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Abstract

By an Rr-invariant constitutive law F we mean a smooth
RP-invariant one form on the Fréchet manifold E(M,Rr) of all
Euclidean smooth embeddings of a compact manifold M. Associa-
ted with it are a natural integrable R™-valued one form and a
natural two tensor, both‘embedding dependent, provided F is
induced by a one form F on E(M,R™) /rn and F admits an integral
representation. This two tensor plays the role of the stress

tensor in elasticity theory.

Introduction

Let M be a compact smooth and oriented manifold and E(M,Rn)
the Frechet manifold of all smooth embeddings of M into R™,
E(M,R™) carrying the C®-topology. For the sake of simplicity

we choose dimM = n-1.

First we consider smooth R-valued one forms on E(M,Rn)}) and
integral representations of a certain kind. These represen-
tations are unique if they exist. (The smoothness is ment in

the sense of [Gul or [Mil).
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If a one form F on E(M,Rm) is of the form F = d*F where F is a
one form on E(M,R")/gn then F is Rn—invariant;A'The main
purpose of these notes is to show that in case F admlts an
integral representation then F(dj,...) yields in a natural way
a differential dh and a two tensor T both dependlng on dj.
Here d: E(M,RP) —> C®(M,R®)/gn is the wusual differential,
which locally represented 1is nothing else but the Frechet
differential of j. It is dh which determines F fﬁlly and nof
T.

The integral representation of F by Rnr-valued one forms on M
are unique provided the integrable part of the Rm-valued form

is used only.

In case of elasticity theory E(M,R™) is the configuration
space of the body M (cf. [Ma,Hul). F corresponds to a
constitutive law (which describes the virtual work) and if it
admits an integral representation, then it is represented by
the force density. If F is of the form 4*F and if F admits an
integral representation then T plays the role of the (not
necessarily symmetric) stress tensor. Clearly F and hence T

jtself may depend on further parameters.
Acknowledgement: We are indebted to M. Epstein and J.

Sniatycki who brought the presented form of the concept of a

constitutive law in elasticity theory to our attention.

Constitutive laws

Let M be a compact smooth and oriented manifold of dimension
n-1 and <,> be a fixed scalar product on the oriented R™. By
E(M,R") we mean the set of all smooth embeddings of M into R™.
This set is open in C®(M,Rm), the collection of all smooth
Rr-valued maps of M endowed with the C®-topology (cf. [Hil).
Under the pointwise defined operations C®(M,Rn) is a Frechet

space and hence E(M,R™) is a Fréchet manifold. Obviously
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TE(M,R?) = E(M,R™) x C”(M,RM).

Given moreover Jj € E(M,R™) the Riemannian metric m(j) is
defined by

m(3j) (X,Y) = «djiX,diy>

V X,Y in I'TM, the C”(M,R)-module of all smooth vector fields
on M. By dj we mean the second factor in Tj = (j,dj) locally
given by the Frechet derivative of j. Let moreover V(j) and
‘1(j) be the Levi-Civita connection and the Riemannian volume
form of m(j) respectively. Finally let us denote by A?(N,Rm)
the collection of all Rm-valued one forms of N whatever the
manifold N and the natural number m meight be. This space is
endowed with the C®-topology.

By a constitutive law we mean a smooth one form F on E(M,RM),
that is a smooth map
F: E(M,R") x C°{(M,RP) —> R
for which
F(j): C°(M,R™") —8> R
assignig to each k ¢ C°(M,R™) the value F(j,k) is linear for
any j € BE(M,RM). {Obviously F may depend on further

parameters) .

We call F Rn-invariant provided that

F(j+z,k) = F(j,k)
for any z € R™ regarded as a function in C"(M,R™) assuming z
as its only wvalue. Let wus assume that F factors over
E(M,RP) Jgn x C®(M,R™)gn. Both factors of this Cartesian
product are Frechet manifolds when endowed with the
C®-topology. Evidently the differential

d: ¢c*(M,R™) — {dh{h € C®(M,RM)
factors over C°(M,R™)/rn and yields a bijection. onto its
range, which hence is a Fréchet manifold diffeomorphic to
C”(M,R™) ygrn. Thus F is given by some
F ¢ A*(E(M,R™) /gn,R)

as F = d*F and is thus Rnr-invariant.
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Integral representation and stress tensor

Let Yy € A?(M,R®) and j ¢ E(M,R™). With these dates we may form
the two tensor T(y,j) defined by

T(y,j) (X, Y) := <y (X),diY>
for all X,Y ¢ I'TM.

