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Abstract. We consider the problem min{f(m) :z € G, T(z) ¢ int D},
where f is a lower semicontinuous function, G a compact, nonempty set in IR™, D
a closed convex set in IR? with nonempty interior, and T a continuous mapping
from IR™ to JR?. The constraint T(z) ¢ int D is a reverse convex constraint,
so the feasible domain may be disconnected even when f, T are affine and G
is a polytope. We show that this problem can be reduced to a quasiconcave
minimization problem over a compact convex set in [R?, and hence can be solved
effectively provided f, T are convex and G is convex or discrete. In particular,
we discuss a reverse convex constraint of the form (c,z) - (d,z) < 1. We also

compare the apprdach in this paper with the parametric approach.
Key words. Reverse convex program, global optimization.

1. Introduction

In recent years, convex programs with an additional reverse convex constraint
have attracted attention of several researchers (see e.g. Hillestad & Jacobsen [3-
4], Singer [14], Tuy [21], Tuy & Thuong [22-23], Thach [16], Muu [11), Thoai [19],
Fiilop [2]). A general form of this problem is the following:

1 On leave from Institute of Mathematics, Hanoi
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minimize f(z) (1.1)

and z ¢ int-A, (1.3)

_where f is a convex function, G and A are convex sets. The difficulty of probiem
(1.1)-(1.3) comes from constraint (1.3) which is called a reverse convez constraint.
Without (1.3) the problem is an ordinary convex program. Problem (1.1)-(1.3)
belongs to a class of hard optimization problems. Indeed, if f is a constant
function, A the unit ball in R™ and G a polytope defined by a finite number of
linear inequalities, then problem (1.1)-(1.3) becomes a set containment problem
which has been shown to be NP-complete (see e.g. Freund [1]). Tuy [21] reduced
this problem under a stability condition to a sequence of linearly constrained
concave minimization problems in IR™. Up to now, the size of reverse convex
programs which can be solved to optimality is very limited.

In this paper we investigate a special class of reverse convex programs where
G is an arbitrary compact, nonempty set in JR™, and the reverse convex constraint
has the form ’

T(z) = (T1(z),Ta(z)) ¢ int D, (1.4)

where D is a closed convex set in IR? and T = (73,T%) a continuous mapping
from IR™ to IR®. QOur purpose is to show that, if we have available an efficient

algorithm to solve the problem
min{f(z):z € G, tiTi(z) + t2T2(z) > a}, (1.5)

then we have an efficient algorithm to solve problem (1.1), (1.2) and (1.4) as
well. In many cases problem (1.5) is easy to solve, for example, if Ty, T are
linear functions, f a convex function and G a convex set. This case includes the
problem

min{ f(z):z € G, {(¢c,z) - (d,z) < 1}, - (1.6)
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where f is convex, G is a convex set in IR}, and ¢ and d are vectors in IR7.

lndeod, by setting Ty (z) = {¢, ), Thle) = {d, 2y , and

- )
D={v=_(vi,0)€iR, 101 vy

1
L,

(v

we can convert problem (1.6) into problem (1.1), (1.2) and (1.4). The product
of two linear functions appears in some applications as VLSI chip design, trans-
portation or micro economics. Optimization problems dealing with it have been
considered by several authors (see e.g. Pardalos [13], Konno et al. [9-10], Suzuki
et al. [15]). We shall deal with this particular problem in Section 4. Another
example where f, Ty, T, are linear functions and G = {0,1}" leads to the 0-1
knapsack problem and can be solved by a pseudopolyrnomia.l algorithm (see e.g.
(12]).

In order to solve problem (1.1), (1.2)-and (1.4), we reduce it to a quasiconcave
minimization problem over a closed convex set in IR?. By using a cutting plane
approach for the reduced problem we obtain an effective algorithm for the problem
under investigation.

This paper consists of five sections. ‘In Section 2 we reduce problem (1.1),
(1.2) and (1.4) to a quasiconcave minimization problem in IR?. In Section 3 we
present a solution method. In Section 4 we specialize the reverse convex constraint
to a product of two linear functions and illustrate the developed method by a

numerical example. Finally, we draw some conclusions in Section 5.

