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1. Introduction

In the last years one has observed a growing interest of scientists in chemistry and fluid

mechanics in studying the fluid motion in a surface or interface (cf.[E],[Sc]).

The mathematical complexity of such a study is due on one hand to the global,

non-Euclidian geometrical character of the flow, on the other hand to the non-linear

physical phenomena, like capillarity, which govern the motion and have to be taken into

account.
It is the aim of the present paper to give a short presentation of a global model for the

fluid flow of the bubble.

2. The model

Let us consider a bubble moving in the atmosphere inlR3
.

By a bubble we mean a skin of a deformable medium enclosing an open 3-dimensional

region in 1R3filled with athmosphere, an ideal gas.

The skin shall be of even thickness e as to whether it undergoes deformations or not. We

idealize this situation by assuming that the shell reduces to its middle surface, which is

assumed to be a 2-dimensional smooth connected and oriented submanifold of 1R3
.It is

therefore given by a smooth embedding j of a 2-dimensional smooth compact connected

and oriented manifold M into IR3. The map j is called a configuration of the skin. The

collection of all such configurations is called E(M,1R3).It is a open subset of C
oo
(M,1R3

),the

collection of all smooth 1R3-valued functions of M, endowed with the C
OO
-topology

(cf. [Bi,FiJ,[Bi,Sn,Fi]).
For a given configuration j E E(M,1R3)the atmospheric pressure, called outer pressure, is

denoted by ITa (j), whileas the pressure of the ideal gas inside the bubble, called inner

pressure will be denoted by IT(j). For simplicity we assume that both ITa ' IT : E(M,1R3
)---'1iR

are smooth functions. Smoothness on Frechet-manifolds is meant in the sense of

[Bi,Sn,Fi]. Moreover we require the inner pressure IT(j) to satisfy the state equation of

an ideal gas



(2.1) IT(j) • \)(j) = k • N • T(j) ,

where k is the Boltzmann constant, N the Avogadro number of the gas inside the bubble,

T : E(M,1R3) ~ IR a smooth function called the temperature and \)(j) the volume of the

gas. A more formal definition of \) will be given later. By a parameter independent

constitutive law of the skin we mean a smooth one-form

(2.2)

Throughout these notes we assume that F admits an integral representation

(2.3)

where

(2.4)
3003PF : E(M,IR ) --1 C (M,IR)

is a smooth map, called the force density acting up on the bubble,

(2.5) < , > is a fixed scalar product on the oriented 1R3
,

and
(2.6) /-l(j) is the Riemannian volume on M associated with the metrie m(j) given by

(2.7) m(j)(X,Y) = <djX,djY> ,

for any two smooth veetor fields X and Y on M.

By dj we mean the differential

(2.8) dj : TM ~ 1R
3
,

of j E: E(M,1R3) whieh is locally nothing else but the Fr~ehet derivative of the loeal

representation of j E: E(M,1R3
).

We say that the eonstitutive law F depends on a parameter varying in the parameter

manifold sP if there is a smooth map

(2.9)

sueh that the constitutive law is a smooth map

(2.10)

which

F : E(M,1R3) x sPx Coo(M,1R3) --1 IR ,

is required to be linear in the third argument and allows an integral

representation of the form

(2.11 )

where
3 .003

(2.12) PF : E(M,IR ) x sP--1 C (M,IR) ,

the so-called force density, is smooth. We notiee that the real number F(j,a(j»(l) is thf

work neeessary to deform the material at the manifold j(M) in the infinitesimal directior
00 3I E: C (M,IR).



