Nr. 80 - 1988

On the notion of the stress tensor associated with $\ensuremath{\mathbb{R}}^n-\text{invariant}$ constitutive laws admitting integral representations

E. Binz

(Universität Mannheim)

On the notion of the stress tensor associated with Rn-invariant constitutive laws admitting integral representations

E. Binz

Abstract

By an \mathbb{R}^{n} -invariant constitutive law F we mean a smooth \mathbb{R}^{n} -invariant one form on the Fréchet manifold $E(M,\mathbb{R}^{n})$ of all Euclidean smooth embeddings of a compact manifold M. Associated with it are a natural integrable \mathbb{R}^{n} -valued one form and a natural two tensor, both embedding dependent, provided F is induced by a one form \widetilde{F} on $E(M,\mathbb{R}^{n})/\mathbb{R}^{n}$ and \widetilde{F} admits an integral representation. This two tensor plays the role of the stress tensor in elasticity theory.

Introduction

Let M be a compact smooth and oriented manifold and $E(M,\mathbb{R}^n)$ the Fréchet manifold of all smooth embeddings of M into \mathbb{R}^n , $E(M,\mathbb{R}^n)$ carrying the C°-topology. For the sake of simplicity we choose dimM = n-1.

First we consider smooth \mathbb{R} -valued one forms on $\mathbb{E}(M,\mathbb{R}^n)$ and integral representations of a certain kind. These representations are unique if they exist. (The smoothness is ment in the sense of [Gu] or [Mi]).

If a one form F on $E(M,\mathbb{R}^n)$ is of the form $F=d^*\widetilde{F}$ where \widetilde{F} is a one form on $E(M,\mathbb{R}^n)/\mathbb{R}^n$ then F is \mathbb{R}^{n} -invariant. The main purpose of these notes is to show that in case \widetilde{F} admits an integral representation then $\widetilde{F}(dj,\ldots)$ yields in a natural way a differential dh and a two tensor T both depending on dj. Here $d: E(M,\mathbb{R}^n) \longrightarrow C^\infty(M,\mathbb{R}^n)/\mathbb{R}^n$ is the usual differential, which locally represented is nothing else but the Fréchet differential of j. It is dh which determines \widetilde{F} fully and not T.

The integral representation of \tilde{F} by \mathbb{R}^n -valued one forms on M are unique provided the integrable part of the \mathbb{R}^n -valued form is used only.

In case of elasticity theory $E(M,\mathbb{R}^n)$ is the configuration space of the body M (cf. [Ma,Hu]). F corresponds to a constitutive law (which describes the virtual work) and if it admits an integral representation, then it is represented by the force density. If F is of the form d^*F and if \tilde{F} admits an integral representation then T plays the role of the (not necessarily symmetric) stress tensor. Clearly \tilde{F} and hence T itself may depend on further parameters.

Acknowledgement: We are indebted to M. Epstein and J. Sniatycki who brought the presented form of the concept of a constitutive law in elasticity theory to our attention.

Constitutive laws

Let M be a compact smooth and oriented manifold of dimension n-1 and \langle , \rangle be a fixed scalar product on the oriented \mathbb{R}^n . By $E(M,\mathbb{R}^n)$ we mean the set of all smooth embeddings of M into \mathbb{R}^n . This set is open in $C^\infty(M,\mathbb{R}^n)$, the collection of all smooth \mathbb{R}^n -valued maps of M endowed with the C^∞ -topology (cf. [Hi]). Under the pointwise defined operations $C^\infty(M,\mathbb{R}^n)$ is a Fréchet space and hence $E(M,\mathbb{R}^n)$ is a Fréchet manifold. Obviously

 $TE(M, \mathbb{R}^n) = E(M, \mathbb{R}^n) \times C^{\infty}(M, \mathbb{R}^n).$

Given moreover $j \in E(M, \mathbb{R}^n)$ the Riemannian metric m(j) is defined by

$$m(j)(X,Y) = \langle djX,djY \rangle$$

 \forall X,Y in Γ TM, the $C^{\infty}(M,\mathbb{R})$ -module of all smooth vector fields on M. By dj we mean the second factor in Tj = (j,dj) locally given by the Fréchet derivative of j. Let moreover ∇ (j) and μ (j) be the Levi-Cività connection and the Riemannian volume form of m(j) respectively. Finally let us denote by $A^1(N,\mathbb{R}^m)$ the collection of all \mathbb{R}^m -valued one forms of N whatever the manifold N and the natural number m meight be. This space is endowed with the C^{∞} -topology.