2. Reduction to a quasiconcave minimization problem in the plane
Let us assume that G is a compact, nonempty set in IR™®, D C IR? is a closed
convex set with int D # @, f:G — IR is a lower semicontinuous (lsc) function,
and T a continuous mapping from IR" to /R? . The problem under consideration

has the form

min{f(z):z € G, T(z) ¢ int D}. (P)
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We assume that (P) has at least one feasible solution. Let w be a minimizer

w solves (). and we terminate. Therefore we

g 1o the case I(w) € iny [
Let Vi= D =T (w). Since T'(w) € inv D, V contains 0 in its interior. Denote
by E the polar set of V in IR%:
E:={te R*: (t,v) <1VYve V}. (2.1)

V is a neighborhood of 0, therefore the polar £ is a nonempty compact, convex

set. We define h : IR? — IR U {+o00} by
h(t) := inf{f(z) : 2 € G, {t,T(z) - T(w)) > 1}. (2.2)
Let 0 € A < 1. Then from
{z: (M + (1 - V)2, T(e) - T(w)) 2 1}
C {o: (1", T(z) - T(w)) 2 1} U {z : {3, T(z) - T(w)) > 1}

follows

RO + (1 — M)t2) > min{h(t!), h(*)}. (2.3)

Hence h is quasiconcave. Moreover h is lsc from the compactness of G, the
continuity of T and the lower semi-continuity of f.
We are now going to show that the original problem (P) can be reduced to

minimizing h over the polar set E.
We have
T(c) ¢ int D <= T(z) ~ T(w) ¢ int V, (2.4)
T(s)-T(w)¢int V<= (3t € E: (,T(z) - T(w)) 2 1). (2.5
Therefore
inf{f(z): z € G, T(z) ¢ int D} |
—inf{f(z):z€G, T(z)-T(w)¢int V} by (2.4)
—inf{f(z):z € G, t € E, (t,T(z) - T(w))> 1} by (2.5)
= inf if{(2) 12 € G, (1,T(2) - T(w)) 2 1}
—inf{h(t):t € E}.



Therefore we consider the problem

and for every t € IR? the problem
inf{f(z):z € G, (t,T(z) - T(w)) > 1}. (Ly)

Then A(t) = inf(L;). Since hislsc and E is compact, (P) has an optimal solution.
Thus we have shown
Theorem 2.1.
i) Problem (P) has an optimal solution;
ii) inf(P) = inf (P); |

141) If t* is an optimal solution of (P) and z* solves (L), then z* solves (P).

3. A solution method

Let us first introduce concepts of approximate solutions. Let {D¢,e > 0} be
a family of subsets in IR? such that Dy = int D and, for ¢ > 0, D, is a closed -
subset of int D. The constraint T(z) ¢ D, is then a relaxation of T(z) ¢ int D.

Definition 3.1.

i) = is called an n-optimal solution (n > 0) of (L), iff = is feasible for (L;)
" and f(z) < inf(Ls) + 7.
ii) z is called (n,¢)-optimal, iff ¢ € G, T(z) ¢ De and f(z) <inf(P) + 7.

Now we present an algorithm for finding an (7,€)-optimal solution of (P),
which essentially is the outer approximation method specialized for (ﬁ)

Algorithm 3.1.

Initialization.
Let Wy C IR? be a triangle containing the compact convex set E. Let U_q :=0.
Set k = 0. Enter Iteration k.



Iteration k.

set of Wy, Forallt € Ug\lUi_, determine 27(t) as an n-optimal

Let Ly = vertex

i T ST TR e et fmacila 1 I T S SRS AP ; 1
Y O L b i :C-;} is ot feasible, then set Hotiniousiy Sl 1= +o¢l.
R N P, ’ s J Ly ! ]

-Step k.a.
Let t* € argmin{ f(z*(t)) : t € Uk}, and z* := z*(t*). Go to Step k.b.

Step k.b. '
If T(z*) ¢ D., then terminate: z* is (7,£)-optimal (see the comment below).
Otherwise, go to Step k.c.

Step k.c.

Let Wiy 1= Wien {t: Zk(t) < 0}, where [ is an affine function such that
I, (t*) > 0 and lx(t) < 0 for all t € E. Go to iteration k+1.

Comments

Since z*(t) is an 7-optimal solution of (Lt). one has
h(t) < f(27(2)) < A(t) + .
Since z* is feasible for (L) one has
z* € G and (t*,T(z*) - T(w)) > 1.
Since h is quasiconcave one has
min{h(t) : t € Wi} = min{h(t) : t € Ux}.
Since £ C Wy for any k, one obtains
min(P) = min{h(t) : t € E}
> min{h(t) : t € W}

= min{h(t) : t € U}
> min{f(z*(t)) ~n:t € U} = f(z*) - . (3.1)