We eomplete the model by specifying a fixed parameter dependent eonstitutive law P,

and in addition a density function

(2.13)

(2.15)

We eall the real number
(2.14) m(j) := e. Mf p(j).j.1.(j) ,

3the total mass m(j) at the eonfJguration j E E(M,IR). This density function is assumed to

satisfy a eontinuity equation

\i j E E(M,1R3),

\i I E Coo(M,1R3),

where Dp(j)(l) is the derivative of p at j in the direetion of 1, trm(j) means the traee

formed with respeet to the metrie m(j) and Dm(j)(l) is the derivative of m(j) at j in the

direetion of 1. The right hand side of (2.15) steams from the derivative of the Riemannian

volume reading as

(2.16)

If I is decomposed into its part tangential to j(M) and

\i j E E(M,1R3),

\i I E Coo(M,1R3).

normal to j(M) that is into

(2.17) I = djX(j,U + e(j,U.N(j) ,

(2.18)

with N(j) the positively oriented unit normal vector field and X(j,U E rTM (where rTM is

the eollection of all smooth vector fields on M), then the derivative of m(j) is given by

Dm(j)(l)(X,Y) = LX(j,U(m(j))(X,y) + 2.e(j,U.m(j)(W(j)X,Y) .

Here LXU,U denotes the Lie derivative and W(j) : TM ~ TM the Weingarten map, a

smooth strang bundle endomorphism of TM selfadjoint with respeet to m(j) and given by

(2.19)

As usual we set

(2.20)

W(j)X = dN(j)X .

R(j) := tr W(j) ,

twiee the mean eurvature of the middle surfaee j(M).

3. Internal properties of the skin

The internal physieal properties of the skin material are independent of the specifie

loeation of j(M) in 1R3.In other words the part of the eonstitutive law F depending on the

internal physical properties only is invariant under the translation group 1R3of 1R
3
.We

denote it by Pint.
We obtain a parameter independent 1R3-invariant eonstitutive law by specifying a smooth

one-form



(3.1)

and setting

(3.2)

3 I 00 3 IF1R3: E(M,IR ) 1R3X C (M,IR ) 1R3~ IR

with

(3.3) d ; E(M,1R3) ~ E(MJIR3)11R3,

the differential and d* its pull back. Specifying Cl) to be Coo(M,1R3) 11R3and

to be a smooth map we obtain a parameter dependent constitutive law in the obvious

way. For the sake of simplicity we write dk instead of aIR3(dj).

Ta obtain now an integral representation for F1R3we proceed as follows ;
')

According to [BiJ1]J [BiJ2] or [BiJSoc] any smooth one-form (X ; TM ~ IR'"can be uniquely

decomposed with respect to a differential dj E E(MJIR3)11R3as

(3.4) (X = d(XJdj)dj + dj(C«(XJdj) + B«(X,dj)) J

where the coefficients of dj on the right hand side have the following meaning

The first one is a smooth map

(3.5) d(XJdj) ; M ~ so(3) ,

with values in the Lie-algebra so(3) of SÜ(3) flipping vectors tangential to j(M) into

normal ones and vice versa. The other two coefficients C( djJ(X) and B(dj,(X) are smooth

strang bundle endomorphisms of TM skew respectively selfadjoint with respect to m(j).

Given any two 1R3-valued one-forms (Xl' (Xz : TM ~ 1R3we define the real valued dot

product of (Xl and (Xzby

(3.6) (Xl • (Xz := - ( tr (c((Xl'dj) • d(Xz,dj)) + tr (C((Xl'dj) • C((Xz,dj)) )
+ tr (B«(Xl'dj) • B((XzJdj)) ,

where the dot on the right hand side of the equation me ans pointwise composition. For the

sequel we specify one parameter dependent constitutive law

(3.7)

by

(3.8)

with

(3.9 ) 3 I 00 3 I. I 3(X ; E(M,IR ) 1R3x C (MJIR) 1R3~ A (M,IR ) J

a srnooth rnap called stress form. Its range is the space of all srnooth 1R3-valued

one-forrns endowed with the COO -topalogy.

The srnooth two-tensor T(djJdk) defined by

(3.10) T(djJdk)(X,Y) := <(X(djJdk)X,djY) J

for all X,Y E rTM is the so-called stress tensor.



Now let us show that F admits an integral representation (cf. [Bi,2] or [Bi,Soc]).

