Note on Pareto Optimality and Duality for Certain Nonlinear Systems

Werner Oettli

Nr. 85 (1988)

Fakultät für Mathematik und Informatik, Universität Mannheim, D-6800 Mannheim 1, Germany

Note on Pareto Optimality and Duality for Certain Nonlinear Systems

Werner Oettli¹

Abstract. We characterize the inconsistency of certain nonlinear systems under mild convexity requirements and without need for a regularity assumption. The result is used to establish a duality result for Pareto optimal points.

1. The present note is a continuation of [5]. There for Y a real topological vector space, $P \subset Y$ a nonvoid convex cone, and $S \subset Y \times I\!\!R$ a nonvoid set, the inconsistency of the system

$$(y,t)\in S , \quad y \in -P , \quad t < 0$$

had been characterized by the existence of $y^* \in P^*$ (P^* the polar cone of P) such that $0 \le t$ for all $(y,t) \in S$ satisfying $(y^*, y) \le 0$.

In order to make the necessity part of this characterization valid one needs first a convexity assumption, namely that the set $D := \{y \in Y | (y,t) \in S, t < 0\}$ is convex, and second one needs a so called regularity assumption, which may take various forms. The simplest regularity assumption, but also the least practical for many applications, requires the set D to be open in Y. Another regularity assumption, which in essence goes back to [3], requires that D is open in S_Y (S_Y the projection of S onto Y) and S_Y is convex with $0_Y \in \text{int } S_Y$. This assumption is more practical, but still has its drawbacks. Here, similarly to [1], we want to describe a simple approach which does not need any regularity assumption at all, yet gives a necessary and sufficient condition for the inconsistency of the above system. $I\!R$ is replaced by a more general vector space Z, permitting the consideration of Pareto optima. We conclude with a duality result in scalar and vectorial form respectively.

2. From now on we shall make the following assumptions :

Y, Z are real topological vector spaces, with Y being locally convex;

 $P \subset Y$ and $Q \subset Z$ are nonvoid convex cones, with P closed, Q open, and $Q \neq Z$;

 $P^+ \subset Y^*$ and $Q^+ \subset Z^*$ are the nonnegative polar cones of P and Q;

 $S \subset Y \times Z$ is a given nonvoid set;

 $V := \{z \in Z | (y, z) \in S, y \in -P\} \text{ is convex, and for all } z^* \in Q^+ \setminus \{0_Z \cdot\} \text{ the set } D := \{y \in Y | (y, z) \in S, \langle z^*, z \rangle < 0\} \text{ is convex;}$

 S^{f} denotes the collection of all finite, nonempty subsets of S.

Note that $y \in -P$ and $y^* \in P^+$ imply $\langle y^*, y \rangle \leq 0$, whereas $z \in -Q$ and $z^* \in Q^+ \setminus \{0_{Z^*}\}$ imply $\langle z^*, z \rangle < 0$. For simplicity we write $\{0\}$ instead of $\{0_{Z^*}\}$.

Fakultät für Mathematik und Informatik, Universität Mannheim, D-6800 Mannheim 1, Germany

Theorem 1. The system

$$(1) (y,z) \in S, \quad y \in -P, \quad z \in -Q$$

has no solution if, and only if, there exists $z^* \in Q^+ \setminus \{0\}$ with the property that

(2)
$$\begin{cases} \text{for all } \Omega \in S^f \text{ there exists } y^* \in P^+ \text{ such that} \\ \langle z^*, z \rangle \ge 0 \text{ for all } (y, z) \in \Omega \text{ satisfying } \langle y^*, y \rangle \le 0. \end{cases}$$

Proof: a) Assume that (2) is satisfied with some $z^* \in Q^+ \setminus \{0\}$. Then (1) cannot have a solution $(\overline{y}, \overline{z})$. Otherwise with $\Omega := \{(\overline{y}, \overline{z})\}$ we would have for $y^* \in P^+$ as given by (2) that $\langle y^*, \overline{y} \rangle \leq 0$ and thereby $\langle z^*, \overline{z} \rangle \geq 0$, whereas from $\overline{z} \in -Q$ and $z^* \in Q^+ \setminus \{0\}$ follows $\langle z^*, \overline{z} \rangle < 0$, a contradiction.