If termination occurs in iteration k, then the solution z* is (n,&)-optimal,

since T(z*) ¢ D, and f(z*) < min(P) + 7 from (3.1).
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If no termination occurs in iteration k, then t* ¢ E. Suppose the contrary

i

IR o f . Lo« 1 el . B 1 Ee ol AR ; .
£ Together with {5, T{2®) — T{w\) > 1 this implies T{2%) = T(w) ¢ int V

and thorefore "L’_"(‘;):*'“,) g it O, But then T-(»;z""T V£ Do, and termination would
occur. Thus, if no termination occurs in iteration k, then there exists an affine
function {, which cuts the vertex t* from E. Indeed, from t* ¢ F and from the
definition of E follows sul‘)/(t",v) > 1. Hence there exists a v* € V such that
(t*,v*) > 1. Now the aﬂefxfe function lx(t) := (t,v*) — 1 satisfies {4(¢*) > 0, while
lg(t) <0 for all t € E. Thus the function lx cuts the vertex tk from E.

W, is a triangle. Since Wy is obtained from Wj_; by adding a linear constraint,
Ui can easily be computed by using the information of Uyx_. Furthermore, for
k > 0, Uy \ Ux—1 contains at most two points. So, in each iteration k we have to

solve at most two subproblems (Ly).

We discuss now the finiteness of the algorithm.

Definition 3.2. We say that the sequence of cutting functions l; used in
Algorithm 3.1 is convergent, if every cluster point of the sequence {t*} belongs to
E.

We can find sﬁ%bien’c conditions for the convergence of the sequence of cutting

functions in e.g. Kleibohm [8] and Tuy [20].

Theorem 3.1. If the sequence of cutting functions i is convergent, then

Algorithm 3.1 terminates after finitely many iterations for every € > 0.

Proof. Assume that no termination occurs. Since {t¥} C Wy and W is
compact, there exists a cluster point t* of {t¥}. Since {z*¥} C G, G compact,
there exist subsequences t*» — t*, z*» — z* € G. It follows that (t*,T(z*) —
T(w)) > 1. The convergence of the cutting functions yields t* € E. From
(2.4) and (2.5) follows then T'(z*) ¢ int D, hence T(z*) ¢ D.. Since D, is
cloéed, this implies T'(z%+) ¢ D, for all &k, sufficiently large. But this contradicts

non-termination. O



Remark 3.1

The same algorithm can be used to solve problems of the form
I"(L‘:iz-;’i{f(:;'L‘j cw € G, Le By Wit 2 0, 13.2)

where ¥(z,-) is quasiconvex and E is a compact, convex set in IR?. In this case

the function

h(t) := inf{f(z):z € G, ¥(z,t) > 0}
is quasiconcave. The problems
inf{f(z):z € G, ¥(z,t) >0} (Ly)

are convex, if f, G are convex and ¥(-,t) is quasiconcave.

4. Reverse convex programs dealing with the product of two linear
functions
In this section we deal with the important special case of (P), where the

reverse convex constraint can be written in the form
(c,z) (d,z) <1 (4.1)
for two linearly independent vectors ¢ a;nd> d € R%. In this case
(Ty(2), Ta(z)) = ({c,2),{d,z)), and D = {v € R} : vy vy > 1}.
In principle, this problem can be written in the form:
minimize F(€)st.0< €< oo,

with

F(f—) =inf{f(z): 2z € G, (¢,z) <&, (d,z) < <}. (4.2)

The difficulty of this approach however consists in the complicated behavior

o

of the function F, implicitly defined via (4.2). For example, the function F' may
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have an infinite number of local optima (see the Example 4.1). Therefore we

specialize the method developed in the previous sections to this situation.

VRS IS IR U S B
SRR i\)JL()\\‘lug W desa Wik

min f(z) s.t. z € G and (¢, z) - (d,z) < 1, (4.3)

where we assume that f is lower semicontinuous and G is a compact, nonempty
set in JR7. Let w be a solution of min{f(z) : z € G}. If w satisfies the constraint
(4.1), then w solves problem (4.3), too. In this case the reverse convex constraint
is not essential. So, we restrict our attention to the case where (¢, w)-(d,w) > 1.

We can explicitly determine the polar set E by the following lemma.

Lemma 4.1. The polar set E of V has the form

E = {(t1,t2) : =t1{c,w) — to(d, w) — 2(t112)3 < 1, ; €0, t; <0} (4.4)

From the lemma we can easily construct a triangle Wy D E such that
Wo C R: ' (4.5)
and a cutting function sevpa.ra,ting a given point outside £ from E. Set for e > 0
D.={v=(vi,v3):v1-v3 > 1+4¢, v; 20, vy >0}.

It is 6bvious that D, is closed and D, C int D.
For any > 0, € > 0 Algorithm 3.1 yields an (7,€)-optimal solution after

finitely many iterations.

