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Chapter 1

Introduction

One of the most common institutions in a society is the long-term relation-
ship. Activities which can be done either with varying or with permanent
partners include social or professional relations, participation in the labor
market or coauthoring. We observe that in most of these activities, we are
linked with a fixed set of agents: The largest share of current employment
contracts is of long-term nature. The marriage usually is celebrated with the
intention to maintain the relationship until one partner dies.

Strangely enough, the option to maintain or to quit relationships is largely
ignored in the theory of repeated games and its experimental counterparts:
mostly, an agent’s opponents are given exogenously, i.e. they are fixed or
there is random matching in every period. With this option, the strategic
opportunities in a repeated games setting may change dramatically. Con-
sider, for example, the infinitely repeated prisoner’s dilemma. In a setting
with fixed opponents, it is simple to punish deviant behavior of opponents
by playing a strategy like tit-for-tat. However, if a player can quit the rela-
tionship and switch to other opponents immediately, such a punishment will
no longer be a threat. We have to find other mechanisms which implement
cooperation.

In this thesis, we therefore study social interaction of the following form:
each agent of a large population plays a game of conflicting interests—as, for
example, the prisoner’s dilemma—with some opponent in each period. After
observing the partner’s action choice, each player has the option to main-
tain or to quit the current relationship. If the first action is chosen by both
agents, they will play the game together in the next period, otherwise they
return to a “market” for long-term relationships and will be matched ran-
domly with another opponent. The matching process in the market is global



and non-assortative: everybody can be matched together with anybody and
own behavior does not affect the probability of being paired up with an agent
who plays a certain strategy. Furthermore, there are no information flows
between pairs. With (small) positive probability, a relationship is broken up,
regardless of the agent’s action choice. Thus, it is unlikely that there is no
agent in the market whenever the population is large.

Note that in each period of the game, the population is divided into two
parts: Fixed relationships in which agents choose to stay with their current
opponent and the market for long term relationships, in which agents are
matched randomly.

In the first part of the thesis, we analyze the outcome of this game by us-
ing the standard game-theoretic approach. We extend the Folk Theorems of
Friedman (1971) and Fudenberg and Maskin (1986) to games of this form,
and establish a structural difference between models with finitely and in-
finitely many agents: In an infinite population, the probability of meeting
the same opponent another time after the relationship with her has been
broken up, is zero. There cannot be punishment by the same opponent after
a deviation. Whenever there are only finitely many individuals in the popu-
lation, one may well meet the same opponent again though the relationship
was broken up voluntarily in the last period. We therefore can show the
following: while with finitely many players any individually rational aver-
age payoff can be reached, this is not possible with infinitely many agents in
games of conflicting interests. However, it is possible to establish a Folk The-
orem for the latter case, using a strategy which prescribes to “start small”:
at the beginning of a new relationship, both agents play a profile with low
payoffs—the Nash outcome of the stage game, for example—and start to co-
operate in later periods. Whenever a player deviates from this path of play,
the opponent chooses to quit the relationship. Thus, any gain from deviation
is wiped out by the subsequent play of a profile with low payoffs in the new
relationship.

However, this solution has serious shortcomings:

e Without further assumptions, a strategy which prescribes to “start
small”, is not robust against communication: given that all other play-
ers in the population stick to the described pattern, it is optimal for two
agents who meet in the market for the first time, to start the relation-
ship with the cooperative profile immediately. This would not violate
any incentive constraint. However, if all pairs act in this way, we are



no longer in equilibrium. Gosh and Ray (1996) solve this problem by
introducing heterogeneous time preferences: a fixed share of players
is myopic while the rest of the population is patient to some extent.
Thus, a period of less cooperation at the beginning of a new relation-
ship serves to “test” the opponent’s patience. However, as long as we
do not make this assumption, we do not have a convincing solution for
the considered game.

e The second disadvantage of the existing solution is more fundamental
to game theory: the equilibrium concept requires knowledge of the op-
ponents’ strategies. Especially for large populations, this assumption is
unrealistic. Conventional solutions leave open the question how agents
manage to reach an equilibrium in the absence of abundant sophistica-
tion. Also note that in the considered game, there are many equilibria,
including a situation in which agents never cooperate.

We therefore pursue a different approach in the remaining two parts of this
thesis. Agents are no longer assumed to have knowledge about the aggregate
play in the market. Our main goal is to show that in the absence of knowl-
edge of aggregate play, a large share of the population will play a very simple
and intuitive strategy in a stable, equilibrium-like situation: this strategy is
“cooperate in every period and maintain the relationship if and only if your
opponent does so as well”. In particular, we are concerned with the dynamics
in the population, i.e. how aggregate behavior evolves over time and under
what circumstances a cooperative outcome can be reached.

In the second part, agents are boundedly-rational: they are myopic and
do not have the ability to follow history-dependent strategies. Strategies are
very simple heuristics, in particular “never cooperate and quit every rela-
tionship” and “cooperate and maintain the relationship if and only if your
opponent cooperates as well”. There is nothing like a punishment phase at
the beginning of a relationship. Agents have sometimes access to information
about what behavior is on average the most successful one in the population.
They imitate this strategy whenever the period payoff in the current rela-
tionship is smaller than the average payoff of the most successful strategy.
With small probability, they switch to another strategy randomly and quit
the current relationship, i.e. they choose to “experiment”.

We can show that in this framework, cooperative behavior emerges in the
population if both the imitation and experimentation rate are sufficiently
small. The share of cooperative long-term relationships only increases if the
share of cooperators in the market is not too small over a larger number of



periods, i.e. if cooperators in the market do not switch to the non-cooperative
strategy too fast. Additionally, if too many agents imitate in each period,
the share of cooperative players in the market—and therefore the average
utility of non-cooperative players—is sufficiently high, such that cooperative
long-term relationships are broken up, as many individuals switch to the
non-cooperative strategy.

In order to relax the assumption on the imitation rate, we then introduce
heterogeneity into the population: an agent does not want to interact with
any agent of the population, but prefers to meet individuals with certain
characteristics or manners. Long-term relationships only can exist between
agents who “get along with each other”. The period payoff a player receives
increases by a fixed amount if she gets along with her current opponent,
regardless of the strategies played by agents. Thus, the strategy “never co-
operate and maintain the relationship if and only if you get along with your
opponent”, becomes attractive if the probability of meeting such an opponent
in the market is sufficiently small. Under the assumption of heterogeneity
of players, we maintain the same result as in the homogeneous setting, but
without a boundary on the imitation rate: even though almost all agents
switch to the most successful strategy in each period, learning agents adapt
to the cooperative strategy in almost all periods if the experimentation rate
is sufficiently small.

In this chapter, we emphasize the importance of imitation as a form of naive
learning which leads to a cooperative outcome. We will see that other forms
of naive learning—as for example fictitious play or regret matching—do not
have this attribute in the considered game.

We do not have to assume that players are boundedly-rational and myopic in
order to maintain cooperative outcomes in simple strategies. In the last part
of this thesis, agents once again understand the trade-off in the game above,
but still have no knowledge about the aggregate play of individuals in the
market. They know that one can play according to a non-cooperative strat-
egy, which prescribes to defect in each period of a relationship, or according
to a cooperative strategy, which leads to a cooperative long-term relationship
if both agents follow this strategy. We allow for “starting small” strategies,
but in particular we are interested in the outcome if the cooperative strategy
prescribes to start with cooperation immediately.

With a restricted strategy space, agents learn their current opponent’s strat-
egy in finitely many periods. Their subjective believe about the aggregate
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play in the market is based on past experiences. If almost none or almost ev-
erybody of her previous opponents played according to the non-cooperative
strategy, it is optimal for the agent to play according to this strategy as well.
If she made mixed experiences—opponents sometimes played cooperatively,
sometimes not—then it is optimal for her, to play according to the coopera-
tive strategy.

As updating rule we take various forms of “fictitious play”, initially intro-
duced by Brown (1951) as a means of calculating Nash-equilibria and ex-
tensively studied thereafter. Under fictitious play, each player assumes that
her opponents are playing according to a stationary distribution. In each
round, every individual plays a best response to the empirical frequency of
his opponent’s play.

In a first step, we assume that there are infinitely many agents in the pop-
ulation. Analytically, and by simulating the model, we derive conditions
under which a significant degree of cooperation can be expected. For a large
measure of initial distributions of beliefs, aggregate play converges to a co-
operative outcome. This remains true if strategies are very simple and pun-
ishment within a relationship is not possible. The result is a population in
which different agents make different experiences in the market and therefore
act differently even if aggregate play remains constant.

In a second stage, we extend the model to finite populations and show that
the dynamics are similar to the infinite case if there are sufficiently many
agents.

The thesis is organized in such a way that the chapters can be read in-
dependently of each other. As the chapters are closely connected, this in-
volves a certain degree of repetition for readers who read through the entire
manuscript at the benefit of readers who read the chapters selectively. All
references are collected in the bibliography.
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Chapter 2

Cooperative Equilibria in
Repeated Games with
Endogenous Matching Decision

2.1 Introduction

The literature on Folk Theorems in infinitely repeated games in most cases
considers one of two common settings: Either an agent is forced to play
some stage game against a fixed set of opponents all the time—see Fried-
man (1971), Maskin and Fudenberg (1986)—or she plays against different
opponents in each period—see Ellison (1994) and Kandori (1992). In neither
case agents have the opportunity to decide on the maintenance of the current
relationship.

In this paper we establish versions of the Folk Theorem for games in which
this option exists: A n-player stage game is played repeatedly and simultane-
ously by many groups. These groups are matched randomly, but the members
of each group can decide whether they want to maintain or quit the current
relationship. Any player can leave her group in order to be matched to other
opponents. An agent only observes the history of her own matches, i.e. the
identity of current and former opponents and the actions they have chosen
in the periods in which she played the stage game with them. There are
no information flows between the groups. We assume that for every player
there is a positive (but small) chance of being deleted from the set of players
and replaced by a new agent. Therefore, the set of agents to be matched
randomly in the next period is always non-empty with positive probability.
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Compared to the standard repeated games setting we only introduce the
multiplicity of n-player groups and the exogenous rate of detachment from
the set of players.

Our main interest is the equilibrium set of action profiles and expected av-
erage payoffs which can be supported by some strategy. We show that for
finite population size the Folk Theorems of Friedman (1971) and of Maskin
and Fudenberg (1986) hold, i.e. every payoff vector which strictly dominates
a Nash equilibrium of the stage game (or every individually rational payoff
vector respectively) can be supported as an expected average payoff when-
ever the set of players is stable enough and the discount factor is sufficiently
high. This result relies on the fact that, even if there is the opportunity to
quit a relationship, a player may not find new opponents immediately when
all other players choose to stay in their groups.

When the set of players is of infinite size, every agent is able to switch to
other opponents immediately. However, it is possible to support the repeated
play of profiles which are not Nash equilibria of the stage game: All agents
start a long-term relationship by choosing a low payoff profile in the first
periods of a new group. After this time they play the desired profile as long
as the match exists. Whenever some player deviates, each agent of the group
quits the relationship. If the discount factor is sufficiently high and agents
remain in the set of players for sufficiently long time, the gains from any
deviation of any player will be wiped out by the subsequent period of low
payoffs in the next match. With this strategy it is possible to approximate
many efficient expected average payoff profiles arbitrarily closely.

Furthermore, we investigate how to construct efficient strategies for fixed
values of the discount factor and the probability of detachment in both the
infinite and the finite setting. For certain stage games of interest—Ilike the
prisoner’s dilemma—it is possible to show that no other strategy combination
dominates the described patterns of behavior. In these cases we get a clear
justification for the existence of long-term relationships in repeated games in
which players have the opportunity to maintain or to quit relationships.

The rest of the paper is organized as follows: The next section introduces
the basic model. The main results for the case of infinitely many agents are
derived in section 3.1, in section 3.2 we show that for some stage games it
is possible to show the optimality of the supporting strategies. In section
3.3, we discuss the concept of “bilateral rationality” which is related to the
strategies of this section. Chapter 4.1 presents the main result for the model
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with finitely many agents. In chapter 4.2, we apply it to a stylized version
of a labor market model. Section 4.3 shows how to combine the strategies of
the third and fourth chapter in order to establish cooperation. In chapter 5,
we provide an overview of the related literature. The last chapter concludes.

2.2 Outline of the Model

Time is discrete in our model and periods are marked by ¢ = (0,1,2,...).
Denote by C;(t), i € (1,...,n), sets of countably many agents where

| Gi(t) [=] C5(8) [=m (2.1)

for all 4,5 € (1,...,n), all periods ¢, and m € NU (c0) is a constant. Hence,
C(t) = U, Ci(t) is the set of all players in a given period ¢ and m is the
number of matches who play the stage game simultaneously in each period.
An agent from the set C;(t) will be called an agent from class i. As we will
focus on equilibria in which all agents of class ¢ follow the same strategy, we
do not introduce notation for individual players.

Let ¢ € (0,1] be the probability that nature replaces a single agent who
was a member of C;(t) by a new agent in the set C;(t + 1) at the beginning
of period t+ 1. Let a new agent in period ¢ be a player who is not in the sets
Ci(7), 7 < t, but is in the set C;(t). We say that an agent of class i is deleted
from the set of players in period ¢ if she was in the set C;(t) but not in the
sets Cy(T), 7 € (t+1,t+2,...). The probability o > 0 is equal for all classes i.

Call a group of n agents of different classes a match r. Every match plays
in each period a finite stage game g. The stage game ¢ can be any normal
or extensive form game of complete information. Agents from the sets C;
always take on position ¢ in ¢ and have the pure finite action set A;. An
element of this set played by an agent of class i in period ¢ is denoted by al.
The set of all available pure and mixed actions of an agent of class 7 is ;.
The space of all pure action profiles then is A = x A; while the space of all
action profiles is ¥ = x3;.

After the game has been played and payoffs are realized, each player has the
opportunity to quit or to maintain the relationship with her current oppo-
nents. The extended action set for an agent of class i therefore is ¥; x {Q, M }
where the decision to play @ (quit) or M (maintain) may be conditional on
the outcomes of g in the recent and preceding periods. If all players of a
group r choose option M in period ¢, then they play the stage game against

15



each other in period ¢ + 1 unless one or more players of r are deleted from
the set of agents.

In a given group of agents r, the position of player ¢ is said to be “vacant” at
the beginning of period t+1 if either the player of class ¢ was deleted from the
set of players at the end of period t or the respective player chose to quit the
relationship in ¢. By the assumption in (2.1), the number of vacant positions
for players of class i coincides in each period with the number of those agents
of the same class who either are new in the set of players or chose @) in the
previous period. We further assume that all possible ways of pairing up those
vacant positions and agents occur with the same probability. Hence, if m is
finite, there is a positive probability for each agent to be matched together
with the same opponents even when she chose () in the previous period.

Example 1. To illustrate the matching process we label the individual
players in this example. Assume that m = 2 and there are 4 classes of play-
ers, (', Cy, C3 and C; where each class ¢ contains the agents a; and b; in
period t. The groups in period t are given by

[ a1 [ az ] as]a]

e [5a [ 3s [ Br]

If all players except b3 choose M in period t then the second match (the
second line) will be the same in period ¢t + 1 if and only if

e 1o agent from the set {by, by, b3, by} is replaced by a new player and

e a3 is not replaced by a new player or as is replaced by a new player
but this player is matched to the group {ai,as,as} and b3 again is
grouped together with his previous opponents (where the probability
of this event would be 3).

If all agents except az and b3 choose M in period ¢ then the groups will be
the same in period ¢ + 1 if and only if

e no agent is replaced by a new player and

e a3 is matched to the group {ai,as,as} and by to the group {by,bs, by}
(where again the probability of this event would be %)

Finally, if all agents from the set {aq, as,as, as} choose M in period t while
all other agents choose (), then the groups will be the same in period ¢+ 1 if
and only if no agent is replaced by a new player. [End of example]
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For convenience, we introduce the following two definitions: A match r is
“formed” in period t if its members were not in one group in period t — 1. A
match r is “dissolved” in period t if its members are not matched together
in period ¢t + 1.

In order to convexify the equilibrium set, we assume throughout the pa-
per that a public signal 6 is realized in every period. It takes on all real
values in the interval [0, 1] with equal probability.

The sequence of events in every period is as follows:

(i) New agents enter the set of players. Together with those agents who
chose @) in the previous period they are paired up randomly to matches
with the respective vacant positions.

(ii) A public signal is realized.
(iii) All agents choose their actions, payoffs are realized.

(iv) After observing the opponents’ action choice, each agent chooses be-
tween the options M and Q).

(v) Nature decides which agents leave the set of players.

Each player knows only the history of her own matches, i.e. she has perfect
recall with respect to her former opponents’ identities and what actions they
chose in the periods she was matched with them. Denote the respective
history of an agent in period ¢ by h;. Thus, each entry of h; consists of an
action profile a € A and the opponents’ identities. The space of all histories
at t is given by H,. Let

H=|]JH, (2.2)

be the set of all finite histories. Agents are not informed about the action
choice simultaneously made in other matches. Beliefs are given by the equi-
librium strategies. Our solution concept will be subgame perfect equilibrium.

A strategy f* of class i of players has two parts: the action-choice, f{, and
the matching-decision, fi. The former is a function

fi:H— Y, (2.3)
while the latter one is given by a function

fi:HxY —{Q,M}. (2.4)
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Denote by fl the belief of an agent of class i about all other agents’ strategies.
The utility of a player of class i is given by a continuous function I, : 3 — R.
An action profile x € 3 yields the utility m;(z) for class i. Agents discount
utility with § € [0,1] and maximize over the sum of discounted expected
utility in the current period ¢

B Fot) = S 6B m(an) | £, (2.5)

T=t

where E is the expectations operator induced by f%, m and o.

The assumption of a constant ¢ is crucial: It implies that agents cannot
gain by conditioning behavior upon the number of periods in which their
current group was matched together or the duration of their affiliation to the
set of players. Hence, the repeated game maintains a recursive structure. We
denote the described game with I'(g, d, 0, m).

Some more notation is needed: Let V¥ be the set of all Nash equilibria
of g (which of course is non-empty). Assume that y* € ¥ (where k is some
index). A best response of players of class i to the profile y*, is denoted by
yf * The minimax profile for class i is given by z* and the respective payoff
1s
(1t = i (). 2.

m(z') = min maxm(z;, ) (2.6)
All payoff profiles m with 7; > m;(z*) for all i are called individually rational.
Let V' = co(n(z) | « € ¥) be the set of feasible payoffs. Then the set of
individually rational payoffs is

Vi={reV|m>m),iec(l,..,n)} (2.7)
Of importance will be the set of payoff profiles which dominate some convex
combination of Nash outcomes. Define UNE = co(n(z) | z € XVF), i.e. the
convex hull of all Nash payoff profiles. Then the required set is given by

VNE —treV |IreUNE iq; > 7,0 € (1,...,n)}. (2.8)

We will speak of a mixed profile x when a collection of pure profiles X =
{x',...,2*} C A, ie. the support of z, is played according to the realization
of §. Thus, the probability that a certain profile 2! is played is given by a
function py : A — [0,1]. The expected payoff from the mixed profile x for a
player of class i is then given by

mi(x) =Y po(a')mi(ah). (2.9)

18



Sometimes we will refer to x as a combination of Nash profiles with support
X C ¥VF and to y as a combination of some action profiles with support
Y C ¥. See Fudenberg and Maskin (1991) and Sorin (1986) for discussion and
possibilities to avoid the assumption of public randomization under certain
conditions.

2.3 Cooperative equilibria in games [' with
infinitely many players

2.3.1 On the support of cooperative outcomes

In this section we analyze the support of profiles which are not elements of
YVE in games I with m = oco. With infinitely many groups, the probability
that two players meet again when their previous match has been dissolved,
is zero. The most obvious difference to the traditional results for infinitely
repeated games with observable outcomes is captured in our first observation:

Observation No action profile y € ¥ which is not an element of ¥NF can
be supported to be played by all groups in all periods in a Nash equilibrium of
the game T'(g,6,0,00).

Proof: Assume that all matches play y in every period. As y & XV¥ for at
least one class i of players there is a best response y? with m;(y%,y_;) > m(y).
As o > 0, the probability that she is matched to new opponents is 1 when-
ever she chooses to quit the current relationship. Then a player of class ¢ can
deviate profitably by playing y? and Q in every period.

Q.E.D.

The statement implies that in games with conflicting interests like the pris-
oner’s dilemma (PD), V* or VVE cannot be the equilibrium sets of expected
average payoffs even when ¢ is very close to 1. As long as there are infinitely
many agents to be matched at the beginning of each period, every player has
the outside option to switch to new opponents immediately. If the sum of
discounted expected utility in the next match is not lower than in the current
one, there is no reason to avoid the dissolution of r or a change in the current
opponents’ behavior.

However, there is at least one possibility to implement the repeated play

of profiles which are not Nash equilibria of the stage game: At the beginning
of a new relationship r a Nash profile (or a combination of Nash equilibria)
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x is played by r for T periods. After this time, the players of r switch to a
profile y which yields higher payoffs for every member of the group. When-
ever an agent fails to choose the prescribed action, all of his opponents quit
the relationship. T is chosen such that any gain that could be attained by a
deviation of some class of players is wiped out by the disadvantage a player
has to incur when matched to a new group which again starts to play the
Nash profile.

Although we assumed time to be discrete, we can treat T like a continu-
ous parameter: If the current match was formed in period ¢, then in period
t + [T] + 1 (where the brackets here denote the highest integer smaller than
T) the players randomize via the public signal whether they play y or x in
the current period. The probability for the latter event is then given by the
number T — [T7].

In the following we will call this behavior a “two-stage strategy”, which is
associated with the first stage profile x, the second stage profile y € ¥ and
the number T of periods in which the inferior profile x is played after a new
match is formed. Let F;((x,y),T) be the sum of discounted expected payoffs
of a new agent of class ¢ if all groups in the population play the correspond-
ing two-stage strategy. The same term is also the continuation value for a
player of class ¢, whose group dissolved in the last period. Note, that the
sum of expected discounted average payoffs for each player of class i is equal
or higher than E;((x,y),T).

Our first result establishes that two-stage strategies constitute a subgame
perfect equilibrium whenever T is chosen large enough, the discount factor is
sufficiently high and agents remain in the set of players for a sufficiently long
time. We will call a profile y to be “implementable” if it is played repeatedly
in a match after finitely many periods subsequent to the formation of this
match:

Lemma la For any action profile y € ¥ with w(y) € VNE there are values
0 <1 and o >0, such that y is implementable in a subgame perfect equilib-
rium of I'(g, 9, 0, 00) whenever § > § and o < &.

Proof: see Appendix.

The first stage profile x must not necessarily be a Nash equilibrium of ¢

and hence, in some stage games the second stage profile y does not have to
dominate a combination of Nash outcomes. We can modify lemma la such
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that any y that dominates a profile x, can be implemented whenever the
payoff structure of g exhibits certain properties:

Lemma 1b For any action profile y € 3 for which there exists a pure action
profile x such that
mi(y) > mi(a}, i) > mi(x) (2.10)

for all i, there are values 6 < 1 and & > 0 such that y is implementable in a
subgame perfect equilibrium of I'(g,0,0,00) whenever § > ¢ and o < . For
mixed profiles x with support X C X, the same is true if

max{m; (22", 2! )} < mi(y) (2.11)
zleX
and
mi(y) — mi(x) > max{m(x?’l, xlﬂ) — m(a:l)} (2.12)
zleX

hold for all i.
Proof: see Appendix.

