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Abstract. The main result of this paper asserts that each

Dunford-Pettis operator on an AL-space having no discrete elements

satisfies Daugavet' s equation 11 I + T 11 = 1 + 11 T 11 i this extends

a result of Holub on weakly compact operators. The proof is based

on some properties of orthomorphisms in a Bana~h lattice, which

also yield a short proof of another result of Holub on Daugavet's

equation for bounded operators on an arbirtrary AL- or AM-space ..
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1 • Introduction

A linear operator T : JE --+ JE on a Banach space JE satisfies
Daugavet's equation if

11 I + T 11 = 1 + 11 T 11

holds, where I : JE--+JE denotes the identity operator. Daugavet's

equation clearly fails for T:= -I , but it holds under suitable

conditions on JE and T .

The first results on Daugavet's equation were obtained by

Daugavet [6] and Lozanovskii [13] who proved that the identity

11 I + T 11 = 1 + 11 T 11 holds for each compact operator on C [0,1]

or L1 [0,1] . These results were subsequently extended into various

directions [4,5,7-12,16]; in particular, it follows from results of

Foias and Singer [8] and Holub [9,10] that Daugavet's equation

remains valid for each weakly compact operator on C[0,1] or

L1 [0,1] , and that each bounded operator on these spaces satisfies

at least one of the identi ties I1I + T 11 = 1 + 11 T 11 and

III-TII = 1+IITII

In the present paper we shall study Daugavet's equation for linear

operators on a Banach lattice. Using some properties of orthmorphisms,

we shall prove that Daugavet's equation holds for each Dunford-Pettis

operator on an AL-space having no discrete elements, and that each

bounded operator on an arbitrary AL- or AM-space satisfies at least

one of the identi ties 11 I + T 11 = 1 + 11 T 11 and 11I - T 11 = 1 + 11 T 11 •,

The first of these results extends a result of Holub [10] on weakly

compact operators; the second is essentially due to Holub [9,10]

and has recently been given a short proof by Abramovich [1], but

the proof given here is equally short and avoids the use of

representation tq~orems.
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Throughout this paper, let E be a Banach lattice, let L(lli)

denote the normed ordered vector space of all bounded operators

lli-+ E , and let I lli-+ E denote the identi ty operator.

A linear operator Q lli-+ JE is an orthomorphism if it is

order bounded and if Q(B) ~ B holds for each band B of lli.

Let Orth(m) denote the Riesz space [3; Theorem 8.9] of all

orthomorphisms m -+ JE • If JE is either an AL-space or an

order complete AM-space with unit, then L(m) is an order

complete Banach lattice [3; Theorem 15.3 and the remark preceding it]

and Orth(m) agrees with the (projection) band genera ted by I

in L(m) [3; Theorem 8.11]. This property of Orth(lli) together

with Lemma 2.3 below indicates a natural connection between

Daugavet's equation and orthomorphisms on Banach lattices.



2. The results

We start with a simple but useful lemma on positive operators:

2.1. Lemma. Let E be an AL- or AM-space. Then Daugavet's
equation holds for each positive TEL (JE)•

Proof. Suppose first that E is an AL-space and consider a
posi tive operator T : JE---+ JE . Then

11 (I+T)z 11 = 11 z 11 + 11 Tz 11

holds for each z EE+ ' and this yields

11 I + T 11 = 1 + 11 T 11

In the case where E is an AM-space, the assertion now follows
by duality. o

Dur next result concerns bounded operators which are not necessarily
positive:

2.2.

identity
Theorem. Let E be an AL- or AM-space. Then the

max { 11 I+T 11 , 11 I-T 11 } = 1 + 11 T 11

holds for eacb TEL (JE).

Proof. Let us first assurne that JE is an order complete
AM-space with unit eEJE+ .

For each U E Crth (JE), we have

II+ClvII-UI = I + IUI
and thus
( 1) max { 11 I+U 11 , 11 I-U II~} = 11 II+U 1 v I 1-U 1 11

= III+IUIII
= 1+lIulI



by [3; Theorem 15.5] and Lemma 2.1.

Consider now TEL (JE) and choose S EOrth (JE) and R EOrth (JE)1.

satisfying

T = S + R
Since IRle is dominated by a scalar multiple of e, there

exists a positive Q EOrth(JE) satisfying

Qe = IRle

by [3; Theorem 8. 15]. Moreover, for each P EOrth (JE) , we have

Ip+Qlvlp-QI = Ipl + Q

and

Ipl + IRI = IP+RI = Ip-RI

hence

(IP+QlvIP-QI)e = IP+Rle = IP-Rle

and thus

(2) max {li P+Q11 , 11 P-Q II} = 11 P+R 11 = 11 P-R 11

Replacing P by S, I+S, and I-S in (2), we obtain

max {II S+Q11 , 11 S-Q II} = 11 T 11

rnax { 11 I +S+Q11 III+S-QII } = 11 I+T 11

rnax { III-S+QII III-S-QII } = 11 I-T 11

sirnilarly, replacing U by S+Q and S-Q in (1) , we obtain

rnax { III+S+QII 11 I-S-Q 11 } = 1 + 11 S+Q 11

rnax { III+S-QII III-S+QII } = 1 + 11 S-Q 11

This yields

rnax { 11 I+T 11 , 11 I-T 11 }

= max { 11 I+S+Q 11 , 11 I+S-Q 11 , 11 I-S+Q 11 , 11 I-S-Q 11 }

= 1+IITII

In the case where JE is an AL-space or an arbitrary AM-space,

the assertion now follows by duality. o
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The following result is another consequence of Lemma 2.1:

2.3. Lemma. Let lli be an AL-space of an order complete

AM-space with unit. Then Daugavet's equation holds for each
TEL(JE)

Proof.

and thus

satisfying IAITI = 0 •

By assumption, we have

I I+T I = I + 1 T I

11 I + T 11 = 11 I + I TI 11 =1 + 11 T 11

by Lemma 2.1.