By a constitutive law we mean a smooth one form F on $E(M,\mathbb{R}^n)$, that is a smooth map

F:
$$E(M, \mathbb{R}^n) \times C^{\infty}(M, \mathbb{R}^n) \longrightarrow \mathbb{R}$$

for which

$$F(j): C^{\infty}(M,\mathbb{R}^n) \longrightarrow \mathbb{R}$$

assignig to each $k \in C^{\infty}(M,\mathbb{R}^n)$ the value F(j,k) is linear for any $j \in E(M,\mathbb{R}^n)$. (Obviously F may depend on further parameters).

We call F Rn-invariant provided that

$$F(j+z,k) = F(j,k)$$

for any $z \in \mathbb{R}^n$ regarded as a function in $C^\infty(M,\mathbb{R}^n)$ assuming z as its only value. Let us assume that F factors over $E(M,\mathbb{R}^n)/\mathbb{R}^n \times C^\infty(M,\mathbb{R}^n)_{\mathbb{R}^n}$. Both factors of this Cartesian product are Fréchet manifolds when endowed with the C^∞ -topology. Evidently the differential

d:
$$C^{\infty}(M, \mathbb{R}^n) \longrightarrow \{dh \mid h \in C^{\infty}(M, \mathbb{R}^n)\}$$

factors over $C^{\infty}(M,\mathbb{R}^n)/\mathbb{R}^n$ and yields a bijection onto its range, which hence is a Fréchet manifold diffeomorphic to $C^{\infty}(M,\mathbb{R}^n)/\mathbb{R}^n$. Thus F is given by some

$$\tilde{F} \in A^1(E(M,\mathbb{R}^n)/\mathbb{R}^n,\mathbb{R})$$

as $F = d^*\tilde{F}$ and is thus \mathbb{R}^{n} -invariant.

Integral representation and stress tensor

Let $\gamma \in A^1(M,\mathbb{R}^n)$ and $j \in E(M,\mathbb{R}^n)$. With these dates we may form the two tensor $T(\gamma,j)$ defined by

$$T(\gamma, j)(X,Y) := \langle \gamma(X), djY \rangle$$

for all $X,Y \in \Gamma TM$.

There is a unique smooth strong bundle endomorphism P(j) of TM such that

$$T(\gamma,j)(X,Y) = m(j)(P(j)X,Y)$$
.

Decomposing P(j) into its skew, and selfadjoint part with respect to m(j) denoted $C_{\gamma}(j)$ and $B_{\gamma}(j)$, respectively yields $T(\gamma,j)(X,Y) = \langle dj(C_{\gamma}(j) + B_{\gamma}(j)(X), djY \rangle.$

Hence Y is uniquely represented as

$$\gamma(X) = c_{\gamma}(j) diX + dj C_{\gamma}X + dj B_{\gamma}X$$

where $c_{\gamma}(j) \in C^{\infty}(M,so(n))$ (so(n) being the Lie algebra of SO(n)) maps for any $p \in M$ diT_pM into $V_p(j)$, the normal space of diT_pM and vice versa. We now define for any choice of $\beta, \gamma \in A^1(M,\mathbb{R}^n)$ and a given $j \in E(M,\mathbb{R}^n)$ their dot product $\beta \cdot \gamma$ by setting

$$\begin{split} & \beta \cdot \gamma \ := \ -\text{tr} \ c_\beta(j) \circ C_\gamma(j) \ - \ \text{tr} \ C_\beta(j) \circ C_\gamma(j) \ + \ \text{tr} \ B_\beta(j) B_\gamma(j) \, . \\ & \text{We say that} \quad \widetilde{F} \ \in \ A^1(E(M,\mathbb{R}^n)/\mathbb{R}^n,\mathbb{R}) \quad \text{admits} \quad \text{an integral} \\ & \text{representation by} \ \alpha \ \in \ C^\infty(E(M,\mathbb{R}^n),A^1(M,\mathbb{R}^n)) \ \text{if} \end{aligned}$$

$$\begin{split} &\widetilde{F}(j,k) = \int \, \alpha(dj) \cdot dk \,\, \mu(j) \,\, \forall \,\, j \,\, \varepsilon \,\, E(M,\mathbb{R}^n) \,\, \text{and} \,\, \forall \,\, k \,\, \varepsilon \,\, C^\infty(M,\mathbb{R}^n) \,. \\ &\alpha(dj) \,\, \text{is called the stress form of } F(j) \,\, \text{and} \,\, T(\alpha(dj),j) \,\, \text{the stress tensor associated with } F(j) = d^*\widetilde{F}. \end{split}$$