Not every profile with individually rational payoffs is implementable by a
two-stage strategy. To see this, consider the following stage game where
player 1 chooses rows, player 2 chooses columns and player 3 chooses be-
tween the matrices X and Y:

X L M R
T | 10,10,10 | 10,1,1 | 0,0,0
M| 11,1 |0,0,0 | 0,10,0
B| 000 | 000 | 0,00

L M R
10,10,1 | 10,1,1 | 10,10,10
1,1,10 | 1,10,0 | 10,10,10
1,1,10 | 1,1,10 | 1,1,10

@ =3 <

The minimax payoff for all players is 0 and thus, the profile {M, L, X'} is
individually rational. Every player has the opportunity to deviate profitably
from this profile so we need to find a (possibly mixed) first stage profile with
smaller payoffs on all coordinates. Whenever the first [the second] player
chooses B [R], player 3 can get a payoff of 10 by choosing Y, so the probabil-
ity that a profile {B, ., X} or {., R, X'} is played in a period of the first phase
cannot exceed 0.1. Then only {M, M, X} and {M, M,Y} remain to be an
option (they get a payoff of 0 for at least one player). As these profiles yield
a payoff of 10 for player 2 they again must be chosen with a probability less
than 0.1. Hence, {M, L, X} cannot be implemented by a two-stage strategy.
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However, if we consider only two-player games, then under certain restric-
tions every individually rational payoff profile is implementable:

Lemma 1c If n = 2 and 2', i € {1,2}, are pure action profiles for both
players, then for any action profile y € ¥ with w(y) € V*, there are values
§ <1 and & > 0, such that y is implementable in a subgame perfect equilib-
rium of I'(g, 0, 0, 00) whenever § > 6 and o < &.

Proof: By definition, m;(z") > m;(a;, z* ;) for all a; € A; and i € {1,2}. As
y is individually rational it holds that

miy) > mila') > mia; 2ly) (2.13)
for both players. Use x = (x; %, 2% ;) as the first stage profile. Then condition

(2.10) is satisfied and the result follows from lemma 1b.
Q.E.D.

The requirement that the minimax strategies must be pure action profiles
can be dropped if we furthermore assume that the randomization of individ-
ual players is observable.

The outcome of cooperative equilibria supported by two-stage strategies can-
not be pareto-efficient. The “punishment” has to be carried out at the be-
ginning of every group, although no agent of r ever deviated. Nevertheless,
in the limit we can approximate all pareto efficient payoff profiles © with
7 € VNP as an expected average payoff in an equilibrium arbitrary closely:

Theorem 1

For any payoff vector @ in the interior of VNE, there are values of § < 1
and & > 0, such that a m with 7; > 7; for i € {1,...,n} can be supported
as an expected average payoff of new players of class © in a subgame perfect
equilibrium of the game I'(g, 0,0, 00) whenever § > 6 and o < &.

Proof: see Appendix.
It is important to see that 7 must be in the interior of V¥ even in the
no-discounting case as long as ¢ is positive: A group is matched together

for finitely many periods with probability 1, and at the beginning of every
match there is always a period of reduced payoffs.
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Payoff profiles 7(y) with 7(y) € VNE can also be approximated as an ex-
pected average payoff when y is implementable by a first stage profile with
the properties required in lemmas 1b or 1c. However, a convex combination
of such payoff profiles may not be implementable as lemma 1b and 1c place
additional requirements on the first stage profile x. Thus, in general not
all pareto efficient outcomes in the interior of V' can be approximated as an
expected average payoff.

2.3.2 Extension: Efficient equilibria in two-stage strate-
gies

For fixed values of § < 1 and ¢ > 0 we cannot expect every payoff profile
m € VVE to be implementable. It also may not be the utility maximizing
strategy to choose a pareto optimal second stage profile y if it is imple-
mentable. The reason for this is that there may be—depending on the stage
game g—a tradeoff between the size of payoffs and the required number of
periods in which the inferior profile x is played. In this section we will try to
characterize the optimal behavior of agents in games I'(g, §, o, 00).

We first state the maximal expected average payoff 7; for a new player of
class i when a two-stage strategy is played which uses z as first and y as
second stage profile:

Lemma 2 For given values of § and o, let a profile y € A be implementable
with x € X as first stage profile. Then, in a subgame perfect equilibrium of
['(g,9,0,00), the mazimal expected average payoff for a new player of class i
attainable by a two-stage strategqy using those two profiles is given by

T =mi(x) + 6" (1 — o) " [mi(y) — mi(x))], (2.14)
where T € R is the minimal value such that

W0 =0T (1= 0)™  mily),y-i) = mily)

(1-o0) 50 oy 2 mly) —mie) (2.15)

holds for all classes 1.

The respective calculations can be taken from the proofs of theorem 1 and
lemma 1la.

Assume that in a certain stage game g there are two profiles y and y im-
plementable with m;(y) = m(y) for all classes | # i and m;(y) < m;(y) for one
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class 7. Additionally, for at least some class j, a deviation would be more
profitable, i.e.

mi (00 0—5) — 75 (T, T=3) > 75 (), y—3) — w3 (w5, 9—5).
As equation (2.15) has to hold, we would have to increase 7. From (2.14)
we immediately see that the expected average payoff for each class of players
decreases whenever T increases. Thus, there is a tradeoff between the pay-
off of the second stage profile and the required duration of the first stage:

The optimal two-stage strategy in a game I'(g, d, 0, 00) depends on the payoff
structure of the stage game g and the parameters ¢ and o.

Example 2. Consider the following game where player 1 chooses rows and
player 2 chooses columns:

D | C1| C2
D | 00 |5-1|65
Cl| -15 | 44 | 0,0
C2-412]00 | 5,4

There are two cooperative profiles, {C'1,C1} and {C2,C2}, where the sec-
ond one is more favourable to player 1. Assume that 6 = 0,75 and o0 =
0,01. With (2.15) one can verify that with these values both {C1,C1} and
{C2,C2} can be implemented with the Nash outcome {D, D} as first stage
profile. In order to implement the second profile, the duration of the first
stage would be 4.15 periods and the corresponding expected average payoff
for the first player—given by (2.14)—would be 1.39. This is considerably
smaller than if we would implement {C'1,C1}, which only requires 0.31 pe-
riods of Nash play and therefore yields an expected average payoff of 3.64.
[End of Example]

Up to now we have only considered a certain type of strategy. In a game
['(g,0,0,00) there may be other strategy combinations which implement a
profile y & > as well and yield higher expected utility for at least one class
of players than a two-stage strategy. In this case, we say that such a strat-
egy combination f dominates the two-stage strategy. One can rule out this
possibility for some stage games:

Lemma 3a Assume that in a stage game g a profile y € X is implementable
by a two-stage strateqy with x € X as first stage profile. If the number

mi(yl,y—i) — mi(y)
mi(y) — mi(x)

(2.16)
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15 equal for all v, then there is no strateqy combination f which implements y
and dominates all two-stage strategies using x as first and y as second stage

profile.

We show this result informally: The assumption on the payoffs ensures that
we can choose T' in a two-stage strategy such that (2.15) holds with equality
for all 4, i.e. all players are indifferent between deviating or not whenever y
is played. If for another strategy f, the sum of discounted expected utility
of a new player is higher, this implies that the expected discounted utility
from the periods in which y is not played with probability 1 is also larger
for at least one class i. But then the agents of this class can gain by playing
a best response and dissolving the match whenever y is supposed to be played.

This result is sensible for symmetric games, but unfortunately does not hold
generically. However, with additional requirements we can generalize it for
two player games. By using mixed profiles we can adjust the expected pe-
riod payoff of the first stage profile x such that both players are indifferent
between conforming and deviating when the second stage profile y is played.

Lemma 3b Let g be a two-player game and y € ¥ with w(y) € VNE a pure
action profile. Assume that there are two profiles ' € A, i € {1,2}, where
x! is a best response of player i to profile x' ,, with the following properties:

mi(207 2T — (a7 < miy) — max{m; (zNE), mi(z ™)} (2.18)
for some profile £™* € XNF with i (x™7) < m;(y) for bothi. Then, there are
values § < 1 and & > 0, such that there is no other strategy combination f

which implements y and dominates every two-stage strategy whenever § > §
and o < 0.

Proof: see Appendix.

Requirement (2.17) says that for each player, there is a profile which fa-
vors her relative to the second stage profile y and punishes the opponent at
the same time. Condition (2.18) is needed to make deviations from the first
stage profile unattractive by delaying the second stage profile by one period.

Lemmas 3a and 3b establish that for certain stage games—including ver-

sions of the PD which satisfy the respective conditions—and sufficiently high
[low] values of § [o], there cannot be a better strategy than to establish
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a long-term relationship in the game I'(g,d,0,00) by using an appropriate
two-stage strategy. The corresponding empirical observation would be that
players who have a larger incentive to deviate in the second stage have a
relatively smaller utility at the beginning of a relationship without being re-
warded for that in later periods.

In order to formulate the result as general as possible, we required the con-
ditions (2.17) and (2.18) to be fulfilled by the stage game g. Neither is
necessary as our next example shows:

Example 3. In the stage game above, the first cooperative profile exhibits
the payoff structure required in lemma 3a: Whenever this profile is imple-
mentable by a two-stage strategy using { D, D} as first stage profile, T' can be
chosen such that both players are indifferent between deviating or not when
{C1,C1} is played.

The same is not true for {C2,C2}. However, by playing the profile {D, C2}
with a probability of (approx.) 0.68 and {D, D} with a probability of (ap-
prox.) 0.32 in every period of the first stage, agents can adjust their period
payoffs such that both again are indifferent in the second stage. The expected
payoffs for this first stage profile are then m(x) ~ 4.08 and m(z) ~ —3.4.
One can check that with § = 0.95, no player ever would deviate from this
two-stage strategy. However, with § = 0.75 the duration of the first stage
would be 1.6 periods and the second player would deviate whenever the pro-
file {D, C2} is supposed to be played. Therefore, this strategy would not be
available in example 2. [End of example]

2.3.3 Extension: Bilateral rationality of two-stage strate-
gies

If we consider the first phase of a two-stage strategy, it may strike that players
have an incentive to start with the cooperative profile y immediately after
the match is formed given that all other groups stick to the two-stage strat-
egy. Assume for the moment that y is a pure action profile. Gosh and Ray
(1996) establish the criterion of “bilateral rationality” of strategies in games
which are very similar to I'(g, 4, o, 00):

A strategy is said to satisfy bilateral rationality if, given all other groups

follow this strategy, no group of agents who have not deviated before in their
current relationship, can propose a change in the strategies that both in-
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creases the sum of discounted expected payoffs and satisfies the individual
incentive constraints.

However, we see from (2.15) that by the public signal, 7" can be chosen such
that at least one class of players is indifferent between deviating or not when
y is played. For these players, it does not violate any incentive constraint if
their strategy prescribes to choose a best response to y_; whenever profile y
is supposed to be played before the end of the first stage as a result of com-
munication. As the group dissolves upon the event of a deviation, no player
has the incentive to skip the first stage given that all other groups stick to the
two-stage strategy. Thus, the play of a two-stage strategy is robust against
communication.

2.4 Finitely many players

2.4.1 Extension of the standard Folk Theorems

In the last section we considered a limit case in which there are infinitely
many players and hence, the probability of meeting the same person a sec-
ond time after the dissolution of a relationship with her is zero. This section
is devoted to games I'(g, 6, 0,m) with m < occ.

With finitely many groups, there is a positive probability that agents of
a match r are paired up again with each other in ¢+ 1 although they chose @)
in t. Assume that the player of class 7 in the match r quits the relationship
in period ¢, while all other members of r choose to maintain it. If the agents
of all other m — 1 groups also choose to maintain their relationships in ¢, the
probability for the single player (given that she is not deleted from the set of
players in t) of being matched to the same opponents in ¢ + 1 is given by

(1- o) g (ﬁ) (mk_ 1) oF (1 — g)m=1-k (2.19)

which can be transformed to
1—(1—0)™
(1 _ O_)n—l ( U) )
om
If all players of the match r choose to quit the relationship in ¢, then the
probability that she is matched to the agents of r again in ¢ + 1 (given that

she is not deleted from the set of players in t) is

(2.20)

Alo)=(1—o)" {ﬂ} n. (2.21)

am
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Accordingly, 1—A(0) is the probability that at least one player of r is matched
to another group in t + 1.

Recall that it is possible for each agent to identify former opponents. In order
to characterize equilibrium strategies, we then have to specify the players’
actions when meeting again. It is not certain that a deviating player finds
a new group of opponents immediately and hence, it is possible to punish
deviant behavior (for example by playing a minimax profile). This punish-
ment can be carried out as long as the group is matched together. With this
mechanism, it is possible to establish the Folk Theorem:

Theorem 2

(a) For finite m and any © € VNE there are values § < 1 and & > 0,
such that there is a subgame perfect equilibrium of the game ['(g,9,0,m) with
m; as the average payoff of class i whenever 6 > 6 and 0 < 7.

(b) Assume further that the dimension of V' equals n. Then the same holds
for any m e V*.

Proof: see Appendix.

Part (a) of the theorem is an extension to Friedman’s (1971) Folk Theorem.
A profile y with 7(y) € V¥ is played in all periods by all groups. Whenever
a player of class ¢ of a given match r deviates from y;, her opponents choose
a (possibly mixed) Nash profile x with

mi(x) < mi(y) (2.22)

for all ¢ until r is dissolved!. Additionally, every player of r chooses Q after
a deviation: As (2.22) holds for all classes of players, there is no incentive
to choose M. If ¢ is sufficiently small the expected number of periods until
the players of r are not matched together again is long enough to deter every
agent from deviation.

Part (b) is a modified version of the Folk Theorem of Fudenberg and Maskin

"'We do not require players to punish a deviant player whenever matched with her in all
future periods. The reason for this is robustness: If agents make mistakes with arbitrary
small probability € > 0 and we take the limit of ¢ — 0 we would face a situation in which
all matches play the Nash profile and do not return to the cooperative outcome for a
period approaching infinity. Hence, for all € > 0 the theorem no longer would hold.
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(1986): If the space of feasible payoffs is of full dimension, then it is pos-
sible to compute strategies, in which punishing a deviator can be rewarded
by future gains without rewarding the deviator herself. Compared to the
strategies of the original version of this theorem, we add that as long as a
kind of punishment is carried out, all agents of the match choose to quit
the relationship. This preserves the subgame perfectness of the equilibrium.
Again, o has to be sufficiently small such that the expected duration of every
phase of punishment is sufficiently long.

As these strategies do not require players to start with an inferior profile
at the beginning of a relationship, we get a complete Folk Theorem, i.e. we
can also find support for payoff vectors at the boundary of VN (or V* re-
spectively) as expected average payoffs.

The role of the option to maintain or to dissolve a relationship differs be-
tween the infinite and finite setting: The expected payoff from a deviation
is reduced in equilibrium by the fact that all agents outside the match may
choose to maintain their relationship and thus it is harder to find new op-
ponents. With infinitely many agents, the dissolution was the only available
punishment, while with finitely many players, it offers an opportunity to
evade the punishment of the opponents.

2.4.2 Extension: An application of the model to a la-
bor market

We now apply the above reasoning informally to a stylized version of the
Stiglitz-Shapiro (1984) model of a labor market. Assume that there are
three types of agents: Employers, type-A workers and type-B workers. The
stage game is as follows: When paired up with two workers, the employer can
decide about the employment and wage payment w,, wg to each of them.
The wage can take on three values, wa, wp € {0, w,, wess}, where

1 <w, <w, 2.23
P fr

and a payment of 0 means that the worker is not hired. We call w.; the
“efficiency wage”.

After wages are paid out those workers who received a positive wage de-
cide whether they exert effort e or not, i.e. ea,ep € {0,1}. Exerting effort
causes personal costs equal to e for the worker. If both exert effort, then the
revenue to the employer is GG. If only one worker exerts effort, it is H and if
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both choose e = 0, then it is equal to 0. We furthermore assume that

G—-2w, > H—wp, (2.24)
Weff — 1 > Wp, (225)
G — 2weff < 0, (226)
H — Wess > 0 (2.27)

Equation (2.24) specifies that it is more profitable to hire two workers if
both exert effort, (2.25) implies that working at w.ss is better than shirking
at w,, (2.26) rules out that the employer pays the efficiency wage to both
workers and finally, (2.27) assures that hiring one worker at wess generates
positive profits as long as she exerts effort. For simplicity, we furthermore
assume that all employers can credibly commit to pay a uniform wage to
employed workers. The only Nash equilibrium of the stage game is of course
{(wa =0,wp =0),eq4 =0,ep = 0}.

After revenues have been realized, each party can decide whether to main-
tain the relationship or not. If an agent quits the relationship, then she will
be matched randomly to a match with the respective vacant position. We
assume that each agent is replaced by a new player with positive probability.

Assume first that there are infinitely many agents. As stated in the first
observation, with § < 1 and ¢ > 0 it is not possible that the profile
{(wp,w,), 1,1} is played by all matches in all periods as each worker would
have an incentive to choose e = 0. There are two possibilities to improve
the situation: The employers may agree to offer w.s; to only one of the two
workers: Whenever a new match is formed, the employer randomizes whether
to employ type-A or type-B with equal probability. Furthermore, each em-
ployer threatens to dissolve the relationship with the employed worker at the
end of the period if she does not exert effort. From (2.25) it follows that if
0 is sufficiently high and o is sufficiently low, then this worker would exert
effort in every period. Note that by (2.26) no employer has an incentive to
hire more than one worker.

Alternatively, a two-stage strategy can be played by all matches with the Nash
equilibrium of the stage game as the first stage profile and y = {(w,, w,), 1,1}
as the second stage profile. Again, for appropriate values of § and o, the latter
profile is implementable. Both options result in (involuntary) unemployment
as predicted by the Stiglitz-Shapiro model.

Consider now a situation with finitely many agents. Now, it is not cer-
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tain that an agent finds a new employer immediately after she quits the
relationship. From Theorem 2 it follows that a simple grim-trigger strategy
resolves the problem: The employer offers w, to both workers in each period.
If one of them fails to exert effort at some point in time, then she will not
be hired as long as the match exists in subsequent periods. As w, —1 > 0,
in these periods the workers payoff is strictly smaller compared to the case
of employment. If ¢ is sufficiently small and J is high enough, then the gain
from not exerting effort is negative as the expected time of unemployment is
too long. Thus, we would never observe unemployment in the population.

2.4.3 Extension: On the dependence of cooperative
equilibria on m when ¢ and o are fixed

Assume that the values of 6 and o are fixed. Consider for a given stage game
g a cooperative profile y € XV such that

e y is implementable by the strategies of theorem 2 when the number of
groups is below m* and

e y is implementable by a two-stage strategy using x as the first stage
profile in the case of m = oc.

Now increase m: From (2.21) we can see that for m — oo we get A(o) — 0.
Thus, the repeated play of y in all periods by all groups no longer can be
supported as an equilibrium. However, the two-stage strategy remains ca-
pable to implement y as it does not rely on punishment by a certain group
of opponents. For finite m, there is still a positive chance of being matched
with the same group after a dissolution. Therefore, we have to specify the re-
action to this event when an opponent of class j has deviated in the previous
period: A combination of the strategies in chapters 3 and 4 can implement
y for m > m*: Let 2!, ..., 2" be a collection of (possibly mixed) Nash profiles
such that m(z) < m(y) and m(2") < m(y) holds for all . Then, take the
following strategy for a player of class j:

Phase I: When a new match is formed, play x; for 7" periods and M in
every period. If in this period there is a unilateral deviation from z by a
player of class 7, switch to phase I11;. Whenever the match dissolves in this
phase start in phase [ again.

Phase II: Play y; and M in every period. If there was a unilateral deviation

from y by player ¢ in the previous period, switch to phase I11;. Whenever
the match dissolves in this phase start in phase I again.
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Phase I11;: Play z; and () in every period as long the same group r is
matched together. If matched to a new group start in phase [ again.

By using the same methods as in the proofs of lemma la and theorem 2,
one can establish that this strategy supports a subgame perfect equilibrium
for appropriate values of 0 and o if T" is chosen sufficiently high. With this
strategy, deviators are punished twice: By the current opponents as long they
are matched together, and in the new group when profile x is played. T is
chosen such that any gain is compensated by the expected losses of these two
punishments. Note that T" can be shorter than in a pure two-stage strategy.
In equilibrium, the third phase is never carried out.

With above strategy, the expected duration of phase /11 decreases in m.
This requires phase I to be extended when the population grows. Thus,
the maximal sum of expected discounted payoffs depends indirectly on the
number of players.

2.5 Overview of the related literature

The strategies used in the third chapter to establish cooperation in an envi-
ronment with infinitely many players was subject of various papers. Datta
(1993) and Kranton (1996) use a similar model and apply it to two player
versions of the PD. Ray and Gosh (1996) also consider a modified version
of the PD as the stage game, but their agents are either myopic or patient.
Thus, it is rational for the latter group to “test” their opponent in the first
period of the relationship by playing cooperative profiles with lower payoffs.
Strategies are similar to ours, but the rationale for them is imperfect infor-
mation about the opponents’ time preferences.

Similar strategies for heterogenous agents are obtained in the papers by
Watson (1999, 2002) and Sobel (1985). These papers do not model the
population of agents explicitly. Matsushima (1990) obtains a Folk Theorem
for the infinite setting, but he allows agents to have more information about
their opponents. Casas-Arce (2005) considers a principal-agent relationship,
in which every party has the option to quit the relationship and the outside
options are given exogenously. Differently to this, in our setting the value of
the outside option is given by the equilibrium strategies.

Our approach establishes the difference between models with finitely and
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infinitely many agents. Furthermore, we focus on the equilibrium set of av-
erage payoff profiles and take up a general perspective: We allow for any
stage game with complete information and any size of the population, while
maintaining the game-theoretic terminology. For the case of infinitely many
agents, we explicitly showed the optimality of the considered strategy for
many stage games of interest.

2.6 Conclusion

With theorems 1 and 2, we obtain a theory of implementation of profiles
y & XN in games T'(g, d,0,m) for every population size: The repeated play
of profiles y with 7(y) € V¥ is possible for any size of the population given
that players both discount future gains sufficiently little and remain in the
set of players for a sufficiently long time. Nevertheless, the structure of sup-
porting strategies is quite different.

We first considered the case when players have the opportunity to switch to
other opponents immediately. Before choosing a mutually beneficial profile,
agents may first play a suboptimal action for considerable time. Although it
is possible to approximate many efficient payoff vectors arbitrarily close, it
is not possible to establish a complete Folk Theorem.

This changed when we considered the case of finitely many agents. We
showed that by a small modification of well-known strategies, we obtain
again a version of the standard Folk Theorems: If the rate of change in the
set of players is small, then an agent cannot be sure to find new opponents
immediately. Punishment by the same opponents becomes available to some
extent. Thus, for appropriate values of  and o, cooperative profiles can be
implemented without any efficiency loss when m is finite.

The role of the additional option to quit or to maintain the relationship
in the supporting strategies was quite different in the two settings: While
in the infinite version of the model it constituted the only way to punish
deviant behavior, it provided a possibility to stop the punishment phase in
the finite setting. With an example, we showed that this difference may have
an impact on the equilibrium outcome of markets.
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2.7 Appendix

Proof of Lemma 1la

In the first step we will treat y as pure action profile, and then extend the result to mixed profiles. If
y € SVE  the claim holds trivially. Suppose this is not the case: As w(y) € VNE there is a (possibly
mixed) Nash profile « such that for all ¢

Tyl y—i) > mily) > mi(x). (2.28)
The supporting strategy for every player of class i is as follows:

Phase I: If your match is formed in period ¢, play the profile ; and M for T periods. Switch to
phase IT in period t + T. If the player of class j of this group deviated in period 7 € [t,t + T — 1] from
z;, choose Q in 7. If the group dissolves in this phase, start in phase I again.

Phase II: Choose y; and M in every period. If any player of class j of the group deviated in a preceding
period from y;, chose Q. If the group dissolves in this phase, start in phase I again.

We apply the one stage deviation principle to show that this strategy is played by all agents in a subgame
perfect equilibrium of I'(g, 6, 0, 00) if § is sufficiently high, o is low enough and T is chosen sufficiently large.

