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Abstract: We give a basis for bivariate spline spaces on crosscut partitions which can

be computed without solving systems of linear equations. In particular, we develop a

recursion formula for these basis functions that cannot be written as polynomials or

truncated power functions.
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Bases for Bivariate Spline Spaces

O. Introduction

Th. Riessinger

One of the main problems in the theory of spline spaces is to compute their dimension and

to construct basis functions. In the case of one variable, these problems have well-known

solutions: if knots

a = Yo < Yl < .. 0 < Yk+ 1 = b

and multiplicities M = (mI, 0 0 • , mk) are given, then the spline space is defined by

Sq(Yl,o", Yk, M) := {s E C[a,bJ I Si := S I[Yi,Yi+d E llq and

(v)() (v)() £Si-l Yi = Si Yi or 1/ = 0,0.0, q - mi

and i = 1, ... , k }.

A basis can be constructed by using polynomials and truncated power functions, but a

local basis consisting of so-ca.lled B-splines is of more interest.

Since we are interested in spline spaces satisfying certain boundary conditions, we study

the following situation: let M = (mo, .. 0 , mk+l) be given and set

Sq(Yo" 0" Yk+l, M) := {s E C(IR) I 3lla,b) E Sq(Yl"" ,Yk, M),

3(X) = 0 for x ~ Yo and x ~ Yk+l,

iv)(yo) = 0 for 1/ = 0, ... , q - mo,

s(v)(Yk+d = 0 for 1/ = 0, ... , q - mk+t}.

Then a basis of Sq is built up by the B-splines

where

m = mo+" .+mk+l and [Xi, ... ,Xi+q+l](x-t)~ is the divided difference ofthe function

f(t) = (x - t)~ over the points Xi, ... ,Xi+q+l' It is well-known that support (Bl) =

[Xi,Xi+q+tl and Br satisfies a recursion relation (cpo [6]).

The aim of this paper is to develop a kind of B-spline basis for certain spaces of bivariate

splines. Let n ~ 1R2 be a simply connected domain and Ll be a crosscut partition of

n (Leo L\ is built up by straight lines r 1, ... , rN , so-called crosscuts which cross the
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who)e domain n). A basis of such aspace is given by C.K.Chui and R.H. Wang in [2J

consisting of polynomials, truncated power functions with respect to the lines r I, ... , rN
and same spline functions which cannot be given explicitly but have to be computed by

solving systems of linear equations.

In this paper we will show how these functions can be computed without solving linear

eqtiations and will give a recursion formula. In fact, we deal with the following more

general problem: let (x, y) E JR2 and lines LI,"" Ln be given in the following way:

Figure 1: Partition of n

For Tl,"" Tn E JNo we define a bivariate spline space

by

S := {s E C(n) I So = s I ßo = O,Si ~ S I ßi E rr~ for i = 1, ... , n - 1,
ev ev

oxaoybSi-I(X,y) = Oxa01lbSi(X,y) for 11 = O, ... ,Ti, (x,y) E Li},
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where Sn+1 = So = 0 and

2 { "" i"}IIq:= p: n --+ IR I p(x, y) = ~ ai,jX yl
i+j~q

Th. Riessinger

denotes the space of bivariate polynomials of degree not larger than q. For sES, we

say that Li is an edge of s of multiplicity q - riand write

11, ... , lm = LI," . , LI,'" ... , Ln" .. , Ln,

n

where m = nq - L: ri.
i=l

In Section 1 we construct an explicit basis of S and app1y our results to crosscut-

partitions. In Section 2 we prove a recursion formu1a for the basis splines.

1. Construction of a basis

For given a E IR we define a dass of lines h by: (x,y) E l>. if and on1y if

y - y + a. (x - x) = A.

If ~o, ... , ßn-1 denote the open parts of n as above, we say that I>. is admissible if

I>. n ~i i- 0 for i = 0, ... , n - 1. The following geometricallemma about admissible

lines will be helpful.

1.1. Lemma Let a E IR and AOi- 0 be given such that ho is admissible. Then

l>. is admissible if A' AO> O. Moreover, for each (x I y) E ~ 1 U ... U ßn-l there is

A with A' AO> 0 and (x,y) EI>..

Since Lemma 1.1 is geometrically evident, we omit the proof.

