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Abstract. We consider the problem min{f(x) : x E G, T(x) tI. int D},

where fis a lower semicontinuous function, G a compact, nonempty set in JRn, D

a closed convex set in JR2 with nonempty interior, and T a continuous mapping

from JRn to JR2. The constraint T( x) tI. int D is areverse convex constraint,

so the feasible domain may be disconnected even when f, T are affine and G

is a polytope. We show that this problem can be reduced to a quasiconcave

minimization problem over a compact convex set in JR2, and hence can be solved

effectively provided f, T are convex and G is convex or discrete. In particular,

we discuss areverse convex constraint of the form (c, x) . (d, x) ::; 1. We also

compare the approach in this paper with the parametric approach.

Keywords. Reverse convex program, global optimization.

1. Introduetion

In recent years, convex programs with an additional reverse convex constraint

have attracted attention of several researchers (see e.g. Hillestad & Jacobsen [3-

4]' Singer [14]' Tuy [21]' Tuy & Thuong [22-23], Thach [16]' Muu [11], Thoai [19]'

Fülöp [2]). A general form of this problem is the following:
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minimize f( x)

subject to x f G

and x ~ int. D.,

(1.1)

(i .)~.-

(1.3)

where f is a convex funetion, G and D. are convex sets. The difficulty of problem

(1.1 )-( 1.3) comes from constraint (1.3) which is called areverse convex constraint.

Without (1.3) the problem is an ordinary convex program. Problem (1.1)-(1.3)

belongs to a dass of hard optimization problems. Indeed, if f is a constant
function, D. the unit ball in IRn and G a polytope defined by a finite number of

linear inequalities, then problem (1.1)-(1.3) becomes a set containment problem

which has been shown to be NP-complete (see e.g. Freund [1]). Tuy [21] reduced

this problem under astability condition to a sequence of linearly constrained

concave minimization problems in IRn. Up to now, the size of reverse con vex

programs which can be solved to optimality is very lirnited.

In this paper we investigate a special dass of reverse convex programs where

Gis an arbitrary compact, nonempty set in IRn, and the reverse convex constraint

has the form

(1.4)

where D is a dosed convex set in IR2 and T = (Tl, T2) a continuous mapping

from IRn to IR2• Our purpose is to show that, if we have available an efficient

algorithm to solve the problem

(1.5 )

then we have an efficient algorithm to solve problem (1.1), (1.2) and (1.4) as

weil. In many cases problem (1.5) is easy to solve, for example, if Tl, T2 are

linear functions, f aconvex function and G a convex set. This case indudes the

problem

rnin{f(x) : x E G, (c,x). (d,x) 5 I},
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where f is convex, G is a convex set in lR:'.t, and c and d are vectors in IR'+-.

iuch'cd, by setting T:(x) = (c,:c), T2(.z:)= (d,x) , <lnd

we can convert problem (1.6) into problem (1.1), (1.2) and (1.4). The product

of two linear functions appears in some applications as VLSI chip design, trans-

portation or micro economics. Optimization problems dealing with ithave been

considered by several authors (see e.g. Pardalos [13]' Konno et al. [9-10], Suzuki

et al. [15]). We shall deal with this particular problem in Section 4. Another

ex am pIe where f, Tl, T2 are linear functions and G = {O, 1}n leads to the 0-1

knapsack problem and can be solved by a pseudopolynomial algorithm (see e.g.

[12]) .

In order to solve problem (1.1), (1.2}and (1.4), we reduce it to a quasiconcave

minimization problem over a closed convex set in IR2. By using a cutting plane

approach for the reduced problem we abtain an effective algorithm for the problem

under investigation.

This paper consists of five sections. In Section 2 we recluce problem (1.1),

(1.2) and (1.4) to a quasiconcave minimization problem in IR2. In Section 3 we

present a solution method. In Section 4 we specialize the reverse convex constraint

to a product of two linear functions and illustrate the developed method by a

numerical example. Finally, we draw same conclusions in Section 5.

2. Reduction to a quasiconcave minimization problem in the plane

Let us assume that Gis a compact, nonempty set in IRn, D ~ IR2 is a closed

convex set with int D f:. 0, f :G -- IR is a lower semicontinuous (lsc) function,

and T a continuous mapping from IRn to IR2 • The problem under consideration

has the form

min{j(x) : x E G, T(x) rt int D}.
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We ass urne that (P) has at least one feasible solution. Let w be a minirnizer

of J' Or':..c;~.Ii' n.~)~ int .Li~then 'LL" 3ülves (I'». and \ve ternlinate. Therefore we

Let V := D - T(w). Since T(w) E im D,V contains ü in Its interior. Denote

by E the polar set of V in JR2:

E:= {t E JR2 : (t,v) ~ 1 "Iv E V}. (2.1)

V is a, neighborhood of 0, therefore the polar E is a nonernpty cornpact, convex

set. We define h : JR2 -- IR U {+oo} by

h(t):= inf{f(x): xE C, (t,T(x) - T(w)) 2:: 1}.

