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In this note we give an elementary proof of Kolmogorov's

inequality for positive supermartingales. As an application

we obtain a Lundberg type inequality for a class of surplus

processes with i.i.d. increments for which an adjustment

coefficient need not exist.
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1. Introduction
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All random variables considered in this paper are defined on a

fixed probability space (Q,F,p) • For a subset A of Q, let

XA denote its indicator function Q : --? {0,1} .

Let G be an integrable random variable. G has an adjustment

coefficient if there exists some RE: (0,00) satisfying

E[e-RG] = 1 ; necessary and sufficient conditions for an

adjustment coefficient of G to exist have been given by

Mammitzsch (1986).

Consider now u E:(0,00) , a sequence {Gn} of i.i.d. random

variables having the same distribution as G, and the surplus

process {Un} , given by

Un

n
:= u + L Gk

k=1

for all n E:JN. If G has an adjustment coefficient, then the

probability of ruin satisfies Lundberg's inequality

P ( infJNUn < 0 ) -Ru< e

Gerber (1973,1979) has shown that Lundberg's inequality can be

obtained from Kolmogorov's inequality for positive supermartingales.

Unfortunately, however, the traditional proofs of Kolmogorov's

inequality involve a nontrivial property of supermartingales,

and it appears that this fact makes the supermartingale approach

appear much less attractive than it iso
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In this note we give an entirely elementary proof of Kolmogorov's

inequality for positive supermartingales. As an immediate

application, we obtain a Lundberg type inequality for a class

of surplus processes for which an adjustment coefficient of G

need not exist.



2.

4 -

Kolmogorov.s inequality

Let {Xn} be a sequence of integrable random variables. For each

n E lN, let Fn denote the a-algebra genera ted by {X1'...,Xn } .
A mapping -r : g ~ lN U {co} is

a stopping time if {-r=n}E F holds for all nE lN, and it isn

bounded if SUPg -r(w) < co

Let T denote the collection of all bounded stopping times for {Fn} .

For -rE T , define
co

X-r

Then X is an integrable random variable satisfying-r
co

EX =-r

note that all sums extend only over a finite number of terms since

-r is bounded. The following result is well-known in the theory of

asymptotic martingales; see e.g. Gut and Schmidt (1983) and the

references given there:

2. 1 • Lemma. The inequality

P ( sUPlN IXn I ~ e:

holds for all e: E (O,co) •

Proof. Let us assume that the Xn are all positive. For all

n E lN, define sets

:=

: =

n-1
{Xn ~ e:} n Q{Xk < e:}

n
g 'U Bk

k=1



and a stopping time 1: E Tn
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by letting

{1:=k} J Bk:= Ln BnUCn
Then we have

E [
ri ]I: EXB < E X

k=1 - 1:k n

hence

if kE{1, •.•,n-1}

if k = n

< ,

by the monotone convergence theorem, and thus

<

which yields the assertion. o

The sequence {Xn} is a supermartingale if E[xAXn+11 < E[xAXnl

holds for all n E JN and A E Fn

2.2. Lemma. If {Xn} is a supermartingale, then EX1: < EX1
holds for all 1:E T •

Proof. Choose n E E satisfying 1:< n • Then we have

E[X{1:=k}Xkl + E[X{1:>k+1}Xk+11
< E[X{1:=k}Xkl + E[X{1:>k+1}Xkl

= E[X{1:>k}Xkl
for all k E {1, •••,n} , and thus, by induction,

EX
1: = =

as was to be shown.

Tho following result is Kolmogorov's inequality for positive

supermartingales:

o



2.3.

then

Theorem.
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If {Xn} is a positive supermartingale,

P ( sUPm Xn ~ e:

holds for all e: E (0,00)

<

This follows from Lemmas 2.1 and 2.2.

We remark that Theorem 2.3 is usually deduced from the nontrivial

fact that a positive supermartingale {Xn} satisfies EX~ ~ EX1
for arbitrary stopping times ~ i see e.g. Neveu (1972).



3.

- 7 -

Lundberg's inequality

We now return to the surplus process {Un}

3.1. Theorem. The inequality
-puP( infmUn < 0 < e

holds for all p E (0,00) satisfying E [e-PG] < 1 .

Proof. For all n E m, define

Xn :=
n
n
k=1

-pGke

Then we have

for all n E m and A E Fn Therefore, {Xn} is a positive

supermartingale, and Theorem 2.3 yields

n
P( sUPm I: (-Gk) > u )

k=1

as was to be shown.

Define now

=

<

<

e-pu E [e -pG1 ]

-pue

o

and

I (G) := { t E JR I E [etG] < 00 }

J(G) := { t E JR I E [etG] < 1 }

As a consequence of Theorem 3.1 we obtain the following result:
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3.2. Corollary. If inf I(G) < 0 < EG , then
P( infm Un ~ 0 ) ~ infJ(G) etu < 1 .

Proof. The assumption on G implies the existence of some
tE (-co,O) satisfying E[etG] < 1 ; see Mammitzsch (1986). The
assertion now follows from Theorem 3.1. o

3.3. Corollary.
then P ( infm Un ~ 0

If G has an adjustment coefficient R,
-RG< e

This follows from Corollary 3.3.

We remark that the hypothesis of Corollary 3.2 does not imply
that G has an adjustment coefficient; see Mammitzsch (1986).



9

References

Gerber, H.U. (1973). Martingales in risk theory. Mitt.

Verein. Schweiz. Vers. Math. 2i, 205-216.

Gerber, H.U. (1979). An Introduction to Mathematical Methods

in Risk Theory. Irwin, Homewood (Illinois).

Gut, A., and Schmidt, K.D. (1983). Amarts and Set Function

Processes. Lecture Notes in Mathematics, vol. 1042. Springer,

Berlin - Heidelberg - New York.

Mammitzsch, V. (1986). A note on the adjustment coefficient

in ruin theory. Insurance Math. Econom. ~, 147-149.

Neveu, J. (1972). Martingales a Temps Discret. Masson, Paris.


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010

