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0. Introduction

Let us think of a material body moving and deforming in the Euclidean space R". We make
the geometric assumption that at any time the body is a n—dimensional, compact,
connected, oriented and smooth manifold with boundary. The boundary shall be oriented
too, but shall not necessarily be connected. The material should be a deformable medium.
The deformable medium forming the boundary may differ from the one forming the inside

of the body.

During the motion of the body the diffeomorphism type of the manifold with boundary is
assumed to be fixed. Hence we can think of a standard body M, which from a geometrical

point of view is a manifold diffeomorphic to the one moving and deforming in R".

Thus a configuration is a smooth embedding from M into R". The configuration space is
hence the collection E(M,R") of all smooth embeddings of M into R".

This set equipped with Whitney's C*—topology is a Fréchet manifold (cf.[Bi,Sn,Fi]). A
smooth motion of the body in R" therefore is described by a smooth curve in B(M,R™). The
calculus on Fréchet manifolds used in the sequel is the one presented in [Bi,Sn,Fi], which in

our setting coincides with the one developed in [Fr,K1).

The physical quality of the deforming medium certainly enters the work F(J)(L) needed to
deform (infinitesimally) the material at any configuration J € E(M,R") in any direction L.
The directions are tangent vectors to E(M,R"). Since the ladder space is open in the
Fréchet space C™(M,R") of all smooth R"—valued functions endowed with the C”—topology
(cf.[Hi}), a tangent vector is thus nothing else but a function in C®(M,R™) and vice versa.

In the following we take F, which is an one—form on E(M,R"), as a constitutive law. We do
not discuss the question as to whether F characterizes the material fully or not.

Throughout these notes we assume that F is smooth.

To allow only internal physical properties of the material to enter F, we have to specify the
constitutive law somewhat more. Basic to this specification is the fact that these sorts of
constitutive properties should not be affected by the particular location of the body in R™.
Thus F has to be invariant under the operation of the translation group. Moreover if L is
any constant map, we assume that F(J)(L) = 0, VJ € E(M,R") also.

The forms F, which have these two properties, can be regarded as one forms on
{dT | T € E(M,R")}, where dJ is the differential of any J. This set of differentials is
equipped with the C®—topology as well and is denoted by E(M,Rn)/mn . The latter space is

a Fréchet manifold, too. It admits a natural weak Riemannian metric of an Lz—type.




A smooth one—form on E(M,Rn)/mn will be denoted by FRn. Hence we deal with
one—forms of the type F = d*an .

To handle this one—form F we assume that Fkn can be represented via the metric

mentioned by an integral, which we call the Dirichlet integral used in the field of partial
differential equations on parts of R".

The integral kemmel of F is a  differential of some smooth map

He Cm(E(M,Rn)/Rn,Cm(M,Rn)), called a constitutive map.

Hence in our setting we characterize the medium as far as the internal physical properties
enter 9.
The constitutive function ) determines at any dJ € E(M,Rn)/kn two smooth force densities

®(dJ) and ¢(dJ) linked to § by :

. A(NN(AT) = $(d])
and :

dSXdJ)}N) = «d))
and the integrability condition necessary to solve this von Neumann problem.

Here A(J) is the Laplacian determined by the Riemannian metric J*< , >, where <, > is
the fixed scalar product on R". N is the positively oriented unite normal of M in M. Vice
versa any pair of force densities (P,p) satisfying the integrability condition for the von
Neumann problem determines some constitutive map ) of the above mentioned type.

Let us point out here that in these notes we neither discuss any dynamics nor do we study
equilibrium conditions ! We only investigate the notion of a constitutive law in the above

sense.

Since F is affected by the material forming the boundary, we treat in an analogous way the
boundary material and exhibit in analogy to £ a characteristic constitutive map §. Thus
A(3)p(dJ) with j:= J|OM and J € E(M,R") describes the force density HdJ) up to a
constant force along dM. However d$YdJ)(N) also determines force densities which can not
be of the form YdJ). Any specific properties of the boundary enter additively in h. An
additive part of b is the constitutive map for the boundary material thought to be detached
from the body. Hence the rest of f describes the influence of the body material to the
boundary material implemented into the body. -

Finally we show that both ) and b are structured in the following sense :

In § and in b is, from a mathematical point of view, generically and naturally encoded the




work needed to deform volﬁme, area and shape of the body and boundary respective. The
shape is partly expressed in the unite normal vector field N(j) along the embedding of the
boundary. Here N(j) =+ dJN; the plus—sign holds if J is orientation preserving, the

minus—sign otherwise.

The procedure to decode the influence mentioned is to use an L;splitting of d$XdJ).




1. The space of configurations, the phase space and geometric preliminaries

Let us think of a material body moving and deforming in the Euclidean space R®. We make
the geometric assumption that at any time the body is a n—dimensional, compact,
connected, oriented and smooth manifold with boundary. The boundary shall be oriented
too, but shall not necessarily be connected. The material should be a deformable medium.
The deformable medium forming the boundary may differ from the one forming the inside
of the body.

During the motion of the body the diffeomorphism type of the manifold with boundary is

assumed to be fixed.

Hence we can think of a standard material body M. By this we mean the following :

The underlying point set of the body is a smooth, compact, oriented and connected
manifold with oriented boundary M. Let us assume that the orientation on M is the one
induced by the orientation of M. The dimension of M is assumed to be n. The body
constitutes of a deformable medium and we use M to denote both, the manifold with
boundary and the material body.

From this situation we read off what we mean by a configuration :

A configuration is a smooth embedding
J:M—R".

Hence the space of configurations is E(M,R"), the collection of all smooth embeddings of M
into R™.

Clearly each J € E(M,R") induces a smooth embedding
J|oM: M —R".

This we call a configuration of the boundary of the body. Let us denote the collection of all
smooth embeddings of M into R by E( dM,R™).

To see what the phase space is, let us first of all observe that the set E(M,R") is obviously a
subset of C®(M,R"), the collection of all smooth R"—valued maps of M. Clearly C®(M,R") is
a R—vector space.

We equip it with the C*—topology, also called the Whitney topology in [Hi]. Since M is
compact, C*(M,R") is a complete metrizable locally convex space, a so—called Fréchet

space.
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E(M,R"), an open in C®(M,R"), inherits hence the C"™—topology too. The phase space is
therefore
TE(M,R") = E(MR™) x C(M,R") .

Proceeding for M as for M we obtain E(dM,R") as an open subset of the Fréchet space
C®(AM,R™) (cf.[Hi]). Hence also E(M,R") is a Fréchet manifold with obviously trivial
tangent bundle. The phase space for the boundary is then E(dM,R") x C*(M,R").

The next Lemma shows the relation between the two configuration spaces, i.e. the two

spaces of embeddings :

- Lemma 1.1 :

The restriction map

R: C*(ME") — C(aM,R"),

assigning to each J € C*(M,R") the map J|dM, is surjective. The image R(E(M,R")) is
open in E(6M,R"). Hence \

TR : E(M,R") x C*(M,R") — R(E(M,R")) x C"(IM,R")

has the form TR = R x R and is surjective.

Proof :

Let j € C*(8M,R™). By the collar theorem (cf.[Hi], p.113) M admits a collar in M. This is
to say that there is an open neighborhood S ¢ M of dM which is C"—diffeomorphic to
'~ OM x [0,») via a map p, say. For simplicity we identify S with M x [0,x) via p. Given any
1 € C®(AM,R™), let L € C™(S,R") be defined by

L(p,s) = ¥(s)-l(p), Vse€[0,w)andpedM,

where ¥ : [0,0) — R is a smooth map being identical to one on [0,1] and which vanishes on
[2,mw).

