Tightly-Coupled and Fault-Tolerant
Communication in Parallel Systems

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
der Universitét Mannheim

vorgelegt von
Dipl.-Inf. David Christoph Slogsnat
aus Heidelberg

Mannheim, 2008

Dekan: Prof. Dr. Matthias Krause, Universitét Mannheim
Referent: Prof. Dr. Ulrich Bruning, Universitét Heidelberg
Koreferent: Prof. Dr. Reinhard Manner, Universitét Heidelberg
Tag der mindlichen Prifung: 4. August 2008

Abstract

The demand for processing power isincreasing steadily. In the past, single processor archi-
tectures clearly dominated the markets. As instruction level parallelism is limited in most
applications, significant performance can only be achieved in the future by exploiting par-
alelism at the higher levels of thread or process parallelism. As a consequence, modern
“processors’ incorporate multiple processor cores that form a single shared memory multi-
processor.

In such systems, high performance deviceslike network interface controllers are connected
to processors and memory like every other input/output device over a hierarchy of periph-
eral interconnects. Thus, one target must be to couple coprocessors physically closer to
main memory and to the processors of a computing node. This removes the overhead of
today’ s peripheral interconnect structures. Such a step is the direct connection of Hyper-
Transport (HT) devices to Opteron processors, which is presented in this thesis.

Also, thiswork analyzes how communication from adevice to processors can be optimized
on the protocol level. Astoday’ s computing nodes are shared memory systems, the cache
coherence protocol is the central protocol for data exchange between processors and
devices. Consequently, the analysis extends to classes of devices that are cache coherence
protocol aware. Also, the concept of a transfer cache is proposed in this thesis, which
reduces latency significantly even for non-coherent devices.

The trend to the exploitation of process and thread level parallelism leads to a steady
increase of system sizes. Networks that are used in such large systems are very susceptible
to both hard and transient faults. Most transient fault rates are constant per bit that is stored
or transmitted. With increasing system sizes and higher clock frequencies, the number of
faultsin time increases drastically. In the end, the error rate may rise at alevel where high
level error recovery becomestoo costly if lower layers do not perform error correction that
istransparent to the layers above. The second part of thisthesis describes adirect intercon-
nection network that provides a reliable transport service even without the use of end-to-
end protocols. Also, anovel hardware based solution for intermediate routing is devel oped
in this thesis, which allows an efficient, deadlock free routing around faulty links.

Zusammenfassung

Der Bedarf an Rechenkraft von Computer-System wéchst standig. Insbesondere auf dem
Massenmarkt wurde dieser in der Vergangenheit vor allem durch Einprozessorsysteme
gedeckt. Die parallele Abarbeitung von Operationen ist dabei ein wesentlicher Faktor zur
Geschwindigkeitssteigerung. Da die Paraldlitét auf Instruktionsebene in den meisten
Anwendungen sehr beschrankt ist, sind weitere L el stungssteigerungen nur moglich, wenn
auch die Parallelitét auf Prozess- und Thread-Ebene genutzt wird. Daher bestehen heutige
Prozessor-Chips meist aus mehreren Prozessor-K ernen, die einen gemeinsamen Speicher
mit einem globalen Adressraum nutzen.

In solchen Systemen sind hochperformante Netzwerkschnittstellen genauso Uber eine Hier-
archie von V erbindungsnetzwerken und Bussen mit dem System verbunden wie klassische
Eingabe/Ausgabe Gerdte. Um die Kommunikationsleistung zwischen Prozessor und
Netzwerkschnittstelle zu verbessern, ist es erforderlich diese Verbindungsstruktur zu opti-
mieren. Ein solcher Ansatz ist die Entwicklung von Geréten, die Uber das HyperTransport
Protokoll direkt mit dem Prozessorchip verbunden werden kénnen. Eine Umsetzung dieses
Konzeptes wird in dieser Arbeit vorgestellt.

Dariiber hinaus werden in dieser Arbeit weitere M dglichkeiten zur Verbesserung der Kom-
munikation untersucht. In heutigen Computersystemen ist das Cache-Kohérenz Protokoll
das zentrale Protokoll, welches den Datenaustausch zwischen den Kernkomponenten des
Rechners regelt. In dieser Arbeit werden Klassen von Geréten vorgestellt, die direkt as
Kommunikationspartner an diesem Protokoll teilnehmen. Als bedeutende Neuerung wird
aul3erdem das Konzept des Transfer Caches in dieser Arbeit entwickelt und vorgestellt,
welches die Kommunikationslatenz zwischen Gerét und Prozessor bedeutend verbessert.

Die bessere Ausnutzung der Paralelitdt auf der Ebene von Prozessen und Threads fihrt
aulRerdem zu stdndig komplexer werdenden Systemen. In Netzwerken, die solche Systeme
verbinden, muss mit dem haufigen Auftreten von statischen und transienten Fehler gerech-
net werden. In einem solchen System kdnnen die Fehlerraten dabel auf ein solches Mal3
steigen, dass eine ausschliefdlich in htheren Softwareebenen erfolgende Fehlerbehandiung
sehr ineffizient wird. Mit einer Fehlerbehandlung direkt in Hardware kann dieses Problem
umgangen werden. In diesem Sinne beschreibt der zweite Teil dieser Arbeit ein fehlertol-
erantes Verbindungsnetzwerk, wel ches eine fehlertolerante Ubertragung auf der Ebene 8b/
10b kodierter serieller Links sicherstellt. Eine weitere Komponente des Protokolls ist ein
neuartiger hardwarebasierter Mechanismus, der Uber ein "intermediate routing” eine effi-
ziente und blockierungsfreie Losung darstellt, um Pakete um fehlerhafte Komponenten
herumzuleiten.

Contents

CHAPTER 1 Introduction 1
1.1 TheEXtoll Projecto e e e 4
1.2 Physical Implementation. 6
1.3 Graphical REDreSeNtations.ottt e e 7
14 Methodologies.ot 9
15 A Theoretica Model for cHT/HT Performance 11

CHAPTER 2 Communication in Parallel Computers 13
2.0 CaChES . .o 13
2.2 Pardle Computing ArchiteCtures.o e e 15

221 Communication Paradigmsot 20
222 RemoteLoad/Storeo 21
223 PUGEL. ..ot 22
224 SENO-RECAIVE. . ..t 23
2.3 Devicelntegration DeSIgN SPaCe . ..o vttt ettt e 24
2.3.1 Process-Device InteraCtionot 26
232 DeviceVirtualization.ot 30
2.4 Cache Coherencefor Shared Memory Systemst 32
24.1 Consistency Modelsfor SharedMemory 33
24.2 CacheCoherence Protocols. 35
243 Broadcast ProtoCols.o 37
2431 MOES| 39
2432 MESIF ... e 42
2.4.4 Directory-Based ProtoCols.ot 45
245 Seriaization of Conflicting ACCESSESot i i e 49
25 Introductionto X86 SYStEMSottt 54
251 Intel Xeon Architecture.o 54
25,2 AMDD . 57
26 Examplesof Parallel Systems. 58
26.1 SUNUNIASPARC T2 . .ttt e e e e 58
26,2 Cray TOE . . ittt e 60
263 Cray XT3 and X4 ..o e e 61