The stress form α and hence the associated stress tensor reflect obviously \mathbb{R}^{n} -invariant, and hence in particular, internal physical properties of the moving body.

First we prove the following:

Theorem 1: If \tilde{F} admits an integral representation by $\alpha \in C^{\infty}(E(M,\mathbb{R}^n),A^1(M,\mathbb{R}^n))$ then $F:=d^*\tilde{F}$ admits a unique integral representation as

 $F(j,k) = \int \langle \phi(j),k \rangle \mu(j) \ \forall \ j \in E(M,\mathbb{R}^n) \ and \ \forall \ k \in C^{\infty}(M,\mathbb{R}^n)$

with "force density" $\phi(j)$ determined by α via

$$\begin{split} \phi(\mathtt{j}) &= -\mathtt{div}(\mathtt{B}_{\alpha}(\mathtt{j}) \,+\, \mathtt{C}_{\alpha}(\mathtt{j})) \,-\, 2 \cdot \mathtt{W}(\mathtt{j}) \mathtt{U}_{\alpha}(\mathtt{j}) \,+\, \\ &\quad +\, (\mathtt{tr}\ \mathtt{B}_{\alpha}(\mathtt{j}) \circ \mathtt{W}(\mathtt{j})) \cdot \mathtt{N}(\mathtt{j}) \end{split}$$

where $U_{\alpha}(j)$ is defined by dj $U_{\alpha}(j)X = c_{\alpha}(j)djX$ for any $X \in \Gamma TM$ and where W(j) is the Weingarten map of j.

Proof: From above we know that dk writes uniquely as

$$dk = c_k \cdot di + di \cdot C_k + di \cdot B_k$$
.

Since $k = djX_k + \psi_k \cdot N(j)$ for some $X_k \in \Gamma TM$, some $\psi_k \in C^\infty(M, \mathbb{R}^n)$ and the oriented unit normal vector field N(j) the coefficients B_k , C_k and C_k are of the form

$$B_{k} = \frac{\pi}{2} \cdot (\nabla(j)X_{k} + \widetilde{\nabla}(j)X_{k}) + \psi_{k} \cdot W(j)$$

 $\tilde{\mathbb{V}}(j)X_{\mathbf{k}}$ being the pointwise formed adjoint of $\mathbb{V}(j)X_{\mathbf{k}}$ with respect to m(j), moreover

$$C_k = \frac{\pi}{2} \cdot (\nabla(j)X_k - \widetilde{\nabla}(j)X_k)$$

and

$$c_k \cdot dj Y = S(j)(X_k, Y) + d\psi_k(X) \cdot N(j)$$

for any Y \in TTM. S(j) is the \mathbb{R}^{n} -valued second fundamental tensor of j, that is the pointwise formed component of $d(djX_{k})(Y)$ normal to j(M). Let us write c, C and B instead of $c_{\alpha}(j)$, $C_{\alpha}(j)$ and $B_{\alpha}(j)$ respectively. Thus we have for an orthonormal moving frame e_{1}, \ldots, e_{n-1} and $\psi_{k} = 1$

tr
$$B \circ B_{dk}(j) = \frac{\pi}{2} \sum_{s=1}^{n-1} m(j) (B \circ (\nabla (j) X_k + \widetilde{\nabla} (j) X_k) e_s, e_s)$$

= $\sum_{s} m(j) (B(\nabla (j)_{e_s} X_k), e_s) - \sum_{s} \langle N(j), S(j) (e_s, Be_s) \rangle$
iv_j $(B X_k) - m(j) (div_j B, X_k) + \langle (tr B \circ W(j)) \cdot N(j), N(j) \rangle$

