nonstationary component

functions are marked as g : Rd1 → R, all stationary ones are f : Rd2 → R, and a

is a sclar.

Yi = a +

d1∑
j=1

gj(X
j
i ) +

d2∑
j=1

fj(Z
j
i ) + εi for all i ∈ {1, . . . , n} (4.12)

under no concurvity, i.e. for g1, . . . , gd1 , h1 . . . , hd2 nontrivial we cannot have

g1(x
1) + · · · + gd1(x

d1) + f1(z
1) + . . . + fd2(z

d2) = 0 for all (x, z). We will see

that with more detailed knowledge about the data in this sense, we can achieve

significantly better results. The standard and generalized smooth backfitting sim-

plify significantly in terms of speed and asymptotic behavior. In practice, the

partially nonstationary model (4.12) is of most practical relevance, if the number
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of nonstationary covariates is small, i.e. d1 ≤ 2. Set the defining system of integral

equations for the SBE estimators (ã, g̃1, . . . , g̃d1 , h̃1, . . . , h̃d2) as

g̃j(x
j) = ĝ

(k)
j (xj)−

∑
k 6=j

1≤k≤d1

∫
G(j)

k

g̃k(x
k)

π̂j,k(x
jk)

π̂
(k)
j (xj)

dxk for j = 1, . . . d1

f̃j(z
j) = f̂j(z

j)−
∑
k 6=j

d1<k≤d

∫
Gk

f̃k(z
k)

p̂j,k(z
jk)

p̂j(zj)
dzk for j = 1, . . . d2 , (4.13)

for all j = 1, . . . , d1 in the first line and j = 1, . . . , d2 in the second line with

ã =
∑d

j=1
1

d−1

∑
k 6=j

1
T jk(n)

∑
i∈Ijk

Yi under the identification assumptions∫
G(k)

j

gj(x
j)π

(k)
j (xj)dxj = 0 for j = 1, . . . d1, k 6= j∫

Gj

fj(z
j)pj(z

j)dzj = 0 for j = 1, . . . d2 . (4.14)

Note that since the dimension of the β–null Harris recurrent component is d1 ≤ 2,

standard and generalized smooth backfitting coincide. Stationary and nonstation-

ary component functions naturally separate in the backfitting operator because of

asymptotic independence. Constant parts are zero due to (4.14). We obtain the

backfitting estimates as solution to (4.13) via joint iteration.

Theorem 4.7. Let the model be as defined in (4.12) with d1 ≤ 2 fulfilling the

centering conditions (4.14) and let Assumptions 2.1 hold, components X satisfy

4.3, Z be stationary asymptotically independent of X, and (X, Z) fulfill 4.4. The

nonstationary bandwidth sequence must satisfy (nβ+ε
N )−1/4 � hN � (nβ+ε

N )−1/5

with ε small. For the stationary bandwidth set h = n−1/5.

Then the backfitting algorithm converges with geometric rate and for the estimators

(m̃j)
d
j=1 = ((g̃j)

d1
j=1, (h̃j)

d2
j=1) we find√

L̂
(k)
j (xj)hN

(
g̃j(x

j)− gj(x
j)−BNS

j (xj)
) D−−→ N

(
0, σ2

j+(xj)
κ2

0(x
j)

κ0(xj)2

)
√

nh
(
f̃j(z

j)− fj(z
j)−BN

j (zj)
)

D−−→ N
(

0, σ2
j (z

j)
κ2

0(z
j)

κ0(zj)2

)
,

where bias and variance terms are stated right below.
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The variances are

σ2
j+(xj) =

∫
ε2

π
(k)
jε (xj, ε)

π
(k)
j (xj)

dε σ2
j (z

j) =

∫
ε2pjε(z

j, ε)

pj(zj)
dε .

The nonstationary bias consists of two major parts BNS
j (xj) = BA

j (xj) + BB
j (xj)

with

BB
j (xj) = hN

κ1(x
j)

κ0(xj)
g′j(x

j) +
1

2
h2

N

κ2(x
j)

κ0(xj)
g′′j (x

j) +
(
(I − A)−1B̄(1)

)
(j)

(xj)− b
(1)
j,n

BA
j (xj) = µ

(k)
((j)ε)(Kxj ,h(X)⊗ idε)

T (jk)ε(n)

L̂
(k)
j (xj)

.

Under the stated choice of bandwidth the asymptotic bias BA
j vanishes and also√

L̂
(k)
j (xj)hNBB

j (xj) is negligible for every xj. The exact form of the deterministic

bias BB
j is implicitly defined via the backfitting operator matrix A as in (A.15).

The projected Nadaraya–Watson specific part B̄(1)(x) = (b̄
(1)
1 (x1), . . . , b̄

(1)
d (xd1))T

and component functions b̄
(1)
j for j ∈ {1, . . . , d1} are given by

b̄
(1)
j (xj) = h2

N

[(
b
(1)
j +

∑
k 6=j

∫
G(j)

k

b
(1)
jk (xk)

πjk(x
k)

πj

dxk

)]
(xj) .

These bias components are for j ∈ {1, . . . , d1} defined as b
(1)
j (xj) =

κ2(xj)
κ0(xj)

(
g′j(x

j)

π
(k)
j (xj)

π
(k)
j

′(xj)

)
and b

(1)
jk (xjk) = κ2(xj)

κ0(xj)

(
g′k(xk)

πjk(xjk)

∂πjk(xjk)

∂xk

)
. Most impor-

tantly it is b̄
(1)
j = O (h2

N). Furthermore the centering constant bj,n is given by

b
(1)
j,n = µ(j)

(
Φ̂j ĝj

)
where the centering operator is defined in (A.15), and it is

h2
Nb

(1)
j,n = O(1).

The stationary bias BS
j only consists of a deterministic part

BS
j (zj) = h

κ1(z
j)

κ0(zj)
f ′j(z

j) +
1

2
h2κ2(z

j)

κ0(zj)
f ′′j (zj) +

(
(I − A)−1B̄(2)

)
(j)

(zj)− b
(2)
j,n.

It is B̄(2)(z) = (b̄
(2)
1 (z1), . . . , b̄

(2)
d (zd2))T and component functions b̄

(2)
j for j ∈

{1, . . . , d2} defined by

b̄
(2)
j (xj) = h2

[(
b
(2)
j +

∑
k 6=j

∫
Ek

b
(2)
jk (xk)

pjk(z
k)

pj

dzk

)]
(zj) .
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These bias components are for j ∈ {1, . . . , d2} defined as b
(2)
j (zj) =

κ2(zj)
κ0(zj)

(
f ′j(x

j)

pj(zj)
p′j(z

j)
)

and b
(2)
jk (zjk) = κ2(zj)

κ0(zj)

(
f ′k(zk)

pjk(zjk)

∂pjk(zjk)

∂zk

)
. Most importantly

it is b̄j = O (h2). Furthermore the centering constant b
(2)
j,n is given by

b
(2)
j,n = µ(j)

(
Φ̂j f̂j

)
where the centering operator is defined in (A.15), and it is

h2b
(2)
j,n = O(1).

Remarks. 1. The vector of of the stochastic parts of component estimates

converges jointly to a multivariate normal distribution with only marginal

entries on the diagonal of the variance covariance matrix. Covariances vanish

asymptotically.

2. The result also holds more generally for a model with transformed error

term gε(ε) when replacing ε in Assumption 4.4.3 by gε(ε). Then Theorem

4.3 holds with modified asymptotic bias BA
j (xj) and variance σ2

j+(xj) =∫
gε(ε)

2 πjε(x
j ,ε)

πε
j (xj)

dε. With considerations in Karlsen et al. [2007], Section 6.4.,

and Mammen and Nielsen [2003], results can be even further extended to

models with heteroscedastic error terms.

3. If d1 > 2, the results of the above theorem still hold, but a minor additional

assumption is needed (See Assumption 4.5 in GSBE). Then the true model

must be additive, as for general m, GSBE is no longer guaranteed to yield

the best additive approximation.

4. Conditions on components Z via Assumptions 4.4 can also be derived in a

nicer moment condition form.

5. The partial nonstationary model can be easily generalized to being partially

fully nonparametric in the stationary components.

Here the stationary components are estimated with univariate rates and vari-

ances. Compare this to the procedure for fully nonstationary data of in Theorem

4.1 or Theorem 4.3, where estimation of stationary component functions is gov-

erned by the worst case univariate nonstationary direction. For the nonstationary

part, the rate of convergence is of univariate character in its form, governed by the
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bivariate nonstationarity type β for each component function. Asymptotic speeds

of convergence are of order smaller than n2/5β.

As in the stationary case, here it might prove valuable to develop a local lin-

ear type version of the estimation procedure in order to obtain oracle efficient

bias behavior. with the stated Nadaraya–Watson type estimation method, the

deterministic and the stationary bias have a projected design density dependent

part
(
(I − A)−1B̄

)
(j)

(xj). With a local linear version of the estimation procedure,

the obtained bias is directly additive and therefore asymptotically superior. See

comments on efficiency in Section 4.4 below.

With enforced independence assumptions between covariates and residual and

stationary ε as in Assumption 4.4* we get the analogue to Theorems 4.2 and 4.4

in the partially stationary case.

Theorem 4.8. Let the same set of assumptions as in Theorem 4.7 hold, but replace

Assumptions 4.4 by Assumptions 4.4*. Choose bandwidths as in Theorem 4.7.

Then the algorithm converges and we get the following asymptotic expansion for

the smooth backfitting estimates (m̃j)
d
j=1√

L̂
(k)
j (xj)hN

(
g̃j(x

j)− gj(x
j)−BB

j (xj)
) D−−→ N

(
0, σ2

j+(xj)
κ2

0(x
j)

κ0(xj)2

)
√

nh
(
h̃NW

j (zj)− fj(z
j)−BN

j (zj)
)

D−−→ N
(

0, σ2
j (z

j)
κ2

0(z
j)

κ0(zj)2

)
,

with simplified variance

σ2
j+(xj) =

∫
ε2πε(ε) dε ,

where πε is the stationary density of ε. All other components are as in Theorem 4.7.

4.4 Remarks on Oracle Efficiency

Efficiency of an estimator can be judged according to the benchmark of an oracle

estimator. The infeasible oracle estimator estimates each component function as if

all other components were known correctly. An estimator has oracle property or is
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oracle, if its asymptotic expansion coincides with the oracle one. In the stationary

mixing setting, ordinary smooth backfitting converges for each marginal direction

with rate and variance of the one-dimensional smoother. For a local linear version

of the estimation procedure, also the oracle bias is reached. Thus for stationary

data, smooth backfitting reaches oracle efficiency.

For nonstationary data, however, this is in general not possible – paying for the

generality of the underlying data with different data for different directions. There-

fore, although rates and variances have the form as for one–dimensional marginal

smoothers, in GSBE the worst case bivariate, in adapted GSBE the worst case

γ–wise, and in standard smooth backfitting the full dimensional type of nonsta-

tionarity β dominates. Thus without further restrictions on the covariate process,

we cannot do better in terms of data and oracle type efficiency of the estimation

procedure than in GSBE with governing worst case bivariate βjk0 . Hence in this

most general case, implementing a local linear version of the proposed estimation

methods costs on robustness and increases computing complexity, for asymptoti-

cally obtaining an oracle bias. For finite samples, however, a local constant version

might still be superior in terms of bias.

Though if the underlying data does not require the full generality of the GSBE

framework, more tailored procedures can reach better oracle efficient outcomes. If

there is only one known nonstationary component in the vector of covariates while

all the others are stationary, then we can reach oracle efficient rates and variances

as seen in the section above. In this case, it might prove advisable to even use a

local linear version of the suggested backfitting technique to also obtain oracle bias

components. Backfitting as suggested based on local constant smoothing suffers

from a systematic Nadaraya–Watson bias (1 − A)−1B̄ as in the classical setting

Mammen et al. [1999] with some additional terms. This results from the fact that

B̄ is in general not additive but the SBE bias needs to have additive structure.

