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Q. Introduction

Let us think of a material body moving and deforming in the Euclidean space ~. We make
the geometrie assumption that at any time the body is a n~imensional, compact)
connected, oriented and smooth manifold with boundary. The boundary shall be oriented
too, but shall not necessarily be connected. The material should be a deformable medium.
The deformable medium forming the boundary may differ from the one forming the inside
of the body.

During the motion of the body the diffeomorphism type of the manifold with boundary is
assumed to be fixed. Hence we can think of a standard body M, which £rom a geometrical
point of view is a manifold diffeomorphic to the one moving and deforming in IRn.

Thus a configuration is a smooth embedding £rom M into ~. The configuration space is
hence the colleetion E(M,lRn) of all smooth embeddings of M into rn.

This set equipped with Whitney's COO-topology is a Frechet manifold (cf. (Bi,Sn,Fi]). A
smooth motion of the body in /Rntherefore is described by a smooth curve in E(M,lRn). The

calculus on Frechet manifolds used in the sequel is the one presented in [Bi,Sn,Fi), which in
our setting coincides with the one developed in (Fr ,Kr).

The physical quality of thedeforming medium certainly enters the work F(J)(L) needed to
deform (infinitesimally) the material at any configuration J E E(M,~) in any direetion L.
The direetions are tangent veetors to E(M,lRn). Since the ladder space is open in the
Frechet space Coo(M,lRn)of all smooth ~-valued functions endowed with the COO-topology
(d.(Hi]), a tangent vector is thus nothing else but a funetion in Coo(M,/Rn)and vice versa.

IIi the following we take F, which is an one-form on E(M,lRn), as a constitutive law. We do
not discuss the question as to whether F characterizes the material fully or not.
Throughout these notes we assume that Fis smooth.

To allow only internal physical praperties of the material ta enter F, we have to specify the
constitutive law samewhat more. Basic ta this specification is the fact that these sorts af
constitutive praperties should not be aHected by the particular location of the body in Rn.
Thus F has to be invariant under the operation of the translation group. Moreover if L is
any constant map, we assurne that F(J)(L) = 0, V J E E(M,~) also.
The farms F, which have these two praperties, can be regarded as one farms on
{dJ I JE E(M,lRnn, where dJ is the differential of any J. This set af differentials is
equipped with the Coo-tapology as well and is denoted by E(M,~)//Rn . The latter space is

a Frechet manifald, too. It admits a natural weak Riemannian metric of an L -type.
2



A smooth one-iorm on E(M,~)/~ will be denoted by Fm. Henee we deal with

*one-forms of the type F = d F!Rn .

To handle this one-form F we assurne that F~ ean be represented VIa the metrie

mentioned by an integral, whieh we eall the Dirichlet integral used in the field of partial
differential equations on parts of !Rn.

The integral kernel of F is a differential of some smooth map
.fj E COO(E(M,~)/!Rn,COO(M,lRn)),ealled a eonstitutive map.

Hence in our setting we charaderize the medium a.s far a.s the internal physical properties
enter .fj .
The constitutive funetion .fj determines at any dJ E E(M,~)/!Rn two smooth force densities

<p(dJ) and rrJ...dJ) linked to .fj by :

• ß( J)SXdJ) = <p(dJ)
and

dSXdJ)(N) = rrJ...dJ)

and the integrability condition necessary to solve this von Neumann problem.

*Here ß( J) is the Laplacian determined by the Riemannian metric J < , > , where < , > is
the flXed scalar produet on !Rn.N is the positively oriented unite normal of GM in M. Vice
versa any pair of force densities (<p,~) satisfying the integrability condition for the von
Neumann problem determines some constitutive map jj of the above mentioned type.
Let us point out here that in these notes we neither discuss any dynamics nor do we study
equilibrium conditions ! W,e only investigate the not ion of a eonstitutive law in the above.
sense.

Sinee F is aHeeted by the material forming the boundary, we treat in an analogous way the
boundary material and exhibit in analogy to .fj a characteristic constitutive map ~. Thus
ß(j)~(dJ) with j := J Iß1..1 and JE E(M,lRn) describes the force density ~ dJ) up to a
eonstant force along ß1..1. However diX dJ)(N) also determines force densities which can not
be of the form ~ dJ). Any specific properties of the boundary enter additively in ~. An
additive part of ~ is the constitutive map {or the boundary material thought to be detached
from the body. Hence the rest of ~ deseribes the influenee of the body material to the
boundary material implemented into the body.

Finally we show that both jj and ~ are struetured in the following sense:
In .fj and in ~ is, from a mathematical point of view, generically and naturally encoded the

l,
,
I
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work needed to de{omi volume) area and shape o{ the body and boundary respective. The
shape is partly expressed in the unite normal vector field N(j) along the embedding o{ the
boundary. Here N(j) = :t dJ N; the plus-sign holds if J is orientation preserving) the
minus-sign otherwise.
The procedure to decode the influence mentioned is to use an L -splitting of di,( dJ).

2



1. The spa.ce of eonfigurations, the phase spa.ce and geometrie preliminaries

Let UB think of a material body moving and deforming in the Euelidean spa.ce /Rn.We make
the geometrie assumption that at any time the body is a n-dimensional, eompa.ct,
eonneeted, oriented and smooth manifold with boundary. The boundary shall be oriented
too, but shall not neeessarily be eonnected. The material should be a deformable medium.

The deformable medium forming the boundary may differ £rom the one forming the inside
of the body.

DuriIig the motion of the body the diffeomorphism type of the manifold with boundary is
assumed to be fixed.

Henee we ean think of a standard material body M. By this we mean the following :

The underlying point set of the body is a smooth, eompa.ct, oriented and eonneeted
manifold with oriented boundary aM.Let us assume that the orientation on aM is the one
induced by the orientation of M. The dimension of M is assumed to be n. The body
constitutes of a deformable medium and we use M to denote both, the manifold with
boundary and the material body.

From this situation we read off what we mean by a configuration :
A configuration is a smooth embedding

Henee the spaee of configurations is E(M,lRn), the eollection of all smooth embeddings of M
into 1Jtl.

Clearly each J E E(M,~) induces a smooth embedding

JlaM:aM-trI.

This we call a configuration of the boundary of the body. Let us denote the eollection of all
smooth embeddings of OM into IRnby E( aM,trI).

To see what the phase space is, let us first of all observe that theset E(M,~) is obviously a
subset of Cm(M,lRn), the eollection of all smooth ~-valued maps of M. Clearly Cm(M,~) is
a IR-vector spa.ce.

We equip it with the Cm-topology, also ealled the Whitney topology in [Hi]. Sinee M is
compact, Cm(M,lRn) is a complete metrizable locally convex spa.ce, a so-<alled Fnkhet
space.



E(M,Rn), an open in COO(M,~), inherits hence the Coo-topology too. The phase space is
therefore

Proceeding for aM as for M we obtain E( OM,nf) as an open subset of the Frechet space
COO(aM,lRn) (cf. [Hi]). Hence also E( aM,~) is a Frechet manifold with obviously trivial
tangent bundle. The phase space for the boundary is then E( OM,ofl) x COO(aM,ofl).

The next Lemma shows the relation between the two configuration spaces, Le. the two
spaces of embeddings :

Lemma. 1.1 :

The restriction map

assigning to each J E COO(M,~) the map JI ßM, is surjective. The image R(E(M,~» is
open in E( aM,lRn). Hence

has the form TR = R x Rand is surjective.