The map L extends | to all of S. The map L itself extends to all of M by putting it
identically zero on the complement of S in M. Clearly L € C*(M,R") and is such that

R(L) = 1. Let us prove the second assertion next :




Let JeE(M,R") be given and let us call R(J) by ) For any X €[0,0) we let
i(A) := J|OM x {A} . Clearly the family j(A) depends smoothly on A. It obviously defines a
smooth curve with j(0) = j. Let us choose an open convex neighborhood O ¢ E(M,R™) of
j € E(AM,R™) and let Ao € [0,0) be such that j(Ao) € O. We deviate now from the curve
induced by J as follows : We extend the curve j(A) at Ao by a straight line along its tangent
up toj2 € O, say. From here we pass on with a straight line segment to any given j1 € 0.
Clearly we can smooth out this curve at j; without affecting j(1) with A > 2), . Hence we
have a smooth curve ¢ linking j(A¢) with jl. By construction o(0) = j. The smooth

embedding
J:Mx [0,0) — RB"
defined by .
J(p,A) A>2A0 VpeM
(1.1) J(p,A) =
| | o(A)(p) A<2), VpeM’

smoothly links with J|(M\ M x [0,)) . Thus we have a smooth Te E(M,R") such that

j! |6M =i’ . The remaining assertions are obvious.

In the sequel of these notes we write 06 instead of R(E(M,R™)).

_ On the configuration space we have a natural action a by the translation groups R™ of B"

namély
a: B(MR") x R" — E(M,g")

assigning to each J € E(M,R") and each z € R" the embedding J + z.
This action extends obviously to C®(M,R"). The translation group R acts accordingly on
E(AM,R"). This action restricts to O 5 and obviously extend also to C™(M,R™).

The orbit spaces of the respective actions are denoted by Cm(M,Rn)/Rn , Cm((?M,IRH)/IRn
E(M,R")/gn , E(OM,K")/pn and O y/gn . | |

The nature of these spaces are easily understood if we introduce for any
L € C®(M,R") the differential dL which is locally given by the Fréchet derivative. Hence
the tangent map TL of L is (L,dL). The respective notion of 1 € C*(M,R") is introduced

accordingly.

Hence the orbit spaces mentioned above are nothing else but spaces of differentials of the
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elements of those spaces on which R" acts.

M and OM inherit via respective embedding into R" some basic geometric structures

described below.
Let us fix a scalar product and a normed determinant function A (cf.[Gr]) on M.
Then each j € E(AM,R") yields a unite normal vector field with

N(j): oM — R",
with
<NG)NG)> =1,

*
for which j iN(j)A determines the orientation class of M. Here j*iN(j)—A- denotes the

pullback of the (n—1)-form iN(j)A to M by j. Moreover iN(j)A = A(N(}),...).

Each J € E(M,R") and each j € E(M,R") yield Riemannian metrics m(J) and m(j) on M
and JM respectively. These metrics are defined by '

(1.2) m(J)(X,Y) = <dJX,dJY>, VXY elTM
and |
(1.3) mG)(X,Y) = <diX,djY>, VXY eITM.

Here I'TQ denotes the collection of all smooth vector fields of any smooth manifold Q (with
or without boundary).
Both m(J) and m(j) depend smoothly on its variables J and j.

For any J € E(M,R") and any j € E(M,R") let us denote by u#(J) and 4qj) the Riemannian

volume form determined by m(J) and the orientation of M respectively by m(j) and the
orientation of M. Clearly

(1.4) o iNGA = )
Let us point out that there is a normal vector field N € TM/AM such that

(15) i) = 4(3) -

Hence we have




(1.6) o dJ(N) = N(j) ,

if j := J|OM and if J is orientation preserving.
Clearly .
(1.7) W) =T A,

provided J preserves the orientation. These embeddings J € E(M,R") for which (1.7) hold
form an open set in E(M,R™).

Associated with the metrics m(J) and m(j), we have the respective Levi—Civita connections

¥(J) on M and V(j) on M. They are determined by

(1.8) dJ V(J)XY =d(dJY)}X), VX)YelTM
and .
(1.9) dj V(i)x Y = d(djY)X(X) —m()W()X,Y)-N() , VX,Y e P'TIM.

By W(j) we mean the Weingarten map given by

(1.10) - ANG)Z = W(G)Z, VZeI'TM .




2, The constitutive law

We characterize the type of the material which constitutes the body M as far as it affects
the work done if M is infinitesimally distorted (cf.[He], E,S], [Bi], [Bi,Sc,S0]). This idea is
formalized by giving a smooth one—form on E(M,R"), i.e. a smooth map

(2.1) F:E(MR") x C*(M,R") —R,

- which varies linearly in the second argument. We interpret F(J)(L) as the work done if M
at the configuration J € E(M,R") is distorded by L€ C™(M,R"). We call the medium
described by F a smoothly deformable medium.

It might be of physical significance that F depends on further parameters, so e.g. in case
one likes to model a visco—elastic material (cf.[Bi,Sc,50]). However we restrict us for
simplicity to forms of the type (2.1) since complications such as those just mentioned do

not affect the basic apparatus.

It is intuitively clear that the work caused by internal physical processes, initiated by a
distortion L at a particular configuration J, should not depend on the particular location of
J(M) within B". That is to say this work is the same if J is replaced by J + z for any
z € R". Moreover a distortion by any z € R" should not cause any work due to these
processes mentioned above. These ideas written more formally yield the following equations

basic to our further development :

(2.2) F(J+2z)=FJ), VJIeEME"),VzeR"
and
(2.3) (ii.) FIXz)=0, VJeEMR"),VzeR".

A one—form F on E(M,R") satisfying (2.2) and (2.3) is in the sequel called a constitutive

law.

The lemma below is obvious :




Lemma 2.1 :
A smooth one—form
F:E(MR") x CY(M,R") —R

is a constitutive law iff it is of the form

(2.4) F=d Fga

that is ‘ | '

(2.5) P(JXL) = Fpn(dJ)(dL), ¥ J € BE(M,RY)
and VL € C®(M,R") ,

where s

(2.6) | Pgn : E(MR")/pn x C(M,R")/gn — R

is a smooth one—form.




3. Integral representation of constitutive laws, the Dirichlet integral

The purpose of this section is to define what is meant by an integral representation of a

one—form Fan on E(M,R").

In order to define this representation we first will introduce a quadric structure on
E(M,R") x AM,R"), which is based on the dot product of any two R"—valued one—forms
on M relative to an embedding of M into R". We denote the smooth R®—valued one—form
of any smooth manifold Q by A'(M,R™). 7
Let y€ AYMR") and J € E(M,R™) be given. The two tensor <7,dJ> determined by 7 and

 J shall be given by <9X,dJY> for all X,Y € PTM. This two tensor <7,dJ> ylelds a unique
strong bundle map A(7,dJ) of TM defined by

(3.1) <1X,dJY> = m(J)(A(1,dD)X,Y), VX, YeITM.
From this equation ﬁe read off :
(3.2) X = dJA(,dN)X, VXeDlTM.

For any two one—forms 7,07, € AI(M,RH) and an embedding J € E(M,R") we define the

above mentioned dot product of 7, and A relative to J by
(3.3) 7Y = tr A(y,dT)-K(7,,dJ) .

Here X(,,dJ) is the adjoint of A( 'yl,dJ) formed fibre—wise with respect to m(J).
Associated with this product is a weak scalar product GIRn(dJ) on AY(M,R") defined by

(3.4) GrrN(mm) = [ n-nul).
' M

As mentioned before #(J) denotes the Riemannian volume form determined by m(J) and
the given orientation of M.

Weak means here, that GRn(J) does not determine the dual space of Cm(M,Rn)/[Rn to
AYM,R™).