From now on, without 10ss of generality we assume that (x,y) = (0,0). Then the

grid !ine Li can be described by aiX + biy = 0 and h. n Li = (CiA,di>'), where

ci = - a;~abi' di = a;~~b; (note that ai - abi i- 0, because h. is admissible).
By construction, we have Cl>' < ... < cn>. orcnA < ... < Cl>'. Setting Xf =

Ci+l>', mi = q - ri+l in the first case, and Xf = Cn-i>', mi = q - rn-i in the se-

cond case, we can construct bivariate splines by considering a dass of univariate splines.
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1.2. Lemma Let a E IR, >'0 1= 0 be given such that >'0 is adrnissible. Moreover,

let s: n - IR satisfy:

(i) for each >. with >.. >'0 > 0 we have

where M = (mo, ... ,mn-I);

(ii) for LI = 1, ... , n - 1 and >. . >'0 > 0, s IhnAu is a polynornial in x and >. of
total degree not larger than q, Le. there are coefficients aij not depending on >.
such that

B IIA (x) = L aiixi>.i
i+j$q

if x E 6.11, LI = 1, ... , n - 1 ;

(iii) s lAo = O.

Then sE Sq(L1, ... ,Ln;Tl, ..• ,Tn).

Proof: We prove the claim in the case Cl>' < ... < cn>.. The second case can be

treated analogously.

For fixed >. with >.. >'0 > 0, by Lemma 1.1. h is admissible and we can define

B>. := B ,,~: IR - IR. Then 8>.(X) = 0 for x f/. [x6,x~_d and 8>. is a uni~iate

spline of degree q and smoothness Tb"" Tn. Thus there are univariate polynomials

Pli,>' E ITq-ru-1(x) satisfying

n-l

8>.(X) = L(x - x:_d~+I .PII,>.(X),
v=1

where a+ denotes the well-known truncated power. Moreover, for 1 ::; J1. ::; n-1, (x,y) E

6." and y + a . x = >. by condition (ii) we have

8(X,y) = 8>.(X) = L a~j)xi>.i
i+i$q

= L a~j)xi(y + a. x)i
i+i$q

= L a~j). (xi. t G) ai-txi-tyt),
i+i$q t=O
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and since the coefficients a~j) do not depend on >., we have s IA••E II; .

Using condition (H), for (x,y) E t::.~one obtains

~
sex, y) = SA(X) = 2)X - X~_lr~+l . PV,A(X)

v=l

and we have to show that PV,A can be written as a polynomial in x and y.

For J.L.= 1 and xE [x6, Xf], because of condition (ü) p(x, >') := s>.(x) is a polynomial in

x and >. which is divided by the factor (x - C1>,Yl+1. Hence, there exists a polymomial

ji E IIq-rl -1(x, >') satisfying:

(x - C1>.rl+1 . P1,A(X) = SA(X)

= p(x, >')

= (x - Cl>' P+1 . ji( X , >. ),

and this implies that there are coefficients b~}), not depending on >., such that

P1,A(X) = p(x, >') =

= I: b~})xi . (y + a. x)j.
i+j~q-rl-1

Therefore, SIAl contains the factor (a1x+b1yYl+1 , and trus implies that all derivatives

up to the order Tl exist for each (x, y) E LI .

For 1 < J.I. ~ n - 1,(x,1I) E t::.~ and y + a . x >. there exist polynomials p E

II;(x,>.), p~,>. E II;_r•._l(X,>.) such that

s(x,y) = SA(X) = p(x,>') + (x - c~>.r..+l . P~,A(X) =: p(x,>').

Then the polynomial u := P - 15 is divided by (x - c~>.y..+l and thus there is ji E

II;-r •.-1(x, >') such that

P~,>.(x) = ji(x, >')

=
i+j~q-r ••-1

I: b~j)Xi(y + a. x)j
i+j~q-r ••-1
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with suitable coefficients b~j) .

Therefore, all derivatives of s up to the order r~ exist for (x,y) E L~.

Analogously one can show the existence of the derivatives at Ln and In all we have

In order to apply Lemma 1.2. to univariate B-splines, we have to introduce some further
n

notations. We describe lines z1, ... , Lm, m = nq - 2: Ti, by the equations aix + biy = 0,
i=l

set

and

. bi
c' - ---- a'-b'o'

Since we want to use the recursion formula for B-splines, at first we treat some special

B-splines which can be used as starting points for the recursion.

