An Algorithm for Minimizing a Convex-Concave Function over a Convex Set

L.D. Muu¹ and W. Oettli²

Nr. 92 (1989)

¹ Institute of Mathematics, Box 631 Bo Ho, Hanoi, Vietnam; on leave at Mannheim University by a grant from Alexander von Humboldt Foundation

² Universität Mannheim, Postfach 10 34 62, D-6800 Mannheim 1, Fed. Rep. Germany

An Algorithm for Minimizing a Convex-Concave Function over a Convex Set Lê D. Muu¹ and W. Oettli²

Abstract - A branch-and-bound method is proposed for minimizing a convex-concave function over a convex set. The minimization of a dc-function is a special case, where the subproblems connected with the bounding operation can be solved effectively.

1. Introduction. In what follows we propose a branch-and-bound method for minimizing a convex-concave function over a convex set. A similar scheme for minimizing an indefinite quadratic function over a convex set has been described in our earlier paper [3]. Here, due to the more general form of the objective function, the branching operation must be different from the one used in [3], whereas the bounding operation is essentially the same and is based on a suitable relaxation of the constraint set. An important special case is the minimization of a dc-function (i.e., a function which is representable as the difference of two convex functions – see [1], [4]). In this case the subproblems occuring in the bounding operation can be solved effectively.

2. Problem Statement. Let $S \subset \mathbb{R}^n \times \mathbb{R}^m$ be a closed convex set. Let the continuous function $f(\cdot, \cdot) : S \to \mathbb{R}$ be convex in the first argument and concave in the second argument. We consider the problem

(P)
$$\min \{f(x,y) | x \in \mathbb{R}^n, y \in \mathbb{R}^m, (x,y) \in S\}.$$

We suppose that problem (P) admits a solution, and we denote by f^* the optimal value of (P). We suppose furthermore that we can fix two compact convex polyhedra $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ such that $X \times Y$ contains a solution of (P). Given a compact polyhedral subset $B \subset Y$ we shall have occasion to consider the problem

$$\mathbf{R}(B) \qquad \min \{f(x,y) | x \in X, y \in B, u \in B, (x,u) \in S\}.$$

By $\beta(B)$ we denote the optimal value of R(B) (we set $\beta(B) := \infty$, if R(B) has no feasible points). If (x^B, y^B, u^B) is a solution of R(B), then clearly

Institute of Mathematics, Box 631 Bo Ho, Hanoi, Vietnam; on leave at Mannheim University by a grant from Alexander von Humboldt Foundation

² Universität Mannheim, Postfach 10 34 62, D-6800 Mannheim 1, Fed. Rep. Germany

 $\beta(B) = f(x^B, y^B) \le \min \{f(x, u) | x \in X, u \in B, (x, u) \in S\} \le f(x^B, u^B)$ and $f^* \le f(x^B, u^B)$. If $X \times B$ contains a solution of (P), then $\beta(B) = f(x^B, y^B) \le f^*$. The solution of R(B) will be discussed below in connection with the dc-problem.

3. Description of the Algorithm. The algorithm can now be described as follows (comments are inserted in brackets).

Initialization. Set $\Gamma_0 := \{Y\}, \ \alpha_{-1} := \infty$. Solve $\mathbb{R}(Y)$.

Iteration k. At the beginning of iteration k (k = 0, 1, ...) we have a collection Γ_k of compact polyhedral subsets $B \subset Y$ such that $X \times \bigcup \{B | B \in \Gamma_k\}$ contains a solution of (P). For each $B \in \Gamma_k$ we have determined $\beta(B)$ and, if $\beta(B) < \infty$, a solution (x^B, y^B, u^B) of R(B). Furthermore we are given $\alpha_{k-1} \ge f^*$. Let $\alpha_k := \min \{\alpha_{k-1}, \min \{f(x^B, u^B) | B \in \Gamma_k, \beta(B) < \infty\}\} [\Rightarrow f^* \le \alpha_k]$. Select $B_k \in \Gamma_k$ such that $\beta(B_k) = \min \{\beta(B) | B \in \Gamma_k\}$. Let (x^k, y^k, u^k) be a solution of R $(B_k) [\Rightarrow f(x^k, y^k) \le f^* \le f(x^k, u^k)]$. If $f(x^k, y^k) \ge f(x^k, u^k)$, then terminate: (x^k, u^k) solves (P). If $f(x^k, y^k) < f(x^k, u^k)$, then let $l_k(y) := \langle u^k - y^k, y \rangle$ and $c_k := (l_k(y^k) + l_k(u^k))/2$, and set

$$B_k^- := \{ y \in B_k | l_k(y) \le c_k \}, \ B_k^+ := \{ y \in B_k | l_k(y) \ge c_k \}$$
$$[\Rightarrow y^k \in B_k^- \neq \emptyset, \ u^k \in B_k^+ \neq \emptyset].$$
Solve $R(B_k^-), R(B_k^+).$ Let $\Delta_k := \{ B \in \Gamma_k | \beta(B) \le \alpha_k \} \ [\Rightarrow B_k \in \Delta_k].$ Let $\Gamma_{k+1} := \Delta_k \setminus \{ B_k \} \cup \{ B_k^-, B_k^+ \}.$ Go to iteration $k + 1$.