= $\operatorname{div}_{j}(B X_{k}) - m(j)(\operatorname{div}_{j} B, X_{k}) + \langle (\operatorname{tr} B \circ W(j)) \cdot N(j), N(j) \rangle$ with

$$\operatorname{div}_{j} A = \sum_{s=1}^{n-1} \nabla(j)_{e_{s}}(A)e_{s}$$

for any strong smooth bundle endomorphism of TM. A similar expression holds for tr $C \circ C_{dk}$ which to calculate we omit to the reader. Next we find

$$\begin{array}{l} {\rm tr} \ c \circ c_{\rm dk} = \sum\limits_{\rm s=1}^{n-1} \ \langle c \circ c_{\rm dk} \ dj \ e_{\rm s}, \ dj \ e_{\rm s} \rangle \ + \ \langle c \circ c_{\rm dk} N(j), N(j) \rangle \ = \\ = - \sum\limits_{\rm s} \ m(j) \ (W(j) X_{\rm k}, e_{\rm s}) \ \langle c \ N(j), dj \ e_{\rm s} \rangle \ - \ m(j) \ (W(j) U_{\alpha}(j), X_{\rm k}) \ = \\ = - \sum\limits_{\rm s} \ m(j) \ (W(j) X_{\rm k}, e_{\rm s}) m(j) \ (U_{\alpha}(j), e_{\rm s}) \ - \ m(j) \ (W(j) U_{\alpha}(j), X_{\rm k}) \ = \\ = -2 \ m(j) \ (W(j) U_{\alpha}(j), X_{\rm k}) \ . \end{array}$$

Using Gausses theorem one reads off immediately the expression for $\phi(j)$.

The influence of the stress form and the stress tensor on the constitutive law

Let $\gamma \in A^1(M,\mathbb{R}^n)$ and $j \in E(M,\mathbb{R}^n)$. We know (cf. [Bi]) that γ uniquely splits into

$$\gamma = dh + \beta$$

where dh with h \in C^{∞}(M,Rⁿ) is an integrable part of γ and ß admits zero as integrable parts only. dh is therefore called the integrable and ß the non-integrable part of γ . This decomposition of γ is of the form

$$dhX = \sum_{s=1}^{n} m(j) (grad_{j}\tau_{s}, X) \cdot \overline{e}_{s} \quad \forall X \in \Gamma TM$$

and

$$g(X) = \sum_{i=1}^{n} m(j) (Y_s, X) \cdot \overline{e}_s \quad \forall \quad X \in \Gamma TM$$

where e_1, \ldots, e_n is any basis in \mathbb{R}^n , $\tau_s \in C^{\infty}(M, \mathbb{R})$ and $Y_s^0 \in \Gamma TM$ with $\operatorname{div}_{\mathfrak{j}} Y_s^0 = 0$ for all $s = 1, \ldots, n$. Here $\operatorname{div}_{\mathfrak{j}} Y_s^0 = \operatorname{tr} \nabla(\mathfrak{j}) Y_s^0$.

As a consequence of this decomposition we have the following:

Theorem 2 Given $\gamma \in A^1(M,\mathbb{R}^n)$ and $j \in E(M,\mathbb{R}^n)$ with dh as the integrable part of γ then

$$\int \gamma \cdot dk \ \mu(j) = \int dh \cdot dk \ \mu(j)$$
,

saying that the non-integrable part ß of $\gamma=dh+\beta$ is orthogonal to $C^\infty(M,\mathbb{R}^n)/\mathbb{R}^n$, regarded as a subspace of $A^1(M,\mathbb{R}^n)$.

Proof: Simplifying the notion from above let

$$dhX = \sum_{s} m(j) (V_{s}, X) e_{s} \quad \forall X \in \Gamma TM$$

where $V_s \equiv grad_j \tau_s$ for all s. Then

$$(B_h + C_h)X = \sum_{s} m(j)(V_s, X)X_s$$

and

$$(B_{\mathcal{B}} + C_{\mathcal{B}})Y = \sum_{s} m(j)(Y_{s}^{o}, Y)X_{s}.$$

Here $X_s \in \Gamma TM$ for any s = 1, ..., n are such that

 $m(j)(X_s,Z) = \langle \overline{e}_s,djZ \rangle$ for all $Z \in \Gamma TM$. Hence

$$(B_h + C_h) \circ (B_{\mathcal{S}} + C_{\mathcal{S}}) X = \sum_{s} \sum_{s} m(j) (Y_s^o, X) m(j) (V_{s'}, X_s) X_{s}.$$

