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Abstract: We give a basis for bivariate spline spaces on crosscut partitions which can
be computed without solving systems of linear equations. In particular, we develop a

recursion formula for these basis functions that cannot be written as polynomials or

truncated power functions.
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0. Introduction

One of the main problems in the theory of spline spaces is to compute their dimension and
to construct basis functions. In the case of one variable, these problems have well-known
solutions: if knots

a=Y <Y1 <...<Yr41 =0
and multiplicities M = (my,...,mk) are given, then the spline space is defined by

Se(vis- -k, M) := {s € Cla,b] | 8;:= s llyswis) € g and
sgi)l(y;) = sE”)(y;) forv=20,...,q — m;
andi=1,...,k}.
A basis can be constructed by using polynomials and truncated power functions, but a
local basis consisting of so-called B-splines is of more interest. ‘
Since we are interested in spline spaces satisfying certain boundary conditions, we study

the following situation: let M= (mo,...,mk41) be given and set
§q(y0,- e 7yk+11M) = {3 € C(R) I 's][a.,b} € Sq(yli' . 7yk’M)a
8(z)=0 forz <y andz > yry41,
s (yw)=0 forv=0,...,g— mo,

s(")(yk.,,l) =0 forv=0,...,¢~ mk+1}.

Then a basis of §q is built up by the B-splines

Bi(z):= (1) [z, ..., zip 1) (z - )3,

where
(20 S I S o S zm) = (yOs"-,yo,ylv""ylv°',yk+l""7yk+1))
m = mg+-:-+mi4y and [z4,... ,z,~+q'+1](z—t)q+ is the divided difference of the function

f(t) = (z — 1) over the points z;,...,Ziyq41. It is well-known that support (B?) =

[zi,Zitq+1) and B} satisfies a recursion relation (cp. [6]).

The aim of this paper is to develop a kind of B-spline basis for certain spaces of bivariate
splines. Let @ C IR? be a simply connected domain and A be a crosscut partition of

Q (i.e. A is built up by straight lines Iy,...,I'y, so-called crosscuts which cross the

2




Bases for Bivariate Spline Spaces Th. Riessinger

whole domain ). A basis of such a space is given by C.K.Chui and R.H. Wang in [2]
consisting of polynomials, truncated power function§ with respect to the lines T'y,..., 'y .
and some spline functions which cannot be given explicitly but have to be computed by
solving systems of linear equations.

In this paper we will show how these functions can be computed without solving linear
equations and will give a recursion formula. In fact, we deal with the following more

general problem: let (Z,7) € R? and lines Li,...,L, be given in the following way:

Figure 1: Partition of Q

For ry,...,r, € INg we define a bivariate spline space

S = Sq(Ll,...,Ln;Tl,...,T‘n)

by
S:i={seC(Q)|so=5|80=0,5=5|A; €N} fori=1,...,n-1,
&Y §v . »
—6:1:“6y”8"'1(z’y)= Wsi(z,y) forv=0,...,m, (z,9) € Li},
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where 8p4+1 = 89 =0 and

MG={p:Q— R|p(z,v) = ) aijz'y’}
i+7<q
denotes the space of bivariate polynomials of degree not larger than ¢. For s € §, we

say that L; is an edge of s of multiplicity ¢ — r; ‘and write

oo™ =Ly,.. . Ly,...... vLnyoo. La,

n
where m=ng— ) r;.
=1
In Section 1 we construct an explicit basis of § and apply our results to crosscut-

partitions. In Section 2 we prove a recursion formula for the basis splines.

1. Construction of a basis

For given o € IR we define a class of lines {5 by: (z,y) € !, if and only if
y-J+a-(z-F)= A

If Ag,...,An-1 denote the open parts of Q as above, we say that [, is admissible if
IhNA; #0 for i =0,...,n— 1. The following geometrical lemma about admissible

lines will be helpful.

1.1. Lemma Let @ € IR and Ag # 0 be given such that [,, is admissible. Then
{» is admissible if A.Ag > 0. Moreover, for each (z,y) € A;U...UA,_; there is
A with A-Xg >0 and (z,y) € .

Since Lemma 1.1 is geometrically evident, we omit the proof.