In phase I, all agents play a best response. Any deviation from the prescribed action profile would
restart phase I. Because of (2.28), this can never be profitable.

Consider now a period ¢ in phase II. Set ¢ = 0. The gain from playing a best response in this pe-
riod is
Ao =mi(y},y—i) — mi(y). (2.29)

If i deviates in 0, she will be matched to a new group which again starts to play x for T" periods. Denote
the minimal difference between the sums of discounted expected payoffs of a conforming and a deviating
player with

A; = Ei(a) = yi) — Es(a) = y). (2:30)

To compute A;, we have to sum up over all differences Ay ; and A7 ; which can occur due to a (invol-
untary) dissolution in the periods ¢ € {1,2,.T} and t € {T' + 1,T + 2,...}. Given that the match of the
conforming player does not dissolve in period 0, the probability of this event for a period t > 0 is equal
for both players. Thus, we have

A; = Ao + (1 =) [Asri + Ar ). (2.31)

Given that the match of the conforming player does not dissolve in period 0, the probability that r is
dissolved in period ¢ with ¢ > 0 is given by

1—o)tI[1 - (1—0)"]. (2.32)

In the event of a dissolution of r in ¢ with 0 < ¢t < T', the sum of expected discounted payoffs from period
1 onwards of a conforming player is

t
D Tmi(y) + 8 (1 = o) Ei((w,y), T), (2.33)
T=1
while for a deviating player it is given by
t
> 5Tmi(e) + 81— 0) Ei((w,y), T). (2.34)
=1
The difference is therefore

t
D6 (mi(y) — mil)). (2.35)
T=1

34



When adding this difference up over all periods 0 < t < T, we get

T t
Ari = m@mmu<1om<20¢mezf>=
t=1 =1
_§TH1(] — )T _ sT+1
S e e e (2.36)

For a dissolution of r in ¢ > T the difference in payoffs between the deviating and the conforming player

is equal to [m;(y) — mi(x)] 67151;1 . The probability of a dissolution after period T is given by (1 — o)™
and hence,
5 — 5T+1
A = (o)~ w1 - )™ (). (2.37)
Thus, we get
§—8T+1(1 — 5)Tn
Bi = [rily) — milaly-0] + (1= o) ms(y) — (@) ST (2.38)

6(l—o)n

It is not profitable for any player to deviate in the second phase if A; > 0 for all . Therefore, it must be
the case that for any class 4

_§T+1(1 _ \Tn (b N s
(1- o‘)"6 g (1-o0) > wl(yz,y_z) ;i (y) (2_39)
L=6(1 =)™ mi(y) — mi(x)
Taking the limits on the left-hand side, we get
5 — 5T+1 1— Tn 5 — 6T+1
lim (1 — o)™ (=o)® _ (2.40)
a—0 1-6(1—o)" 1-96
and
§— 6T+1
lim ——— =T. (2.41)
6—1 1-6
Thus, there is a 7' < oo, such that A; > 0 holds for all classes i. Choose a T™ such that
N R
T* > max w . (2.42)
i mi(y) — mi(2)
As § enters the left-hand side of (2.41) continuously, there is a ¢’ < 1 such that for all § > ¢’
575T*+1 . ’_3’ D) = 7
ik (AT kOB (2.43)
1-946 i mi(y) — mi(x)

Fix a § € (6',1). As o enters the left-hand side of (2.40) continuously, there is a & > 0 such that (2.39)
holds for all ¢ whenever T'=T"*, § > § and o < &. This completes the argument for pure profiles x and y.

Consider now a mixed profile y with support Y C ¥ and m;(y) > m;(z) for all classes i. Choose now
a T* with

T* > max max

(Pt gt ) —
s [m(yi by z(y)] (2.44)

mi(y) — mi(z)

and follow the same steps as in the first part to obtain the same result.
Q.E.D.
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Proof of Lemma 1b

With the one stage deviation principle we prove that under assumption (2.10), a deviation from the first
stage profile x is not profitable if ¢ is high and o is low enough. Then from lemma la, the same follows
for the second stage profile y when T is chosen sufficiently high.

Let ¢ = 0 be the period in which a player of class ¢ deviates. By going through the same steps as in

the proof of lemma la, we get that the difference in the sum of expected discounted payoffs between a

conforming and a deviating player, A; = E;(af = z;) — E;(a? = z?), is given by

Ai = [mi(e) = mi(af, e—i)] + (1 = 0) 76T [mi(y) — mi(x)]- (2.45)

With (2.10) this becomes positive when § is close enough to 1 and o is close enough to 0. The rest is
analogous to the proof of lemma la. For mixed profiles, the condition in (2.12) ensures that

A; = [mi(2) = mi(2l, 22 )] + (1 = )T  [mily) — mi()) (2.46)

is positive for all z € X when § is close enough to 1 and o is close enough to 0.
Q.E.D.

Proof of Theorem 1

The expected utility F;((x,y),T) of a new agent from a two-stage strategy with = as the (possibly mixed)
Nash profile, y as the (possibly mixed) second stage profile and T as the duration of the first stage, is
given by

T—1 t
Q-1-0m > [(1 —o)" 6%(2)] +
t=0 =0
oo T—1 t
+1-(1-0)") > {(1 — o) (Z DEAOESY 6%(.@)) +
t=T =0 =T
+1-0) 1= (1—0)""H> 81— o) "I E((z,y),T), (2.47)

t=1

where we set the intial period ¢ = 0. This expression simplifies to

mi(x) + 6T (1 — o) [mi(y) — mi(w)) .

T3 o) (2.48)

Ez((mv y)7 T) =

By multiplying (2.48) with 1 — §(1 — o), we get the expected average payoff of a new player of class i:
7 = mi(2) + 67 (1= 0) " [mi(y) — mi(2)]. (2.49)

By taking the limit, we get
lim0 7= (1 —8T)m(z) + 6T mi(y). (2.50)
o—

For each 7 € int(VIVF), we can find (possibly mixed) profiles y and x such that 7; > m;(x) and 7; < 7;(y)
hold for all ¢ and z is a Nash profile. From lemma la we know that a two-stage strategy with x as the
first and y as the second stage profile constitudes a subgame perfect equilibrium if § is sufficiently large,
o is small and T is chosen large enough. As o enters (2.49) continuously, the claim follows from (2.50).
Q.E.D.
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Proof of Lemma 3b

First, denote y* = (y?, y—;) for 7 € {1,2}. The logic ot the proof is the same as in lemma 3a. We construct
a mixed profile x such that for i € {1,2},

mi(z) = mi(y) — c[mi(y*) — mi(y)] (2.51)

holds for some ¢ > 0. From (2.15) it then follows that we can choose T such that both players are indif-
ferent in the second stage between deviating or not.

As there is a Nash profile zVF with 7; (2N F) < 7;(y) for both players, we find a unique ¢ > 0 with
mi(y) = &mi(y') —m(y)] = m (") (2.52)
We distinguish between two cases:

ma(y) —elma(y?) — m(y)] > m(z™F), (2.53)
ma(y) —elma(y?) — m(y)] < m(z™F). (2.54)

If (2.54) holds consider a profile  which specifies to play 2 with probability 8 and 2N ¥ with probability
1 — 3 in every period of the first stage. Rewrite (2.51) as

mi(y) — elmi(y’) — mi(y)] = Bri(a?) + (1 = B)m; (a™F). (2.55)

Set ¢ = 1 and solve this expression for c¢. Then, using the resulting term in the same equation for player
2 yields us

m1(y) — Bri(z?) — (1 = B)m («VF)
m1(yl) — m(y)

m2(y) — [r2(y?) — w2 (y)] = Br2(2?) + (1 = B)ma(aNF).  (2.56)

With (2.17) and (2.54) one can verify that for 8 — 1, the right-hand side of (2.56) exceeds the left-hand
side and for 8 — 0, the opposite is true. Hence, there is a 8 € ]0,1[ such that (2.56) holds and (2.51) is
true for both players and for some c. By following the same steps one can establish the same result when
(2.54) is true by using the same Nash profile 2N¥ and z'. Condition (2.18) ensures that the resulting
mixed profile x satisfies the requirements of lemma 1b. The claim then follows from lemma 1b.

Q.E.D.

Proof of Theorem 2

(a) Let y € X be a profile with m(y) € VIV and z a (possibly mixed) Nash profile with 7(z) € UM¥ and
mi(y) > m;(x) for all . The supporting strategy to establish m(y) as an expected average payoff is as follows:

Phase I: Choose y; and M in every period as long as no player of the current match r ever devi-
ated from y. Whenever a player of class j of r deviated from y; in a previous period, switch to phase II.
If r is dissolved in this phase, start in phase I again.

Phase II: Choose z; and @Q in every period. Retain this strategy until matched to a new group. If
r is dissolved in this phase, start in phase I again.

Again we use the one stage deviation principle to show that there is no opportunity to deviate prof-
itably in phase I or phase II if ¢ is sufficiently high and o sufficiently low. For phase II this is obvious,
as every player chooses a best response in every period. As m;(y) > m;(x) for all 4, there is no incentive to
maintain the match.

To establish the same for phase I, assume that a player of class i deviates in period t and set ¢ = 0.

We compare the utility of a conforming player Ei(a? = y;) and the maximal utility of a deviating player
Ei(a? = yf) We treat y as a pure action profile, but the result easily extends to mixed profiles.
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The sum of expected discounted payoffs of a conforming player is given by

oo t
Ei(a =y) =Y o(l—0)" Y 6" m(y), (2.57)
t=0 T=0
which can be written as
mi(y)
Ei(a? =y;) = - 2.58
i(a; = yi) 1-6(1—0) ( )

Consider now the deviating player: When she is matched to a new group in the next period, her continu-
ation values is given by (2.58). Let EY° be her continuation value after the deviation. Then

Ei(af =) = mi(y?,y—i) + 61 — o) EY°, (2.59)

where
EY¢ = A(o)[mi(x) + 6(1 — o) EY)] + (1 — A(0))Ei(al = y5). (2.60)

Solving this for E;’C and using the resulting expression in (2.59) yields us

6(1—o0)

Ei(ad = y}) = mi(y},y—i) + 1= A(0)e(l—o)

x [ A@)mi@) + (1 - A)Ei(a? = )] . (261)

Thus, both E;(a? = y;) and E;(af = y?) are continuous in § and o. From (2.21) we get

lim A(o) = 1. (2.62)
o—0
With this we calculate for all § < 1
. 0 1)
lim E;(a; = yi) = mi(y) + ——mi(y), (2.63)
o—0 1- 6
lim E;(af = y}) = mi(y},y—i) + —=mi(2). (2.64)
o—0 1-6
Now fix a § < 1 such that
5 , 5
mi(y) + m”i(y) > mi(y;,y—i) + ﬁ”i(l)A (2.65)

Then, from the continuity of E;(a? = y;) and E;(ay = y?) in o, it follows that there exists a & > 0, such
that for all o < & we have
Ei(af =y;) > Ei(a) = y?) (2.66)

whenever § > §. It remains to mention that no agent can gain by choosing Q in phase I, as all matches
play profile y in this phase.

b) Now assume that dim(V) = n. Let w € V*. Then there are (possibly mixed) profiles (z!, ..., z"
( Yy P y P s

such that ‘ ‘
mi(z") < mi(z') < mi(y) (2.67)

for all classes 7 and
m(@') = (m@") + 6 mic1 (@) + 6, mi(a?), g (@) + e, T (2) + ) (2.68)
is an element of V. Further choose a T' € N, such that for all ¢

max mi(a) + Tmi(z?) < (legg mi(a) + Ty (). (2.69)
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For simplicity we assume that the minimax profile for each player is a pure action profile. See Fudenberg
and Tirole (1991, p. 159 - 160) for details how to drop this assumption.

The supporting strategy is as follows:

Phase I: Play y; and M as long as there was no unilateral deviation from y by a member of class j
of the current group 7 in the previous period. In that case switch to phase II;. If r is dissolved in this
phase, start in phase I again.

Phase II;: Play gz for T periods and choose @ in every period. Then, switch to phase III; when

there was no unilateral deviation from Q{ by the player of class [ in r. In that case switch to phase ;. If
r is dissolved in this phase, start in phase I again.

Phase [11;: Play x{ and @ in every period. If a single player of class I in r deviates from x{, then
switch to phase II;. If r is dissolved in this phase start, in phase I again.

We check that in no phase a player can gain by deviating whenever § is high and o is low enough.
In phase I player ¢ receives E;(y) = E; (ag = y;) from in equation (2.58) by conforming and

A(o) = 6T(1 - )T A(o)TH1
1—A(0)é(1 —0)
§T(1—o)TA(e)T+1 i 1— A(o)

S oy s el G T v

mly—) + d(1-o0) i (2 +

Ei(y) (2.70)

by deviating once. By taking the limits and applying the usual continuity argument, one can verify that
this expression is smaller than E;(y) whenever § is close enough to 1 and o close enough to 0.

In phase I1; player i gets by conforming at least

o) —6T(1 — T A()T _
mh b 80 | M AT )
8T —a)TA(0)T 1— A(o)

+ i (mE) + e+

1—A(0)s(1—o) &@ﬂ, (2.71)

1— A(0)é(1 — o)

while a deviation yields her at most

o) —6T(1—o)TA(e)T+! )
mgrmila) + 00 =0) [A( )1EA((10)6(E —Acf)) mi(z')+
0T (1= )T A@@)™ 1-A@) .
* 17M@MLW)MW)+Tfﬂaﬁf:5E@ﬂ- (2.72)

One can establish that for adequate values of § and o the former expression is larger than the latter one.

In phase I11; player i gets by conforming

A(o)
1—A(0)é(1—0)

1— A(o)

(m(@) + )+ T2 50 o)

ri(@) + e+ 6(1 — ) [ Ei<y)} : (2.73)

while a deviation in this phase yields at most the level of expected utility given in equation (2.72). Again,
for adequate values of § and o a deviation in phase I11; of a player of class 4 is not profitable.

Finally, in phase I1I; player i gets by conforming

A(o)
1— A(0)d(1—0)

1—-A(o)

)+ A8 = o)

w01 - o) | B (2.74)

while a deviation yields at most the level of utility given in equation (2.72). The condition in (2.69)
ensures that any gain is wiped out by the succeeding period of minimax payoffs for adequate values of §
and o. Because of (2.67), no class ¢ can gain by choosing Q in phase I or by playing M in phase I1;/11;
or ITL;/ITI;.

Q.E.D.

39



40



Chapter 3

Imitating Cooperation and the
Formation of long-term
Relationships

3.1 Introduction

In this paper, we study the following game: each agent of an infinite popula-
tion plays the prisoner’s dilemma with some opponent in each period. After
observing the partner’s action choice, each player has the option to main-
tain or to quit the current relationship. If the latter action is chosen by both
agents, they play the game together in the next period, otherwise they return
to a “market for long-term relationships” and are matched randomly with
another opponent. The population therefore consists of long-term relation-
ships and the market. Matching in the market is global and non-assortative:
everybody can be matched with anybody else and own behavior does not
affect the probability of being paired up with an agent who plays a certain
strategy. Furthermore, there are no information flows between pairs.

This game is a general description of markets for private or professional re-
lationships. However, only few studies have dealt with it in the literature on
repeated games. For a summary, see Mailath and Samuelson (2006), chapter
5.2. In order to implement cooperation in this game, the literature suggests
to “start small”: at the beginning of a new relationship both agents defect
and start to cooperate in later periods. Whenever a player deviates from this
path of play, her opponent chooses to quit the relationship. Thus, any gain
from deviation is wiped out by the subsequent phase of low payoffs in the
new relationship.
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In the considered framework, this solution has serious shortcomings. Without
further assumptions, such a strategy is not robust against communication:
given that all other players in the population stick to the described pattern,
it is optimal for two agents who meet for the first time in the market, to start
the relationship with cooperation. This would not violate any incentive con-
straint. However, if all pairs act in this way, we are no longer in equilibrium.
Gosh and Ray (1996) solve this problem by introducing heterogeneous time
preferences: a fixed share of players is myopic while the rest of the population
is patient to some extent. Thus, a period of less cooperation at the beginning
of a new relationship serves to “test” the opponent’s patience. As long as we
do not make this assumption, we do not have a convincing solution for the
implementation of cooperation in the framework above.

Where this criticism is specific to the considered game, another disadvantage
of the existing solution is more fundamental to game theory: the equilibrium
concept requires common knowledge of strategies. Especially for large popu-
lations, this assumption is unrealistic. Conventional solutions leave open the
question how agents manage to reach an equilibrium in the absence of abun-
dant sophistication. Also note that in this game, there are many equilibria,
including a situation in which agents never cooperate.

We avoid both problems by adopting an evolutionary approach. Players
are boundedly-rational such that—according to Kandori et. al. (1993)—(i)
not all agents adjust their behavior instantaneously, (ii) agents react myopi-
cally and (iii) with small probability, agents change their behavior randomly.
Players sometimes have access to information about what strategy currently
is on average the most successful one in the population. The mechanism
which creates this information can be any kind of mass-communication. The
goal is to show that cooperative behavior can prevail in the population if
agents imitate successful behavior.

According to the concept of bounded rationality, we assume that players
follow simple strategies which are not history dependent, like “never cooper-
ate and quit every relationship” or “behave cooperatively and maintain the
relationship if and only if your opponent cooperated as well”. Cooperative
long-term relationships immediately start with cooperation. The only “pun-
ishment” of non-cooperation is the breakup of a relationship. With positive
probability, agents imitate the strategy which is currently the most successful
one in the population. Additionally, they change their behavior randomly
with small probability, i.e. they choose to “experiment” and quit their cur-
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rent relationship.

Our focus lies on the behavior of aggregate shares of agents who follow a
certain strategy. With the law of large numbers in mind, we concentrate our
analysis on deterministic approximations. The first result is that in almost
all periods, all learning agents adapt to the cooperative strategy if only a
small fraction of agents imitates in each period and the experimentation rate
is sufficiently small. The intuition for this is the following: The share of co-
operative long-term relationships only increases if the share of cooperators in
the market is not too small over a larger number of periods, i.e. if cooperators
in the market do not switch to the non-cooperative strategy too fast. Addi-
tionally, if too many agents imitate in each period, the share of cooperative
players in the market—and therefore the average utility of non-cooperative
players—is sufficiently high, such that cooperative long-term relationships
are broken up, as many individuals switch to the non-cooperative strategy.

The result implies global convergence to a unique distribution of strategies in
the population, where the cooperative strategy is played by most agents. It
is independent of the size of payoffs and thus resembles the folk theorem for
repeated games. We conclude that an environment with global interaction
and non-assortative matching is less hostile to cooperation if agents change
their behavior only infrequently. It is important to note that in a setting with
myopic agents, a best response dynamic—Ilike, for example, fictitious play or
regret matching—does not solve the social dilemma, as the best response in
the stage game is not to cooperate.

In order to relax the assumption on the imitation rate, we then introduce
heterogeneity into the population: an agent does not want to interact with
any agent of the population, but prefers to meet individuals with certain
characteristics or manners. Long-term relationships only can exist between
agents who “get along with each other”. The period payoff a player receives
increases by a fixed amount if she gets along with her current opponent,
regardless of the strategies played by agents. Thus, the strategy “never co-
operate and maintain the relationship if and only if you get along with your
opponent”, becomes attractive if the probability of meeting such an opponent
in the market is sufficiently small. Under the assumption of heterogeneity
of players, we maintain the same result as in the homogeneous setting, but
without a boundary on the imitation rate: even though almost all agents
switch to the most successful strategy in each period, learning agents adapt
to the cooperative strategy in almost all periods if the experimentation rate
is sufficiently small.
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The dynamics in the market now are different: In a heterogeneous popu-
lation, agents also maintain non-cooperative long-term relationships if the
payoff from the fact that one is paired up with an opponent with whom
she gets along, is high. The size of the market converges to a small value
which in turn decreases in the experimentation rate. One can then derive
a lower bound on the share of agents in the market which plays according
to the cooperative strategy. This implies that the probability of meeting a
cooperative player in the market, with whom one gets along, remains above
a positive threshold for all values of the experimentation and imitation rate.
Thus, for a sufficiently small experimentation rate, the number of coopera-
tive long-term relationships increases until the average utility of cooperators
is higher than the average utility of other strategies in all subsequent periods.
Again we obtain global convergence to a unique distribution of strategies in
the population.

This paper does not only provide an evolutionary solution for the repeated
prisoner’s dilemma with the option to maintain or to quit relationships, but
also contributes to the literature on large-scale cooperation in social dilem-
mas. The work closest to ours is by Eshel et. al. (1998), where each agent
has a number of neighbors and imitates the behavior of the most successful
one whenever this neighbor’s payoff is larger than own utility. The learning
rule thus is similar to ours. Social interaction is structured and agents do
not have the opportunity to change their neighbors. They show that if the
experimentation rate is small, then the proportion of cooperating agents is
between 70 and 87 percent after sufficiently many periods—independent of
the initial distribution of strategies. Another model, in which cooperative
behavior is established by imitation, is presented by Levine and Pesendorfer
(2007). In their approach, players know to some extend the strategy her
opponent will play, before choosing their own action. Thus, agents may con-
dition their action on the information about their current opponent. In our
approach, we abstract from any information flows and assume anonymity
among players.

There are some evolutionary models in which cooperation is at least an evo-
lutionary stable outcome. The considered mechanisms are green beards, kin-
based selection, reciprocity, indirect reciprocity and punishment, see Hen-
drich (2004) for a summary. In most of these models, a certain degree of
assortative matching is required. An alternative approach, to explain co-
operation in the PD in a large population with random matching, can be
taken by assuming that agents have certain flexible aspirations regarding
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their payoffs. Palomino and Vega-Redondo (1999) show that there will be a
significant share of cooperating players if agents become dissatisfied with the
non-cooperative outcome.

However, we are confident that the option to maintain or to quit relationships
provides an even more convincing answer to the question why cooperation in
a large population emerges, as it can be observed quite often that individuals
search for cooperative long-term relationships.

The rest of the paper is organized as follows: in the next chapter, we de-
velop the model and state the result for the homogeneous population. We
also show that it is dependent on the option to maintain or to quit relation-
ships. Chapter 3 extends the model to a heterogeneous population and states
the corresponding result. To illustrate the dynamics and to find out the pa-
rameter values which lead to the cooperative outcome, we run a number of
simulations for both the homogeneous and heterogeneous setting. In chap-
ter 4, we discuss the robustness of the model, in particular the assumptions
on information, strategies and learning. The last chapter summarizes. All
proofs and figures can be found in the appendix.

3.2 Cooperation in a population with homo-
geneous agents

3.2.1 Framework of the Model

We consider an infinitely repeated two-player normal form game which is
played simultaneously by infinitely many pairs. Time is discrete and de-
noted by ¢t € {0,1,2,...}. The population is a continuum of agents.

Every agent plays the stage game in each period with some opponent. An
agent has the choice between the actions “cooperate” (C') and “do not coop-
erate” (D). Payoffs are given in the following matrix (where player 1 chooses
rows and player 2 chooses columns):

D | C
D| 1,1 | HO0
C|0,H |GG

We fix G,H € R, with 1 < G < H < 2G such that the stage game is a
version of the prisoner’s dilemma (PD) where the sum of payoffs is maximal
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at the action profile (C,C).

After the game has been played, each agent observes her opponent’s action
choice and has the option to maintain (M) or to quit (Q) the relationship
with her current opponent. If both players choose the first option, they play
the game together again in the next period. We call the link between these
two players a “long-term relationship”. If at least one player chooses (), then
both are not in a long-term relationship. Agents who are not in a long-term
relationship at the end of period ¢, will be matched together randomly at the
beginning of period ¢+ 1 before the stage game is played. The pool of agents
who are not in a long-term relationship at the beginning of period ¢, will be
called the “market” in this period. Thus, agents are in one of two “physical
states”: either “in the market” or “in a long-term relationship”. We assume
that agents are aware of their current physical state.