264 IBMBIUEGENEIL . . . oot 63

2.6.,5 Nison Standardized Peripheral Interfaces, 64
CHAPTER 3 Improving Deviceto Processor Communication 65
3.1 HyperTransport Devicesand AcCelerators.ot 66
311 TheHyperTransport Protocol e 67
312 HOINHTX SYStemMS . . oottt et e e e 70
313 Ordering inPlO. 71
314 Ordering PIOWItEe ReQUESES.ottt e 73
315 OrderingPIORead REQUESES oottt 76
3.1.6 Potentia Incremental SOIULIONSo e e 76
32 TheSpace of ANAlYSISt 76
321 Latency-SensitiveData.ovvi e 76
322 BUIEIING. . oo 78
323 Feasihle SOlUtIONS.o 80
3.3 Memory and Interconnect Bottlenecks. i 81
3.3.1 Influence of the Cache CoherenceProtocol, 85
332 SUMMIY .« ettt e e e e e e 87
3.4 DevicesattheCoherent INtercoNNeCt oot 88
3.4.1 DeviceswithCoherent Caches. it e e e e 89
3.5 ThePerformance of Coherent Transfers. 92
35.1 DeviceswithCoherent Caches. i 94
3511 Off-SOC DEVICES . .\ ittt et ettt 98
3.5.1.2 DeviceswithCachesin SOCS.o vii i e 100
3.5.2 Deviceswith aCoherent Memory Controller............................... 101
3.6 Transfer Cacheo e 103
3.7 RESUIS. . .o 106
371 ConClUSION ..o 106
372 ReaedWOrK ..o 109
CHAPTER 4 HT and cHT Prototypes 111
41 TheHT Coreand Interface. ...t e e e 112
A0 RESUIS. . oottt 115
42 TheCoherent HT Infrastructure i e 117
421 TheCoherent FabriC. e e e e 117
4.2.2 UnitSand CroSSharS. . . . oo vttt e et et e e e e 118

423 CHT/NHT Bridge. . ..o e e e e 119

424 Cathe DeSIgN. . oottt 120
425 Transparent Memory ControllerintheDevice 123
A3 SUMMABIY . ettt e e et e e e e e e e e 123
CHAPTER 5 Suggestionsfor Direct Processor Cache Access 125
5.1 TheDESIgN SPaCE . . . vttt ittt e e e 126
5.1.1 Device- Thread - Processor ReElations, 127
5.2 DCA for HyperTransport.ottt e 130
5.2.1 Indirect Cache AccessviaPrefetchHint.............. iiiii.t. 130
522 Direct CaChe ACCESSottt e 131
5.3 ReaedWOrK. . ..o 135
CHAPTER 6 Rdliability in a Direct I nterconnection Networ k 137
8.1 AU, . .ttt 138
B.LL UNItS. ..ttt e e 139
6.1.2 Soft Error Nature and Rates.ot e 140
6.1.3 Error Correctingand Detecting Codes ...ttt 143
6.1.4 SEU Tolerant DeSign.o ot 146
6.1.5 Retransmission ENApointS.t 149
6.1.6 Serial TranSmMiSSIONo vttt e 150
6.1.7 Faultsin Regular NEtWOIKS.o 154
6.2 TheEXtoll NetWOrK e e e 156
6.2.1 Packetand Flit Protocol. 159
6.3 Extoll Link Error Correctiont e 160
6.3.1 ThePhysical Link 161
6.3.2 Protocol Encoding for Serial Links. 162
6.3.3 Thelogical Link Layer:theLink Port 164
6.3.4 Temporary or Permanent Link Failure 168
6.3.5 TheExtoll SWItCh 172
6.3.6 TheHigh Availability Port 173
B.3.7 BalTiOr ..ottt 174
6.3.8 TheNetwork Port o e 176
6.4 ONChipProtectiono e 177
6.5 SUMMY . ot 179

CHAPTER 7 Conclusion 181

APPENDIX A Acronyms 185

APPENDIX B Bibliography 189

APPENDIX C List of Figures 205

INTRODUCTION 1

1Introduction

The demand for processing power is increasing steadily. In many application fields, there
can never be enough computing power. Simulationsin the field of engineering, like virtual
crash tests, or in the field of bioinformatics, as protein folding, are examples for applica
tions that require enormous computing power. But even consumer PCs continue to demand
for more and more computing power.

Moore's Law, predicting that the performance of microprocessors doubles about every 18
months, has proven to be true in the past, and will most likely stay true for the near future.
One contributing factor to this performance increase are technological improvements.
However, the direct influence of technology on computing performance is limited. Archi-
tectural improvements are another main source for sustained performance improvements.

In the past, single processor performance has been in the main focus for computer architec-
ture. But even in this case, the exploitation of parallelism at instruction level is akey ele-
ment.

Asinstruction level parallelism is limited in single processor applications, further perfor-
mance increases can only be achieved by exploiting parallelism at the higher levels of
thread or process parallelism. Asaconsequence, modern “processors’ incorporate multiple
processor coresthat together form a single shared memory multiprocessor. While the archi-
tecture of the processor cores does not fundamentally differ from the architecture of single
processors, architectural research must optimize communication among the processors.

In large parallel systems, which are typically message-passing multicomputers, a network
interface controller connects the individual nodes to the network. Classically, the network
interface controller is connected to its home node like every other input/output device over
a hierarchy of peripheral interconnects. While this is an appropriate solution for slow
deviceslike hard disks, it has become asignificant bottleneck for network interface control -
lers (NIC) and coprocessor devices like field-programmable gate arrays (FPGA).

2 INTRODUCTION

Thus, one target must be to couple coprocessors physically closer to main memory and to
the processor of a computing node. This removes the overhead of today’ s peripheral inter-
connect structures. Such a step is the direct connection of HyperTransport (HT) devicesto
Opteron processors. The development of a HyperTransport intellectual property (IP) core
and the integration into an FPGA coprocessor environment is part of thisthesis.

Additionally, the classical assumption that a computing node consists of a single processor
with memory and 1/0 components is outdated. Multi-core processors have turned every
computing node into a small-scale shared memory system. The trend towards higher paral-
lelism is obvious. dual core processors are standard even for consumer PCs, and all major
vendors are currently introducing four or eight core processors. Research prototypes of
multi-socket systems feature up to 80 cores on a single die. Today’s network interface
architectures do not consider this fact sufficiently.

One area that is being investigated is the virtualization of network interfaces, which pro-
vides direct access from the user space to adevice for multiple processes and threads at the
same time. However, little research has been performed so far to analyze new mechanisms
of low-level data transport between devices and processors in these systems. Almost all
data transport in a shared memory system is controlled by the cache coherence protocol,
which ensures that conflicts of parallel access to the same data objects are resolved. Cache
coherence protocols thus determine how efficient and fast data transport in these systems
is. Traditionally, NICs and coprocessors are connected to the system over noncoherent pro-
tocols, and thus are unaware of the coherence protocol. As aresult, processors cannot hide
latency by caching device memory that is accessed using programmed I/O (PIO). The
second way of data transport from device to processor is direct memory access (DMA).
Here, the device writes data into coherent main memory, which allows processors to cache
this data. However, this path includes write and read accesses to DRAM, and thus exhibits
arelatively high latency.

