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Abstract. A Lagrange-type penalty function method is.proposed for a dass of
variational inequalities. The penalty function may have both positive and negative
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condition under which a Lagrangian penalty function is exact, and an estimate for
the penalty coefficient are given.
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1. Introd uction.

Penalty function methods are fundamental techniques which can be used to trans-

form a constrained problem into a sequence of simpler, unconstramed problems.

These methods in their pure forms however often suffer from inherent numerical

instability as the penalty parameter tends to 0 or +00. In this paper we use a

penalty function proposed in [5] to transform a constramed variational inequality

into simpler problems which have to be solved only approximately. The penalty

function used here takes positive values outside the feasible region, but in contrast

to customary penalty functions it may assume negative values inside the feasible re-

gion. The value of this function at a point therefore can be considered as a quantity

of reward or penalty for this point depending on its being feasible or not. We would

like to call it a Lagrangian penalty function, since it acts like a single cumulative

1 On leave from Institute of Mathematics, Hanoi, by a grant from Alexander-von-
Humboldt-Stiftung.
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constraint for the feasible region. The penalty parameter is steered adaptively and

in nondegenerate situations avoids tending to either 0 or +00.

More precisely the problem we are going to consider is of the folIowing type:

x. E C, /(x"x) ~ 0 "Ix E C,

where C is a closed convex subset of some reflexive Banach space X, and / is

a real-valued function defined on C X C ( or a larger product set) such that

/( x, x) = 0 for all x and a certain monotonicity condition is satisfied. This is a

_rather flexible formulation which subsumes conveniently several standard problems.

We mention only the folIowing:

- Variational operator inequalities:

where T: C -+ X. is monotone.

- Complementarity problems:

where C c X is a closed convex cone, C+ C X. is the nonnegative polar cone of

C , and T: C -+ X. is monotone ( a special case of the previous example ).

- Programming problems:

where ep: C -+ IR .

- Saddle point problems:

where ep: Cl X C2 -+ IR .

The paper is divided into foUf sections. In Section 2 we shall state and prove some

results which constitute the foundation of our method. Section 3 is devoted to the
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description of the algorithm and its convergence. In the last section exactness will

be discussed.

2. Problem Statement and Auxiliary Results.

Throughout this paper let X be a reflexive real Banach space provided with the

weak topology. Let G and M be nonempty closed convex subsets of X such that

C C M , and let I: M x M - IR. We shall deal with the following Problem (P),

which we call a variational inequality problem:

x. E C, I(x.,x) ~ 0 Yx E C.

Suppose given a function p: M - IR satisfying for all x E M

p(x)50 {::::::> xEG.

(P)

-

This function, which may assume negative values on C, will be referred to as

Lagrangian penalty or reward-penalty function. For each real t > 0 we denote by

(Pt) the following penalized ( but less constrained ) problem:

Xt E M, tl(xt,x) + p(x) - p(Xt) ~ 0 Yx E M.

We shall henceforth make the following assumptions:

(i) I(x, y) + I(y,x) 5 0 Yx, y E M (monotonicity of I ) ;

I(x,x) = 0 Yx E M

I is convex and lower semicontinuous in the second argument on M ;

the function A 1-+ I(AX + (1 - A)Y,X) , 0 5 A5 1, is upper semicontinuous

at A = 0 for all x, y E M ( radial continuity of I );
there exists a E C such that I(x,a) - -00 as IIxll- 00 I xE M
( coercivity of I ).

(ü) p is convex, lower semicontinuous on M, and bounded from below on C.

From assumption (i) it follows that (P) has a solution, see e.g. [2], [6]. It follows

moreover from assumptions (i) and (H) that Problem (Pt) has a solution for all
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t > o. Trus follows from the function ft(Y,z) := tf(lI,z) + p(z) - p(y) satisfying

again (i) ( in particular ft is coercive, Le., ft(z,a) -+ -00 as IIzll -+ 00, since p

is bounded from below on M ). We denote by S( l, t) for an real l ~ 0, t > 0 the

set of an l- solutions of ( Pt ), Le.,

Zt E S(l,t) Hf Zt E M, tf(ZhZ) + p(z) - P(Zt) ~ -l Vz E M.

