
Nr. 80 .;.;1988

On the notion of the stress tensor associated with

nt-invariant constitutive lar"Js admitting integral

representations

E, Binz
(Universität Mannheim)



On the notion of the stress tensor associated with
Rn-invariant constitutive laws admitting integral

representations

E. Binz

Abstract

By an Rn-invariant constitutive law F we mean a smooth
Rn-invariant one form on the Frechet manifold E{M,Rn) of all
Euclidean smooth embeddings of a compact manifold M. Associa-
ted with it are a natural integrable Rn-valued one form and a
natural two tensor, both embedding dependent, provided F is
induced by a one form ~ on E{M,Rn)/Rn and ~ admits an integral
representation. This two tensor plays the role of the stress
tensor in elasticity theory.

Introduction
Let M be a compact smooth and oriented manifold and E (M,(Rn)
the Frechet manifold of all smooth embeddings of M into Rn,
E(M,Rn) carrying the cm-topology. For the sake of simplicity
we choose dimM = n-1.

First we consider smooth R-valued one forms on E (M,IRn) and
integral representations of a certain kind. These represen-
tations are unique if they exist. (The smoothness is ment in
the sense of [Gu] or [Mi]).
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If a one form F on E(M,~n) is of the form F = d-F where F is a
one form on E(M,~n)/~n then F is ~n-invariant. The main
purpose of these notes is to show that in ease F admits an
integral representation then F(dj, ...) yields in a natural way
a differential dh and a two tensor T both depending on dj.
Here d: E(M,~n) ~ Cm(M,~n)/~n is the usual differential,
whieh loeally represented is nothing else but the Freehet
differential of j. It is dh whieh determines F fully and not
T.

The integral representation of F by ~n-valued one forms on M
are unique provided the integrable part of the ~n-valued form
is used only.

In ease of elastieity theory E(M,~n) is the eonfiguration
spaee of the body M (ef. [Ma,Hu]). F eorresponds to a
eonstitutive law (whieh deseribes the virtual work) and if it
admi ts an integral representation, then. it is represented by
the foree density. If F is of the form d.F and if F admits an
integral representation then T plays the role of the (not
neeessarily symmetrie) stress tensor. Clearly Fand henee T
itself may depend on further parameters.

Aeknowledgement: We are indebted to M. Epstein and J.

Sniatyeki who brought the presented form of the eoneept of a
eonstitutive law in elastieity theory to our attention.

Constitutive laws

Let M be a eompaet smooth and oriented manifold of dimension
n-l and <,> be a fixed sealar produet on the oriented ~n. By
E(M,~n) wemean the set of all smooth embeddings of M into ~n.
This set is open in cm (M,~n), the eolleetion of all smooth
~n-valued maps of M endowed with the Cm-topology (ef. [Hi]).
Under the pointwise defined operations cm (M,IRn) is a Freehet
spaee and henee E(M,~n) is a Fr~ehet manifold. Obviously
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TE(M,mn) = E(M,mn) x C~(M,mn).
Given moreover j E E(M,mn) the Riemannian metric m(j) is
defined by

m(j) (X,Y) = <djX,djY)
V X,Y in rTM, the C~(M,m)-module of all smooth vector fields
on M. By dj we mean the second factor in Tj = (j,dj) locally
given by the Frechet derivative of j. Let moreover V(j) and
II(j) be the Levi -Civita connection and the Riemannian volume
form of m(j) respectively. Finally let us denote by A1.(N,mm)
the collection of all mm-valued one forms of N whatever the
manifold N and the natural number m meight be. This space is
endowed with the C~-topology.

By a constitutive law we mean a smooth one form F on E(M,mn),
that is a smooth map

F: E(M,mn) x C~ (M,IRn)~ IR
for which

assignig to each k
any j E E (M,mn) .
parameters) .

F(j): C~(M,mn)
e 'C~(M,IRn) the
(Obviously F

~IR

value F(j,k)
may depend

is linear for
on further

We call F mn-invariant provided that
F(j+z,k) = F(j,k)

in ClD(M,lRn)assuming z
that F factors over

Cartesian
the

its
to

with
this

endowed

for any z E mn regarded as a function
as its only value. Let us assume
E(M,lRn)/mn x C~(M,lRn)lRn. Both factors of
product are Frechet manifolds when
C~-topology. Evidently the differential

d : ClD(M,IRn) ~ {dh Ih E C~ (M,IRn)
factors over C~(M,mn)/lRn and yields a bijection onto
range, which hence is a Frechet manifold diffeomorphic

~F E A1.(E(M,lRn)/mn,m)
as F = d.~ and is thus mn-invariant.
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Integral representation and stress tensor

Let y E A~(M,~n) and j E E(M,~n). With these dates we may form
the two tensor T(y,j) defined by

T(y,j) (X,Y) := <y(X) ,djY>
for all X,Y E rTM.