Example 4.1
Let us illustrate the foregoing ideas by the following problem in IR2.

Minimize — z —y, subject to (4.6)

2% -lg 4 (1.1-2%F1 —1)(1.1- 2% — 1)y > 2571, vk =0,1,2, - (4.7)
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02<7<22 04<y<5, (4.8)
i. (+.9)

[n this example, (7 delined by (4.7)-(4.8) is a compact, convex sef in #5. For

each £ > 0 set

F&)=inf{-z -y :'(a:,y) €EG, < y< %}

Then the function F has an infinite number of local optima. The set of local

optima of F in the segment {0.2,2.2] is

2.2

——2k—_1‘, k=0,1,2,-~-

but F has only one global minimizer at £ = 0.2. It can easily be seen that

(z,y) = (2.2,5) is a minimizer of (4.6)-(4.8). Therefore, w = (2.2,5) and

i

E = {(tl,tg) : —2.2't1 —5't2 —2(t1t2) S ]., t1 S 0, tg _<_ 0}

(see Fig.1).

Now;, let us apply Algorithm 3.1 with ¢ = 0, 7 = 0 to solve (4.6)-(4.9).
Initialization. Let Wj be a triangle defined by the intersection of R% and

the half space supporting E at (-1/5.2,—-1/5.2).

Then, Uy = {(0,0),(0,-0.25),(-1/1.2,0)};
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z*(0,0) = 0, h(0,0) = oo;

250, —0.25) = (2.2.1), h(0,~0.25) = =3.2;

P - 1/L00) = (1,5), R(=1/1
Iteration 0.

Step 0.a. t9 = (=1/1.2,0).

Step 0.b. (¢,z*(t°)) - (d,z*(t%)) =5 > 1.

Step 0.c. We choose the cutting line

%ty + A%, + 7% = 0 with o® = =1, 8% =0, 4% = —0.5 (see Fig.1)

and get as new vertices: -

U\ Uy = {(=0.5,~0.1),(=0.5,0)};

z5(—0.5,~0.1) = (0.2,5), h(=0.5,-0.1) = —5.2;

2*(~0.5,0) = (0.2,5), A(~0.5,0) = —5.2;
Iteration 1.

Step l.a. t! = (-0.5,0);

Step 1.b. (c,z*(t})) - (d,z*(¢!)) = 1 : STOP with the optimal solution (0.2,5).

5. Discussion

For the perfomance of Algofithm 3.1 we need an available efficient algorithm-
for the subproblem (L;). In the algorithm we are, in fact, considering subproblems
with only ¢t € Wy. So, an available efficient algorithm for (L) is required with
only t € Wy. In the case, where D = {(v1,v2) : vz > 1, v; > 0, vy > 0},
by virtue of (4.5) we can construct Wy C IR? . Therefore we need an efficient
algorithm for (L,) with ¢t < 0. If f, Ty, T are convex and G is a convex set, then_
(L) for ¢ < 0 is an ordinary convex program. Thus, we also obtain an efficient

method for the problem
min{f(z) : z € G, Ty(z)- Tu(z) < 1},

where T}, T, are nonnegative-valued convex functions.
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Since h is quasiconcave, a minimizer of h on E must be located at at least
one extreme point of £. Because in the plane the set of extreme points of a closed
cunvex body is contained in the boundary curve, let ¢ be the restriction of A to
the boundary curve C of £. Then problem (P) can be reduced to the problem
of minimizing g on C. This is another parametric approach for solving (P). As
mentioned in the introduction and shown in the Example 4.1, the function g may
have infinitely many local optima on C.

A duality between Quasiconvex Minimization over the complement of a con-
vex set and Quasiconvex Maximization over a convex set has recently been esta-
blished by one of the authors (see [17,18]). If we consider problem (P) as a primal
problem, then problem (13) can be considered as its dual. Thus in this case we see
that the dual problem is much easier than the primal. The approach presented in
this paper could also be extended for cases where the dimension k of D is greater
than 2. In such cases the dual program is a concave program of more than two
variables, but it is still simpler than the primal, if the dimension of the reverse
convex constraint is much smaller than n. In that case, we can use available
algorithms for linearly constrained quasiconcave minimization subproblems of k
dimensions at each iteration (see Horst and Tuy [7]).

The algorithm presented in Section 3 is an outer approximation. Recently,
branch and bound methods (see e.g. Horst (6], Horst and Tuy {7}, Tuy and Horst
[24]) became practicable for Quasiconvex Maximization. We just indicate such
an approach and leave the detailed development of such an algorithm for (]3) to

a separate work.
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