1.3. Lemma Let a E IR, '\0 :f 0 be given such that h.o is admissible, and

assurne there is 1 :5 j.J. :5 n with T~ = O. If for ,\',\0 > 0 B~,q denotes the

univariate B-spline of degree q with respect to the points xt :5 ... :5 xt+9+1' and if

L~ n L>. E {xt, ... ,xt+q+1}' then the function

s : n --+ IR defined by

( ) _ {,\q+1 . B~.q(x) for y + a. x = ,\
s x, y - 0 ( )for x,y E ßo

is in 8q(L1>"', Ln; Tb' •• ,Tn).

Proof: By construction, s satisfies condition (i) and condition (ili) of Lemma 1.2.

and we only have to show that condition (ü) is fulftlled. It is clear that B~,q has a knot

of multi pli city q and thus there is j E {i, i + 1,i + 2} such that xJ = ... XJ+q-l =
L~ nh for each ,\ with ,\',\0 > O.Without 10ss of generality, again we can assume that

cl,\ :5 ... :5 cm,\.

We prove by induction on q.

For q = 1 , all considered knots are simple knots and s>. is given by

1
s>.(x) ='+2 'Cl - Cl

7
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By construction, s>. is a univariate spline on L>. and of course A2. s>. , too. Obviously

A2 . s>. restricted to thesubintervals is a polynomial in x and >. of degree one with

coefficients that do not depend on A, and therefore, by Lemma 1.2., sES.

If our claim is true for q - 1 , we distinguish three cases.

Case 1: j = i. Using the well-known recursion formula for univariate B-splines (cp [6),

p.120) we obtain a B-spline Bi of degree q - 1 with respect to the knots X;+1 ~ ... ~

x;+q+l such that

B~.q(x) = ( .+ +1
1

') >. ((x - ci>')B~(x) + (Ci+q+1>. - x)Bl(x)),c' q - Cl .

where

{

Ci+q >.-x q-l. .

B~(x) = c' q-c' q.),q if c'A ~ x ~ c,+q>.
o elsewhere.

By the induction hypothesis the function s: n --+ IR, deflned by

-( ) _ { >. q • B1(x) if y + Q • X = A
s x,y - 0 if (x,y) E Llo

satisfies conditions (i)-(iii) of Lemma 1.2 .. Since also Aq. B~ I~" is a polynomial in x

and >. of degree q - 1, s satisfies condition (ü) of Lemma 1.2., too.

Case 2: j = i+ 1. Since x; and X;+q+1 are knots of multiplicity one, whereas x;+1 =

... = x;+q has multiplicity q, >.q+l . B~.q can be given explicitly by the formula

if Ci>. ~ x ~ ci+l >.
if ci+q >. ~ x ~ ci+q+l >.
elsewhere.

Obviously >.q+l. B~,q satisfies condition (ü) of Lemma 1.2 ..

Case 3: j = i+ 2. This case can be treated analogously as Case 1.

With the help of Lemma 1.3. one can extend arbitrary univariate B-splines to bivariate

splines in S.

1.4. Theorem Let Q E IR, >'0 :I- 0 be given such that L>.o is adrnissible. If
n

(n - l)q ~ K := 2 + 2: TII and for A. Ao > 0 B~,q denotes the univariate B-spline
11=1

of degree q with respect to the points x; ~ ... ~ x;+q+l' then the function

s :n - IR defined by

{
Aq+l' Bi,q(x) for y + Q' X = A

s( x, y) = 0 ), for (x, y) E Llo
is in Sq(Ll, ... , Ln; Tl,'" , Tn).
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Proof: Withoutlossofgeneralityweassumethat cl>':$ ... :$ cm>.. Since (n-1)q ~

K , there is at least one i E {1, ... , m} such that a B-spline .B~.q exists for each >. with
>. . >'0 > 0 . We prove by induction on q.

For q = 1 the theorem was proved in Lemma 1.3 .. If the claim is true for q - 1 , we

distinguish two cases.

Case1: Thereis J.'E{l, ... ,n} suchthat TJ.'=O and LJ.'=ij,jE{i, ... ,i+q+l}.

Then Lemma 1.3. can be applied.