There is a unique smooth strong bundle endomorphism P(j) of TM
such that

T(y,j) (X,Y) = m(j) (P(j)X,Y).
Decomposing P(j) into its skew, and selfadjoint part with
respect to m(j) denoted Cy(j) and By(j), respectively yields

T(y,j) (X,Y) = <dj(Cy(j) + By(j) (X),djY>.
Hence y is uniquely represented as

y(X) = cy(j)diX + dj CyX + dj ByX
where Cy(j) E Cm(M,so(n» (so(n) being the Lie algebra of
SO(n» maps for any P E M diTpM into Vp(j), the normal space
of diTpM and vice versa. We now define for any choice of
ß,y E A~(M,IRn) and a given j E E(M,~n) their dot product ß.y
by setting

Bß (j)By (j).
an integral

ß-y := -tr cß(j)OCy(j) - tr Cß(j)oCy(j) + tr
We say that F E A~(E(M,~n)/~n,~) admits
representation by « E Cm(E(M,~n) ,A~(M,~n» if
F(j,k) = J «(dj) .dk ~(j) V j E E(M,~n) and V k E Cm(M,~n).
«(dj) is called the stress form of F(j) and T(<«dj) ,j)
stress tensor associated with F(j) = d.F.

the

The stress form « and hence the associated stress tensor
reflect obviously ~n-invariant, and hence in particular,
internal physical properties of the moving body.

First we prove the following:

'"Theorem 1: If F admits an integral representation by
« E Cm(E(M,~n) ,A~(M,~n» then F:= d.F admits a unique integral
representation as
F(j,k) = f <~(j) ,k>~(j) V j E E(M,~n) andV k E Cm(M,~n)
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with "force density" ~(j) determined by « via
~ (j) = -div (B«(j) + C« (j» - 2.W (j)U« (j) +

+ (tr B« (j)0W (j)).N (j)
where U«(j) is defined by dj U«(j)X = c«(j)djX for any X e rTM
and where W(j) is the Weingarten map of j.

some ~k e cm(M,Rn)
field N(j) the

Proof: From above we know that dk writes uniquely as
dk = ck'di + di'Ck + di'Bk.

Since k = djXk + ~k'N(j) for some Xk e rTM,
and the oriented uni t normal vector
coefficients Bk' Ck and Ck are of the form

V(j)Xk) + ~k'W(j)
formed adjoint of

Bk = %. (V(j)Xk +
V(j)Xk being the pointwise
respect to m(j), moreover

Ck = %. (V(j)Xk - V(j)Xk)

with

and
Ck'dj Y = S(j) (Xk,Y) + d~k(X) 'N(j)

for any Y e rTM. S(j) is the Rn-valued second fundamental
tensor of j, ,that is the pointwise formed component of
d(djXk) (Y) normal to j(M)., Let us write c, C and B instead of
c«(j), C«(j) and B«(j) respectively. Thus we have for an
orthonormal moving frame e~, ...,en_~ and ~k = 1

n-~
tr BOBdk(j) = % I: m(j) (Bo(V(j)Xk + V(j)Xk)eS,eS)s=~

= r m(j) (B(V(j) Xk) ,es) - L (N(j) ,S(j) (es,Bes»s es s
= divj(B Xk) - m(j) (divj B,Xk) + «tr BOW(j» 'N(j) ,N(j»

with
n-~
I:

s=~

for any strong smooth bundle
expression holds for tr COCdk
the reader. Next we find

V(j) (A)eses
endomorphism of TM. A
which to calcula te we

similar
omit to

n-~
tr cOCdk = I: <cocdk dj es' dj es) + <coCdkN~j) ,N(j» =

s=~

= - I:
s

= - I:
s

m(j) (W(j)Xk,eS) <c N(j) ,dj es) - m(j) (W(j)U«(j) ,Xk) =
m(j) (W(j)Xk,es)m(j) (U«(j) ,es) - m(j) (W(j)U«(j) ,Xk) =

= -2 m(j) (W(j)U«(j) ,Xk).
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Using Gausses theorem one reads off immediately the expression
for tp(j).