Attention will be restricted to the following kinds of behavior: an agent
who follows strategy (Q, D) never cooperates and quits every relationship.
We will call these agents “cheaters”. Strategy (M, C') describes cooperative
behavior: cooperate in every period and maintain the relationship if and only
if the opponent cooperates as well. Hence, long-term relationships exist only
between agents with strategy (M, C'). In chapter 4, we discuss this assump-
tion in detail.

Define
X ={(@Q.D),(M,C)}. (3.1)

Let y.(t), x € X, be the share of agents following strategy = at the beginning
of period t. Those who play strategy (M, C), are either part of a long-term
relationship or in the market. Denote the respective shares with yy; ~(¢) for
“matched” players and yj; +(t) for the “unmatched” ones. Thus, we have

ymco(t) = yaro(t) +yne(t). (3.2)

In contrast, agents who play strategy (@, D) are always in the market. The
size of the market, y"(t), is therefore given by

y*(t) = yo.o(t) + yaro(t). (3.3)

The probability of meeting a cooperative player in the market in period ¢ is
given by

s(t) = . (3.4)




Furthermore, denote the share of cooperators in long-term relationships rel-
ative to all cooperators in period t by

_ ynz\},o(t)

() yM,c(t) '

(3.5)

Let Agoar be the two-dimensional simplex. Then, the distribution of physical
states and strategies in period ¢ is given by Y (t) € Aoy with

Y(t) = (y’ﬁ,c(t)> | (3.6)

Z/ﬂ,o(t)
as we have yg p(t) =1 — ypc(t).

Decisions of agents about the imitation of a certain strategy will be based
upon the average payoffs of the respective strategies in the population. The
average payoffs can be calculated as follows: the payoff structure from above
implies that agents in a long-term relationship receive a payoff of G. The
average utility in period ¢ of those who play (@, D) is given by

Ugp(t) =s(t)H + 1 — s(t), (3.7)

while for those who play (M, C') and who are in the market at the beginning
of period t it is )
Unrc(t) = s(t)G. (3.8)

Thus, the average utility of the agents who play (M, C) is given by
Unc(t) = h(t)G + (1 — h(t))s(t)G. (3.9)

Denote by “order in period #” the ordering of the numbers Uy (), Ug p(t)
and G. Combined with the learning rule given below, the order characterizes
which agents adapt to which strategy.

From (3.7) to (3.9) we see that the success of a certain strategy depends
on the current distribution of physical states and strategies. With probabil-
ity o > 0, an agent receives information about what strategy is currently the
most successful one and potentially adapts to it. We will call o the “imita-
tion rate”. Define that strategy (@, D) has rank 1 and strategy (M, C) has
rank 2. Then, we can specify:
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Learning Rule (L)

1. [Agent is in a long-term relationship] Switch to the strategy with the
highest average payoff if and only if this payoff exceeds your payoff in the
current relationship (if more than one strategy attains the highest average
utility, then choose the strategy with the lowest rank). If this is not the case,
then do not change anything.

2. [Agent is in the market] Switch to the strategy with the highest aver-
age payoff (if more than one strategy attains the highest average utility, then
choose the strategqy with the lowest rank).

An agent who changes her strategy reverses her decision to @, i.e. she leaves
the relationship regardless of what has happened before. This convention is
made for simplicity and would not change the results (if an agent changes
her strategy, she would loose her relationship anyway in the next period).

The asymmetry in (L) reflects the behavior in two different physical states:
agents, who are not in a long-term relationship at the end of period ¢, are
aware of the fact that in period ¢t 4 1 they will play the game against another
opponent in any case. Therefore, they switch to the strategy which works
best in the population. However, an agent in a long-term relationship will
lose the link to her opponent if she changes her behavior. Therefore, the
average utility of the new strategy should exceed a certain level (which in
our case is the payoff in the relationship).

In the next chapter, we will consider the same learning rule with an enlarged
set of strategies. Thus, (L) is stated with more generality than needed in
the current setup.

Additionally, players quit the current relationship and select their strategy
randomly with small probability € > 0. Justifications for this can be

e idiosyncratic reasons of breakup (if the current relationship is long-
term),

e experimentation or innovation,
e wrong action choice by mistake (“trembling hands”) or

e a player dies and is replaced by a new agent who chooses her strategy
randomly.
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For simplicity, we treat these sources uniformly and call € the “experimen-
tation rate”. We assume that agents, who select behavior randomly, choose
each strategy with equal probability. Thus, there will be a share of players
at the end of every period who lost their long-term relationship because they
(or their opponent) have terminated the relationship due to experimentation.
The sequence of play in every period is as follows:

(i) Agents in the market are paired up randomly (matching-phase).

(ii) Agents choose actions C' or D simultaneously according to their strat-
egy.

(iii) Payoffs are realized and agents observe the action choice of their oppo-
nent.

(iv) Each agent chooses @) or M according to her strategy and observes
the respective choice of her opponent. If both choose M, then the link
between the agents is a long-term relationship.

(v) With probability €, an agent changes her strategy randomly and re-
verses her decision to ) (experimentation-phase).

(vi) If an agent has not changed her strategy in the experimentation-phase,
she learns with probability ¢ according to (L). If she switches to a
strategy different from the current one, she reverses her decision to )
(learning-phase).

Finally, we introduce the following definitions: we say that strategy x € X
becomes the “norm” if this strategy is chosen by all learning players in almost
all periods, i.e. from some point in time onwards no other strategy is chosen
by learning agents any more. Furthermore, strategy x € X is said to be
“temporarily attractive” if it does not become the norm, but is chosen by
some learning players in infinitely many periods.

3.2.2 Analytical Results

We now show that in the above framework, a large share of the population
may play the cooperative strategy after a number of periods, even though
the initial share of those players, yarc(0), is small or equal to zero.

The following trade-off has to be solved: cheaters benefit from the presence

of many cooperative players in the market. Their average utility increases
linearly in s(t). On the other hand, cooperative players rely on the option

49



to maintain a relationship, as they do strictly worse in the market than non-
cooperating players. Due to experimentation, the share of these relationships
in the population—and therefore the average utility of cooperative players—
only grows if s(¢) is not too small over a larger number of successive periods.
There are three possible orders:

Order A UQ7D<_25) >G> QM,C(t)
Order B G > Ugp(t) > Unc(t)
Order C G > Upo(t) > Ugp(t)

Assume first that € = 0, such that under the orders B and C no long-term
relationships are dissolved. From (3.7) we can derive that if s(t) < &=L
holds, then Ug p(t) < G and the order in period ¢ cannot be A. If o is small,

then s(t) never exceeds % in later periods. For any

Y(0) € Anon — (8) , (3.10)

we get adjustments similar to those plotted in figure (I): As long as non-
cooperative strategies dominate, the share of cooperative individuals in the
market decreases, either because cooperative agents find a proper partner, or
because they switch to strategy (@, D). The average utility of cooperating
players converges to a value above 1, while for cheaters it decreases to 1. In
some finite period ¢, the ratio h(t) is sufficiently high and s(¢) sufficiently
small, such that Up;c(t) > Ug p(t) and learning players choose (M,C): if
o is sufficiently small, the share of cooperating players in a long-term rela-
tionship increases in the following periods, while in the market the share of
cooperating agents relative to the non-cooperating ones remains small. Thus,
we get lim; o Y37 o(t) = 1.

For positive values of ¢, we can show that adjustments are similar if ¢ and
are sufficiently small. Then, cooperative behavior prevails in the population
after a finite number of periods:

Theorem 1 [Cooperation in a homogeneous population]

If agents follow (L), then there is a > 0, such that if o < & and € is
sufficiently small, strategy (M, C'") becomes the norm.

The transition function between two successive distributions of states and
strategies, Y (f) and Y (¢ + 1), induced by (L), is neither continuous nor a
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contraction. Therefore, we cannot apply a standard fixed-point theorem.
However, for each order the evolution of the distribution of physical states
and strategies can be described by a system of non-linear difference equations.
We do not solve these equations directly, but for given Y (¢) and 7" € N we
can estimate an upper and a lower bound on the elements in Y (¢4 7'), given
that the order does not change in the interval [t,¢ + T]. In particular, we
show that for ¢ and e sufficiently small the following holds:

(i) The number of successive periods with order A or B is finite and the
order does not switch from B to A. Thus, order C' is reached within
finite time.

(ii) The ratio s decreases until s < 5 in all remaining periods, where § is
small enough such that the average utility of cheaters is well below G
whenever s < 5.

(iii) After order C' was reached for the first time, the number of periods
between two points in time with order C, is finite.

(iv) The share of long-term relationships and the ratio h rise until the aver-
age utility of cooperating agents exceeds the average utility of cheaters
in all future periods.

The upper bound on ¢ is needed for two reasons: firstly, it rules out that
there are too many cooperating players in the market in later periods. Oth-
erwise, the average utility of cheaters would be higher than GG, which implies
that also players in long-term relationships switch to (Q, D) and return to
the market. For example, an imitation rate close to 1 may cause the strate-
gies (@, D) and (M, C) to replace each other as the most successful strategy
from time to time and therefore, the claim of theorem 1 would no longer hold.
Secondly, with a small imitation rate it is more likely for a cooperative player
in the market that she finds another cooperative agent and does not adapt to
(Q,D): if ypr,c(0) = 0, € is very small and o too high, then the ratio between
cooperative long-term relationships and cooperators in the population, h, is
always too small to make the average utility of strategy (M, C') exceed the
one of cheaters. To illustrate this point, consider the following example:

Example. Set 0 = 1, yyc(0) = 0 and G < 4. Assume that the order

in all periods is B. Then, in each period 7 € {1,2, ...} we have y}; (1) = je.

2
Furthermore, assume that in all periods 7 € {1, 2, ...} we also have
2unr.o(T) < yare(T), (3.11)
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which implies that
€

N

s(1) <

. 3.12
1 - }16 ( )

Under all orders it holds that

Yire (T +1) = (1= €’y o(r) + (1 = €)*s(T)yhs o (7). (3.13)

With (3.13), it follows from yj; -(0) = 0 that in all periods 7 € {0,1, ...} we
have

Wi o(r) < lim g o (0). (3.14)

Thus, we can calculate that

- 1
ll_I% tlir& h(t) < v (3.15)
Therefore, the assumption in (3.11) is justified for sufficiently small e. We
get that the average utility of cooperative players in the market is close to 0
and overall average utility of cooperative players is always below 1 if € is very
small. The average utility for cheaters is always equal to or above 1, but well
below G if € is sufficiently small. Thus, the assumption on the order in all
periods is justified as well and (M, C) will never prevail in the population.
[End of example]

Note that theorem 1 is independent of the values H, G and of the distri-
bution of physical states and strategies in the first period. For ¢* and €*
small enough, the distribution lim;_,, Y (¢) is independent of Y (0) as (M, C)
becomes the norm. If order C' prevails in ¢, then we have

oot +1) = (1= )1 = 0")ygn(t) + 56" (3.16)

This yields us global convergence to the following distribution of strategies:

le*

: _ 2
fmyenl) = AT ea o (3.17)

T 1-(1-—e)1—0")

lm gy o(t) = 1 (3.18)

For small values of 0 and € we therefore obtain a unique outcome in the
repeated prisoner’s dilemma with the option to maintain or to quit relation-

ships.
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3.2.3 The model without the option to maintain or to
quit a relationship

The essence of theorem 1 is the option to maintain or to quit a relationship.
Consider a version of the model where this option does not exist: agents
can choose among the strategies (DD) “never cooperate” and (CC) “always
cooperate”. Let ypp(t) be the share of agents who play the first strategy in
period t, and 1 — ypp(t) the share of agents who play the second one. The
respective average utilities therefore are

Upp(t) = (1—ypp(t)H +ypp(t), (3.19)
Ucc(t) = (1—ypp(t))G. (3.20)

Thus, in each period we have Upp(t) > Ucc(t), i.e. learning players always
choose (DD). We therefore get for each pair of values €* and o* that

Lox
li t) = 1-— 2 21
Jim ypp(t) 1—(1—e)(1—0") (321)
Lox
li t) = 2 . 3.22
ti)rgoyCC( ) ].—(].—6*)(1—0'*) ( )

The share of cooperative players in the population can never exceed 50 per-
cent and with o* > 0 and €* small, strategy (DD) prevails in the population.
This is analogous to a standard result in evolutionary models, see Bergstrom
(2002) for example: the only stable outcome with random matching and the
PD as stage game, is a population consisting entirely of cheaters.

3.2.4 Simulation

Let us briefly look at absolute numbers to see what values of o and e support
cooperation in the population. All graphs and detailed parameter values can
be found in the appendix. For the following simulations, we fix G = 2 and
H = 3.8. In the first period, 99 percent of the agents play strategy (@, D).
The upper graphs show the share of cooperating players in long-term rela-
tionships, the lower ones display the corresponding distribution of strategies
in the market.

Figure (II) plots the adjustments for ¢ = 0.02 and ¢ = 0.01 in the first
300 periods. We see that the share of cooperating players rises smoothly,
as there are never sufficiently many cooperating players in the market to
make strategy (@, D) attractive for those who are in a long-term relation-
ship. (M, C) also becomes the norm. However, in the market most players
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are cheaters, while in the overall population cooperative behavior dominates
in later periods. Finally, we can check that these observations remain un-
changed if we decrease € even further.

Figure (III) shows the evolution if we increase o to 0.05 and leave all other
parameters—including Y (0)—unchanged: in infinitely many periods, the
share of cooperative players in the market becomes sufficiently high to make
strategy (Q, D) attractive for learning agents, except for those who are in
a long-term relationship. (M, C) no longer becomes the norm, but remains
temporarily attractive. Nevertheless, in later periods the share of cooperative
long-term relationships in the population is even higher than in the first sce-
nario. This is due to the increased speed of learning which leads to a higher
share of cooperative agents in the market and thus a higher probability of
meeting a cooperative player.

Finally, we set o = 0.15 while again all other parameters remain the same.
From figure (IV) we can observe that with these values, there are enough
cooperating players in the market in some periods, such that the average
utility of (@, D) exceeds GG. Then, even those players who are in a long-term
relationship, switch to (@, D). We can check that this holds for all positive
values of € and even bigger values of o.

If there are almost no cooperative players in the population, it can take
some time until (M, C) becomes attractive. In figure (V), the adjustments
are displayed if we set o = 0.01, € = 0.1 x 107% and the initial distribution of
physical states and strategies is given by yi; ~(0) = 0.1 x 107", y§; ~(0) = 0.
Note that learning agents adapt to (M, C) just after 200.000 periods.

3.3 Cooperation in a population with hetero-
geneous agents

3.3.1 Modification of the Framework

Whenever information about the average success of strategies is publicly
available, we should expect that a large share of agents adapts to the most
successful strategy in each period (in Eshel et. al. (1998), the reference case
is 0 = 1). In order to drop the restriction on the imitation rate of theorem
1, we now consider a population with heterogeneous players: an agent does
not want to interact with any agent of the population, but prefers to meet
individuals with certain characteristics or manners. Long-term relationships
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only can exist between agents who “get along with each other”. This ad-
ditional feature of relationships is independent of the strategies played by
agents. We introduce the probability sp(t) that two agents who meet in the
market, get along with each other. This probability must not be constant,
but can take on values in the interval [s, 5], where

0<s<s<l. (3.23)

With probability 1 — sp(t), two agents who meet in the market, do not get
along with each other and the relationship is broken up, regardless of the
played strategies.

The difference to the previous setting is as follows: if both players of a given
match get along with each other, then their utility increases by Z € R,
regardless of the action choice. Hence, overall payoffs in this case are given
by the following payoff matrix (where player 1 chooses rows and player 2
chooses columns):

D C
D|1+Z1+2Z]| H+ZZ
C| ZH+Z |G+2Z,G+2

If the two players do not get along with each other, their payoff is the same
as in the last section, i.e. the payoff matrix is

C
D| 1,1 H,0
Clo,H]|GG

Therefore, the value of a relationship consists of two parts: the utility gener-
ated by the opponent’s action choice, and by the nature of their interaction.
Both values are observed by an agent after the game has been played.

Now we consider the following strategies: an agent who follows (@), D) never
cooperates and quits every relationship. Strategy (M, D) prescribes never to
cooperate, but to maintain a relationship if and only if she gets along with
her opponent—regardless of her action choice. (M, C') now represents the fol-
lowing behavior: cooperate in every period and maintain the relationship if
and only if the opponent cooperates as well and you get along with her. Now
there are two types of long-term relationships: “cooperative” relationships,
in which both agents play strategy (M, C'), and “non-cooperative” ones, in
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which both agents play (M, D). In both cases, the agents have to get along
with each other.

Note that in a homogeneous population there would be no scope for strategy
(M, D): while cheating agents profit from the presence of cooperative play-
ers in the market in every period, this advantage of non-cooperative behav-
ior ceases to exist when players maintain relationships with non-cooperative
agents. Therefore, learning agents never would switch to strategy (M, D) in
the homogeneous setting.

Denote for
X = {(@, D), (M, D), (M,C)} (3.24)

the share of agents playing strategy x € X in period ¢, by y.(t). Agents, who
play a strategy w € W with

W ={(M,D),(M,C)}, (3.25)

are either part of a long-term relationship or in the market. The respective
shares are y!'(t) and y"(t). Accordingly, we have

Yur(t) = Yoy (8) + 4, (2). (3.26)
The size of the market is then given by
y“(t) = yo.o(t) + Yarp(t) + yire(t). (3.27)

Define sy c(t) [sam,p(t)] as the probability in period t that an agent with
strategy (M, C) [(M, D)] in the market is matched to a player with the same
strategy and with whom she gets along, i.e.

Yarco(t)
S t) = sp(t)— , 3.28
me(t) () (0 (3.28)
Yar,p(t)
S t) = sp(t)— 3.29
wnlt) = =028 (329)
Furthermore, we introduce the notation
Yirco(t)
h t) = : ,
o) yarc(t)
Yir,p(t)
h t) = ’ . 3.30
wplt) = SHEES (330)
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Let Aggr be the four-dimensional simplex. Then, the distribution of physical
states and strategies in period t is given by Y (t) € Aypr with

M.
Y(t) = | Y (3.31)

M

M

as we have yg p(t) =1 — ymc(t) — yamp(t).

As in the case of a homogeneous population, we assume that learning agents
imitate according to (L), where (@, D) has rank 1, (M, D) has rank 2 and
(M, C) has rank 3.

The average payoffs can be computed as follows: each partner in a coopera-
tive long-term relationship receives utility of G+2, while in a non-cooperative
long-term relationship players receive 1+2. The average utility from strategy
(Q, D) is given by

Ugn(t) = yu—(w[y%,c(t)ST(t)(H +2) + Wi,p(t) + yo,0(t)sr(t)(1 + 2) +
()1 = sr(t)H + (i p(t) + Yoo () (1 — so(t))],  (3.32)

while for a player with strategy (M, C') in the market, it is

0% o(t) = yu—l(w[ywwsﬂw(a +2) 4 () + v (®)se(D)Z +
(D)1 — sr(1)C). (3.33)

This yields us the average payoffs for the remaining strategies:

Unc(t) = hao(®(G +2) + (1= hare(t)Usge(), (3.34)

Uy = hap®A+2)+ (1 — harp(@)Tigp(t).  (3.35)

~—

Again, denote by “order in period " the ordering of the numbers Unc(t),
Uup(t), Ugpp(t), G+ Z and 1 4+ Z. Learning, experimentation and the
sequence of events in each period are the same as in the last section.

3.3.2 Analytical Results

If the chance of meeting an opponent with whom one can get along, is small,
and the importance of individual characteristics in social interaction—i.e. the
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payoff Z—is high, then there is an incentive to maintain a long-term relation-
ship though it is non-cooperative. Thus, strategy (M, D) can be preferable
to (@, D), depending on sr(t) € [s,5] and Z. The following assumption en-
sures that the maintenance of long-term relationships is strictly preferred to

strategy (@, D):

Assumption (A) For G, Z and s it holds that Z > QIG:;.

Using (3.32) and the fact H < 2G, one can the show that if (A) is fulfilled,
we have

UQ’D(T) < UM’D<T> <1+Z (336)

in all periods in which there are non-cooperative long-term relationships
(Yirp > 0), i.e. at least in the periods 7 € {2,3,...}. By assuming (A),
it is possible to show the second result:

Theorem 2 [Cooperation in a heterogeneous population]

Assume that agents follow (L) and assumption (A) is fulfilled. If € is suffi-
ciently small, then strategy (M, C') becomes the norm.

The proof works as follows: If learning players never adapt to strategy (@, D),
then there remain three orders for the periods ¢t € {2,3,...}:

Order A G+Z2>1+7> QM,D(t) > QM,C(t) > Uqgp(t

Order B G+Z>1+7Z> UM7c<t) > UM7D(t) > UQ7D(t

Order C G+ 72 > UMyc(t) >1+72> UM,D(t) > UM7D(t

N ) — —

If € is sufficiently small, we can show:

(i) Given that the order in all periods is A or B, the number of periods
between two points in time with order B, is bounded after finite time.

(ii) The statement in (i) implies that if the order is only A or B, the ratio
harc, and therefore the average utility of cooperative players increases
until Uy o > 1+ Z, such that order C' is reached after finitely many
periods.

(iii) After order C' has been reached the first time, the number of periods
between two points in time with order C' is bounded. Thus, yj; - rises
until Uyr e > 1+ Z in all future periods. As the average utility of
agents playing the strategies (@, D) or (M, D) is always below 1 + Z,
strategy (M, C') becomes the norm.
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The restriction on ¢ in theorem 1 can be dropped, as the average utility of
players in the market is always below 1 + Z, regardless of how many coop-
erators there are. However, we also found for the homogeneous population
that the restriction on o is necessary, because otherwise cooperators disap-
pear from the market before they are matched to a cooperative agent and
therefore the share of cooperative long-term relationships remains too small.
In the heterogeneous setup this is no longer the case: as long as not all
learning agents adapt to (M, ('), i.e. the order is either A or B, the size of
the market converges to a small value which in turn decreases in the exper-
imentation rate. Thus, for any ¢ and any ¢, the probability of meeting a
cooperative player with whom one can get along, s/ ¢, remains above some
positive threshold after sufficiently many periods.

The assumption on Z, given in (A), replaces any restriction on o. Smaller
values of Z do not exclude that (M,C') becomes the norm as long as it is
ruled out by a small c—as in theorem 1—that the average utility of cheaters
rises above 1 + Z in later periods, such that the size of the market remains
small.

As mentioned in the introduction, heterogeneity of the population was used
already in some models, in order to make it unattractive to return to the
market after non-cooperative play. In an evolutionary setting, heterogeneity
additionally gives rise to a small market which increases the probability that
two agents who choose the cooperative strategy through experimentation,
are matched together.

The result in theorem 2 is again independent of the payoffs H, G and of
the distribution of physical states and strategies in the first period. If for
fixed values of ¢* and €* the cooperative strategy becomes the norm, then
lim; . Y'(t) does not depend on Y (0). If order C prevails in period t, we
have

van(t+1) = (1-€)1=oYon()+3¢, (337
pp(t+1) = (=)= un(t) + 3¢ (338)

We therefore get global convergence to the following distribution of strategies
in the population:

fm yont) = 71— (1 —3€*>(1 P (3:39)



1 %

3€
I t) = 3 3.40
o) = g a0 (3.40)
2
I ) = 1- 2 . 3.41
P yu.p(?) I1—(1—e)(1—0%) (3.41)

If the population is heterogeneous and € is sufficiently small, we obtain a
unique outcome in the repeated prisoner’s dilemma with the option to main-
tain or to quit relationships.