S( l, t) is nonempty for an £ ~ 0, t > O. Furthermore we define for an real

£~ 0, t > 0 the set

B(l,t):= {z E M : f(z,a) ~ 0 or tf(z,a) + p(a) - p(z) ~ -l}.

The following properties are easily verified:

1) Ir £' :5 £ and t' ~ t, then B(I,t') C B(l,t).

2) S( £, t) C B( £, t) .

3) B( £, t) is bounded in norm.

Indeed: Properties 1) and 2) follow right from the definitions of B(£,t) and S(£,t).

Property 3) follows from the fact that both f(z,a) -+ -00 and tf(z,a) + p(a)-

p(z) - -00 as IIzll-+ 00.

Let now for an real £ ~ 0 denote

G(l) := {z E M : p(z) :5 £},

tel) := sup{t : t = 0 or S(£,t) n G(£) # 0}.

It is dear that £':5 £ implies 0:5 t( I) :5 t( £) :5 00 •

We collect some lemmata, which we need in the sequel.

Lemma 2.1. Let S be a convex subset of M and let h: M X M -+ IR be such

that for h assumption (i) above is satisfied. Then the following statements are
equivalent:

(a) y E S, h(y,z) ~ 0 Vz E Sj

(b) Y E S, h(z,Y):5 0 "Ix E S.
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Proof. Statement (a) implies (h) because ofthe monotonicity of h. Assume now

that (h) is true. Let x E S be arbitrary and x~ := ..\x + (1 - ..\)y, 0 < ..\~ 1.

Then h( x ~, y) ~O since x ~ ES. Therefore

Dividing by ..\ and letting ..\-+ 0 we obtain statement (a). Q.E.D.
Lemma 2.2. If Ek \. 0 and t(Eko) < 00 for some ko ,then t(Ek) \. t(O).
Proof. Let Eie \. O. Let _t. be the limit of {t( Eie)}' Since {t( EJe)} is nonincreasing

and t(EIe) ~ t(O) and t(Eko) < 00, t. exists and t(O) ~ t. < 00. H t(O) =
t. we are done. Assume for contradiction that t(O) < t.. Let t(O) < t < t •.
By the definition of t( Eie) , there exists a sequence {tle} such that t < tk ~ t( Eie) ,

lim tk = t. and S( Ek, tk) n C( Ek) f:. 0 for every k. Let uk be a point of this set.
Then

This and the monotonicity of f imply

Since Eie ~ EI and tle > t forall k wehave S(Ek,tk) C B(EIe,tle) C B(ElIt) forevery

k. Hence {ule
} is bounded, and we therefore mayassume, taking a subsequence if

necessary, that ule
-+ u•. Letting k -+ 00 we obtain, from the lower semicontinuity

of f(x,.) and p(.),

t.f(x,u.) - p(x) + p(u.) ~ 0 Yx E M,

from which, by Lemma 2.1, follows u. E S(O, t.). This and p( '11..) ~ 0 ( since

p( uk) ~ Eie for all k ) imply S(O, t.) n C(O) :I 0, hence t. ~ t(O). We arrive at a

contradiction. Q.E.D.

Lemma 2.3. Let 0< t < t', 0 ~ E,E'. Then for each xE S(E,t), x' E S(E',t')
we have

p(x') - p(x) ~ -Cd' + E't)/(t' - t).
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Proof. From the definitions of S(l,t) and S(c,t') follow8

tf(x,x') +p(x') - p(x) ~ -l,

t' f(x', x) +p(x) - p(x') ~ -l'.

Multiplying the first inequality by t' and the second by t, adding and using the

monotonicity of f we obtain (t' - t)(p(x') - p(x» ~ -a' - ct. 2 Q.E.D.

Lemma 2.4. For each x E S(O,t) one has

p(x»O if t>t(O),

p(x)~O if t<t(O).

Proof. The first assertion is obvious from the definition of t(O). To prove the

second one we chose t' such that t < t' ~ t(O) and S(O,t') nG # 0. Let x' be a
pointof this set, then p(x') ~ O. Applying Lemma 2.3 with l = l' = 0 we obtain

p(x)~p(x')~O. Q.E.D.