Thus the bias is generally not oracle. In contrast to this, a local linear version in

the stationary case directly has an additive bias and is independent of the invariant

density of the regressors (see Mammen et al. [1999]). This design independence

is specific to the type of estimator and directly carries over from the classical
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to the nonstationary setting. For local linear smooth backfitting the underlying

projection is not only a projection on the space of additive functions but on an

extended additive function space which also includes first order derivatives for the

additive components. So the local linear smooth backfitting estimator m̃LL has

now the form

{{
m̃LL

j

}n

j=0
,
{

m̃LL,1
j

}n

j=1

}
, where m̃LL

j estimates mj and m̃LL,1
j its

derivative. We under full dimensional β–null Harris recurrence, we obtain them

as minimizers of the following criterion with respect to f and f 1

n∑
i=1

∫ (
Y − f0 −

d∑
j=1

fj(x
j)−

d∑
j=1

f 1
j (xj)(Xj

i − xj)

)2

Kh(x−Xi)dx .
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Chapter 5

Finite Sample Behavior: A

Simple Simulation Study

Non–parametric estimation of a general conditional mean function m has already

been studied for β–Harris recurrent processes in detail in Karlsen et al. [2007].

Though in many practically relevant cases, models with more than two covariates

do not fit the required framework any more. The contribution of this work is

to provide a method and its asymptotic theory for theses cases under some mild

functional form restriction which still leaves a high degree of modeling flexibility.

In order to demonstrate the finite sample power of the proposed procedure, some

simulation studies have been performed.

Compared to stationary data, a general β–Harris recurrent process can behave

quite “strangely” in finite samples, being clustered in some regions of the space

while leaving others almost empty (see Figure 5.1). This results from the fact

that the expected time until the process reaches a specific set in the range can in

general be infinite (see (2.7)). Therefore in my simulations, we report pointwise

(over all 500 replications)–median estimators. In applications, to circumvent the

empty space problem, a very large number of observations is needed to reduce

number and size of data uncovered regions to a minimum. In line with Theorem

4.3, there are sufficiently many data points required in the local neighborhood of

a point, i.e. hj+L̂j+(xj) must be large, that estimation at this point is robust. If
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Figure 5.1: Example of a two dimensional random walk for 1000 observations

linearly rescaled into [0, 1]2 illustrating nonstationary data particular difficulties

of inference in finite samples such as clustering and empty parts of the space

this cannot be achieved for certain points, these local results should be interpreted

with care.

In all simulation experiments estimation is repeated 500 times from n = 1000 or

n = 910000 observations in the following model for i = 1, . . . , n:

Yi =
5∑

j=1

mj(X
j
i ) + εi

Xi = Xi−1 + ei

where X0 = (0, 0, 0, 0, 0)T and mj(x) = cos(2π(x−0.5)) for j ∈ {2, 4} and mj(x) =

sin(πx) for j ∈ {1, 3, 5}. The residuals are independent ε ∼ N(0,
√

0.5) and e ∼
N(0, σ) with σ = ((σjk))jk ∈ R5×5. To underline the robustness of the method, we

simulate settings with independent random walks as well as cases with correlation,

where some off–diagonal elements of σ are strictly positive. This model setup is

chosen in order to have an easy comparison to the stationary smooth backfitting

case, in particular to the extensive simulation study in Nielsen and Sperlich [2005]

which focuses on trigonometric relationships. Practically such models are used in

macroeconomic business cycle literature.
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Figure 5.2: Local constant fit, 1000 observations
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Figure 5.3: Local linear fit, 1000 observations
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When using kernel smoothing techniques there should be some guideline on how

to choose the smoothing parameter h. This is a largely unsolved problem, since

the admissible rates as stated in the theorems are only asymptotically true. They

are different from the stationary rates, not only with n effectively replaced by

nβ but also in an additional speed restriction from above hj < n−1/5β+−ε. Due to

nonstationarity of the data, the shrinking of the bandwidth h must not only satisfy

a maximum speed as usual but also a minimum speed in order to guarantee enough

data points in the observation window asymptotically. Cross–validation techniques

proved to be useful for finite samples. For simplicity, the bandwidth is chosen via

cross validation for the best componentwise fit, which does not necessarily yield the

same results as for the best global fit, especially when regressors are correlated.

For SBE with stationary data, in Nielsen and Sperlich [2005] a more involved

global cross validation procedure is used without proof which seems to induce an

additional bias of yet unknown size. We found it favorable to use a data adaptive

local choice hj(x
j) ∼

(∑
i∈Ijk0

1N
xj,k

(Xj
i )
)−1/5

for fixed small k << 1 depending

on the number of visits to a k–neighborhood around xj. For this no preknowledge

of β is required, which in practice must be estimated first, e.g. via a Hill type

estimator from (2.6) suffering from poor convergence properties. Though deriving

formal results for such a local data–driven bandwidth is beyond the scope of this

paper. For a local stochastic bandwidth theoretical results are not straightforward,

as can be seen from Guerre [2004] in the general non–additive model under the

restrictive uniform recurrence assumption. Potentially the theoretical results in

Mammen and Park [2005] for mixing processes via plug–in and penalized least

squares could be extended for β–null Harris recurrent processes.

The implementation closely follows the strategy by Nielsen and Sperlich [2005]

and Haag [2006]. In particular, any steps of the algorithm are performed on a fixed

grid in each direction. Thus the data generating processes are linearly transformed

to live in the cuboid [0, 1]d, for easy comparison. In order to reduce numerical errors

in the integrals, M = 101 equidistant grid points are chosen. For the algorithm to
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stop, the following quotient criterion is employed: If

∑M
i=1

(
m̃

[r−1]
j (xj

i )− m̃
[r]
j (xj

i )
)2

∑M
i=1(m̃

[r]
j (xj

i ))
2 + 0.0001

< 0.0001 (5.1)

is fulfilled for all j = 1, . . . , d at the M grid points, then end at iteration step

r. Besides the local constant type generalized smooth backfitting estimator also

the local linear version of generalized smooth backfitting according to (4.15) is

implemented for comparison (See Section 4.4). To judge the performance of the

estimators, quantiles over the repetitions k of the integrated square error ISEk

for each additive component are compared. For each component j ∈ {1, . . . , 5},
ISEk is defined as

ISEk(mj) =
1

101

101∑
l=1

(mj(x
j
l )− m̃k

j (x
j
l ))

2 for all j ∈ {1, . . . , 5} , (5.2)

on the grid 0 = x0 < . . . < xl < . . . < x100 = 1 with xl = l ·0.01e5, l = {0, . . . , 100}
and e5 unit vector in R5, where m̃k

j is the obtained SBE for component j in the kth

repetition. For the given data structure, these measures of fit are more appropriate

than the more commonly reported MISE – the arithmetic mean of ISEk.

Figure 5.2 shows the pointwise median estimator (dashed line) in comparison to

the true marginal function (solid line) for a local constant fit with 1000 observations

for m1 on the left and m2 on the right, when all five regressors are independent.

It is σjj = 1 and for the offdiagonal components σkj = 0 for all j ∈ {1, . . . , 5}
and k 6= j. The cosine problems are harder and therefore the fit of m2 must be

better than for m1 due to double the range and due to a larger factor in the second

derivative, which governs the leading bias term. The bias at the peak might be

specific to the only local constant fit, which has some systematic theoretical bias

in comparison to a local linear fit. This is graphically supported by Figure 5.3

which shows a local linear pointwise median estimator in the same scenario with

less bias at the peak. The algorithm converges on average after 20.442 iterations in

the local linear case and after 15.406 in the local constant case. In the stationary

case only about 6 are needed (see Nielsen and Sperlich [2005]). Though given the
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type of fit underlying data medianISE for the full [0, 1]5

N σjj σkj m1 m2 m3 m4 m5

Local linear 10,000 1 0 0.012 0.007 0.009 0.007 0.012
Local constant 10,000 1 0 0.026 0.016 0.031 0.019 0.029

Local linear 10,000 1 0.2 0.013 0.009 0.011 0.008 0.012
Local constant 10,000 1 0.2 0.027 0.016 0.031 0.018 0.027

Local linear 1,000 1 0 0.022 0.018 0.018 0.018 0.021
Local constant 1,000 1 0 0.031 0.021 0.034 0.022 0.033

Local linear 1,000 1 0.2 0.027 0.021 0.019 0.020 0.026
Local constant 1,000 1 0.2 0.030 0.017 0.033 0.020 0.033

type of fit underlying data medianISE for the interior [h, 1− h]5

N σjj σkj m1 m2 m3 m4 m5

Local linear 10,000 1 0 0.010 0.005 0.008 0.005 0.009
Local constant 10,000 1 0 0.022 0.011 0.024 0.013 0.024

Local linear 10,000 1 0.2 0.012 0.007 0.010 0.006 0.009
Local constant 10,000 1 0.2 0.026 0.011 0.026 0.013 0.024

Local linear 1,000 1 0 0.015 0.009 0.013 0.011 0.013
Local constant 1,000 1 0 0.027 0.014 0.027 0.015 0.027

Local linear 1,000 1 0.2 0.020 0.012 0.013 0.012 0.019
Local constant 1,000 1 0.2 0.026 0.012 0.029 0.014 0.027

Table 5.1: MedianISE as measure of fit with k 6= j = 1, . . . 5
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Quantiles fit m1 m2 m3 m4 m5

50% LL 0.022 0.018 0.018 0.018 0.021
NW 0.031 0.021 0.034 0.022 0.033

75% LL 0.104 0.045 0.050 0.064 0.083
NW 0.058 0.038 0.061 0.043 0.067

95% LL 1.159 0.498 0.369 0.857 1.031
NW 0.103 0.070 0.105 0.089 0.125

97% LL 2.627 0.972 0.674 1.593 1.458
NW 0.165 0.104 0.139 0.137 0.216

Table 5.2: Quantiles of ISEk for local linear (LL) and local constant (NW) fit

with 1000 observations and no correlation

increased difficulty of the problem the algorithm performs reasonably well. For

10000 observations convergence is reached on average after 19.164 iterations in

the local linear case, after 15.172 iterations in the local constant case. Also the

fit is improved as can be seen from Table 5.1. It also shows that for correlated

regressors X with σjk = 0.2 for k 6= j, the problem is easier, thus the fit is

better. When omitting regions of sparse data along the boundaries, the overall fit

is also improved - especially in the local linear case. Table 5.2 indicates that the

local constant estimator is more robust then the local linear version and therefore

despite its type–specific bias more preferable in practice.
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Chapter 6

Conclusion

6.1 Summary

We have introduced a nonparametric estimation procedure, which allows to es-

timate a regression problem with more than d > 2 potentially nonstationary

covariates. As in a stationary setting, estimating an additive model allows to

circumvent the ordinary curse of dimensionality. Thus rate of convergence and

asymptotic variance are of univariate form. Though the added nonstationary diffi-

culty is reflected by the fact that for generalized smooth backfitting the worst case

bivariate type of nonstationarity and the corresponding β govern the rate. For

a model with an arbitrary but potentially large finite amount of regressors and

nonstationarity as an added difficulty, this is the best to be achieved. Under the

other suggested backfitting type methods, we can reach a best additive fit to more

general true models, but require more regularity in the data than pairwise β–null

Harris recurrence and obtain slower rates. Under full β–null Harris recurrence ,

standard smooth backfitting scaled according to full–dimensional objects yields

the best additive approximation a fully general true model.