Thus, another target of this thesis is to analyze how this communication path can be
improved to exhibit lower latencies. Two types of latency are relevant; a processor’s read
access latency to data that has previously been produced by the device affects the through-
put of the processor. The other important latency is the overall latency of data transport
from deviceto processor, which isimportant if the processiswaiting for the respective data.

The analysis extends to classes of devices that take part in the cache coherence protocol.
Among those are devices with coherent caches, and devices that provide a coherent
memory view on device memory. Besides a potential increase in performance and effi-
ciency, coprocessors may functionally benefit from coherent caches.

The growing demand for computing power and the exploitation of thread and process level
parallelism does not only increase the size and complexity of single computing nodes. Net-

INTRODUCTION 3

works of such nodes, mainly supporting message passing, are also increased in their size.
The most prominent example is the IBM BlueGene system, featuring 106,496 computing
nodes connected over a 3D torus direct interconnection network.

Such large networks are very susceptible to faults. Failures that occur in hardware can be
classified into hard failures, where the hardware of asystem is physically broken, and tran-
sient faults. In a transient fault, the information that is stored in a system is atered, for
example due to radiation or Gaussian noise on achannel. Within the last years, transient bit
faults have maintained an almost constant fault rate per bit that is stored in static random
access memory (SRAM) or transmitted over cable. With an ever increasing complexity and
size of computers, the likelihood of transient bit fault per system isincreasing steadily. To
keep the availability of parallel computers at a high level, error correction and fault-toler-
ance are becoming a more and more important issue. In the end, the error rate may rise at a
level where high level error recovery becomes too costly if lower layers do not perform
error correction that is transparent to the layers above.

In any cable based network, link bit faults and complete link failures due to hard faults are
the most frequent faults. In particular if direct-current-free (DC-free) high-speed serial
transmission is used, coding for error correction and detection is difficult. A fault-tolerant
network protocol ispresented in thisthesis. In contrast to state-of -the-art network protocols,
errors are corrected directly by hardware on the link and network levels. On the link level,
control information is protected using error correcting codes, while dataiis retransmitted in
the case of errors. Besides the correction of erroneous bits and packets, another important
topic in direct interconnection networks with aregular topology isthat faulty links destroy
theregularity of the topology. In this case, nodes become unreachableif deadl ock-freerout-
ing mechanisms are used that have been optimized for the specific topology. A novel hard-
ware based solution for intermediate routing is developed in this thesis, which allows an
efficient, deadlock free routing around faulty links.

Theresult isadirect interconnection network that provides areliable transport service even
without the use of end-to-end protocols.

The outline of thisthesisis as follows. Chapter 2 summarizesthe state of the art in parallel
computer architecture, and thus is the foundation for the subsequent chapters. Chapter 3
analyzes device to processor communication in HyperTransport based direct network
NUMASs. Proposed improvements include devices that take part at the coherent HT proto-
col, and the completely new concept of atransfer cache. HyperTransport-based prototypes
that realize the concepts are described in Chapter 4. A potential future improvement for
device to processor communication are direct cache access mechanisms. An outlook on
theseisgiven in Chapter 5. With Chapter 6, the focus switchesto the other side of the NIC:

4 INTRODUCTION

the interconnection network. Transient faults that occur in such networks are analyzed, and
afault-tolerant network protocol for Extoll is described. Chapter 7 concludes this work.

1.1 The Extoll Project

The Extoll project from the University of Mannheim combines different new methodolo-
gies in SAN communication into one network. Extoll is based on the Atoll network
[26][27]. Just like Atoll, Extoll combines both the network interface and a part of the net-
work into a single chip. Although centralized switch resources are supported, Extoll is
designed as a direct network. Every NIC has a crossbar and 6 bidirectional network links,
thus, a 3D torus topology is recommended for Extoll.

Host interface:

Datapath: 96bit control/64bit data NI controller: Network:
packets Datapath: §4 bit words Datapath: 18 bit phits
Functional f Network < » Link
i
> Unit 0 R n > Port 0 g > Port 0 >
t
e
r
©
¢}
n
n
16 bit e Extoll .
HyperTransport - Functional — c — Network —» Xbar
link Unitn ¢ Port 3 * Extoll Links:
<> nHT nHT — * 9 bit parallel LVDS
core Xbar High s or 8b/10b cgde_}d serial
« P Availability | . transmission
Port « .
Multicast
dl .
hal Lt Port 4‘»
<
Barrier
< > it » Link
< » Ports >

Figure 1-1. Block diagram of the Extoll NIC

The following aspects of Extoll are improvementsto Atoll, and at the same time new con-
tributions to the design of efficient SANSs:

» Closer coupling of NIC, processors and memory. The design space analysisfor such a
closer coupling is performed in Chapter 3, the specification of the current implementa-
tion is described in Chapter 4.

» A virtuaization of the NIC to allow direct user-level communication for a high number
of processes or threads at the same time [121].

INTRODUCTION 5

» Improved routing schemesin the network, including a mechanism for congestion
avoidance[123].

Improved fault tolerance, including link-level error detection and retransmission of packets
and link-level forward error correction of control flits. The High Availability Port (HAP)
allows arerouting of packetsin the case of temporary or permanent hardware failures. The
Extoll network itself, and in particular fault tolerance in the network, are described in
Chapter 6.

The actual network interface controller logic is implemented in a set of functional units
(FU) that execute communication instructions. One communication paradigm in Extoll is
message based communication with short messages that are smaller than one cacheline.
This communication mechanism isimplemented in the non-virtualized ULTRA functional
units, which will be described later in more detail.

The other communication paradigm in Extoll is communication in a fully virtualized
device. It allows alarge number of processes and threads to access a device directly using
user-level-communication. Here, send-receive and put/get communication is supported. A
superscalar functional unit executes the communication instructions. Multiple such units
may be used in implementationsto parallelize work. It is still atopic of research how an 1/
O memory management unit (IOMMU) and tranglation lookaside buffers (TLB) are inte-
grated into Extoll to allow an efficient translation of virtual into physical addresses. A con-
text cache keeps the most recently used contexts for the processes, which are loaded into
the FUs on a user process request.

Theright hand side of Figure 1-1 implements the Extoll interconnection network. The net-
work port isthe instance that trang ates packets into and from the network protocol format.
Virtual channels and lanes are used to decrease the impact of head of line blocking and to
avoid deadlocks in the system [123].

Link —
Port 0

A
A\ 4

nHT nHT Ultra

dl |-
L core > Xbar [V unit

n| Network »| Extoll
Port Xbar

A
A

9 bit parallel LVDS
P Link
16 bit P oo >
HyperTransport
link

Figure1-2. UltraNIC

Extoll supports a direct interconnection network (IN) by integrating a crossbar-based
switch for a 3D torus network. Such adirect IN provides distributed routing resources. This

6 INTRODUCTION

means that the routing resources automatically scale with the number of nodes in the net-
work. Between every two crosshars, a credit based flow control is used.

Current Implementation. Thefirst offspring of the Extoll project isthe design depicted in
Figure 1-2. Thisisalso the design which is used for the optimizations using a coherent pro-
tocol. With only two links, it looks more like a conventional NIC that requires centralized
switching resources. The Ultra unit isthe only functional unit. In ULTRA communication,
a process sends a message by writing the message to the device using PIO writes. On the
receive side, ULTRA writes messages into a user-space queue in main memory using a
DMA write.