This completes the description of iteration k.

4. Convergence of the Algorithm. If the algorithm terminates at iteration k, then $f(x^k, y^k) = f^* = f(x^k, u^k)$, and $(x^k, u^k) \in S$ is clearly a solution of (P). Otherwise we have again that $X \times \bigcup \{B | B \in \Gamma_{k+1}\}$ contains a solution of (P). Moreover we have $\beta(B_k) \leq \beta(B_{k+1})$, hence $f(x^k, y^k) \leq f(x^{k+1}, y^{k+1}) \leq f^*$. If the algorithm does not terminate, then the sequence $\{(x^k, u^k)\}$ has a cluster point.

Theorem. If the algorithm does not terminate, then every cluster point of $\{(x^k, u^k)\}$ is a solution of (P). Moreover $f(x^k, y^k) \nearrow f^*$.

Proof: Let $(\overline{x}, \overline{u})$ be a cluster point of $\{(x^k, u^k)\}$. By extracting a subsequence, if necessary, we may assume that $x^k \to \overline{x}$, $u^k \to \overline{u}$, $y^k \to \overline{y}$, and furthermore that either $B_{k+1} \subset B_k^-$ for all k or $B_{k+1} \subset B_k^+$ for all k. If $B_{k+1} \subset B_k^-$ for all k, then in particular $u^{k+1} \in B_k^-$, hence $l_k(u^{k+1}) \leq c_k$. This gives

$$\begin{aligned} \|u^{k} - y^{k}\|^{2} &= l_{k}(u^{k}) - l_{k}(y^{k}) = 2(l_{k}(u^{k}) - c_{k}) \leq 2(l_{k}(u^{k}) - l_{k}(u^{k+1})) \\ &\leq 2\|u^{k} - y^{k}\| \cdot \|u^{k} - u^{k+1}\|, \end{aligned}$$

hence

$$||u^k - y^k|| \le 2||u^k - u^{k+1}|| \to 0.$$

If $B_{k+1} \subset B_k^+$ for all k, then we use $y^{k+1} \in B_k^+$ to obtain in a similar way

$$||u^k - y^k|| \le 2||y^{k+1} - y^k|| \to 0.$$

Hence in both cases we obtain $\overline{u} = \overline{y}$. Therefore $f(x^k, y^k) \nearrow f(\overline{x}, \overline{u})$, and from $f(x^k, y^k) \le f^* \le f(x^k, u^k)$ follows $f(\overline{x}, \overline{u}) = f^*$, i.e., $(\overline{x}, \overline{u}) \in S$ is a solution of (P).

q.e.d.

5. DC-Problems. The above algorithm can be applied to the so-called dc-problem

(DC)
$$\min \{g(x) - h(x) | x \in G\},\$$

where $G \subset \mathbb{R}^m$ is a closed convex set, and $g, h : G \to \mathbb{R}$ are continuous convex functions (supposed to be known explicitly). This problem has earned considerable interest recently, see [1], [4]. We bring problem (DC) into the form (P) by choosing

$$f(x, y) := g(x) - h(y) : G \times G \to \mathbb{R},$$
$$S := \{(x, y) \in G \times G | x = y\} \subset \mathbb{R}^m \times \mathbb{R}^m.$$

We need a compact convex polyhedron $Y \subset \mathbb{R}^m$ such that Y contains a solution of (DC). Then, if $B \subset Y$ is a compact polyhedral subset, the problem R(B) with the above choices of f and S and with X := Y takes the form

$$\mathbf{R}(B) \qquad \min \{g(x) - h(y) | x \in G \cap B, y \in B, u = x\}.$$

Clearly we may drop the variable u from R(B) and substitute in the description of the algorithm x^B for u^B and x^k for u^k . Every cluster point of the sequence $\{x^k\}$ generated by the algorithm solves (DC). The bounding problem R(B) becomes manageable in this case. Namely, if v^i $(i = 1, ..., i_B)$ are the vertices of B, then due to the concavity of $-h(\cdot)$ one has $\min_{y \in B} -h(y) = \min_{i} -h(v^{i})$, and therefore R(B) with the variable *u* suppressed becomes

$$\mathbf{R}(B) \qquad \min \{g(x) | x \in G \cap B\} + \min -h(v^i).$$

Hence solution of R(B) requires solving a standard convex programming problem and searching the vertices of B. The latter problem can be solved with reasonable effort, due to the fact that B is generated from some predecessor B' by adding an affine inequality, see [2]. The starting polyhedron Y should be chosen as a simplex or as a rectangle, so that the vertices of Y are easily at hand.

REFERENCES

- Hiriart-Urruty J.-B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. Lecture Notes in Economics and Mathematical Systems 256, 37-69 (1986).
- Horst R., de Vries J., Thoai N.V.: On finding new vertices and redundant constraints in cutting plane algorithms for global optimization. Operations Research Letters 7, 85-90 (1988).
- [3] Muu L.D., Oettli W.: An algorithm for indefinite quadratic programming with convex constraints. Submitted.
- [4] Tuy H.: Global minimization of a difference of two convex functions. Mathematical Programming Study 30, 150-182 (1987).