3.3.3 Simulation

To illustrate the dynamics of the model, we again simulate it for several pa-
rameter values. For simplicity, we set s = 5§ = 0.15 for the following but the
last scenario. The payoffs are given by H = 3.8, G = 2 and Z = 4, such that
assumption (A) is fulfilled. In the initial period, 99 percent of the players
are cheaters.

Figure (VI) displays the adjustments if both the parameter values and the
initial distribution of strategies is the same as in the third simulation of the
previous chapter—with the exception that e = 0.001. Now we can observe
that strategy (M, C') becomes the norm. In the first periods, strategy (M, D)
works best due to the large share of non-cooperative players in the market.
Thus, the share of non-cooperative long-term relationships rises. The share
of cooperative relationships also rises, as cooperative players are matched to
each other in a small market. In later periods, approximately 80 percent of
the agents in the market behave cooperatively, while around 20 percent are
non-cooperative. Thus, strategy (M, C') dominates even in the market which
would of course not be possible in a homogenous population.

The next scenario shows that the evolution of strategies in the population is
quite sensitive to changes in the experimentation rate. Figure (VII) displays
the case when we set € = 0.002 and all other parameters remain unchanged
compared to the scenario in figure (VI). The ratio hy; ¢ remains low, as too
many relationships are broken up in each period. Thus, strategy (M, C)
never yields a higher average utility than (M, D), as (M, D) performs better
in the market. (M, D) becomes the norm and most long-term relationships
are non-cooperative. We see that a small change in the behavior of players
may have a huge impact on the organization of the society.

In figure (VIII) we are confronted with the same situation when the imi-
tation rate is equal to o = 0.99 and ¢ = 0.001. Thus, most agents imitate
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in every period. Strategy (M, D) prevails for very long time, as the share
of cooperators in the market remains small, due to the high imitation rate.
Nevertheless, (M, C') does not only become the norm, but also dominates in
the market in later periods.

The last simulation, displayed in figure (IX), shows what happens if there
is too little heterogeneity in the population: we set s = 5 = 0.70. Then
we have a situation similar to the one presented in figure (III), i.e. in a ho-
mogeneous population when the imitation rate is too high. As for an agent
the probability of meeting an opponent in the market with whom she gets
along, is high, strategy (@, D) remains temporarily attractive and (M, C)
cannot become the norm. This observation does not change if we decrease
the experimentation rate even further.

3.4 Discussion of assumptions and robustness

In the setup of the model we made a number of assumptions on the infor-
mational structure, the learning rule and the set of strategies. This section
is devoted to their justification.

3.4.1 Information about average payoffs

We assumed that learning agents have global information about what strat-
egy is doing best in the moment. This is plausible for a world with mass
communication where a “public opinion” results from this process. For ex-
ample, if some companies have success with a certain employment policy,
they will be imitated quickly by other firms.

If we change the setting, such that agents base their decision upon a lim-
ited number of observations, then we have to introduce a so-called “reference
network” for each agent, as in Cartwright (2003, 2007). We would have
to make assumptions about whether and how an agent’s reference network
changes over time. Also, we should introduce the possibility that agents can
choose to be matched with observed players directly, or justify why this is
not possible. Thus, we end up in a spatial model-—something we wanted
to avoid in the present approach: the goal was to show that cooperative be-
havior can prevail if we have global interaction and non-assortative matching.

Apart of that, the basic trade-offs should remain unchanged: cooperative
behavior can prevail if there are never too many cooperative players in the
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market or if there is sufficient heterogeneity in the market. However, it is
not for sure that we obtain global convergence in such a setting.

The assumption that players base their decisions on the average success of
strategies was also used by Robson et. al. (1996) for a finite, but arbitrary
large set of agents. In Eshel et. al. (1998), agents observe the success of
their neighbors and therefore have complete information about strategy and
utility of players with whom they interact.

A further critique with respect to the informational assumption was stated
by Henrich (2004): the costs of gathering and distributing the information
about average payoffs, is not accounted for. We argue that these costs are
negligible relative to the payoff from social interaction and agents derive
utility from purchasing the information from time to time.

3.4.2 The learning rule

Imitation is well-established in both the theoretical—see Schlag (1998), Sel-
ten and Ostmann (2001)—and experimental literature—see Apesteguia et.
al. (2007) and Offerman et. al. (2002)—as a form of learning in the presence
of bounded rationality and imperfect information. The considered learning
rule (L) is called “imitate the best average”—see, for example, Ellison and
Fudenberg (1995) or Schlag (1999). It satisfies a number of plausible proper-
ties which were used in Apesteguia et. al. (2007), to evaluate the plausibility
of imitation rules in experiments:

(i) If all strategies are distinct, the more successful strategies are imitated
with higher probability.

(ii) Never switch to a strategy with an average payoff lower than the average
payoff of the own action.

(iii) Imitate the action with the highest average payoff with strictly positive
probability (unless the current match allows for an even higher period

payoff).

(iv) Never switch to an action with average payoff below the average payoff
in the population.

Property (iii) is slightly modified in order to take care of the fact that agents
in long-term relationships may have a high payoff, although the average util-
ity of their strategy is below the average utility of another strategy.

62



There are other accepted forms of naive learning: the most common ones are
“fictitious play” —see Fudenberg et. al. (1998) or Young (1998)— “reinforcement
learning”, introduced by Roth and Erev (1995) and “regret matching” which

is due to Hart and Mas-Colell (2000). These learning rules do not solve the
social dilemma in the considered game without further restrictions: ficti-
tious play prescribes to play a best response against past average behavior
of agents. As cooperation is strictly dominated, the outcome always would
be non-cooperative as long as agents are myopic.

The remaining two types of naive learning specify to play an action with
a probability proportional to its (potential) success in past periods in terms
of payoffs. This randomization among different actions is not consistent with
the idea of a long-term relationship. Additionally, as long as a large share
of the population is not in a long-term relationship, strategy (M, C') will do
strictly worse than (@, D) for most agents who try out this strategy and for
quite a number of periods: cooperative behavior will not emerge if purely
self-interested and myopic agents stick to these learning rules in a setting of
global interaction and non-assortative matching.

Therefore, a learning rule which leads to cooperative behavior has to be
based on imitation at least partially: not only individual experiences are in-
formative, but also those of other players. The opportunities to generalize
learning rule (L), are limited.

3.4.3 Strategies

In both the homogeneous and the heterogeneous setting, we restricted the set
of strategies. However, we considered all strategies which fulfill the following
criteria:

e The strategy is not history dependent.
e The respective long-term relationships are symmetric.

e The strategy is not strictly dominated in terms of average payoff by
another strategy for all distributions of physical states and strategies
and in the presence of all physical states and strategies (this is ensured
by the positive experimentation rate).

The first criterion rules out that a cooperative long-term relationship starts
with non-cooperation. As mentioned in the introduction, both agents then
can improve the outcome by starting with cooperation immediately.
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Our results are robust with respect to the inclusion of strictly dominated
strategies. Consider first the homogeneous setting in which the remaining
two strategies (M, D), “defect in every period and maintain the relation-
ship”, and (@, C'), “cooperate in every period and quit the relationship”, are
strictly dominated. Thus, they are never chosen by learning players as long
as (M,C) and (Q, D) are present in the population. By the methods used in
the proof of theorem 1, one can show that for sufficiently small values of o
and €, the share of cooperative players in the market relative to the share of
non-cooperative players remains small after finitely many periods, and that
the ratio h increases until strategy (M, C) dominates (Q, D).

In the heterogeneous setting, only strategy (@, C') is strictly dominated for
all values of sp. Aslong as assumption (A) is fulfilled, the adjustments would
not change if we include (@, C) into the setting: (M, D) strictly dominates
(@, D) even if there are only cooperative agents in the market. Therefore,
the size of the market converges to a small value and the share of cooperative
relationships rises until (M, C) is chosen by all learning players in all periods.

3.5 Concluding remarks

In this paper, we provided an evolutionary solution for the repeated pris-
oner’s dilemma with the option to maintain or to quit relationships: We
considered boundedly-rational agents who imitate the strategy which is on
average the most successful one. Strategies are simple and independent of
the history of past interactions. In particular, there is no phase of small
payoffs at the beginning of a long-term relationship which is difficult to jus-
tify if each agent faces the same trade-off. The evolutionary approach also
has the advantage that knowledge of aggregate play of agents is not required.

We showed that with the option to maintain or to quit relationships, cooper-
ative behavior emerges in a large population with non-assortative matching
and global interaction. For a homogeneous population, we have to place a
severe restriction on the imitation and experimentation rate. With hetero-
geneous agents, this restriction becomes disposable if the utility from meet-
ing opponents with whom one can get along, is sufficiently large, and the
probability of meeting such an opponent, is sufficiently small. We intensely
discussed the dynamics in the market for long-term relationships. The re-
markable feature of the model is global convergence to a unique outcome in
a game which exhibits a large number of equilibria.
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Though cooperation may prevail in the long run, agents always make mixed
experiences with cooperative behavior: In the market, they possibly will suf-
fer from the interaction with cheaters and players they do not want to be
matched with. In a long-term relationship, they benefit from cooperation
and the repeated interaction with someone they accept as partner. Fur-
ther research may concentrate on the combination of imitation and learning
by experience in this or related games. A combination of several learning
forms—similar to the EWA model of Camerer and Ho (1998, 1999)—would
contribute to the generality of the model and lead to new insights.

3.6 Appendix

Proof of Theorem 1

Denote by A4 those elements of Az oas for which the corresponding order is A and accordingly, AB and
AC. Obviously, we have

A UABUAC = Apowu, (3.42)
AT Al = g, (3.43)

for I,j € {A,B,C} and | # j. After some transformations of (3.7), one can see that Ug p(t) < G if and
only if
G-1
t) < . 3.44
s < o (3.4

If (3.44) holds, then Y (t) € A4. As G > 1, we can find a A > 0, such that

1
——G-1>0. 3.45
T (3.45)

Then, from (3.7) we can derive that Ug p(7) < 1+ X if

< , 3.46
s(r) < (3.46)
and from (3.9) we see that Ups,c(7) > 1+ X if
Yar,c(T 1
%() <—G-1. (3.47)
Yiro(m) 1+
Choose 5 > 0 such that
5 < mi A G-l (3.48)
5 < min , S s .
H—-1 H-114
and y < 1 such that
5(1—y 1
Sl R Y (3.49)
Y 1+
Regardless of the order in period ¢, it holds that
1
ye.o(t+1) 2 (1 —e)(l —o)yo,p(t) + Se. (3-50)
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Thus, for each € > 0 there is a finite period ¢}, such that in all periods 7 € {t}, ¢ +1,...} we have

T1-(1-e(1—-0)

w|—

yQ,n(T) > (3.51)

In the following, we consider adjustments after period t}.

Lemma 1.1 Assume that Y(t) € AA. Then, for each o > 0 there is a finite period t + T with
Y(t+T) € ABUAC if e is sufficiently small.

Proof: Assume that the claim does not hold and Y (r) € A4 all periods 7 € {t,t + 1,...}. Then it

holds that 1
ym,c(t+1) =1 —-e)(1 —o)ym,c(T) + 56. (3.52)

Hence, we have

1
S€
li t —_— 3.53
Jim_yar,o(t) I~ (_o0_o) (3.53)
1
lim yop(t) = 1——2° (3.54)
to0 0@ 1-(1-ol—0) '
It follows that
lim lim s(¢) = 0. (3.55)
e—0t—o0
Thus, there is a finite period t + T with s(t + 7) < $=+ and therefore Y(t + T) € AB U AC if ¢ is
sufficiently small.
Q.E.D.

Lemma 1.2 Suppose that t > t¥. Then there is a & > 0, such that from o € (0,6] and Y (t) € ABUAC
it follows that Y (t+1) & A4 and there is a finite period t¥* for which it holds that in all periods T > t}*
we have s(7) < § if € is sufficiently small.

Proof: If Y(t) € AP, then we have

(1= o)1 = syl c(t) + (1= Deyy (t) + 5 1

) = Ot o T e Tl o+ 5 (8.56)
while if Y(t) € A® we have
_O*WMhdwwmp®+%hx)%f
) = 0wty o T a0 () + el o) + (8.57

Note that under Y (t) € A® the value s(t + 1) is larger than under Y (t) € AB. By simplifying the
right-hand side of (3.57) we get

ufﬂmwm+aw~ﬁg&+%ﬁJ

s(t+1) < (3.58)
1= 502 + gy (e+ 152)
As t > t¥, we have
Le
y“(t) > yo,n(t) 2 m- (3.59)
With (3.58) and (3.59), we get
—s s o)+ 2o
lim s(t+ 1) < (1 = s®)(s(t) + o) + 5 = ub(s(t)). (3.60)

e—0 1—s(t)? + 60
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Then, we can estimate
lim [s(t) — s(t +1)] > s0? =50’ — 5o (3.61)
Jimm [s(8) = s(t + 1—s(t)?2+60 '

Note that the term on the right-hand side of (3.61) strictly decreases in o. Thus, we can set & < % such

that for all o < & from s(t) € [g, %] it follows that s(t + 1) +d < s(t) for a small d > 0. From the first

derivative of ub(s(t)), we see that

1
t) > —— 3.62
0> 5o (3.62)
implies
d ub(s(t))
—= > 0. 3.63
d s(t) ( )
Recall from (3.48) that 5§ < i. Thus, if s(t) < §, then
limo s(t+1) < ub(s(t)) < ub(s) < s. (3.64)
c—

Now fix any o € (0,6]. As € enters (3.58) continuously, there is a ¢ > 0, such that for all ¢ with 0 < € < ¢’

the following holds: from s(t) € [5, %] it follows that s(¢t + 1) + g < s(t) and from s(t) € [0,5) we get
s(t+ 1) < 5. Thus, both claims follow.

Q.E.D.

Fix a & such that for § the claim of lemma 1.2 holds. In the following, we consider adjustments af-
ter period t¥*. Furthermore, fix a o* € (0,6] and a § > 0 such that

1

§2
12lc*+25+ —| < G—1. 3.65
{g + s+a*] — (3.65)

Further, fix an o > 0 with o < (1 — )82 and « < (0*)2. Finally, choose k € N such that

[ 1

1—
(1—o*)F—= H_—)\G—l, (3.66)
G-1 A
1—og*)k ) 3.67
=Yg —6 < Toa 1 (3.67)

Lemma 1.3a Assume that Y (t) € AB, o = o*, yﬁ,o(t) > a and t > t**. If € is sufficiently small, then
Y(1) € AC for T <t+k.

Proof: We can estimate

Yotttk > (11— Yyl o), (3.68)
Bro+h) < (1-0*1= o ue® +k(Ge- ). (3.69)
ve.n(t+k) > (1-9"yqn(t). (3.70)

By assumption we have
y}\i/[,c(t) 1—«

(3.71)
yﬁ’c(t) €3
and from Y (t) € AP it follows that
G-1
t) < 3.72
st < o (372)
This can be transformed to _—
Y t G-1
MO < (3.73)




Thus, we get

Yt t+k 1-— 1
im Yiret+F) < 70*)’“( ) < ——G-1, (3.74)
=0y L(t+T) o 1+

g o+ k G-1 A
lmM < (1—o%)F < , (3.75)
—0yo.p(t+T) H-G H-Xx-1

which implies that if € is sufficiently small, then (3.46) and (3.47) are fulfilled in a period 7 < t + k and
Y (1) € AC.
Q.E.D.

Lemma 1.3b Assume Y(t) € AB, ¢ = o, Ynrc®) < aand t > t¥*. If € is sufficiently small,
then there is a period t + T**, such that Y (1) € AC for m >t + T*.

Proof: From Lemma 1.2 we know that in all periods 7 > t7*, we have s(7) < 5. Assume that 37} ~(7) < «

and Y (1) € AB in all periods 7 € {t,t +1,...}. Then, it holds in all periods 7 € {t,t -+ 1,...} that

. 1
vmc(m+ 1) =0 -0 =)A= s(M)ync(T) + el — yapc(r) + Se (3.76)
It follows that 5
Yar,c(T+1) <1 —e)(1 — o)y o(r) + 56752, (3.77)
Thus, for each € > 0 there is a finite period t + T¢, such that in all periods 7 > t 4+ T, we have

§(E—€2

Vire() < T a0 on (12_ Sa=o" (3.78)

and Ug, p(1) < 1+ A, as s(1) < 5.

Assume further that in all periods 7 € {¢,t + 1,...} it holds that s(¢t) < 8. Using (3.76), we get for
each € > 0 that there is a finite period ¢ + T, such that in all periods 7 > t 4+ T/ we have

Le

vire(r) > 1= i 6)(127 T (3.79)
This implies that in all periods 7 > t 4+ T/, we also have
Le
s() > 1—(1—5)(12—0*)(1—@' (3.80)
From (3.79), (3.80) and
ito(m+1) = (1= %5 o(r) + s(1)(1 = )2yl o (1), (3.81)

it follows that for each € > 0, there is a finite period t + T/, such that in all periods 7 > t 4+ T/ we have

(102 i
¥ > . 3.82
g (RS R T (352
Fix T}* = max{T., T/, T!}. Using (3.78) and (3.82), we therefore get
Y o+ T 52
i Y 0T <12 [a* +25+ —} : (3.83)
=0y (6 + TF%) o
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From (3.65) it follows that in some period 7 < ¢+ T* the conditions (3.46) and (3.47) are fulfilled if € is
sufficiently small and therefore Y (1) € AC.

Assume now that in at least one period ¢ € {t,t + 1, ...} it holds that s(¢') > 3. Then, we have

Yir,c(t) > 3(1 - a) (3.84)
and
Yot +1) > 81— (1 — ), (3.85)
where by the specification of «, it holds that the right-hand side of (3.85) exceeds « if € is sufficiently
small. We have Y(#' +1) € ABUAC. If Y(# +1) € AB, then the result follows from lemma 1.3a.
Q.E.D.

Lemma 1.3c Assume that t > t** and 0 = o*. From Y (t) € A® it follows that Y (r) € A with
T <t+ k+ 1 if € is sufficiently small.

Proof: If Y (t) € A® we can estimate

Ynct+1) > (1—eo™(1—yip @), (3.86)
st+1) > (1-ec"(1—yirc®), (3.87)

and therefore
yiho(t+2) = (1 —%yi c(t+ 1) + (1 — st + Dylirc(t+1) > (1 —e)* (o). (3-88)

We have Y (t +2) € ABUAC. If Y(t+2) € AB| then, by the specification of a, the result follows from
lemma 1.3a.
Q.E.D.

Lemma 1.4 Assume Y (t) € A®, 0 = o* and t > t**. If € is sufficiently small, then there is a fi-
nite period t + T***, such that y3; ~(t +T***) > 7.

Proof: Consider the subsequence {tP},en of {¢,t+1,...} with t® = ¢ and Y (¢t?) € AC for all p € N. From
lemma 1.3¢ we know that tPT1 < tP + k + 1. We then can estimate

Yo 2) > (1= PR (7 4 2) + (1 - P (%) (1 -y o (7)),
If € is sufficiently small, then
(1— &2+t 1 4 (1 -2k (6*)2(1 - )2 > d (3.89)
for a small d > 0. The inequality in (3.89) ensures that for some p < oo the finite sequence {y}(}yc(tp +
2)}pefo,1,...,p} increases monotonically. The claim holds for some ¢ +7™** < tP + k+3, as p can be chosen

sufficiently large.
Q.E.D.

With the results in the lemmas 1.1 to 1.4, it follows that there is a finite period ?e, such that s(7) < §
for all periods 7 > t. and y}; ~(tc) > g. Then, from the specifications in (3.46) to (3.49), it follows that

Y (te) € A€ and

Yt (te +2) > (1= %R} o) + (1 - €)*(0*)* (1 — Y3} o (Ee)). (3.90)

Thus, if € is sufficiently small, it holds that in all periods 7 > t. we have yﬂ,c(‘r) > g and therefore

Y (r) € A€. The same obviously holds for all o* € (0, &] which proofs the result.
Q.E.D.
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Proof of Theorem 2

Fix o > 0, € > 0 and the interval [s, 5] according to (3.23). Assume that (A) holds. We first make the
following observations:

(1) As sp(t) € [s, 5] for all periods t, from (3.32) it follows that
Ugp(t) <8H+2)+(1-38)(H) <1+ Z, (3.91)

where the last inequality is implied by the assumptions on H and Z. Thus, we have in all periods
te{2,3,..}
Ugp(t) < 142, (3.92)
Ugp(t) < Ump(r), (3.93)
such that in all these periods learning players never switch to strategy (Q, D).
(2) From (3.34) it follows that

1+Z
G+ Z

hu,c(t) > (3.94)

implies UM’c(t) > 1+ Z. From observation (1), we get that in this period 7 all learning players with the
strategies (Q, D) and (M, D) switch to (M,C). Fix a g with 1 > 3 > é’:_ZZ +d for a small d > 0. Then,
Yi; o (T) > 7 implies that in period 7 all learning players with the strategies (Q, D) and (M, D) switch to
(M, C).

(8) For t € {2,3,...} the following orders can occur:

> Um,c(t) > Uq,p(t)
> Un,p(t) > Ug,p(t)
> Unmp(t) > Unm,p(t)

Order A G+Z>1+2Z2>Unp(t)
Order B G+Z>1+Z2>Upc()
Order C G+ Z>Upy,c(t)>1+Z

Denote by A4 those elements of Agpr, for which the corresponding order is A for all st € [s, 8], and
accordingly AZ and AC. Again, we have AT N Al =0 for I,5 € {A,B,C} and | # j.

Set
o= & . 2 . (3.95)
24 (1 + 272(175)(170)) (1-(1-35)(1-0))

o

Choose k € N such that

il_es*(l C(—o)1-s)) > % (3.96)
s* 1+7Z
—_— > 3.97
(1 —o)k(1 —s*)k G-1 (3.97)
2
so 1+27 (3.98)

$0° S _

502 4+ (1 —o0)k=1(1 — s02) G+Z
Lemma 2.1 Assume that Y (1) € A4 UAPB in all periods T € {t,t +1,...}. If € is sufficiently small, then
there is a finite period t + T, such that for all T >t + T, from Y (1) € AA it follows Y (1T + k) € AB for
some k < k.

Proof: As Y(7) € AAUAB, for all 7 € {t,t + 1,...} we can estimate

e +1) > (1= - )1 = sarc(Mly e () + 5 (399
Wip(r+1) > (1= 9(1=0)(1 = snp(ulrn(7) + 5. (3.100)
yo,p(t+1) = (1 —-e(1—-o0)yg,np(r)+ %e. (3.101)
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From these equations it follows that for any € > 0, there is a finite period ¢ + T, such that in all periods
7 > t+ Te, we have

1

EE

vne(m > T 9090 o) (3.102)
Le
o > oo g9a=o) (3.103)
2
yo,p(t) < m- (3.104)
Define . —a v )
S TS T (3.105)
Then, in all periods 7 > t + T, we have
yM,c(T) > ko), (3.106)
yQ,n(7)
Vir,p () > K(e), (3.107)
¥Q,p(7)
and therefore )
yi(r) < (1 + %) (Wi, (T) + i, p(7)) (3.108)

Define s(t) as the average probability in period ¢ that an agent in the market enters a long-term relation-
ship, i.e.