Figure 1-3. The HTX board

1.2 Physical | mplementation

The hardware platform for the Extoll NIC prototype isthe HTX board [128]. It contains an
HyperTransport expansion (HTX) connector and a Virtex-4 FX FPGA which can be pro-
grammed via JTAG or USB. For communication, six small form factor pluggable (SFP)
serial transceivers are on the board that are connected to the high-speed serial transceivers
of the FPGA, featuring bit rates of up to 4 Ghit/s. Alternatively, the board can be equipped
with two bidirectional parallel connectors. The HTX-Board can be plugged into any moth-
erboard providing an HTX dot. Theinitial verification has been performed using the lwill
DK8-HTX motherboard, equipped with two AMD Opteron 246 processors.

INTRODUCTION 7

1.3 Graphical Representations

Design space diagrams. An important goal of this work is to analyze and explain design
spaces and design choices. A graphical representation of different computer architectures
is the design space diagram (see Figure 1-4), which has been introduced by Sima[4]. The
diagram shows the different aspects in the design space, as well as the design choices for
every such aspect.

design space of sth.

aspect 1 aspect 2

N

choice 1 choice 2

Figure 1-4. Design space diagram

Flow diagrams. In modern NUMA architectures, nodes are interconnected through a
packet-based direct network. Every transaction on the system consists of a sequence of
packets that is exchanged between a number of master and slave devices. Flow diagrams
are being used to visualize the path of packet flow, as shown in Figure 1-5. Most diagrams
refer to the packet flow in Opteron based systems that are interconnected with a coherent
HyperTransport fabric. As the coherent HyperTransport (cHT) protocol is confidential,
flow diagrams are based on publicly available information only [108][44].

Cache coherence state diagrams. Cache coherence protocols can be seen as state
machines. When describing them, there are two alternatives: in every protocol, every
memory location isin adetermined state. For example, the state may be invalid, that means
not being cached at all. So, one way of describing the protocols is to describe how this
global state of amemory location is affected by the cache actions.

The second way of describing the protocols is from the cache viewpoint: every cacheline
entry in a cache is in a determined state too. The protocols can therefore be described by
showing how these states are affected by the cache actions. State diagrams, as shown in
Figure 1-6 and Figure 1-7, are agood way to describe these state transitions. Separate state
diagramsarerequired for the cachesthat issued arequest and those caches which are snoop-
ing the request. To be able to describe a protocol this way, by convention both a present

cacheline entry with the state invalid and a non-present
invalid.

Read CPU1L
CPU—» Mc/—ﬁv> PRE

INTRODUCTION

cacheline entry will be called

cPu2PRY cpulo"S mc

Dev R
Actors: Packets:
CPU - processor/cache Requests:
MC - memory controller Read
Dev - device Write
Br - I/O bridge

C2D - change to dirty
P -probe request

Figure 1-5. Flow diagram

Read Hit

Write Hit

Read Hit;
Write Hit

Responses:

PR - probe response
RR - read response
Done

Exclusive Read Miss

Bhared Read Miss

shared

)

Read Hit

Snoop response from
other processors

Figure 1-6. MESI state diagram for a requesting cache

INTRODUCTION 9

snooped Write

snooped Read

snooped Write
writeback C

snooped Rea

ooped Write
writeback P

Cacheline has to be
written back to memory
Snooped Rea Cacheline has to be
{vriteback C| written back to memory
or to requesting cache

writeback

Figure 1-7. MESI state diagram for a snooping cache

1.4 M ethodologies

New designs or design variants of adevicein acomputer system must be evaluated for their
benefits and in particular for their performance. As the performance of a device usually
depends on the hardware and software of the whole system, this evaluation is a complex
task. The methods for the exploration of a system are shown in Figure 1-8.

The ideafor a specific design can be expanded to a theor etical model. In this model, the
performance of the system’s inherent mechanisms can be estimated. Usually, only worst-
or best-case estimations can be made in complex systems. A theoretical model cannot
deliver good results for complex traffic patterns which influence transactions in the system
in the form of background traffic. The theoretical model is based on assumptions about the
behavior of system components. If these assumptions are right, a theoretical model can be
efficiently used to estimate at | east the order of magnitude of the performance of the choices
in the design space.

An ar chitectural ssimulation isan effort to increase the precision of performance estimates
for adesign. Inthe best case, the simulation is acycle-accurate one-to-oneimage of the sys-
tem, so that simulation results match results in the real system. At the sametime, asimula-
tion environment is usually being implemented faster than the real device or a prototype,

10 INTRODUCTION

and changes to the system as part of adesign space exploration are possible with less effort.
Nevertheless, architectural ssmulation is not free of problems:

« Theonly way to ensure the correctness of a simulator isto verify it against the rea sys
tem - which is difficult if the system does not exist yet.

Theimplementation of a simulation framework isvery time-consuming, with limited reuse
potential for the actual system implementation. This may increase the time-to-market for a
product significantly. Thus, simulators are often being reused to reduce this problem.

system exploration

theoretical architectural prototype
model simulation implementation

s

growing confidence

Figure 1-8. Design exploration design space

Besides these general problems, the computer architecture research community faces addi-
tional problems:

* Frequently used simulators like RSIM [16] simulate older architectures, it is thus not
clear how mechanisms would behave in modern systems. As many of these smulators
simulate processor instruction sets that aren’t used any more, it is difficult to compile
applications for use with the simulator. As aresult, asmall set of older benchmarksis
being run on the simulators. Again, it is questionable whether thisis good practice.

* Most scientific publications do not give many details about what functionality has been
implemented in the ssimulator. Also, the source codeis usually not contributed to the
community. This prevents other researchers from verifying and comparing results.

« Also, publications frequently do not describe a feasible hardware implementation of
proposed new features. Thus, assumptions that have been made about the hardware
implementation cannot be verified. Also, itisnot clear how feasible and expensive a
hardware implementation would be. Due to the intrinsic differences between software
and hardware design, computer architects with little knowledge and experience in hard-
ware design are likely to make false assumptionsin thisfield.

Although architectural simulations are a very powerful tool in general, these deficiencies
reduce the significance of simulations as performed and presented in today’ s research com-

INTRODUCTION 11

munity. Under these circumstances, it is not clear why most simulations that are performed
are more accurate than a*“ order of magnitude” estimation made based on a good theoretical
model. Although the experienced computer architect can avoid most of the above men-
tioned problems, the lack of an up-to-date simulation framework and aboth critical and sup-
portive community isamajor problem.

A prototype implementation is the only bullet-proof exploration and verification tech-
nique. However, the development of the prototype is very expensive and time consuming.
Thus, prototypes are not well suited for the exploration of a multitude of different design
choices. If the prototype does not run at the same speed as the final product, for example
because it isimplemented in an FPGA, while the product is supposed to be an application
specific integrated circuit (ASIC), performance of the final system must be extrapolated
from the prototype performance.

Due to the problems of simulation frameworks described above, this thesis combines the
usage of atheoretical model with prototype implementations. Assumptions about the per-
formance of subcomponents are mostly based on implementationsin the prototype system,
and therefore ensure that the theoretical model can be safely applied for the comparison of
design space aternatives. The following subsection details these system parameters.