Lemma 2.5. Let 0 ~ l, 0< e < 1 and 0< t. Then for each xE S(€,t) one
has

if p(x) ~ l,

t(l) < t/(l- e) if p(x) > 2€/e.

(2.1)

(2.2)

Proof. (2.1) follows immediately from the definition of t(l). We have only to

prove (2.2). Assume contrary that there is x E S( l, t) with p(x) > 2€/e and

tel) ~ t/(l - e). Then t(l)/(t(l) - t) ~ l/e and t < t(l). By the definition

of t(l) there exists a sequence {tj} such that t < tj ~ t(l) , tj _ tel) and

S(€, tj) n G(l) # 0 for every j. Letting xj E S(l,tj) n G(l) and applying Lemma
2.3 for xi and x we obtain

p(xj) - p(x) ~ -l(tj + t)/(tj - t).

2 We note that this inequality may be considered as an extension ofLe Chätelier's prin-
ciple to l -solutions of monotone variational inequalities ; we refer to W. Eichhorn
and W. Oettli, Econometrica 40 (1972), 711- 717.
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This and p(zj) ~ f imply p(z) ~ 2dj/(tj - t) for every j. Letting j _ 00 it

fol1ows

p(z) ~ 2f ~ 2f/! if t(f) = 00,

p(z) ~ 2d(f)/(t(f) - t) ~ 2f/! if t(f) < 00.

Both cases contradict p(z) > 2f/! . Q.E.D.
3. Description of the Algorithm.

The fol1owing algorithm allows us to find a solution of Problem (P) as a limit

point of zk E S(fk,tk) with {fk} being a fixed sequence tending decreasingly to

zero, and tk being determined iteratively. The- algorithm is described as fol1ows

( some comments are inserted in brackets ).

Algorithm.

Let M, C, p be as required before. Take two sequences of positive numbers {fk}

and {ek} such that fk '\. 0 , ek '\. 0 , fk/ek '\. 0 , €k < 1/2 for all k, and take

C ~ 4.

Step 1. (Initialization ]

Set BI := 00 , choose tl > 0 , set k = 1.

Step 2.

Select zk E S( fk, tk) .

2a) If p(zk) ~ 2fk/€k, then set tk+! := 2tk, Bk+l := 00 ,increase k by 1 and go

to Step 2.

2b) If p(zk) > 2fk/ek, then set Bk+l := tk/(1 - €k), increase k by 1 and go to

Step 3.

Step 3. (Given k and Bk < 00 such that t(fk) < BIc ].

Set AIe,l := 0 , Bk,l := Bk . .set j = 1.

Step 4. ( Given k,j, Ak,;, Bk,j such that Ak,j ~ t(fle) < BIe,j]'

Set tk,j := (Ak,j + Bk,j)/2, fk,j := min{ fk,tk,jfk}' Select zle,i E S( fk,j,tk,j)'

4a) If Bk,i - Ak,j ~ c€kBk ( Clause 1 ) or if fk < p(zk,i) ~ 2fk/ek (Clause 2 ),

then set zk := zk,j, tk := tk,j, Bk+! := Bk,j, increase k by 1 and go to

Step 3.
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4b) If p(XI;.;) ::::;ll;, then let AI;,j+1 := tl;,j, BI;,j+1 := BI;,j, increase j by 1

and go to Step 4 [ lower bound of t( ll;) is improved to tl;,j, upper bound is
unchanged ].

4c) If p(xl;,j) > 2ll;/~1;, then let AI;,j+1 = AI;,j, BI;,j+1 = tl;,j/(l - ~I;), increase

j by 1 and go to Step 4 [ upper bound of t(ll;) is improved to tl;,j/(l - ~I;) ,

lower bound is unchanged ].

This completes the description of the algorithm.

Remark. The algorithm is a two phases algorithm in the following sense. As long

as BI; = 00 it repeats only Step 2 ( first phase). As soon as BI; < 00 it uses

onlY Step 3 and 4 ( second phase ). It is possible without harm that the first phase

never terminates. However if the algorithm enters the second phase, then it will be

demonstrated that for each fixed k, Step 4 will be performed only finitely often.