Proof:

Let j E COO(aM,~). By the coHar theorem (cf.[Hi], p.1l3) ßM admits a collar in M. This is
to say that there is an open neighborhood SeM of ßM which is Coo-diffeomorphic to
aM x [0,00)via a map p , say. For simplicity we identify S with aM x [0,00)via p. Given any
1 E COO(ßM,lRn), let L E Coo(S,lRn)be defined by

L(p,s) = 1/(s) .l(p) , V sE [0,00)and p E ßM ,

where t/J: [0,00)-+ IRis a smooth map being identical to one on [0,1] and which vanishes on
[2,00 ).
The map L extends 1 to all of S. The map L itself extends to all of M by putting it
identically zero on the complement of S in M. Clearly L E COO(M,~) and. is such that
R(L) = 1. Let us prove the second assertion next :



Let JE E(M,lRn) be given and let us call R( J) by j. For any .\ E [O,m) we let
j(.\) := J IßM x p} .Clearly the family j(,\) depends smoothly on A. It obviously defines a
smooth curve with j(O) = j. Let us choose an open convex neighborhood 0 C E( ßM,lRn) of
j E E( ßM,lRn) and let Ao E [O,m) be such that j( .\0) E O. We deviate now from the cune
induced by J as folIows: We extend the curve j(,\) at .\0 by a straight line along its tangent
up to h E 0 I say. From here we pass on with a straight line segment to any given j1 E O.
Clearly we can smooth out this curve at h without affecting j(.\) with .\ > 2.\0 . Hence we
have a smooth curve (J linking j( Ao) with j1. By construction 0(0) = j. The smooth
embedding

J : aM x [O,m) - ~
defined by

(1.1) {
J(P,A )

J(p)) =
0(.\)( p)

.\> 2Ao Vp E M

A ~ 2.\0 V pE M I

smoothly links with JI(M\ßM x [0,00)) . Thus we have a smooth J1 E E(M,~) such that
J11 ~.f" .1 Th . . . b .

(/lV.1 = J. e remammg asserhons are 0 VlOUS.

In the sequel of these notes we write 0 fJ instead of R(E(M,~)).

On the configuration space we have a natural action a by the translation groups ~ of ~
.,.. _.- . .

namely

assigning to each J E E(M,lRn) and each z E JJrl the embedding J + z.
This action extends obviously to CIIl(M,ln). The translation group ~ acts accordingly on
E( ßM,lRn). This action restricts to 0 fJ and obviously extend also to Cm( ßM,~).

The orbit spaces of the respective aetions are denoted by Coo(M,Rn)/lRn , COO
( fJM,~)/ ~ ,

E(M,lR
n
)/lRn , E(OM'~)/lRn and 0 a1f!!'

The nature of these spaces are easily understood if we introduce for any

L E Cm(M,lRn) the differential dL which is locally given by the Fnkhet derivative, Hence
the tangent map TL of L is (L,dL). The respective notion of I e Cm(aM,lRn) is introduced
accordingly.

Hence the orbit spaces mentioned above are nothing else but spaces of differentials of the



elements of those spaces on which Rn acts.

M and aM inherit via respective ernbedding into !Rnsorne basie geometrie structures
deseribed below.

Let us fix a scalar product and a normed determinant function ß (cf.(Gr]) on M.

Then each j EE( aM,~) yields a unite normal vector field with

N(j): GM -+ ~,

with
<N(j),N(j» = 1 ,

* *for which j iN(j)ß determines the orientation dass of ßM. Here j iN(j~ denotes the

pullbaek of the (n-lHorm iN(j)ß to aM by j. Moreover iN(j)ß := ß(N(j), ... ).

Each JE E(M,lRn) and each j E E( aM,~) yield Riemannian metrics m(J) and m(j) on M
and aM respectively. These metrics are defined by

(1.2)
and
(1.3)

m(J)(X, Y) = <dJX,dJY> , VX,Y E rTM

rn(j)(X,Y) = <djX,djY>, VX,Y E rTßM.

Here rTQ denotes the collection of all smooth vector fields of any smooth manifold Q (with
or without boundary).
Both m(J) and m(j) depend smoothly on its variables J and j.

For any Je E(M,lRn) and any j EE( aM,~) let us denote by p(J) and P(j) the Riemannian
volume form determined by m(J) and the orient at ion of M respectively by m(j) and the
orientation of aM. Clearly

(1.4)

Let us point out that there is anormal vector field N ETM! aM such that

(1.5)

Hence we have



(1.6) d~(N)= N(j) ,

•J(J) = J !i ,

if j := J IaM and if J is orientation preserving.
Clearly
(1. 7)

provided J preserves the orientation. These embeddings J E E(M,~) for which (1.7) hold
form an open set in E(M,~).

Associated with the metries m(J) and m(j), we have the respective Levi-Civita connections
V(J) on M and V(j) on GM.They are determined by

(1.8) dJ V(J)x Y = d(dJY)(X), 'tJ X,Y E rTM

and
(1.9) dj V(j)XY = d(djY)(X) - m(j)(W(j)X,Y) .N(j) , 'tJ X,Y E rTOM.

By W(j) we mean the Weingarten map given by

(1.10) dN(j)Z = djW(j)Z, 'tJ Z E rTM .



'2. The constitutive law

We charaeterize the type of the material which constitutes the body M as far as it affeets
the work done üM is infinitesimally distorted (d.[Re], [E,S]' [Bi], [Bi,Sc,So]). This idea is
formalized by giving a smooth one-form on E(M,!Rn),i.e. a smooth map

(2.1)

which varies linearly in the second argument. We interpret F(J)(L) as the work done if M
at the configuration J E E(M,~) is distorded by L E Coo(M,!Rn).We call the medium
described by F a smoothly deformable medium.

It might be of physical significance that F depends on further parameters, so e.g. in case
one likes to model a visco-elastic material (d.[Bi,Sc,So]). Rowever we restrict us for
simplicity to forms of the type (2.1) since complications such as those just mentioned do
not affect the basic apparatus.

It is intuitively clear that the work caused by internal physical processes, initiated by a
distortion L at a particular configuration J, should not depend on the particular location of
J(M) within trI. That is to say this work is the same ü J is replaced by J + z for any
z E !Rn. Moreover a distortion by any z E!Rn should not cause any work due to these
processes mentioned above. These ideas written more formally yield the following equations
basic to our furt her development :

(2.2)

and

(2.3)

F(J + z) = F(J), V J E E(M,~) , V z E ~

(ii.) F(J)(z) = 0, V JE E(M,IIf) , Vz E Rrt.

A one-form F on E(M,lRn) satisfying (2.2) and (2.3) is inthe sequel calleda constitutive
law.

The lemma below is obvious :



Lemma 2.1:

A smooth one-form

is a constitutive law iff it is of the form

(2.4)

that is
(2.5) F( J)(L) = Fßtl( dJ)( dL) ) V JE E(M,rn)

and V L E ClXl(M,lRn),
where
(2.6)

is a smooth one-form.

.
F~ : E(M,ßtl)/ßtl x ClXl(M,lRn)/~ -IR



3. Integral representation of constitutive laws, the Dirichlet integral

The purpose of this section is to define what is meant by an integral representation of a
one-form FIRnon E(M,~).

In order to define this representation we first will introduce a quadric structure on
E(M,lRn) x A I(M,lRn), which is based on the dot product of any two ~ -valued one-forms
on M relative to an embedding of M into IRn.We denote the smooth IRm-valued one-form
of any smooth manifold Q by A I(M,lRm).

Let 1 E AI(M,lRn) and JE E(M,lRn) be given. The two tensor <1,dJ> determined by 1 and
J shall be given by <1X,dJY> for all X,Y E rTM. This two tensor <1,dJ> yields a unique
strong bundle map A( 1,dJ) of TM defined by

(3.1) <1X,dJY> = m(J)(A( 1,dJ)X,Y), VX,Y E fTM.

From this eq uat ion we read off :

(3.2) 1X = dJA( 1,dJ)X , V X E rTM .

For any two one-forms 1 , 1 E A I(M,lRn) and an embedding JE E(M,Rn) we define the
1 2

above mentioned dot product of 1 and 1 relative to J by
1 2

(3.3)

Here A( 12,dJ) is the ad.joint of A( 1 ,dJ) formed fibre-wise with respect to m( J).
1

Assodated with this product is a weak scalar product GlRn(dJ) on A l(M,~) defined by

(3.4) GlRn(J)(-}'I'12):= f 11' 12 JL{.J).
M

As mentioned before PI.... J) denotes the Riemannian volume form determined by m( J) and
the given orientation of M.

Weak means here, that G~(J) does not determine the dual space of COO(M,R")/lRnto

AI(M,lRn).