Let 0 ~ ,X ~ 1. Then frorn

{x: ('xtl + (1- 'x)t2,T(x) - T(w)) 2:: 1}

~ {x: (tl,T(x) - T(w)) 2:: 1} U {x: (t2,T(x) - T(w)) 2:: 1}

follows

(2.2)

(2.3)

Hence h is quasiconcave. Moreover' h is lsc frorn the cornpactness of C, the

continuity of T and the lower serni-continuity of j.

We are now going to show that the original problem (P) can be reduced to

rninirnizing h over the polar set E.

We have

T(x) tf. int D {=:? T(x) - T(w) tf. int V, (2.4)

T(x) - T(w) rt int V {=:? (3t E E: (t,T(x) - T(w)) 2:: 1). (2.5)

Therefore

inf{j(x) : xE C, T(x) tf. int D}

= inf{f(x) : xE C, T(x) - T(w) tf. int V}

= inf{f(x): x E C, tEE, (t,T(x) - T(w)) 2:: 1}

= inf inf {j (x) : x E C, (t, T (x) - T (w )) 2:: 1}
tEE x

= inf{h(t) : tEE}.
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Therefore we consider the problem

rnin {h(i) : t E lD},

and for every t E JR~ the problem

inf {f (x) : x E G, (t, T ( x ) - T (w )) 2: I}.

(P)

Then h(t) = inf( Ld. Since his lsc and Eis compact, (P) has an optimal solution.

Thus we have shown

Theorem 2.1.

i) Problem (P) has an qptimal solution;

ii) inf( P) = inf (P);
iii) Ift* is an optimal solution of (P) and x* solves (Lt*), then x* solves (P).

3. A solution method

Let us first introduce concepts of approximate solutions. Let {De,c: 2: O} be
a family of subsets in lR2 such that Do = int D and, for c: > 0, De is a closed .

subset of int D. The constraint T( x) ~ D e is then a relaxation of T( x) ~ int D.

Definition 3.1.

i) x is ealled an TJ-optimal solution (TJ2: 0) of (Lt), ijj x is feasible for (Lt)

and f(x) ~ inf(Lt) + TJ.

ii) x is ealled (TJ,c:)-optimal, ijj x E G, T(x) ~ De and f(x) ~ inf(P) + TJ.

Now we present an algorithm for finding an (TJ,e)-optimal solution of (P),

which essentially is the outer approximation method specialized for (P).
Algorithm 3.1.

Initialization.

Let Wo ~ lR2 be a triangle containing the c?mpact convex set E. Let U-1 := 0.

Set k := O. Enter Iteration k.
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Iteration k.

i.et U,~ := verLt':l' set 0/ 1Vk. Für aH tE lh \ Uic-l dctermine x"'(t) as an 'lJ-optimal

Step k.a.

Let tk E argmin{f(x*(t)) :t E Ud, and xk := x*(tk). Go to Step k.b.

Step k.b.

If T(xk) ~ De, then terminate: xk is (7],c)-optimal (see the comment below).

Otherwise, go to Step k.c.

Step k.c.

Let WHI := Wk n {t : lk(t) ::; O}, where lk is an affine function such that

lk(tk) > 0 and lk(t) ::; 0 for all tEE. Go to iteration k+l.

Comments

Since x*(t) is an 7]-optimal solution of (Lt) one has

h(t) ::; f(x*(t)) ::; h(t) + 7].

Since xk is feasible for (Ltk) one has

Since h is quasiconcave oue has

min{h(t) : t E Wk} = min{h(t) : t E Uk}.