1.5 A Theoretical Model for cHT/HT Performance

The in-depth analysis of efficient data transport from device to processor in Chapter 3 is
performed for directly interconnected NUMA systems that are interconnected using the
HyperTransport protocol. The model considers the influence of all components of the HT
fabric, aswell as attached memory and caches. The HT components are the switches, links,
coherent caches, coherent memory controllers and 1/O bridges as depicted in Figure 2-28
on page 57. Processor core internal paths are not considered.

Actions that take place in these components have a certain latency, the relevant ones are
depicted in Figure 1-10. Except for the memory access delay, al latencies depend on the
clock frequency of the HT fabric, only the DRAM latency is fixed. The parametersin the
table are given for HT1000 and are derived from the FPGA prototype implementations.
Virtual-cut-through routing is being assumed in the cHT network.

Figure 1-9 shows an example calculation of a processor’s coherent read access to memory
that is homed on the same node, and no other cache holds the respective cacheline. The
resulting value is best-case. In areal system, background traffic and congestion will nega-
tively influence this latency.

12 INTRODUCTION

DRAM DRAM

Opteron f—— Opteron

Read /pv CPUl\A

CPUG—> MO cPu2PRY cPuU@™ mc | |
CPU
S/ﬁv Opteron = Opteron
Read to local memory with probe broadcasting: DRAM DRAM
LatenCyRead = t><bar + max(tm + txbar* tprobeg + 2(Ztlink + Stxbar) + tpm + tprobec) = 1l4ns

Figure 1-9. Four-node example

Name Abbrev. Latency in ns

Memory Access Delay tm 45|Read delay of memory controller
including DRAM latency

Probe requests hits in probed
cache. Cache must deliver data
Probe requests hits in probed
cache. Probe response must be

IN

Probe Hit Delay ton

Probe Miss delay

—
k-]
3

N

sent
Probe generate delay torobeg 2|Time to generate a probe
broadcast or a directed probe
Probe collect delay torobec 2|Time to process responses after

last response has been received

Response processing delay trpr 4|Time to process a read
response containing data

Link delay Liink 21|One-way latency of HT links

Xbar delay tevar 4|Delay of HT Switch

Bridge delay for 4|Delay of cHT/HT bridge

Figure 1-10. System parameters for HT1000

COMMUNICATION IN PARALLEL COMPUTERS 13

2Communication N
Parallel Computers

This chapter summarizes the state of the art in parallel computer architecture, and thus is
the foundation for the subsequent chapters.

After ashort overview about cachesin Section 2.1, an introduction to parallel computersis
given in Section 2.2, including an overview about the communication patterns in parallel
systems. Section 2.3 analyses the design space of network interface (NI) locationswithin a
node. Thiswork concentrates on arealization of tightly-coupled NIsand devices under con-
sideration of the cache coherence protocolsin shared memory nodes. Therefore, Section 2.4
discusses cache coherence protocolsin depth.

The prevalent type of computing nodes are based on the x86 architecture, which is mainly
due to the good price to performance ratio of these off-the-shelf systems. Section 2.5 intro-
duces such server systems. Section 2.6 givesan overview of parallel systemsthat have been
implemented in order to illustrate of the most important mechanisms in parallel architec-
tures.

2.1 Caches

The memory hierarchy in asingle processor system consists of the register file at the top of
the hierarchy, followed by a number of levels of caches. At the bottom of the hierarchy,
thereisthe main memory. This hierarchy isdepicted in Figure 2-1. As can be seen from the
figure, speed and size of a memory component are contrary to each other: large memory
components are generally slower than smaller ones. Thus, the only reason to use cachesis
to hide the latency and bandwidth restrictions of main memory accesses.

14 COMMUNICATION IN PARALLEL COMPUTERS

Theterminology used in thisthesisisasfollows: Every location in acache can hold adatum
called cache block. Usually, such a cache block consists of multiple datawords. Many cur-
rent processors have a cache block size of 64 bytes. The term cacheline is frequently used
as a synonym for cache block. It is not only used for the cache block located in the cache,
but also when such adatum is transferred in the system.

Processor Package

Size Load Latency
Processor
2 KB 1 Cycle
16 KB Instr.
- 16 KB Data 2 CyCIeS
96 KB 6 Cycles
4 MB 21 Cycles
>4 GB >50 ns

Figure 2-1. The memory hierarchy of the Intel [tanium processor [5]

The second component belonging to a cacheline is the control field. It holds information
about the current state of the cacheline, for example its cache coherence protocol state (see
Chapter 4.3). The union of cacheline, tag and control field is called cache entry.

A cachelineisindexed by apart of the address. The higher part of the address, which is not
used for indexing, has to be saved in a tag field with the cacheline, so that cachelines can
be uniquely identified. The group of cache blocks that can be accesses with the same index
iscalled aset. If the number of cacheblocksinasetis 1, the cacheiscalled adirect mapping
cache. If all cache blocks are in one single set, the cache is called fully associative cache.
In all other cases, the cache is called an n-way set-associative cache, where n specifies the
number of cache blocks per set.

COMMUNICATION IN PARALLEL COMPUTERS 15

2.2 Parallel Computing Architectures

The interface between every shared memory node and the rest of the system is called the
network interface controller (NIC). The communication patternsfor which aNIC should be
optimized strongly depend of the architecture of the parallel computer. This chapter will
thus briefly describe the different types of parallel computer architectures, thereafter, the
communication paradigms of the most common systems are described.

Flynn’s taxonomy [3] distinguishes computer architectures by looking at the parallelism
in the data and instruction streams. Four classes exist: Single Instruction - Single Data
(SISD), Single Instruction - Multiple Data (SIMD), Multiple Instruction - Single Data
(MISD) and Multiple Instruction - Multiple Data (MIMD). Although this classification
schemeisstill in use, it has some major weaknesses: The class of MISD systems has never
really been populated. The original proposal of the sequential von Neumann computer [1]
[2] isatypica SISD system. Due to the trend towards multi-core processors and simulta-
neous multi threading, the class of SISD systems is emptying.

Arrays of processing elements are atypical example for SIMD architectures. Most present
paralel systems are MIMD computers. An MIMD computer usually consists of a number
of processing units working independently of each other, each with its own instruction and
datastream. MIMD architectures are more versatile than SIMD architectures, sincethey are
not reduced to one single stream of instructions. Therefore, MIMD architectures can gen-
erdly exploit more paralelism. MIMD architectures can be differentiated into shared
memory and message passing architectures. This distinction is based on the hardware
mechanisms of communication. It does not specify the communication paradigm that is
used by user applications, asthis may be different than the mechanism that is used in hard-
ware.

Sima’s taxonomy [4] classifies parallel architectures into data parallel architectures and
function-parallel architectures. Data parallel architectures are vector, associate and neural,
SIMD and systolic processors. Functional-parallel architectures can be distinguished based
on the level of paralelization. Instruction-level paralelism (ILP) can be exploited within
every single processor by means of pipelining, superscalar designs or very-long-instruc-
tion-word (VLIW) processors. According to Sima, the process-level and thread-level par-
allel architectures combined form the same classas MIMD.