Yot Y, p(t
s(t) = %()SM,CG) + %()SM,D@). (3.109)
yu(t) y™(t)
With this, we can estimate
yu )2 +yu )2 ls
s(r) > s ir.c(7) ( )QM’D( ) > 22 =5(e) >0 (3.110)
yu (T 1
(1 + 2N(€)>
for all 7 > t + Te. Note that
1
58
lim 5(e) = 2= . (3.111)
e—0 ( 272(175)(17@)2
14 =202
From
Y+ 1) = (1—e)y™ (1) + (1 — €)%s(t)y"(t) (3.112)

it follows that there is a finite period ¢ + T/ with T/ > T¢, such that in all periods 7 > t + T/, we have

(1 — )2
y'() < 1 (1 - SQ(;)_ Y (3.113)
Using (3.102), (3.111) and (3.113), we than can calculate that in all periods 7 >t 4+ T/, we have
lim sar,o(r) > 2—14 NPT : =5u.c >0, (3.114)
(1422202022 (1 - (1 - 9)(1 - 0))
where the last inequality holds as o is positive. Set T/ = T/.
Assume now that Y () € A4 for all 7 € {t/,...,t/ + k} with ¢’ >t 4+ T. Then, we have
Wl o(r+1) < (1= 90 = 0)(1 = sar,c (Ml o) + 3¢ — & (3.115)
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and it holds true for some 557, ¢ € (0,1) that

k—1
1 ~ 7 ~ u
Yirc(t' +k) > 365M.0 Z(l -+ (1 - *5n,0uirct), (3.116)
1=0
4 k—1 ) ] ]
Vol +k) < (,6 - 62) S (- ' (1= o) (1~ dne) +
’ 3 =0
k k ~ k. u /
(1= (1= o) (1 - Sare) yly o(t), (3.117)

as (3.116) is strictly increasing in §j7,c while (3.117) is strictly decreasing in §j7 . These inequalities
can be simplified to

1—(1—¢€2F /1
Yo +k) > #(

~ 2k = u /
T—(_o? 551\4,05) + (1 =) Sm,cyire(t), (3.118)

1—(1—eF1—0o)f (1 —5mc)* (ﬁe _ 62)
1—(1—e)(1—0)(1—3mc)

Yirc(t' +k) < 3

+H(1 = OF(1 = )M (1 = sar,0) Pyl o (1), (3.119)

We therefore get with ’Hospitals rule

y?\}[,c(t, + k)
m——— >
e—0 'yx[’c(t’ + k;)

N _ 5Mm,
min {stMp(l - (1-0)1-35Mmc)), - U)k(AIISEM,C)k } . (3.120)

From observation (2) and the specifications in (3.95), (3.96) and (3.97), we get

1+7Z
G+ 2

ot + k) > (3.121)

for some k < k, such that Y (#' + k) € AP if ¢ is sufficiently small.

Q.E.D.

Lemma 2.2 If € is sufficiently small, then there is a finite period t + TF*, such that Y (t + Tr*) € AC.
Proof: Assume that the claim does not hold. Then, from lemma 2.1 it follows that we have an infi-

nite subsequence {tP},en of {t,t +1,...} with Y(t?) € AB for all p € N and tP*! <P + k+ 1. We can
estimate

Yaro(tP+1) > (1-=38)(1—eay®(tP), (3.122)
srew+n > 2T E)Q(ylu_(;))ayu(tp) _el- 5)2(1 e, (3.123)

using the fact that we have y%(tP + 1) < 2y*(t?), as in the learning-phase no long-term relationships are
broken up under the orders A and B, and y¥“(7) > e for 7 € {1,2,...}. With (3.122) and (3.123), it follows
from

Vi +2) > (L= Ol o) + (- O sarc (7 + Dyt +1) (3.124)
that IV
YiLo () > (1= 2 E Dy ) 4 (11— 2+ XL (3125

With (3.125) and y¥“(7) > e for 7 € {1, 2, ...}, it follows that for each € > 0, there is a finite period ¢t + T/,
such that for all t? >t + T/, p € N, we have

(1— 2F D 2l=ge 3.126
1—(1—e)2k+)) 7 (3.126)

yir,c(t?) >
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As in the proof of lemma 2.1, we get that for each € > 0, there is a finite period ¢ + T} with T/ > T/,

such that in all periods 7 > ¢t + T!", we have

1—(1-¢)?
w <
SO ST R s@)
where |
lim 5(¢) = 2% .
e—0 2—2(1-5)(1—-0) 2
(1 2=m0n0=)

Combining (3.126) and (3.127), we get for any t? >t 4+ T/ that

_ Yne()
lim ——— =
e—0 y”(tp)

(3.127)

(3.128)

(3.129)

It follows from observation (2) that there is a finite period t + T**, such that Y (t + T;*) € AC if € is

sufficiently small.
Q.E.D.

Lemma 2.3 Assume that Y(t) € AC. If € is sufficiently small, then Y(t +k + 1) € AB U AC for

some k < k.
Proof: Under all orders, we have
Uite(t+2) =1 =% c(t+1) + (1= e)?sarc(t + Dyl ot +1).
If Y(t) € AC, then we can estimate
Yyt +1) > (1 =€)l —yip o),

(1=l =y (1)
y (t+1)

smo(t+1)2>s > s(1—€o(l -y o(t))-

Thus, from (3.130) it follows that we have
y’ﬁ,c(t +2) > s(1— 6)40'2

and
Yirno(t+2) <1—s(1—eo”.

If Y(r) € A4, then we have

4
Yarc(T+1) < (11— —-0)yjc(r)+ 3¢ e,

y}’{f,’c(T +1) > (1- e)2yﬁ’c(7).

Assume that Y (1) € A4 for 7 € [t + 1, + k]. We then can estimate

Vot k+1) < (1—0F 11 —o)*t (1-s(1—o%?) + & (ge - 52) ,
Wt bk 1) > (- 91— ote?.

This yields us
yhml,c(t+k+ 1) §02

) ymct+k+1)  s024(1—o0)k—1(1 —s02)

From observation (2) and the specification in (3.98) the result follows.
Q.E.D.
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(3.131)

(3.132)

(3.133)

(3.134)

(3.135)
(3.136)

(3.137)

(3.138)

(3.139)



Lemma 2.4 Assume that Y (t) € AC. If € is sufficiently small, then there is a finite period t + T*** with
yﬁ’c(t + T**) > g.

Proof: As shown in the proof of lemma 2.3, from Y (t) € A it follows that
Yot +2) > s(1 - e)to2. (3.140)
Consider the subsequence {tP}pen of {t,t +1,...} with t° = ¢ and Y (¢?) € AB U A for all p € N. With

(3.140) we can estimate )
yiro(t') > (1 —?*F 502, (3.141)

Assume that in all periods 7 € {t + 2,¢ + 3, ...} it holds that
Ui o) > (1= e so?, (3.142)
Choose an a € (0,1 — g) small enough such that

so2 >1+Z
so2+a G+Z°

(3.143)

From observation (2) and the assumption in (3.142), it follows that Y (t?) € A® whenever y*(t?) < a
and e is sufficiently small. If the two conditions
(1— 2D 14 (1 — )2t g5202 5 g, (3.144)
(1— 2R+ 14 (1 - 2FtDge2(1 — )2 > d (3.145)
hold for a small d > 0, then we have
YR o (PT +2) >y (P +2) +d (3.146)
for all p € N, as long as y}} ~(t? + 2) < @, regardless of the order in the periods {tP},en. Thus, if € is
sufficiently small, then the assumption in (3.142) is justified, and there is a finite period t + T***, such
that y3; ~(t +T%**) > 4.
Q.E.D.
From observation (2), the lemmas 2.2, 2.4 and the specification of § we know that for sufficiently small e,

there is a period £ < oo, such that in all periods t > t, we have Y (t) € A€,
Q.E.D.
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FIGURE II

Caption: Top: [Black] Share of players in cooperative long-term relationships, y}; ~. Bottom: [Black]
Share of (M, C)-players in the market, yﬂy{;,c. [Gray] Share of (Q, D)-players in the market, ycy),;D. Pa-
rameters: H = 3.8, G =2, 0 =0.02, e = 0.01.

Starting values: y3; -(0) = 0.000 - y3, ~(0) = 0.010 - yg, p(0) = 0.990.
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FIGURE III

Caption: Top: [Black] Share of players in cooperative long-term relationships, y7; . Bottom: [Black]

Share of (M, C)-players in the market, yl;ﬂ;,c. [Gray] Share of (Q, D)-players in the market, yi’i;jj. Pa-

rameters: H = 3.8, G =2, 0 = 0.05, ¢ = 0.01.

Starting values: yi; ~(0) = 0.000 - y3, ~(0) = 0.010 - yg,p(0) = 0.990.
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FIGURE IV

Caption: Top: [Black] Share of players in cooperative long-term relationships, y]\"/}’ ¢ Bottom: [Black]

Share of (M, C)-players in the market, yﬂ;

rameters: H = 3.8, G =2, 0 =0.15, e = 0.01.

.S . [Gray] Share of (Q, D)-players in the market,

Starting values: y3; ~(0) = 0.000 - y3, ~(0) = 0.010 - yg, p(0) = 0.990.
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FIGURE V

Caption: Top: [Black] Share of players in cooperative long-term relationships, y7; . Bottom: [Black]

Share of (M, C)-players in the market, yl;ﬂ;,c. [Gray] Share of (Q, D)-players in the market, yc;)iap. Pa-

rameters: H =38, G =2, 0 =0.01, e=0.1 x 10796,

Starting values: y7; -(0) = 0.00 - y}; ~(0) = 0.1 x 10715 - yo, p(0) =1 — 0.1 x 10715,
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FIGURE VI

Caption: Top: [Black] Share of players in cooperative long-term relationships, Yo [Gray] Share

of players in non-cooperative long-term relationships, yﬁ,D. Bottom: [Black] Share of (M, C)-players

o

in the market, y];;[u’c. [Gray] Share of (M, D)-players in the market, yl;/[’D [Black-dotted] Share of

(@, D)-players in the market, yzﬁD . Parameters: H =38, G=2,7Z =4, 0 =0.15, ¢ =0.001, s = 0.15.

Starting values: yj; ~(0) = 0.000 - yj, ~(0) = 0.005 - y3; ,(0) = 0.000 - yy, ,(0) = 0.005 -
Y00 (0) = 0.990.
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FIGURE VII

Caption: Top: [Black] Share of players in cooperative long-term relationships, y}; . [Gray] Share

of players in non-cooperative long-term relationships, yﬁ’D. Bottom: [Black] Share of (M, C)-players

in the market, yiﬁc, [Gray] Share of (M, D)-players in the market, yl;#. [Black-dotted] Share of

(@, D)-players in the market, yij,,;D. Parameters: H =3.8, G=2,7Z =4, 0 =0.15, ¢ = 0.002, s = 0.15.

Starting values: yj}; ~(0) = 0.000 - yj, ~(0) = 0.005 - yg; ,(0) = 0.000 - y3, ,(0) = 0.005 -
0.0 (0) = 0.990.
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FIGURE VIII

Caption: Top: [Black] Share of players in cooperative long-term relationships, yj} . [Gray] Share
of players in non-cooperative long-term relationships, 3} ;. Bottom: [Black] Share of (M, C)-players
in the market, y];;[u’c. [Gray] Share of (M, D)-players in the market, yl;{;D. [Black-dotted] Share of

(@, D)-players in the market, y‘;;f’ . Parameters: H =38,G =2,Z =4,0 =0.99, ¢ = 0.0001, s = 0.15.

Starting values: yj; ~(0) = 0.000 - yj, ~(0) = 0.005 - y3; ,(0) = 0.000 - yy, ,(0) = 0.005 -
Y00 (0) = 0.990.
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FIGURE IX

Caption: Top: [Black] Share of players in cooperative long-term relationships, y3; . [Gray] Share

of players in non-cooperative long-term relationships, yﬁ’D. Bottom: [Black] Share of (M, C)-players

in the market, 1/1;47“0 [Gray] Share of (M, D)-players in the market, yl;lllD. [Black-dotted] Share of

(@, D)-players in the market, yg{bD‘ Parameters: H = 3.8, G = 2, Z = 4, 0 = 0.50, ¢ = 0.00001,
s = 0.70.

Starting values: 7% ,(0) = 0.000 - y% ~(0) = 0.005 - y7 ,(0) = 0.000 - y% ,(0) = 0.005 -
ya,p(0) = 0.990.
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Chapter 4

On the Dynamics in a Market
for long-term Relationships

4.1 Introduction

Both the theoretical and experimental literature on cooperation in the pris-
oner’s dilemma (PD) mostly concentrated on settings in which agents play
the PD repeatedly against exogenously determined opponents'. For many
cases in real-life situations, such as labor markets or business relations, this is
unnatural: One usually has the option to maintain or to quit the relationship
with a certain person. However, a framework in which agents have this op-
tion, has rarely been analyzed. For a summary, see Mailath and Samuelson
(2006), chapter 5.2.

In this paper, we therefore consider the following setup: After observing
the opponent’s action choice in the stage game (the PD or a variation of the
PD), each agent of an infinite population has the option to maintain or to
quit the relationship with her current opponent. If and only if both agents
choose the first option, they play against each other in the next period with
positive probability. Otherwise they return to a “market for long-term rela-
tionships” and are matched randomly to other players in this market. The
matching process in the market is global and non-assortative. Furthermore,

IFor the theory on infinitely repeated games with fixed opponents, see Mailath and
Samuelson (2006) as reference, experiments were conducted by Roth and Murnighan
(1978), Murnighan and Roth (1983), Aoyagi and Fréchette (2003), Dal Bé and Fréchette
(2007) or Duffy and Ochs (2003). Cooperation in random matching games was analyzed
theoretically by Ellison (1994) and Kandori (1992). Experimental evidence on cooperation
in random matching games can be found in Duffy and Ochs (2003), and in one-shot games
for example in Brosig (2001).
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there are no information flows between pairs.

The most important contribution for this game was made by Gosh and Ray
(1996): There are two types of agents in the population—myopic and patient
ones. Patient players “test” their opponent in the first periods of a new rela-
tionship by increasing slowly the degree of cooperation. While myopic players
defect after few periods and the relationship is broken up subsequently, pa-
tient agents maintain the relationship and continue to cooperate. With this
strategy of “starting small”, any gain from defection is wiped out by the sub-
sequent restart of a phase of low payoffs in the new relationship. However,
the resulting equilibrium relies on two assumptions:

(1.) Players know the aggregate play of agents in the market.
(2.) There are fixed shares of myopic and patient individuals.

In a paper by Datta (1993), the second assumption is suppressed. The strate-
gies are the same, i.e. in the first periods of a new relationship agents choose
not to cooperate (or only a very small degree of cooperation) and start to co-
operate in later periods. With this strategy, cooperation can be established
in an homogenous population. Gosh and Ray (1996) note that the considered
strategy then does not fulfill the criterion of “bilateral rationality”: Given
that all other players in the population stick to the described path of play,
it is optimal for two agents who meet for the first time in the market, to
quit the punishment in the first periods and to start the relationship with
cooperation immediately. This would not violate any incentive constraint.
However, if all pairs act in this way, we are no longer in equilibrium. Thus,
there is no cooperative equilibrium in above game in a homogenous popu-
lation in pure strategies which do not violate the refinement of “bilateral
rationality”. Conventional approaches therefore do not provide a convincing
solution.

We solve this dilemma by dropping also the first assumption: Players do not
know the aggregate play of agents in the market. They only know that some
agents play according to a “cooperative strategy” (for example, a “starting
small” strategy as in the papers cited above), which entails a long-term re-
lationship, and some agents play according to a “non-cooperative strategy”,
which is to defect in each period. Thus, after finite time each agent knows
the play of her current opponent. Players choose to maintain the relation-
ship with their current opponent if and only if her play is consistent with
the cooperative strategy. Furthermore, they have a subjective belief i about
the share of agents in the market ;1 who play according to the cooperative
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strategy. Agents update this belief based on past experiences. For a given
subjective belief, they choose the strategy which maximizes the sum of dis-
counted expected payoffs.

The cooperative strategies we consider start with 7™ periods of defection,
i.e. we allow for “starting small” strategies. However, we are mainly inter-
ested to what extent cooperation can prevail in the population if long-term
relationships start with cooperation immediately which means that 7™ = 0.
Note that such a strategy would never support a symmetric Nash equilib-
rium in pure strategies with cooperation. We will see that cooperation in
the population may be a stable outcome even if T* = 0. Therefore, we do
not only drop an unrealistic assumption, we also maintain a more plausible
solution, as the outcome of a cooperative relationship can not be improved
by players, and therefore agents’ behavior is “bilateral rational”.

As updating rule we take “fictitious play”, initially introduced by Brown
(1951) as a means of calculating Nash-equilibria and extensively studied
thereafter. Under fictitious play, each player assumes that her opponents
are playing according to a stationary distribution. In each round, every in-
dividual plays a best response to the empirical frequency of his opponent’s
play—see for example Fudenberg and Levine (1998). In particular, players
do not try to influence the future play of their opponents. This assumption
may be problematic in small populations, but is very reasonable in large
population frameworks, where players will not meet again after a relation-
ship was broken up.

Due to the nature of the game, there is one important difference to the
standard fictitious play model: Agents count one opponent’s strategy choice
as one observation (and not one action choice). Two types of fictitious play
will be considered: In the first one, agents calculate the average behavior
using all their observations. In the second one, agent’s memory is limited to
the last n observations. Throughout the paper we assume that agents are
symmetric with respect to the updating rule.

The optimal strategy depends on the subjective belief. Assume, for example,
that the cooperative strategy prescribes to cooperate in each period. Then
we can observe the following:

e If an agent has met mainly players who followed the non-cooperative

strategy, then she assumes that the probability of meeting an agent
in the market who plays according to the cooperative strategy, is very
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small and thus chooses the non-cooperative strategy in order to avoid
exploitation.

e [f an agent has met mainly players who followed the cooperative strat-
egy, then she assumes that the probability of meeting an agent in the
market who plays according to the cooperative strategy, is very high
and thus chooses the non-cooperative strategy in order to exploit future
opponents.

e [f an agent has made mixed experiences, then she chooses the coopera-
tive strategy in order to establish a cooperative long-term relationship
which is expected to be more beneficial than staying in the market.

The goal of this paper is to analyze the aggregate dynamics in the popula-
tion, i.e. the evolution of the share of agents who choose the cooperative
strategy. We proof that with unlimited memory, beliefs converge to a single
value whenever aggregate play in the market converges. This value is consis-
tent with a Nash equilibrium of the game.

Under limited memory, beliefs may remain heterogenous even when aggre-
gate play converges. We show that the state in which all agents defect, can be
asymptotically stable—depending on the discount factor and the exogenous
rate of breakup. Furthermore, if the cooperative strategy involves sufficiently
many periods of non-cooperation at the beginning of a relationship, the state
in which all agents play cooperatively, can be asymptotically stable. This re-
sult then replicates Datta (1993) without the assumption of knowledge.

In general, the dynamics under both updating rules can not be determined
explicitly and we are not aware of any method that allows to proof con-
vergence in our setting. We therefore simulate the model and focus on the
cooperative strategy which prescribes to start with cooperation immediately,
ie. T* = 0. We observe that aggregate behavior always converges under
both specifications of the updating rule. For a large set of parameter speci-
fications and distributions of initial beliefs, cooperation is a stable outcome.
With limited memory, aggregate behavior is in general inconsistent with the
Nash equilibrium of the game. Therefore, the results of the present approach
may differ substantially from the ones obtained in settings with the assump-
tion of knowledge of aggregate play.

In a further step, we consider the model for large but finite populations,

such that the outcome becomes stochastic. The main result is that the dy-
namics resemble the ones obtained in an infinite population if the population
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is sufficiently large. However, we also show that for some parameter values,
cooperation breaks down in a finite population, while it would be a stable
outcome in the infinite case under the same specification.

The rest of the paper is organized as follows: The next section outlines
the model. In chapter 3, we present the updating rules and derive analyti-
cal results regarding the stability and degree of cooperation. In chapter 4,
we summarize the results of the simulation. Most of our intuition for the
dynamics of the model will follow from this section. Chapter 5 extends the
model to finite populations. Readers who are not interested in determinstic
approximation may wish to skip this section. Chapter 6 concludes. All proofs
and figures can be found in the appendix.

4.2 The Basic Model

We consider an infinitely repeated two-player PD which is played simultane-
ously by a continuum of agents. Time is discrete and denoted by ¢t € {1,2,...}.

Every agent plays the PD in each period with some opponent: an agent
has the options “cooperate” (C') and “do not cooperate” (D). Payoffs are
shown in the following matrix (where player 1 chooses rows and player 2
chooses columns):

D | C
D| 1,1 | HO0
Cl0,H|GG

We fix G,H € R with 1 < G < H < 2@G, such that the sum of payoffs is
maximal at the profile (C,C).

After observing the opponent’s action choice, each agent has to choose whether
to maintain (M) or to quit (Q) the current relationship. If and only if both
partners choose action M they play the game together again in the next
period with probability 1 — ¢. The parameter o is the exogenous rate of
breakup. If and only if an agent plays the PD in period ¢ with the opponent
of the previous period, we call the link between those two agents a long-term
relationship.

Agents who are not in a long-term relationship in ¢, will be paired up ran-
domly at the beginning of period t. The pool of agents who are not in a
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long-term relationship at the beginning of a period, will be called the “mar-
ket for long-term relationships”.

4.2.1 Evaluation of the current opponent and strate-
gies

Let c(t) be a counting function. If ¢(t) = i, then the agent plays the stage
game in period t against her i’th opponent. Accordingly, we have ¢(0) = 1.
Further, denote by 7% € N the number of periods in which the agent played
the PD with opponent number ¢ until the current period. Let hy: be the
history of actions of opponent ¢ in the 7% periods in which an agent played
the PD with this opponent, i.e. each element in hr: is either D or C'. Let
T,T* € N and define A% as a history of actions where

e all elements are equal to D if T" < T™ and

e the first 7% elements are equal to D and the remaining ones are equal
to Cift T > T,

Then define the evaluation function as
1 if 7" >T* and hyi = hS,
glhrs) =< 0 T <T* and hyi = hS, . (4.1)
—1 otherwise

Whenever an agent is in the market, she chooses between two strategies: a
cooperative one, ff., and a non-cooperative one, f%*. The strategies are
specified as follows:

f4.: Choose D if T* < T*. Choose C if T* > T*. As long as the value of g
for your current opponent is equal to 0 or 1, choose M, otherwise Q).

f4.: Choose D in each period. As long as the value of g for your current
opponent is equal to 0 or 1, choose M, otherwise Q.

The interpretation of the evaluation function ¢ is then as follows: As long
as for a given opponent the value of g is equal to 0, an agent does not know
her strategy. If it is equal to 1, she knows that her opponent plays according
to the cooperative strategy, if it is equal to -1, she knows that her opponent
plays according to the non-cooperative strategy or any other strategy.

If T* > 0, players start a long-term relationship with non-cooperation and
switch to cooperation after T™ periods. This sort of strategy decreases the
sum of expected discounted payoffs of agents who play according to the non-
cooperative strategy relative to cooperative agents.
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4.2.2 Evaluation of the population

Define by p(t) the share of agents in the market in period ¢ who play according
to the cooperative strategy. Each player has a subjective belief fi(t) over u(t).
Let

hs" = {g(hg-n+1), .., g(hpeen )} (4.2)
be an agent’s history of evaluations in period ¢, where the vector
{g(hT—n+1), ...,g(hTo)}, (43)

for n € N, and g(hyi) € {—1,1} for all i € {—n + 1,...,0}, determines
the agent’s subjective belief in the first period (the “preplay-observations’).
Denote by

HSC(”) = {{gz}ze{l ,,,,, n+c} | g; € {_1707 1}} (44)

the set of all histories of evaluations of length n + ¢ and by

HS(n) = J HS"(n) (4.5)

c>0

the set of all finite histories of evaluations with length of at least n 4+ 1. For
given n, the belief in a period t then is given by an updating rule

f: HS(n) — [0,1]. (4.6)

Let ji(t) be the abbreviation for ji(hs®®).

4.2.3 Sequence of events and strategy choice

The sequence of events in each period is as follows:

(i) Pairs in which both agents have chosen M in the previous period, are
matched together with probability 1 — o.

(ii) Those agents who were not matched in [(i)], are paired up randomly.

(iii) Those agents who are matched to a new opponent, choose a strategy
according to their current belief fi(f). All other agents maintain the
strategy from the last period.

(iv) The PD is played according to the respective strategies.