We equip A I(M,lRn) with the COO-topology (d. [Bi,Sn,Fi]). The real number GIR"(dJ)( 1 ,1 )
. 1 2



-------------------,

depends smoothly on all its variables dJ,1 and 1 .
I 2

Since CIXl(M,lRn)/lRnC AI(M,lRn) the quadric structure on E(M,!Rn) x AI(M,lRn) GlRnyields a

weak Riemannian structure on E(M,lRn)/lRn again denoted by G~ .

We say that FIRn, a one-form on E(M,lRn)/~ ' admits an integral repesentation if there

exists a smooth map

called the kernel of FIRn such that for any choices of dJ E E( M,lRn)/ mn and

dL E CIXl(M,lRn)/lRn

(3.5)

holds true.

F~( dJ)( dL) = f a( J) . dL p{J) = GlRn(J)( a( J), dJ)
M

*We speak of a constitutive law F with integral kernel a, if F = d F~ and F!Rn admits an

integral representation with kernel a.

To discuss the uniqueness of a, if it exists of all, we first prove the following :

Tbeorem 3.1 :

Let 1 E A I(M,lRn) and J E E(M,~) . There existi a W'Jiquely determined differential
djj E CIXl(M,IllD)called the exact part ot 1 and a uniquely determined ß E AI(M,~) such
. that

(3.6)

where the exact part of ß vanishes. Both djj and ß depend smoothly on 1. 1£ i,(po) for some
PO E M is kept constant in J, then also S) varies smoothly in 1.



Proof:

First let us construct .i) and ß. To this end we fix a basis e ,... ,e on Ifl, orthonormal with
I n

resped to < ,>. Then

(3.7)
n

1X) = ~ leX) e, VX e fTM ,
r=l r

with l e A I(M,lRn) for all r=l, ...,n . Since for each r

(3.8) lex) = m(J)(yr,X) ) VX e fTM

holds true for a weIl defined yr e fTM, we find due to Hodge's decomposition (d.(A,M,R])
a function l e Coo(M,lRn) and a uniquely determined vedor field yr e fTM such thattheo
following three equations are satisfied

(3.9)

and

(3.10) divJY~ = 0

together with the boundary condition
m(J)(Y~,N) = 0 along OM.

Here the indices J in grad J and divJ mean that the respective operations are formed with

respect to m(J).

This decomposition is obtained by solving the following von Neumann problem

(3.11)

with the boundary condition

(3.12)

L\( J).l = -div JyI

dl(N) = m(J)(yI,N) .

This problem has, accoIding to (Hö], a solution TI unique up to a constant.



The desired function .fj and the form ß are defined by

(3.13)

and
(3.14)

.fj:= ~ l.e
r r

~X) := ~ m(J)(Yor,X) , V XE rTM ,
r

respectively. It is a matter of routine to show that d.fj and ß do not depend on the basis
chosen. With these notions we immediately deduce

(3.15) 1 = d.fj + ß.

To see that the exact part of ß vanishes let us assurne that t/JrE Coo(M,lRn) is such that for
each r=l,,,.,n

(3.16) gradJt/Jr + yr = yr ,
00 0

for some divergence free veetor field yr perpendicular to the normal field N. Then
00

(3.17)

Thus the exact part of ß vanishes.

To discuss smoothness properties of .fj in J let us show next that both grad JTr and y~

depend smoothly on J E E(M,~). To approach our goal, we consider a smoothly
parameteriz~d family J( t) E E(M,Ilf) with t varying in IR.We assume that J( 0) coincides
with a fixed I E E(M,lRn). Thus

(3.18)

and hence

(3.19)

dJ(t) = dI A(dJ(t),dI), V t E IR

V(J( t) )yX = V(I)yX + A(dJ( t ),dI)-lV(I)yC A(dJ( t ),dI»X

holds for any choice of X,Y E rTM. Since V(J( t» is torsion free for any t E IRthe following
equation is valued for all X,y E rTM

(3.20) V(I)yCA(dJ(t),dI»X = V(I)x(A(dJ(t),dI»Y .



-- _._----------------------,

With these formulas we deduce immediately

(3.21)

(3.22) divJ(t)X = divIX + tr A(dJ(t),dI)-lV(I)X(A(dJ(t),dI)) ,

both holding for all t and all X E rTM.

Let Y E rTM. First we assurne that the following three equations associated with the
Hodge-<lecom posit ion

(3.23)

where
(3.24)

and
(3.25)

Y = grad J( t ) r( J( t )) + yO( J( t )) ,

dr(J(t))(N) = m(J(t))(Y,N) ,

all depend smoothly on t. Then (3.18), (3.21) and(3.22) yield the next three equations

(3.26)

(3.27)

. .
dJ(O) = dI A(dJ(O),dI) ,

d .
:JTtgrad I T = -2 A(dJ(O),dI) gradIT,
U~ t=O sym

V nxed T E COO(M,IIl) ,

. .
where A(dJ(O)dI)sym denotes the selfadjoint part of A(dJ(O),dI) formed with respect to

m(I) via the polar decomposition (d.[Bi.Sn,Fi]) and finally

(3.28)
d . .
ard1VJ(t)lt=o X = tr V(I)A(dJ(t),dI)X.

Using the last three formulas, the derivatives of (3~23), (3.24) and (3.25) with respect to t
read therefore as



(3.29)

(3.30)

and

(3.31)

o = -2 A( dJ(O))dI) gradIT(I) + gradI~I) + Y°(I) ). sym

. .
divI Y(I) = -tr V(I)A( dJ(O),dI)y°(I)

. .
d T(I)(N) = m(I)(Y)N) .

Applying divI to (3.29) yields the equations

(3.32)
. .

il(I)T(I) = -2 divI(A(dJ(O))dI) gradIT(I))sym

+ tr V(I)A(dJ(O),dI)yO(I) )

with its boundary condition

(3.33)
. .

dT(I)N = m(I)(Y,N) .

Turning back to the problem of showing the smoothness in t of (3.23)) (3.24) and (3.25) the

equations (3.32) and (3.33) pose a von NeuIIiann problem with T(I) as the unknown)
provided we drop the smoothness assumption in conneetion with (3.23) and (3.24). The
right hand sides of both (3.32) and (3.33) are smooth. As we already know such problems
have a solution unique up to a constant. Without loss of generality we mayassume that for
some Po e M

(3.34) T(J(t))(po) = 0) V t E IR )

which in turn suggests that T(I)(po) = 0 .
. .

Equation (3.32) produces a candidate for T(I) and if we insert T(I) into (3.29) we obtain a

candidate for Y°(I). Now it is a matter of routine to verify that these candidates in fact do
satisfy

(3.35)

and

(3.36)

1 .
T lim (T(J(t))-T(I)) = r(I)

t~O

} lim (Y°(J(t))-yO(I)) = yO(I) )
t~O



respectively. Since I e E(M,lRn) was chosenarbitrarily we obtain ~t) and yO(J(t)) for all
t e IR.

To show the existence of all higher derivatives we have to set up an indudion procedure
. based on (3.26), (3.27), (3.28), (3.29), (3.30), (3.31) and (3.32), which to execute is left to
the reader. Both, therefore r(J(t)) and V(J(t)) depend smoothly on t e IR. Since the
parameterization in t was arbitrarily, we conclude by the criterion in the calculus presented
in (Fr,Kr], that both r(J) and Y(J) depend smoothly on Je E(M,lRn).This ends the proof.