Shared Memory Architectures. In ashared-memory architecture, every processor is con-
nected to every memory viathe system interconnect. Although the physical memory mod-
ules may be distributed throughout the system, they form one global memory space which
can be addressed by all processors.

16 COMMUNICATION IN PARALLEL COMPUTERS

Parallel Architectures (PA)

Data-parallel architectures Function-parallel architectures
SIMD,
vector architectures,
etal.
Process-level Thread-level Instruction Level
PA PA PA
\ / ILP;
MIMD Pipelining,
VLIWs
Superscalarity
Shared memory Distributed memory
multiprocessor multicomputer

Figure 2-2. Classification of parallel architectures according to Sima

A closer evaluation of shared memory systemsreveals different access models. the uniform
memory access model (UMA), the non-uniform memory access model (NUMA), and the
cache-only memory access model (COMA), as shown in Figure 2-3.

UMA architectures consist of n processors and m physical memories. Processors are inter-
connected with all memories so that processors can access all memories in the very same
way. In particular, access latencies and bandwidths are the same for every processor-
memory path. The scalability of thistopology islimited: with a growing number of proces-
sors and memories, the complexity of the interconnect is increasing as well. Thus, larger
systems will exhibit higher memory access latencies.

In NUMA architectures, physical memory is assigned to every processor, which this pro-
cessor can access directly without having to use the global system interconnect. To access
any other memory, the system interconnect has to be used. Thus, accesses to the local

COMMUNICATION IN PARALLEL COMPUTERS 17

memory will typically exhibit alower latency than global accesses. Also, the bandwidth to
the local memory may be higher.

Processors

P1 P2 P3 P4 EEEEEN Pn
A A A A A
UMA System Interconnect
A A A A A
\i Y \ A Y \ A
M1 M2 M3 M4 |EEEmEE |y
Memories

P1 P3 , Igcal memory [access

P2 \
NUMA i ‘ M1 JA. ‘ M2 M
A
Y LAY /Y Y
System Interconne&%’IObaI memory access

System Interconnect

Figure 2-3. UMA, NUMA and COMA architectures

The motivation for NUMA systems is that in most parallel applications, the largest part of
the accessed memory is privately used by one thread, only a part of the memory is really
shared among threads. If the operating system in aNUMA machine allocates the memory
of a process or thread on the same processor as the process or thread is running on, most

18 COMMUNICATION IN PARALLEL COMPUTERS

memory accesses of the processes or threads should target the local memory. As a result,
NUMA systems are much better scalable. Firstly, alarger system interconnect affects only
apart of all memory accesses. Thelatency and bandwidth of local memory accessesisinde-
pendent of the system size. Secondly, the load on the system interconnect is much lower.

The third category of shared memory systems are COMA architectures, in which all mem-
ories are converted to caches. A memory word in a cache-only architecture does not have a
permanent home address in one of the memories. Instead, it can be in any of the caches at
any time. Particularly, it can be in more than one cache at a time. Processors have direct
access only to the local caches. The access on memory wordsresiding in aremote cacheis
performed implicitly by the cache-coherence mechanism.

Another criterion for shared memory system is the one of symmetry. In a symmetric mul-
tiprocessor (SMP), all processors do have the same capabilities including 1/0 access and
running the operating system. In asymmetric multiprocessing, processors are designated to
special purposes: Master processors are able to execute the operating system and to perform
1/0. Slave processors cannot perform 1/O access, but only execute code under supervision
of the master processors.

Often, shared memory systems use a hierarchy of interconnects, and may use different
coherence mechanisms at the different interconnect levels. The NUMA implementations
ExtendiScale [108], AzuzA [98] or Dash [97] show that significantly more has to be done
at the interface between nodes and the network than just routing. Optimizations include for
example remote caching, address remapping and probe filtering. Thus, such a system will
comprise a shared memory network interface controller (SM-NIC). The fundamental dif-
ference between NIC and SM-NIC isthat aNIC hasto be addressed explicitly, while com-
munication over the SM-NIC happens implicitly based on the address of requests.

Distributed Memory Ar chitectures. The architecture of a distributed-memory system is
depicted in Figure 2-4. In this type of system, memory is not globally shared. Instead, the
system consists of so called nodes, which consist at least of one processor, local memory
and an interface to the interconnection network. For inter-node communication, messages
are passed between the nodes. The nodes of such a system are computers acting autono-
mously. Therefore, these systems are a so called multicomputers.

Today, most large parallel systems are distributed memory architectures. However, the
nodes typically consist of small UMA or NUMA shared memory multiprocessor systems.
Cluster computers that are constructed using off-the-shelf AMD or Intel processors (see
Section 2.5) and SAN interconnection networks (see Section 2.6.5) aretypical examplesfor
thistype of system. In these systems, any communication with other nodes requires explicit
communication with the NIC.

COMMUNICATION IN PARALLEL COMPUTERS 19

Message Passing Interconnection Network \
message for inter-node
communication

Nodes
EEEEEEN

local memory access

Node 1 Node 2 Node n

Figure 2-4. Distributed memory architecture

A NIC is required due to the fundamental differences between intra-node and inter-node
interconnects. A node can be integrated in asmall physical space, i.e. on board level. Com-
munication paths on chip are in the range of micrometers, off-chip in the range of centime-
ters. In contrast, the interconnect between the nodes has to connect nodes that may be
meters apart from each other, connected by cables instead of traces on a printed circuit
board (PCB). Particular problems are:

« The high latency of the transmission over longer distances requires sophisticated flow-
control mechanisms over every single cable.

* Bandwidth in the interconnect is limited, due to the high costs of adding bandwidth
compared to on-chip or on-board interconnects. Thus, congestion and the need for
node-to-node flow control are a serious issue.

« A dgnificant bit error rate requires such errorsto be corrected, using retransmissions or
forward error correction. Also, alarge network must cope with the failure of compo-
nents, as cables and nodes.

Thus, the separation into a node with network interface controller, and the interconnection
network between the nodes is very useful.

20 COMMUNICATION IN PARALLEL COMPUTERS

2.2.1 Communication Paradigms

A different point of view on this problem simply distinguishes communication primitives
that may be present in such a system, which are:

* Remote memory access using remote |oad/store operations,

* Message passing using a send-receive semantic,

* Remote memory access (RMA) using a put/get semantic.

communication paradigms

M

goals

I
efficient usage of low high security fault-tolerance
system resources latency bandwidth

Figure 2-5. Goals of all communication paradigms

Remote loads and stores and the RMA mechanism are both one-sided communication
mechanisms. This means that only one processis actively participating in the communica-
tion. Thus, thiskind of requests alwaysinvolves access to remote memory: communicating
processes are coupled by using shared memory. In contrast, message passing using a send-
receive semantic is a two-sided communication mechanism, as both communication pro-
cesses are involved. A system may support both message passing and shared memory
mechanisms at the same time.

communication paradigms

blocking notification of synchronization granularity
behavior completion

Figure 2-6. Aspects of communication paradigms

Figure 2-5 shows the general goals of all communication paradigms. It depends on the
application rather than on the specific paradigm how these goals are weighted. The para-

COMMUNICATION IN PARALLEL COMPUTERS 21

digms differ in the aspects shown in Figure 2-6. The next three sections will analyze the
paradigms with regard to these aspects.

