An Algorithm for Minimising a Convex-Concave
 Function over a Convex Set

L.D. Muu ${ }^{1}$ and W. Oettli ${ }^{2}$

$$
\text { Nr. } 92 \text { (1989) }
$$

${ }^{1}$ Institute of Mathematics, Box 631 Bo Ho, Hanoi, Vietnam; on leave at Mannheim University by a grant from Alexander von Humboldt Foundation
${ }^{2}$ Universität Mannheim, Postfach 1034 62, D-6800 Mannheim 1, Fed. Rep. Germany

An Algorithm for Minimizing a Convex-Concave Function over a Convex Set

Lê D. Muu ${ }^{1}$ and W. Oettli ${ }^{2}$

Abstract

A branch-and-bound method is proposed for minimizing a convex-concave function over a convex set. The minimization of a dc-function is a special case, where the subproblems connected with the bounding operation can be solved effectively.

1. Introduction. In what follows we propose a branch-and-bound method for minimizing a convex-concave function over a convex set. A similar scheme for minimizing an indefinite quadratic function over a convex set has been described in our earlier paper [3]. Here, due to the more general form of the objective function, the branching operation must be different from the one used in [3], whereas the bounding operation is essentially the same and is based on a suitable relaxation of the constraint set. An important special case is the minimization of a dc-function (i.e., a function which is representable as the difference of two convex functions - see [1], [4]). In this case the subproblems occoring in the bounding operation can be solved effectively.
2. Problem Statement. Let $S \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ be a closed convex set. Let the continuous function $f(\cdot, \cdot): S \rightarrow \mathbb{R}$ be convex in the first argument and concave in the second argument. We consider the problem

$$
\begin{equation*}
\min \left\{f(x, y) \mid x \in \mathbb{R}^{n}, y \in \mathbb{R}^{m},(x, y) \in S\right\} \tag{P}
\end{equation*}
$$

We suppose that problem (P) admits a solution, and we denote by $f *$ the optimal value of (P). We suppose furthermore that we can fix two compact convex polyhedra $X \subset \mathbb{R}^{\boldsymbol{n}}$ and $Y \subset \mathbb{R}^{m}$ such that $X \times Y$ contains a solution of (P). Given a compact polyhedral subset $B \subset Y$ we shall have occasion to consider the problem

$$
\begin{equation*}
\min \{f(x, y) \mid x \in X, y \in B, u \in B,(x, u) \in S\} . \tag{B}
\end{equation*}
$$

By $\beta(B)$ we denote the optimal value of $\mathrm{R}(B)$ (we set $\beta(B):=\infty$, if $\mathrm{R}(B)$ has no feasible points). If (x^{B}, y^{B}, u^{B}) is a solution of $\mathrm{R}(B)$, then clearly

[^0]$$
\beta(B)=f\left(x^{B}, y^{B}\right) \leq \min \{f(x, u) \mid x \in X, u \in B,(x, u) \in S\} \leq f\left(x^{B}, u^{B}\right)
$$
and $f^{*} \leq f\left(x^{B}, u^{B}\right)$. If $X \times B$ contains a solution of (P), then $\beta(B)=f\left(x^{B}, y^{B}\right) \leq f^{*}$. The solution of $\mathrm{R}(B)$ will be discussed below in connection with the dc-problem.
3. Description of the Algorithm. The algorithm can now be described as follows (comments are inserted in brackets).