The influence of the stress form and the stress tensor on the
constitutive law

Let 'Y E A'1(M,lRn) and j E E(M,lRn). We know (cf. [Bi]) that 'Y
uniquely splits into

'Y = dh + ß

where dh with h E cO> (M,lRn) is an integrable part of 'Y and ß
admits zero as integrable parts only. dh is therefore called
the integrable and ß the non-integrable part of 'Y. This
decomposition of 'Yis of the form

and
ß(X) = X E rTM

where e'1,...,en is' any basis in IRn, ts E cO> (M,IR) and Y~ E rTM
with div5Y~ = 0 for all s = l, ...,n. Here div5Y~ = tr V(j)Y~.

As a consequence of this decomposition we have thefollowing:

Theorem 2 Given 'Y E A'1(M,IRn) and jE E(M,lRn) with dh as the
integrable part of 'Ythen

f 'Y.dk ~(j) = f dh.dk ~(j),
saying that the non~integrable part ß of 'Y= dh+ß is
orthogonal to cO> (M,lRn)/lRn,regarded as a subspace of A'1(M,lRn).

Proof: Simplifying the notion from above let
dhX = r m(j) (Vs,X)es V X E rTM

s
where Vs _ gradjts for all s. Then

(Bh + Ch)X = r m(j) (Vs,X)Xs
s

and
(Bß + Cß)Y = r m(j) (Y~,Y)Xs.

s

Here Xs E rTM for any s = l, ... ,n are such that
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m(j) (Xs'Z) = <es,djZ) for all ZerTM.
Hence

Therefore if e~, ••.,en-~ is an orthonormal moving frame on M
tr(Bh + Ch)o(Bß + Cß) = tr(BhoBß + ChoCß)

= E E E m(j) (Y~,er)m(j) (Vs',Xs)m(j) (Xs',er)r s' s
= I: m(j) (y~,Vs).

Next we form
Ch diX = E m(j) (Vs,X) '<es,N(j»'N(j)

s
ch N(j) = E <es,N(j»'dj Vs'

s

The .analoguous equa tions hold for cß with V s replaced by Y~
for each s. Hence

Chocß di X = E E m(j) (Y~,X) '<es,N(j»'<es',N(j»'Vss' s
and

ChoCß N(j) = E E m(j)(Vs'Ys')'<es,N(j»'<es',N(j»'N(j).
s s

Therefore

and hence
tr(BhoBß + ChOCß + ChoCß) = 3 E m(j) (Y~,Vs)

s

showing that
nf dh.ß ~(j) = 3. E f m(j) (Y~,Vs)~(j) = 0

s=~

since Y~ and Vs are L2-orthogonal for all s = l, ...n.

An immediate consequence of theorem 1 and 2 is the following:

Corollary 3 If F is a IRn-invariant constitutive law of the
form F = d-F and if F admits an integral representation by

«: E(M,Rn)/~n ~ A~(M,~n)
with dh (dj) referred to as dh (j) the maximal integrable part
of «(dj) for all j e E(M,~n), that is if
F(dj) (dk) = f dh(j) .dk ~(j) V j E E(M,~n) and V k e Cm(M,~),
then F admits an integral representation of the form
F(j) (k) = f <,(j) ,k)~(j) V j e E(M,Rn) and V k e Cm(M,~n)

with
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~(j) = - dj{div{Bh{j) + Ch{j» + 2 W{j)Uh{i»
+ {tr Bh (j)oW (j))-N (j).

Here Uh{j) e rTM is such that dj Uh{j) = ch{j)N{j) and dh{j)
is represented as

dh{j) = C{j)h-dj + dj-Ch{j) + dj-Bh{j).
,..,

Moreover dh is uniquely determined by F.

Let us express (*) in corollary 3 more specifically in terms
of Xh and ~h' We know (cf. [Bi]) that

divj V{j) Z = A{j)Z (= - tr V{j)2Z) V ZerTM.
A{j) being the Laplace-Beltrami operator of m(j). Since

LZ (m{j» (X,Y) = m{j) ({V(j)Z + V{j)Z,Y)

we obtain with LZ as an abbriviation of V{j)Z + V{j)Z and a

moving frame er, •.• ,en-~ orthonormal with respect to m{j)
tr LZ OW{j) = ~ m{j) (LZ °W{j)er,er)

= ~ m{j) (V(j)W{j)erz,er) + m{j) (W(j)er,V{j)erZ)
= 2 I: m(j) (W(j)V(j)e Z,er)

r r

= 2 (divj{W(j)Z) - m(j){divjW(j),Z».
However (cf. [Bi])

divj(~W(j» = W{j)gradj~ + ~-gradjH{j) V ~ e cm{M,Rn)
and thus

m{j) (divjW(j) ,X) = dH{j) (Xl V X e rTM
H(j) being the trace of the Weingarten map W{j). Obviously

Uh{j) = W(j)Xh - gradj ~h{j) V h e cm(M,Rn).