2.2.2 Remote Load/Sore

The remote load/store mechanism is the type of communication that is used in shared
memory systems. It is based on load and store instructions of the processor instruction set.
Typically, thereis no differentiation between remote and local instructions, so that they are
treated the same way as every other load instruction.

A processor’ sload instruction classically loads one value from memory into one register, a
store instruction stores the content of one register to memory. Thus, load and store instruc-
tions work on one single processor-native data object that typically has a size of 32 or 64
bits. Vector instructions may work on larger datatypes. However, current implementations
in processors as the different types of SSE [23] or AltiVec [24] support only up to 128hbit
loads and stores. If such an instruction misses in a cache, the cache will create a read or
write request with the size of a cachelinein this cache to the next level in the memory hier-
archy.

A remote read/write may thus use the cacheline size of the last cache hierarchy, or amulti-
ple of it. The largest unit of data transport is used for virtual shared memory (VSM) sys-
tems. These are message-passing based distributed memory systems that emulate remote
loads and storesin software. Due to the high overhead for remote memory accessesin these
systems, the granularity of remote accessesistypically one page [25].

Remote loads and stores are blocking operations. A load that has been issued blocks until
the response data arrives. In particular, athread or process cannot be retired. However, the
processor may execute other instructions if they do not have data dependencies with the
stalled load, and if this does not violate memory ordering constraints.

Similarly, a store may block other memory requests. Most memory consistency models
employ strict ordering among stores.

Shared memory programming models as OpenMP [75] may alow a differentiation of
remote and local memory. Thus a compiler can optimize parallel code by inserting early
prefetch instructions for remote memory loads. A manual optimization by the programmer
would also build up on prefetch instructions. A prefetch instruction is basically a hint to
load a specified memory block into the cache in anon-blocking way. However, finding the
right point in time for a prefetch is difficult. If a prefetch is started too early, a succeeding
write to the address by another processor will lead to an invalidation of the cache entry that
has been allocated by the prefetch, which resultsin the same situation isif no prefetch had
been executed. In the worst case, a prefetch is executed at the same time while another pro-

22 COMMUNICATION IN PARALLEL COMPUTERS

cess is writing to the same memory location. In this case, the write is delayed, as the
prefetch of the cacheline cancelsthe writer’ swrite permission to the cacheline temporarily.

The notification of completion happens implicitly, due to the blocking behavior of loads
and stores.

In ashared memory system, the cache coherence protocol makes changesto shared datavis-
ible to the whole system immediately. Thus, a certain grade of synchronization is aready
performed by the underlying hardware. However, many applications require mutual exclu-
sionsto access critical sections of the parallel application.

A non-coherent implementation of remote |loads/and storesis possible aswell. In this case,
changes become only visible if they are written back using a remote store, and cached
copiesareinvalidated. An application of this scheme are systemswith avery relaxed order-
ing scheme, as for example transactional memories [8].

2.2.3 Put/Get

Communication using put and get operationsis often called remote memory access (RMA)
communication. In analogy to the remote load operation, a get request is used to access
remote memory. However, there is anumber of fundamental differencesto the load opera-
tion:

The most fundamental differenceisthat put and get operations do not operate on processor
registers, but on main memory or adedicated set of registersthat isnot part of the processor
register set. For example, implementations of MPI [73] and the Extoll put/get unit use main
memory. The T3E (see Section 2.6.2) uses a set of memory-mapped device registers.

Put and get can be implemented as non-blocking operations. The request for aget startsthe
operation that is performed asynchronously to the process. Before the process can access
data that has been transferred using a get, it has to check for completion of the operation.
Thethird and last differenceisthat the put/get semantic does not support an automatic hard-
ware coherence. Instead, this must explicitly be managed by the application.

The notification of completion may occur in three different ways, depending on the imple-
mentation. One possibility is ablocking put/get operation, which only returnsif the opera-
tion completed. A second possibility is anonblocking get, where read accesses to the local
get destination are blocked until datais available. Such a mechanism isimplemented in the
T3E (see Section 2.6.2). The third and most popular solution isatest for completion that is
performed by the user process. An MPI implementation will typically be based on notifica-
tions of completion, which are inserted by the device into a notification queue that resides
in main memory. The process then hasto check this queue to retrieve the status of the oper-
ation.

COMMUNICATION IN PARALLEL COMPUTERS 23

For aget operation, anctification is generated if all data has been written to the requestor’s
destination. For a put operation, there are two points in time at which a notification may be
generated. A first notification may be generated if all user memory that relatesto a specific
put operation can safely be reused by the requester. The second notification is generated if
the put operation completed at the target, so that it isglobally visible.

The synchronization in the RMA scheme can be done using mutual exclusions. MPI, for
example, uses the notion of memory windows. A window isapart of the address space that
isaccessible via puts and gets by remote processes. These windows can belocked explicitly
for mutually exclusive access. Another method of synchronization is the use of epochs. An
epoch is framed by a barrier at the beginning of the epoch and a barrier when the epoch
ends. A process enters abarrier operation only if al putsand getsit hasissued in the previ-
ous epoch, i.e. since the last barrier, have finished. So, puts and gets from different epochs
cannot collide.

2.2.4 Send-Receive

In the send-receive scheme, a processes explicitly send messages to other processes. The
target process can obtain the message data by an explicit receive operation. Thus, send-
receive is atwo-sided communication mechanism. Besides the two sided scheme, message
passing communication may also support n-sided communication using broadcast, multi-
cast and other collective operations. The send-receive paradigm offers a wide variety of
operations that differ in their behavior. User-level libraries as MPI offer the whole variety
of function callsto the user.

The standard send and receive functions are blocking. The send function returnsif the mes-
sage has been successfully send from the sending processes perspective. This means, that
the user can safely reuse buffer space that contains the message data. It does not mean that
the message has arrived on the remote node. A receive function returns after the message
has been received. Nonblocking send and receive functions may return immediately, the
user application has to explicitly check if the operation succeeded before accessing the
respective data. Another type of send isthe synchronous send. This function only returnsif
the receive operation for that message has been called.

The underlying hardware does not have to directly implement all these sending mecha-
nisms, instead they can be emulated. A nonblocking send function can be implemented in
the message passing library using a blocking send hardware mechanism: first, all message
related user datais copied into a buffer. Then, a separate thread performs the actual block-
ing send operation. Synchronous sends are usually implemented using a rendezvous proto-
col. The sender first sends a request to the receiver, when the receiver calls the

24 COMMUNICATION IN PARALLEL COMPUTERS

corresponding receive operation, it sends back an acknowledgement. Only after this
acknowledgement has been received, the sender may start sending the actual message.

In order to uniquely identify messages, they carry a user-application tag and information to
distinguish processes.

Efficient implementations of the send-receive make use of nonblocking send-receives, as
this allows the overlapping of communication and synchronization. Also, blocking sends
and receives are prone to race conditions that may lead to deadlocks. Thus, in the general
case, the NIC hasto generate anatification that is checked explicitly by the user application.
Asthe synchronization is explicitly performed by the send and receive operations, no other
mechanisms are used to synchronize bidirectional communication. For global synchroniza-
tion, barriers may be used.