Theorem 1 :

For each dj E E(M,1R3) 11R3 and each dk E Coo(M,1R3) 11R3 the density of the internal forces

'fF is given bv
int "'

(3.11) 'Pr. (dj,dk) = - dj (diVJ. (B«(X(dj,dk),dj) + C«(X(dj,dk),dj»
Ißt

- 2 • W(j) U«(X(dj,dk»)

+ ( tr B«(X(dj,dk),dj) .W(j») 'N(j)

Here U«(X(dj,dk» is defined by

(3.12) dj U((X(dj,dk» = C((X(dj,dk),dj) • N(j)

and div jA for some

(3.13)

smooth strong bundle endomorphism A of TM by
z

divJ.A = L V(j)e (A) e ,
5=1 5 5

where e1' ez is a moving frame on M orthonormal with respect to m(j) and V(j) denotes

the Levi-Civita connection of m(j).

As shown in [Bi,2] or in [Bi,Soc] we have the following :

Theorem 2 :

Let (X E Al(M,1R3) and j E E(M,1R3). Then there is a unique h E Coo(M,1R3), up to a constant in

1R3, such tha t

(3.14)

satisfying

(3.15)

(X = dh +ß ,

dh is ealled the integrable part of (x.

We sketch the proof :

Let al, az' a3 be an orthonormal basis of 1R3 ( with respect to < , > ).
Then we set

3

(X(X) = L m(j)(yr,X) a , 'tJ X E TM .
r=l r

yr = grad p + yO with divJ.YO:= tr V(j)YO = 0 for r=1,2,3 we setr r r r
3

h := L T
r
• ar=l r

(3.16)

Deeomposing

(3.17)
and

(3.18)
3

ß X := L m(j){yO,X)a ,
r=l r r 'tJ X E rTM .



This yields the first part of the theorem.

Now we represent dh and dß with respect to dj yielding

(3.19) dh = ddh,dj).dj + dj (c(dh,dj) + B(dh,dj))

and

(3.20) ß = dß,dj).dj + dj (C(ß,dj) + B(ß,dj)) .

If Er E rTM is defined by dj Er = ar for r=1,2,3 then for each r=1,2,3

(3.21) dj grad T r = - c(dh,dj) ar - dj(C(dh,dj) - B(dh,dj)) Er

and

(3.22)

(3.23)

dj y~ = - dß,dj) ar - dj(C(ß,dj) - B(ß,dj)) Er .
3
L m(j)(grad Tr, yO) = dh • ß .
y=l y

Since MI m(j)(grad T r' )~) }..dj) = 0 the second part of the theorem is established.

From now on we therefore assurne that

(3.24) oddj,dk) = dh(dj,dk)

for a smooth map

(3.25) 3 I 00 3 Ih : E(M,lR ) 1R3X C (M,IR ) 1R3---1 IR .

The total force density PF is the sum of PF. and PF ' Le.
rnt ext

(3.26) \j j E E(M,1R3),
00 3

\j k E C (M,IR ).

Let now

(3.27 )

be the area of j(M). Then

DV(j)(l) = J H(j).(N(j),l> j.1(j) ,
M

(3.28) \j j E E(M,1R3) ,
\j 1 E Coo(M,1R3) .

This re mark allows us to understand what part of tr B(dj,dk) • W(j) yields the volume

work. We thus decompose tr B(dj,dk) • W(j) along H(j) and normal to it in the Hilbert

space of all j.1(j)-Lz-functions on M. Hence we have (cf.[Bi,3])

(3.29) tr B(dj,dk) • W(j) = q(dj,dk) • H(j) + (tr B(dj,dk) • W(j))l.

Since the skin is bounded by two surfaces we set

(3.30) q(dj,dk) = 2.n(dj,dk) .
3 00 3Thus we get for the total force density at (j,k) E E(M,IR ) x C (M,IR ) by

(3.31) PF(j,k) = - dj (divj (B(cx(dj,dk),dj) + C(cx(dj,dk),dj)) - 2.W(j) U(cx(dj,dk),dj))

+ (2n(j,k).H(j) + (IT(j) - I1a(j))).N(j)

+ (tr B(oddj,dk),dj).W(j))l. • N(j) .