(v) Agents observe the action choice of their opponent and evaluate her
according to g.
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(vi) Agents choose to maintain or to quit the relationship.
(vii) Agents update their beliefs to (¢t + 1).

The assumption that agents only optimize when they are in the market, rules
out that a player starts the relationship with strategy f¢. and switches to
f4, in the next period, after her opponent has been evaluated as coopera-
tive. Without this assumption, the values of fi(t) and pu(t) no longer would
be one-dimensional, as there are more than two types of observed behavior.

Agents discount future gains with § and maximize over the sum of discounted
expected utility. Each agent in the market chooses the strategy which yields
her the highest sum of discounted expected utility for given subjective be-
lief fi(t). Denote by E[f%., ji(t)] the sum of discounted expected utility if in
period ¢ the non-cooperative strategy f4. is chosen, and by E[fé., ji(t)] the
sum of discounted expected utility if in period ¢ the cooperative strategy f%.
is chosen. For the case E[f¢, i(t)] = E[f¢, i(t)] we assume that agents select
the cooperative strategy. After some calculations (given in the appendix),
we find that

1+67(1—a) T (a(t)G — 1)

B I Al (e sy 1)) ML

and
o o LT o) (= (1~ o) (A)H 41— (1) ~ 1
Blf (0] = A = | LR .

(4.8)
We summarize the collection of parameters of the game by I' = {H, G, 0,0}.
With equations (4.7) and (4.8), we can show the following result:

Lemma 1 [Cooperative Intervals|

(a) For any payoffs H, G and given T*, there are values §<1,6 >0,
such that for 6 > 6 and o < & there is an interval V = [Hr T*7ﬂF7T*] with

0 < pp . < firrs < 1, where we have E[ff., i(t)] > E[f4., i(t)] whenever
Q(t) €'V, and E[f%., i(t)] < E[f&., i(t)] otherwise.

(b) If T* > Z=5 then for any p* € (0,1], there are values § < 1, & > 0,
such that for 6 > 0 and o < &, we have E[f$., i(t)] > E[f%., fi(t)] whenever
p(t) € [, 1].

92



Proof: see Appendix.

If T* = 0, then for very small and very high values of i, an agent in the
market chooses the non-cooperative strategy. In between, she chooses the
cooperative strategy if 0 is sufficiently high and o is sufficiently small.

For an example, consider figure (I). We plot the sum of expected discounted
utility for 7* = 0, 7* = land T* = 2. For T* = 0 and 'y = {3.5,2,0.98,0.08},
there is no subjective belief at which an agent chooses the cooperative strat-
egy. For T* = 0 and I'; = {3.5,2,0.98,0.04}, we get that o ™ 0,083 and
fir, 0 ~ 0,305. If we increase 7™, the cooperative interval also increases. For
T™ = 2, we have that fir, o = 1.

4.2.4 Nash equilibria in symmetric strategies

Assume for a moment that agents have common knowledge of the aggregate
behavior of the population. Further assume that

0< py . < firge < 1. (4.9)

Then one can show that for the considered strategies there are two mixed
Nash-equilibria and one strict Nash-equilibrium in the described game:

(i) In the market, all agents play with probability I according to fi.

*

and with probability 1 according to f&. in each period.

~ Hpops

(ii) In the market, all agents play with probability fr r« according to f£.
and with probability 1 — fir 7« according to f&. in each period.

(iii) All agents play according to f¢. in each period.
At a later stage, we will compare the outcome of the game without knowledge

of aggregate play to these equilibria.

4.2.5 Distribution of states, beliefs and histories

Each updating rule fi gives rise to a set of subjective beliefs B which poten-
tially are reached. Let
Y (t) € A(BT?) (4.10)

be the distribution of states and beliefs in period ¢, i.e. a single element in
Y'(t) is the share of players at the beginning of period ¢t who have a certain
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subjective belief and are (or are not) in a long-term relationship since [ €
{1,...,T*} or more periods. Accordingly, denote by

YHS(t) € A(HS(n)" 1) (4.11)

the distribution of states and histories in period ¢, i.e. a single element in
YH5(t) is the share of players who have the same history of evaluations and
are (or are not) in a long-term relationship since [ € {1,...,7*} or more
periods. The sequences

Y= {Y(t)}tzo (4-12>
and

Y= {YH(n)} ., (4.13)

are implied by the updating rule i, T, n, I' and the distribution of states
and beliefs in the initial period, Y#5(0). We will call such a sequence a
“process” without making further reference to the underlying parameters.
Define a function

720 A(HS(n)T ) — A(BT), (4.14)

which assigns to each element of A(HS(n)?T" *2) the corresponding distribu-
tion of states and beliefs. Obviously, this mapping depends on the updating
rule fi. Therefore, we have

Y = {TQFP(YHS(t))}tZ(). (4.15)

4.2.6 Definition of the steady state and stability

With the definitions of the preceding section, we can introduce the notion of
a steady state to our framework:

Definition [Steady state]

A distribution of states and beliefs Y* € A(BT 2) is called a steady state
of YV if there ewists a Y5 € Tﬂ_l(Y*), such that YH5(t) = YHS implies
YHS(t 4 5) € T[L_1<Y*) for all s > 0.

We classify the steady states as follows:

Definition [Classification of steady states]

A steady state Y* € A(BT12) of Y is called “non-cooperative” if the cor-
responding value of p* equals 0, while it is called “cooperative” if u* > 0. A
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steady state Y* with pu* =1 is called “fully-cooperative”.

It is straightforward to adapt two important definitions of stability to our
framework.

Definition [Lyapunov stability]

A state Y € A(BT"2) is called Lyapunov stable with respect to Y if in every
neighborhood B of Y, there is a neighborhood By of Y with By C B, such
that for all t > 0, from Y (0) € By N A(BT *2) it follows that Y (t) € B.

Definition [Asymptotic stability]

An element Y € A(BT"*2) is called asymptotically stable if it is Lyapunov
stable, and there is a neighborhood B of Y, such that from Y (0) € B, it
follows that lim; o Y (t) =Y.

Note that we defined stability as a property of distributions of states and
strategies, not histories. We therefore require that for an element Y'(t) €
A(BT"*2) which is sufficiently close to an asymptotically stable steady state
Y, we get convergence to Y, regardless of the distribution of histories which
generates Y (t).

4.3 On the dynamics under fictitious play

4.3.1 Infinite memory

Under fictitious play, every player has two weight functions x.(t) and r4(t)
from which she calculates the subjective belief about the aggregate play of
agents in the market. The weights are updated in the following way:

(0
fe(t) = Y Lgtno=1hs (4.16)

i=—n+1

c(t)
K;d(t) = Z 1{g(hT¢)=71}7 (417)

i=—n+1

where 1 is the indicator function. Individual beliefs are given by

aFP(t) = #% (4.18)
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The subjective belief in the first period, a7 (0), therefore is determined by
(4.3): the more elements in (4.3) take on the value 1, the more optimistic
is the agent about the behavior of her opponents at the beginning. Since
beliefs are always given by a rational number, we have

B=RnNI0,1]. (4.19)

The corresponding process Y% is called the fictitious play process. Let Yu(t)
denote the fraction of individuals in the market in period t with subjective
belief equal to i € B and let yl’{”(t) denote the fraction of individuals in long-
term relationships with subjective belief equal to . For the case T > 0,
we denote the fraction of individuals which have been in a relationship for
[ €{1,...,T*} periods and hold belief i by yL(t)

Definition [Convergence]

The process Y converges to Z € A(BT2) if for all ¢ > 0, all i* € B
and all 1 € {1,...,T*} it holds that for t — oo we have

S ) - oo,

Aeli* —e, i+ feli* —e, i+
§ l E l
ﬂe[ﬂ**C,ﬂ*‘FE} ﬁe[ﬁ'*fevp‘*+6]
m m
E i (t) — E Z5"
[ —e i* +¢] e[ —e,fi* +¢]

For some value fi* € B, let Yz C A(BT *2) denote the collection of dis-
tributions of states and beliefs which assign their entire mass to belief i*.
Thus, Yy € A(BT"+2) is the distribution of states and beliefs where every
agent has a subjective belief of 0 and does not cooperate. With this, we can
state:

Lemma 2 [Beliefs under convergence]

Let Y* € A(BT"*2) and u* the corresponding market share of cooperators. If
the fictitious play process converges to Y* or if Y* is a steady state (or both),
then Y* € Y.

Proof: see Appendix.
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For the stationarity assumption of fictitious play to make sense, we are partic-
ularly interested in the average behavior of the population. Since players are
randomly and anonymously assigned to each other, every individual behaves
as if she was always assigned to the same opponent who plays a mixed strat-
egy given by the subjective belief fi(t). The crucial question is whether the
average play in the population converges, rather than convergence of individ-
ual play. However, it can easily be checked from lemma 2 that convergence
of individual play (as defined before) is in fact equivalent to convergence of
aggregate play (convergence of ). In particular, our model prevents deter-
ministic cycles on the individual level which can arise from correlated play
between players. Fudenberg and Kreps (1993) for example show that such
cycles may persist under fictitious play even if the empirical distribution of
actions converges. This is not possible in an anonymous random matching
scheme, where players can only observe the actions of their particular op-
ponents but ignore what the entire population is doing—compare Hopkins
(1995).

Proposition 1 [Limit points and steady states]
Assume that 0 < B e < Hrre < 1.

(a) The state Yy is a steady state of the fictitious play process. There ex-
ists a steady state Y € Y. .. if and only if prr- = 1. There are no other
steady states.

(b) If fictitious play converges to some Y € A(BT +2), then either Y =Y,
YeY, , orYeY;

T "

Proof: see Appendix.

One of the standard results about fictitious play states that every strict Nash
equilibrium is an absorbing state—see for example Fudenberg and Levine
(1998). The first part of proposition 1 shows that this result also holds in
our framework. Another well known result about fictitious play is that if the
empirical distribution over player’s choices converges, then the corresponding
strategy profile is a Nash equilibrium. This is what is stated in the second
part of proposition 1.

With the above learning rule, individuals asymptotically learn the true pa-

rameter yu—given that p converges—and the limit sets support homogeneous
beliefs. This property assures that we get a very clear prediction about the
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limit of the learning process.

4.3.2 Finite memory

Under the previous updating rule, the speed of belief updating converges to
0. This is implausible whenever y changes over time. The speed of updating
remains constant if in a given period ¢, only the last n observations determine
the subjective belief. This is also more appropriate if the agents’ memory
is finite and, more importantly, players account for the dynamic structure
of the market. A subjective belief fi(t) then can take on only finitely many

values, such that
1 —1
B— {o,ﬁ,...,” ,1}. (4.20)

n

Note that there is a trade-off in the size of n: If ;4 remains constant over time,
the agent has a more precise estimate of p if n is large. However, as long
as 1 varies over time, agents should replace very old observations quickly by
new ones such that n should be limited. Define

c(t)
R(t) = argren § Y Lgthpa)zoy =10 ¢ - (4.21)

i=k

In words: k(t) is the oldest of n observations with g(hpi) € {—1,1}, i.e.
observations with an evaluation equal to 0 are not taken into account. As all
of the considered observations have the same weight, the required updating
rule is given by

c(t)
. 1
,LLA(t) = E Z 1{g(hTi):1}' (422)
i=k(t)
The subjective belief in the first period is again determined by the vector

given in (4.3).

As [i(t) can take on only finitely many values given in (4.20), we introduce
the following notation related to the boundaries p, .. and fipr-:
EF,T*,YL = [nﬁrgﬂ*]"r? (423>
Froen = [nfire =15, (4.24)

where [-], denotes the smallest integer which is larger or equal than the ex-
pression in the brackets. In order to keep notation tractable, we drop the
subscripts {I", 7%, n} in the following. If § and n are sufficiently large and o
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is sufficiently small, then k < k and strategy f%. is chosen in ¢ if and only if
at) € [£.5].

Consider first the cooperative strategy with 7" = 0. The set of distribu-
tions of beliefs and strategies is then given by A(B?). Define the elements
of Y(t) € A(B?) as follows: y;(t) is the share of players in period ¢ who are
in the market and have the belief fi(t) = £, 7 € {0,1, ...n}. Furthermore, let
y(t) be the share of players who are in a long-term relationship and have
the belief ji(t) = :—l The share of agents in the market with strategy fg in
period t therefore is given by

yo(t) = Z yi(t), (4.25)

where the share of agents in the market with strategy f¢ is

(B

n

yp(t) = p_wi(t) + 2_ui(t). (4.26)

i= i=
With these specifications, we get

yo(t)

—yp(t) ol (4.27)

pu(t) =
as the share of agents in the market who behave cooperatively.
Obviously, for each T* the element of A(BT *2) with yy = 1 is a steady state.
Proposition 2 [Non-cooperative steady state]
Assume that for all agents ji is given by i, T* = 0 and n > 2, such that
n and T imply k > 2. Then, the element Y € A(B?) with yo = 1 is an
asymptotically stable steady state.
Proof: see Appendix.
Now assume that 7% > 0. Then, there is a share of agents in a long-term
relationship whose opponent’s evaluation still is equal to zero. Denote the
share of players in period ¢ who have the subjective belief + and are in a long-

term relationship since [ € {1, ..., T*} periods, by y!(t). The function i is
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specified such that the belief does not change if the relationship is broken up
by chance before agents start to cooperate. We have

yi () = (1 - o)yt —1) (4.28)

for i € {0,...,n} and [ € {1,...,7" — 1}. From Lemma 1(b) it follows that
for appropriate values of § and o, we have £ = 1 and k = n if T is chosen
sufficiently large. Then we get the following result.

Proposition 3 [Fully cooperative steady state]

Assume that for all agents fi is given by i, n > 2 and that for given payoffs
H, G, we have T* > Z—f Then, there are values 0, &, such that for § > 9,
o < a and yo(0) < 1, we have lim; o u(t) = 1, i.e. the fully cooperative

steady state is asymptotically stable.
Proof: see Appendix.

Thus, if the cooperative strategy involves sufficiently many periods of non-
cooperation at the beginning of each relationship, we get almost global con-
vergence to the fully cooperative steady state. Note that in this case each
agent’s subjective belief converges to 1 and behavior again converges to a
Nash equilibrium. We therefore obtain the same results as in models with
the assumption of common knowledge. However, for smaller values of T, it
remains subject to simulations of the model, under which conditions conver-
gence occurs and cooperation is a stable outcome.

4.4 Simulation

To complement on the analytical results of the last section, we simulated?
the model for many parameter specifications I'. We are mainly interested in
the question whether p converges to a limit point p* or not. In this section,
we present the results for some illustrative examples. The statements below
are valid for all specifications we ever considered. We spend most efforts on
scenarios with 7% = 0, as

o for 7 > 0 and fir 7+ < 1, we make the same observations,

e for 7" > 0 and jir p« = 1, we have an analytical result on the outcome
(for § sufficiently high and o sufficiently small) in the propositions 1
and 3

2The code can be downloaded from the authors’ webpage.
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e for 7" = 0 the cooperative strategy is robust against communication:
players can not improve the outcome of a cooperative long-term rela-
tionship.

For each of the considered scenarios I', we vary n € {5,10,20}, and the dis-
tribution of initial beliefs. Note that for zF the number n has only meaning
for the distribution of beliefs in the initial period. The distributions of beliefs
for each n are given table (I).

For ji* we specify that in the first period, all histories which give rise to
the same belief, have the same relative frequency. The following scenarios,
I'y, Ty, I's and Ty, imply different cooperative intervals (for T* = 0):

H G 5 g HF,O ﬂF,O
' 35 2.0 098 0.04 0.083 0.305
', 35 3.0 098 0.04 0.032 0.780
I's 2.0 1.5 099 0.01 0.044 0.467
ry 20 1.9 099 0.01 0.023 0.899

Whether a limit point p* is implied by a steady-state or not, we know for
ffP from the proposition 1. For ji* we can conclude that this is the case if
the distribution of beliefs converges to a constant Y* € A(B?).

The results of the presented examples are summarized in table (IT). We im-
mediately recognize:

Observation la Under if", 1 converges under all scenarios, values of n
and initial beliefs to either p* =0 or p* = firyp.

The intuitive reason for this observation is that only the players that hold
beliefs in the neighborhood of B and fir o change their actions as a result
of changing belief. Since the size of the change in individual beliefs goes to
zero over time, either the rate in which these players switch between actions,
goes to zero, or the agents’ beliefs become closer to 0, Py o OF Ar - Therefore,
the distribution of beliefs in the population converges to a single value.

We find that the cooperative limit point is always given by fir . This can be
explained intuitively as follows: any belief distribution concentrated around
fir o that assigns more than mass fir o to cooperative beliefs, satisfies @ > fir .
Since individual’s beliefs approach p over time, more and more individuals
switch to defection and hence, p decreases. The reverse argument shows that
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the share of cooperators in the market increases if © < fipo. For P this
argument does not work: If p > p, , holds for several periods, more and

more agents switch to the cooperative strategy such that p increases even
further.

Observation 1b Under i, i converges under all scenarios, values of n
and initial beliefs.

To the best of the author’s knowledge, there is no setting in which p does
not converge to a single value. However, among the different updating rules,
the dynamics in the market in the first periods and the number of periods,
until g is close to the respective limit point, may vary substantially—see
figure (II), [TOP]. We also can observe that the smaller o is, the slower u
convergences, as agents are less often in the market.

Observation 2 Under the updating rules p*" and j*, we have p* > 0
if the distribution of initial beliefs is not too pessimistic.

We see from the table (II) that under fi#, there is no case in which p con-
verges to 0 although under some distributions of initial beliefs, agents are
quite pessimistic in the first periods. Under if*, a cooperative outcome is
reached if the distribution of initial beliefs is not too pessimistic.

This observation is of course dependent on the fact that there are some
cooperative agents in the initial period. If p(0) = 0, then p stays at this
level forever. Very pessimistic beliefs in the first period are less harmful for
cooperation if memory is finite, as preplay-observations will be substituted
by more recent ones. This is not the case under ", where agents recall the
entire history of preplay-observations: the non-cooperative steady state is
reached if the subjective beliefs in the initial period are very pessimistic—see
figure (IT), [Top-left).

Observation 3 The limit points of the updating rules can differ substan-
tially.

We can observe that the conditions in the market for long-term relation-
ships vary among the different updating rules: Under fi“, the cooperative
limit point p* is bounded away from 0 and 1. The limit points under pf”
and i can differ substantially—see for example in the scenarios I'y and T'y.
In general, aggregate play does not converge to the Nash equilibrium under
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the updating rule with limited memory.

Finally, we display in figure (II), [BOTTOM], the distribution of beliefs in
the market for all updating rules, when p is close to its limit point in scenario
['y: Under P beliefs are distributed closely around jir, o and will converge
even further in the next periods. For fi*, we get significant variation in the
distribution subjective beliefs in the steady state.

4.5 Extension: The finite population process
and its deterministic approximation

Up to now we used deterministic processes in order to analyze the population
dynamics. We understood them as approximations to the stochastic popula-
tion processes that occur when finitely many agents are randomly matched
for interaction. In this section we explore whether the deterministic pro-
cess is in fact a good approximation of the stochastic population process
as the population size goes to infinity. In particular, we are interested in
the relationship between the long run behavior of the deterministic and the
stochastic process.?

In order to be consistent with the infinite population case, we must therefore
exclude that players hold different beliefs about every particular opponent.
We achieve this by assuming that players are matched anonymously. More-
over, we assume that players do not carry out any strategic reasoning, but
simply play best responses to their current beliefs. This is a weak assumption
in finite, but large population because every action has a very small effect
on the overall dynamics.

In order to provide the first result, we look at some arbitrary period ¢ and
therefore skip time indices. We abstract from the set of matched players
and only analyze the matching procedure in the market. Let M denote the

3This deterministic approximation approach is frequently used by biologists and
economists for analyzing interaction in large populations where individuals are matched
randomly. Many approximation results have been established so far—see for example
Boylan (1995), Corradi and Sarin (1999) or Benaim and Weibull (2003). These models
assume that the time between two matches as well as the fraction of the population which
is matched each time, are diminishing over time. Typically, this results in a differential
equation in the limit. In our model, the entire population is matched at fixed points in
time. Since we are not aware of an approximation results for such a framework, we are
going to provide one in this section.
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number of individuals in the market. Consider the standard matching proce-
dure that assigns one partner to every player, such that all pairs are equally
likely. For any hs € HS(n), let the random variable m* (hs, f%.) denote
the fraction of players with history of evaluations hs that are matched to
a partner which plays according to strategy ff.. As before, 1 denotes the
fraction of individuals in the market which play according to strategy ff..
The following lemma provides a version of the law of large numbers which is
adapted to our needs.

Lemma 3 [Some law of large numbers]

For all hs € HS(n) and any € > 0:

lim Pr[|m"(hs, f§.) — p| > €] = 0.

M—oo
Proof: see Appendix.

The definition of the stochastic population process

X0 ={X"5(1)} (4.29)

>0

is straightforward from our model. The state space of X9 is given by
A(HS(n)T"*2). Moreover, for any updating rule ji, we denote by Xy the
process 7;(X#¥) induced by X#°. The deterministic approximation process
Y3 is derived from X#¥ in the following way. First, assume a contin-
uum population and denote by y,s the share of individuals in the market
with history of evaluations hs € HS(n). Now, probabilities are replaced by
shares: for all hs € HS(n), the fraction y,sm™ (hs, f5.) of individuals in
the market meets an individual which plays strategy ff. and the fraction
yns(1 — mM(hs, f&.)) meets an individual which plays strategy f&.. Ac-
cordingly, individuals switch to new individual histories (and possibly get
matched or divorced). Moreover, for every hs € HS(n) and t < T*, the
share o of the matched individuals gets divorced. Let ) denote the process
Tﬁ(yH %) induced by Y. The following result shows that ) can be consid-
ered as the limiting case of the random process Xy .

Proposition 4 [Finite population process|

For a given population of size N, consider the deterministic process Y
derived from XS5 as described above. Moreover, consider the corresponding
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processes Y and Xy. If XII5(0) = YH5(0), then!
Pr(d(Xn(t),Y(t)) > €] — 0 as N — oo,
for all e > 0 and all t > 0.

Proof: see Appendix.

Consider any asymptotically stable steady state Y* € A(BT 2). We de-
fine its basin of attraction as the set of all initial states in A(HS(n)T *2)
from which ) approaches Y*.° Formally,

B(Y*) = {Y" e A(HS(n)" ™) : Y'5(0) =Y"* =
diY(t),Y") —0ast— oo}. (4.30)

The following corollary is straightforward.

Corollary 1

Let Y* € A(BT"2) be an asymptotically stable steady state. Whenever
XN°(0) € B(Y™),
then

lim lim Pr[d(Xny(t),Y") >¢€ =0,

t—o0 N—oo

for all e > 0.

The corollary assures that X is likely to be close to Y* for a very long time,
given that the population is sufficiently large and that X starts in the basin
of attraction of Y*. In most of our simulations we found two asymptotically
stable steady states of ), namely a cooperative and a non-cooperative one. It
follows from the corollary that they can be used as predictors of the outcome

4For any two distributions of states and beliefs Y and Z, we choose the distance function
in a way that it is well-defined whenever the supporting beliefs of Y and Z are discrete
points in the interval [0, 1]. Let g € [0,1] and L = {1, ..., 7*} (assume that L = @ if T*=0).

AV, 2)= Y la—zml+d, Y. Wh-sl+ D) lyp' — 23"

Biyp>0,2;>0 IEL iyl >0, 2L >0 fiiym>0,2m>0

®Note that in case of fictitious play, Y* has discrete support in [0,1] (lemma 2) and
therefore Y* is a feasible argument of the distance function d.
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of the finite population process in the medium and long run.

This result may be satisfactory in many frameworks. However, note that
for finite IV, the outcome of Xy in the very long run might still be far away
from Y*, even if X5 starts in the basin of attraction of Y*.