Therefore if e_1, \ldots, e_{n-1} is an orthonormal moving frame on M $tr(B_h + C_h) \circ (B_{\bar{B}} + C_{\bar{B}}) = tr(B_h \circ B_{\bar{B}} + C_h \circ C_{\bar{B}})$

$$= \sum_{r} \sum_{s'} \sum_{s} m(j) (Y_{s'}^{o}, e_{r}) m(j) (V_{s'}, X_{s}) m(j) (X_{s'}, e_{r})$$

 $= \sum m(j) (Y_S^O, V_S).$

Next we form

$$c_h \text{ diX} = \sum_{s} m(j) (V_s, X) \cdot \langle e_s, N(j) \rangle \cdot N(j)$$

$$c_h N(j) = \sum_{s} \langle e_s, N(j) \rangle \cdot dj \ V_s.$$

The analoguous equations hold for cg with V_{s} replaced by Y_{s}^{o} for each s. Hence

$$c_h \circ c_g \text{ di } X = \sum_{s'} \sum_{s} m(j) (Y_s^o, X) \cdot \langle e_s, N(j) \rangle \cdot \langle e_{s'}, N(j) \rangle \cdot V_s$$

and

$$c_h \circ c_B N(j) = \sum_{s' \in s} \sum_{s} m(j) (V_s, Y_{s'}) \cdot \langle e_s, N(j) \rangle \cdot \langle e_{s'}, N(j) \rangle \cdot N(j)$$

Therefore

$$\operatorname{tr} c_{h} \circ c_{\beta} = 2 \cdot \Sigma m(j) (Y_{s}^{o}, V_{s})$$

and hence

$$tr(B_{h} \circ B_{\beta} + C_{h} \circ C_{\beta} + C_{h} \circ C_{\beta}) = 3 \sum_{s} m(j) (Y_{s}^{o}, V_{s})$$

showing that

$$\int dh \cdot \beta \ \mu(j) = 3 \cdot \sum_{s=1}^{n} \int m(j) (Y_{s}^{o}, V_{s}) \mu(j) = 0$$

since Y_s^0 and V_s are L_2 -orthogonal for all s = 1, ... n.

An immediate consequence of theorem 1 and 2 is the following:

Corollary 3 If F is a \mathbb{R}^{n} -invariant constitutive law of the form F = $d^*\tilde{F}$ and if \tilde{F} admits an integral representation by

$$\alpha: E(M,\mathbb{R}^n)/\mathbb{R}^n \longrightarrow A^1(M,\mathbb{R}^n)$$

with dh(dj) referred to as dh(j) the maximal integrable part of $\alpha(dj)$ for all $j \in E(M, \mathbb{R}^n)$, that is if

 $\tilde{F}(dj)(dk) = \int dh(j) \cdot dk \ \mu(j) \ \forall \ j \in E(M,\mathbb{R}^n) \ and \ \forall \ k \in C^{\infty}(M,\mathbb{R}),$ then F admits an integral representation of the form

 $F(j)(k) = \int \langle \phi(j), k \rangle \mu(j) \ \forall \ j \in E(M, \mathbb{R}^n) \ and \ \forall \ k \in C^{\infty}(M, \mathbb{R}^n)$ with

$$\phi(j) = - dj(div(B_h(j) + C_h(j)) + 2 W(j)U_h(i)) + (tr B_h(j) \circ W(j)) \cdot N(j).$$

Here $U_h(j) \in \Gamma TM$ is such that dj $U_h(j) = c_h(j)N(j)$ and dh(j) is represented as

$$dh(j) = c(j)_h \cdot dj + dj \cdot C_h(j) + dj \cdot B_h(j)$$
.

Moreover dh is uniquely determined by \tilde{F} .

Let us express (*) in corollary 3 more specifically in terms of X_h and ψ_h . We know (cf. [Bi]) that

 $\operatorname{div}_{j} \nabla(j) Z = \Delta(j)Z$ (= - tr $\nabla(j)^{2}Z$) $\forall Z \in \Gamma TM$.