Since E ~ Wk for any k, one obtains

min(P) == min{h(t) : tEE}

~ min{h(t) : tE Wd
= min{h(t) : t E Ud
~ min{f(x*(t)) - 7] : t E Uk} = f(xk) - 7]. (3.1)

If termination occurs in iteration k, then the solution xk is (7],c )-optimal,

since T(xk) ~ De and f(xk) ::; min(P) + 7]from (3.1).
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If no termination oeeurs in iteration k, then tk rt:. E. Suppose the eontrary

~ _ü s, (lüd .~er:~li1.1at ton \vou,ici

occur. rhus, if HO termination occurs in iteration k, then there exists an affine

funetion lk, whieh euts the vertex tk from E. Indeed, from tk rt:. E and from the

definition of E follows sup (tk, v) > 1. Henee there exists a vk E V such that
vEV

(tk,vk) > 1. Now the affine funetion lk(t):= (t,vk) -1 satisfies lk(tk) > 0, while

lk(t) ~ 0 for all tEE. Thus the function lk euts the vertex tk from E.

Wo is a triangle. Sinee Wk is obtained from Wk-1 by adding a linear constraint,

Uk ean easily be eomputed by using the information of Uk-l' Furthermore, for

k > 0, Uk \ Uk-l contains at most two points. So, in each iteration k we have to

solve at most two subproblems (Lt).

We discuss now the finiteness of the algorithm.

Definition 3.2. We say that the sequence of cutting functions lk used in

Algorithm 3.1 is convergent, if every cluster point of the sequence {tk} belongs to

E.

We can find su$'eient eonditions for the eonvergence of the sequence of eutting

functions in e.g. Kleibohm [8] and Tuy [20].

Theorem 3.1. If the sequence of cutting functions lk is convergent, then

Algorithm 3.1 terminates after finitely many iterations for every € > O.

Proof. Assurne that no termination oeeurs. Sinee {tk} ~ Wo and Wo is

compact, there exists a cluster point t* of {tk}. Sinee {xk} ~ C, C eompact,

there exist subsequences tk,. ---+ t*, xk,. --+ x* E C. It follows that (t*,T(x*)-

T(w)) ~ 1. The convergenee of the cutting functions yields t* E E. From

(2.4) and (2.5) follows then T(x*) rt:. int D, hence T(x*) rt:. D~. Since D~ is

closed, this implies T(xk,.) rt:.De for all kl-' sufficiently large. But this eontradicts

non-termination. 0
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Remark 3.1

Th!::. ~df1le ,"\lgo:'iLhrn ca.Tl be llsed to salve problems of the form

mi"U(x) : :t E G, tEE, '!J(:r, t) ? O},
X,t

(:3.2)

where lJ!(x,.) is quasiconvex and E is a compact, convex set in JR2. In this case

the function

h(t):= inf{f(x): x E G, lJ!(x,t) ~ O}

is quasiconcave. The problems

inf {j(x) : x E G, lJ!(x, t) ~ O}

are convex, if f, Gare convex and W(', t) is quasiconcave.

4. Reverse convex programs dealing with the product oftwo linear

functions

In this section we deal with the important special case of (P), where the

reverseconvex constraint can be written in the form

(c,x). (d,x) ~ 1

for two linearly independent vectors c and d E IR+.. In this case

(TI(x),T2(x)) = ((c,x),(d,x)), and D = {v E IR~ : VI' V2 ~ 1}.

In principle, this problem can be written in the form:

minimize F(O S.t. 0 < ~< 00,

with

F(~) = inf{j(x): x E G, (c,x) ~~, (d,x) ~ ~}.

(4.1)

(4.2)

The difficulty of this approach however consists in the complicated behavior

of the function F, implicitly defined via (4.2). For example, the function F may
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have an infinite number of local optima (see the Example 4.1). Therefore we

minf(x) S.t. x E G and (c,x). (d,x)::; 1, (4.3)

where we assurne that f is lower semicontinuous and Gis a compact, nonempty

set in IR+.. Let w be a solution of min {f( x) : x E G}. If w satisfies the constraint

(4.1), then w solves problem (4.3), too. In this case the reverse convex constraint

is not essential. So, we restrictour attention to the case where (c,w). (d,w) > 1.

We can explicitly determine the polar set E by the foUowing lemma.

Lemma 4.1. The polar set E of V has the form

From the lemma we can easily construct a triangle Wo 2 E such that

(4.5)

and a cutting function separating a given point outside E from E. Set for € > 0

It is obvious that De is closed and De ~ int D.

For any 7] > 0, € > 0 Algorithm 3.1 yields an (7], € )-optimal solution after

finitely many iterations.

Example 4.1

Let us illustrate the foregoing ideas by the foUowing problem in JR2.

Minimize - x - y, subject to (4.6)

22k-1X + (1.1. 2k+1 - 1)(1.1. 2k - l)y ~ 2k-1, Vk = 0,1,2,'" (4.7)
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0.2 ::; x ::; 2.2, 0.4 ::; y ::; 5,

~c'y:S.L.