Then it comes back to Step 3, thereby increasing k. Rence for all k ~ 1 the iterates

tl;, BI;, xl; are weIl defined. If case 2b) occurs, then it follows from Lemma 2.5

that t(ll;) < BI;+1, and since lHl ::::;ll; implies t(il;+1) ::::;t(il;), we have also

t(il;+d< BI;+1. Case 2b) can occur only once; if it occurs for k := ko, say, then

we have t(il;) ::::;t(il;o) < 00 for all k ~ !co. In cases 4b) and 4c) it follows from

Lemma 2.5 and il;,j ::::;ll; , that AI;,j+1 ::::;t( il;) < BI;.;+1 . In case 4a) the algorithm

returns to step 3 and we have then t(il;) < Bl;,j = BH1 , and since t(lHl)::::; t(ll;)

this implies t(iHl) < BI;+1. It will be demonstrated - see (3.1) below - that

BI;,j+1 ::::;BI;,j. Therefore we have also BHI ::::;BI;. When the algorithm exits

from the finite loop generated by Step 4 and returns to Step 3 for j = j(k), say,

then it has produced xk E S( lk' tk) with cI; := min{ lk, tkik} and Ak := Ak,j(k) ,

Bk := Bk,j(k) = BHI such that Ak ::::; t(il;) < Bk' These facts will be used freely
in the proof of convergence below.

Claim 1. For each fixed k, Step 4 is performed only finitely often.

Proof. We first show that

(3.1)

8



To prove (3.1) it is sufficient, since Bk,l = Bk, to show that

Since in Case 4b) Bk,;+! = Bk'; we have only to prove for Case 4c). Then Bk';+! =

(Ak,; + Bk,;)/(2(1 - ek». Using Bk'; - Ak,; > CekBk and Bk,; :5 Bk we have

Bk,; - Ak,; > cekBk ~ cekBk,;. From this and c > 2 follows

Hence -Bk,j+! = (Ak,j + Bk,j)/(2(1 - ek» :5 Bk,j as required. Now let dj .-

Bk,j - Ak,j . Then we claim

(3.2)

Indeed, (3.2) is true for j = 1, since dl = Bk,l - Ak,l = Bk. Assume for induction

that it is true for j, then we prove it for j + 1. In Case 4b) we have dj+! = dj /2,

whereas in Case 4c) dj+l > dj/2. Hence it is sufficient to prove for Case 4c). In

Case 4c) we have

This and (3.1) and tk,j = (Ak,j + Bk,j)/2< Bk imply

Using the induction assumption we then obtain

Hence (3.2) is true for j + 1 , and therefore for all j. From (3.2) follows

limj-+oo dj :5 2Bkek/(l - ek) < 4Bkek, since ek < 1/2. From c ~ 4 we deduce

that there must exist an index j(k) for which Clause 1 of Step 4 occurs. Q.E.D.
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Let KI := {k EIN: Clause 1 occursat iteration k} and let K2 := {k EIN:

Clause 2 occurs at iteration k}. Assume that KI is not finite.

Claim 2. t" -+ t(O) as k~ 00, k E KI •

Proof. We have t( f,,) < 00 for all k E KI• Then Lemma 2.2 can be applied

yielding t(f,,) -+ t(O) as k -+ 00, k E KI • Let j(k) be the index for which Clause

1 occurs. Then from the definitions of A",i and B",i together with Lemma 2.5

and f",i $ f" follows that

(3.3)

Furthermore under Clause 1 we have

and since BHI $ B" for all k and e" '\. 0 this implies

Bk,i(k) - Ak,i(k) -+ 0 as k -+ 00, k E KI•

Since tk = tk,i(k) := (Ak,i(k) + Bk,i(k»/2 we obtain from (3.3) that {t(fk)} and

{tk} have the same limit. Hence tk -+ t(O) as k -+ 00, k E KI • Q.E.D.

We now are in the position to prove theconvergence of the algorithm.

Theorem 3.1. Let assumptions (i) and (ü) hold. Then the sequence {x"} is
bounded, and if in addition

p(x) = 0 "Ix E S(O,t(O» whenever 0< t(O) < 00, (3.4)

then any cluster point of {xk} solves (P).
Proof.