Furthermore in the special case of a stationary residual ε, results are obtained

which could serve as a starting point for an elegant way of additive nonlinear

cointegration. When each component function is monotone, the desired symme-

try between response and observables as in linear cointegration can be achieved.
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While the more general results of Karlsen et al. [2007] are limited to a very small

number of cointegrated components, the method introduced here works for an ar-

bitrary amount of regressors. Therefore in a wide range of applications it might be

the only way to determine a general cointegration relationship between variables

without prespecifying a parametric form.

6.2 Outlook

The suggested methods can be used to test for linearity in cointegration relation-

ships. While a formal testing procedure might prove difficult to develop, estimation

results for a general additive model can already provide a guideline if linearity is

appropriate or if not, what kind of nonlinearity should be modeled. In economic

models where a cointegration relationship is expected, but could not be detected

with existing methods, estimation with GSBE could help to provide empirical ev-

idence for economic intuition. This especially applies to purchasing power parity

(PPP) or term structure models as in Tsay [2002] Section 2.9. It might be of in-

terest to develop model specification tests in this general scenario generalizing the

cointegration rank test of Johansen [1991]. Furthermore it might be interesting to

investigate how detrending of data with a deterministic trend should be done in

order to obtain similar results for resulting β–null Harris recurrent observations

as presented here. One could also think of deriving least squares type estimators

under more smoothness or parametric assumptions and β–null Harris recurrent

data. Though the framework is tailored for local smoothing techniques. Thus

aiming for a global fit seems somehow unnatural and will always suffer from the

nonstationary curse of dimensionality.

Presented techniques can serve to provide nonparametric estimates of the indi-

vidual marginal utility function in Euler equations. They characterize intertem-

poral optimization and are driven by nonstationary individual consumption (See

e.g. Cochrane [2001]). Up to now estimation in this central economic question has

been dominated by parametric GMM methods leading to sometimes contradictory

results.
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Generally, β–null Harris recurrence delivers a natural blocksize of independent

blocks of sums of observations between recurrence times (See Appendix A.1). This

might serve as a way to generalize block bootstrap procedures in time series (see

Hall et al. [2003]) to the recurrent setting. With this the usually somewhat ar-

bitrary block window has a stochastic meaning and might be estimable for Feller

type processes.

If observations are discrete, null–Harris recurrence and positive Harris recurrence

coincide. Therefore all measures are finite and estimation is much easier resulting

in simpler assumptions. This might be applicable to storage or queuing models.
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Appendix A

A.1 Markov Theory

To keep the paper as self–contained as possible, essential notions and results of

Markov theory relevant for the understanding of the paper shall be mentioned.

A.1.1 Split Chain and Invariant Measure

Every φ irreducible Markov chain (Xi)i satisfies the minorization inequality. That

means, for any such (Xi)i there exists a small function s, a probability measure ν

and an integer m0 ≥ 1 such that

Pm0 ≥ s⊗ ν .

Without much loss of generality we assume throughout the paper that m0 = 1,

i.e. the minorization inequality has the form:

P ≥ s⊗ ν , (A.1)

where s and ν are small and ν(Rn) = 1. In particular it is 0 ≤ s(x) ≤ 1 for x ∈ Rn.

If (A.1) holds, then the pair (s, ν) is called a pseudo–atom for P . Note that ν is

independent of x. This is the basis for constructing the corresponding split chain

of (Xi)i.
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From (A.1) we derive:

P (x, A) = (P (x, A)− s(x)ν(A)) + s(x)ν(A)

= (1− s(x))

[(
P (x, A)− s(x)ν(A)

1− s(x)

)
1{s(x)<1} + 1a(x)1{s(x)=1}

]
+ s(x)ν(A)

=: (1− s(x)) Q(x, A) + s(x)ν(A)

Hence the transition probability P can be thought of as a convex combination of

a transition probability Q and the independent small measure ν. Thus the chain

regenerates each time ν is chosen – which occurs with probability s(x). Introducing

the split chain (Xi, Yi) helps to formalize this observation. The auxiliary chain Yi

only takes on values 0 and 1. For Xi = x and Yi−1 = yi−1, the auxiliary chain {Yt}
takes on the value 1 with probability s(x). Thus α = Rn × {1} is a proper atom

for the split chain. Denote by

τ0 := min {i ≥ 1 : Yi = 1} (A.2)

the corresponding recurrence time. We will frequently need the consecutive se-

quence of recurrence times (τk)
∞
k=−1 starting in t = 0 defined recursively by:

τk := min {i ≥ τk−1 : Yi = 1} , (A.3)

with starting value set as τ−1 := −1 (any negative number would do). Write

τ0 = τα = τ for the first recurrence time with respect to the pseudo atom α.

Furthermore denote the number of regenerations up to n by

T (n) = max
k
{k : τk ≤ n} (A.4)

We need for scaling purposes

TC(n) =
n∑

i=1

1C(Xi)

a(n) = Eλ
(TC(n))

πs(C)
, (A.5)

with λ any initial distribution and C a so called D–set, such that (A.5) is always

well defined. Any small set is a D–set and the definition of a does not depend on
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the specific choice of C. It can be easily shown that the invariant measure πs has

a kernel representation in terms of the atom (see [Nummelin, 1984], page 63f)

πs := ν Gs,ν , with Gs,ν :=
∞∑

t=0

(P − s⊗ ν)t . (A.6)

Note that for ease of exposition in the main text, we omit the index s in πs. Then

for g ∈ L1
πs

(Rd, R) it follows

Gs,νg(x) = E

[
τ∑

i=0

g(Xi)|X0 = x

]
= Ex

[
τ∑

i=0

g(Xi)

]
. (A.7)

Hence for g = 1A it is πs(A) = νGs,ν1A. If the measure πs is absolutely continuous

w.r.t. Lebesgue measure, we also denote the corresponding density by πs. Then

πs(x)dx = πs(dx). With this define the density πC(x) = πs(x)
πs1C

for x ∈ C with C

small.

The minorization inequality and the accompanying split chain permit a decom-

position of the chain into separate and identical parts defined by regeneration

points.

Sn(g) :=
n∑

i=0

g(Xi) = U0 +

T (n)∑
k=0

Uk + U(n) for any g ∈ L1
πs

(Rd, R) , (A.8)

where:

Uk =

{ ∑τk

i=τk−1+1 g(Xi) when k ≥ 0∑n
i=τT (n)+1

g(Xi) when k = (n)
(A.9)

The sequence {(Uk, (τk − τk−1))}∞k=1 consists of independent identically distributed

(iid) random variables. Denote the common marginal distribution of Uk with

U = U(g) and respectively µ = µ(gh) = EU(gh) = πs(gh) and σ = σ(gh) = VU(gh).

A.1.2 β–null Harris recurrence

The definitions in (2.4) and (2.6) are equivalent. Under β–Harris recurrence for

n −→ ∞ it is asymptotically a(n) ∼ nβLs(n) with Ls(n) from the tail condition
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of the recurrence time (2.6) slowly varying at infinity. Furthermore the exact

asymptotic distribution can be specified (see e.g.Chen [2000] Theorem 1.3.)

(a(n))−1/2

n∑
i=1

1C(Xi)f(Xi) ∼ σf
√

gβ N (0, 1) (A.10)

with σf =
∫

f 2(x)πC(x) dx + 2
∑∞

i=0

∫
f(x)P if(x)πC(x) dx where (A.10) is only

defined for such functions f for which σf exists. The random variable gβ is inde-

pendent of the normal distribution and is Mittag–Leffler Mβ distributed.

A.1.3 The Quotient Limit Theorem

The following result is the appropriate generalization of ergodicity to Harris recur-

rent Markov chains.

Theorem A.1. If a discrete Markov process (Xi)i is Harris recurrent, then for

any functions f, g ∈ L1
π =

{
φ|
∫

φ(x)π(dx) < ∞
}

with
∫

g(x)π(dx) 6= 0 it is

lim
n−→∞

∑n
i=1 f(Xi)∑n
i=1 g(Xi)

=

∫
f(x)π(dx)∫
g(x)π(dx)

P− a.s . (A.11)

A.2 Proofs

This section is split into three main subsections. In the first part, operator notation

for the backfitting procedure is introduced to motivate the proofs in subsection two.

In the second part, necessary uniform lemmas are proven which are the main tools

for the proofs of the main theorems in subsection three.

A.2.1 On the Structural Form of Generalized Smooth

Backfitting

For simplification rewrite the generalized backfitting problem (3.6) in form of an

operator equation in the corresponding pairwise Hilbert spaces L2
π̂jk

. This reveals

and emphasizes the underlying structure of the problem and gives fundamental
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insights for its understanding and proof. Structurally we obtain an inverse problem

— which in contrast to many other situations is well–posed 1. Componentwise in

j = 1, . . . , d we get with boundary modified kernels (2.24):

m̃j(x
j) =

∑
k 6=j

1

d− 1
(1k − Φ̂jk)m̂j(x

j)− [Âj,km̃k](x
j) (A.12)

with centering operator operators Φ̂jk and projection operators Âj,k and 1k defined

as

1km̂j(x
j) = m̂

(k)
j (xj) (A.13)

Φ̂jkm̂j(x
j) =

∫
m̂

(k)
j (xj)π̂

(k)
j (xj)dxj∫

π̂
(k)
j (xj)dxj

=
1

T jk(n)

∑
i∈Ijk

Yi

[
Âj,kfk

]
(xj) =

∫
fk(x

k)
π̂j,k(x

j, xk)

π̂
(k)
j (xj)

dxk for j 6= k ,

for fk : R → R. Note that
∑

k 6=j Φ̂jkm̂j(x
j) only differs from zero when (3.8) is

not fulfilled. For rectangular Gj and boundary kernels it is
∑

k 6=j Φ̂jkm̂j(x
j) = 0.

The operator Âj,k projects any f ∈ H(j)
k = L2

π
(j)
k

onto H(k)
j . Thus Âj :=

∑
k 6=j Âj,k

projects any f ∈ H(k)
−j onto Hj. Thus for any component j there is a a suitable

space of additive functions H(j) composed of pairwise coordinatewise projections

H(j)
k of (3.11) with H(j) =

⊕d
j=1H

(j)
k .

Introducing vector notation m̃ = (m̃1(x
1), . . . , m̃d(x

d))T ∈ Rd and analogously

m̂ = (m̂1(x
1), . . . , m̂d(x

d))T ∈ Rd we obtain the simplest form in matrix notion

(I − Â)m̃ =
1

d− 1
(1− Φ̂)m̂ (A.14)

with I the identity and, under Assumptions 1-2 or 1 and 4, compact operator

1Compare in contrast the case of ill–posed inverse problems. See Carrasco, Florens and
Renault for a survey article on ill–posed inverse problems [Carrasco et al., 2003]
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matrices

Φ̂ =


0 Φ̂1,2 . . . Φ̂1,d−1 Φ̂1,d

Φ̂2,1 0 Φ̂2,3 . . . Φ̂2,d

...
. . .

...

Φ̂d−1,1 . . . Φ̂d−1,d−2 0 Φ̂d−1,d

Φ̂d,1 Φ̂d,2 . . . Φ̂d,d−1 0

 1 =


0 12 . . . 1d−1 1d

11 0 13 . . . 1d

...
. . .

...

11 . . . 1d−2 0 1d

11 12 . . . 1d−1 0



Â = −


0 Â1,2 . . . Â1,d−1 Â1,d

Â2,1 0 Â2,3 . . . Â2,d

...
. . .

...

Âd−1,1 . . . Âd−1,d−2 0 Âd−1,d

Âd,1 Âd,2 . . . Âd,d−1 0

 =

 0 −Âup

. . .