Initialization. Set $\Gamma_{0}:=\{Y\}, \alpha_{-1}:=\infty$. Solve $R(Y)$.
Iteration k. At the beginning of iteration $k(k=0,1, \ldots)$ we have a collection Γ_{k} of compact polyhedral subsets $B \subset Y$ such that $X \times \cup\left\{B \mid B \in \Gamma_{k}\right\}$ contains a solution of (P). For each $B \in \Gamma_{k}$ we have determined $\beta(B)$ and, if $\beta(B)<\infty$, a solution $\left(x^{B}, y^{B}, u^{B}\right)$ of $\mathrm{R}(B)$. Furthermore we are given $\alpha_{k-1} \geq f^{*}$.
Let $\alpha_{k}:=\min \left\{\alpha_{k-1}, \min \left\{f\left(x^{B}, u^{B}\right) \mid B \in \Gamma_{k}, \beta(B)<\infty\right\}\right\}\left[\Rightarrow f^{*} \leq \alpha_{k}\right]$.
Select $B_{k} \in \Gamma_{k}$ such that $\beta\left(B_{k}\right)=\min \left\{\beta(B) \mid B \in \Gamma_{k}\right\}$.
Let $\left(x^{k}, y^{k}, u^{k}\right)$ be a solution of $\mathrm{R}\left(B_{k}\right)\left[\Rightarrow f\left(x^{k}, y^{k}\right) \leq f^{*} \leq f\left(x^{k}, u^{k}\right)\right]$.
If $f\left(x^{k}, y^{k}\right) \geq f\left(x^{k}, u^{k}\right)$, then terminate: $\left(x^{k}, u^{k}\right)$ solves (P).
If $f\left(x^{k}, y^{k}\right)<f\left(x^{k}, u^{k}\right)$, then let $l_{k}(y):=\left\langle u^{k}-y^{k}, y\right\rangle$ and $c_{k}:=\left(l_{k}\left(y^{k}\right)+l_{k}\left(u^{k}\right)\right) / 2$, and set

$$
B_{k}^{-}:=\left\{y \in B_{k} \mid l_{k}(y) \leq c_{k}\right\}, B_{k}^{+}:=\left\{y \in B_{k} \mid l_{k}(y) \geq c_{k}\right\}
$$

$\left[\Rightarrow y^{k} \in B_{k}^{-} \neq \emptyset, u^{k} \in B_{k}^{+} \neq 0\right]$.
Solve $\mathrm{R}\left(B_{k}^{-}\right), \mathrm{R}\left(B_{k}^{+}\right)$.
Let $\Delta_{k}:=\left\{B \in \Gamma_{k} \mid \beta(B) \leq \alpha_{k}\right\}\left[\Rightarrow B_{k} \in \Delta_{k}\right]$.
Let $\Gamma_{k+1}:=\Delta_{k} \backslash\left\{B_{k}\right\} \cup\left\{B_{k}^{-}, B_{k}^{+}\right\}$.
Go to iteration $k+1$.
This completes the description of iteration k.
4. Convergence of the Algorithm. If the algorithm terminates at iteration k, then $f\left(x^{k}, y^{k}\right)=f^{*}=f\left(x^{k}, u^{k}\right)$, and $\left(x^{k}, u^{k}\right) \in S$ is clearly a solution of (P). Otherwise we have again that $X \times \cup\left\{B \mid B \in \Gamma_{k+1}\right\}$ contains a solution of (P). Moreover we have $\beta\left(B_{k}\right) \leq \beta\left(B_{k+1}\right)$, hence $f\left(x^{k}, y^{k}\right) \leq f\left(x^{k+1}, y^{k+1}\right) \leq f^{*}$. If the algorithm does not terminate, then the sequence $\left\{\left(x^{k}, u^{k}\right)\right\}$ has a cluster point.

Theorem. If the algorithm does not terminate, then every cluster point of $\left\{\left(x^{k}, u^{k}\right)\right\}$ is a solution of (P). Moreover $f\left(x^{k}, y^{k}\right) / f^{*}$.

Proof: Let (\bar{x}, \bar{u}) be a cluster point of $\left\{\left(x^{k}, u^{k}\right)\right\}$. By extracting a subsequence, if necessary, we may assume that $x^{k} \rightarrow \bar{x}, u^{k} \rightarrow \bar{u}, y^{k} \rightarrow \bar{y}$, and furthermore that either $B_{k+1} \subset B_{k}^{-}$for all k or $B_{k+1} \subset B_{k}^{+}$for all k. If $B_{k+1} \subset B_{k}^{-}$for all k, then in particular $u^{k+1} \in B_{k}^{-}$, hence $l_{k}\left(u^{k+1}\right) \leq c_{k}$. This gives

$$
\begin{aligned}
\left\|u^{k}-y^{k}\right\|^{2} & =l_{k}\left(u^{k}\right)-l_{k}\left(y^{k}\right)=2\left(l_{k}\left(u^{k}\right)-c_{k}\right) \leq 2\left(l_{k}\left(u^{k}\right)-l_{k}\left(u^{k+1}\right)\right) \\
& \leq 2\left\|u^{k}-y^{k}\right\| \cdot\left\|u^{k}-u^{k+1}\right\|,
\end{aligned}
$$

hence

$$
\left\|u^{k}-y^{k}\right\| \leq 2\left\|u^{k}-u^{k+1}\right\| \rightarrow 0 .
$$