1. We consider first the case Bk = 00 for all k, Le., the first phase does not

terminate. In this case tk / 00 . This and f/c '\. 0 implies B( f/c, tk) C B( f1l tt} for

all k. Since xk E S(fk, t,,) C B(f", t,,), the sequence {xk} is bounded. Let x. be
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any limit point of {xk}. We may assume, taking a subsequence if necessary, that

xk - x •. From 2a) we have p(xk) ~ 2£k/ek' Thus, by the lower semicontinuity

of p, p( x.) ~ 0, Le., x. E C. Furthermore, since p is bounded from below

on M, there is a constant K such that p( xk) ~ - K for a1l k. From this and

xk E S(£k,tk) follows by the monotonicity of / that /(x,xk) ~ (p(x)+K +£k)/tk

for a1l xE M. Since tk - 00, in the limit we obtain /(x,x.) ~ 0 for a1l xE M.
Hence, by Lemma 2.1, x. solves (P).

2. Next we consider the situation when the first phase is finite. We may disregard

the finitely many iterations of the first phase. Obviously it is sufficient to prove the

claimed results for each of the two subsequences {xk} with k E KI and k E K2
respectively. We consider first the case k E KI• In this case Claim 2 implies

tk - t(O) < 00 •

Assume first t(O) > O. Then one can choose areal number T > 0 and an index

1 such that tk > T for a1l k E KI, k ~ I. This implies B(£k,tk) C B(£/,T)

for a1l k E Xl, k ~ I. Hence {xkheK1 is bounded. Let x. be any limit point

of this sequence. Taking a subsequence if necessary we may write xk _ x. as

k - 00, k E KI • From xk E S(£k,tk) and the monotonicity of / follows

from which we obtain in the limit

t(O)/(x,x.) - p(x) + p(x.) ~ 0 Yx E M.

Hence, by Lemma 2.1, x* E S(O,t(O)). Then from Assumption (3.4) p(x.) = 0,

i.e., x. ia feasible. Furthermore

t(O)f(x.,x) + p(x) - p(x.) ~ 0 Yx E M.

This and p(x) ~ 0 for al1 x E C and p(x*) = 0 imply that x* solves (P).

Let now t(O) = O. Observing that xk E S(tk£k, tk) we obtain

(3.5)
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Choose t' = tk, t = tk/2, E' = fletk, f = 0, 1/E 8(0, t) and apply Lemma. 2.3.
We obtain

p(zA:) - p(1/) ~ -€A:tA:'

Adding (3.5) and (3.6) it follows

tlcf(zlc,z) + p(z) - p(y) ~ -2€lctlc Vz E M.

(3.6)

Since p(y) > 0 ( Lemma 2.4 and t(O) = 0 < t ) and p(z) $ 0 for all z E C we

have

Choosing z = a we see, from the coercivity of f, tha.t {zlcheK1 is bounded. Also,

using the monotonicity of f, it follows

(3.7)

Let z* be any limit point of {zkheKl • Wemay write, by taking a subsequence if

necessaty, zle -+ z* aB k -+ 00, k E K1• From (3.5) and the monotonicity of f

follows

tlcf(Z,ZIc) - p(z) + p(zlc) $ €lct1l: Vz E M.

Since t1l: -+ t(O) = 0 we have p(z*) $ p(z)for all z E M. Rence z* E C. From

(3.7) follows, in the limit, that f(z,z*) $ 0 for all %E C. Rence by Lemma. 2.1

%* solves (P).

3. Finally we consider the ca.se k E K2 • From Clause 2 we have €11:< p(z1l:) $ 2€11:/(,11:

for all k E K2• From z1l: E S(€Ie,t1l:) and €Ie< p(zle) follows tlef(zlc,z) + p(z) ~ 0

Vz E M , and therefore

(3.8)

Choosing z = a we see, from the coercivity of f, that {zle}leeK2 is bounded. Let

z* be any limit point of this sequence. Taking agam a subsequence if necessary,

we may write %Ie-+ z* aB k -+ 00, k E K2• From p(zle) $ 2€1c/(,1e follows, in

the limit, p(z*) $ O. Hence z* is feasible. From (3.8) and the monotonicity of f
follows
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By the lower semicontinuity of I( x,.) we obtain in the limit

I(x,x.) ~ 0 Vx E C,

which by Lemma 2.1 implies that x. solves (P). Q.E.D.

