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1. Introduction

A significant feature of quantum theories on infinite dimensional phase spaces is the

occurence of anomalies. Anomalous commutators between quantum operators, which ap-

pear in the algebra of first class constraints, are of special interest as they impose heavy ..

restrietions on the formulation of a eonsistent quantum theory.

For finite dimensional systems the geometrie quantization scheme (GuSt,Sni,Woo] is

a well established tool, connecting the strueture of the quantum theory with the geometry

of the c1assieal phase spaee. It has also been applied to infinite dimensional systems in

order to investigate anomalies (BoRa,SaSw], their eonneetion to the vaeuum strueture of

the quantum field theory (PIWa] and their polarization dependenee (Nie].

The present paper is devoted to the ealeulation of anomalous eommutators of polyno-

mial observables on Kähler manifolds. All ealeulations are organized such that they hold

for bosonic as well as for fermionie systems with finite or infinite (countable) dimenensions.

The eentral result, worked out in s~etion 3 gives a c10sedexpression for the anomalous

commutator on a linear manifold. For bilinear observables this expression reduces to the

trace of a matrix commutator and hence vanishes for finite dimensional systems. Applied

to the constraint algebra of a field theory,as done in section 4, it allows to caleulate

the Schwinger terms. The latter are shown to be cohomologically trivial if the (bilinear)
constraints preserve the holomorphie structure.

The physical relevance of our results is demonstrated by application to the Kac-Moody

and the Virasoro algebras in seetions 5 and 6, respectively. In seetion 7 we reconsider the ...

BRS-scheme in the context of geometrie quantization and ealeulate the square of the
BRS-operator with our furmulas. Application to the bosonie string allows to determine its

critical dimension. A graphical representation of our ealculus reminding ~he technique of
,.

Feynman-graphs is presented in an appendix.
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2. Geometrie quantization

Geometrie quantization on Kähler manifolds is a well established feature in the litera-

ture [Sni,Woo]. Here we review only the main results, relevant for our study of anomalies.

Let the phase space of a physical system be a symplectic manifold (M,w), then prequanti-

zation means a representation of the Poisson algebra of classical observables - the-'sm~th

funetions on M - by operators on the Hilbert space of all smooth, square-integrable seetions

in a Hermitian line bundle Lover M. Such a prequantization is realized by a map

F t-+ OF -:- -iIiVx, +F (2.1),

where XF is the Hamiltonian vector field of F and V a conneetion on L with curvature

curv(V) = w/Ii. Let M carry a complex strueture J and the sympleetic form be determined

(locally) by a Kähler potential as w - dd+JC(z, z+), where d and d+ denote the holomorphic

and anti-holomorphic exterior derivative, respectively. Then we may choose

(2.2).

To obtain an irreducible representation, however, one has to restriet the Hilbert space

to the space 1{J of holomorphic sections of L. More explicitly, denoting by pJ C r(T M) the

antiholomorphic polarization, spanned by the Hamiltonian veetor fields of the coordinate-

funetions Zle, then each quantum state IS> is locally described by a funetion S(z, z+) on

M, obeying VyS = 0 V Y E pJ. Furthermore the correct measure on 1{J requirest~e'.;",
introduction of (normalized) half forms 1.10, i.e. the use of the metapledie representation .

[Woo,GuSt] for the quantization. Then a quantum state IS> is locally given by

, where vo(XZ17 ••• Xzr., ••• )=1.

The operator OF is in general not compatible with the polarization pJ, i.e. the action

of OF needs not to elose in 1{J. For this reason prequantization has to be modified by the

BKS-construetion [Bla,Woo], relating quantum states described in different holomorphic

struetures. In the special case of a Kähler manifold this yields an explicit formula ['!'uy1]

for the quantum operator corresponding to an arbitrary (BKS-quantizable) observable F:

lFIS>= nhol[(-iIiVxp + F)IS>]
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where nho1 is the orthogonal projector onto the space of holomorphic seetions 'J-r.J. The

projection is computed via convolution with a generalized Bergman kernel B(z, z+j31,31+):

(2.4).