If 'fF(j,k) = 0 far same (j,k) E E(M,1R3) x Coo(M,1R3), an equilibrium canditian, and if the
material satisfies B((X(dj,dk),dj) = rr(j,k)'H(jHd then

(3.32) 2'rr(j,k)'H(j) = ITa(j) -IT(j) ,

a relation playing the role of Laplacian law if we interpret rr(j,h:) as structural

capillarity determined by ane skin boundary surface. Since TTa(j), TT(j) and rr(j,k) are all

reals, H(j) has to be areal too. Thus j(M) is a minimal surface in 1R3.

3Let us turn back to the volume b: E(M,IR) ----1 IR , of the ideal gas given by

(3.33) b (j) = J< j,N (j » J.1 (j) ,
M

(3.34)

we see that

(3.35 ) (TTa(j) - TT(j») • Db(j)(h) + 2 rr(j) DV(j)(h)

is the work needed to deform the volume b(j) and the areas 2 V(j) of the two

surfaces bounding the skin.

4. The structural viscosity and the equaticn cf motion

As previously shown it suffices to specify a smooth map

(4.1) 3 00 3 00 3h : E(M,IR ) x C (M,IR) ----1 C (M,IR) ,

in order to o~tain a constitutive law FIRn,where, as mentioned above, h is only determined

up to a canstant in 1R3.Moreover it is possible to exhibit a structural viscosity af the

deformable medium under consideration in the following way :
00 3First write for any u E C (M,IR)

(4.2) u = djX(u,j) + G(u,j)'N(j) , where X(u,j) E rTM ,

and decompose X(u,j) into

(4.3)

with diVjXO(U,j) - O. As shown in [Bi,3] or [Bi,Soc] the component XO(u,j) is uniquely

determined by du. Thus for any j E E(M,1R3) and any k E E(M,1R3) the vector field

XO(h(j,k),j) is uniquely determined by dh(j,k) and dk respectively.

We then may set

(4.4)

where X(h(j,k),j) is pointwise perpendicular to XO(k,j).

The function lJ(h(j,k).,j) is called the coefficient of structural viscosity (cf.[Bi,3]).

Choasing a stress form of a particular kind the equation af the motion of the material



.• will satisfy a Navier-Stokes type of equation as we will see bellow .
Ta get this equation we use a simplified version of (4.5) and set

(4.5) h(j,k) := lJ'dj XO(k,j) + G(h(j,k),j)'N(j) ,

for all j E E(M,1R3) and all k E Coo(M,1R3) and a constant v. Clearly for any j E E(M,1R3) , any

k E Coo(M,1R3) and any X E rTM

(4.6) dh(j,k)X = m(j)(gradlHh(j,k),j) - v'W(j) XO(k,j) , X) • N(j)

+ dj lJ'I7(j) XO(k,j) + dj G(h(j,k),j)'W(j) X .

Thus we read off

(4.7) ddj,dh(j,k» dj X = m(j)(gradjG(h(j,k),j) - W(j)XO(k,j) , X) • N(j) ,

(4.8) C(dh(j,k),dj)= ¥'(V(j) XO(k,j) - V{j) XO(k,j» ,

(4.9) B(dh(j,k),dj) = ¥'(I7{j) XO(k,j) + V(j) XO(k,j) + G(h(j,k),j)o\V(j) ,

f\J

with V(j) X the adjoint of V(j) X for any X E rTM. Let us remark that

(4.10) }-L(j)(X,Y) = m{j)(m(j)X,Y) , \J X,Y E rTM

for m(j) a skew adjoint strong bundle isomorphism of TM. Hence

(4.11 ) C(dh(j,k).,dj) = ~(dh(j,k),dj) • m(j) ,

with ~(dh(j,k),dj) E Coo(M,IR) satisfying

(4.12) 6(j) ~(dh(j,k),dj) = 0 , \J j E E(M,1R3) ,
00 3\J k E C (M,IR ) ,

with 6(j) the Laplacian determined by m(j) as -divjgradj.

We call ~ the vorticity and ~ its corresponding stream function.

If we write

(4.13)

then

(4.14) C(dh(j,k),dj) = v'~(k,j).m(j) ,

(4.17 )

which implies

(4.15) divjC(dh(j,k),dj) = v.m(j)(gradj~(k,j» ,

Since tr v'V(j)XO(k,j) = 0 we find

(4.16) tr B(dh(j,k),dj) = G(h(j,k),j) • H(j) .