Some of the calculation made in the proof above allow us to look at G~(J) from another

angle. Given 1 E A1(M,lRn) and JE E(M,lRn) we have according to (3.7) and (3.8) in above
proof

(3.37)
n

')(X) = dJA( 1,dJ)X = ~ m(J)(yT,X) er' VX E rTM .
r=l

Let us denote (dJ)-le by E , for all r=l, ... ,n. Then we read off from the equation (3.37)r r

that

(3.38) Vr = A(1,dJ)E, Vr=l, ...,n ,r

holds true. This remark yields the following observation:

Proposition 3.2 :

Given 1 ,1 E Al(M,lRn) , JE E(M,lRn) and a fixed basis e ,...,e on IRn orthonormal with
1 2 1 n

respeet to < , >, then there exist two sets

Y 1,... ,Y n and V 1,... ,Y n
1 I 2 2

of vedor fields in rTM, such that

(3.39)



and hence

(3.40)
n

GlRn(J)(1,1):= f 1 '1 p(J) = ~ f m(J)(Y f,y f)p(J) .
I 2 I 2 f-l I 2M - M

If in addition 1 = dS) for some S)E CiXl(M,lRn) then G..Jl(J)(dij, 1 ) = 0 provided that the
I 11{ 2

exa.ct part of 1 vanishes.
2

Proof:

Let y.r E rTM , r=I, ... ,n and i=I,2 be as in (3.8). Then
1

(3.41)
-

1'1 = tr A( 1 ,dJ).A( 1 ,dJ)
I 2 I 2

n -
= ~ m(J)(A( 1,dJ).A( 1,dJ)E ,E )
r=1 I 2 r r
n

= ~ m(J)(Y r,Y f)
r=1 I 2

establishing (3.39). To show the last part of the proposition we use Gaussl theorem as
follows:

(3.42)
n

GlRn(dJ)( 1 ,1 ) = ~ f m(J)(grad Jl,yr)
I 2 r=l M 0

n
= ~ f dl(yr)p(J)
r=l M 0
n

= ~ f(divflyr)-T'divJyr)p(J)
f=1 M 0 0
n

= ~ f m(J)( l yf,N)P(J)
r=1 M 0

=0.

n
Here we have S)= }; le and divJyr = 0 as weHas m(J)(yr,N) = O.

f=1 r 0 0

In case 1 and 1 in the above proposition are exact, then the respective vector fields in
I 2

(3.39) are gradients. Hence the right hand side of the integral in (3.40) is the classical
Dirichlet integral (cf.[J]) for IRn-valued functions.



--- _._._._-

The integral in the middle part of (3.40) hence generalizes and reformulates the Dirichlet
integral. We call it therefore the Dirichlet integral of any twosmooth !Rn-valued forms 1,

1

1 relative to J EE(M,!Rn).
2

Proposition 3.2 also shows that the integral kernel of a constitutive law is not unique at al1.
We may add to any kernel a map which assumes as its values, one-forms of which the
integrable part vanishes. However the following theorem guaranties us a uniqueness of a
very specific type of kernei:

Tbeorem 3.3 :

Let F be a constitutive law with integral kernel. There exists a unique smooth map

(3.43)

such that far any JE E(M,lRn)and any L E Cro(M,~)

(3.44) F(J)(L) = f a(dJ) .dL p{J)
M

holds true. In fa.ct there is a unique smooth map

(3.45)

satisfying the following two equations

(3.46)

and
(3.47)

a(dJ) = di,(dJ) , VdJ E E(M,~)/lRn

f <i,(dJ),z>p{J) = 0, Vz E!Rn.
ßM



Proof:

The existence of such a kernel is guaranteed by proposition 3.2. The uniqueness follows
easily :

Let Q and Q be two kernels with values in COO(M,IIf)/...n. Then we would have
I 2 IK

(3.48) f (Q-Q )(J). dL p(J) = 0,
M I 2

for all J E E(M,lRn) and all dL E COO(M,IIf). Since for all dL = Q -Q , G is positive
I 2

definite, we conclude Q =Q • To show that S) exists and ca.n be chosen to satisfy (3.47) we
I 2

introduce Cj(M,lRn) , the colleetion of all L E COO(M,~) satisfying

(3.49) f <L,z>p.(J) = 0, Vz E ~ ,
M

for a given J E E(M,IIf). With this space at hand we have the splitting

(3.50)

.Equipping Cj(M,~) with the COO-topology, yields a Frechet space also denoted by

Cj(M,lRn). Since for any two I,J E E(M,lRn).

(3.51) m(J)(X,Y) = m(I)(B(dJ,dI)2X,Y), VX,Y E rTM,

holds for a uniquely determined smooth strong bundle isomorphism B( dJ,dI) of TM, we
conclude that

(3.52)

Clearly

(3.53)

is an isomorphism for each J. Let us denote it by dJ . The desired map i) is given by



Moreover we have the projection

(3.54)

determined by (3.50). Equation (3.52) shows that P(J) is smooth in JE E(M,lRn). Hence if

a is a kernel of the form (3.43), then if...dJ) is smooth in JE E(M,If), satisfies (3,46) a.s
weH a.s (3.47) and by construction

(3.55)

holds true.

PU) 0 if...J) = a{J), V JE E(M,lRn),



4. Force densities associated with constitutive laws admitting kemels

The purpose of this section is to associate with any constitutive law admitting integral
kerneis at any configuration some well defined force densities, one acting upon the whole
body, and one acting upon the boundary only.

Throughout this sedion F is a constitutive law admitting a kernel a. By the previous
theorem we may assume that a maps into COO(M,~)/in .

To construet the force densities mentioned we use F in the form

(4.1) F(J)(L) = f tr A(a(dJ),dJ).Ä(dL,dJ) Ili-J),M -

holding for any of the variables of F. Writing any L E COO(M,~) relative to a glven
J E E(M,~) in the form

(4.2)

with a unique X(L,J) E rTM we have

L =dJ X(L,J) ,

(4.3) dL X = dJ V(J)XX(L,J) , 't/ XE rTM .

and hence derive immediately

(4.4) A(dL,dJ) = V(J) X(L,J) ,

Thus if e ,... ,e is a orthonormal basis of in and if we define E E rTM again by dJ E = e
t n r r r

for r=l, ... ,n then

(4.5)
n -

F(J)(L) = ~ f m(J)(A( a( dJ),dJ). V(J)E X(L,J),Er) p{J) .
r=l M r

Let us introduce the notion div JT , the divergence of a strong bundle endomorphism T of

TM by

(4.6)



This notion does not depend of the basis chosen.Equation (4.6) together with (4.5) imply

(4.7) F(J)(L) = f div fÄ( a( dJ),dJ)X(L,J» p( J)
M
- f m(J)(div]A(a(dJ),dJ),X(L,J» p(J).
M

To bring these formulas in a more familiar form we introduce the notions of ß( J)K and
ß( Jh, the Laplacian, for any K E ClIl(M,lRn)and any 1 E A I(M,~). In doing so we follow

(MatJ. We set

(4.8) *d K = O.

If 1 E AI(M,lRm) for sorne natural nurnber rn, we set

(4.9)

Clearly

(4.9a)

if

ß( J) is then defined by

(4.10)

Consequently we have

(4.11)

* n
d 1 = -1; V(J)E (1)(E ) .

r=l r r

-y(X) = m(J)(Y,X), V X E rTM.

* *ß( J) := dd + d d ,

* n
ß(J)K = d dK = 1; V(J)E (dK)(E ) .

r=l r r

Since the t wo expressIOns V(J)y{ dK)X and V(J)y{ T)X respectively forrned for any

K E ClIl(M,lRn) and any strong bundle map T of TM and any choices of X,Y E rTM are by
definition d(dK(X»Y -dK V(J)XYand V(J)y{TX) -T V(J)yX, we find



( 4.12)
n

D.(J)K = - ( E d( dJ A(dK,dJ Er))( Er) - dJ A( dK,dJ)(V( J)E Er))
r=l r

n
= - E dJ V(J)E (A(dK,dJ))Err=l r
= - dJ div JA( dK,dJ) .

Hence equation (4.7) turns into

(4.13) F(J)(L) = f divJÄ(a(dJ),dJ)X(L,J) p{J)
M

+ f <D.(J)i,(dJ),L> p{J) ,
M

Using Gauss1theorem we derive with the help of theorem 3.3 the following

Proposition 4.1 :

Let F be a constitutive law admitting a kerne!. Then for each JE E(M,IIf) there exists a
smooth map

uniquely determined up to a smooth map from E(M,~) into IRn for which

(4.14) F(J)(L) =J <D.(J)i,(dJ),L>#CJ)

+ f <di,(dJ)(N),L>iN #CJ)
ßM

and hence a Green IS equation

( 4.14a) f <D.(J)i,(dJ),L>p{J) - f <i,(dJ)D.(J),L>p{J)M M
= f <dL(N),i,( dJ»iN p{J) _ f <di,( dJ)(N),L>iN JJ.. J)

ßM GM

both holding for all variables of F. Here iN p( J) is the volume element on GM defined by



Ji... J) and N, the positively oriented unite normal vector field of aM c M.