Here the Lie derivative £x, is considered as a linear operator on r(T M) and trJ is the trace

taken over the holomorphic components. This contribution is due to the transformation

of the half form under Vx, and corresponds to the non-invariance of the volume form on

the Hilbert space Je. The integration in (2.4) is done with the invariant measure

dJ.L('I,'I+)= (vtvoh/I det(Kln)1 IIdY1cdyt where K1cI(Y,y+) = 8,:8J1• K.(y, 31+) (2.5)
1cEK

and TI dYledyt is the usual Lebesgue measure on M. The generalized Bergman kernel is

given by the sum LIPa(Z,Z+)IPt(y,y+), where {IPa}aEA is a complete set oforthonormal
states in Je [Tuyl]. Explicitly we obtain

B( + +) Ar (iIC(Z,z+») (iA(Z,y+») (iIC(Y,Y+»)
Z, Z j 31, Y = JVo exp 2h exp h exp 2h (2.6),

where No is a normalization and the function A(z,y+) is determined by {IPa}aEA. With
certain assumptions we may integrate by parts in (2.3) and obtain:

Proposition [Thy2]

H M is a Kä.hler manifold, which iseither compact without boundary or S(z, z+) decreases'
fast enough at 8M, then the quantum operator corresponding to an observable F is .

lFIS> = nho1 [(F + i:LlF) IS>]

+._ "-1 + -+ + +-where LlF(z, Z ).- - L- Klei (z, Z ) a z:F(z, z ) 8 z.
le,lEK

(2.7).

This local expression for the quantum operator is independent of the choiceof coordinates.

As shown in [SaSw,Sch] it is possible to generalize this construction of [Tuyl,2]: To
quantize (linear) field theories one starts with the (infinite dimensional) space of solu-

tions of the classical field equations [Woo], considered as the phase space M. Moreover,

for theories containing fermionic degrees of freedom, one can use the notion of graded

manifolds [Kos,Ber] and proceed similarly to the bosonic case. Both generalizations do
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not change the form of the Bergman kernel (2.6), only the normalization eonstant }/o be-

comes formal. Furthermore in the graded case (2.4) is understood with the supertrace and

Berezin integration, respeetively. The unusual form of the Laplacian in (2.7) is due to this
generalization.

3. Quantum commutators

In the following we specialize our considerations to the case of a sympleetie vector

space with a Kähler strueture describing a linear field theory, where I\:lel is constant, cf.

(2.5). For consisteney this (infinite-dimensional) matrix has to be anti-Hermitian on the

bosonic and Hermitian on the fermionic part of M. Then one can prove the following
property of the projector nhol, as given by (2.4):

Proposition

Let M be a linear Kähler manifold with coordinates {ZlehEK and K:(z, z+) = ~::::zt I\:lelZI
the Kähler potential, with "'leI constant. Then for any pair of polynomial observables F
and G it holds

(3.1),

The graded differential operator 8.71+ is given in terms of the Hermitian adjoint ("'in t

Proof:

With the Kähler potential above the Bergman kernel (2.6) becomes (cf. (Thy1,Sch])

B(z, z+j Y, y+) =}/o exp (2~L ZIe"'lelzt - 2Z1c"'1clYt + Y1cI\:1cIYt)- (3.2).
1c,IEK

Writing W(z, z+j Y, Y+jz,z+) := exp( iK:(;t+» B(z, z+jy,y+) B(y, Y+jz,z+)and

(~8yh := E ",;/8Yt this yields
LEK

- +-
W(Z,Z+jY,Y+jZ,z+) Y1c= W(Z,Z+jY,Y+jZ,z+) (ih (~8z+h + Z1c)

--+W( + Y+..•..•. +) y+ (.;-1:. (1 8) + "'+1c)W(z, z+., Y,y+.,"', .•.+)z, Z j Y, , .•.., .•.. 1c = .11, i y 1c ••.• ••.• ••.•
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Then we obtain for any monomial of the form FM(Y,Y+) = TI (Yt)Qi(YiY'i :
;EK

nho1[FM nho1[G 18>]] _

=J B( z. z+;y,Y+) (II (yj)a; (Yi)ß; J B(y, Y+;z. Z+) G( z, z +)5( z. z+)<11'(,,,+») dp( ••• :)} ",
3EK., "