b) Assume that (1) has no solution. Then the convex set V introduced in the assumptions is disjoint from the open convex cone -Q. Hence by the weak separation theorem for convex sets there exists $z^* \in Q^+ \setminus \{0\}$ such that $\langle z^*, z \rangle \ge 0$ for all $z \in V$ (if V is empty, then choose $z^* \in Q^+ \setminus \{0\}$ arbitrarily, which is possible since $Q \neq Z$). Then the system $(y, z) \in S, y \in -P, \langle z^*, z \rangle < 0$

has no solution. For the convex set D introduced in the assumptions this means that $D \cap -P = \emptyset$. Let Ω be a finite, nonempty subset of S. Let $D_{\Omega} := \{y \in Y | (y, z) \in \Omega, (z^*, z) < 0\}$. If $D_{\Omega} = \emptyset$, then choose $y^* = 0$. If $D_{\Omega} \neq \emptyset$, then from the convexity of D follows conv $D_{\Omega} \subset D$. Hence conv $D_{\Omega} \cap -P = \emptyset$. Since conv D_{Ω} is convex, compact and P is convex, closed and Y is locally convex, the strong separation theorem gives $y^* \in P^+$ such that $\langle y^*, y \rangle > 0$ for all $y \in \text{conv } D_{\Omega}$, hence for all $y \in D_{\Omega}$. So from $\langle y^*, y \rangle \leq 0$ and $(y, z) \in \Omega$ follows $y \notin D_{\Omega}$, i.e., $\langle z^*, z \rangle \geq 0$.

We mention that in order to obtain in (2) the slightly stronger but more familiar "Lagrangian" statement $0 \le \langle y^*, y \rangle + \langle z^*, z \rangle$ for all $(y, z) \in \Omega$, not only stronger convexity requirements are needed (e.g. S convex), but also a regularity assumption – see [1].

Of particular interest is the case that

$$S := (f \times g)(X) + (P \times \operatorname{cl} Q),$$

where X is a convex set and $f: X \to Y, g: X \to Z$ are given mappings. With this specialization, since P + P = P and $\operatorname{cl} Q + Q = Q$, the inconsistency of (1) means the inconsistency of the system

$$x \in X$$
, $f(x) \in -P$, $g(x) \in -Q$.

Statement (2) takes the following form :

For all $W \in X^f$ there exists $y^* \in P^+$ such that

 $\langle z^*, g(x) \rangle \ge 0$ for all $x \in W$ satisfying $\langle y^*, f(x) \rangle \le 0$.

The convexity of D resp. V in this case is satisfied if for the multivalued mappings

 $\Psi(\cdot) := f(g^{-1}(\cdot)) + P$ resp. $\Psi(\cdot) := g(f^{-1}(\cdot)) + \operatorname{cl} Q$ one has that $\Psi(C)$ is convex for all convex subsets $C \subset Z$ resp. $C \subset Y$.

Motivated by [7] we give a vector-valued version of Theorem 1.

Theorem 2. The system (1) has no solution if, and only if,

(3)
$$\begin{cases} \text{for all } \Omega \in S^f \text{ there exists } y^* \in P^+ \text{ such that} \\ z \notin -Q \text{ for all } (y, z) \in \Omega \text{ satisfying } \langle y^*, y \rangle \leq 0. \end{cases}$$

Proof: If (1) has no solution, then there exists $z^* \in Q^+ \setminus \{0\}$ such that (2) is satisfied, and this implies (3) since otherwise $z \in -Q$ would imply $\langle z^*, z \rangle < 0$. Conversely, let (3) hold. Then (1) has no solution $(\overline{y}, \overline{z})$. Otherwise we would set $\Omega := \{(\overline{y}, \overline{z})\}$ and obtain from(3) an $y^* \in P^+$ such that $\langle y^*, \overline{y} \rangle \leq 0$, hence $\overline{z} \notin -Q$. This contradicts $(\overline{y}, \overline{z})$ being a solution of (1).

3. Theorem 1 and Theorem 2 give rise to a duality theorem (compare [2] and [4]) in scalar and in vectorial form respectively. We first turn to the vectorial case, starting from Theorem 2. As before we let

$$V := \{ b \in Z | (y, b) \in S, y \in -P \},\$$

and we let

 $W := \{b \in Z | \text{ for all } \Omega \in S^f \text{ there exists } y^* \in P^+ \text{ such that} \}$

 $z - b \notin -Q$ for all $(y, z) \in \Omega$ satisfying $\langle y^*, y \rangle \leq 0$.

 $\overline{b} \in Z$ is called Pareto minimal in V iff $\overline{b} \in V$ and $b - \overline{b} \notin -Q$ for all $b \in V$. $\overline{b} \in Z$ is called Pareto maximal in W iff $\overline{b} \in W$ and $b - \overline{b} \notin Q$ for all $b \in W$.

If $b_1 \in V$ and $b_2 \in W$, then $b_1 - b_2 \notin -Q$. Indeed: For $b_1 \in V$ let $(y_1, b_1) \in S$ with $y_1 \in -P$. Then for all $y^* \in P^+$ we have $\langle y^*, y_1 \rangle \leq 0$. In particular for the $y^* \in P^+$ resulting from $b_2 \in W$ with $\Omega := \{(y_1, b_1)\}$ we have $\langle y^*, y_1 \rangle \leq 0$, implying $b_1 - b_2 \notin -Q$. From this it follows immediately :

If $\overline{b} \in V \cap W$, then \overline{b} is Pareto minimal in V and Pareto maximal in W.