−Âdown 0

 .(A.15)

Simplifying notation in (A.14) we can also write:

(I − Â)m̃ = m̂II (A.16)

with m̂II = 1
d−1

(
∑

k 6=1 1km̂1(x
1), . . . ,

∑
k 6=d 1km̂d(x

d))T ∈ Rd. And by setting

m0 =
∑d

j=1
1

d−1

∑
k 6=j

1
T jk(n)

∑
i∈Ijk

Yi the centering term can be omitted. In the

case of a fully–recurrent vector of covariates and notation as introduced in (3.2),

the generalized backfitting equations (A.16) reduce to the standard backfitting

operator equation with projections in L2
π̂ as in [Mammen et al., 1999].

Since for any sample size n, Â is compact and self–adjoint, this is a Fredholm

equation of the second kind. Formally, in order to find a solution m̃, the inverse

of I − Â must be applied to (A.14). For this the operator must be injective,

thus the null space N (I − Â) of the operator has to be trivial. This is achieved

through the sample counterparts of normalization condition (3.18). According

to Fredholm and Riesz theory in functional analysis a solution to (A.14) exists, if

(I−Φ̂)m̂ is in the range of the closure of (I−Â) which is identical to the orthogonal

complement N (I − Â∗) = N (I − Â) as Â is self adjoint. Since this null space is

trivial under the norming constraint, a solution exists and is unique. To obtain

a practical solution, however, show that (I − Â) is a contraction operator. Then

according to a generalized version of Banach’s fixed–point theorem the unique
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solution is reached through an iterative procedure and its rate of convergence will

be geometric. In matrix notation the SBE algorithm works as given right below.

Instead of iterating the full Â, the matrix is split into upper and lower triangular

part. Then Âup projects m̃j from the previous iteration step, while Âdown treats

already updated versions of the estimator components from within the rth iteration

step.

m̃[r] = m̂II −

 0 Âup

. . .

0 0

 m̃[r−1] −

 0 0
. . .

Âdown 0

 m̃[r] (A.17)

However, what complicates the following proof of the asymptotic results is that

all operators are estimated depending on the sample size n. Therefore in order

to ensure that the obtained m̃ from (A.17), is also the solution to the original

additive regression problem (1.1) under the norming constraint (3.8) some uniform

convergence results are needed. Since in the null-recurrent setting these are not

available in the existing literature, they are shown in the following section.

A.2.2 Preliminary Lemmata

In order to prove any of the theorems, first, some preliminary technical lemmata

with uniform convergence results need to be shown. These are not only essential

for the proofs but also of interest on their own.

Uniform consistency of the Kernel invariant density estimate

To our knowledge in the general case of β–null Harris recurrent processes uniform

results for consistency have not been established. While for subcases with finite

invariant measure, a Hoeffding type exponential inequality exists (see [Glynn and

Ormoneit, 2002]), the proof of the general case is more involved.

Although for smooth backfitting only univariate and pairwise bivariate density

estimates are of interest, the following proof is given for d covariates. To ease

notation, indices and superscripts indicating components to be marginal j or jk

specific will be generally omitted. We need the following moment bounds:
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Lemma A.1. Let Assumptions 1-2 hold. Set Kx(u) = hdKx,h(u) = K((u−x)/h).

Let the process start in a point of regeneration and set U = U0 =
∑τ0

i=0 Kx,h(Xi).

Then it is with −∞ < µ, µ′< ∞ and 0 < σ, σ′< ∞

µ(Kx,h) = EU(Kx,h) = π(Kx,h) = µ + o(1)

µ(|Kx,h|) = EU(|Kx,h|) = π(|Kx,h|) = µ′ + o(1)

hdσ2(Kx,h) = hd
(
EU2(Kx,h)− µ2(Kx,h)

)
= σ2 + o(1)

hdσ2(|Kx,h|) = hd
(
EU2(|Kx,h|)− µ2(|Kx,h|)

)
= σ′2 + o(1)

σ2(Kx) = EU2(Kx)− µ2(Kx) = σ2 .

Proof. See Lemma 5.1. and 5.2. in Karlsen and Tjøstheim [2001] for the proof

of the bounds. The form of σ follows from Theorem 5.3. hdσ2(Kx,h) =
∫

πC(x +

hu)K2(u) du + 2
∫

K(u)PGs,νKx,h(x + hu) + o(1).

Assume w.l.o.g. that the process starts in a point of regeneration. The proof

is on the atomic level, but extends straightforwardly to small sets. The Green

function a(n) is defined in (A.5).

Lemma A.2 (Uniform consistency of the Kernel density estimator).

Let Assumptions 1-2 hold. Then choose a bandwidth h → 0 such that√
a( n

L2a(n)
)L2a(n)hd →∞ and set h l(n)1/d =

√
a
(

n
L2(a(n))

)
L2(a(n)) . Then

sup
x∈G̊h

|π̂(x)− π(x)| = OP

h2 +
1

hd

√
a
(

n
L2(a(n))

)
L2(a(n))

 (A.18)

sup
x∈∂Gh

|π̂(x)− π(x)| = OP

h +
1

hd

√
a
(

n
L2(a(n))

)
L2(a(n))

 . (A.19)
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Proof. It is sufficient to show that for given

cn = h2 +
1

hd

√
a
(

n
L2(a(n))

)
L2(a(n))

c′n = h +
1

hd

√
a
(

n
L2(a(n))

)
L2(a(n))

it is that for all η, η′ > 0 there exist constants c, c′ > 0 such that

sup
n

P

(
sup
x∈G̊

|π̂(x)− π(x)| ≥ c · cn

)
= η

sup
n

P
(

sup
x∈∂G

|π̂(x)− π(x)| ≥ c′ · c′n
)

= η′ .

In fact we will even show almost sure convergence.

To shorten notation we will write cn instead of c · cn and keep in mind that cn is

simply the rate without any constants. The same holds for c′n.

Split up into variance and bias part. For the interior G̊h it is:

P

(
sup
x∈G̊h

|π̂(x)− π(x)| ≥ cn

)

≤ P

(
sup
x∈G̊h

|π̂(x)− µ(Kx,h)|+ sup
x∈G̊h

|µ(Kx,h)− π(x)| ≥ cn

)

≤ P

(
sup
x∈G̊h

|π̂(x)− µ(Kx,h)| ≥
cn

2

)
+ P

(
sup
x∈G̊h

|µ(Kx,h)− π(x)| ≥ cn

2

)
= Si

1 + Si
2 ,

Since G ⊂ Rd is compact and hence bounded, we have to be careful at the bound-

ary. For the C1h-ring-boundary ∂Gh we get:

P
(

sup
x∈∂Gh

∣∣∣∣π̂(x)− π(x)

∫
G

Kh,x(u)du

∣∣∣∣ ≥ cn

)
≤ P

(
sup

x∈∂Gh

|π̂(x)− µ(Kx,h)| ≥
cn

2

)
+ P

(
sup

x∈∂Gh

∣∣∣∣µ(Kx,h)− π(x)

∫
G

Kh,x(u)du

∣∣∣∣ ≥ cn

2

)
= Sb

1 + Sb
2 ,
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For the bias parts Si
2 and Sb

2, standard analysis with the usual kernel arguments

carries over. Since we have for x in the interior G̊C1h that
∫
G Kh,x(u)du = 1, we

can treat Si
2 and Sb

2 together:

µ(Kx,h)− π(x)

∫
G

Kh,x(u)du =

∫
Bx(C1h)∩G

(π(x + hu)− π(x))K(u)du

=
d

dx
(π(x)) h

∫
Bx(C1h)∩G

uK(u)du + O(h2)

=

{
O(h2) for x ∈ G̊h

O(h) for x ∈ ∂Gh

,

since for x ∈ ∂Gh the ball Bx(C1h) is not entirely in G. Thus the with symmetry

of the kernel the integral is not zero as in the case for x in the interior.

Now treat the stochastic term S1 = P
(
supx∈G |π̂(x)− µ(Kx,h)| ≥ cn

2

)
. Here we

do not have to distinguish between cases of x on the boundary or not. As G is

compact, there exists a cover of l(n) open balls I1, . . . , Ik, . . . , Il(n) with radius
c1

l(n)1/d for an appropriate constant c1 and with centers in xk and
⋃l(n)

k=1 Ik ⊇ G.

The maximal distance attainable between elements inside one of the balls is the

diameter:

max
a,b∈Ik

‖a− b‖ ≤ 2c1

l(n)1/d
=

c

l(n)1/d
for all k ∈ {1, . . . , l(n)} (A.20)

P
(

sup
x∈G

|π̂(x)− µ(Kx,h)| ≥
cn

2

)
= P

(
max

1≤k≤l(n)
sup

x∈G∩Ik

|π̂(x)− µ(Kx,h)| ≥
cn

2

)
≤ P

(
max

1≤k≤l(n)
sup

x∈G∩Ik

|π̂(x)− π̂(xk)| ≥
cn

6

)
+ P

(
max

1≤k≤l(n)
|π̂(xk)− µ(Kxk,h)| ≥

cn

6

)
+P
(

max
1≤k≤l(n)

sup
x∈G∩Ik

|µ(Kxk,h)− µ(Kx,h)| ≥
cn

6

)
= Q1 + Q2 + Q3

The first and the third term, Q1 and Q3, are easy to handle and therefore treated
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first. Look at Q1:

sup
x∈G∩Ik

|π̂(x)− π̂(xk)| =
1

T (n)
sup

x∈G∩Ik

∣∣∣∣∣
n∑

i=1

(Kh,x(Xi)−Kh,xk
(Xi))(Xi)

∣∣∣∣∣
=

1

π(G)

∫
G

sup
x∈G∩Ik

|Kh,x(u)−Kh,xk
(u)|π(u)du P− a.s.

≤ sup
x∈G∩Ik

L

hd+1
n

‖x− xk‖ P− a.s.

≤ Lc1

hd+1
n l(n)1/d

P− a.s. .

The first P − a.s relation is a consequence of the quotient limit theorem (A.11),

while the inequalities thereafter follow directly from (A.20) and the Lipschitz as-

sumption on the kernel.

Since the integral operator and everything inside is continuous, obviously we

also get max1≤k≤l(n) supx∈G∩Ik
|µ(Kxk,h)− µ(Kx,h)| = O

(
1

hd+1
n l(n)1/d

)
. Thus when

imposing c := O
(

1

hd+1
n l(n)1/d

)
, then Q1 and Q3 are oP (1).

Q2, the second term, however, needs some extra considerations: On the grid of

the xk-balls we can simplify the expression by the triangle inequality and get an

upper bound where “the maximum is outside the measure” and therefore easier

tractable:

P
(

max
1≤k≤l(n)

|π̂(xk)− µ(Kxk,h)| ≥
cn

6

)
= P

(
max

1≤k≤l(n)

∣∣∣∣∣ 1

T (n)

n∑
i=1

Kxk,h − µ(Kxk,h)

∣∣∣∣∣ ≥ cn

6

)

≤ l(n) · sup
x∈G

P

(∣∣∣∣∣ 1

T (n)

n∑
i=1

Kx,h − µ(Kx,h)

∣∣∣∣∣ ≥ cn

6

)

≤ l(n) · sup
x∈G

P

∣∣∣∣∣∣ 1

T (n)hd

T (n)−1∑
k=0

Wk,x + U(n)

∣∣∣∣∣∣ ≥ c′n
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≤ l(n) · sup
x∈G

P

 1

T (n)hd

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ c′′n

 ,

where the second to last inequality follows because of with c′n = cnπs(C)
6

. Since

c′′n differs from cn only by a constant, we continue notation with cn. Furthermore

the sum is rewritten in terms of the centered split chain components W ′
k,x =

Ux,k − µ(Kx) where Ux,k is the k–th component of the split chain of Kx. Thus it

is:

Ux,k =

τk+1∑
j=τk+1

Kx(Xj) for k = 0, . . . , T (n)− 1

Un =
n∑

j=τT (n)+1

Kx(Xj)

As parts of a split chain all Wx,k are iid Wx for a given x ∈ G. And obviously from

the definition it is E(Wx) = 0.