We now turn to the main result of this paper. Recall that a

linear operator JE~ lli is a Dunford-Pettis operator if it

maps the weakly convergent sequences of lli into the norm

convergent sequences of E , and that every Dunford-Pettis

operator is bounded. Let V(lli) denote the subspace of L(JE)

consisting of all Dunford-Pettis operators JE~ lli • Also,

recall that an element u E JE+'-{O} is discrete if the ideal
generated by u in lli agrees with the subspace generated by
u in JE.

o

2.4. Theorem. Let lli be an AL-space having no discrete

elements. Theo Daugavet' s equation holds for each T E V (JE).

Proof. Consider T E V (JE) and define S: = IA 1 TI. Sj.nce

Orth(JE) as well as V(lli) are bands of L(JE)

15.5 and 19.15], we have S EOrth(JE)nV(JE) .

[3; Theorems
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Consider now z E]E+ • For each y E [0,8z] , there exists some
Q E Orth (JE) satisfying

y = Q8z

and Qz E [O,z] , by [3; Theorem 8.15 and its proof]. 8ince 8 is
an orthomorphism, we obtain

y = Q8z = 8Qz E 8[0,z]

by [3; Theorems 8.24 and 8.21]. This yields

[0,8z] = 8[0,z]

Since S is also a Dunford-Pettis operator, the set 8[0,z] is

compact [3; Theorem 19.18]. Thus, the order interval [0,8z]

is compact, hence 8z belongs to the band generated by the

collection of all discrete elements of ]E [2; Theorem 21.12],

and the assumption on ]E yields 8z = 0 .

Therefore, we have IAITI = 8 = 0 , and the assertion follows
from Lemma 2.3. o

Under the assumption of Theroem 2.4, every weakly compact operator

on JE is a Dunford-Pettis operator, but the converse is not true;

see [3; Theorems 19.6 and 19.23].

We finally note that Theorem 2.4 cannot be extended to arbitrary

AL-spaces: In fact, if ]E is an AL-space having a discrete
element u E E ,{O} , then the band B({u}) generated by u is

+

a one-dimensional subspace of ]E , by [14; Proposition 8.3];

consequently, the band projection P: JE---?- B({u}) is compact,

but Daugavet's equation fails for T:= ~P



3. Remarks.
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The following results can be proven in the same way as Lemmas 2.1
and 2.3:

3.1. Lemma. Let JE be a Banach lattice satisfying

11 x "p + 11 y IIP = 11 x+y IIP for some p E [1,co) and all x,y E IE+
If J E L (JE) is a posi tive isometry, the

11 J + T 11 = 1 + 11 T 11

holds for each positive TEL (JE).

3.2. Lemma. Let JE be an AL-space. If J E L (JE) is a
positive isometry, then

IIJ+TII = 1 + IITII

holds for each TEL (JE) satisfying JA ITI = 0 .

Corresponding results hold in an AM-space or an order complete

AM-space with unit, respectively, if in Lemmas 2.1 and 2.3 the

identity operator is replaced by a surjective positive isometry.

We conclude .ith abrief discussion of Daugavet's equation for

almost integ~al and absolute kernel operators:
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Let E be an AL-space or an order complete AM-space with unit.

A linear operator T : JE ---'>- JE is an almost integral operator

if it is contained in the band of L (JE) which is generated by

the linear operators S: JE~ JE satisfying Sz = Xl (z)y for

some x I E JE and y E JE depending on Sand all z E E .

Synnatzschke [15] proved that JE has no discrete elements if

and only if each almost integral operator T: JE~JE satisfies

IAITI = 0 , and in this case it follows from Lemma 2.3 that T

satisfies Daugavet's equation. In the case where JE is an AL-space,

this result can also be deduced from [17; Theorem 123.5(ii)],

[3; Theorem 19.18], and Theorem 2.4; in the case where JE is an

order complete AM-space with unit, it is due to Synnatzschke [16].

Consider now a a-fini te measure space (Q,F tl-i) and p E [1,00].

A linear operator T : LP(Q,F,u) --7 LP(Q,F,u) is an absolute

kernel operator if there exists an FxF-measurable function

t : QxQ ~E satisfying

Jo It(.,w) If(w) du(w) E LP(Q,F,u)
and

(Tf) (.) = fQ t(.,w)f(w) dU(w)
"::)for all £ E L- (Q,F,U) . If (Q,F,U) has no atoms, then

LP(Q,F,u) h~s no discrete elements and a linear operator

LP(Q,F,u) ~ LP(Q,F,u) is an absolute kernel operator if and

only if it is an almost integral operator [17; Theorem 94.7].

Thus, for p E {1 ,co} , Daugavet' s equation holds for each absolute
kernel opera~r LP(Q,F,u) ~ LP(Q,F,u) whenever (Q,F,U) has
no atoms.
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