Case2: TJ.' ~ 1 foreach J.Lwith LJ.' E {li, ... ,lHq+I}. Then bytheunivariaterecursion

formula there are continuous B-splines B~, Bi of degree q - 1 such that

>.q+1 . B~,q(x) = . 1 . ((x - ci >.)>.q. B~(x) + (cHq+1 >. - x)>.q . Bi(x)).
cl+q+l - Cl

Since by induction hypotheses >.q. B~ and >.q. Bi satisfy conditions (i)-(iü) of Lemma

1.2., also >.q+l. B~,q satisfies condition (ii). But conditions (i) and (iii) are fulfilled by

construction of B~,q , and so the theorem is proved. 6.

Using these extended B-splines, we now build up a basis of Sq(L1, ... ,LniTI, ... ,Tn).

lt is c1ear that for given knots YI < ... < Yn and smoothness parameters Tl,"" Tn a

B-spline supported in [YllYn] exists if and only if (n - l)q ~ K. Therefore we define

[
K - 1]q:= -- +1=n-l min (t E IN I (n - l)t ~ K)

and set k:= q - q + 1. For J.L = 1, ... , k we choose parameters 0.# E IR, >'1-' f. 0 such

that the lines h.,. , defined by Y + 0.1-' • X = >.# are admissible.

For J.L = 1, ... ,k, NI-' := (n - l)(q - IJ + 1) - K + 1 and i = 1, ... ,N# we con-

sider the univariate B-spline Bl,q-#+1 of degree q - J.L+ 1 with respect to the knots

xf(J.L), ... ,xt+q-IA+2(IJ), where the knots x7(J.L) are constructed analogously to the knots

x7 with respect to the degree q - J.L + 1 and multiplicities q- IJ + 1- Tv for >.. >.0 > '0.

Then we can define

and
J.'-1

Br-#+l(x,y) = A~-I-'+l(X,y), rr (y + o.jX - >'j),
j=1

where the last product is said to be one if J.' = 1. It turns out that the splines BrlA+1

build up a basis of S .
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1.5. Lemma

independent.

The functions Br-IJ+I,J.L = 1, ... ,k, = 1, ... ,N IJ. are linearly

Proof: We assurne that

k NI'

L L ßlJi Br-IJ+I == O.
1J=1i=l

We show that ßlJi = 0 far 11 = 1, ... ,k, J.L = 1, ... ,11, i = 1, ... ,Nw

For 11 = 1 and (x,y) E 1>'1 we have y + OIX -.Al = 0 and therefore

for i = 1, ... ,NI, whereas Br-IJ+l(x,y) = 0 for J.L~ 2. Thus

and since the uruvariate B-splines are lineraly independent, we have ßI,i = 0 for ~ =
1, ... ,NI.

Assuming now that ßIJ,i = 0 for J.L= 1, ... ,11 - 1, we obtain

Ic NI' IJ-IL LßIJ,i' A~-IJ+I(x,y). I1 (y + QjX - .Aj) == 0,
IJ=IIi=l j=1I

where the last product is said to be one for J.L = 11. Then by restricting trus equation to

1>." we analogously obtain ßII,i = 0 for i = 1,., . ,Nil, and thus for 11 = k the claim is

proved. 1:1.

Now we can formulate our main theorem,

1.6. Theorem Let (x, y) E n be given.

(i) If (n - l)q < K, then S q(LI, , .. , Ln; Ti , ... , Tn) = {O} .

(ii) If (n - l)q ~ K, then let admissible lines 1>.1' be given by y - y +QIJ(x - x) = .AIJ'

The set

B - {Bq-IJ+1( - - -) I - 1 k' - 1 N }- i x-x,Y Y J.I.- "", ,~- , ... , IJ

is a basis of Sq(LI, ••• , Ln; Tl,"" Tn), where the functions Br-IJ+I are constructed

with respect to the lines y + 0lJx =.AIJ and to the grid lines LII - (x, y).
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Proof: Obviously we can assurne (x, y) = (0,0).

At first, we assurne that (n - 1)q < K. Then for 8 E S and an arbitrary line

through D-o, ... , Don-I, 8 I/ is a univariate spline the support of which is contained in

[xf,X~q_K+2]' Since nq - K + 2< q + 2 we have that 81/= 0 and thus 8 == O.

For (n - 1)q ~ K we set

We prove the following claim:

For sES,thereare SI ESI, ... ,s~ES~, 8~ESq_~(LI, ... ,Ln;rl, ... ,rn) suchthat

where li(X, y) = Y + QiX - Ai .