If $B_{k+1} \subset B_{k}^{+}$for all k, then we use $y^{k+1} \in B_{k}^{+}$to obtain in a similar way

$$
\left\|u^{k}-y^{k}\right\| \leq 2\left\|y^{k+1}-y^{k}\right\| \rightarrow 0
$$

Hence in both cases we obtain $\bar{u}=\bar{y}$. Therefore $f\left(x^{k}, y^{k}\right) \nearrow f(\bar{x}, \bar{u})$, and from $f\left(x^{k}, y^{k}\right) \leq f^{*} \leq f\left(x^{k}, u^{k}\right)$ follows $f(\bar{x}, \bar{u})=f^{*}$, i.e., $(\bar{x}, \bar{u}) \in S$ is a solution of (P).
q.e.d.
5. DC-Problems. The above algorithm can be applied to the so-called dc-problem

$$
\begin{equation*}
\min \{g(x)-h(x) \mid x \in G\} \tag{DC}
\end{equation*}
$$

where $G \subset \boldsymbol{R}^{\boldsymbol{m}}$ is a closed convex set, and $g, h: G \rightarrow \mathbb{R}$ are continuous convex functions (supposed to be known explicitly). This problem has earned considerable interest recently, see [1], [4]. We bring problem (DC) into the form (P) by choosing

$$
\begin{aligned}
& f(x, y):=g(x)-h(y): G \times G \rightarrow \mathbb{R}, \\
& S:=\{(x, y) \in G \times G \mid x=y\} \subset \mathbb{R}^{m} \times \mathbb{R}^{m} .
\end{aligned}
$$

We need a compact convex polyhedron $Y \subset \mathbb{R}^{m}$ such that Y contains a solution of (DC). Then, if $B \subset Y$ is a compact polyhedral subset, the problem $R(B)$ with the above choices of f and S and with $X:=Y$ takes the form

$$
\begin{equation*}
\min \{g(x)-h(y) \mid x \in G \cap B, y \in B, u=x\} . \tag{B}
\end{equation*}
$$

Clearly we may drop the variable u from $R(B)$ and substitute in the description of the algorithm x^{B} for u^{B} and x^{k} for u^{k}. Every cluster point of the sequence $\left\{x^{k}\right\}$ generated by the algorithm solves (DC). The bounding problem $\mathrm{R}(B)$ becomes manageable in this case. Namely, if $v^{i}\left(i=1, \ldots, i_{B}\right)$ are the vertices of B, then due to the concavity of $-h(\cdot)$
one has $\min _{y \in B}-h(y)=\min _{i}-h\left(v^{i}\right)$, and therefore $\mathrm{R}(B)$ with the variable u suppressed becomes
$\mathrm{R}(B)$

$$
\min \{g(x) \mid x \in G \cap B\}+\min _{i}-h\left(v^{i}\right) .
$$

Hence solution of $\mathrm{R}(B)$ requires solving a standard convex programming problem and searching the vertices of B. The latter problem can be solved with reasonable effort, due to the fact that B is generated from some predecessor B^{\prime} by adding an affine inequality, see [2]. The starting polyhedron Y should be chosen as a simplex or as a rectangle, so that the vertices of Y are easily at hand.

REFERENCES

[1] Hiriart-Urruty J.-B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. Lecture Notes in Economics and Mathematical Systems 256, 37-69 (1986).
[2] Horst R., de Vries J., Thoai N.V.: On finding new vertices and redundant constraints in cutting plane algorithms for global optimization. Operations Research Letters 7, 85-90 (1988).
[3] Muu L.D., Oettli W.: An algorithm for indefinite quadratic programming with convex constraints. Submitted.
[4] Tuy H.: Global minimization of a difference of two convex functions. Mathematical Programming Study 30, 150-182 (1987).

[^0]: ${ }^{1}$ Institute of Mathematics, Box 631 Bo Ho, Hanoi, Vietnam; on leave at Mannheim University by a grant from Alexander von Humboldt Foundation
 ${ }^{2}$ Universität Mannheim, Postfach 1034 62, D. 6800 Mannheim 1, Fed. Rep. Germany