We equip AY(M,R") with the C”™topology (cf.[Bi,Sn,Fi]). The real number Ggn(dJX 'yl,'yz)




depends smoothly on all its variables dJ, 7, and 7,

Since Cm(M,IRn)/Rn ¢ AM,R") the quadric structure on E(M,R?) x A'(M,R™) Ggn yields a
weak Riemannian structure on E(M,Rn)/mn again denoted by Ggn .

We say that Fpn', a one~form on E(M,Rn)/Rn , admits an integral repesentation if there

exists a smooth map
a: E(MR") — AY{M,E"),
called the kernel of Fen such that for any choices of dJeE(M, an)/Rn and

dL € C°°(M m“)/mn

(3.5) FRn(dJ (L) = fa(D)-dL u(J) = Ggn(J)((J),d7)
- M

holds true.

*
We speak of a constitutive law F with integral kernel a, if F = d Fpn and Fpn admits an

integral representation with kernel a.

To discuss the uniqueness of o, if it exists of all, we first prove the following :

Theorem 3.1 :

Let y€ AYMR") and J€E(MR") . There exists a uniquely determined differential
d$ € C*Y(MR") called the exact part of 7 and a uniquely determined 8€ A{M,R") such
 that

(3.6) y=d9+ 8,

where the exact part of 8 vanishes. Both d) and 8 depend smoothly on J. If $Xpo) for some
Po € M is kept constant in J, then also £ varies smoothly in J.




Proof :

First let us construct § and f. To this end we fix a basis € 1€y Of R" , orthonormal with

respect to <, >. Then

n
(3.7) AX) = 217’(X) e, VYXeITM,

I=
with 4" € AY(M,R™) for all r=1,...,n . Since for each r
(3.8) | F(X) = m(IYY ,X), VXeDlTM

holds true for a well defined Y' € I'TM, we find due to Hodge's decomposition (cf.[A,M,R])
a function 7 € C*(M,R") and a uniquely determined vector field Y; € I'TM such that the

following three equations are satisfied

(39) Y' = grady™ + Y]
and

- L
(3.10) i divyY, =0

together with the boundary condition

m(JXYL,N) =0 along M.

Here the indices J in grad 3 and div j mean that the respective operations are formed with

respect to m(J).
This decomposition is obtained by solving the following von Neumann problem

(3.11) ATy = div JYf

with the boundary condition

(3.12) dr(N) = m(J)(Y',N) .

This problem has, according to [H8}, a solution 7' unique up to a constant.




The desired function ) and the form B are deﬁned by

(3.13) H:=3 ’rr-et
I
and
(3.14) AX):=Em(I)Yo',X), VXelTM,
I

respectively. It is a matter of routine to show that d$ and 8 do not depend on the basis

chosen. With these notions we immediately deduce
(3.15) y=dH + B.

To see that the exact part of 8 vanishes let us assume that 3" € C°(M,R?) is such that for

each r=1,...,n
: r I _ r
(3.16) grad ;¥ + Yoo = Yo ,
for some divergence free vector field _Y;o perpendicular to the normal field N. Then

(3.17) A(3) ¢f = divjgrad;¢f = 0 and ¢' = const. .

Thus the exact part of B vanishes.

To discuss smoothness properties of § in J let us show next that both grad J'rr and Y; '

depend smoothly on J € E(M,R"). To approach our goal, we consider a smoothly
parameterized family J(t) € E(M,R") with t varying in R. We assume that J(0) coincides
with a fixed I € E(M,R™). Thus |

(3.18) o dJ(t) =dI A(dJ(t),dI), VteR
and hence
(3.19) V(I(t)yX = VD)X + A(dJ(t),dI)_IV(I)Y(A(dJ(t),dI))X

holds for any choice of X,Y € I'TM. Since V(J(t)) is torsion free for any t € R the following
" equation is valued for all X|Y € I'TM

(3.20) V(1) (A(J(),dD)X = V(D) (A(dJ(t),dD)Y .




With these formulas we deduce immediately

(3.21) grad ygy7 = AQI(OAD ™ -AQIO). A gradyr,

for any € C*(M,R") and

(3.22) | divy X = divX + tr AI(6),d1) V(D)5 (A(dJ(t),d1))

both holding for all t and all X € I'TM.

Let Y € 'TM. First we assume that the following three equations associated with the

Hodge—decomposition
(3.29) Y = grad ) H3(0) + Y1),
v a0 -0
225 ArIONN) = mIONYN)

all depend smoothly on t. Then (3.18), (3.21) and (3.22) yield the next three equations
(3.26) | dJ(0) = dI A(dJ(0),dI),

d : |
(3.27) S grad |t=01 = 2 A(dJ(0),dD), grad;7, i

- Vfixed € C*(M,R),

where A(d:T(O)dI)Sym denotes the selfadjoint part of A(d:T(O),dI) formed with respect to {
m(I) via the polar decomposition (cf.[Bi.Sn,Fi]) and finally %
!

(3.28) 4 div gyl X = tr VDA(I().ADX 3

Using the last three formulas, the derivatives of (3.23), (3.24) and (3.25) with respect to t

read therefore as




(3.29) 0= -2 A(dj(O),dI)symgradIr(I) + grady(I) + YD) ,

(3.30) divyY(I) = ~tr V(DA(AJ(0),d)Y°(1)
and
(3.31) | dr(I)(N) = m(I)(Y,N).

Applying divI to (3.29) yields the equations

(3.32) A(DHI) = =2 divI(A(de(O),dI)symgra,dIT(I))

+ tr W(DA(dJ(0),d1)YI),

with its boundary condition

(333) dr(I)N = m(IY(Y,N) .

Turning back to the problem of showing the smoothness in t of (3.23), (3.24) and (3.25) the

equations (3.32) and (3.33) pose a von Neumann problem with 1'(1) as the unknown,
provided we drop the smoothness assumption in connection with (3.23) and (3.24). The
right hand sides of both (3.32) and (3.33) are smooth. As we already know such problems
have a solution unique up to a constant. Without loss of generality we may assume that for

some po € M

(3.34) HJ())(po) =0, VteR,

which in turn suggests that ;'(I)(po) =0.
Equation (3.32) produces a candidate for T(I) and if we insert r(I) into (3.29) we obtain a

candidate for YO(I). Now it is a matter of routine to verify that these candidates in fact do

satisfy

(3.35) g lim ()= = (0

and

(3.36) £ lim (YU0)-Y0) = Y,




respectively. Since I € E(M,R") was chosen arbitrarily we obtain 1(t) and \.’°(J(t)) for all
t eR.

To show the existence of all higher derivatives we have to set up an induction procedure
“based on (3.26), (3.27), (3.28), (3.29), (3.30), (3.31) and (3.32), which to execute is left to
the reader. Both, therefore 7(J(t)) and Y(J(t)) depend smoothly on t € R Since the
parameterization in t was arbitrarily, we conclude by the criterion in the calculus presented

‘in [Fr,Kr], that both 7{J) and Y(J) depend smoothly on J € E(M,R"). This ends the proof.

Some of the calculation made in the proof above allow us to look at Ggn(J) from another

angle. Given 7€ A'(M,R") and J € E(M,R") we have according to (3.7) and (3.8) in above
proof

n
(3.37) AX) = dJA(7AT)X = £ m(I)(Y X)e,, VXelTM.

r=1

Let us denote (dJ)_ler by E_, for all r=1,...,n. Then we read off from the equation (3.37)
that

(3.38) Y = A(3dDE_, Vr=l..a,

holds true. This remark yields the following observation :

Proposition 3.2 :

Given 7,7, € AM,R") , J € E(M,R") and a fixed basis € 1oy On R" orthonormal with

respect to < , >, then there exist two sets
vl y®™ and v . y®
t 1 2 2

of vector fields in I'T'M, such that

. _ z R
(3.39) | 7,0, = rzl m(J)(Y Y,')




and hence

@) Gpr)i= [ = B £ mOXYEY M0
M =M

If in addition 7 = d§ for some )€ C*(M,R") then Ggn(J)(d,7) = 0 provided that the

exact part of A vanishes.