When dealing with P
(∣∣∣ 1

T (n)

∑T (n)−1
k=0 Wk,x

∣∣∣ ≥ cn

6

)
the main difficulty stems from

the fact that the norming TC(n) is stochastic and not independent of Wx. It is

P

 1

T (n)hd

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ cn


≤ P

 1

T (n)

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ cnh
d, 1 ≤ T (n) ≤ δn


+P

 1

T (n)hd

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ cn, T (n) > δn


≤ P

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ cnδnh
d
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The last inequality follows since for the first term

P

 1

T (n)

∣∣∣∣∣∣
T (n)−1∑

k=0

Wk,x

∣∣∣∣∣∣ ≥ cnh
d, 1 ≤ T (n) ≤ δn


≤ P

(
T (n) ≤ δnκ

hdcn

, 1 ≤ T (n) ≤ δn

)
≤ P (T (n) ≤ δn) = P

(
T (n) ≤ ln

δn

ln

)
≤

2lna( δn

ln
)− 1

(ln + 1)a( δn

ln
) + 1

→ 0

with κ = max1≤k≤δn |Uk − µ| < ∞ and ln → 0 chosen such that
2lna( δn

ln
)−1

(ln+1)a( δn
ln

)+1
→ 0

at polynomial rate n−α with α such that l(n)n−α ∼ n−α′ and α′ > 1. The last

inequality follows from Theorem 2.1. in [Chen, 1999a].

Treat the remaining second term:

ξk = Uk1|Uk|≤R − E(Uk1|Uk|≤R)

ηk = Uk1|Uk|>R − E(Uk1|Uk|>R)

with R > 0 large enough such that Eξ2 := σ2
R > 0. Then Wk = ξk + ηk.

For each n, T (n) is a stopping time w.r.t to the iid sequence ξk. With a standard

maximal inequality for martingales (see e.g. Theorem 2.1., Chapter2, [Hall and

Heyde, 1980])

P

∣∣∣∣∣∣
T (n)−1∑

k=0

ξk

∣∣∣∣∣∣ ≥ cnδnh
d

 ≤ P

(
max
l≤T (n)

∣∣∣∣∣
l∑

k=0

ξk

∣∣∣∣∣ ≥ cnδnh
d

)

≤ e−λL2a(n)θE

exp θ

∣∣∣∣∣∣
T (n)∑
k=0

ξk√
a( n

L2a(n)
)

∣∣∣∣∣∣
(A.21)

For cnδnh
d = λ

√
a( n

L2a(n)
)L2a(n) with λ > 0 and θ > 0 arbitrary. The separation

into weighting and exponential factors seems at this stage somehow arbitrary. But

their choice is perfectly balanced in view of the following assessment.

With Lemma 2.2. in [Chen, 2000], which uses that the left hand side of the

expression below is a martingale where the optional stopping theorem can be
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applied to:

E

exp θ

∣∣∣∣∣∣
T (n)−1∑

k=0

ξk√
a( n

L2a(n)
)
− (T (n) + 1)Ln(s, θ)

∣∣∣∣∣∣


≤ exp

s(1 + ε)L2a(n) +
Rθ√

a( n
L2a(n)

)


= (1 + o(1)) exp (s(1 + ε)L2a(n)) (A.22)

with s > Λβ(θ), ε > 0 where Λβ(θ) =
(
Γ(β + 1)

θ2σ2
R

2

)1/β

for 0 < β ≤ 1 and

Ln(s, θ) = log E

exp
θξ√

a( n
L2a(n)

)
− sL2a(n)

n
min (τα, nε)


≤ log E

exp
θξ√

a( n
L2a(n)

)
− sL2a(n)

n
τα

+ O(e−εnP (τα ≥ εn))

∼ 1√
a( n

L2a(n)
)

(
θ2σ2

R

2
− sβ

Γ(β + 1)

)
for n →∞ . (A.23)

Thus with (A.22) and (A.23) for n large and s → Λβ(θ), ε → 0:

E

exp θ

∣∣∣∣∣∣
T (n)−1∑

k=0

ξk√
a( n

L2a(n)
)

∣∣∣∣∣∣
 ≤ exp (Λβ(θ)L2a(n)) .

The inequality above is also true in the case β = 0 if we set Λβ(0) =0 if θ2σ2
R ≤ 2

∞ if θ2σ2
R > 2

and take s → 0 in (A.22) and (A.23).

In total putting the above inequality into (A.21) and since ξT (n) ≤ 2R

P

∣∣∣∣∣∣
T (n)∑
k=0

ξk

∣∣∣∣∣∣ ≥ λ

√
a(

n

L2a(n)
)L2a(n)

 ≤ e−Λ?
β(λ)L2a(n) (A.24)
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with Λ?
β(λ) = supθ>0 (λθ − Λβ(θ)) = (2 − β)

(
ββλ2

2Γ(β+1)σ2
R

) 1
2−β

by solving the op-

timization for all λ ∈ R and with the convention 00 = 1 in the case β = 0.

Set νk := inf
{

n : a
(

n
L2(a(n))

)
≥ k2k

}
. Then L2(a(νk)) = log(2k log k). Thus the

right–hand side of (A.24) is summable over k for λ >
√

2Γ(β+1)σ2
R

(2−β)(2−β)ββ . With Borel-

Cantelli lemma we find :

lim sup
n→∞

∣∣∣∣∣∣
T (n)∑
k=0

ξk

∣∣∣∣∣∣ ≤ λ

√
a(

n

L2a(n)
)L2a(n) a.s. (A.25)

For ηk the situation is more standard. According to the Hartmann-Winter’s law

of iterated logarithm it is:

lim sup
n→∞

max
k≤n−1

∣∣∣∣∣
l∑

k=0

ηk

∣∣∣∣∣ ≤√nL2(n)
√

Eη2 a.s. .

This implies

lim sup
n→∞

max
k≤T (n)−1

∣∣∣∣∣
l∑

k=0

ηk

∣∣∣∣∣ ≤√T (n)L2(T (n))
√

Eη2 a.s. .

But since lim supn→∞ T (n) ≤ κ
√

a( n
L2a(n)

)L2a(n) a.s. with κ > 0 (Theorem 2.2

in [Chen, 1999a]), we get:

lim sup
n→∞

max
k≤T (n)−1

∣∣∣∣∣
l∑

k=0

ηk

∣∣∣∣∣ ≤√2κEη2

√
a(

n

L2a(n)
)L2a(n) a.s. .

Take R →∞, which yields σ2
R → σ2 but σ2

R ≤ σ2 and Eη2 → 0. So finally with

cnδnh
d > 6

√
2Γ(β + 1)σ2

(2− β)(2−β)ββ

√
a(

n

L2a(n)
)L2a(n)

= Cβσ

√
a(

n

L2a(n)
)L2a(n) , (A.26)

we find that for n large enough it is

l(n) · sup
x∈G

P

(
1

T (n)

∣∣∣∣∣
n∑

i=0

Wx,i

∣∣∣∣∣ ≥ cn

6

)
= 0 ,
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due to (A.25). In particular the probabilities are summable, i.e.

∞∑
k=1

l(n)P

(
1

T (n)

∣∣∣∣∣
n∑

i=0

Wx,i

∣∣∣∣∣ ≥ cn

6

)
< ∞ .

Thus with the Borel–Cantelli lemma we can conclude that the entire term S1 is

o(1) for appropriate choices of cn, δn, h in accordance with (A.26).

For all terms including S2 to vanish, we need additionally (l(n))1/dhd+1 → ∞
and hd

√
a( n

L2a(n)
)L2a(n) → ∞. Choose δn = a

(
n

L2a(n)

)
L2a(n)2 < n. Then the

condition for S2 and (A.26) are simultaneously satisfied for c′n = 1√
a( n

L2a(n)
)L2a(n)hd .

Combining this with the bias term, we find the stated final rates.

Remark A.1.

1. Under the assumption that for any x ∈ G there exists a measure φ such that

Px(Xm ∈ A) ≥ λφ(A) (A.27)

for any A ⊂ C, we could also work with a Markov process version of Ho-

effding’s inequality obtained by Glynn and Ormoneit [Glynn and Ormoneit,

2002]. Together with the usual blocking argument we would find:

P

(
1

TC(n)hd

n∑
i=0

Wk,x ≥
cn

6

)
≤ c(a(n)hd)−2 (A.28)

with c > 0 constant and a faster rate cn. But the uniformity imposed

by (A.27) is quite restrictive. It restricts the set of β–recurrent processes

significantly to the positive recurrent ones only.

2. For β = 1, a refinement of the law of iterated logarithm inequality (A.25)

can be found directly in [Chen, 1999a]:

lim sup
n→∞

∑n
k=1 f(Xk)√
2nL2n

= σf a.s. . (A.29)

Lemma A.2 is for the full dimensional β–null Harris recurrent process. For the

SBE algorithm, however, only univariate and bivariate results are of importance.
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Therefore the following corollary is stated for these cases in the generalized SBE

algorithm, extending the result of A.2 to small sets. Assume w.l.o.g. that π(1G) =

1 . Then πG(x) = π(x)
π(1G)

= π(x).

Corollary A.2. Assume that Assumptions 2.1 and 4.3 hold. Set β2 := βjk + ε2

with ε2 very small such that max {m : LK(m) ≥ mε2} >> 1 with LK the slowly

varying function from the β–recurrence condition in (2.4) with respect to the bivari-

ate Kernel function K2. Let the bandwidth h → 0 such that n
β2
2 (L2n

β2)1−β2h2 →∞
and set h l(n)1/2 = n

β2
2 (L2n

β2)1−β2 . Then

sup
xj,k∈G̊j,k

h

∣∣π̂jk,Gjk
(xjk)− πjk,Gjk(xjk)

∣∣ = OP

(
h2 +

1

n
β2
2 (L2nβ2)1−β2h2

)
(A.30)

sup
xj,k∈∂Gj,k

h

∣∣π̂jk,Gjk
(xjk)− πjk,Gjk(xjk)

∣∣ = OP

(
h +

1

n
β2
2 (L2nβ2)1−β2h2

)
. (A.31)

and

sup
xj∈G̊(k)

j,h

∣∣∣∣π̂(k)

j,G(k)
j

(xj)− π
j,G(k)

j
(xj)

∣∣∣∣ = OP

(
h2 +

1

n
β2
2 (L2nβ2)1−β2h

)
(A.32)

sup
xj,k∈∂Gj,h

∣∣∣∣π̂(k)

j,G(k)
j

(xj)− π
(k)

j,G(k)
j

(xj)

∣∣∣∣ = OP

(
h +

1

n
β2
2 (L2nβ2)1−β2h

)
. (A.33)

Proof. The proof is an immediate consequence of the previous lemma and (A.5).

Remark A.2. Analogous results hold for π̂jk,Gf
jk

and π̂j,Gf
j

with full–dimensional

type of nonstationarity β under Assumptions 2.1 and 4.1.

Uniform consistency of the regression function

The one–dimensional pilot smoothers can be decomposed into a bias and a stochas-

tic part as our underlying model (1.1) has an additively separable error term.

m̂j(x
j) =

∑n
i=1 Kh,xj(Xj

i )Yi∑n
i=1 Kh,xj(Xj

i )
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=

(∑n
i=1 Kh,xj(Xj

i )mi(Xi)∑n
i=1 Kh,xj(Xj

i )

)
+

(∑n
i=1 Kh,xj(Xj

i )εi∑n
i=1 Kh,xj(Xj

i )

)
=: m̂B

j (xj) + m̂A
j (xj)

Obviously m̂A
j (xj) is the stochastic part whereas m̂B

j (xj) is the bias or expectation

part.