Therefore corollary 3 turns into

Corollary 4 Let F be an Rn-invariant constitutive law of the
form F = d.F where F is represented by

Cl:E(M,Rn)/Rn ~ A~(M,IRn).
Without loss of generality Cl(dj) can assumed to be of the form
Cl(dj) = dh(j) with h(j) represented as

h(j) = dj Xh(j) + ~h{j) -N{j) V j e E(M,lRn)
for some Xh{j) e rTM and ~h{j) e cm(M,lRn). The one form F
admits an integral representation

F(j) (k) = f <~(j) ,k>ll(j) V j e E{M,Rn) and V cm(M,lRn)
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with
~(j) = - dj{A{j)Xh{j) - W{j)gradj ~h{j)

+ ~h{j) gradj H{j) + 2'W{j)2Xh) +

+ (divjW{j)Xh - dH{j) (Xh) + ~h{j) tr W{j)2) 'N{j).
The stress tensor of the integrable part of « is hence

T {dh(j) ,j) (X,Y) = m (j) {{V ( j)Xh (j) + ~h (j)m (j) {W(j)X ,Y)
for any X,Y E FTM.

Remark: This corollary shows that only the integrable part of
the stress form (and not the stress tensor) determines F
fully.

Examples:
F E A~{E{M,IRn),IR) will assumed to be IRn-invariant that is of
the form

by

is
an integral representation
which the integrable part

""F is supposed to admit
« E Cm{E{M,lRn) ,A~{M,IRn» of
assumed to be dh.
1) Let h{j) = j for any j e E{M,lRn). Hence dj = dj.idTM and
therefore

Thus
q> ( j) = {tr W (j)).N (j) = H (j) .N (j)

and if
V{j) := f l1{j),

we moreover have
F{j ,k) = DV{j) (k) = f H{j)' <N{j) ,k>l1{j).

The stress tensor T{dj,j) is obviously m{j)
j E E{M,IRn).

for all

2) Let h(j) = N{j) for any j E E{M,lRn). Then dh = dj'W{j) and
therefore

q> ( j) = - divj W (j) + {trW (j)2).N (j)
= - dj gradj H{j) + (tr.W{j)2) .N{j).

If we use moreover the formula
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A(j) = - tr W(j)2 + (tr W(j»2
= - tr W(j)2 + H(j)2

where A(j) is the scalar curvature of m(j) then
<p(j) = - dj gradj H(j) - (A(j) - H(j) 2)'N(j) 'rj j E E(M,lRn).
The stress tensor T (djW (j),j) is obviously the second
fundamental form for any j E E(M,lRn).

3) Let h(j) = dj Xh(j) 'rj j E E(M,lRn). Then
Bh (j) = %. U.Xh

and Ch (j) - %. (V'(j)Xh (j) - V (j)Xh (j))• Hence
j E E(M,IRn)

for all

<p(j) = - dj (V'(j)Xh (j) + 2 W (j)2Xh (j» +
+ (div W(j)Xh - dH(j) (Xh» 'N(j).

The stress tensor at (djXh,dj) applied to any X,Y E rTM is for
all j E E(M,lRn)

T(djXh,j) (X,Y) = m(j) (V'(j)XXh,Y).

4) Let h(j) be such that
Ch(j) = 0 and Bh(j) = % U. 'rj j E E(M,lRn) and some v E IR.V. Xh (j)

This means that Xh(j) is a gradient with respect to m(j).
Hence

h(j) = dj gradj ~(j) 'rj j E E(M,lRn)
and some ~(j) E cm(M,lRn). We may then proceed as in (3).

5) Choose « such that
«(dj) = % u.v'Y(j) 'rj j E E(M,lRn) and some v E IR.

where Y(j) E rTM for any j. Hence
<p(j) = - divj % U.vY(j) + % (tr u.Y(j)0W (j)).N (j)

= - dj(v.b(j)Y(j) + v(R(j)Y(j) + gradj divjY(j»
+ v(divjW(j)Y(j) - dH(j) (Xh» 'N(j)

where m(j) (R(j)X,Y) = Ric(i) (X,Y) with Ric(i) the Ricci tensor
of m(j). We leave it to the reader to determine the integrable
part of «.
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