We give a condition under which Assumption (3.4) of Theorem 3.1 is satisfied.

Proposition 3.1. Assumption (3.4) is fulfilled if, in addition, p is upper semicon-

tinuous and !,roblem (Pt(o» has a unique solution xo whenever 0 < t(O) < 00.
Proof. Let {tk} be a sequence such that tk /' t(O), and let xlc E S(O-,tk).
Then we know as in the proof of Theorem 3.1 that the sequence {xk} is bounded.

Hence a suitable subsequence of {xk} converges to some x'. Using in turn the

monotonicity of I, the lower semicontinuity of I(x,.) and p, and Lemma 2.1, we

obtain x' E S(O,t(O», which means x' = xo. Since tlr /' t(O), by Lemma 2.4

p(xlc) ~ O. Rente p(xo) ~ O. Likewise applying Lemma 2.4 to a sequence {tk}
with tk "t(O) and using upper semicontinuity of p we obtain p(xo) ~ O. Rence

p(xo) = O. Q.E.D.

Remark. If either I is strictly monotone on M, Le., I( x, 1/) + 1(1/,x) < 0 for

every X,1/ E M, x # 1/, or t(O)/(x,.) + p(.) is strictly convex on M, then the

solution of (Pt(o» is unique ( see e.g. [3] ).

4.Exactness.

The exactness of a penalty function is an interesting question which earned attention

of many authors ( see e.g. [1,3,4] ). Exactness means that there exists aparameter

t such that the solution-set of (Pt) is contained in the solution-set of (P). In

order to treat this question and to give a lower estimate for t(O) we require that
the feasible set C is given by

C := {x E M : g(x) ~ O},

where 9 = (g}, ... ,gm) : M -+ JRm with each gj convex on M. Let p be defined

by p(x) := l(g(x», where 1 : JRm -+ JR is convex on m.m (hence continuous ) and
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has the property

l(y) ~ o<=> y ~ o.

Moreover I should be such that p is convex. Let x. be a solution of Problem

(P). Then, since f(x., x.) = 0, x. is also a solution of the convex programming

problem

min{f(x.,x): xE C} = min{f(x.,x): xE M, g(x) ~ O}.

Assume in addition that the constraints g( x) ~ 0 satisfy a constraint qualification,

e.g. Slater's condition. Then there exists a multiplier vettor ~ E JRm, ~ ~ 0 such

that

O~f(X.,X)+~Tg(X) 'tIXEM.

Assume ~ =1= O. It is then easily seen that the convex programming problem

min{l(y) : ~T y ~ O} has optimal value O. For this problem Slater's condition is

satified, thus there exists a multiplier t. ~0 satisfying

o ~ l(y) - t.~T Y 'tIy E JRm.

It follows then

o ~ t.f(x.,x) + t.~T g(x) ~ t.f(x.,x) + l(g(x» = t.f(x.,x) + p(x) 'tIx E M.

From x. E C follows p(x.) ~ O. Choosing x = x. in the above inequality we

obtain

o ~ t.f(x.,x.) + p(x.) = p(x.) ~ O.

Hence p(x.) = 0, and then

t.f(x.,x) + p(x) - p(x.) ~ 0 'tIx E M.

This means that x. E S(O, t.). Since x. E C we have t. ~ t(O).

Assume now that t. < t < t(O) and that Xt E S(O,t). Then from Lemma 2.3

applied to Xt and x. together with p(x.) = 0 and Lemma 2.4 follows p(Xt) = O.
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This implies that Xt solves Problem (P). Observing that under Assumption (3.4)

every point of S(O,t(O)) is a solution of (P) we then have obtained the following

result:

Let x. be a solution of (P), let ~ ~ 0 be a multiplier of the convex program

min{/(x.,x) : xE M,g(x) 50}.

Assume that ~"# O. Let t.~0 be a multiplier of the convex program

~n{l(y) : ~T y ~ O}.

Then t. 5 t(O), and every solution of (Pt) with t. < t < t(O) solves (P). If

o < t(O) < 00 and Assumption (3.4) is satisfied, then every solution of (Pt(O) )

solves (P).
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