Let us therefore write

B(dh(j,k),dj) = t G(h(j,k),j)'H(j)oid

+ ¥'(I7(j)X(k,j) - V(j)X(k,j»)

+ G(h(j,k),j)o(W(j) - t H(j)oid) .

Denoting tG(h(j,k),j)'H(j) by T(j,k) and B(dh(j,k)dj) - T(j,k) • id by B(dh(j,k),dj)



we get

(4.18)

If we set moreover

A

B(dh(j,k)dj) - T(j,k) • id + B(dh(j,k),dj)

(4.19)

where

(4.20)

tr B(dh(j,k),dj) • W(j) = (T(j,k) + 2n(j») • H(j) + b(dh(j,k),dj) ,

b(dh(j,k),dj) = tr B(dh(j,k),dj) • W(j).L ,

then we find for our force density at any j E E(M,1R3) and any h E Coo(M,1R3)

(4.21) PF(j,k) = - dj (gradjT(j,k) + lrö,(j) X°(j,k)

- v.Q:J(j) (gradj ~(k,j»

- 2 W(j)(vW(j)X°(j,k) - grad/~(h(j,k),j»)

+ «T(j,k) + 2TI(j».H(j) + ITa(j) - IT(j».N(j)

+ b(dh(j,k),dj). N(j) .

This formula motivates us to choose h(j,k) (just for the sake of simplicity) in such a way

that

(4.22) b(dh(j,k),dj) = 0 ,

which yields an equation for 8(h(j,k),j). In this case the total force density to use for our

equations of motion is for any j E E(M,1R3)and any parameter k E Coo(M,1R3)

(4.23) 'fF(j,k) = - dj(gradjT(j,k) + v.ö,(j)X°(j,k)

- v.~J(j)(gradj~(k,j» - 2 W(j)(vW(j)XO(j,k) - gradj8(h(j,k),j»

+ « T(j .•k) + 2TI(j ». H(j) + ITa (j) - IT(j» • N(j) .

(4.24)

Here the Laplacian ö,(j) determined by m(j) applied to any X E rTM is given by -tr(VX)2.

The equation of motion for a smooth curve

. 3a : (-A.,A.) ----7 E(M,IR )

is determined via the d'Alembert principle (cf.[He]) and reads as

p(a(t».ä(t) = PF" (a(t),a(t» + (ITa(a(t» - IT(a(t») • N(a(t»
mt

= PF(a (t ),a (t» .

Choosing for any t aIR3 such that aIR3(a(t» = da(t)Z(t) and splitting a(t) into

(4.25) a(t) = da(t)Z(t) + da(t),a(t» • N(a(t» ,

for a well-determined Z(t) E rTM we assume that Z(t) = ZO(t) and obtain

(4.26) X(h(a(t),a(t),a(t» = v.Z(t) ,

Equation (4.24) yields thus as an equation of motion along the surface a(t)(M) for all



••

•

t E (-A,A)

(4.27) p (a (t) )( 'V(a ( t) )Z(t) Z(t) + Z (t) + 2' d a ( t) ,a (t )).W(a ( t)) Z(t)

- dar t) ,a( t) )'grada( t)€(a( t) ,a( t))

- - (grada(t)T(a(t),a(t)) + lJ'L::.(a(t)) Z(t)

- v"!Ha (t ))'grada (t)\:"(a(t) ,a (t))

- 2'W(a(t))(v'W(a(t)) Z(t) - grada(t)8(h(a(t),a(t)),a(t))) ,

an equation which reduces on all flat parts of a(t)(M) to a Navier-Stokes-type of

equation if € is equal to zero. The motion normal to a(t)(M) is governed by

(4.28) p (a ( t )) € (a (t ),a (t )) = m(a (t ) ) (W(a ( t}) Z(t), Z(t ) )

- dda (t ),a (t ) )(Z(t)) + (T (a (t ),a (t)) + 2TI (a (t ) )

+ I1a(a(t))- I1(a(t}))'N(a(t)) ,

an equation also implied by (4.24).
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