There is a unique smooth strong bundle endomorphism P(j) of TM
such that
T(y,j) (X,Y) = m(3)(P(3)X,Y).
Decomposing P(j) into its skew, and selfadjoint part with
respect to m(j) denoted Cy(j) and By(3), respectively yields
| T(y,3) (X,¥) = <dj(Cy(3) + By(3)(X),d4i¥>.
Hence Yy is uniquely represented as
Y(X) = cy(3)diX + d4j CyX + dj ByX

where cy(j) € c®(M,so(n)) (so(n) being the Lie algebra of
SO(n)).maps for any p € M diT M into Vp(3), the normal space
of d4iT M and vice versa. We now define for any choice of
B,y ¢ A*(M,R”) and a given j ¢ E(M,R™) their dot product H-Y
by setting

g-y := —-tr cglj)oCy(3) - tr Cg(j)eCy(3) + tr Bg(j)By(J).
We say that F ¢ A1 (E(M,R"™) /gn,R) admits an integral
representation by « € C®(E(M,R™) ,A*(M,R")) if
F(j,k) = J «(dj)-dk u(j) V j € E(M,R™) and V k € C°(M,R").
a(dj) is called the stress form of F(3j) and T(x(dj).J) the

stress tensor associated with F(j) = d*F.

The stress form « and hence the associated stress tensor
reflect obviously Rr-invariant, and hence in particular,

internal physical properties of the moving body.
First we prove the following:

Theorem 1: If F admits an integral representation by
® EVC”(E(M,R“),Al(M,R“)) then F:= d*F admits a unique integral
representation as '

F(5.k) = § <9(3).5ou(3) ¥V j € E(M,R?) and ¥V k € C=(M,R")
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with "force density" ¢(j) determined by « via
9(J) = -Aiv(Bg(J) + Cx(3)) - 2-W(j)Ugx(3F) +
+ (tr Bg(j)oW(3j))-N(3)
where Uy (j) is defined by dj Ux(j)X = cx(j)djiX for any X ¢ I'TM
and where W(j) is the Weingarten map of j.

Proof: From above we know that dk writes uniqueiy as
dk = cyi-di + di-Cy + di-B,.
Since k = djXk + ¥,-N(j) for some X, € I'TM, some Y € C°(M,R")
and the oriented unit normal vector field N(3j) the
coefficients By, C, and c, are of the form
) B = % (V)X + V()X + v -W(35)
ﬁ(j)xk being the pointwise formed adjoint of V(j)X, with
respect to m(j), moreover '
Ck = % (VX - F(5)x,)
and
€ di Y = S(3) (X, Y) + d¥ (X) -N(j)
for any Y € M. S(j) is the Rr-valued second fundamental
tensor of j, that is the pointwise formed component of
d(djX,) (Y) normal to j(M). Let us write ¢, C and B instead of

calJ), Cg(j) and Bg(j) respectively. Thus we have for an
orthonormal moving frame €1/...,85.4 and ¥, = 1
n—1 ~
tr BoB,p(j) = % T m(j) (Be(V(j)X, + V(j)Xk)es,es)
s=1

= I m(3)(B(V(3)_ Xi),e5) - £ <N(3),S(3) (eq,Bey)>
s s s

= div;(B X,) - m(j)(divj B,Xyg) + <(tr BoW(3j)) -N(j).N(j)>
with

n—11
i A= ¥ V(3
div LI, (J)es(A)es

for any strong smooth bundle endomorphism of TM. A similar
expression holds for tr CoCy, which to calculate we omit to
the reader. Next we find

n—1 .
tr C°Cdk = 551 <C°Cdk dj eS' dj es) + <C°Cde(j),N(j)> =¢

- L m(3)(W(3)Xy,es) <c N(j),dj ey> - m(3) (W(GUx(F) . X)) =
s

= Zm(3)(W(J)Xp,eIm(]) (Ug(F),eq) - m{3) (W(3)Ug(3),Xy) =
s

-2 m(3) (W(3)Ux(3F),Xy).
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Using Gausses theorem one reads off immediately the expression

for (3j).

