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In this note we give an elementary proof of Kolmogorov's
inequality for positive supermartingales. As an application
we obtain a Lundberg type inequality for a class of surplus
processes with i.i.d. increments for which an adjustment

‘coefficient need not exist.
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1. Introduction

All random variables considered in this paper are defined on a
fixed probability space (Q,F,P) . For a subset A of Q , let
Xp denote its indicator function Q : — {0,1} .

Let G be an integrable random variable. G has an adjustment

coefficient if there exists some RE€ (0,») satisfying

] = 1 ; necessary and sufficient conditions for an
adjustment coefficient of G to exist have been given by

Mammitzsch (1986).

Consider now u€ (0,») , a sequence {Gn} of i.i.d. random
variables having the same distribution as G , and the surplus

process {Un} , given by

for all n€IN. If G has an adjustment coefficient, then the

probability of ruin satisfies Lundberg's inequality

. -Ru
P ( inf U, < 0) < e .

Gerber (1973,1979) has shown that Lundberg's inequality can be
obtained from Kolmogorov's inequality for positive supermartingales.
Unfortunately, however, the traditional proofs of Kolmogorov's
inequality involve a nontrivial property of supermartingales,

and it appears that this fact makes the supermartingale approach

appear much less attractive than it is.




In this note we give an entirely elementary proof of Kolmogorov's
inequality for positive supermartingales. As an immediate
application, we obtain a Lundberg type inequality for a class

of surplus processes for which an adjustment coefficient of G

need not exist.




2. - Kolmogorov's inequality

Let {xn} be a sequence of integrable random variables. For each
n€N, let F_ denote the c-algebra generated by {X1""’Xn} .
A mapping T : Q@ —> IN U {»} is

- a stopping time if {r=n}€IFn holds for all ne€ NN, and it is

- bounded if sup, T(w) < = .
Let T denote the collection of all bounded stopping times for {Fn} .
For T €T , define

o0
X := z

X - X .
n {t=n} “n

1

Then XT is an integrable random variable satisfying

"EX_ = £ E [X{T=n} X1

T n=1
note that all sums extend only over a finite number of terms since
T 1is bounded. The following result is well-known in the theory of

asymptotic martingales; see e.g. Gut and Schmidt (1983) and the

references given there:

2.1. Lemma. The inequality
| 1
P( supp IX | >e ) < ¢ supp EIX |

holds for all €€ (0,x) .

Proof. Let us assume that the Xn are all positive., For all

ne N, define sets

n-1
B, := {ane} HQ{Xk <eg}

@
Ll

n
: Q~ B
n é;{ k




and a stopping time _%1€T by letting

{ " B , if kx€{1,...,n-1}
T = =
n if k=n

—
w
=)
c
0
=]

Then we have

hence

E { € Z X ] < sup, EX '
k=1 By T "0t
by the monotone convergence theorem, and thus
€P (supp X > €) < supg EX_. ,

which yields the assertion. o

The sequence {Xn} is a supermartingale if E[X,X 4] < Elx,X ]

holds for all n €N and A€Fn .

2.2. Lemma. If {Xn} is a supermartingale, then EX_ < EX,

holds for all T €T .

Proof.  Choose n € W satisfying T < n . Then we have

B paki¥! * E[X{rik+1}xk+1]
< ElXgoapp¥x! ¢ E[X{tzk+1}xk]

- E[X{rzk}xk]
for all kx€{1,...,n} , and thus, by induction,

n
EX; = I Blxgo¥d = Blxggqp%0 = BXy o

k=1

as was to be shown. o

Tho following result is Kolmogorov's inequality for positive

supermartingales:




2.3. Theorem. If {Xn} is a positive supermartingale,

then

P( supp X, >€ ) < -;:EX1

holds for all € € (0,«)

This follows from Lemmas 2.1 and 2.2.

We remark that Theorem 2.3 is usually deduced from the nontrivial
fact that a positive supermartingale {Xn} satisfies EX_ < EX,

for arbitrary stopping times T ; see e.g. Neveu (1972).




3. Lundberg's inequality

We now return to the surplus process {Un} :

3.1. Theorem. The inequality

\ -pu
P{( lnfann <0) < e
oG

holds for all p€ (0,«) satisfying E[e "] < 1

Proof. For all n€IN, define

e PGk
1

X :
n

]
n3as

k

Then we have

E[xAX

= ,~PGn 41
n+1l E[xAXn]E[e 1 < ElxgX,]

for all n€N and AEFn . Therefore, {Xn} is a positive

supermartingale, and Theorem 2.3 yields

n
P 1nfann <0) = P( supnqk§1(-Gk) > u )
_ pu
= P sup]NXn > e )
< e PY gleC1)
< e FH
- ’
as was to be shown.
Define now
I(G) := { teR | Ele™€] <=}
and
JG := { temwr | EE™T1<1 1} .

As a consequence of Theorem 3.1 we obtain the following result:




3.2, Corollary. If inf I(G) < 0 < EG , then

. . tu
P ( inf U, < 0) < lan(G) e <1

Proof. The assumption on G 1implies the existence of some

t € (~»,0) satisfying E[etG] < 1 ; see Mammitzsch (1986). The

assertion now follows from Theorem 3.1. _ a

3.3. Corollary. If G has an adjustment coefficient R ,
-RG

then P( inf U, = 0) <e .

This follows from Corollary 3.3.

We remark that the hypothesis of Corollary 3.2 does not imply

that G has an adjustment coefficient; see Mammitzsch (1986).
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