We call the map .9j in proposition 4.1 a constitutive map because it fully determines the
constitutive law.

The above proposition motivates us to set for any JE E(M,lRn)

(4.15) 4>(J) := ß(J) iX dJ)
and

(4.16) r(dJ):= dij(dJ)(N),

with iX dJ) as in (4.14).

We call the maps 4> and rp the force densities associated with F. These force densities
determine F by

(4.17) F(J)(L) = f <4>(dJ),L>p(J) + f <r(dJ),L>iNP(J) ,M ßM

Since ,fj is smooth both 4> and rp are smooth COO(M,ßtl)-valued respedively
COO(OM,lRn)-valued functions on E(M,lRn)/lRn.

Given vice versa two smooth maps

( 4.18)

( 4.19)

for which the integrability condition

(4.20) 0= f <4>(dJ),z>p(J) + f <r(dJ),z>iNp(J), V Z E ~M ßM

holds, there exists for each J E E(M,lRn)/~ a smooth map



( 4.21)

such that the von Neumann problem

( 4.22)

with the boundary condition

(4.23)

~(J)jj( dJ) = <1>(dJ)

dSj(dJ)(N) = If\dJ)

is solvable uniquely up to a constant. With these force densities we define a one-4orrn F on
E(M,lRn) by

(4.24) F(J)(L) =J<~(J)jj(dJ),L>p(J)

+ f <djj( dJ)(N),L>iNP( J) ,
BM

for all JE E(M,lRn) and for all L E Coo(M,lRn). Fis a constitutive law due to (4.20).

We now apply proposition 4.1 to obtain a smooth map

producirtg

(4.25)
and
( 4.26)

4>(dJ) = ~(J) ii...clJ)

If\clJ) .= clii...clJ)(N) ,

for all J E E(M,~). Thus we have the following



Theorem 4.2 :

Every constitutive law with integral kernel admits a smooth constitutive map

(4.27)

uniquely determined up to a map in ClXl(E(M,lRn)/lRn,~), such that the kernel of F is given

by

( 4.28)

and which moreover satisfies

(4.29) F(J)(L) = f <ß(J)SXdJ),L>p(J) + f <dSXdJ)(N),L>iNP(J)M 8.M

on all of TE(M,lRn). The map S) determines two smooth maps

and

called the force densities associated with F which are given for all J E E(M,~) by

Vi ce versa, given two smooth maps of the form (4.18) and (4.19) satisfying (4.32), then
there is a constitutive map .f) of the form (4.27) for which (4.29) holds.

( 4.30)
and
( 4.31)
satisfying

(4.32)

4>(dJ) = ß( J)SXdJ)

rI..dJ) = dSXdJ)(N)

f <4>(dJ),z>p(J) + f <rl..dJ),z>iNp(J) = 0, V z E IRn.M ßM

I,
I
I
!

I
!
I



In conclusion of this section let us remark, that near a reference embedding I E E(M,~) the
force densit y <fJ(dJ) can be linearized as

(4.33) <fJ(dI) + D<fJ(dI)( J-I) = ß(I)f.( dI) + Dß(I)( J-I)f.( dI)

+ ß(I)Df.( dI)( J-I) .

Using (3.19) and (4.10) we find the somewhat lengthy formula

(4.34) DL1(I)f.( dI)(L) = L1(I)Df.( dI)(L) + dI A( dL,dI)L1(I)iX dI)

- ~ [V(I)E (A( dL,dI»,V(I)X( f.( dI),I)](Er)r r

+ ~V(I)A (dL dI)E (V(I)X(f.( dI),I)(Er)r sym' r

+ ~V(I)E (V(I)X(f.(dI),I»(A (dL,dI)E)sym rr r

+ dI divIA(dL,dI)V(I)X(f.(dI),I) ,

with E" .. ,E a m(I)-orthonormal movmg frame on M and wit h A (dL,dI) the
I r ~m

m(I)-selfadjoint part of A( dL,dI).

If in particular f.( dJ) := I + vL, for all L E COO(M,R") and v E IR fixed, then
Df.( dI)(L) = vL and V(I)X(I,I) = id yielding

( 4.35) DLl(I)f.(dI)(L) = v'L1(I)L - Ll(I)L ;

Hence if L :: J-I , the linearized force density is

( 4.36) <fJ(dI+ dL) = (v-1)'ß(I)L .

The linearized boundary condition is

( 4.37) ~dI + dL):: v dL(N) .



5. Constitutive laws for the boundary

The task in this sedion is to study constitutive laws for the boundary, that is for a
deformable medium forming a skin of which the underlying point set is the manifold 811.

This skin is thought to be detached from the body. In doing so, we first formulate in
analogy to seetions two and three what is meant by a constitutive law with integral kernel
for the boundary material.

Let us recall that the open set ÜßC E(811,Rn) is the colleetion of all JIßM: with

JE E(M,Rn). The constitutive laws mentioned above will be given on any open set

Ü C E(M,Rn) and willlater be specified on Üß.

At the very first we introduce the not ion corresponding to the Dirichlet integral :
Given any I E COO(811,~) and any j E E(OM,~) then for all X,Y E rTOM

(5.1) <dl X,dj Y> = m(J)(A(dl,dj)X,Y)

holds for some smooth strong bundle endomorphism A( dl,dj) of TOM. Moreover there is a
uniquely defined smooth map

(5.2) c(dl,dj): OM _Rn,

satisfying the following two conditions

(5.3)

and
(5.4)

c(dl,dj)dj(T OM) (IR.N(j)(p) ,p

c(dl,dj)N(j)(p) (djT 811,p

Vp E OM

Vi> E 811,

and such that the equation

(5.5) dl X = c(dj,dl)dj X + dj A( dl,dj)

holds true for any X E rTM. We refer to [Bi,Sn,Fi] or [Bi,Sc,So] for more details. Based on
(5.4) we introduce U( dl,dj) by

(5.6) c(dl,dj)N(j) = dj U(dl,dj) .

This vector field U( dl,dj) E rTOM is obviously uniquely determined.



Splitting A( dl,dj) into its skew- respedively selfadjoint parts C(dl,dj) and B( dl,dj) formed
pointwise with respect to m(j) we end up with

(5.7) dl = c( dl,dj) . dj + dj( C(dl,dj) + B(dl,dj) .

This decomposition generalizes in the obvious way to any '1 E A J( 8M,lRn) and reads as

(5.7a) "{= c( "{)dj). dj + dj( C( "{,dj)+ B( "{,dj)) .

The metric G~n( dj) at dj E E( aM,~)/lRn applied to any two dl)dk E COO(M,lRn)/lRn18

defined by integrating the fundion

(5.8) dl.dk:= -~tr c(dl,dj).c(dk,dj)

- tr C( dl,dj) .C( dk,dj)
+ tr B( dl,dj). B(dk,dj)

'I
I

with re8ped to p(j), that is, it is defined by

(5.9) G~n(dj(dl,dk):= f dl.dk P(j)
M

= - ~ f tr c(dl,dj) .c( dk,dj)p(j)
M

- ftr C(dl,dj).C(dk,dj)P(j)
M

+ j" t,r B( dl,dj). B( dk,dj)p(j) .

Let 0 ( E( aM,lff) be any open set.

We now define a constitutive law Fa on 0 in analogy to section two, that is we require

(5.10)

for some one-form F:n on O/lRn. Accordingly Fa is called a constitutive law with kernel (1',

if fot some (1' E COO(O,A J( iJM,lRn)) the following equation holds true

We introduce for any j E E( aM,Rn) the Laplacian .6.(j) accordingly to (4.9) but require that



E in this case is a moving frame on aM.
5

With this not ion at hand the constitutive laws on 0 are characterized in details in the next
theorem:

Tbeorem 5.1 :

Let Fa be a constitutive law on any open set 0 C E(M,lRn). The following are then

equivalent :

(i.) Fa admits a kernel a E COO(0 /lRn,A J( aM,lRn)) .