Proof :

Let Yi‘ € ’'TM , r=1,...,n and i=1,2 be as in (3.8). Then

(3.41) 707, = tr A(7,dJ)-A(7,d)

- %1 m(J)(A(7,dJ)-A(y,d))E_E,)
= § m(J)(er,Y;)

=

establishing (3.39). To show the last part of the proposition we use Gauss' theorem as

~ {follows :

(3.42) Cgn(dr,1) = = S m(Igrad e Y})

I=

= g a7 (Y*
3 Mf (YDMI)

— S BV NS TIRRT: «
_rzl Mf (dle('r Yo) T dleYo)p(J)

= g m Tr I
3 Mf ()" YL N)I)

=0 .

n
Here we have = X 'rrer and diVJYZ = 0 as well as m(J)(Y:,N) =0.
r=1 .

In case 7, and 7, in the above proposition are exact, then the respective vector fields in

(3.39) are gradients. Hence the right hand side of the integral in (3.40) is the classical
Dirichlet integral (cf.[J]) for R®~valued functions.

t
1
¥




The integral in the middle part of (3.40) hence generalizes and reformulates the Dirichlet
integral. We call it therefore the Dirichlet integral of any two smooth R"—valued forms 7

7, relative to J € E(M,E").

Proposition 3.2 also shows that the integral kernel of a constitutive law is not unique at all.
We may add to any kernel a map which assumes as its values, one—forms of which the
integrable part vanishes. However the following theorem guaranties us a uniqueness of a
very specific type of kernel :

Theorem 3.3 :

Let F be a constitutive law with integral kernel. There exists a unique smooth map

(3.43) a: E(M,B")/pn — CY(MR")/pn ¢ AYMRY),
such that for any J € E(M,R") and any L € C™(M,R")

(3.44) F(J)L) = S o(dJ)-dL (J)

holds true. In fact there is a unique smooth map

(3.45) 9 : B(MR")/gn — C*(M,R")

satisfying the following two equations

(3.46)  od))=dd)), VdIeEMRY/

[=]

and

(3.47) ‘6M [<HAdT)z>uJ) =0, Vzek"




Proof :

The existence of such a kernel is guaranteed by proposition 3.2. The uniqueness follows
easily :
Let a and a be two kernels with values in Cm(M,Rn)/Rn . Then we would have

(3.48) . f (a—a)(J)-dL {3) =0,

for all JeE(M,R") and all dL ¢ Cm(M,Rn). Since for all dL = a-a , G is positive
definite, we conclude a=a . To show that §) exists and can be chosen to satisfy (3.47) we

introduce C‘;(M,IRH) , the collection of all L € C®(M,R") satisfying
(3.49) Mf<L,z>p(J) =0, Vzek",

for a given J € E(M,R"). With this space at hand we have the splitting
(3.50) C*MRH =R"e@ CHUMEY) .

.Equipping C?(M,Rn) with the C"—topology, yields a Fréchet space also denoted by
C?(M,Rn). Since for any two I,J € E(M,&™).

(3.51) m(J)(X,Y) = m(I)(B(dJ,dI)?X,Y), VXY €e'TM,

holds for a uniquely determined smooth strong bundle isomorphism B(dJ,dI) of TM, we
conclude that

(3.52) C“}(M,m") = det(B(dJ,dI))-CT(M,R") .
Clearly
(3.53) d: c}’(M,R") — C(M,R")/gn

is an isomorphism for each J. Let us denote it by d 7 The desired map f) is given by




HdI) 1= d; o(d]) .
Moreover we have the projection

(3.54) P(J): C*(M,R") — c“}(M,R“)

determined by (3.50). Equation (3.52) shows that P(J) is smooth in J € E(M,R"). Hence if
a is a kernel of the form (3.43), then $XdJ) is smooth in J € E(M,R"), satisfies (3.46) as
well as (3.47) and by construction

(3.55) , P(D) o J)=oJ), VJeEMEY,

holds true.




The purpose of this section is to associate with any constitutive law admitting integral
kernels at any configuration some well defined force densities, one acting upon the whole

body, and one acting upon the boundary only.

Throughout this section F is a constitutive law admitting a kernel a. By the previous

theorem we may assume that @ maps into Cm(M,Rn)/Rn .

To construct the force densities mentioned we use F in the form

(4.1) F(JY(L) = f tr A(a(dJ),dJ)-A(dL, 4J) W),

holding for any of the variables of F. Writing any L € C®(M,R") relative to a given
J € E(M,R") in the form

(4.2) L =dJ X(L,J),

with a unique X(L,J) € 'TM we have

(4.3) dL X = dJ ¥(J)xX(L,J), VX €TlTM.
and hence derive immediately

(4.4) A(L,d]) = (J) X(L,J), VLeCMR").

Thus if € sy is a orthonormal basis of R" and if we define Er € I'TM again by dJ Er =e_

for r=1,...,n then
(4.5) FO)(L) = fm(J)(A(a(dJ) dJy- V(J)E X(LJ)E) u(J) .

Let us introduce the notion div JT , the divergence of a strong bundle endomorphism T of

TM by

_ n
. : div,T:= ¥ V TYE).
(4.6) il i= 3 W (TR,

4, Force denmtles associated with constitutive laws admitting kernels —]




This notion does not depend of the basis chosen.Equation (4.6) together with (4.5) imply

(4.7) FONL) = [ div (A(dD ADX(L,D)) )

- fm(J)(div 7A((dJ),dT),X(L,J)) u(J) -
M .

To bring these formulas in a more familiar form we introduce the notions of A(J)K and
A(J)y, the Laplacian, for any K € C*(M,R") and any 7 € AYM,R"). In doing so we follow
[Mat]. We set '

o *
(4.8) d K=0.

If v € A'Y(M,R™) for some natural number m, we set

* n
(4.9) d y=-¥ Y(J)p ((E)) .
r=1 I
Clearly
*
(4.92) d y= —divJY ,

if
AX) = m(J)Y,X), VX elTM.

A(J) is then defined by
x4
(4.10) A(J):=dd +d d,

Consequently we have

(411) A(DK = d"dK = §1V(J)E (dKXE,).

=

Since the two expressions V(J)Y(dK)X and V(J)Y(T)X respectively formed for any

K € C*(M,R") and any strong bundle map T of TM and any choices of X,Y € 'TM are by
definition d(dK(X))Y —-dK V(J)XY and V(J)Y(TX) -~T V(J)YX , we find




(4.12) AJK = —( 3 (AT AR AT E)XE,) - dJ A(KdI)(W(J)g E )
’ I= I

——3 dJ V(J)E (A(dK,d])E_

I=

=—dJ dleA(dK,dJ) .

Hence equation (4.7) turns into

(4.13) F(J)L) = fdw JA(a(dJ) dNX(L,J) W J)

ey [ <A@)NdI)L> u(J),

with o(dJ) = d$XdJ) for some ) € (Cm(E(M,Rn)/Rn,Cm(M,Rn)) :

Using Gauss'theorem we derive with the help of theorem 3.3 the following

Proposition 4.1 :

Let F be a constitutive law admitting a kernel. Then for each J € E(M,R") there exists a

smooth map
$: E(M,R") — C(M,R")
uniquely determined up to a smooth map from E(M,R") into R® for which

(4.14) F(J(L) = Mf <A(J)SAT),L>uKT)
t o S <dS(dIY(N),L>iy #(J)

and hence a Green's equation

(142) S <ADHANL>KI) - y S <KADAT),L>u(J)
= S <dL(N),$9(dT)>iy wT) _ . S <dS(dT)(N),L>iy u(J)

both holding for all variables of F. Here iy #(J) is the volume element on M defined by




#(J) and N, the positively oriented unite normal vector field of M ¢ M.

