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Note on Pareto Optimality and Duality
for Certain Nonlinear Systems

Werner OettlP

Ab,tract. We characterize the inconsistency of certain nonlinear systems under mild convexity require-
ments and without need for a. regularity assumption. The result is used to establish a duality result for
Pareto optimal points.

1. The present note is a continuation of [5]. There for Y areal topological vector
space, P c Y a nonvoid convex cone, and S c Y X m a nonvoid set, the inconsistency
of the system

(y, t) ES, Y E -P, t < 0
had been characterized by the existence of y. E p. (p. the polar cone of P ) such that

o :5 t for all (y, t) E S satisfying (y. , y) :5 o.
In order to make the necessity part of this characterization valid one needs first a con-
vexity assumption, namely that the set D := {y E YI(y, t) E S, t < o} is convex, and
second one needs a so called regularity assumption, which may take various forms. The
simplest regularity assumption, but also the least practical for many applications, requi-

res the set D to be open in Y. Another regularity assumption, which in essence goes back
to [3], requires that D is open in Sy (Sy the projection of S onto Y) and Sy is convex

with Oy Eint Sy. This assumption is more practical, but still has its drawbacks. Bere,
similarly to [1], we want to describe a simple approach which does not need any regula-

rity assumption at all, yet gives a necessary and sufficient condition for the inconsistency
of the above system. m is replaced by a more general vector space Z, permitting the

consideration of Pareto optima. We conelude with a duality result in scalar and vectorial
form respectively.

2. From now on we shall make the following a8llumptions :
Y, Z are real topological vector spaces, with Y being locally convex;

p C Y and Q c Z are nonvoid convex cones, with P closed , Q open, and Q =1= Z;
P+ c Y. and Q+ C Z. are the nonnegative polar cones of P and Q;
S c Y X Z is a given nonvoid set;

V := {z E ZI(y, z) E S, Y E -P} is convex, and for all z. E Q+ \ {ozo} the set
D:= {y E YI(y,z) E S, (z.,z) < o} is convex;
S f denotes the collection of all finite, nonempty subsets of S.

Note that y E -P 'and y. E P+ imply (y., y) :5 0, whereas z E -Q and z. E Q+ \ {ozo}
imply (z., z) < o. For simplicity we write {O} instead of {Ozo} .
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Theorem 1. The system

(1) (y, z) e 5, ye -P, z e -Q

has no solution iI, and only iI, there exists z. e Q+ \ {O} with the property that

(2) { for all 11e 5 f there exists y. e P+ such that
{z.,z}~O forall (y,z)e11 satis£ying (y.,y}:$O.

Proof: a) Assume that (2) is satisfied with some z. e Q+ \ {o}. Then (1) cannot have
a solution (y, z). Otherwise with 11 := {(y, z)} we would have for y. e P+ as given by
(2) that {y., y} :$ 0 and thereby (z., z) ~ 0, whereas £rom z e -Q and z. e Q+ \ {O}
follows (z., z) < 0 , a contradiction.
b) Assume that (1) has no solution: Then the convex set V introduced in the assumptions

is disjoint £rom the open convex cone -Q. Hence by the weak separation theorem for
convex sets there exists z. e Q+ \ {O} such that {z., z} ~ 0 for all z e V (iI V is empty,

then choose z. e Q+ \ {o} arbitrarily, which is possible since Q =f Z). Then the system
(y,z) e 5, ye -P, (z.,z) < 0

has no solution. For the convex set D introduced in the assumptions this means that
D n -P = 0. Let 0 be a finite, nonempty subset of 5. Let Da := {y e YI(y,z) e 0,
{z., z} < O}. 1£Da = 0 , then choose y. = O. 1£Do =F 0 , then from the convexity of D
follows conv Da cD. Hence conv Do n -P = 0. Since conv Do is convex, compact and
P is convex, closed and Y is locally convex, the strong separation theorem gives y. e P+
such that (y., y) > 0 for all y e conv Do, hence for all y e Da. So £rom {y. , Y} :$ 0 and

(y, z) e 11follows y f/. Do, i.e., {z., z} ~ O. q.e.d.

We mention that in order to obtain in (2) the slightly stronger but more familiar "La.
gran gian" statement 0 :$ {y., y} + (z., z) for all (y, z) e 11 , not only stronger convexity

requirements are needed (e.g. 5 convex), but also a regularity assumption - see [11.