(ii.) There is a ~mooth map ~ E COO(O/lRn,COO(aM,lRn))uniquely determined up to

maps in COO(O/Ifl,lRn), such that

(5.12) F Jj)(l) = J d~ dj) .dl P{j) ,
OM

Vj E 0,

(5.13)

(iii.) There is a unique smooth map rp E COO(O,COO(aM,lRn)), such that

and wh ich satisfies

(5.14) ~ <~dj),z>P(j) = 0, v j E 0, V z E IRn.

(5.15)

(iv.) There is a smooth map ~ E COO(O/lRn,COO(aM,lRn))uniquely determined up to

maps in COO(aM,Ifl), such that

F Jj)(l) = J <Ä(j)~( dj),l>P(j), V j E 0, VI E COO(aM,lRn).
OM



--- -- ---- - -----------------------------------,

Prool:

The equivalence of (i.) with (iL) is the analogy of theorem 3.3. The proof of this sort of
reduction theorem and can also be found in [Bi) or [Bi,Sc,So). Let us pass next to the
equivalence of (ii.) with (iv.) :
Given j E O. For simplicity we write k instead of ~(dj). We use the identity

(5.16) dlY = m(j)(gradj~l,j) - W(j)X(l,j),Y) .NO)

+ dj(V(j)yX(l,j) + ~l,j). W(j))Y, V Y E rTM ,

holding for any I E COO
( aM,lRn). Using any moving frame E ,... ,E on aM orthonormal

ln-I

with resped to m(j) we verify the next set of equations

(5.17) dk .dl = - ~ tr c(dk,dj) .c( dl,dj)

-!tr(V(j)X( dk,dj) - V(j)X( dk,dj»)

. (V(j)X( dl,dj) - V(j)X( dl,dj))

+itr(V(j)X( dk,dj) + V(j)X( dk,dj) + ~k,j)W(j))

. (V(j)X( dl,dj) + V(j)X( dl,dj) + ~l,j)W(j))

= - ~ tr c( dk,dj) .c( dl,dj)

+ tr(V(j)X(dk,dj)) + ~k,j)W(j))

. (V(j)X( dl,dj) + ~1,j)W(j»)

= -m(j)(gradj~l,j) - WO)X(l,j),U(k,j))
n-1 -

+ t m(j)(V(j)X(dk,dj)) + ~k,j)W(j)) V(j)E X(l,j),E )
i=l r r
n-1

+ t m(j)« ~l,j))W(j)(V(j)X( dk,dj) + ~k,j). W(j))E ,E ) .
i=1 r r

The expression for dk .dl is therefore



(5.18) dk .dl = m(j)(W(j)U(~,j),X(lJj) - d~I,j)U(k,j))
+ divj«V(j)X( dk,dj) + ~k,j)W(j)) X(l,j)

- m(j)( div j(V(j)X( dk,dj) + ~k,j)W(j)),X(l,j))

+ ~l,j) tr W(j)(V(j)X(dk,dj) + ~k,j)W(j» .

On the other hand let us repeat that ß(j) be defined by

(5.19)

with

(5.20)

and

(5.21)

* *ß(j) = d d + dd

* n-1
d "I = -}; V(j)E ("I)(E ), V "I E A I(M,~) ,

r=l r r

any moving frame E ,... ,E 1 of the above type. Thus the following is also easily verified :
I n-

(5.22) *ß(j)k = d dk
* -= d (m(j)(gradj~k,j) - W(j)X(k,j), ... ).N(j)

*+ d (dj V(j)X(k,j) + ~k,j). W(j»

* *= -cl (m(j)(U(dk,dj), .. ).N(j) + d (dj V(J)X(k,j) + ~k,j).W(j)

= dj W(j)U(k,j) + (divj U( dk,dj». N(j)

- dj( div jV(j)X(k,j) + ~k,j). W(j»

+ tr W(j)(V(j)X(k,j) + ~k,j). W(j» .NO) .

(5.18) and (5.22) show the equivalence of (ii.) with (iv.).
Let us prove (ii.) ===* (iii.) :

Integrating both sides of (5.18) and posing the equation

f dk .dl P{j) = f <r(dj),l>p{j)

yields via Gauss' theorem the smooth r(dj) given for each dj E E(8M,lRn)/~ by



,--------------------- ---------- ---_. --- -------- -- -- --- --------------------,

(5.23) '{{dj) = -dj divj(V(j)X(dk,dj) + ~k,j).W(j)) - W(j)U(k,j)

+ (tr W(j)(V(j)X( dk,dj) + ~k,j)W(j))
+ divjU(dk,dj)).N(j).

Hence we have

(5.24) Ll(j)k = '{{dj), V j E E( aM,~)

and tp depends smoothly on dj. This implication can be reversed due to

(cf. [Hö]). Finally we concentrate on the equivalence of (iii.) and (iv.). (iii.) yields a map f}
by solving for each j E 0 the equation

(5.25) Ll(j)fJ(dj) = '{{dj) ,

with (5.14) as integrability condition (cf.[Hö]). Let us show that f}(dj) depends smoothly on

J.
Without 10ss of generality we can assurne that f)(dj) E Cj(aM,lRn), the subspace of

COO
( ßM,!Rn) for which

(5.26) !<l,z>p(j) = 0, V 1 E V. and V Z E !Rn,aM J

holds. This map f), also satisfying (5.25), is uniquely determined.
Since Ll(j) is selfadjoint with respect to !< , >p(j) , we also find

(5.27) F iD(l) = !<f)( dj),Ll(j)l>P(j) .
aM

Let jet) E 0 vary smoothly and let j(to) = j . Since



(5.28) F Jj( to+t ))(1) - F Jj)(l)

= f <~( dj( to+t )),~(j( to+t )1>P(j(to+t)
GM

- f <~( dj),~(j)I>P(j)
ßM

= f <~(dj(to+t)H(dj),~(j(to+t))I>P{j(to+t))
ßM

+ f <f)(dj),~(j(to+t))I>P{j(to+t))
ßM
- f <~(dj),Ll(j)I>P{j)
ßM

and since Fa I ~(j) and P{j) all vary smoothly in j, we conclude that for aBI E COO
( OM,~)

the following limit

I im f <~~( dj( to+t ))-fJ( dj)),~(j( to))I>P(j(to))
t-+O ßM

exists.

An induetion procedure shows that ~(dj(t)) varies smoothly in t.

Thus hy the differentiation theory of [Fr,Kr] not only D~(j) exists, hut we moreover are

ensured that ~ is even smooth. The reverse implication is ohvious.



6. The interplay between constitutive laws of boundary and body

The deformable media forming the inside of the body and the boundary respectively may
differ and each hence has to be described on one hand by different constitutive laws. On the
other hand these materials together form one body and should be describable by only one
constitutive law holding for the whole body.

The qualitative properties of the boundary material attaehed to the body may be
influenced by the deformable material forming the body as a whole.

The purpose of this section is to study the influence of the constitutive properties of the
deformable medium forming the body to the constitutive properties of the deformable
medium forming the boundary of the body. In other words we will decode the constitutive
properties of the boundary material aUached to the body £rom the constitutive law
describing the material of the body on the whole.

Let the constitutive law of the deformable medium forrning the whole body by F again.
Moreover Fa denotes the constitutive law of the deformable medium forming the boundary

only and which is thought to be detaehed £rom the rest of the body. Thus Fa is a one-form

on 00 Both, Fand Fa' are supposed to admit integral representations.

The constitutive law F is according to theorem 4.2 determined by a smooth map

the constitutive map of the deformable medium. We will first exhibit its influence to the
constitutive entities of the material forming the boundary of the body :
This map yields according to theorem 4.2 force densities

(6.1)
and
(6.2)

The ladder, the force density acting on GM, is defined by

(6.3) <p(dJ) = diX dJ)(N), V dJ E E(M'~)/lRn .