When starting the SBE algorithm with these pilot estimates we find that the

resulting m̃j(x
j) preserve the additive structure of separate bias and stochastic

part. Thus we have

m̃j(x
j) = m̃B

j (xj) + m̃A
j (xj) , (A.34)

where each of the parts m̃s
j(x

j) with s ∈ {A, B} separately solves the defining

equations (3.2):

m̃s
j(x

j) = m̂s
j(x

j)− m̃s
0,j −

∑
k 6=j

∫
m̃s

k(x
k)

π̂j,k(x
j, xk)

π̂j(xj)
dxk (A.35)

with for j 6= k :

m̃s
0,j =

∫
m̂s

j(x
j)π̂j(x

j)dxj∫
π̂j(xj)dxj

.

Definition A.1. Instead of the usual conditional expectation, we need an adapta-

tion which only involves one and two dimensional covariates. The notation follows

from (A.14)

(Am)j(x
j) := mj(x

j) +
∑
k 6=j

∫
Gk

mk(x
k)

πjk(x
jk)

πj(xj)
dxk (A.36)

In nonstationary smooth backfitting, Nadaraya–Watson estimates are at least of

two dimensional nonstationary type, i.e. m̂
(k)
j or m̂f

j are of interest.
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Lemma A.3 (Uniform rate of the bias part). Let either Assumptions 1-3 or As-

sumptions 1,2, and 3* hold.

sup
xj∈G̊f

j,h

∣∣∣m̂f,B
j (xj)− (Amf )j(x

j)
∣∣∣ = OP

(
h2 +

1

nβ/2(L2nβ)1−βh

)
sup

xj∈∂Gf
j,h

∣∣∣m̂f,B
j (xj)− (Amf )j(x

j)
∣∣∣ = OP

(
h +

1

nβ/2(L2nβ)1−βh

)

Proof. With standard kernel calculations it is E
(
m̂B

j (xj)|Xj
1 , . . . , X

j
n

)
=

(Am)j(x
j) + O(h2) uniformly in the interior G̊j and E

(
m̂B

j (xj)|Xj
1 , . . . , X

j
n

)
=

(Am)j(x
j) + O(h) uniformly in ∂Gj.

For the exponential bound on m̂B
j (xj)− E

(
m̂B

j (xj)|Xj
1 , . . . , X

j
n

)
we need to show

uniform convergence of centered versions Si,l?
j of the following expressions:

Si,l
j (xj) = Kh,xj(Xj

i )(X
j
i − xj)lm

(l)
j (xj) dxj

with l ∈ {1, 2}. The centering is with respect to the appropriate mean, i.e.,

Si,l?
j (xj) = Si,l

j (xj)− π̂j(x
j)µ(Si,l

j (xj)). Scaled summing of these random variables

is denoted by sl?
j = (T j(n))−1

∑n
i=1 Si,l?

j (xj).

Everything follows directly along the steps of the previous lemma if we assume

as Nh,K(x) = {u| ‖u− x‖ ≤ C1h} is small because G is small. Then m is special

(4.1) and the necessary moment bounds follow from Karlsen et al. [2007] Theorem

3.4.

Remark A.3. Under Assumptions 2.1,4.3 and 4.4 or 2.1,4.3 and 4.4* , we get

with m̂
(k)
j rates with bivariate βjk on Gjk

Definition A.2. We use the following short hand notation:

µf
(jε)(h⊗ g) :=

∫∫
h(u)g(v)πf

jε(u, v) du dv (A.37)

µ
(k)
(jε)(h⊗ g) :=

∫∫
h(u)g(v)π

(k)
jε (u, v) du dv . (A.38)

And idε is the identity on the support of ε, i.e., idε(u) = u for u ∈ G0.
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Lemma A.4 (Uniform rate of the variance part of the Nadaraya–Watson–type

estimator). Let Assumptions 2.1 - 4.2 hold.

sup
xj∈G̊f

j,h

∣∣∣∣∣m̂f,A
j (xj)− µf

(jε)(Kxj ,h(·)⊗ idε)
T f

jε(n)

L̂f
j (x

j)

∣∣∣∣∣ = OP

(
L2n

β

(nβh)1/2

)

sup
xj∈∂Gf

j,h

∣∣∣∣∣m̂f,A
j (xj)− µf

(jε)(Kxj ,h(·)⊗ idε)
T f

jε(n)

L̂f
j (x

j)

∣∣∣∣∣ = OP

(
L2n

β

(nβh)1/2

)

Proof. Need an exponential bound on
∑n

i=0 K
h,xj (Xj

i )εi∑n
i=0 K

h,xj (Xj
i )

. Therefore the independent

split chain parts for the sum in the numerator are Uk’s for the bivariate chain

(Xj, ε). Then the argument follows along the lines of lemma A.18 above, where

βjε is for the compound chain (Xj, ε) and the truncation technique will be applied

separately to the Xj and ε part. Convergence with βj instead of βjε follows with

Lemma 6.1. in Karlsen et al. [2007].

Remark A.4. In general, the stochastic bias term µf
(jε)(Kxj ,h(·)⊗idε)

T f
jε(n)

L̂f
j (xj)

is op(1)

(see (6.23) in Karlsen et al. [2007]). Under Assumption 4.2.3 and with bandwidth

h < n1/5β+ε in Theorem 4.1 the term vanishes.

Remark A.5. Under Assumptions 2.1,4.3 and 4.4, we get with m̂
(k)
j rates with

bivariate βjk on Gjk and a stochastic bias µ
(k)
(jε)(Kxj ,h(·)⊗ idε)

T
(k)
jε (n)

L̂
(k)
j (xj)

.

If ε and Xj are independent, or only asymptotically independent, then it is

πjε = πj · πε. Thus µ(jε)(Kxj ,h(X)⊗ idε)
T jε(n)

L̂j(xj)
= 0 under Assumption 3∗.

Lemma A.5. [Asymptotic distribution of the variance part] Let Assumptions

2.1,4.1 and 4.2 hold. For n →∞, h → 0 let hnβ−ε →∞. Then√
hL̂f

j (x)

(
m̂f,A

j (xj)− µf
(jε)(Kxj ,h(·)⊗ idε)

T f
jε(n)

L̂f
j (x

j)

)
d−→ N

(
0,

κ2
0(x

j)

κ0(xj)2
σf

j (xj)

)
.

Let Assumptions 2.1,4.3 and 4.4 hold. For n → ∞, h → 0 let hnβjk−ε → ∞.

Then√
hL̂

(k)
j (x)

(
m̂

(k),A
j (xj)− µ

(k)
(jε)(Kxj ,h(·)⊗ idε)

T
(k)
jε (n)

L̂
(k)
j (xj)

)
d−→ N

(
0,

κ2
0(x

j)

κ0(xj)2
σ

(k)
j (xj)

)
.
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with σf
j (xj) =

∫
ε2 πf

jε(x
j ,ε)

πfε
j (xj)

dε and σ
(k)
j (xj) =

∫
ε2 π

(k)
jε (xj ,ε)

π
(k)ε
j (xj)

dε.

Proof. The proof directly follows from [Karlsen et al., 2007] Theorem 6.1 and

Theorem 5.5.

As before, if we choose n−(β+ε) < h < n−1/5(β+ε) or n−(βjk+ε) < h < n−1/5(βjk+ε)

the bias terms is negligible. If ε is stationary linear there exists a simplified version

of CLT which has moment bounds restrictions familiar to the ones in the purely

stationary case.

Lemma A.6. [Asymptotic distribution of the variance part under independence]

Let Assumptions 2.1,4.1, and 4.2* hold. For n →∞, h → 0 let hnβδ−ε →∞ with

δ = 1
2−1/(k+1)

and k from the moment conditions in Assumptions 4.2*. Then

√
hL̂f

j (x) · m̂f,A
j (xj)

d−→ N
(

0,
κ2

0(x
j)

κ0(xj)2
σε

)
where σε =

∫
ε2πε(ε) dε.

Proof. The proof directly follows from [Karlsen et al., 2007] Theorem 3.5..

Remark A.6. For Assumptions 2.1,4.3, and 4.4* Lemma A.5 holds for m̂
(k),A
j

analogously.

A.2.3 Proofs of the Theorems

In the previous subsection the major technical work has been done. With these

lemmata, requirements (A1)-(A6), (A8), and (A9) of Mammen et al. in [Mammen

et al., 1999] can be shown to be met. For the SBE procedure to work and to

lead to a well defined asymptotic distribution and bias behavior these technical

conditions have to be fulfilled. For how they fully determine convergence and

asymptotic properties of the backfitting operator see [Mammen et al., 1999]. If

done so, the proof of any of the stated theorems directly follows from the proofs

and the reasoning in [Mammen et al., 1999], page 1470 ff.
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For the rest of this section let either the bundle of assumptions for Theorem 4.1

and 4.2 or Theorem 4.3 and 4.4 hold. To treat all nonstationary smooth backfitting

cases at once, set πj = πf
j and πjk = πf

jk or πj = π
(k)
j and πjk = πjk, depending on

whether we have a full or just pairwise Harris recurrent framework.

Assumption (A1)

We want the backfitting projection operator positive self–adjoint and compact.

This is why requirement (A1) has to be fulfilled:

(A1) For all j 6= k it holds that:∫
π2

j,k(x
j, xk)

πj(xj)πk(xk)
dxjdxk ≤ ∞ . (A.39)

Proof. With assumption (B1b) we formally get: inf πj(x
j) ≥ c1 > 0 and

sup πj,k(x
j, xk) ≤ c2 < ∞. Thus evidently∫

π2
j,k(x

j, xk)

πj(xj)πk(xk)
dxjdxk ≤ c2

2

c1

< ∞ .

In order to establish (A2),(A4) and (A8) we need the uniform convergence result

of the estimator of the density of the invariant measure in the uni- and bivariate

case as developed above.

For (A3) and (A5) to hold the uniform result for the regression estimator is re-

quired.

Assumptions (A2), (A4) and (A8)

We need the stochastic projection operator to converge during iterative applica-

tions. This is why assumption (A2) needs to be verified. All three assertions

can be shown with the previous lemmata and the resulting corollaries. As simple

corollaries we have:
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Corollary A.3.

sup
xj∈∂Gj

C1h

∣∣π̂j(x
j)
∣∣ = OP (1) (A.40)

sup
xjk∈∂Gj

C1h×Gk

∣∣π̂jk(x
jk)
∣∣ = OP (1) (A.41)

sup
xj∈∂Gj

C1h

∣∣π̂j(x
j)−1

∣∣ = OP (1) (A.42)

Proofs are simple consequences oft the uniform convergence results for boundary

and interior.