For J.I.= 1 we choose points Ui, i = 1,... ,NI, on 1>'1 such that

By the theorem of Schoenberg and Whitney (cp. [4]) there is one and only one

- (Bi q I' 1 N) S-( Al Al )8 E span >.'1 & = ,... , 1 = q Xl , ... , Xnq_K +2

NI

81(Uv) = LßiAl(Uv)
i=l

NI

= LßiA~+1 . B~'lq(tv)
i=1

= A~+1 . s(tv) = 8(Uv)'

Since the points tj satisfy the Schoenberg- Whitney-condition for univariate splines, IAl

is a zero-line of S - SI and therefore there is 81 E Sq-l(Lll ... ,Ln;rl, ... ,rn) with

8(X, y) - 81(X, y) = lt(x, y) . sl(x, y).

If the claim is proved for J.I. - 1, we can treat 8~-1 and I>.,. analogously to 8 and 1>.1

and obtain

11
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where S~ E S~ and S~ E Sq-~(LI, ... ,Ln;rI, ... ,rn) which proves the claim.

For J.L = k we get sk E Sq-k(LI, ... ,Ln; Tl,"" Tn) = {a}, because (n-1) .(q-k) < K,

and trus implies

j-I
By construction of Si we have Sj' TIllI E span (Brj+l I i = 1, ... , Nj) and there-

11=1
fore sEspan (8). Since by Lemma 1.5. B is linearly independent, it is a basis of

Now the dimension of the considered spline space can be computed easily.

1.7. Corollary For (n - 1)q ~ K we have

. . _ ( (k + 1)(n - 1))dIrn Sq(L1, ... ,Ln,r1,'" ,Tn) - k. 1- K + (n -1)(q + 1) - 2 '

whe re K = 2 + t T 11 and k = q - [~.=-l].
11=1

Proof: By construction of B we have

k

dim Sq(L}, ... ,Ln;T}, ... ,Tn) = I)(n-1)(q- i+ 1) - K + 1)
i=1

= k(1- K) + k(n _ 1)(q + 1) _ k(k + 1~(n - 1).

If TII = T for 11 = 1, ... , n, trus dimension formula coincides with the result given

by Chui [2] and Schumaker [6]. Therefore, the basis for crosscut-partitions wruch was

developed in [2] can be simplified by using our approach without solving systems oflinear

equations. Indeed, the functions Si,j,t being computed in [2] by solving linear equations,

can be replaced by the basis functions

Bq-~+1(X - x. y - y.) IL - 1 k. 11 - 1 N11 ". , r - ,... ,,, -, ... , ~,

where (Xi, Yi) are grid points of the cross cut partition, ki = q - [~i;::i],Ki = 2 + niT

and ni is the number of crosscuts intersecting in (Xi, Yi) .
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2. Recursion formulas

Th. Riessinger

For univariate B-splines there are well-known recursion formulas that are numerically

stable. Since the basis B of 5q(Ll, .•• , Ln; Tl," . , Tn) is built Up by extending univariate

B-splines it is not surprising that also in this case recursion formulas hold. To develop

such formulas, we have to change our notation. Throughout this section we assurne that

Cl). ~ ... ~ cm). (the case cm >. ~ ... ~ cl>. can be treated ana.logously). In contrast to

Section 1 we do not fix the smoothness parameters Ti , but consider the multiplicities of

the lines Li. For this purpose we set mi = q - Ti and obta.in

where Mi = ml + ... + mj, m = Mn and IMi-l+l = ... = IMi =Li. We say that Li is

an edge ofmultiplicity mi for 8 E 5q(Ll, ••• , Ln; Tl,"" Tn), set lei) = {i, ... ,i+q+ 1}

and J( i) = {j I Lj E {li, ... , li+q+l}} and define

{
ifj~J(i)

m~= I{vEl(i)IIV=Lj}1 ifjEJ(i),

i.e. we just count, how often L jappears among li, ... , Ii+q+l . Then we can set

Aq(/i Ii+q+l). Aq E 5 (L L' -i -i), ... , .= i q 1, ... , n,q-ml, ... ,q-mn,

where all splines are constructed with respect to admissible lines I). : y + ax = >., a
fixed.

It is clear that for given q and Tl,"" Tn by construction A q(li, ... , Ii+ q+1) coincides

with A? E Sq(L1, ... , Lni Tl,'''' Tn), but

and in general

Aq-l(/i, ... ,/i+q) Li S (L L ),: q-l I, •.. , niTI, ... ,rn

as the following example shows.