=J W( z, z+;Y. y+; z, z+) in. (z j)a; (il; (-.!r 7/.+)i+zitG.(Z;P<j~)dP( •.•+)dd(~'!+)'

=JW( z, z+;y,Y+; z, z +) (FM (z, z +) ~ (i:t (8.U+)"G(z, z+») <>"(z)dl'(.~.+)d~(~.;+::

Here the first equality is just the definition of nho1, for thesecond we applied the

identities for W and graded integration by parts [Ber] and finally we us~ the eXp~sion __

Observing that integration with B(Y,Y+j :1:,:1:+) is a projection, proves (3.1). q.e.d.

The same result has also been obtained for 2n-dimensional Tori [BHSS]. Denoting by

-{F,Gi the quantum operator of the Poisson bracket between two classical obser~bles
(3.1) yields with (2.7): '

Theorem

(3.3)"

Let M be a linear Kählermanifold, i.e. Kiel is a constant matrix, and F,Gpo~ynomi_ä!'~; •
observables, then following holds :'." ,,--:'.

a) The commutator of the quantum operators JF and q; admits an integral representa~ion
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b) The anomalous eommutator is given by an expansion in ti as

A[F,cP)IS >:= (i~[lF, 0;]- {F, Gi) IS >

iti j + +- ......•+ +- . _= -2 L B[ L K;l( 8 ,F 8i)1tijl( 8;G 8 1c)]S dJL=f (F G)
1e,'EK i,;EK

_ti2(" (iti)n jB[F(a.ä+)n+3G]S dJL=f (FG)
~ (n+ 3)!

+ 2(~~:)! j B[LlF(a.ä+)n+2G+ F(a.ä+)n+2LlG]S dJL=f (FG)

+ 4(~~: )J B [ß-F('a .ä+r+1ß-G]S d" 'f (Fe) ) (3.4).

Here =f(FG) means to subtraet or add the same expressions with F,G interchanged for

bosonie or fermionie observables, respeetively. For infinite dimensions it is erucial not to
inter change the order of the summations in the q'ti) term.

The first part (3.3) of the theorem indieates a possible eonnection between the eom-

mutator in geometrie quantization and the index of the Laplace operator (2.7) - at least

in the bosonie ease, cf. [Gil]. It also shows up some interesting relations towards a modifi-

eation of the geometrie quantization scheme, proposed by [Tuy2].The seeond part is of a
more pradieal interest :

Obviously the construetion (3.4) does not yield a representation of the full Poisson algebra,

what is in aeeordanee with the Groenewold-vanHove theorem [Gro,Jos]. Bilinear observ~

ables on finite dimensional spaees, however, should be represented eorreetly on quantum

level. In that ease the only eontribution to (3.4) are the terms of order ti, but those sum
up as the traee of a eommutator of finite matriees and hence eancel. Here it is erucial to

use the metaplectie eonstruction, determining the eoefficient of the trJ-term in (2.4) to be .

-1/2. Any other fador would yield only a projective representation [Woo]. Considering

infinite dimensional systems the trace of a eommutator need not vanish, so even the meta-

pledie representation of bilinears may be projeetive what means the appearanee of field
theoretic anomalies in this framework.
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4. Constraint algebras and Schwinger terms

Let us consider a Lie algebra 0), acting as symmetry algebra on the phase space (M, w)
of a field theory . Then the symplectic version of Noether's theorem. (Ab,Mal yields a set

C of funetions on M. Under the Poisson bracket C forms a Lie algebra, homomorphic to

OJ, called the constraint algebra of the system. The classical dynamics is restricted to the

constraint surface in M and according to Dirac for all FEe the corresponding quantum

operators lF' have to vanish on the Hilbert space of physical states. Thus the question

arises, whether the constraint algebra closes on quantum level. Anomalous commutators

between quantized constraints are called Schwinger terms and they can be computed from _
(3.4) :