 $\Delta(j)$ being the Laplace-Beltrami operator of m(j). Since L_{Z} (m(j))(X,Y) = m(j)(($\nabla(j)Z + \nabla(j)Z,Y$)

we obtain with \mathbb{L}_{Z} as an abbriviation of $\nabla(j)Z + \widetilde{\nabla}(j)Z$ and a

moving frame e_r, \dots, e_{n-1} orthonormal with respect to m(j)

$$\operatorname{tr} \mathbb{L}_{Z} \circ W(j) = \sum_{r} m(j) (\mathbb{L}_{Z} \circ W(j) e_{r}, e_{r})$$

- $= \sum_{r} m(j) (\nabla(j)_{W(j)e_{r}} Z, e_{r}) + m(j) (W(j)e_{r}, \nabla(j)_{e_{r}} Z)$
- = $2 \sum_{r} m(j) (W(j) \nabla(j)_{e_r} Z, e_r)$
- = 2 $(div_{j}(W(j)Z) m(j)(div_{j}W(j),Z))$.

However (cf. [Bi])

 $div_{j}(\tau W(j)) = W(j)grad_{j}\tau + \tau \cdot grad_{j}H(j) \quad \forall \tau \in C^{\infty}(M,\mathbb{R}^{n})$ and thus

 $m(j)(div_jW(j),X) = dH(j)(X) \forall X \in \Gamma TM$

H(j) being the trace of the Weingarten map W(j). Obviously $U_h(j) = W(j)X_h - grad_j \Psi_h(j) \quad \forall h \in C^{\infty}(M,\mathbb{R}^n)$.

Therefore corollary 3 turns into

Corollary 4 Let F be an \mathbb{R}^{n} -invariant constitutive law of the form F = $d^*\tilde{F}$ where \tilde{F} is represented by

$$\alpha: E(M, \mathbb{R}^n)/\mathbb{R}^n \longrightarrow A^1(M, \mathbb{R}^n).$$

Without loss of generality $\alpha(dj)$ can assumed to be of the form $\alpha(dj) = dh(j)$ with h(j) represented as

$$h(j) = dj X_h(j) + \psi_h(j) \cdot N(j) \quad \forall j \in E(M, \mathbb{R}^n)$$

for some $X_h(j) \in \Gamma TM$ and $\Psi_h(j) \in C^\infty(M,\mathbb{R}^n)$. The one form F admits an integral representation

$$F(j)(k) = \int \langle \Psi(j), k \rangle \mu(j) \quad \forall j \in E(M, \mathbb{R}^n) \text{ and } \forall C^{\infty}(M, \mathbb{R}^n)$$

with

 $\psi(j) = - dj(\Delta(j)X_h(j) - W(j)grad_j \psi_h(j)$

+ $\Psi_h(j)$ grad_j H(j) + $2 \cdot W(j)^2 X_h$ +

+ $(div_{j}W(j)X_{h} - dH(j)(X_{h}) + \psi_{h}(j) tr W(j)^{2}) \cdot N(j)$.

The stress tensor of the integrable part of α is hence $T(dh(j),j)(X,Y) = m(j)((\nabla(j)X_h(j) + \psi_h(j)m(j)(W(j)X,Y))$ for any $X,Y \in FTM$.

Remark: This corollary shows that only the integrable part of the stress form (and not the stress tensor) determines F fully.

Examples:

 $F \in A^1(E(M,\mathbb{R}^n),\mathbb{R})$ will assumed to be \mathbb{R}^{n} -invariant that is of the form

$$F = d*\tilde{F}$$

- \tilde{F} is supposed to admit an integral representation by $\alpha \in C^{\infty}(E(M,\mathbb{R}^n),A^1(M,\mathbb{R}^n))$ of which the integrable part is assumed to be dh.
- 1) Let h(j) = j for any $j \in E(M, \mathbb{R}^n)$. Hence $dj = dj \cdot id_{TM}$ and therefore

$$\tilde{F}(dj,dk) = \int tr B_{dk}(j)\mu(j)$$
.

Thus

$$\varphi(j) = (tr W(j)) \cdot N(j) = H(j) \cdot N(j)$$

and if

$$V(j) := \int \mu(j), \quad \forall j \in E(M,\mathbb{R}^n)$$

we moreover have

$$F(j,k) = DV(j)(k) = \int H(j) \cdot \langle N(j), k \rangle \mu(j).$$

The stress tensor T(dj,j) is obviously m(j) for all $j \in E(M,\mathbb{R}^n)$.