Of particular interest is the case that

5 := (J X g)( X) + (P X cl Q),
where X is a convex set and / : X -+ Y, g : X -+ Z are given mappings. With this
specialization, since P + P = P and cl Q +Q = Q, the inconsistency of (1) means the
inconsistency of the system

x e X, /(x) e -P, g(x) e -Q.
Statement (2) takes the following form :

For all W e X f there exists y. e P+ such that
(z., g(x)} ~ 0 for all xe W satisfying (y., f(x)} :$ O.

The convexity of D resp. V in this case is satisfied iI for the multivalued mappings
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11'(-) := f(g-l (-)) +P resp. 11'(-) :=g(f-l (.))+ cl Qone has that 11'(C) is convex for all

convex suhsets C c Z resp. C C Y.

Motivated hy [7] we give a vector-valued version of Theorem 1.

Theorem 2. The system (1) has no solution if, and only if,

(3) { for an 0 E Si there exists y. E P+ such that
z fi. -Q for all (y, z) E 0 satisfying (y., y) ~ o.

Proof: If (1) has no solution, then there exists z. E Q+ \ {o} such that (2) is satisfied,
and this implies (3) sinee otherwise z E -Q would imply (z., z) < O. Conversely, let (3)

hold. Then (1) has no solution (1', z). Otherwise we would set 0 := {(1" z)} and 0htain
from(3) an y. E P+ such that (y., y) ~ 0 , hence z fi. -Q. This contradicts (1', z) heing a

solution of (1). q.e.d.

3. Theorem 1 and Theorem 2 give rise to a duality theorem (eompare [2] and [4])

in sealar and in vectorial form respectively. We first turn to the vectorial ease, starting
from Theorem 2. As hefore we let

V := {b E ZI(y,b) E S,y E -P},

and we let
W := {b E ZI for an 0 E Si there exists y. E P+ such that

z - b fi. -Q for an (y,z) E 0 satisfying (y.,y) ~ O}.
b E Z is ealled Pareto m£n£mal in V iff b E V and b - b fi. -Q for all b E V.

b E Z is ealled Pareto mail£mal in W iff b E W and b - b fi. Q for all b E W.

If b1 E V and b2 E W, then b1 - b2 fi. -Q. Indeed: For b1 E V let (Yl' bt) E S with
Yl E -P. Then for all y. E P+ we have (y., Yl) ~ O. In partieular for the y. E P+
resulting from b2 E W with 0 := {(Yl' b1)} we have (y., Yl) ~ 0, implying b1 - b2 fi. - Q.
From this it follows immediately :

If b E V n W, then bis Pareto minimal in V and Pareto maximal in W.

Theorem 3. bE Z is Pareto minimal in Vif, and only if, bE V n w.

Proof: a) Assume that bis Pareto minimal in V. Then bE V, and the system
(y,b)ES, yE-P, b-bE-Q

has no solution. By Theorem 2, where we have to replaee S by S - (0, b), we ohtain that
bEW.
b) That bE V nw implies b being Pareto minimal in V has already heen observed. q.e.d.

The sealar version is fully analogous. Again we let

V:= {bE ZI(y,b) E S,yE -P},
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and for z. E Q+ \ {o}we let

W (z.) := {b E ZI for all 0 E SI there exists y. E P+ such that

(z., z - b) ~ 0 for all (y, z) E 0 satisfying (y., y) ~ O}.

By a similarreasoning as above we obtain: If b1 EV and b2 EW(z.), then (z., b1-b2) ~ O.
From this it follows immediately :

If bEVnW(z.J,then min(z.,b) = (z.,b) = max (z.,b).
bEV bEW(zO)

Theorem 4. bE Z is Pareto minimal in Vif, and only if, there exists z. E Q+ \ {o}
such that bE V n W(z.).

Proof: The proof is analogous to that of Theorem 3. Note that from (z., b - b) ~ 0 and

Z. E Q+ \ {o} follows b - b f# -Q. q.e.d.

For fixed z. E Q+ \ {o} let us consider the quantities
a := min(z., z) (3.:= max (z., z).

zEV zEW(zo)

There holds

(3. = inf sup (inf{ (z., z) I(y, z) E 0, (y" y) ~ Oll
OESt yOEP+

~ sup inf (inf{(z"z)l(y,Z)EO,(y.,y)~O})
yOEP+ OESt

= sup (inf{(z" z) I(y, z) ES, (y., y) ~ O})
yOEP+

-.p.
Hence in the situation of Theorem 4 one has a = (3. ~ (3. Under a suitable regularity
assumption ( see [5], [6]) one has even a = (3. But without such a regularity assumption

one may have a duality gap a > p, and the value p. is designed so as to elose eventually
this gap.
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