(A2) has three parts. G ∈ Rd is compact. Denote the finite d–dimensional

volume with |G| :=
∫
G dx and the analogously defined one and two dimensional

“trace” volumes respectively with |Gj| and |Gjk|. Furthermore name the obtained

rates of the uniform consistency in lemma A.2 of the density estimators as c1
n in

the univariate case and as c2
n in the bivariate one:∫

Gj

∣∣∣∣ π̂j(x
j)− πj(x

j)

πj(xj)

∣∣∣∣2 πj(x
j)dxj

=

∫
Gj

∣∣π̂j(x
j)− πj(x

j)
∣∣2 1

|πj(xj)|
dxj

≤ max
xj∈Gj

∣∣π̂j(x
j)− πj(x

j)
∣∣2 max

xj∈Gj

1

|πj(xj)|

∫
Gj

dxj

≤ OP

(
c1
n

)2 · |Gj|
c1

≤ oP (1)

∫
Gj,k

∣∣∣∣ π̂j,k(x
j,k)

πj(xj)πk(xk)
− πj,k(x

j,k)

πj(xj)πk(xk)

∣∣∣∣2 πj(x
j)πk(x

k)dxjdxk

=

∫
Gj,k

∣∣π̂j,k(x
j,k)− πj,k(x

j,k)
∣∣2 1

|πj(xj)πk(xk)|
dxjdxk

≤ max
xj,k∈Gj,k

∣∣π̂j,k(x
j,k)− πj,k(x

j,k)
∣∣2 max

xj,k∈Gj,k

1

|πj(xj)πk(xk)|

∫
Gj,k

dxjdxk
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≤ OP

(
c2
n

)2 · 1

c2
1

∫
Gj,k

dxjdxk

≤ oP (1)

∫
Gj,k

∣∣∣∣ π̂j,k(x
j,k)

π̂j(xj)πk(xk)
− πj,k(x

j,k)

πj(xj)πk(xk)

∣∣∣∣2 πj(x
j)πk(x

k)dxjdxk

=

∫
Gj,k

∣∣∣∣ 1

π̂j(xj)

∣∣∣∣ ·
∣∣π̂j,k(x

j,k)πj(x
j)− πj,k(x

j,k)π̂j(x
j)
∣∣2

|πj(xj)πk(xk)|
dxjdxk

≤ 1

c2
1

·
∫
Gj,k

1

|π̂j(xj)|
∣∣π̂j,k(x

j,k)πj(x
j)− πj,k(x

j,k)π̂j(x
j)
∣∣2 dxjdxk

≤ |Gj,k|
c2
1

· max
xj,k∈Gj,k

 1

|π̂j(xj)|︸ ︷︷ ︸
OP (1)

∣∣∣∣∣∣∣
(
π̂j,k(x

j,k)− πj,k(x
j,k)
)︸ ︷︷ ︸

oP (1)

πj(x
j)︸ ︷︷ ︸

bounded

−
(
π̂j(x

j)− πj(x
j)
)︸ ︷︷ ︸

oP (1)

πj,k(x
j,k)︸ ︷︷ ︸

bounded

∣∣∣∣∣∣∣
2


≤ oP (1)

(A4) is shown by similar arguments. We find:

sup
xk∈Ck

∫
Gj

π̂2
j,k(x

j,k)

π̂2
k(x

k)πj(xj)
dxj

= max
xk∈Gk

∫
Cj

(
π̂j,k(x

j,k)− πj,k(x
j,k) + πj,k(x

j,k)

π̂k(xk)

)2
1

πj(xj)
dxj

≤ max
xjk∈Gjk

(
π̂j,k(x

j,k)− πj,k(x
j,k) + πj,k(x

j,k)

π̂k(xk)

)2 |Cj|
c1

≤ max
xjk∈Gjk

[(
π̂j,k(x

j,k)− πj,k(x
j,k)

π̂k(xk)

)2

+

(
πj,k(x

j,k)

π̂k(xk)

)2

+2
(π̂j,k(x

j,k)− πj,k(x
j,k))πj,k(x

j,k)

π̂k(xk)

]
|Gj|
c1

Thus with the same considerations as before in (A2)the terms π̂j,k(x
j,k)−πj,k(x

j,k)

are a.s. bounded by null sequences according to the uniform convergence lemmata.

These sequences are in particular less or equal 1. Furthermore it is 1
π̂k(xk)

≤ 1
πk(xk)

.
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Hence in total we find the desired almost sure bound by adding up:

max
xjk∈Gjk

(
1

πk(xk)
+

πj,k(x
j,k)2

πk(xk)2
+

πj,k(x
j,k)

πk(xk)
)
|Gj|
c1

≤ (c1+c2
2+c1c2)

|Gj|
c3
1

=: CA4 P−a.s. .

So in total we find that with probability one it is:

sup
xk∈Ck

∫
Gj

π̂2
j,k(x

j,k)

π̂2
k(x

k)πj(xj)
dxj ≤ CA4

(A8) It is:

sup
xj∈Gj

∫
Gk

∣∣∣∣ π̂j,k(x
j,k)

π̂j(xj)π̂k(xk)
− πj,k(x

j,k)

πj(xj)πk(xk)

∣∣∣∣ πk(x
k)dxk = oP (1)

The result follows through successive application of the triangle inequality by

adding and subtracting all missing possible permutations of hats in the term
πj,k(xj,k)

πj(xj)πk(xk)
. Together with uniform convergence for the bivariate density and (A.42)

we find that the term is asymptotically negligible.

Assumptions (A3) and (A5)

We want the stochastic projection operator to converge during iterative applica-

tions. For this assumption, (A3) is the final condition to be verified.

(A3) It is: ∫
Gj

(m̃j(x
j))2π(xj)dxj ≤ C .

The proof follows immediately from (A5) below.

(A5) For the variance part it is with lemma A.3:∫
Gj

(m̃A
j (xj))2π(xj)dxj ≤ C( sup

xj∈Gj

∣∣m̃A
j (xj)

∣∣)2 .

which is bounded almost surely by an arbitrary positive constant.

For the bias we get with lemma A.3:∫
Gj

(m̃B
j (xj))2π(xj)dxj ≤

∫
Gj

µj(x
j)πj(x

j)dxj +

∫
Gj

(m̃B
j (xj)− µj(x

j))2πj(x
j)dxj .

that the second term is bounded almost surely by a constant. Since any continuous

function on compact support is bounded also the first term is bounded.
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Assumption (A6)

With the definition of m̂A and the triangle inequality we get:

sup
xk∈G̊k

∣∣∣∣∣
∫
Gj

π̂j,k(x
j, xk)

π̂k(xk)
m̂A(xj)dxj

∣∣∣∣∣
≤ sup

xk∈G̊k

∣∣∣∣∣
∫
Gj

πjk(x
jk)

πk(xk)πj(xj)

ŝj(x
j)

T j(n)
dxj

∣∣∣∣∣
+ sup

xk∈G̊k

∣∣∣∣∣
∫
Gj

[
π̂j,k(x

jk)

π̂k(xk)
− πj,k(x

jk)π̂j(x
j)

πk(xk)πj(xj)

]
ŝj(x

j)

T j(n)
dxj

∣∣∣∣∣
≤ sup

xk∈G̊k

∣∣∣∣∫
Gj

πj,k(x
jk)

πk(xk)πj(xj)

ŝj(x
j)

T j(n)
dxj

∣∣∣∣+ oP (h2) ,

with ŝj(x
j) =

∑n
i=1 Kh,xj(Xj

i )εi since with Lemmas A.2 and A.3 it holds:

sup
xk∈G̊k

∣∣∣∣∫
Gj

[
π̂j,k(x

jk)

π̂k(xk)
− πj,k(x

j, xk)π̂j(x
j)

πk(xk)πj(xj)

]
ŝj(x

j)

T (n)
dxj

∣∣∣∣

≤ sup
xj∈G̊j

∣∣∣∣ ŝj(x
j)

T (n)

∣∣∣∣︸ ︷︷ ︸
OP (h2+c

(1)
n )

|Gj|

 sup
(xk,xj)∈G̊jk

∣∣∣∣ π̂jk(x
jk)− πjk(x

jk)

π̂k(xk)

∣∣∣∣︸ ︷︷ ︸
OP (h2+c

(2)
n )

+

+ sup
(xjk)∈G̊k,j

∣∣∣∣ πjk(x
jk)

πk(xk)πj(xj)

(
π̂j(x

j)− πj(x
j)
)∣∣∣∣︸ ︷︷ ︸

OP (h2+c
(1)
n )

+ sup
(xjk)∈G̊k,j

∣∣∣∣πj,k(x
jk)

π̂k(xk)
− πjk(x

jk)

πk(xk)

∣∣∣∣︸ ︷︷ ︸
OP (h2+c

(1)
n )


= oP (h2)

where the rates c
(1)
n , c

(2)
n → 0 are as stated in the lemmas.

Now rewrite the remaining first term in the following way:

sup
xk∈G̊k

∣∣∣∣∫
Gj

πj,k(x
jk)

πk(xk)πj(xj)
ŝj(x

j)dxj

∣∣∣∣ = sup
xk∈G̊k

∣∣∣∣∣
n∑

i=1

ξi(x
k)

∣∣∣∣∣
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with

ξi(x
k) =

(∫
Gj

πjk(X
j
i + uh, xk)

πk(xk)πj(X
j
i + uh)

K(u)du

)
εi

T j(n)
.

where the integral is bounded, since all the densities are bounded from above and

from below. Along the lines of the proofs of Lemma A.2 and Lemma A.3 this term

can be shown to be oP (h2). Hence

sup
xk∈G̊k

∣∣∣∣∣
∫
Gj

π̂j,k(x
jk)

π̂k(xk)
m̂A(xj)dxj

∣∣∣∣∣ = oP (h2) ,

which implies(∫
Gk

(∫
Gj

π̂jk(x
jk)

π̂k(xk)
m̂A(xj)dxj

)2

π̂k(x
k)dxk

)1/2

= oP (h2) ,

since
∫
Gk

π̂k(x
k)dxk is OP (1).

Proof of Theorem 4.1 and 4.2

With (A1)-(A6) and (A8) and the uniform lemmata of the previous subsection,

bias expansion and asymptotic distribution are as in [Mammen et al., 1999]. De-

pending on different independence assumptions on ε, results in 4.1 and 4.2 differ

by convergence in ditribution according to lemma A.5 or A.6.

Proof of Theorem 4.3 and 4.4

Since convergence of standard SBE in [Mammen et al., 1999] relies only on up to

two dimensional objects, the proof of convergence of generalized backfitting goes

along the lines of [Mammen et al., 1999], if we show that the generalized backfitting

operator results from a norm. Bias and variance expressions, however, have to be

calculated anew as done below.
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Bias Expansion

From the operator backfitting equation (A.14), we can deduce:

m̃−m = (I − Â)−1 1

d− 1
(1− Φ̂)m̂− (I − Â)−1(I − Â)m

= (I − A)−1

[
1

d− 1
(1− Φ̂)m̂− (I − Â)m

]
+

+
(
(I − Â)−1 − (I − A)−1

)[ 1

d− 1
(1− Φ̂)m̂− (I − Â)m

]
.(A.43)

If we set m0 as in (3.14), the centering operation with Φ can be omitted. From

[Mammen and Linton, 2005] equation (41), it follows that the second summand

is negligible for the bias since
(
(I − Â)−1 − (I − A)−1

)
= OP (

∑
k 6=j h2

jk) in the

interior. Below we focus on the term in squared bracket in order to derive the

explicit form of bias of m̃. The goal is to expand 1m̂ in terms of the projection

operator (I − Â) of the backfitting equations (A.14). With m̂II
j = 1

d−1
(1m̂)j as in

(A.16) it is

sup
xj∈G̊j

∣∣∣m̂II,B
j (xj)− ν̂n,j(x

j)
∣∣∣ = oP (

∑
k 6=j

h2
jk) (A.44)

sup
xj∈∂Gj

∣∣∣m̂II,B
j (xj)− ν̂n,j(x

j)
∣∣∣ = oP (

∑
k 6=j

hjk) (A.45)

where

ν̂n,j(x
j) = mj(x

j) +
∑
k 6=j

∫
Gk

(
mk(x

k)
π̂jk(x

jk)

π̂
(k)
j (xj)

)
dxk +

κ1(x
j)

κ0(xj)

∑
k 6=j

hjk

(
m′

j(x
j) +

∫
Gk

(
m′

k(x
k)

π̂jk(x
jk)

π̂
(k)
j (xj)

)
dxk

)
+

κ2(x
j)

κ0(xj)

∑
k 6=j

h2
jk

(
1

2
m′′

j (x
j) + m′

j(x
j)

π
(k)
j

′(xj)

π
(k)
j (xj)∫

Gk

(
m′

k(x
k)

∂πjk(x
jk)

∂xkπjk(xjk)
+

1

2
m′′

k(x
k)

)
πjk(x

jk)

π
(k)
j (xj)

dxk

)
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Proof. Decompose
(
1m̂B

)
j

in the following way

(1m̂)B
j (xj) =

∑
k 6=j

m̂
(k),B
j (xj) (A.46)

=
∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )m(Xi)

π̂
(k)
j (xj)

(A.47)

=
∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )
(
m0 + m1(X

1
i ) + . . . md(X

d
i )
)

π̂
(k)
j (xj)

(A.48)

In contrast to the stationary case [Mammen et al., 1999] there is no law of large

numbers for nonstationary processes. Instead we have to use the quotient limit

theorem (A.11) which only works for stochastic denominators.