. From now on, without loss of genéra.lity we assume that (Z,7y) = (0,0). Then the
grid line L; can be described by a;z + b;y = 0 and I\ N L; = (¢;A,d;A), where
¢ = -—rfim, d; = ;255 (note that a; — ab; # 0, because I, is admissible).

By construction, we have ¢;A < -+ < caA ore,A < -0 < A, Setting z} =
Ci+1A, m; = ¢ — riz; in the first case, and z} = ¢,_;A, m; = ¢ — rn_; in the se-

cond case, we can construct bivariate splines by considering a class of univariate splines.
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1.2. Lemma Let a € IR,\y # 0 be given such that Ao is admissible. Moreover,
let 5:§) — IR satisfy:
(i) for each A with A-Ag > 0 we have

S!IAE Sq(z37""zi—l»ﬂ4)’

where E]: (Mmoy...,Mp-1);
(i) for v =1,...,m =1 and A-Ag > 0, s |;,na, is 2 polynomial in =z and A of

total degree not larger than ¢, i.e. there are coefficients a!; not depending on A

J

such that
s, (z)= Z aj;z I\
i+7<¢q
fzedh,,v=1,...,n-1;
(iii) 8 |a,=0.
Then s € Sq(L1,...,LnjT1,...,Tn).
Proof: We prove the claim in the case ¢;A < ... < cpA. The second case can be

treated analogously.

For fixed A with A-Ag > 0, by Lemma 1.1. I, is admissible and we can define
8y := 8 |i,: R — R. Then s5(z) =0 for z ¢ [2},2)_,] and s, is a univariate
spline of degree ¢ and smoothness ry,. ...,r,. . Thus there are univariate polynomials

Pux € Og_r, —1(z) satisfying
n-1
sx(z) =) (e-20_)¥H - pualz),
v=1

and s)(z) = (za_; — )3t - Paa(z) i 7 € [enm1 A cnl],

where aT denotes the well-known truncated power. Moreover, for 1 < u < n-1, (z,y) € '

A, and y+ a-z = A by condition (ii) we have

s(z,9) = ax(x) = Y alfzi

i+5<¢q

— Z (#) :(y+a z)]
i+5<q

— E (») (:c Z(t)aj-tzj—tyz),
i+j<q =0
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(»)

and since the coefficients a,;’ do not depend on A, we have s la, € Hg .

Using condition (ii), for (z,y) € A, one obtains

(e =25 )% pua(e)

M~

3(2’ y) = 3)\(1:) =

v=1
- by +b,az,r,
=Y e+ =) ha(e)
U:l v v
- 1 +1
=Y (———)"" (@ + b)),

a, - b,a

<
L}
-

and we have to show that p, » can be written as a polynomial in z and y.
For 4 =1 and z € [z§,2}], because of condition (i) p(z,A) := sa(z) is a polynomial in
¢ and A which is divided by the factor (z —¢;A)"+!. Hence, there exists a polymomial

p€Mg_r -1(z,)) satisfying:
(z = erd) - pra(2) = sa(2)
= p(z,A)
=(z - )" B(z,)),
(1)

ij >
na(z) =5(z,)) = Z bf;)z‘/\j
i+j<g-r1-1

= > W taa)
i+i<g-n -1

and this implies that there are coefficients b not depending on A, such that

Therefore, s |a, contains the factor (a;z+b6,y)™ 1! | and this implies that all derivatives
up to the order r; exist for each (z,y) € L, .

For 1 < p<n-1,(z,y) € A, and y+ a-z = X there exist polynomials 7 €
I%(z,A), pur € M2__ _,(z,A) such that

s(2,y) = 8a(2) = B(2,A) + (2 — cuA) T - pua(2) =: p(z, N).

Then the polyromial u := p— P is divided by (z — ¢,A)™*! and thus there is 7 €
n2_,, _i(z,A)such that

Pu(z) = p(z,A)
= Z bg;-‘)zi/\j
i+j<q-r,—1

> WWeytazy

i+j<q-r, -1
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with suitable coefficients bf.;-‘) .
Therefore, all derivatives of s up to the order r, exist for (z,y)€ L, .
Analogously one can show the existence of the derivatives at L, and in all we have

SESLy,... Lps71,.. ., T0). A

In order to apply Lemma 1.2. to univariate B-splines, we have to introduce some further

n
notations. We describe lines !,...,I™, m = ng— Y r;, by the equations a‘z +b'y = 0,
=1
. bi
set ¢! = by asy =yt

(23, .,22) = (c*A,...,c™A) el <o <™,

and

(z3,...,22) = (c™A,...,c!)) fc™A< - <t

Since we want to use the recursion formula for B-splines, at first we treat some special

B-splines which can be used as starting points for the recursion.