The influence of the stress form and the stress tensor on the

constitutive law

Let y € A*(M,R") and J € E(M,R™). We know (cf.‘[éi]f that ¥
uniquely splits into ,

Yy = dh + B
where dh with h ¢ C®(M,R™) is an integrable part of y and 8
admits zero as integrable parts only. dh is therefore called
the integrable and 8 the non-integrable part of Y. This

decomposition of Yy is of the form

dhX = & m(j)(grad;T4.X)-es VY X ¢ I'T™

s=1
and
n . o -_—
B(X) = T m(j)(¥g.X)-eg V X € I'TM
s=1
where €;,...,€, is any basis in R®, T, € C*(M,R) and Y3 € I'TM

with div;Y2 = 0 for all s = 1,...,n. Here div;Y2 = tr V(j)Y3.
As a consequence of this decomposition we have the following:

Theorem 2 Given y € A*(M,R™) and j € E(M,Rm) with dh as the
integrable part of Y then

f y-ak u(3j) = § ah-dk p(J),
saying that the non-integrable part 8 of <y = dh+8 is

orthogonal to C®(M,R™)/Rn, regarded as a subspace of Ai(M,mn).

Proof: Simplifying the notion from above let

dhX = £ m(3) (Vg,X)eg V¥V X e I'TM
s

where Vg = grad;Ts for all s. Then
(Bh + Ch)x = L m(j) (VS'X)XS
s

and

(Bg + Cg)Y = T m(3) (YS, V)X,.
s

Here Xgs € I'TM for any s =1l,...,n are such that
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m(j) (Xg,2) = <eg,djZ> for all Z e ['TM.
Hence
(Bp + Cn)o(Bg + Cg)X = L, L m(3) (Y2, X)m(F) (Vg1 ,Xg)Xgo

Therefore if e,,...,€h,~4 1S an orthonormal moVing frame on M
tr(By, + Cp)o(Bg + Cg) = tr(BroBg + ChoCg)
LI I m(3) (Y2, e )m(3) (Voo ,XIm(F) (X5, ep)

r s s
L m(3)(Y2, vg).
Next we form
cp diX = I m(3) (Vg,X) - <eg,N(3)>-N(3)

I

cp N(3) = E <eg,N(j)>-dj V..

The analoguous equations hold for cg with Vg replaced by Y2 |
for each s. Hence
cpocg di X = I I m(3J)(YZ.,X) <eg,N(j)>-<eg' N(j)> Vg
s s

and
cpocg N(3) = L. I m(3) (Vg,Ygr) <eg, N(3)> <oyt ,N(3)>-N(5).
s s

Therefore
tr cpocg = 2-L m(j) (YZ,Vy)
and hence ‘
tr(BnoBg + CnoCg + chocg) = 3 L m(3) (Y2, V)

showing that
[ dh-8 p(3j) = 3- §1 [ m(3)(Ye, V) u(i) = 0
s—

since Y2 and V. are Li-orthogonal for all s = 1,...n.
An immediate consequence of theorem 1 and 2 is the fbllowing:

Corollary 3 If F is a R,r-invariant constitutive law of the

form F = d*F and if F admits an integral representation by
, «: E(M,RP) /gn — A% (M,Rn) |

with dh(dj) referred to as dh(j) the maximal inteQréble part
of «(dj) for all j € E(M,R™), that is if
$(dj) (dk) = § ah(j)-dk pl3) V 3 € E(M,R®) and V k ¢ C™(M,R),
then F admits an integral representation of the form |

F(3) (k) = f <@(3),k>p(3) ¥ j € E(M,R?) and ¥ k ¢ C®(M,R™)
with
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w(3) = - dji(div(Br{3j) + Ch(J)) + 2 W(FIUL(1))
(*) + (tr Bp(3)oW(i))-N(3).
Here U,(j) € '™ is such that dj Un(j) = ch(jIN(J) and dh(Jj)

is represented as
dh(j) = c(3)p-dj + dji-Cnr(3) + dj-Bn(3).

Moreover dh is uniquely determined by F.

Let us express (*) in corollary 3 mbre specifically in terms
of X, and ¥,. We know (cf. [Bil) that

divy; V(3) 2 = A(3)Z2 (= - tr V(j)=22) V Zz ¢ ['TM.
A{j) being the Laplace-Beltrami operator of m(j). Since

L, (m(3)) (X,¥) = m(3)((V(3)Z + V(3)Z,Y)

we obtain with lz as an abbriviation of V(j)Z + ﬁ(j)z and a

moving frame e,.,...,en,-1 orthonormal with respect to m(j)
tr L, oW(3j) = Z m(j) (L, oW(j)e, ., e)
z - z

m(j) (V(3)

]
ol o

W(j)erz’er) + m(j)(W(j)er.V(j)erZ)

£ m(3) (W V() Zoeg)

1]
[V

= 2 (div;(W(3)2) - m(3) (div,W(3),2)).
However (cf. [Bi])
V div; (TW(3)) = W(j)grad;T + v-grad;H(j) V 7T € C®(M,Rn)
and thus
m(j) (div;W(3),X) = dH(]j)(X) V X ¢ I'TM
H(j) being the trace of the Weingarten map W(j). Obviously
Un(j) = W(3)X, - grad; ¥h(3) V h e C®(M,R™).