Proposition

Let the phase space of a field theory be a symplectic vector space with a Kähler structure

K:(z, z+) = ~ zt KkZZZ and let a Lie algebra 0) act on it by linear symplectic (bosonic)

transformations. Then the constraint algebra Cis spanned by quadratic polynomials

F. "" ( f. kZ F kZ + +-rkZ+)a = L.J Zk a Zz + Zk a Zz + zk a Zz
k,ZEK

and the Schwinger terms of the system are given as

(4.1)

(4.2).

A drawback of (4.2) lies in the potential divergence of theCtrace that requires a reg-

ularization. This complication may be preventedby a slightly different approach, starting

with a (cohomologically trivial) central extension of the constraintalgebra C on the classi-

callevel : Dropping the equivanance condition on the momentum map we can add to each

Fa. E C a constant depending linearlyon 0). orten this constants can be chosen in .such a

way that no divergent terms appear in the anomalous commutator (3.4) of the modified

constraints. All these computations yield the same Schwinger terms, considered as element

in the Lie algebra cohomology, Le. they differ only by a funetional of the commutator in 0)

[Jac]. However, only the equivariant momentum map (4.1) gives a representation of OJ for
finite dimensional systems.

An example of special interest is the non-equivariant -moment um map, obtained from

(4.1) by adding a term tr(F a kZ) to each constraint Fa, leading to

7
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- ih (1 1- 1 1- )A[Fb.Fal = "2 tr (2 K- fb).(2 K- f.) - (2 K- f.).(2 K- fb) (4.3),

what often turns out to be a finite sumo Furthermore (4.3) allows an interpretation of

the anomalous eommutator in terms of a violationof the holomorphie structure by the .

Hamiltonian veetor field XF due to the f-term, cf. [BoRa]. Especially it shows that ÄfF.,P.]
is eohomologieally trivial, if [XF, pJ] C pJ .

(4.2) and (4.3) allow to ealeulate the Schwinger terms for a given field theory explicitly.

This will be demonstrated for the examples of the Kac-Moody and the Virasot~. ~ge<":

bras in seetion 5 and 6, respeetively. ...",::~.';

Another approachto eliminate unphysieal degrees of freedom in a field th~ry. With

symmetries is the BRS formalism [BRS,HenTei,KoSt). Here ghost fields are intro'duced,"

which may be eonsidered as (dassieal) degrees of freedom, obeying a statistie opposite
., •. c••••• ,

to the one of the eonstraints. The eonsisteney ofthe BRS method requires the quantum

eommutator of the (trilinear ) BRS-charge - eontaining the eonstraints and the ghosts _

with itself to vanish. Again (3.4) provides a niee tool to compute this eommutator, as
worked out in seetion 7.

5. Example : The Kac-Moody algebra

To apply our methods to a physieal example, we regard a system of N Majorana-:Weyl
spinors q,i(u) on the cirde 51 with thePoisson relations {q,i(u), 'l}fi(u')}+ = 5(u-tT':}Sij.'c~
They ean e.g. be thought as the independently left or right moving light eone compo~eIl~~ .

of N noninteraeting fermion fields on spaeetime SI X IR, each deScribed by a Lagra.ii~~ :.

£. = ~q,T'Y°'Y"a,,'I}f,where q, are real2-eomponent spinors [GodOli]. On these'l~\~~~~~!;:_-
gauge group G C O(N) with local algebra OJ represented by real antisymmetri~':1Y/~=N>--
matrices pa. with [pa., pb] = f:" pe, giving rise to Noether cur~ents Ja. = !~pij q,iq,i. ,

ij .. _
We thus get as phase space the space of sections in aN-dimensional real spinor bundle

over SI' Because of the required periodicity of the current observables Ja.( u), the fields

have to be either 21r-periodic (Ramond case) or 21r-antiperiodic (Neveu-Schwarz ca.se) in
u. So they can be represented as

q,i(u) =L e~e-ircr
rEK

with Neveu-Schwarz case
Ramond case (5.1),

what defines anticommuting coordinates e~on the phase space, obeying e~+= e~r'
8



The symplectic form corresponding to the above Poisson relations now reads

N1",,,, ..
w = 2" L-, L-, de~de:r

i=l rEK
(5.2)