2.1. Example Weset n = 4,q = 3,rl = r2 = T3 = T4 = 1. Then Aq-l(ll, ... ,/3) E

52(L1, ,L4;0,0,1,1) issupportedbytheanglebetween LI and L2,but A~-lE

S2(L1, ,L4;1,1,1,1) issupported bytheanglebetween LI and L4•

Moreover, we set di

formula holds.

= 1~ and li(x,y) = aix + biy. Then the following recursion

13
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l

If (n - l)q ~ K and A Q(/', ... , /i+q+ 1) has no edge of multiplicity2.2. Theorem

q, then

Aq(/, /,+q+1) - 1 . (d'/'Aq-1(/' /'+Q), ... , - C'+Q+l - C' ' ... , ,
_ d'+Q+1/,+q+1 AQ-1(l,+1, ... , /,+q+1)).

Proof: For (x,y) E ~o everything is clear. For (x,y) E ~1 U ... U ~n-1 and

y + ax = A we have

A q(/" ... ,/,+q+1)(X, y) = Aq+1 . B~,q(x),.J
= , Aq+1 , (x _ ci A)B"q-\x) + (Ci+q+1 A _ X)Bi+1,q-1(X))

C'+q+1A-C'A >. >.

_ 1 ((1 i) i )Aq-1(/' /,+q)( )- '+ +1 ' - c a x - c y , ... , x, yc' q - c'
+ «Ci+q+1a - l)x + ci+q+1y)Aq-1(li+1, ... ,/i+q+1)(X,y))

- 1 (d"/'( )AQ-1(/' /i+Q)( )- '+ +1 ' X, Y , ••. , x, yc' Q - e'
- d'+Q+1/i+q+!(x, y)A Q-1(/'+1 , ... , /'+Q+1 )(x, y)).

Here B~,Q-l is the univariate B-spline with knots xt, ... , xt+q .

To complete the description of the computation of the basis functions, we give formulas

for basis splines which possess an edge of multi plicity q.

Case 1: /' = ... = /i+q-1,q > 2 if /,+q = /i+q+!.

A9(/', ... ,/'+9+1) = , 1 , . (d'/')+ ',(_di+q,/i+q)~-l
C.+q+l - c' (c,+q - c.)q

_ cf+q+1 ./,+q+1 . A q-1 (/'+1 , ... , 1i+9+1)),

where /i+l isanedgeofmultiplicity q-l for AQ(li+!, ... ,/i+q+l).

Case 2: /i+l = ... = /,+q.

if (x,y) E ~,

if (x,y) E ~'+1

Case 3: /i+2 = ... = /,+q+l,q > 2 if /' = /i+1.

Aq(/, /i+q+1) - 1 . (d' ./' . Aq-l(/' /i+q), ... , - e'+9+1 - c' ' ... ,

(_di+Q+!/,+q+1)+ . (d'+1/i+1 )~-l)
+ (e'+9+1 - e'+! )9 '

14
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where [i+q is an edge of multiplicity q - 1 for Aq-l(Li, ... , li+q).

Case 4: q = 2, li = li+l, li+2 = (i+3.

A2(li li+3) 2. Jidi+3 .li(i+3., ... , = - (ci+3 _ ci)3 u

Th. Riessinger

This formulas can be proved by using the we1l-known formulas for univariate B-splines

(cp.[6]).

Another example how to make use of the structure of the basis splines is the following

remark which extends the univariate partition of unity.

2.3. Remark We assume that C1A ~ ... ~ CmA for A'Ao > O,lj i-[Hl,(n-l)q-

K + 1 ~ j ~q + 1 and (x, y) lies between lj and (j+1. Then

j2: (ci+q+1 - ci). A1(x,y) = (y + Q' x)q.
i=j-q

Proof: With y + Q • X = A we have

j j2: (ci+q+1 - Ci). A1(x,y) = 2: Aq+1. (Ci+q+1 - ci). B~q(x)
i=j-q i=j-q

j

= Aq. 2: (ci+q+1A - CiA)' B~.q(x)
i=j-q
j

= Aq 2: (xt+q+1 - xt). B~.q(x)
i=j-q

because the splines (Xr+q+l - xr) . B~.q are the so-cal1ed normalized B-splines which

form a partition of unity (cp. [6], p.125). ß
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