We call the map ) in proposition 4.1 a constitutive map because it fully determines the
constitutive law.

The above proposition motivates us to set for any J € E(M,&")

(4.15) &(J) := A(J) (d))
and
(4.16) e(dJ) := dYdI)(N) ,

with $XdJ) as in (4.14). |
We call the maps & and ¢ the force densities associated with F. These force densities
- determine F by

(41 FOXL= [ <®(d7),L>uJ) + . S <Add) L>iguJ)

for all J € E(M,R") and all L € C™(M,R").

Since § is smooth both & and ¢ are smooth C®(M,R")~valued respectively
C%(M,R™)—valued functions on E(M,Rn)/mn.

Given vice versa two smooth maps

(4.18) @ : E(MR")/pn — CY(M,R),
(4.19) @ E(M,Rn)/mn — C%(M,&"),
for which the integrability condition

(4.20) 0= . S <®(d),z>p(7) o [<Add)z>iguT), VZeR®

holds, there exists for each J € E(M,Rn)/mn a smooth map




i

(4.21) B(dT): M —R",

such that the von Neumann problem
(4.22) ADNH(]) = (d))

with the boundary condition

(4.23) dH(dI)N) = ¢(dJ)

is solvable uniquely up to a constant. With these force densities we define a one—form F on

E(M,R") by

(4.24) P(JXL) = Mf <A(J)H(dT),L>p(7)

+ <IN L),

for all J € E(M,R") and for all L € C*(M,R™). F is a constitutive law due to (4.20).
We now apply proposition 4.1 to obtain a smooth map

$H: E(M,[Rn)/Rn — C®(M,RY),

producing

(4.25) ®(dJ) = A(J) $5(dJ)
and

(4.26) o p(dJ) = dsYdJ)(N),

for all J € E(M,R™). Thus we have the following




Theorem 4.2 :
Every constitutive law with integral kernel admits a smooth constitutive map

(4.27) fH: E(M,R“)/Rn — C®(M,RY),

uniquely determined up to a map in Cm(E(M,!Rn)/Rn,Rn), such that the kernel of F is given

by

(4.28) d§: E(M,Rn)/mn — c"’(M,Rn)/Rn

and which moreover satisfies

(429)  FUJ)L) = f <ANNHAD,L>KT) + f <dHdT)(N) L>iy3)

on all of TE(M,R™). The map $) determines two smooth maps

& E(M,R")/Rn — CY(MEY

and

p: E(M7Rn)/Rn - Cm( aMrkn) ’

called the force densities associated with F which are given for all J € E(M,R") by

(4.30) 3(dJ) = A(D)KdJ)

and

(4.31) AdT) = dS(dT)(N)

satisfying '

(4.32) . f <®(dT),z>uT) + . f <HdT)z>igu1) =0, VzeR™

Vice versa, given two smooth maps of the form (4.18) and (4.19) satisfying (4.32), then
there is a constitutive map £) of the form (4.27) for which (4.29) holds.

—— s e p—




In conclusion of this section let us remark, that near a reference embedding I € E(M,R") the
force density $(dJ) can be linearized as

(4.33) &(dI) + DE(AI)(J-I) = A(I)$XdI) + DA(I)(I-D)$dI)
+ A(DKAI)(J-T) .

Using (3.19) a.n.d (4.10) we find the somewhat lengthy formula
(4.34) DA(I)$(dI)(L) = A(DDSAI)L) + dI A(dL,dI)A(1)$XdI)
| =3 [ (AULAD) ADX(HAD,DI(E,)
I t
+2UD,  qp anyp (TOX(HAD,E,) |
r sym* ) r .
+ S0, (AOX(AADD)A, _(dL,dDE,) |
I T : b
|

+ dI div A(dL, dDV(DX(5(dI),D) ,

with E‘,...,Er a m(I)—orfhonormal moving frame on M and with Asym(dL,dI) the
m(I)—selfadjoint part of A(dL,dI). |

If in particular $(dJ):=1+ L, for all LeCMR") and veR fixed, then ‘
D$(dI)YL) = vL and VWI)X(I,I) = id yielding '

(4.35) DA(I)SYdI)L) = v-A(I)L — A(DL :
Hence if L = J-I, the linearized force density is

(4.36) $(dI + dL) = (»-1)-A(I)L .
The linearized boundary condition is

(4.37) @(dl + dL) = v dL(N) .




5. Constitutive laws for the boundary

The task in this section is to study constitutive laws for the boundary, that is for a
deformable medium forming a skin of which the underlying point set is the manifold JM.
This skin is thought to be detached from the body. In doing so, we first formulate in
analogy to sections two and three what is meant by a constitutive law with integral kernel

for the boundary material.

Let us recall that the open set O,4cC E(IM,R") is the collection of all J|dM with

J € E(M,R"). The constitutive laws mentioned above will be given on any open set

O ¢ E(M,R™) and will later be specified on O
. 0.

At the very first we introduce the notion corresponding to the Dirichlet integral :

~ Given any 1 € C*(OM,R"™) and any j € E(OM,R") then for all X,Y € P'TM
(5.1) <dl X,dj Y> = m(J)(A(d],d))X,Y)

holds for some smooth strong bundle endomorphism A(dl,dj) of TAM. Moreover there is a

uniquely defined smooth map
(5.2) o(dldj): M —R",

satisfying the following two conditions

(5.3) c(dl,dj)dj(TpaM) C R-N(j)(p) , VpedM
and » ‘
(5.4) c(dL,dj)N(j)(p) € dijaM : VpeaM,

and such that the equation
(5.5) dl X = ¢(dj,dl)dj X + dj A(dl,dj)

holds true for any X € 'TM. We refer to [Bi,5n,Fi] or [Bi,5c,So] for more details. Based on
(5.4) we introduce U(dl,dj) by

(5.6) o(dLdj)NG) = dj U(dl,dj) .

This vector field U(dl,dj) € I'TOM is obviously uniquely determined.




Splitting A(dl,dj) into its skew— respectively selfadjoint parts C(dl,dj) and B(dl,dj) formed
pointwise with respect to m(j) we end up with

(5.7) dl = c(dl,dj)-dj + dj(C(dl,dj) + B(dl,dj)) .
This decomposition generalizes in the obvious way to any 7€ AY OM,R"™) and reads as
(5.7a) | y = c(1,dj)-dj + dj(C(y,dj) + B(1,dj)) -

The metric ng(dj) at dj EE(GM,RH)/Rn applied to any two dldk € Cm(M,IRn)/Rn is

defined by integrating the function

(5.8) dl-dk == — % tr c(d1,dj)-c(dk,dj)

— tr C(dl,dj)-C(dk,dj)
+ tr B(dl,dj)-B(dk,dj)

with respect to p(j), that is, it is defined by
(5.9) Gon(di(dldk) := fdl-dk (i)
| M
=3 . S tr c(dLdj)-c(dk,dj)§)
oy S tr C(d1,dj) - C(dk,dj )

+ Mf tr B(d1,dj)-B(dk,dj)u(j) .

Let O ¢ E(AM,R") be any open set.
We now define a constitutive law Fa on O in analogy to section two, that is we require

X
(5.10) Fo=dFn,

for some one—form an on .O/Rn. Accordingly F 9 is called a constitutive law with kernel o,

if for some a € C*(0,A'(M,R")) the following equation holds true

(5.11) F 4dj)(dl) = . S odi)-dl u(3), V1eC(IMEY),Vdje O/gn -

We introduce for any j € E(dM,R") the Laplacian A(j) accordingly to (4.9) but require that




E_in this case is a moving frame on M.