1.3. Lemma Let « € R, Ay # 0 be given such that [,, is admissible, and
assume thereis 1 < p < n with 7, = 0. If for A- A > 0 Bf\'q denotes the
univariate B-spline of degree q with respect to the points z} < --- < zf‘+q+1, and if

L,y e {z}, ...,z 41}, then the function

8:) — IR defined by

_ At BY(z) fory+a-z=A
s(2,9) = {0 for (z,y) € Ao

isin Sg(L1y.. yLn;T1y...Tn).

Proof: By construction, s satisfies. condition (i) and condition (iii) of Lemma 1.2.
and we only have to show that condition (ii) is fulfilled. It is clear that Bf\'q has a knot
of multiplicity ¢ and thus there is j € {i,i+ 1, + 2} such that z;\ = "‘“’?4-9-1 =
L,Nl, foreach A with A-Ag > 0. Without loss of generality, again we can assume that
dr<... <™

We prove by induction on ¢.

For ¢ = 1, all considered knots are simple knots and s, is given by

z—c') i\ < g < citl
~ 1 WEE;W , C.A STSC /\
\2) = g g | i2rE ey et <z <t
0 , elsewhere.
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By construction, s, is a univariate spline on [, and of course A?- s, , too. Obviously
A% . 35 restricted to the subintervals is a polynomial in z and A of degree one with
coefficients that do not depend on A, and therefore, by Lemma 1.2., s€ S .

If our claim is true for ¢ — 1, we distinguish three cases.

Case 1: j = i. Using the well-known recursion formula for univariate B-splines (cp (6],
p-120) we obtain a B-spline B! of degree ¢ —1 with respect to the knots < <
£}y 441 such that

. 1 . .
B:\v"(z) = (@FeFi Zay A ((:L' -c /\)Bg(m) + (c‘+q+1,\ _ :r)B}‘(:r)),
where
i+gq q-1 . .
0 elsewhere.

By the induction hypothesis the function §:Q — IR, defined by

- _JA.Bl(z) ify+a-z=2A
“z”)‘{o if (z,y) € Ag

satisfies conditions (i)-(iii) of Lemma 1.2. . Since also A?- B |, is a polynomial in z
and A of degree ¢ — 1, s satisfies condition (ii) of Lemma 1.2., too.
Case 2:j = i+ 1. Since z} and z;\+q+1 are knots of multiplicity one, whereas x;\_H =

ce=ad , has multiplicity ¢, A?t? -Bf\"-' can be given explicitly by the formula

. . g%gg. if A < z < 1)
g+1  pi.g - ‘ . . :
MBE) = G | St i oA <o < ety

0

elsewhere.
Obviously A9*1. B}? satisfies condition (ii) of Lemma 1.2. .
A

Case 3: j = ¢+ 2. This case can be treated analogously as Case 1. A

With the help of Lemma 1.3. one can extend arbitrary univariate B-splines to bivariate

splines in S

1.4. Theorem Let a € R, Xy # 0 be given such that [,, is admissible. If
(n—1)¢>K: =24+ 3> r, andfor A- X >0 B;"’ denotes the univariate B-spline
v=1

of degree q with respect to the points x;\ <-.- <L z;\+q+1, then the function

$:! — IR defined by

_ [ At BYYz) fory+a-z=2A
s(z,9) = {0 for (z,y) € Ay

isin Sq(L1y...yLnir1,y...y70)
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Proof: Without loss of generality we assume that ¢!A < --- < ¢™)\. Since (n-1)g >
K , there is at least one 7 € {1,...,m} such that a B-spline. Bf\"’ exists for each A with
A-Ag >0 . We prove by induction on q.

For ¢ = 1 the theorem was proved in Lemma 1.3. . If the claim is true for ¢ — 1, we
distinguish two cases.