Let us split this force density tp into

(6.4) <p(dJ) = If'Rn(dJ) + tl(dJ) , V dJ e E(M'~)/lRn,



where ~(dJ) is chara.cterized for each dJ e E(M,~)/rt by the equation

(6.5)

and where

f <~(dJ),z>iNP{J) = 0, Vz e ~
BM

is a smooth map, which makes (6.4) to hold.

Let us remark that even if

dJ IBM = dJ IBM
1 2

for same J ,J E E(M,lRn) we may not necessarily have
1 2

The condition (6.5) allows us to choose same map

(6.6)

such that for all dJ e E(M,lRn)/lRn the equation

(6.7) ~(dJ) = ß(JI OM) fJuln(dJ)

holds true.We may choose'~lRn such that

(6.8) ~~( dJ) E Cj( OM,lRn) with j:: J IBM,

for all J E E(M,~). This map depends smoothly on its variable J, as shown in the proof of
theorem 5.1.
Thus the constitutive law F is determined by a map

i) : E(M)~)/~ -+ Coo(M,lRn) ,

yielding a force density ~ for which

~(J) = ß(J)iXdJ), V Je E(M,lRn)



,-------_._-----

holds and its boundary condition has the form

(6.9)

for some smooth maps

(6.10)

and

dJXdJ)(N)= ~(JlaM) ¥(dJ) + t/(dJ),

These boundary condition (6.9) obviously describes how the constitutive properties of the
material forming the boundary of the body are encoded in i).

On the other hand we have Fa' which is determined, according to theorem 6.1, by a

smooth map

(6.11)

The force density defined on 0 a!!Rn associated with ~a will be called in the sequel by rpa .
We choose an extension

(6.12)

of ~aby posing the following Visik problem, which according to [Hö] has a solution unique

up to constants :

(6.13)

and

(6.14)

together with

(6.15)

<I> 0 = 0= ß(J) ilJdJ)

di)fdJ)(N) = ß(JIßM) ~fd(JIOM))

=rpfdJ)

i)fdJ) = ~fd(JIßM)),

all holding for any JE E(M,!Rn).Again i)a depends smoothly on its variable. This is due to

the fact that the constitutive law determined by i)a only depends on its integral over the



boundary ßM and therefore is a reformulation of F o' Proposition 4.1 yields the smoothness

of fja . FO shall denote the constitutive law on E(M,lRn) determined by fjo'

*~lRn- R ~0 and 1/J show how the material forming the boundary of the body isaffeeted by

the fact that the boundary material is implemented into the body.

*Without loss of generality we may think that R ~ois an additive part of ~lRn. This

motivates us to write in the sequel ~ only instead of ~lRn.

What we have done in this section might be formulated in :

Tbeorem 6.1 :

Any smoothly deformable medium is charaderized by a constitutive map

(6.16)

determining itself two smooth maps

and

which are linked to fj by the boundary condition

(6.17) dfj( dJ)(N) = Ll(J IiJM) ~ dJ) + tK.dJ) .

~ is unique up to IRn-valued smooth maps of E(M,lRn) and 1/J is unique. Moreover fj satisfies
the integrability conditions

(6.18) 0= f <Ll(J)fj(dJ),z> p{J)
M
+ f <ofj(dJ)(N),z>iNp{J) ,
iJM

V JE E(M,IJtl)

and Vz E~.
(6.18) equivalently formulated reads as



or equivalently by

The work of any distortion IE Coo(OM,~) of the deformable material forming the boundary
atta.ehed to the body is given by

a boundary condition holding for .fj and t/J together. The constitutive law on E(M,lRn)
describing the constitutive properties of the materials forming body together with its
boundary is thus given via the formula

F(J)(L) = f <ß(J)itdJ),L>p{J)
M

+ f <ditdJ)N,L>iNp{J) ,
OM

(6.20)

(6.19) 0 = ~ <ß(J)iXdJ),z>p(J)

+ ~ <tt(dJ),z>iNp{J) ,

(6.21) F(J)(L) = f <ß(J)itJ),L>p{J)
M

+ f <ß(JIOM)~(JIOM) + 1/(dJ)),L>iNP{J),OM
V JE E(M,lRn), V L E Coo(M,Rn).

(6.22)

for any JE E(M,lRn).
Any constitutive properties describing the constitutive properties of the deformable
medium of the boundary detached from the body, which is given by a smooth map
~aE Coo(OaIlRn,Coo(OM,lRn)) IS additively incorporated into ~ VIa the map
* *R fJaE Coo(E(M,lRn)/lRn,Coo(OM,lRn)).Hence ~-R ~aa.nd T/Jdescribe how the constitutive

properties of the material forming the boundary of the body is affected by the fa.ctthat this
material is incorporated into the material forming the whole body.



Simple examples :

Given L E COO(M,~) and !E E(M,lRn) we may form according to (3.54) the map P(J) 0 L.
If L = J then let us write J instead of P( J) 0 J.

(i.) Let !XdJ) = J for all JE E(M,lRn), then

.
dJ = dJ

and
(6.23) f dJ .dL p{J)

M
= f <ß(J)J,L>p{J) + f <dJ(N),l>iNP{J)

M aM
= f tr A(dL,dJ)P{ J)
M

= f tr V(J)X(L,J)P{ J)
M

= f divJX(L,J)P{J)
M

= f <N(j),I>P{j)aM
= D( f p{J))(L) .

M

Here I := L IßM and j := J IaM . The above calculation shows

1 = z with z E !Rnevidently implies

(6.24)
and
(6.25)

(6.26)

<1>( dJ) = ß( J)J = 0

~dJ) = N(j) , V JE E(M,lRn) ;

f <N(j),z>p.(j) = 0, V z E IRn.
M.

I

I
I

This shows that in this example

(6.27)

The map ~lRnin this case is thus given by



(6.28) N(j) = ß(j)~~(dJ) , V J E E(M,~) and j := JI GM .

Since ~lRndepends here on dj only we have the situation that F = FO •

Let us turn our attention to ~aon 0a' given by ~Jdj) = j, Vj E Da' Here j E Cj(GM,lRn)

is the projection of j along IRn.One easily verifies the following set of equations

(6.29)

Hence SJa is given by

f <ß(j)j,I>P(j) = f dj .dl P(j)
GM GM

= ~ (tr(V(j)X(l,j) + ~I,j). W(j»

= J( div .X(I,j) + ~I,j). H(j»P(j)GM J

= ~ ~1,j).H(j)p(j)

= J < ~I,j). H(j). N(j),I>P(j)
GM

= D( f P(j)(l) .
GM

(6.30)

together with

0= ß(J)SJ;j dJ) , VJ E E(M,~),

(6.31) dSJJdJ)(N) = ß(j)j = H(j).N(j), V JE E(M,lRn)

and J:= JIGM.

Again F = FO here.

(ü.) Next let us consider quite another influence o{ the boundary. by looking at

~a: Da/Rn - Coo(OM,lRn)given by ~Jdj) = N(j), Vj E 00' Then the formula

(6.32) *ß(j)N(j) = d dN(j)
*= d dj W(n

= - dj gradjH(j) + (tr W(j)2) .N(j)

holds for any j E°a . In this case SJa is given by the system



(6.33)

(6.34)

---------- ---------------------,

0= ß(J)fjJdJ) , VJ e E(M,;n) ,

di)JN) = L\(j) .NO) , V J E E(M,~)

and J:= JlaM.

Let us point out that ß(j)N(j) f 0 even if j( OM) (~ is minimal, that is to say even if
H(j) = const.
In the special case of dim aM = 2 a topological constant, the Euler charaderistic ~(aM),
enters the constitutive law F determined by N(j) for each j e 00, It is hidden in

(6.35) F(j)(N(j» = J <ß(j)N(j),N(j»p.(j)
aM

= J tr W(j)2p(j) ,
aM

a.s seen as follows :
By the Cayley Hamilton theorem (d.[Gr]) and the Gauss Bonnet theorem (cf.[G,H,V]),
FO(j)(N(j» equation (6.35) can be expressed as

(6.36)

Here we also have F = FO •



7. A general decomposition of constitutive laws

In this section we will exhibit a decomposition of the constitutive map 1). This
decomposition is based on two specific one-forms on E(M,~) and E( ßM,IJt1) respectively,
namely the derivatives ofthe volume function

(7.1)

assigning to any J e E(M,~) the volume

(7.2)

and of the area funetion

(7.3)

sending any j e E( aM,lRn) into

(7.4)

m( J) = f '"J)M

~; E(ßM,~) -+ IR,

~j) = aJ" P(j) .