(5.3),andJ4(0") = L T:e-inu
nE2Z

and is nondegenerated, even in the Ramond case, due to the fermionic character of the

coordinates e~.
The expansion of the currents J4(0") then defines the Kac-Moody observables T: by

N

T: = I: L pi; e~e~.5:+.
i,;=l r,.EK

yielding the classical algebra {T:, T~} = f:" ~+m .

In the Neveu-Schwarz case we define holomorphic coordinates zi for kEIN by

zl = e~_1 and, keeping the complexstructure of the coordinates e, zi+ = e~Te+1' To-
2 2

gether with the symplectic form w (5.2) we then have a Kähler manifold with potential

K(z, z+) = E E z~z~+. The Kac-Moody observables become
i TeEN

(5.4)

and we can apply (4.2) to calculate the anomalous commutator.

In the case of Ramond fieldswe have the additional problem to quantize the zero modes

e~.For the calculation of the anomaly, however, it is sufficient to require the following
operator relations, inherited £rom the basic anticommutators :

if n = 0 and i = j

else.

with Xe denoting the quantum operator corresponding to e. Using this andthe deriva-

tion property of commutators and Poisson brackets the zero mode contributions to the

anomaly can be shown to vanish. Then the expansion of the Kac-Moody observables T:
then coincides up to zero mode terms with the result (5.4) for the Neveu-Schwarz case and

quantizing the non-zero modes in the same way as above we are led to identical results in

both cases.

Hence in either case the central term of the Kac-Moody algebra is given by (4.2)

Arlr:.,1l'~J= 2 i h tr [T~, T~] with

9



(5.6)

as red off from (5.4). Thus we obtain (with en the step function) :

'n N
..d'1/'.o 1/'."] = ~ ~ p~. p~. ~ "" (hle-'h'-

i _ hle-l h
'
-lc)

"-' m' •• 2 L.J 'J J' L.J L.J m n n m
i,j=l leER IER

"n N
- '2 L pi; P~i L(ele-m - ele-n) h;n

i,j=1 lc

in t ( a b)c-n= --rn r pp 0m
2

This eoincides with the usual result for the Kae-Moody anomaly, derived e.g. with normal.
ordering methods [GodOli].

6. Example : The Virasoro-Algebra

Applying our general eonsiderations to the example of the Virasoro algebra, we start
with the bosonie loop spaee of all smooth embeddings of the circle SI into JR(I,D-l). More
precisely, we consider the symplectic manifold given by

211'

W = 2~ L J d[Y~(u)] A d[8.YII(u)] f'JJIoIlds
JIoIl0

(6.1).

(6.2).

It ean be shown, that the phase spaee (OJR(I,D-l),w) is isomorphie to the eanonieal

symplectie manifold T*Q [BoRa], where Q denotes the space of embeddings of the in-

tervall [0,1r] into JR(I,D-l). T*Q is the classical phase space of the open bosonie string.

The Virasoro algebra arises as the quantization of the Lie algebra tJDitr of infinitesimal

reparametrizations of SI : The generators of the oorrespondingeonstraint algebra CDifF are

D

L(O") = L 8crYJIo(u)8crYII(O")f'JJIov
~1I=1

Fourier expansion of the fields Y~(O") and the eonstraints (6.2) yields

D

w = L L 2 i k hi f'JJIoIldz: dzr+
le,lER JIo,II=1

D

LN = L L Yt i k (k +N) f'JJIoIlY~N-lc
"=#0 JIo,II=1

10
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These LNt the Virasoro generators of COift't constitute the c1assical Poisson algebra