Proposition 5 [Long run outcome in a finite population]

Consider some finite N (not too small) and the updating rule i*. Then

lim Pr[Xy(t) =Yo] =1, if k£ > 2, and

t—o0

lim Pr[Xy(t) = Yp|Xn(0) # Yo =0, if k = 1.

t—o00

Proof: see Appendix.

To illustrate the importance of this result, consider scenario I'! from the
simulations with n = 20 (where we had k& = 2): Under ji* we always ob-
served convergence to a steady state with cooperation. However, Proposition
5 says that cooperation brakes down in finite time. This happens after a dis-
advantagous matching of cooperative and non-cooperative agents, such that
the subjective beliefs of the fist group worsen (and therefore these agents
switch to the non-cooperative strategy), while the subjective beliefs of the
second group remain low. If we consider any scenario with £ = 1, cooperation
cannot disappear.

4.6 Conclusion

In this paper we analyzed the dynamics on a market for long-term relation-
ships when agents learn from their observations about aggregate play. We
saw that for a large measure of initial distributions of beliefs, aggregate play
converges to a cooperative outcome if agents update their beliefs based on
past experiences. This remains true if strategies are very simple and pun-
ishment within a relationship is not possible. The result is a population in
which different agents make different experiences in the market and therefore
act differently even if aggregate play remains constant. We observed from
the simulations of the model that aggregate play converges in many (if not
all) cases. However, if agents base their subjective belief on finitely many
observations, aggregate play in a steady state may not be consistent with a
Nash equilibrium of the game.
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We experienced that the analytical tools for analyzing the considered model,
are fairly limited. Future research may concentrate on finding methods from
non-linear dynamics in order to make the model tractable. The benefit could
be the identification of tools for predicting behavior in more complex games
without the assumption of common knowledge.

4.7 Appendix

Calculation of (4.7) and (4.8)

We calculate these two terms from the expressions

T"—1 T [e%) T*—1 T
E[f$«i(t)] = @) [g > {(1 —o)7 Z&T] +o Yy [(10)T ( ST+ D> 5TG>
T=0 =0 T=T* =0 T=T*
oo T -1 T
+o > 5T 1= o) E[ffu, p()]| + (1 — (1) [o > {(1 -y 67]
=0 T=0 =0
T* -1
+o > 61— o) E[f§, i(t)] + 67 (1 - U)T*E[f%*ﬁ(t)}} ; (4.31)
=0

and

T*—1 T
Blffp®)] = o> {(1 —) TS [+ a®)eT 1 — o) H + (1 — )T (11— o)
T=0

T=0
T*—1
+o 30 6T = o) B[S i(0)] + 87 (1 — o) T Elf, (1)) (4.32)
=0

Proof of Lemma 1

First consider the ratio

__ Elff., ]
Epe () = a3 (4.39)
B[fs, i
Taking the limit yields us
) . 14677 (G — 1)][1 — §T"+1
i Bpe (1) — RS R R ) I, w31
o0 = (L= @o T+ o7 (1—8) (i +1— i) — 1)]
and with I’Hospitals rule
. . . G(T* +1)
lim lim Epx = 4.35
Jim, Jimy Er- (R) (T* +1) + a(H — 1)’ (4.35)

which is larger than 1 for all & € [0,1] if T* is chosen sufficiently high. Further, it follows that the
right-hand side of (4.35) is larger than 1 if

G-1
i< (T*+1 )
a<( +)H

(4.36)

As § and o enter (4.33) continuously, part (b) of the result follows from (4.35).
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Now fix a fi* such that the right-hand side of (4.35) is strictly larger than 1 if i = a*. As Erp«(f)
is continuous in § and o, there are values § and &, such that

E[f$, "] > E[f$., 1] (4.37)
whenever § > § and o < 5. We can calculate that

, . 1-6T"(1-0)T"
;Pglo Er« () = 1—oT (1= o) 11

<1 (4.38)

Define
VEr- (i) = Elff, i) = Elff- 0. (4.39)
From (4.37) and (4.38) we know that VEr«(i*) > 0 and VE7=«(0) < 0. Further from

*

OVE (i) _ —2G(1 = 8T (1 — )" AT (1 — )T T (1 - 67" (1 - 0)")] <0 (4.40)
?n [(1=0)(1 =T+ (1 = )T +1) + (1 = 6)0T" +1(1 — o) 7" +1 a3 '
with . . . .
A=T" 1-0)T ca-6T" 11 -0)T" (4.41)

we get that VEp=« (i) is a concave function. With this, part (a) of the result follows.
Q.E.D.

Proof of Lemma 2

We assume that Y* is the limit point of the fictitious play process (in case Y* is a steady state, the proof
is analogue). Suppose, by contradiction, that Y* € A(BT*+2) assigns positive mass to beliefs different
from p*. Since p(t) — p* as t — oo, it follows from the properties of fictitious play that every individual
belief fi converges to u* as well, a contradiction.

Q.E.D.

Proof of Proposition 1

(a) Yy is a steady state because Vi >0 : Y(¢t) = Yo = p(t) =0=Y(t+1) = Yo. If i = 1, it can easily be
checked that the state Y € Y1 withy1 = 0, y} = o(1—0)! foralll € {1,..,7*} and y}* = 1—2:?;0 o(l—o)?
is a steady state. On the other hand, if i < 1, no element of the set Y7 can be a steady state, because:

Vi>0:Y()eYi=ult)=0=Y(+1)¢1. (4.42)

From Lemma 2 we know that every steady state belongs to some set Y;. No state ¥ € Y, with
z ¢ {{0},{1}} can be a steady state which can be seen as follows. Let all individuals hold belief x

at time t. It is easy to see that at least at one of the dates t and ¢t + 1 the market is non-empty. Hence,
(n+t)z+1 or (n+t)z

at time t 4 2, there will be some individuals with either one of the beliefs P pran ol

(b) Assume that fictitious play converges to some Y € Y; and assume that z € (p,f1). Since indi-
vidual beliefs converge to z, for any b € (0, 1), there exists a ¢ > 0 such that pu(t) > b, a contradiction.
The similar argument holds for the cases z € (0, 1) and z € (fz, 1).

Q.E.D.

Proof of Proposition 2

To economize on notation, let y;(t) be also the “set” of agents with belief % in period t. Consider two
periods t and t+n. We compare the flow V() from the set 1 —yo(t) —y1(t) to the set yo(t+n)+y1(t+n)
and the flow V2(t) of agents from the set yo(t) + y1(t) to the set 1 — yo(t +n) — y1(t +n). As yo(t) <
1—yo(t) — y1(t), we have u(t) <1 —yo(t) — y1(¢). Further, we can estimate

max{p(7) | 7 € [t,t +n]} <2"(1 —yo(t) — v1(1)), (4.43)
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as in each period, every cooperator can only meet one defector in the market who himself becomes a
cooperator. Thus, the probability that an agent who is in the set 1 — yo(t) — y1(t), is also in the set
yo(t + n), is at least (1 — 2™ (1 — yo(t) — yo(t)))™. Then, we have

Vi) > o1 —2"(1 —yo(t) — y1 ()" (1 — yo(t) — y1(t)). (4.44)

An agent in the set yo(t) [y1(¢)] must meet at least two [one] cooperators in the market to become a
cooperator himself between the periods t and ¢t + n. Therefore we can estimate that

V2(t) < n (22"(1 — yo(t) — y1 (1) 2y (t) + 2™ (1 — yo(t) — y1(t))y1(2)) - (4.45)

We therefore get

Vi) | o(1 = yo(t) — 11 (1)

V2(t) T n(227(1 = yo(t) — y1(8))yo(t) + 2my1(2))
which is larger than 1 if yo(¢) is sufficiently close to 1. In this case, we have p(t + n) < p(t) and
yo(t +n) > yo(t). By going through the same steps, one can also show that for sufficiently large yo(t)

(4.46)

plt+n—1) < p(t). (4.47)

With
yt+1) < (1= u(®)y(®) + () < (1= p(E)ult) + () < 20(t) (4.48)
and (4.47) we get y1(t +n) < 2u(t +n — 1) < 2u(¢). Thus, we have

V3(t+n) © n(22"(1 = yo(t) — y1(t))yo(t) + 27+ u(t))
If the expressions on the right-hand side of (4.46) and (4.49) are larger than 1, this yields us
Vit +i
(t+in) .o 4 (4.50)
V2(t+in) = n27u(t)
for all ¢ > 2. Thus, it follows that if Y (¢) is sufficiently close to Yp, we get
lim yo(t) =1, (4.51)
t—oo

which completes the proof.
Q.E.D.

Proof of Proposition 3

Assume that k = 1 and k = n where n > 2. Consider the set V1(t) of agents who are both in y; () and

yo(t +T* + 1) and the set Va(t) of agents who are both in yo(t) and y1 (¢t + T™* + 1). We then have
Vi) < (1-0)" (1= u®)n ), (452)
Va(t) (1 =) u(t)yo(t). (4.53)

From the definition of u(t) it follows that Va(t) > Vi (t) if Y- 5 y;(t) > 0. Furthermore, it follows from
the assumption yo(0) < 1 that yo(¢) > 0 implies y1 (¢t + T* + 1) > 0 and y2(t + 2T* + 2+ s) > 0 for all
s > 0. Therefore, we get

lim yo(t) =0, (4.54)
t— oo
which implies that
lim p(t) =1, (4.55)
t—oo
as
yot) > o(1 - yo(t — 1)), (4.56)
The result then follows from lemma 1(b).
Q.E.D.
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Proof of Lemma 3

We proof statement (4.29) by showing that the expected value of m™ (hs, f§«) goes to u and that its
variance goes to 0 (this implies convergence in probability, which is equivalent to (4.29)). Consider a
market of size M € N and any hs € HS(n) such that the best response to belief fi(h) is f$.. Let L
denote the number of individuals in the market with history of evaluations hs and let yps denote the
corresponding fraction of the population. Moreover, we denote by C the number of individuals which play
fi«. Hence,

L = ypsM
C = uM.

Let L. denote the number of individuals of class hs that are matched to an individual which plays f¢. .
We decompose L. into the number L. 1 of individuals that are matched to group hs and the number L 2
of individuals that are matched to individuals which play f%. but not to group hs:

Le=1Lei+ Lea. (4.57)

It will be convenient to decompose the matching procedure into two steps. In the first step, all individuals
from the population are assigned randomly to two equally large subsets A and B. In the second step, each of
the individuals in A is assigned randomly to one of the individuals in B. Clearly, this matching procedure is
equivalent to the one-step random matching procedure. Let L 4 denote the number of individuals from class
hs that are assigned to set A. Given the first step of this matching procedure, L 4 follows a hypergeometric
distribution with parameters M/2, L and M. It is well known that E(L4) = (M/2) - (L/M) = L/2. The
second moment of L 4 can be calculated as follows:

E(L%) = E(La)(La—1)+E(Ly)
min{L,M/2} k(k _ 1) L M-—L
_ (;;{) (r2—%) (L)
k=0 (M/2
(npjaly) minlE-20/2=2) (Lo (-2 (2
- L(L—1)-M/2=2 272 (k227 L g(L )

(a172) = (a1/222)

Since the sum is equal to one, one gets

L(L—1)M/2(M/2—1) = M/2L L(L-1)(M —2)
M(M —1) M 4 (M-1)

+

L
E(L%) = ey

(4.58)

Note that L1 is always an even number. For given L, L. 1/2 follows a hypergeometric distribution
with parameters L4, L — L4 and M/2, hence

E(Lc,) = E(E(LcalLa)) (4.59)
= 2.E (7“ (]f/[;QLA)) (4.60)
= LBy - BY)) (161)
- M- (4.62)
M-1

Moreover, for given L. 1 = ¢, L¢2 follows a hypergeometric distribution with parameters L — ¢, C — L
and M — L. Hence,

E(LC,2) = E(E(LC,Z Lc,l)) (463)
_ (L teCoD) o
_ (-HE) ey \
= Y (4.65)
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Thus, we can establish the first part of the proof:

B (m (hs, f5)) = 7 (B(Lea) +B(Le2)) (4.66)
- e

uM —1
M1 — pas M — oo (4.68)

It remains to show that the following expression goes to zero:

2y _ w2
Var (mM(hs,f%*)) _ E(o) L2E (Le)

= % [E(L2)) + E(L2,) + 2E(Le,1 Le,2) — E*(Le)] (4.69)

Using equation (4.58) we get

_ (L=La)(L—La—1)La(La—1) L(L-1)

E(LZ,) = 4-E< Ty >+2 SV
16 (L1 — L)E(La) + (L2 4+ L — 1)E(L?) — 2LE(L3) + E(LY)] 2L(L —1)
B M(M —2) VR

The third and the fourth moment of the hypergeometric distribution can be calculated in the same way
as the second moment, namely

L(L — 1)(L — 2)M/2(M/2 — 1)(M/2 — 2)

E(LY) MM 1M —2) +3-E(L%) —2-E(La)
_ WM-4)LL-1)(L-2) ) S
= RYEEY +3-E(L%) —2-E(La) (4.70)
and
B(L4) L(L —1)(L — 2)(L — 3)M/2(M/2 — 1)(M/2 — 2)(M/2 — 3)

M(M —1)(M — 2)(M — 3)
+6-E(L%) —11-E(L%) +6-E(L,)
(M — 4)(M — 6)L(L — 1)(L — 2)(L — 3)

16(M —1)(M — 3)

+6-E(L%) —11-E(L3) +6-E(L,) (4.71)

Plugging equations (4.58), (4.70) and (4.71) into the expression for E(L§,1)7 dividing by L? and replacing
L by yps M yields

E(LZ ) vi, 203, R
L;' — 16 - 0+%—$+1L65 +0=1y3,, as M — oo. (4.72)
Furthermore,
C—LY(C—L—=1)(L—Le1)(L—Le1—1 L—L.1)(C—L
B(12,) = E(( )( )( e,1)( el )+( e,1)( ))
' (M —L)(M—L—1) M—1L

- DG B2 + (= 2L)B() + (L = )] + 7 (L= E(Len)

Using E(Lc,1)/L — yns and (4.72), we get from the previous equation

2
E(LC,Q) _ (lu‘ B yhs)2

2 _ 2
I3 o) [Whs — 2Yns + 1] +0 = (1t — yns)?, as M — oo. (4.73)
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Finally, the third term of equation (4.69) can be evaluated as follows:

E(Lc,ch,Q) = E(E(Lc,ch,Qch,l))
— (e e D)
’ M—-L

= O me) B2

It has the following limit:

E(Lc,ch,2) R M — Yhs
L? 1-— Yhs

[yhs - yles} = Yhs (.L" - yhs)7 as M — oo. (474)
Since all limits exist, sums and limits and interchangeable and we finally get from equation (4.69)
Var (mM(h& T )) = Yrs (1= Yns)® + 2ns (1 — Yns) — p? =0, as M — oo. (4.75)

It follows from (4.68) and (4.75) that mM (hs, f%.) 2, . The same proof applies to f&. (by just renaming

o« by f%*) Tt follows that m™ (hs, FEa) 2 w holds for all hs € HS. This accomplishes the proof.
Q.E.D.

Proof of Proposition 4

For any YHS € A(HS(n)T"+2), define

Yo =" > > WIS (4.76)

hse HS(n) s€{0,..,T*+1}

Moreover, for any hs € HS(n)T +2, let yﬁs denote the process Y5 with initial condition Y #5(0) = hs
and define UYN = XH%(t +1) — XHS(t)( ). By Lemma 3 and by construction of the process Y5 we
know that for all population shares hs € HS(n) and states s < T*:

IXHS (t+1) = Yyms i (D] 2 0. (4.77)

Hence, ||[UN|| =2 0, and therefore St UMY Zo.

From YXHS(O)(l) = YH5(1) and continuity of Y5 it follows that
WYxmsqa) ) = vHES@) & 0 (4.78)
1Yxs (1) — Y+ 1)) & o, (4.79)
and hence
Z 1Y (1) = Y56 + 1)l £ 0. (4.80)
This implies
Pr[[IXF5 (1) — Y5 ()] > €] (4.81)
t
= Pr [IZYHES(S>( )—YHS(8+1)+USNII>€} (4.82)
s5=0
< Pr {Z st<s> —YHS(s41) |+|Z;)UN||>E} — 0Ve > 0. (4.83)

Finally, the claim follows from the fact that the updating function 7 is continuous.
Q.E.D.
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Proof of Proposition 5

Since we only consider the three updating rules with finite use of information, we can redefine X]{',IS
as a process on the space of finite histories of length n, without changing the dynamics. In this case,
X{,IS clearly satisfies the Markov property and has finite state space. Moreover, the state Yy is an
absorbing state of the corresponding process Xy because for each of the three updating rules, it holds
that Xn (t) = Yo = Xn(t+ 1) = Yy. Now we are going to show that there exists a s € N such that for all
times ¢ € N and all states Y € A(BT 12), the Markov chain XHS satisfies

Pr [X{js(t +s) e L(Vo)XES (1) € Tgl(y)] > 0. (4.84)

Let N. denote the number of individuals in the market which play according to f%., let Ng denote the
number of individuals in the market that hold pessimistic belief and play according to f%* and let N9
denote the number of individuals in the market that hold optimistic belief and play according to f%*.
Consider any distribution of beliefs which is different from Y. Now we describe a particular sequence of
matches that leads the process Xy to reach Yy and has positive probability. In the first round, all individ-
uals from the classes N, Ng and NJ are matched to partners of the same class (the following argument
also holds in case that two of these sets do not contain an even number of individuals, because then the
remaining two individuals can be matched until they have the same belief). After T* + 1 rounds, all the
individuals from Nc‘l’ except for two are matched to members of the same class until they enter N. and
finally get matched. The two remaining individuals of class N are repeatedly matched to two individuals
from a divorced long-term relationship. Meanwhile, all members from Ng are matched to each other and
no other couples are separated. Hence, there are always exactly two individuals in N, and two individuals
in N7 and these pairs are matched to each other until the pair in N enters the set Ng. After this, they
are matched to each other and a new couple gets divorced to be matched with the two individuals in
Ng. This procedure is carried on until all matched individuals have moved to Ng. Finally, each of the
individuals in Ng is matched to either one of the two individuals of N7 and if kK > 2 and N > 2n + 2 it
follows that all individuals are members of the set Ng and X reaches Y( after some finite time. This
sequence of matches can be executed in finite time, is time independent and has positive probability which
proves statement (4.84).

Therefore, any state Y75 € A(HS(n)T"+2) which satisfies 7; (Y H5) # Yp is a transient state of XS
(which means that X ]{,I S returns to Y5 with some probability strictly smaller than one, once it leaves
YHS). It it a well known fact from the theory about Markov chains that the limit distribution assigns
zero probability to each transient state. Hence, Xy reaches Yp with certainty, which proves the statement

in case k > 2.
If k =1 and Xy (t) # Yo for some ¢, then at least one individual cooperates and therefore Xy (t+1) # Yp.

The claim follows from X (0) # Yp.
Q.E.D.
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FIGURE I

Caption: [Gray] E[f¢.,fi] [Black] E[f., fi] [Horizontal axis] f

[Top-left] T'g, T* = 0 [Top-right] I'1, T* = 0 [Bottom-left] I'y, 7* = 1 [Bottom-right] I'1, 7* = 2
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TABLE I: Distribution of initial beliefs for n € {5,10,20}

n = 20 Y1,20 YZ,ZO Y3’20 Y4’20 Y5’20 YG,ZO Y7’20 YS,QO Y9’20 YIO,QO
& =0.00 | 0.990 0.900 0.330 0.166  0.125 0.048 0.000  0.000 0.125 0.000
4 =0.05 | 0.000 0.000 0.340 0.166 0.125 0.048 0.000 0.000 0.125 0.000
4 =0.10 | 0.010 0.000 0.330 0.166 0.125 0.048 0.000 0.000 0.125 0.000
4 =0.15 | 0.000 0.000 0.000 0.170 0.125 0.048 0.000 0.000 0.125 0.000
4 =0.20 | 0.000 0.000 0.000 0.166 0.125 0.048 0.000 0.000 0.000 0.000
4 =0.25 | 0.000 0.000 0.000 0.166 0.125 0.048 0.000 0.000 0.000 0.000
4 =0.30 | 0.000 0.000 0.000 0.000 0.125 0.047 0.000 0.000 0.000 0.000
& =0.35 | 0.000 0.000 0.000 0.000  0.125 0.047  0.000  0.000 0.000 0.000
4 =0.40 | 0.000 0.100 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =045 | 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =0.50 | 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =0.55 | 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =0.60 | 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =0.65 | 0.000 0.000 0.000 0.000 0.000 0.047 0.000 0.000 0.000 0.125
4 =0.70 | 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.125
4 =0.75 | 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.125
& =0.80 | 0.000 0.000 0.000 0.000  0.000 0.048 0.000  0.000 0.000 0.000
4 =0.85 | 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
4 =090 | 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
£ =0.95 | 0.000 0.000 0.000 0.000 0.000 0.048 0.250 0.000 0.125 0.000
4 =1.00 | 0.000 0.000 0.000 0.000 0.000 0.048 0.250 1.000 0.125 0.000

n =10 yTL,10 Y210 Y310 Y410 Y510 Yy 6,10 Y710 Y3810
£ =0.00 | 0990 0.330 0.250 0.090 0.000 0.000 0.250 0.000
p=0.10 | 0.010 0.340 0.250 0.090 0.000 0.000 0.250  0.000
£ =0.20 | 0.000 0.330 0.250 0.090  0.000 0.000 0.000  0.000
4 =0.30 | 0.000 0.000 0.250 0.090 0.000 0.000 0.000 0.000
fp =040 | 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
4 =0.50 | 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.250
fn=0.60 | 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
£ =0.70 | 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.250
n=0.80 | 0.000 0.000 0.000 0.090 0.000 0.000 0.000 0.000
£ =0.90 | 0.000 0.000 0.000 0.090  0.500 0.000 0.250  0.000
4 =100 | 0.000 0.000 0.000 0.090 0.500 1.000 0.250 0.000

n=>5 Y1,5 Y2’5 Y3‘5 Y4‘5 Y5’5 Y6,5
p=0.00 | 0990 0.500 0.166 0.000 0.500 0.000
p=0.20 | 0.010 0.500 0.166 0.000 0.000 0.000
£ =0.40 | 0.000 0.000 0.166 0.000 0.000 0.500
p=0.60 | 0.000 0.000 0.170 0.000 0.000 0.500
£ =0.80 | 0.000 0.000 0.166 0.000 0.000 0.000
£ =1.00 | 0.000 0.000 0.166 1.000 0.500 0.000
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FIGURE II

[TOP]

Caption: [Black-solid] x under iF4 [Gray-solid] p under i [Horizontal axis] ji

[Top-left] Ty, T* = 0, n = 10, initial beliefs Y110 [Top-right] 'y, T* = 0, n = 10, initial beliefs
y4,10

[BOTTOM]

Caption: [Horizontal axis] fi [Vertical axis] y;(500)

Parameters: I';, n = 10, T* = 0, initial beliefs are Y410

[Bottom-left] 3" [Bottom-right] i#
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TABLE II: Limit points

n=bk=1k=1 n=10k=1k=3 n=20k=2Fk=6|

afr 0.305 0.305 0.000 (*), 0.305 (**)
s 0.331 0.393 0.364

I's n=5k=1,k=3 n=10k=1,k=7 n=20[k=1k=15]
atr 0.780 0.780 0.780

it 0.620 0.677 0.715

I's n=5k=1,k=2 n=10k=1k=4 n=20[k=1k=9
afr 0.467 0.467 0.467

s 0.488 0.464 0.481

Iy n=5k=1,k=4 n=10k=1,k=8 n=20[Fk=1k=17]
atr 0.896 0.896 0.896

it 0.755 0.753 0.810

(*) Under Y120, (**) Under all other initial beliefs.
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