Case 1: Thereis u € {1,...,n} such that r, =0 and L, =¥,5€ {4,...,i+ ¢+ 1}.
Then Lemma 1.3. can be applied. )
Case 2: r, > 1 foreach u with L, € {I*,...,I**9*1} . Then by the univariate recursion

formula there are continuous B-splines BY, B} of degree ¢ — 1 such that

== (2~ ENAT BY(2) + (91— 200 - B ().

q+1  pig -
AT B (2) = o

Since by induction hypotheses A?-B% and A?- B} satisfy conditions (i)-(iii) of Lemma
1.2., also A+1. B} satisfies condition (ii). But conditions (i) and (iii) are fulfilled by

construction of Bf\"’ , and so the theorem is proved. A
Using these extended B-splines, we now build up a basis of Sg(Ly,...,Lp;71,...,70).
It is clear that for given knots y; < --- < y, and smoothness parameters ry,...,7, a

B-spline supported in [y;1,ys] exists if and only if (n — 1)¢ > K . Therefore we define
- [K -1

“la-1

|+1= min@enN|(n-1)2K)

and set k:=¢—-g+1. For u=1,...,k we choose parameters a, € IR,A, # 0 such
that the lines I), , defined by y+ a, -z = A, are admissible.

For p=1,...,k, Ny =(n-1)(¢g-p+1)-—K+1 and i = 1,...,N, we con-
sider the univariate B-spline B;""’“*’l of degree ¢ — u + 1 with respect to the knots
L) z;‘_,_q_p_,_,(y) , Where the knots z;‘(u) are constructed analogously to the knots
z; with respect to the degree ¢ —u+1 and multiplicities g—p+1-r1, for A-Xg > 0.

Then we can define

A?—"H,Bf”"H € Sq(L1,...,Lp;r1,...,7a) by
AT (z,y) = { M=t BT (G) iyt a, oz =),

0 if (z,y) € Ao,
and
u—1
BI™* N (z,y) = AT (2,y) - [J(w + ajz = 2),
Jj=1

where the last product is said to be one if g = 1. It turns out that the splines B ~#*!

build up a basis of §.
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1.5. Lemma The functions B{™**',u = 1,...,k, i = 1,...,N, are linearly
independent.
Proof: We assume that
N“

k
Z Zﬂ“-’ BI"#*tl = .

u=1i=1
We show that 8,, =0 for v=1,...,k, p=1,...,v,2=1,...,N,.

For v =1 and (z,y) € In, we have y+ a;z — A; = 0 and therefore
Bi(z,y) = Al(z, M — ayz) = A{TT. Bf\'lq(z)

for t=1,...,N;, whereas B:-"““(:::,y) =0 for g > 2. Thus

Ny )
ML B By () =0

=1
and since the univariate B-splines are lineraly independent, we have 8, = 0 for i =
1,...,Ny.

Assuming now that 8,;=0 for u=1,...,v — 1, we obtain

k Ny p-1
S5 B 4 a,y) - T + 52— Ap) =0,
p=v i=1 i=v

where the last product is said to be one for 4 = v. Then by restricting this equation to
{,, we analogously obtain 8,; =0 for ¢ =1,...,N,, and thus for v = k the claim is

proved. A
Now we can formulate our main theorem.

1.6. Theorem Let (Z,7) €  be given.
(i) I (n—1)g< K, then S¢(Ly,...,Ln;71,...,74) = {0}.
(i) If (n~1)g > K, then let admissible lines /5, be given by y—F+a,(z—7Z) = A,.
The set
B={BI ™" (z-Z,y-9)|u=1,....k,i=1,...,N,}

g—n+1
i

is a basis of S¢(L1,...,Ln;T1,...,Tn), where the functions B are constructed

with respect to the lines y + o,z = A, and to the grid lines L, - (Z,7).

10
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Proof: Obviously we can assume (Z,7) = (0,0).

At first, we assume that (n ~ 1)¢ < K. Then for s € § and an arbitrary line |
through Ag,...,An_1, 8 |; is a univariate spline the support of which is contained in
(23,20 _K+2)- Since ng— K +2 < g+ 2 we have that s|,;= 0 and thus s =0.

For (n—1)¢ > K we set

Su:=span(A!7* | i=1,... N, C Sy(Ly,y...,LniT1y. .. ™n).

We prove the following claim:

For s € §, there are s; € 51,...,8, € 5, s* € Se-u(Ly,...,La;7r1,...,7) such that
s=s1+h-(sa+b (- (su+1lu-8%)--)),

where li(z,y) =y + aiz ~ A;.