As we know £rom the previous examples this derivates are

(7.5)

and
(7.6)

Dm(J)(L) = f <N(JI aM),L> iN p{J)
aM
= ~ dJ.dL p{J)

= aJ" <dJ(N),L> iN p{J)

D~j)(l) = fH(j)<N(j),I>p{j)
aM

= f dj .dl P{j) ,
ßM

holding for all Je E(M,lRn), all L E COO(M,nt), all j e E( aM,lRn) and alll E COO(ßM,lRn);
*We will show in this section that Dm and R D~ multiplied with appropriate IR-valued

maps are all part of any constitutive law F defined on E(M,~).

Let us first concentrate on Dm and see how it is encoded in any constitutive map 1).
To this end let F be determined by same i) e COO(E(M,~)/lRn,COO(M,~». As we know {rom



the prevlOUs section it determines two maps ~ e COO(E(OM,~)/urt,COO( l3M)Rn)) and

?/J e COO(E(M,lRn)/lRn,IR),such that both are linked to 1) by the equation

. (7.7) d'yxdJ)(N) = ~(J IaM)~(dJ) + tt( dJ) ,

which holds for any J e E(M,~).
Let us consicler the real Hilbert--tipace HJ consisting of all L,K : M -+ IRn, for which

(7.8) «L,K»:= f <L,K>p(J)
M

exists.
Recalling that Cj(M,lRn) is the colleetion of all L e Coo(M,lRn),such that

f <L,z>p(J) = 0, Vz E IR,
M

we restate the splitting

(7.9)

This is a splitting as Frechet spa.ces since the fundional, assigning to any J e COO(M,~) the
real f< ,z>p(J), is continuous on Coo(M,lRn) for any z E IR. Moreover (7.9) is

M
orthogonal with respect to « , », defined in (7.8).
The projection J along ~ of J E E(M,lRn) in Cj(M,lRn) satisfies as we already know £rom

the previous section

(7.10)
and
(7.11)

A

dJ = dJ

A

~(J)J = ~(J)J = 0 .

A A

Since bot h SX dJ) and J belong to HJ we may take the component in HJ of .yxdJ) along J.

This component has the form 71\dJ) .J for some real number ?rIedJ). Thus there is some
1)1 E COO(E(M,lRn)/DrI,Coo(M,lRn))such that

(7.12) .yxdJ) = i( clJ). J + jjl( dJ)

is an orthogonal decomposition in HJ' We leave it to the reader to show that i( dJ) and



il( dJ) vary smoothly with dJ.

Clearly we have due to (7.7) and (7.11)

(7.13)
and
(7.14)

.6(J)SXdJ) = .6(J)$)\ dJ)

dJ,(dJ)(N) = 1I"1(dJ)N(JIOM)+ d$)\dJ)(N),

both holding for all JE E(M,IIf).

Let us denote by F1 the constitutive law on E(M,lRn)determined by the map $)1 . Equation
(7.13) yields then

(7.15)

The map

(7.16)

1 1F = 11" -Dm + F .

assigning to any dJ the map 1r{dJ).N(j) with j:= J/OM, yields apart of~. This part,
called ~N' is produced hy regarding J'( dJ) -N(j) as a force density along OM, which

according to (6.28) has to satisfy the equation

(7.17)

for all J E E(M,lRn). The map ~N(dJ) E Cj( OM,lRn)varies smoothly with JE E(M,lRn).

Hence we have the splitting

for some smooth ~1(dJ) ECj( OM,lRn).This example shows what we had in mind as we were

claiming that Dm is part of F.

To get the fun decomposition we hroaden our scope a little and introduce first of all the
Hilbert space A. consisting of all maps 1, 1 :TM - IRlinear on the £ihres of TM for

1 . I 2

which the right hand side of



(7.19) Gin( dj)( 1 ,1 ) := ( 1 '1 P(j)
12 aM-'12

exists.Clearly d~N( dJ), dj and dN(j) all belong to Aj and are generically linearly

independent. The set 0 of all j e E( OM,lRn)for which these three differentials are linearly
3

independent form a dense open set. In case j(OM) is a (n-1)-sphere in ~ however, N(j) is a

real multiple, r say, of j and ~N( J) is hence (n:l)'j . This can be confirmed by looking at

(6.28) and (6.31). In the case of linear independence thethree above mentioned differentials
are in general (with resped to GlRn(dj» not orthogonal to each other, however.

We therefore orthogonalize them by using the method of Schmidt : This means we form

(7.20) d~N(dJ) ,

dj + b
l

d~N(dJ) ,

and

dN( dj) + b (dj + b d~N( dJ» + b d~N.(dJ)
2 1 3

with the following coefficients

(7.21)

b =-
2

D21(j)(N( j» 'lId~N(dJ)1I2 - Dm(J)(J) .~(j)

D21( j )(j)"d~N(dJ)1I2 - 2 Dm(J)( J) + IId~N(dJ)1I2 '

b = - ~(j)
3 IId~N( dJ)1I2

Let us point out, that in case j( OM) is an (n-1)-5phere then (7.20) recluces to
d~N( dJ) = n:!' dj since the other differentials vanish.

Hence generically d~l(clJ) in (7.18) spli ts in A. ort hogonally in to
J



(7.22) d~(dJ) = 1i\dJ) d~N(dJ) + r(dJ)(dj + bld~N(dJ»

+ r(dJ)(dN(dj» + b (dj + b d~N(dJ» + b dgN(dJ»
2 1 3

+dg2(dJ)

= (i( dJ) + r(dJ) .b + r(dJ) .b .b + r(dJ) .b ) dh. -(dJ)
I 1 2 3 '/N

+ (r( dJ) + r(dJ). b ) .dj
2

+ r(dJ).dN(j) + d~(dJ),

for some g2(dJ) E COO(O11,lRn).
For our further investigation let us call the coefficients of d~N(dJ), dj and dN(dj» in (7.22)

by a (dJ), a (dJ) and a (dJ) respectively.
123

.
Next we extend all maps ~N(dJ), j and N(j) to all of M in the following way :

Given f EC~(O11,lRn)we solve the following Visik problem
J

(7.23) ~(J)fM = 0

dfM(N) - ~(j)f = 0,

with fM ( Coo(M,lRn)and where J E E(M,~) and j := JI 011. 'Clearly

.
All the splittings and extensions done to construct j M and N(j)M depend smoothly on

•j E E( O11,~). The above mentioned decomposition of i) is then described in the following
theorem: 1I

~ I
: I

Theorem 7.1 :

Let F be a constitutive law on E(M,lRn) determined byi) E COO(E(M,lRn)/~,Coo(M,lRn».

Then i) determines uniquely three smooth maps

a ,a,a : 0 (E(M,~)/...n-IR
I 2 3 3 IK



and uniquely two smooth maps

such that the following splitting holds for any dJ e 0 c E(M,rt)
3

(7.24)
.

~(dJ) = a (dJ)'~N(dJ) + a (dJ)j + a (dJ).N(j) + ~2(dJ)
I 2 3

with j := j/ iJM. The differential dFJ2(dJ) is orthogonal with respect to G(dj) OMto the space

spanned by dFJN(dJ), dj and dN(j).

The map if... dJ) decomposes into

(7.25)
. .

if... dJ) = a (dJ). J + a (dJ) . jM + a (dJ). NM(dJ) + it( dJ) ,
I 2 3

where j := J IiJM.
The constitutive law F splits accordingly into

(7.26) F(J)(L) = a (dJ).Dm(J)(L) + a (dJ).D~j)(l)
I 2

+ FN(dJ)(dL) + F2(J)(L) ,

with J:= JliJM and 1:= LliJM and with

(7.27)
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