1

T jk
C (n)

∑
i∈Ijk

g(Xj
i ) =

∫∫
g(u)πjk(u, v)du dv

πjk(C)
= Cµ(g(·)) . (A.49)

Expand (A.48) for each summand separately. The kernel function for dimension j

with index set from jk meets a component function ml for l = 1, . . . , d. Distinguish

between three cases l = j or l = k 6= j and l 6= (j ∨ k) in (A.48). We will see that

the last case has some nonstationary peculiarities. For l = j we find with (A.49)

and standard kernel calculations:∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )mj(X

j
i )

π̂
(k)
j (xj)

=
∑
k 6=j

mj(x
j) +

µjk

(
Khjk,xj(·)mj(·)

)
−mj(x

j)µjk

(
Khjk,xj(·)

)
µjk

(
Khjk,xj(·)

) + Rnjk,jk

=
∑
k 6=j

mj(x
j) + hjk

κ1(x
j)

κ0(xj)
m′

j(x
j) + h2

jk

κ2(x
j)

κ0(xj)

(
m′

j(x
j)

π
(k)
j (xj)

π
(k)
j

′(xj) +
1

2
m′′

j (x
j)

)
+Rnjk,jk + oP (h2

jk)

= (d− 1)mj(x
j) +

∑
k 6=j

hjk
κ1(x

j)

κ0(xj)
m′

j(x
j)

+h2
jk

κ2(x
j)

κ0(xj)

(
m′

j(x
j)

π
(k)
j (xj)

π
(k)
j

′(xj) +
1

2
m′′

j (x
j)

)
+ oP (h2

jk)
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The last equation is true since for

sup
xj∈Gj

∣∣Rnjk,jk(x
j)
∣∣ = sup

xj∈Gj

∣∣∣∣∣∣ 1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )mj(X

j
i )

π̂
(k)
j (xj)

−
µjk

(
Khjk,xj(·)mj(·)

)
µjk

(
Khjk,xj(·)

)
∣∣∣∣∣∣

= sup
xj∈Gj

∣∣∣∣∣∣ 1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )mj(X

j
i )− µ(Khjk,xjmj)

π̂
(k)
j (xj)

+

+
µ(Khjk,xjmj)

π̂
(k)
j (xj)

−
µjk

(
Khjk,xj(·)mj(·)

)
µjk

(
Khjk,xj(·)

) ∣∣∣∣∣
= OP

(
1

hjknβjkL2(nβjk)1−βjk

)
= oP (h2

jk) .

The details of this follow exactly from the proof of Lemma A.2 for the stochastic

part. For l = k 6= j standard kernel calculations lead to∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )mk(X

k
i )

π̂
(k)
j (xj)

=
∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

∫
Gk

Khjk,xj(Xj
i )Khjk,xk(Xk

i )mk(X
k
i )

π̂
(k)
j (xj)

dxk

=
∑
k 6=j

∑
i∈Ijk

∫
Gk

Khjk,xj(Xj
i )Khjk,xk(Xk

i )

T jk
C (n)π̂

(k)
j (xj)

(
mk(x

k)+

+m′
k(x

k)(Xk
i − xk) +

1

2
m′′

k(x
k)(Xk

i − xk)2

)
dxk + oP (h2

jk)

=
∑
k 6=j

[∫
Gk

π̂jk(x
jk)

π̂
(k)
j (xj)

mk(x
k)dxk + hjk

∫
Gk

π̂jk(x
jk)

π̂
(k)
j (xj)

κ1(x
j)

κ0(xj)
m′

k(x
k)dxk +

+ h2
jk

κ2(x
j)

κ0(xj)

∫
Gk

(
∂πjk(x

jk)

πjk(xjk)∂xk
m′

k(x
k) +

1

2
m′′

k(x
k)

)
πjk(x

jk)

π
(k)
j (xj)

dxk

]
+Rnjk,jk(x

j) + oP (h2
jk)

For the second to last equation, standard kernel arguments are applied together

with (A.18) and A.3. Exact details follow [Mammen et al., 1999] equations (118)-

(122). In particular we need to show uniform convergence in h2
jk of the following
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expressions against their respective means, which can be expanded into the terms

occurring above:

tlj(x
j) = Khjk,xj(Xj

i )

∫
Gk

Khjk,xk(Xk
i )(Xk

i − xk)lm
(l)
k (xk) dxk

with l ∈ {1, 2}. This is achieved along the lines of Lemma A.3. The last equation

is true since supxj∈Gj |Rn,j(x
j)| = oP (h2

jk). This is shown as before.

For l 6= (j ∨ k) the fact that we might use different data in different directions

complicates the expansion and might therefore add an additional term paying

for the different characters of nonstationarities involved. For the index set Ijk,

data of the marginal X l might also be found outside Gl. To control these outside

happenings, pairwise β–null Harris recurrence is not sufficient. Under Assumption

6, however, we can control each term∑
k 6=j

1

T jk
C (n)

∑
i∈Ijk

Khjk,xj(Xj
i )ml(X

l
i)

π̂
(k)
j (xj)

in the same way as seen above, sum up and we are done.

Otherwise, expand the (d−2) summands for each pair (j, k) in the following way∑
k 6=j

1

T jk(n)

∑
i∈Ijk

Khjk,xj(Xj
i )ml(X

l
i)

π̂
(k)
j (xj)

=
∑
k 6=j

L̂
(lk)
j (xj)

L̂
(k)
j (xj)

 ∑
i∈Ijk∩Ijl

Khjk,xj(Xj
i )ml(X

l
i)

L̂
(lk)
j (xj)

+

+1 (Ijk\Ijl 6= ∅)
L̂

(k)
j (xj)− L̂

(lk)
j (xj)

L̂
(k)
j (xj)

 ∑
i∈Ijk\Ijl

Khjk,xj(Xj
i )ml(X

l
i)

L̂
(k)
j (xj)− L̂

(lk)
j (xj)


=

∑
k 6=j

L̂
(lk)
j (xj)

L̂
(k)
j (xj)

b̂
(k),S
jl (xjl) +

(
1−

L̂
(lk)
j (xj)

L̂
(k)
j (xj)

)
b̂
(k),NS
jl (xjl)

As long as Xjl
i is in Gjl for the index set Ijk, only the stationary bias b̂

(k),S
jl (xjl)

occurs. This coincides with the case where
L̂

(lk)
j (xj)

L̂
(k)
j (xj)

= Op(1). But since Ijk is tai-
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j

Xl

Gk
(j)

Al
jk

Xk

Gl
(j)Gl

(jk)

Figure A.1: The schematic figure shows that index sets in direction j for the

compound processes Xjk being in Gjk and for the compound processes Xjl being

in Gjl, differ not only in size but also in actual elements. In general, X l
i for i ∈ Ijk

will no longer be within the respective small set G(jk)
l ⊆ G(j)

l but outside in Ajk
l .

lored only to Xjk
i being in Gjk, it can occur that Xjl

i lies outside of the controllable

region Gjl in Ajl,njk
∈ R2 with Gjl ∩ Ajl,njk

= ∅ for i ∈ Ijk\Ijl. See Figure A.1 for

an illustration of the problem. To control this issue, it is not sufficient that the

Xjk and Xjl have the same type of nonstationarity, yielding asymptotically the

same amount of data within small sets. Even in this case elements can still differ.

For n →∞ it can even be that Ajl,njk
= R2\Gjl. The stationary bias b̂

(k),S
jl can be

expanded as seen before.

b̂
(k),S
jl (xjl) =

1

T jlk(n)

∑
i∈Ijk∩Ijl

∫
Gjk

l

Khjk,xj(Xj
i )Khjl,xl(X l

i)ml(X
l
i)

π̂
(lk)
j (xj)

dxl

=

[∫
Gjk

l

π̂
(k)
jl (xjl)

π̂
(lk)
j (xj)

ml(x
l)dxl + hjl

∫
Gjk

l

π̂jlk(x
jl)

π̂
(lk)
j (xj)

κ1(x
j)

κ0(xj)
m′

l(x
l)dxl +

+ h2
jl

κ2(x
j)

κ0(xj)

∫
Gjk

l

(
∂π

(k)
jl (xjl)

πjl(k)(xjl)∂xl
m′

l(x
l) +

1

2
m′′

l (x
l)

)
π

(k)
jl (xjl)

π
(lk)
j (xj)

dxl

]
+Rn,jl(x

j) + oP (h2
jl)
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For the second nonstationary bias term b̂NS
jk a direct expansion in terms of Âjk as

done above is not possible. If Ijk\Ijl 6= ∅ standard kernel calculations lead to:∑
i∈Ijk\Ijl

Khjk,xj(Xj
i )ml(X

l
i)

L̂
(k)
j (xj)− L̂

(l)
j (xj)

=
µa

jl(Khjk,xj(Xj)ml(X
l))

π
a(l)
j (xj)

+ oP (h2
jl)

with Aj ∈ Rj and Al,njk
∈ Rl the coordinatewise projections of Ajl,njk

it is

µa
jl(Khjk,xj(Xj)ml(X

l))

=

∫∫
Ajl,njk

Khjk,xj(u)ml(v)πjl(u, v) du dv

=

∫
Al,njk

ml(x
l)πjl(x

jl) dxl + hjk
κ1(x

j)

κ0(xj)

∫
Al,njk

ml(x
l)

∂πjl(x
jl)

∂xj
dxl +

+
h2

jk

2

κ2(x
j)

κ0(xj)

∫
Al,njk

ml(x
l)

∂2πjl(x
jl)

∂(xj)2
dxl + op(h

2
jl)

Then consistency of generalized smooth backfitting can be achieved via parametric

form assumptions in the outside regions, e.g.
∫
Al,njk

ml(x
l)πjl(x

jl) dxl = 0. A

weaker sufficient condition is T l
Al,njk

(n)/T l

G(j)
l

(n) = oP (1) for X l
i with i ∈ Ijk.

Without additional assumptions though, it can generally not be expected that

the necessary condition µa
jl(Khjk,xj(Xj)ml(X

l)) < ∞ is fulfilled. Most elegantly

these conditions could be phrased in probabilistic terms trough restrictions on the

correlation structures among the three involved dimensions.

In total addding up in a clever way with oP (
∑

k 6=j h2
jk) = oP (h2

j+), claims (A.44)

and (A.45) have been proven.

Thus the exact form of the bias of the generalized backfitting estimator can now

be derived by putting (A.44) or (A.45) into (A.43).

Proof of Theorems 4.3 and 4.4

The asymptotic distribution follows directly from [Mammen et al., 1999], as every-

thing carries over for the pairwise case. The bias has been developed right above.

It is oP (
∑

k 6=j h2
jk) = oP (h2

j+) and the corresponding bias component dominates.
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Proof of Theorems 4.5 and 4.6

The proof of Theorems 4.5 and 4.6 directly follows along the lines of the proof of

Theorem 4.3 by replacing (k) by (λj) in the superscript of all objects.

Proof of Theorems 4.7 and 4.8

In order to obtain Theorems 4.7 and 4.8, observe that the backfitting operator

separates stationary and nonstationary components through the asymptotic inde-

pendence assumption, where the constant parts are zero through the identification

assumptions (4.14). Then results are proven analogously to Theorems 4.3 and 4.4.
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