{LMt LN} = (M - N) LM+N that is quantized geometrically using (2.7). The Fourier
modes yt of the fie1dsy~((T) induce in a natural way a Kähler structure on (OlR (l,D-l) t w)
with

Z~ _"V~
Ie-~Ie and Z~+ - y~

Ie - -Ie for k E JN (6.4)

(6.5)

as ho10morphic coordinates. Then the Virasoro generators can be written as

L "" ~(\ )lel JI JI (L )lel ~+ + ~+ (' )lel ~+
N = L....t Zie AN ~JI z, + z, - N ~JI z, Zie AN ~JI z,

le,lEN

and we can work out the anomaly of the constraint algebra £rom the formulas of section 2:
The coefficient matrix LN is

{

2ik(k + N)6i+N"1I'JlN ~ 0
(LN ):~ = - (6.6)

2il(l- N)6f-N"1I'JI N $ 0
with kt I > O. C1ear1y the anomalous commutator vamshes for N.M ~ 0t thus we demand

without 10ss of generality N > 0 and M < O. From (4.2) we obtain

(6.7).

(6.9).

11
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7. The BRS-Operator and Geometrie Quantization

In the latter construction the anomaly appears without divergences, but the constraint

algebra COiff acquires an extension already on the classicallevel. A similar result has been
,

derived by [BoRa], who, however, omitted the half form contributions, leading to a,failure
of the representation already for finite dimensional systems.

. -'...
.~:'.-.''':';' ..

j;;\~-~.;i!':~<:.-
In the context of geometrie quantization the BRS-scheme {BRS] may be described

as follows [KoSt,HenTei]: The phase space (M,w) of a dassieal system with an algebra'

C of first dass constraints (identified in the following with the symmetry algebra 0;) is

extended by introducing the generators of the exterior algebras "0; and "0;* as additional

fermionic coordinates (ghost variables). For a basis {gi(z,z+)hE! of 0; we denote the

structure constants by fi~ and the generators of "0;* and "0) by ci (dual to gi) and 1r'i
(dual to ci), respectively. Then

Wezt = W + Wghod = W +L d1rj dci
jE!

(7.1)

is a symplectic form on the extended phase space Mut.

[In the notion of [Kos] "0;* is a sheaf over a pointlike manifold and thus defines a

graded manifold, which may be seen as the configuration space of the ghost sector. In

this setting "0; 0 "0;* plays the role of the cotangent bundle over "0;* and Wghod is the

corresponding canonical two form. Then Mut is to be written as the graded manifold
(M, COO(M) 0 "0;* 0 "0;).]

The symplectic action of the ghost number charge Ngho6t = E1r'jd (defined by the

Poisson bracket {Nghod,'}) induees a 2Z-grading on the spaceof functions over Mezt.The
BRS-charge

+ ~. + 1~ •. l:Q(z,z ,C,1r') = LJ c'gj(z,z ) - 2 LJ C c'fij1r'l:
jEK i,j,l:EK

(7.2)

has ghost number -1 and its symplectic action (defining the classical BRS operator) 1s

nilpotent, Le. {Q,{Q,.}} = o. Thus this operator defines a cohomology. It can be shown

[KoSt,DuEITh,HenTei] that the zero'th cohomology class of the classical BRS operator is

isomorphie (with respect to the Poisson algebras) to the space offunctions on the reduced

phase space (Le. the constraint surface modulo the action of the symmetry group generated

by the constraints). Thus as physical sector of the quantum Hilbert space one naturally .

12
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takes the zero'th cohomology dass of the quantized BRS operator '4>. This, obviously,
requires ~2 = o.