With this notion at hand the constitutive laws on O are characterized in details in the next

theorem :

Theorem 5.1 :

Let F@ be a constitutive law on any open set O ¢ E(M,R"). The following are then

equivalent :

(i.) F 5admits a kernel a € Cm(O/Rn,A'( M,R™)) . |
(ii.) There is a smooth map h € Cm(O/Rn,Cm(GM,Rn)) uniquely determined up to
maps in Cm(O/Rn,IRn), such that

(5.12) gD = S do(di)-dl ) , Vieo,
V1e C(M,RY).
(iii.) There is a uniqu.e smooth map ¢ € C®(0,C%( IM,R™)), such that

(5.13) F i) = Ny S <ddi)I>ui), VieO,Vie C(MRY),

and which satisfies

(5.14) mf<p(dj),z>p(j) =0, VieO,VzeRk".

(iv.) There is a smooth map h € Cm(O/Rn,Cm(aM,Rn)) uniquely determined up to
maps in C*(M,R"), such that

(5.15) FAND = [ <AGH)I>HG), VieO, V1eC(aMRY).




S

Proof :

The equivalence of (i.) with (ii.) is the analogy of theorem 3.3. The proof of this sort of
reduction theorem and can also be found in [Bi] or [Bi,Sc,So]. Let us pass next to the
equivalence of (ii.) with (iv.) :

Given j € O. For simplicity we write k instead of h(dj). We use the identity

(5.16) dlY = m(j)(grad;&1L3) — W()X(1,1),Y) -N(j)
+ di(VO) X)) + AL))-W(GE)Y, VY elTM,

holding for any 1 € C®(6M,R"). Using any moving frame El,...,En_1 on dM orthonormal - ‘

with respect to m(j) we verify the next set of equations \

(517)  dk-dl == tr o(dk,dj)-c(dLdj)
— 7 t(VG)X(dk,dj) - V()X(dk,dj))
(VGX(dLd) — VG)X(dLd]))
+ 3 o(VG)X(dk,dj) + V()X(dk,df) + AkHWE))
(VG)X(ALA)) + VG)X(dLd)) + ALHWG))
3 tr (dk,dj) - o(dL dj)
+ (V)X (dk,dj) + AkHW(E)
(VE)X(dLd]) + AL)WG))
= —m(j)(grad; ALi) - WG)X(13),U(k,i))

n—1

+ 5 mG)VG)X(dkd) + AHWE)) VG)g X(Li)E,)

a1 |
+ = mGX(AL)WEITG)X(dk ) + dk,i)-WE)EE,) . |

1=

The expression for dk -dl is therefore




(5.18) dk -dl = m(j}(W(3)U(k,),X(L,j) — d&1,1)U(k,j))
+ divi((V(i)X(dk,dj) + Ak, IW(3)) X(L1))

— m(j)(div,(W(3)X(dk,dj) + &k,)W(i)),X(L3))
+ &(L3) tr WQ)(V()X(dk,dj) + &k, )W()) -

On the other hand let us repeat that A(j) be defined by

(5.19) AG)=d"d +dd"
with
(5.20) d1=0, V1eC%(aMR)
and
) * n-—l .
(5.21) dy=-3 i)y (ME), VyeA (MR,
r= r ‘

any moving frame E ,...,E_ . of the above type. Thus the following is also easily verified :
g | n—1 g

(5.22) Ak =d dk
= d"(m()(grad, 8k, §) — WG)X(k,),-) N(i)
+d"(d GXCk,) + (k) - W(0) |
= 4" (m()(U(dk,i),..)-NG)) + 4 (df TIX(K) + 6k,3)- W)
= d&j WG)U(K,) + (div;U(dk,di) NG)
— di(div;THX(k,) + ki) W)
+ 10 WETGHX(E) + Ak, W) NG)

(5.18) and (5.22) show the equivalence of (ii.) with (iv.).
Let us prove (ii.) = (iil.) :

Integrating both sides of (5.18) and posing the equation

S dk-dl) = [ <eldi)1>p)

yields via Gauss' theorem the smooth ¢(dj) given for each dj € E(@M,ﬂin)/kn by




(5.23) Wdj) = —dj div,(V(j)X(dk,dj) + &k.3)-W(3)) = W(U(k,j)

+ (tr WG)(V(3)X(dk,dj) + &k,))W(j))
+ div;U(dk, ) -NG) -

Hence we have

(5.24) A()k = ¢(dj), Vje€E(IMR")
and g depends smoothly on dj. This implication can be reversed due to

<Ok =0, Vaek!

(cf.[H&]). Finally we concentrate on the equivalence of (iii.) and (iv.). (iii.) yields a map b

by solving for each j € O the equation

(5.25) A(j)b(d) = ¥(dj)

with (5.14) as integrability condition (cf.[H8]). Let us show that §(dj) depends smoothly on
j.

- Without loss of generality we can assume that H(dj) € C;-D((?M,Rn) , the subspace of
C®( AM,R™) for which

| ‘ .
’(5.26) aMf<l,z>p(])=0, VieV,andVZ R,

holds. This map b, also satisfying (5.25), is uniquely determined.
Since A(j) is selfadjoint with respect to f< , >(3) , we also find

(5.27) P = S <b(d3), AG)>ui) -

Let j(t) € O vary smoothly and let j(to) = j . Since



(5.28) Fa(l(to+t))(l)—Fa(3)(l)
f <b(dj(to+1)), AG(to+t)I>p(i(to+t)

ey S <b(di), AG)> )

= [ <b(di(to+t)-H(di), AG(to+ D> to+1))
+ .y f<b(dj),A(j(to+t))l>p(j(to+t))
WAL CIOEZY)

and since Fc?’ A(3) and g(3j) all vary smoothly in j, we conclude that for all 1 € C™(M,R™)

~ the following limit

lim S <H(b(di(to+)-H(di)), A to)1>3(t0))

exists.
An induction procedure shows that h(dj(t)) varies smoothly in t.

Thus by the differentiation theory of [Fr,Kr] not only D§(j) exists, but we moreover are

ensured that f is even smooth. The reverse implication is obvious.

S




6. The interplay between constitutive laws of boundary and body

The deformable media forming the inside of the body and the boundary respectively may
differ and each hence has to be described on one hand by different constitutive laws. On the
other hand these materials together form one body and should be describable by on.ly one
constitutive law holding for the whole body.

The qualitative properties of the boundary material attached to the body may be
influenced by the deformable material forming the body as a whole.

The purpose of this section is to study the influence of the constitutive properties of the
deformable medium forming the body to the constitutive properties of the deformable
medium forming the boundary of the body. In other words we will decode the constitutive
properties of the boundary material attached to the body from the constitutive law
describing the material of the body on the whole.

Let the constitutive law of the deformable medium forming the whole body by F again.
Moreover F(3 denotes the constitutive law of the deformable medium forming the boundary
only and which is thought to be detached from the rest of the body. Thus F 9 1s a one—form

on Oa Both, F and Fa, are supposed to admit integral representations.

The constitutive law F is according to theorem 4.2 determined by a smooth map

H: E(M,R“)/Rn — C"(M,RY),

the constitutive map of the deformable medium. We will first exhibit its influence to the
constitutive entities of the material forming the boundary of the body :
This map yields according to theorem 4.2 force densities

(6.1) ¢ : E(M,R") — C°(M,R™)
and
(6.2)  : E(M,R") — C®(oM,&")

The .ladder, the force density acting on dM, is defined by

(6.3) A{dJ) = dNdIYN), VdJ e E(MR")/pn.