For p =1 we choose points u;,i =1,..., Ny, on [), such that
t; € [z;\‘,zf_;q_,_l] = support B;'l" with u; = (¢;, z;).
By the theorem of Schoenberg and Whitney (cp. [4]) there is one and only one
3 € span (B;':' li=1,...,N) = §q(;'ti\‘, !znq K+2)
satisfying 3(¢;) = %;lfp‘x)-

N . N,
If §= 3 BiBiY, weset s, = 3 Al € S, and obtain

=0 i=0
Ny
si(uy) = Z ﬂ,-A?(‘u..,)
=1

N,
= Zﬂv\i“ - By(t.)
= ’\q+1 -8(ty) = s(u).

Since the points t; satisfy the Schoenberg-Whitney-condition for univariate splines, ! A

is a zero-line of s — s; and therefore there is s' € §;_1(Ly,...,Ln;7y,... ,Tn) With

8(.’!,3/) - 31('7"1 y) = 11(1‘7 y) : 31(z7y)'

If the claim is proved for u — 1, we can treat s*~! and I», analogously to s and !,,

and obtain

7Nz, y) = 8u(2,9) + Lu(2,9) - *(z, ),

11
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where s, € S, and s* € Sq_,(L1,...,La;71,...,7n) which proves the claim.
For p =k weget s* € Sq_x(Ly,...,Ln;T1,...,7a) = {0}, because (n—1)-(¢g—k)< K,
and this implies

s=s1+h-(sa+l- (- (k=14 k1 8k) )

=s1+hsy+hlsa+ -+ Ll -l g3,

j=1 .

By construction of s; we have s;- [] /, € span (B{™7*' | i = 1,...,N,) and there-
v=1

fore s € span (B). Since by Lemma 1.5. B is linearly independent, it is a basis of

Sq(Lyy.. .y LniTiyevyTh). A
Now the dimension of the considered spline space can be computed easily.
1.7. Corollary For (n - 1)g > K we have

dim Sq(L],...,Ln;’I‘l,...,‘I‘n): k. (1_K+(n_ 1)(q+1)__ .(k-{-—l)z(n;l))’

where K =2+ i r, and k=¢q— [K"ll].

n—
v=1

Proof: By construction of B we have
k
dim Sq(Liy--+y Lait1,-.sTa) = D (= 1)(g—i+ 1)~ K +1)
=1

=k(1- K)+k(n-1)(g+1)- k(k+ 1;("" D)

A

If r, =r for v = 1,...,n, this dimension formula coin?:ides with the result given
by Chui [2] and Schumaker [6]. Therefore, the basis for crosscut-partitions which was
developed in (2] can be simplified by using our approach without solving systems of linear
equations. Indeed, the functions s; ;. being computed in [2] by solving linear equations,

can be replaced by the basis functions
Bi~#+Y (g _ gz y— iy p=1,.. ki, v=1,...,N,,

where (z;,¥:) are grid points of the crosscut partition, k; = q¢ — [L,f-‘_;!l—] JKi =24+ n;r

and n; is the number of crosscuts intersecting in (z;, ;).

12
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2. Recursion formulas

For univariate B-splines there are well-known recursion formulas that are numerically
stable. Since thebasis B of S,(Li,...,Lyn;71,...,7s) is built up by extending univariate
B-splines it is not surprising that also in this case recursion formulas hold. To develop
such formulas, we have to change our notation. Throughout this section we assume that
A< ... <c™) (thecase ¢™A <...< cl) can be treated analogously). In contrast to
Section 1 we do not fix the smoothness parameters 7;, but consider the multiplicities of

the lines L;. For this purpose we set m; = ¢ — r; and obtain

Li...Ly=1'. qmym+t | M2 Ma -

)

where Mi=m; +...+ miym=M, and IM-1*! = =M =L, Wesaythat L; is
an edge of multiplicity m; for s € So(L1,...,Ln;T1,...,70),set I(3) = {4,...,i4+q+1}
and J(i)= {j| L; € {I,...,I'*9%!}} and define

P eI(@)|1r =L} | ifje (i),

i.e. we just count, how often L; appears among [*,...,I"*9%! Then we can set
AL, 09y = AT € §o(Ly, ...y Lnjq — WY, q — Tn),

where all splines are constructed with respect to admissible lines Iy : y+ az = A, a
fixed. 4
It is clear that for given ¢ and ry,...,7, by construction A9(l’,...,1"+9+1) coincides

with A7 € Sy(Ly,...,Ln;T1,...,Tn), but
AVYE, Y e So i (L, Lajg— 1~ Y,...,q—1— mt)

and in general
ATV YY) ¢ Se_i(Lyye ooy LniTrye ey Tn)

as the following example shows.