Therefore corollary 3 turns into

Corollary 4 Let F be an Rr-invariant constitutive law of the

form F = d*F where F is represented by
«: E(M,R™) /pn — A?(M,R™).
Without loss of generality «(dj) can assumed to be of the form
a{dj) = dh(j) with h(j) represented as
© h(3) = 4 Xn(3) + ¥u(3)-N(3) V j € E(M,RP)
for some X,(j) € ''M and wh(j) ¢ C°({M,R"), The one form F
admits an integral representation
F(3) (k) = [ <¥(3),xop(j) V j ¢ E(M,R") and V C®(M,R™)
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with
v(j) = - dj(A(I)Xn(3F) - W(j)grad; v (3)
+ ¥nh(3) grad; H(J) + 2-W(3j)2Xy) +
+ (Qiv,W(§)Xn - dH(F) (Xp) + ¥n(3) tr W(3)2)-N(3).
The stress tensor of the integrable part of « is hence
T(dh(j).3) (X,¥) = m(3) ((V(IIXL(I) + YR(3I)m(3) (W(I)X,Y)
for any X,Y ¢ FTM.

Remark: This corollary shows that only the integrable part of
the stress form (and not the stress tensor) determines F
fully.

Examples:
F ¢ A*(E(M,R™),R) will assumed to be RP-invariant that is of
the form
F = a*F
F is supposed to admit an integral pepresentation by
«x € C°(E(M,R") ,A*(M,R")) of which the integrable part is
assumed to be dh.
1) Let h(j) = j for any j ¢ E(M,R™). Hence dj = dj-idpM and
therefore
F(dj.ak) = [ tr Bae(3)u(3).

Thus

9(3) = (tr W(3))-N(j) = H(J) N(J)
and if _

V(3) :=J u(3), V¥V 3 € E(M,R™)
we moreover have

F(3.k) = DV(3) (k) = J H(3)-<N(3), ou(3I).

The stress tensor T(dj,3) is obviously m(3j) for all
j ¢ E(M,R™). )

2) Let h(j) = N(j) for any j € E(M,R™). Then dh = d4j-W(Jj) and
therefore

@(3) = - divy W(3) + (£xrWw(j)=2) -N(J)

' - dj grad; H(j) + (tr-W(3j)2) -N(J).

If we use moreover the formula
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A (3) - tr W(j)2 + (tr W(3))=
- tr W(3)= + H(J) =
where A(j) is the scalar curvature of m(j) then
©(3) = - dj grad, H(3) - (M3I) - H(3)2)-N(3) V¥ j e E(M,Rn).

The stress tensor T(43jw(j),J) is obviously the second

fundamental form for any j € E(M,R™).

3) Let h(j) = dj Xn(j) ¥V J € E(M,R™). Then
Bnh(3j) = X-lx
h

and Crl3) = % (V(3)Xn(d) - V(IIRL(G)). Hence for all
j € E(M,RM)

@(3) = - dI(V(3IXn(F) + 2 W(J)3XKL(])) +
+ (div W(3)Xp - dH(3) (Xp)) -N(3).
The stress tensor at (djX,,dj) applied to any X,Y ¢ I'TM is for
all j € E(M,RM)
T(djXn,3) (X, Y) = m(3) (V(])xXn.Y).

4) Let h(j) be such that
Ch(j) = 0 and BL(3) = % &v-xh(j) V j ¢ E(M,iR*) and some v € R.

This means that X,(j) is a gradient with respect to m(j).
Hence

h(j) = dj grad; v(j) V J € E(M,Rn)
and some t{(j) € C®°(M,RM). Wé may then proceed as in (3).

5) Choose a« such that

«(dj) = % L V 5 € E(M,R") and some v € R.

v-Y(3)
where Y(3j) € '™ for any j. Hence
@(3) = - div; % le(j) + % (tr ly(j)°W(j))-N(j)

= ~ dj(v-A(3)Y(F) + v(R(F)Y(J) + grad; div;Y(j))
+ v{(div;W(3)Y(J) - dH(J) (Xy)) -N(3)
where m(3j) (R(j)X,Y) = Ric(i) (X,Y) with Ric(i) the Ricci tensor

of m(j). We leave it to the reader to determine the integrable

part of «.
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