Therefore, starting £rom abilinear constraint algebra and assuming a Kä.hler structure

on Mut, we consider the fermionic trilinear BRS charge (7.2), obeying {Q,Q} = 0; and
calculate ~2 either £rom (3.4)

1 2/
ifi ~ S>

(7.3a)
+- --++8.8

4

or directly £rom (3.3) as

1 i fi J +- --++ +- --,.++ +- --++ 2
ifi~2IS>=2 B(ßQ 8.8 Q+Q8.8 ßQ+Q(8.8 ) Q]SdJL+Gtfi2)

(7.3b ).
Choosing a suitable base on OJ~, the corresponding set of (complex) ghost coordinates

{ci, 1rd splits completely into a holomorphic and an antiholomorphic part. Then, as worked
out in the appendix, graphical methods allow to prove:

i) The terms of order fi2 in (7.3) vamsh.
ii) (7.3a) reduces to

Ar9i'9j] is given by (3.4) and the symbol (E E)' means that the summa~~~nis restricted
1e I .... .

to those k and 1, for which c1e and c' are both holomorphic or both antiholomorphic (We

note that the order of the summations is still important). Of course, using (7.1) and (7.3a)
an algebraic proof of (7.4) is also possible.

Specializing now to the case of the Virasoro algebra as the constraint algebra of the
bosonic string, (7.1) and (7.2) yield the symplectic form

Wezt = W + L d1rNdc-N
Nez

13

(7.5)



and the (trilinear ) BRS-marge

Qv = L c-NLN(z,z+) - i L c-Mc-N(M - N)7rM+N (7.6)
NEZ M,NEZ

respeetively, where w and LN are defined as in (6.1). The eN a.nd 7rN may be regarded as

Fourier eomponents of ghost fields C(O"), 7r(O") eorresponding to the basis (6.2) in C!J and

thus' the holomorphie strueture (6.4) on M has a natural extension on Mut

ZN = eN

zN+ = e-N

11'
ZN = 7rN

ZN+=7r-N
for NEIN (7.7).

In addition we may ehoose Zo = cO a.nd (zO)+ = 7r0 t

Now (7.4) yields

1 2 1 "" -M-Niti ~v = 2 Li c c ArLM,LN]
M,NEZ

-i ti L e-NeN (f (2N + K)(K - N) - f: (N + K)(K- 2N»)
NEN K=O K=N

alternatively using (7.3b) we arrive at

1 2 "" -M -N -iti ~v = Li e c A[LM,LN]
M,NEZ

(

00 N-l )
-i ti L c-N eN N(2 - D) L K - L(.N +K)(2N - K)

NEN K=O K=O

(7.8a),

(7.8b ).

A[LM,LN] and ÄrLM,LN] are given by (6.7) and (6.9), respeetively.Caleulating the infi-,:
nite sum in (7.8b) with the same treatment of divergenees as used for (6.8), we see both" -

expressions (7.8) to be equivalent to

1 2 • L N N (D 3 13 3 1 )-~v=-~ti e- e -(N -N)-NßD+2Nß--N +-N
iti NEN 12 6 6

(7.9)

The term proportional to N3 vanishes for D = 26, the eritical dimension of the bosonie

string, while the term proportional to N may be removed by aredefinition of Lo on the

classical level.

t Strictly speaking the last definition will not yield a complex structure in the ghost sedor, hut it

defines a polarisation in TqJMezt, as needed {or geometrie quantilllation.
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Appendix

For the evaluation of (3.4) a graphical representation reminding the technique of
Feynman graphs in perturbation theory may be useful:

We represent each monomial of degree n by a vertex with n (oriented) externallegs and
+-- ---++

the operator a. a by a "propagator line" (see fig.1).

The method is best illustrated by an example:

For abilinear constraint algebra the graph for the BRS charge Q (7.2) looks like in fig.2

and we have the "propagators" indicated in fig.3. We see that 6.Q contains only terms

with external c-line (fig.4). As no c - c propagator exists, the last term in (7.3a) (fig.5)

vanishes.

With similar arguments we see that the other contribution of order /i2 in (7.3), as shown

in fig.6, also vanishes. So only the q:/i) terms contribute in (7.3) and we have fig.7 for the

rest of (7.3a) yielding (7.4).

Furthermore the identity {Q, Q} = 0, used in section 7 is for any trilinear Q represented

by the graph in fig.8. Applying 6. to it yields fig.9, which shows the q:/i) terms of (7.3a)
and (7.3b) to be indeed identical.

15
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