2.1. Example Weset n=4,g=3,r; =rp=r3 =74 = 1. Then A"}(},...,B8) €
S2(Ly,...,L4;0,0,1,1) is supported by the angle between L; and L, but A‘l'_1 €
Sa(Ly,...,L4;1,1,1,1) is supported by the angle between L, and Ly.

and l’(z,y) = a'z + b'y. Then the following recursion

i . _ 1
Moreover, we set d' = ——p—

formula holds.

13
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2.2. Theorem If (n—1)¢> K and AI(l%,...,I"*9%1) has no edge of multiplicity
g, then

. . 1 . . .
AU 1) = G g (@A e

_ di+q+11i+q+1Aq-l(li+l’ e 1i+q+l)).

Proof: For (z,y) € Ao everything is clear. For (z,y) € A, U...U A,_; and

¥+ az = A we have

AV, 1Y) (z,y) = AT By (z)

Adt! i 1,q-1 i+g+1 i+1,q-1
= oo (@ = CNBY T @) + (TN — 2) By (z))
1

= s (1 - da)z = cy) At (F, L 1¥9) 2, y)

+ ((ci+q+la — 1)$ + ci+q+1y)Aq—l(1i+l,. . ,li+q+1)(z,y))
1

= cH_q+—1_c¢(di’i(2,y)A°_l(1‘,.--,li+q)(2,y)
_ d*+°+11‘+q+1(z,y)A"'l(l‘*‘,,, . ,I"+q+1)($,y)).
Here By?"! is the univariate B-spline with knots z),...,z% . A
A ) t+g

To complete the description of the computation of the basis functions, we give formulas

for basis splines which possess an edge of multiplicity ¢.

Case 1: I'=...=1%9-1 g5 2 if [i+e = [i+e+1
1 (d'l')y - (—di*arite)i™?
citetl _ g’ ( (ci+9 = ci)e

- gitatl | i+t .Aq—1(1€+l,' N ",‘+q+1')),

AY(E,... ety =

where I'*1 is an edge of multiplicity g — 1 for A(I*+1,. .. Iite+1),

Case 2: [+l = . = [i+e,

AT, (g y) =

1 {%‘2—‘;%5))’% if (z,y) € A

—_— _gita+1jitg+l . .
ot+a+l _ pi ( d(c-'+c+lx —vc.+(l§;y))v if (:z:,y) € AV |
Case 3: I"*2 = = [i+9+1 g5 9 if i = [i+1
1

Aq(li,...,li+q+l) = m . (dt _li . Aq—l(li,_ “,li+¢l)

(_dd+q+11i+q+1)+ . (di+lli+l)q+—l)
(citatl — gitl)g ’

14
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where ['*? is an edge of multiplicity g — 1 for AY=Y([*,... 1i+9),
Case 4: g = 2,1 = [+ [i+2 = [i+3,

2

 i+3 | 17843

AX, 1y = -

This formulas can be proved by using the well-known formulas for univariate B-splines
(cp-[6]).
Another example how to make use of the structure of the basis splines is the following

remark which extends the univariate partition of unity.

2.3. Remark We assume that c!A < ... < e™A for A-Xg > 0,07 # 1P+ (n—1)g—
K+1>j>q+1 and (z,y) lies between I/ and I’+!. Then
j . .
>0 (HH — ) Al(e,y) = (y+ a2

1=j-q

Proof: With y+a-z = A we have

J .
3 (¢HH — &) Al(z,y) = Z AL (™9 — o) - BY¥(2)

i=j—q Coi=j—q

J
=A% ) (A ¢)) - BY(x)

i=j—q
b
A A i
= Z (Tiq41 — 2i) - BY(z)
i=j—gq

=X =(y+a-a),

because the splines (z2,,,; — z) - B}Y are the so-called normalized B-splines which

form a partition of unity (cp. [6], p.125). A
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