Let us split this force density g into

(6.4) WdJ) = ppn(d]) + ¥(dJ), VdJe E(M,Rn)/mn ,




where p[Rn(dJ) is characterized for each dJ € E(M,Rn)/ﬁn by the equation

(6.5) Ny [ <ogn(dd),m>igJ) =0, VzeR"

and where

¥ E(MR") — &,

is a smooth map, which makes (6.4) to hold.

Let us remark that even if

dJ |M = dJ |aM

for some Jx’Jz € E(M,R") we may not necessarily have
pRn(dJl) = 99|Rn(dJ2) .
The condition (6.5) allows us to choose some map
(6.6) bR : E(M,Rn)/mn — CY(M,RY) ,
such that for all dJ € E(M,Rn)/mn the equation
(6.7) opn(d3) = A(T|OM) bgn(dJ)
holds true.We may choose fipn such that
(6.8) hen(dJ) € C”l?(aM,R“) with j= J|oM ,

for all J € E(M,R"). This map depends smoothly on its variable J, as shown in the proof of

theorem 5.1.
Thus the constitutive law F is determined by a map

9 E(MR")/pn — CYMR"),

yielding a force density ¢ for which

B(J) = AJ)HAT), VT e BMEY)




holds and its boundary condition has the form

(69) - d(dI)(N) = A(J|aM) bpn(d]) + w(dJ),

for some smooth maps

(6.10) o : E(M,IR“)/Rn — CY(MRY),

and

¥: E(MR™) —R".

These boundary condition (6.9) obviously describes how the constitutive properties of the
material forming the boundary of the body are encoded in $.

On the other hand we have Fa, which is determined, according to theorem 6.1, by a

smooth map

(6.11) | hy: 0 4/R" —-{c“’(aM,m“) .

The force density defined on O 5/an associated with b P will be called in the sequel by ¢ 9"

We choose an extension

(6.12) Ny E(M,R")/gn — C™(M,R")

of h 9 by posing the following Visik problem, which according to [H&] has a solution unique

up to constants :

(6.13) 3 5= 0= AJ) H4dJ)

and

(6.14) dH{dT)(N) = A(T|8M) b 4d(T|oM))
=p4dJ)

together with
(6.15) 5441 = bd(T| M),

all holding for any J € E(M,R"). Again 99 depends smoothly on its variable. This is due to

the fact that the constitutive law determined by J’ja only depends on its integral over the




boundary dM and therefore is a reformulation of F g+ Proposition 4.1 yields the smoothness

| of H 9 F9 shall dénote the constitutive law on E(M,IR“) determined by $ 9

bgn — R* ba and ¢ show how the material forming the boundary of the body is affected by

the fact that the boundary material is implemented into the body.

*
Without loss of generality we may think that R b@ is an additive part of bgn - This
motivates us to write in the sequel h only instead of bgn-

What we have done in this section might be formulated in :

Theorem 6.1 :

Any smoothly deformable medium is characterized by a constitutive map
(6.16) $: E(MR™) — CYMEY,

determining itself two smooth maps

b: E(M,R") — C™(aM,R")
and

¥: E(ME") —R",
which are linked to § by the boundary condition
(6.17) dSdT)N) = A(J| M) B(dJ) + %dJ).

b is unique up to R"—valued smooth maps of E(M,R") and ¢ 1is unique. Moreover §) satisfies

the integrability conditions

(6.18) 0= y [ <A@HdT)z> W)
t o [ <odNN)p>igld), VJ e E(MR")

and Vz € R".
(6.18) equivalently formulated reads as




(6.19) 0= Mj <ANHAD),z>u T)
+ de <Y dT),z>igu(J),

a boundary condition holding for $ and ¢ together. The constitutive law on E(M,R")
describing the constitutive properties of the materials forming body together with its

boundary is thus given via the formula

(6.20) FXL) = [ <A0)HdI),L>uJ)

+ <dSXdJ)N,L>iu(J),
aMf SAT)N,L>iyu(

or equivalently by

(6.21) F(J)YL) = . [ <ANAI),L>p3)
+ aMf<A(J|6M)f)(J|3M) + ¥dJ)),L>iygu(J),
VI e E(MR™), VL € C°(M&Y).

The work of any distortion I € C®(M,R") of the deformable material forming the bounda.ry
attached to the body is given by

(6.22) F g (d0)() = 6Mf <A(T|BM)HAT),I>ipudT)

for any J € E(M,R™).

Any constitutive properties describing the constitutive properties of the deformable
medium of the boundary detached from the body, which is given by a smooth map
baé Cm(Oa/fRn C(MR™)) is additively mcorporated into h via the map

R bge C®(E(M, IRn)/Rn C%(M,R™)). Hence b — R ba and ¥ describe how the constitutive
properties of the material forming the boundary of the body is affected by the fact that this

material is incorporated into the material forming the whole body.




Simple examples :

Given L € C*(M,R") and J€ E(MR") we may form according to (3.54) the map P(J) o L.
If L = J then let us write J instead of P(J) o J.

(i) Let ${dJ) = J for all J € E(M,R"), then

dJ = dJ
and

(6.23) S dT-dL ()

M |
= [<AO)IL>KT) + . S <dJ(N),I>ipp(J)
= S tr A(dL,dD)(J)
oy f tr (DXL, I)(J)
= fdiv KELDAT)

= g @)

( S D)L

Herel:= L | M and j := J|3M . The above calculation shows

(6.24) AN =ANI=0
and
(6.25) AdJ) = NG), VIeEMRY:;

1 = z with z € R” evidently implies

(6.26) . [<NG)z>ui)=0, VzeR".

This shows that in this example

The map bgn in this case is thus given by




(6.28) N() = AG)hgn(dT), VIE€EMR") andj:=J|oM.
Since hpn depends here on dj only we have the situation that F = F,

Let us turn our attention to hgon Oa, given by bddj) =j,Vje€ 03’ Here ; € Cujn( M,E")
is the projection of j along R". One easily verifies the following set of equations
(6.29) <AGRI>EG) = _ f dj-dl ()
! vy |
= o (X)) + L) WG))
= o] (XL + QL) HG)KG)

= aMf &1,3)-H(G)u()

= o <O HONOI>u6)

=D JHD.-
Hence %) is given by
(6.30) 0= A(NHdT), VJ € E(M,RY),
together with
(6.31) A944TN) = A(i)j =H()-N(G), VJeEMR"

and J:=J|oM .
Again F = F° here.

(ii.) Next let us consider quite another influence of the boundary ‘by looking at

by Oa/mn — C®(AM,R") given by he(di) = N(j) , ¥j € O 5. Then the formula
*
(6.32) A(IN(j) = d dN() .
=d dj W(j)
= —dj grad;H(j) + (tr W(3)*)-N(j)

holds for any j € Oa. In this case f)a is given by the system




-~ (6.33) 0= A(D)HHdT), V] e EIM,RY),

(6.34) d9fN) = AG)-NG), VI eE(MR)
and J:=J|oM .

Let us point out that A(j)N(j)#0 even if j(AM) C R" is minimal, that is to say even if
H(j) = const.