Theorem 3. $\overline{b} \in Z$ is Pareto minimal in V if, and only if, $\overline{b} \in V \cap W$.

Proof: a) Assume that \overline{b} is Pareto minimal in V. Then $\overline{b} \in V$, and the system

$$(y,b) \in S, \quad y \in -P, \quad b - \overline{b} \in -Q$$

has no solution. By Theorem 2, where we have to replace S by $S - (0, \overline{b})$, we obtain that $\overline{b} \in W$.

b) That $\overline{b} \in V \cap W$ implies \overline{b} being Pareto minimal in V has already been observed. q.e.d.

The scalar version is fully analogous. Again we let

$$V := \{ b \in Z | (y, b) \in S, y \in -P \},\$$

and for $z^* \in Q^+ \setminus \{0\}$ we let

 $W(z^*) := \{ b \in Z | \text{ for all } \Omega \in S^f \text{ there exists } y^* \in P^+ \text{ such that } \}$

 $\langle z^*, z-b \rangle \ge 0$ for all $(y, z) \in \Omega$ satisfying $\langle y^*, y \rangle \le 0$.

By a similar reasoning as above we obtain: If $b_1 \in V$ and $b_2 \in W(z^*)$, then $\langle z^*, b_1 - b_2 \rangle \ge 0$. From this it follows immediately :

If
$$\overline{b} \in V \cap W(z^*)$$
, then $\min_{b \in V} \langle z^*, b \rangle = \langle z^*, \overline{b} \rangle = \max_{b \in W(z^*)} \langle z^*, b \rangle$.

Theorem 4. $\overline{b} \in Z$ is Pareto minimal in V if, and only if, there exists $z^* \in Q^+ \setminus \{0\}$ such that $\overline{b} \in V \cap W(z^*)$.

Proof: The proof is analogous to that of Theorem 3. Note that from $(z^*, b - \overline{b}) \ge 0$ and $z^* \in Q^+ \setminus \{0\}$ follows $b - \overline{b} \notin -Q$. q.e.d.

For fixed $z^* \in Q^+ \setminus \{0\}$ let us consider the quantities

$$\alpha := \min_{z \in V} \langle z^*, z \rangle \quad , \quad \beta^* := \max_{z \in W(z^*)} \langle z^*, z \rangle.$$

There holds

$$\begin{aligned} \beta^* &= \inf_{\Omega \in S^{f}} \sup_{y^* \in P^+} \left(\inf\{ \langle z^*, z \rangle | (y, z) \in \Omega, \langle y^*, y \rangle \le 0 \} \right) \\ &\geq \sup_{y^* \in P^+} \inf_{\Omega \in S^{f}} \left(\inf\{ \langle z^*, z \rangle | (y, z) \in \Omega, \langle y^*, y \rangle \le 0 \} \right) \\ &= \sup_{y^* \in P^+} \left(\inf\{ \langle z^*, z \rangle | (y, z) \in S, \langle y^*, y \rangle \le 0 \} \right) \\ &=: \beta. \end{aligned}$$

Hence in the situation of Theorem 4 one has $\alpha = \beta^* \ge \beta$. Under a suitable regularity assumption (see [5], [6]) one has even $\alpha = \beta$. But without such a regularity assumption one may have a duality gap $\alpha > \beta$, and the value β^* is designed so as to close eventually this gap.

References

- [1] G. Heinecke, W. Oettli : A nonlinear theorem of the alternative without regularity assumption, J. Math. Anal. Appl. (to appear).
- [2] J. Jahn : Mathematical Vector Optimization in Partially Ordered Linear Spaces. Frankfurt am Main, 1986.
- [3] D. G. Luenberger : Quasi-convex programming, SIAM J. Appl. Math. 16 (1968), 1090-1095.
- [4] W. Oettli : A duality theorem for the nonlinear vector-maximum problem, Colloquia Mathematica Societatis János Bolyai 12 (1974), 697-703.
- [5] W. Oettli : Optimality conditions involving generalized convex mappings, in: Generalized Concavity in Optimization and Economics (ed. by S. Schaible and W. T. Ziemba), pp. 227-238. New York, 1981.
- [6] I. Singer : Optimization by level set methods I : Duality formulae , in: Optimization (ed. by J.-B. Hiriart-Urruty, W. Oettli, J. Stoer), pp.13-43. New York, 1983.
- [7] T. Weir, B. Mond, B. D. Craven : Weak minimization and duality, Numer. Funct. Anal. Optim. 9 (1987), 181-192.