2) Let h(j) = N(j) for any $j \in E(M, \mathbb{R}^n)$. Then $dh = dj \cdot W(j)$ and therefore

$$\phi(j) = - \operatorname{div}_{j} W(j) + (\operatorname{tr} W(j)^{2}) \cdot N(j)$$

$$= - \operatorname{dj} \operatorname{grad}_{j} H(j) + (\operatorname{tr} \cdot W(j)^{2}) \cdot N(j).$$

If we use moreover the formula

$$\lambda(j) = - \text{ tr } W(j)^2 + (\text{tr } W(j))^2$$

= - \tr W(j)^2 + H(j)^2

where $\lambda(j)$ is the scalar curvature of m(j) then $\phi(j) = - \text{ dj } \text{grad}_j \ H(j) - (\lambda(j) - H(j)^2) \cdot N(j) \quad \forall \ j \in E(M, \mathbb{R}^n).$ The stress tensor T(djW(j), j) is obviously the second fundamental form for any $j \in E(M, \mathbb{R}^n)$.

3) Let
$$h(j) = dj X_h(j) \forall j \in E(M, \mathbb{R}^n)$$
. Then
$$B_h(j) = \frac{1}{2} \cdot \mathbb{L}_{X_h}$$

and $C_h(j) = \% \cdot (\nabla(j)X_h(j) - \widetilde{\nabla}(j)X_h(j))$. Hence for all $j \in E(M, \mathbb{R}^n)$

$$\varphi(j) = - dj(\nabla(j)X_{h}(j) + 2 W(j)^{2}X_{h}(j)) + + (div W(j)X_{h} - dH(j)(X_{h})) \cdot N(j).$$

The stress tensor at (djX_h,dj) applied to any $X,Y\in\Gamma TM$ is for all $j\in E(M,\mathbb{R}^n)$

$$T(djX_h, j)(X, Y) = m(j)(\nabla(j)_XX_h, Y).$$

4) Let h(j) be such that $C_h(j) = 0$ and $B_h(j) = \frac{\pi}{2} \mathbb{L}_{v \cdot X_h(j)} \quad \forall \ j \in E(M,\mathbb{R}^n)$ and some $v \in \mathbb{R}$. This means that $X_h(j)$ is a gradient with respect to m(j). Hence

 $h(j) = dj \operatorname{grad}_{j} \tau(j) \quad \forall \ j \in E(M, \mathbb{R}^{n})$ and some $\tau(j) \in C^{\infty}(M, \mathbb{R}^{n})$. We may then proceed as in (3).

5) Choose α such that

$$\alpha(dj) = % \mathbb{L}_{v \cdot Y(j)} \quad \forall j \in E(M, \mathbb{R}^n) \text{ and some } v \in \mathbb{R}.$$

where Y(j) & FTM for any j. Hence

$$\varphi(j) = - \operatorname{div}_{j} % \mathbb{L}_{\gamma Y(j)} + % (\operatorname{tr} \mathbb{L}_{Y(j)} \circ W(j)) \cdot N(j)$$

$$= - \operatorname{dj}(\nu \cdot \Delta(j)Y(j) + \nu(R(j)Y(j) + \operatorname{grad}_{j} \operatorname{div}_{j}Y(j)) + \nu(\operatorname{div}_{j}W(j)Y(j) - \operatorname{dH}(j)(X_{h})) \cdot N(j)$$

where m(j)(R(j)X,Y) = Ric(i)(X,Y) with Ric(i) the Ricci tensor of m(j). We leave it to the reader to determine the integrable part of α .

References:

•		
[Bi]	Binz, E	"The description of an R ⁿ -valued one form relative to an embedding". Mannheimer Manu-skripte No.74, 1987, Universität Mannheim.
[Gu]	Gutknecht, J.	"Die Cr-Struktur auf der Diffeo- morphismengruppe einer kompakten Mannigfaltigkeit". Diss. ETH 5879, Zürich, 1977.
[HI]	Hirsch, M.W.	"Differential Topology", Springer Berlin, Heidelberg, New York, 1976.
[Ma,Hu]	Marden, J. E. Hughes, T.J.R.	Mathematical foundations of elasticity, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1983.
[Mi]	Michor, P.	Manifolds of differentiable mappings, Shiva Mathematical Series Shiva publishing company Ltd, Kent, UK, 1980.