In the special case of dim dM = 2 a topological constant, the Euler characteristic X(dM),
enters the constitutive law F determined by N(j) for each j € 06' It is hidden in

(6.35) FONG) = S <AGNG)NG)>u()
= St WGRAG)

as seen as follows :
: By the Cayley Hamilton theorem (cf.[Gr]) and the Gauss Bonnet theorem (cf.[G,H,V]),
F (])(N(])) equation (6 35) can be expressed as

(6.36) - F"(j)(N(m=—4rR(aM)+ o) O

Here we also have F = F°.,

o o ¢ e gpaa—s




7. A ggnéral decomposition of constitutive laws

In this section we will exhibit a decomposition of the constitutive map $. This
decomposition is based on two specific one—forms on E(M,R") and E(JM,R") respectively,

namely the derivatives of the volume function
(7.1) T : E(M,R") — R,
assigning to any J € E(M,R") the volume

(7.2) = Sud)

and of the area function
(7.3) A:E(AMRE") —R,

sending any j € E(dM,R") into

(74 o 20G) = [

As we know from the previous examples this derivates are

(7.5) D) = S <N(T|aM),L> iy f3)
= MfdJ-dL 7¢))
= aMf <dJ(N),L> iy p(J)

and

(7.6) DA = SHG<NG)> )
=6Mfdi-dlﬂ(i),

holding for all J € E(M,&"), all L € C"(M,R"), all j € E(AM,R") and all 1 € C*(IM,R").
We will show in this section that DB and R D2 multiplied with appropriate R—valued
maps are all part of any constitutive law F defined on E(M,R").

Let us first concentrate on DD and see how it is encoded in any constitutive map $.

To this end let F be determined by some $) € Cm(E(M,Rn)/Rn,Cm(M,Rn)). As we know from




the previous section it determines two maps h € C*(E( HM,Rn)/Rn,Cm(aM,IRn)) and
Y€ Cm(E(M,IRn)/Rn,IR), such that both are linked to §) by the equation

(7.7) dYdJ)(N) = A(T|M)(dT) + HdJ),

which holds for any J € E(M,R"). :
Let us consider the real Hilbert—space H j consisting of all LK : M — R" , for which

(7.8) <<LK>>:= Mf<L,K>;a(J)

exists.

Recalling that C?(M,Rn) is the collection of all L € C*(M,R™), such that

f<L,z>p(J)=0, VzeR,
M

we restate the splitting

(7.9) C*M,RY) =R"o c‘}’(M,R“) .

~ This is a splitting as Fréchet spaces since the functional, assigning to any J € C*(M,R") the

real f< 2>p(J), is continuous on C*(M,R") for any z € R. Moreover (7.9) is
M .

orthogonal with respect to <<, >>, defined in (7.8).
The projection J along R™ of J € E(M,R") in CO;(M,IRH) satisfies as we already know from

the previous section

(7.10) dJ = dJ
and

(7.11) ADNI=AJ)I=0.

Since both $(dJ) and J belong to HJ we may take the component in HJ of $(dJ) along J.

This component has the form wl(dJ)-:T for some real number wl(dJ). Thus there is some

! € CoE(ME®)/gn,C(M,E™) such that

(7.12) #dJ) = 7dD)-T + 5Ld))

is an orthogonal decomposition in Hy. We leave it to the reader to show that wl(dJ) and




f)l(dJ) vary smoothly with dJ.

Clearly we have due to (7.7) and (7.11)

(7.13) A(DHAT) = A)$HY(dT)
and
(7.14) dS(ATYN) = 7 (dIN(T| M) + dHY(dTYN)

both holding for all J € E(M,R™).

Let us denote by F1 the constitutive law on E(M,R") determined by the map f)l . Equation
(7.13) yields then

(7.15) F=x.DU+FL.
The map
(7.16) o r N E(MBY)/pn — C(OMEY)

assigning to any dJ the map #(dJ)-N(j) with j:= J/dM , yields a part of h. This part,
called UNE is produced by regarding x(dJ)-N(j) as a force density along dM, which

according to (6.28) has to satisfy the equation

(r17) AG)hy(dT) = #dING), §:=T|oM,

for all J € E(M,R"). The map bN(dJ) € C‘;’( AM,R") varies smoothly with J € E(M,R").

Hence we have the splitting

(7.18) B(dJ) = 7(dT)-by(d])) + 5'(dT), VdI € EME")/pa,

for some smooth bl(dJ) € C‘;(HM,IRR). Thié example shows what we had in mind as we were

claiming that DD is part of F.

To get the full decomposition we broaden our scope a little and introduce first of all the
Hilbert space Ai consisting of all maps Tp T, TM — R linear on the fibres of TM for

which the right hand side of




(7.19) | Gyn(didmym)i= - f 7,0, i)

exists.Clearly de(dJ) , dj and dN(j) all belong to A]- and are generically linearly
independent. The set Oa of all j € E(AM,R™) for which these three differentials are linearly

independent form a dense open set. In case j(dM) is a (n—1)—sphere in R" however, N(j)isa
real multiple, r say, of j and l’)N(J) is hence (EEU] . This can be confirmed by looking at

(6.28) and (6.31). In the case of linear independence the three above mentioned differentials
are in general (with respect to Gmn(dj)) not orthogonal to each other, however.

We therefore orthogonalize them by using the method of Schmidt : This means we form

(720)  dby(d)),
dj + bl df)N(dJ) ,

and

AN(dj) + b,(dj + b dbyy(d))) + b_dby(dJ)

with the following coefficients

(7.21) b =- D‘B(J)(J%
‘ lld by (dDll

DAG)(N()) by (D) 2 - DT ) () -24()

b =-

2 DAy - 2DBI(T) + byl
boo i) |
S |ldpy(an®

Let us point out, that in case j(OM) is an (n—1)-sphere then (7.20) reduces to
~ dby(dJ) = Z1+dj since the other differentials vanish.

Hence generically d‘bl(dJ) in (7.18) splits in Aj orthogonally into




(122)  db(d]) = #(d3) dby(dD) + F(dT)d] + b diy(dD))
+ 7(dT)AN(d])) + b(dj + b dhy(dT)) + b dby(d]))
+ db¥(dJ)
= («'(d]) + #(dD) b + P¥(dT)-b b + 7(d))-b ) dbyy(dJ)
+ (7(dJ) + 7YdI) b ) dj
+ 7(dJ)-dN() + db%(dJ),

for some K(dJ) € C®(IM,R™).
For our further investigation let us call the coefﬁcxents of djy(dJ), dj and dN(dj)) in (7.22)
by al(dJ), a2(dJ) and aa(dJ) respectively.

Next we extend all maps bN(dJ), ] and N(j) to all of M in the following way :
Givenf € C“JP( M,R™) we solve the following Visik problem

(7.23) | A(I)fyy =0
dfy (N) ~ AG) = 0

with fy 1 € C*(M,R") and where J € E(M,R") and j := J| M. Clearly
(by(d0))yg = I
All the splittings and extensions done to construct ]M and N(])M depend smoothly on

j € E(AM,R"). The above mentioned decomposition of §) is then descrlbed in the followmg

theorem :

Theorem 7.1 :

Let F be a constitutive law on E(M,R") determined by $¢€ Cm(E(M,Rn)/Rn;Cm(M,IRn)).

Then $) determines uniquely three smooth maps

a2 O3 C E(M,IRH)/Rn —R




and uniquely two smooth maps

2. (1 n

b, 6% O C E(M,R")/pn — C(IMR"),

such that the following splitting holds for any dJ € O3 ¢ E(M,R")
(7.24) HdJ) = 2 (d1)-B(d3) + 2 ()] +a,(d3)NG) + B(dD)

with j := j/OM. The differential dh*(dJ) is orthogonal with respect to G(dj)BM to the space
spanned by de(dJ), dj and dN(j).
The map $XdJ) decomposes into

(7.25) HdT) =2 (d3)-T + a (d)) iy + a (d0)-Nyy(dJ) + F(dT)

- where j := J| M.

The constitutive law F splits accordingly into

(7.26) P(I(L) = 2 (dJ)-DB(INL) + a,(d7)-DAG)()
+ F(d3)(dL) + FI)(L) ,

with J:= J|dM and | := L| M and with

(7.27) F(I(L) = as(dJ)-M f dNy((dJ)-dL (7).
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