(4.8)

(4.9)

In chis eXelrnpie. G dehned by (4.1)-(4.8) is LI.corrlpact, convex set in IRt. For

eaeh ~ > 0 set

. 1
F(O = inf{-x - y: (x,y) E C, x::;~, y::; Z}'

Then the funetion F has an infinite number of loeal optima. The set of loeal

optima of F in the segment [0.2,2.2] is

1
2.2 - 2k-1' k = 0,1,2,

but F has only one global minimizer at ~ = 0.2. It can easily be seen that

(x,y) = (2.2,5) is a mini mi zer of (4.6)-(4.8). Therefore, w = (2.2,5) and

(see Fig.l).

Now; let us apply Algorithm 3.1 with c = 0, Tl = ° to solve (4.6)-(4.9).

Initialization. Let Wo be a triangle defined by the intersection of IR:: and

the half space supporting E at (-1/5.2, -1/5.2).

Then, Uo = {(0,0),(0,-0.25),(-1/1.2,0)};
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x*(O,O) = 0, h(O,O) = 00;

i;<{O.-O.".:!.5) = ('2.2.1), h(O, -0.25) =-3.2:

.r >: ( .- L/ 1.:~. [I) "= (1 ~,S) ~ h( - L/1.2, ü) == -- t).

Iteration O.

Step O.a. tO = (-1/1.2,0).

Step O.b. (c,x*(tO)). (d,x*(tO)) = 5 > 1.

Step O.c. We choose the cutting line

aOtl + ßOt2 +,0 = 0 with aO = -1, ßO = 0, ,0 = -0.5 (see Fig.l)

and get as new vertices:

VI \ Uo = {(-0.5,-0.1),(-0.5,0)};

x*( -0.5, -0.1) = (0.2,5), h( -0.5, -0.1) = -5.2;

x*( -0.5,0) = (0.2,5), h( -0.5,0) = -5.2;

Iteration 1.

Step La. tl = (-0.5,0);

Step 1.b. (c,x*(t1)). (d,x*(t1)) = 1: STOP with the optimal solution (0.2,5).

5. Discussion

For the perfomance of Algorithm 3.1 we need an available efficient algorithm

for the sub problem (Lt). In the algorithm we are, in fact, considering subproblems

with only t E Wo. So, an available efficient algorithm for (Lt) is required with

only t E Wo. In the case, where D = {(V}'V2) : VIV2 ;:::.1, VI ;::: 0, V2 ;::: O},

by virtue of (4.5) we can construct Wo ~ JR~. Therefore we need an efficient

algorithm for (Ld with t ~ O. If f, Tl, T2 are convex and Cis a convex set, then

(Lt) for t ~ 0 is an ordinary convex program. Thus, we also obtain an efficient

method for the problem

min{f(x) : xE C, TI(x). T2(x) ~ I},

where Tl, T2 are nonnegative-valued convex functions.
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Since h is quasiconcave, a minimizer of h on E must be located at at least

Olle extreme point oi' E. Becallse in the plane the set of cxtr,"me points of a closed

cur;\'c'.\ !Jud,v lS contained in th(-~ boundal'.Y ctlrv(:~ let q be thQ r(:striction of h to

Lho bouuddry curveC of E. T1Ien problelll (P) can be reduced to thc probiern

of minimizing 9 on C. This is another parametric approach for solving (P). As

mentioned in the introduction and shown in the Example 4.1, the function 9 may

have infinitely many local optima on C.

A duality between Quasiconvex Minimization over the complement of a con-

'lex set and Quasiconvex Maximization over a convex set has reeently been esta-

blished by one of the authors (see [17,18]). If we consider problem (P) as a primal

problem, then problem (P) can be considered as its dual. Thus in this case we see

that the dual problem is much easier than the primal.The approach presented in

this paper could also be exten.ded for cases where the dimension k of D is greater

than 2. In such cases the dual program is a concave program of more than two

variables, but it is still simpler than the primal, if the dimension of the reverse

convex constraint is much smaller than n. In that case, we can use available

algorithms for linearly constrained quasiconcave minimization subproblems of k

dimensions at each iteration (see Horst and Tuy [7]).

The algorithm presented in Section 3 is an outer approximation. Recently,

branch and bound methods (see e.g. Horst [6]' Horst and Tuy [7]' Tuy and Horst

[24]) became practicable for Quasiconvex Maximization. We just indicate such

an approach and leave the detailed development of such an algorithm for (P) to

aseparate work.
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