2.3 Device Integration Design Space

This chapter analyzes at which locationsin anode aNIC or SM-NIC may be located. The
overview presented in Figure 2-7 makes use of the same scheme that originally has been
introduced by Bruening [28].

The closest coupling can be reached if the NIC isintegrated into the processor core. Exam-
plesfor such implementations are theiWarp [11] and Transputer [12] computers, aswell as
asuggestion by Henry & Joerg [83]. Communication in these systemsis performed by writ-
ing to or reading from a special set of registers. In these implementations, the register setis
connected to the network over a FIFO queue. A genera problem with these approaches
occurs if packets arrive that are destined to a process other than the one that is currently
loaded in the processor. Gang scheduling together with draining the network on every pro-
cess switch is used in most such closely coupled systems to resolve this problem. Henry &
Joerg suggest to interrupt the currently active process and to schedul e the processthat isthe
destination for the packet. Also close to the processor core are NICsthat are attached to the
cache interconnect, asthe * T [94] for example.

While such aclose coupling of computation and communication may be desirable, itisvery
difficult to propose realistic implementations. The cache interconnect and the processor
core of commercia processors are usually neither physically or legally accessible. They are
within the processor chip, confidential, proprietary, not compatible with other processors
and also may change frequently.

The coherent processor interconnect is the typical network interface location for shared
memory systemsthat have aglobal memory address space. Supercomputersinthe early and
mid ninetieswere frequently of that type [99]. One major vendor of thistype of systemshas

COMMUNICATION IN PARALLEL COMPUTERS 25

been Sun Microsystems, an overview of their system architecturesisgivenin [15]. Another
prime example of shared memory systems is the Dash architecture [97], a more recent
example is the Horus chip of the Extendiscale architecture [108]. * T-Voyager acts like a
Snooping processor at the processor interconnect to allow coherent shared memory commu-
nication between nodes.

This processor interconnect is also the closest location to the processor that is physically
accessible, asit isdesigned to support inter-chip communication. It isalso less confidential.
Some message passing NICs, asin the PowerManna[76] or in the T3E were attached to this
interconnect as well. They implement the functionality of 1/O devices.

Processor

N
| Processor

Core NIC . Integration into processor:
© A N iWarp, Transputer, nCube

Integration at L2 cache interconnect:
*T

Cache Interconnect

L2 Cache

Integration at processor interconnect:
Cray T3E, *T Voyager, PowerManna
A N

1 Extendiscale, AzuzA

* Northbridge ‘

Processor Interconnect

Integration behind memory controller:
DimmNET

Memory/ e} Integration at I/O bus:
NIC 4 Directory Bridge(s) . Cray XT4, Infinipath, Myrinet,
N A N i
. Controller Quadrics, Atoll

\ I/O Bus D

Figure 2-7. Device integration design space

Thel/O busisthe standard interface for devices, including NICs and accel erators. 1/0 buses
like PCI Express are standardized, and available on different platforms. Thus, there are
numerous examples for such systems, asthe Cray XT3 and XT4. Also, I/O buses alow the
development of NICsthat may be used in al host systems that support the 1/0 bus. Exam-
plesfor such NICs are Atoll, Infinipath, Myrinet and Quadrics.

The MEMOnet NIC architecture [77] is one of the few examples for amemory controller-
attached NIC. This architecture shall leverage the fact that a processor can access memory
with higher bandwidth and lower latency than a device connected over a PCI bus. The

26 COMMUNICATION IN PARALLEL COMPUTERS

MEMOnet NIC is implemented on a DIMM. Besides the NIC itself, SDRAM memory is
also included on the DIMM.

The sending of a message to the NIC makes use of the PIO mechanism: A send memory
region maps to the DIMM module. The processor writes message header and data to this
region. Thus, as for any PIO operation, the memory region must be uncacheable so that
writes are directly written to the memory controller and thus to the memory module.

A serious problem of this architecture is the passive nature of memory modules. The NIC
cannot issue interrupts. The receive process can only work as follows: Messages that have
been received are written to the SDRAM that is embedded on the memory module. A pro-
cess can then access the received data just as it would for a classical memory-mapped PIO
device.

Analysisin thiswork. Due to the low feasibility of processor integrated NICs, this work
focuses on NIC implementations on the I/O bus and the processor interconnect. Also, it
focuses on the integration into a node that is a small-scale shared memory system. Thisis
due to the fact that such systemsjust recently started to prevail on the market, as technolog-
ical and architectural solutions to increase the performance of single processor cores have
been exploited. Section 2.4 will describe shared memory systems in detail, as this is the
basis to analyze integrations of devicesin such systems.

2.3.1 Process-Device I nter action

Most of today’s architectures know two different basic types of memory: main (physical)
memory and I/O memory.

Traditionally, 1/0 space can be accessed by device drivers and the operating system, lever-
aging the PCI software model. This model is used by virtually al of today’s devices, asin
PCI-X, PCI-Express (PCle), HT2 and HT3 devices. In the user space communication
scheme, 1/0 space is mapped into the virtual memory space of applications. This avoids
operating systems calls and memory copy operations between user and operating system
memory spaces.

Process-device interaction can be differentiated into synchronization and data communica-
tion. There exists a very typical basic scheme of communication between process and
device. To submit a job to a device, the process inserts a job descriptor into a dedicated
queue. This queue is necessary to decouple the operation of processor and device. The job
descriptor may contain all datathat isrequired for the device to processthe job. It may also
be the case that the job descriptor contains direct or implicit pointers to additional data
required for the job. In any case, thisis aclassical producer-consumer situation. Synchro-
nization in this processis necessary to determine the fill level of the queue.

COMMUNICATION IN PARALLEL COMPUTERS 27

Communication in the other direction, i.e. from device to process, works the very same
way. This path may be used for example to submit the result of ajob that has been previ-
ously issued to the device. In a network interface device, data that has been received from
the network is forwarded this way.

For data communication in today’s x86 systems, there exist two mechanisms, which both
include the required synchronization:

Programmed | nput/Output (P1O). In this communication pattern, datais moved between
applications and devices by explicitly performing processor memory operations. Before
moving data to a device, the processor has to check whether the device is capable to hold
the data. If there is enough free space, data is written by 1/O writes into the address space
of the device. Address bits of the device address space may be used to submit additional
control information to the device. For example, one bit of the address might be used to mark
the end of a data packet. Data transfer in the other direction is performed in asimilar fash-
ion. First, the process checks for new data by performing 1/0 reads to a status register. If
this is successful, the processor can issue subsequent /O reads to read the data from the
device. Thisinterface is called register-mapped interface.

Direct Memory Access (DM A). Datais not copied by the processor, but by aDMA engine
that is external to the processor. Usually, the DMA engineis part of the device. For proces-
sor to device communication, ajob descriptor that specifies source and target of the copy
operation must be set up by the processor. Then the processor triggers the DMA engine,
which is typically done using an I/O memory access to a register of the DMA engine. A
typical location for the job descriptorsis aqueue in main memory. For datatransport in the
other direction, the device performsthe DMA and creates a notification that isalso in main
memory. The processor uses Pl O accessesto check for new entriesin the queue. Thisinter-
face is a descriptor-based interface.

It can be noted that both communication methods currently rely on PIO concerning the syn-
chronization of data transport. In essence, there are three basic types of data movement
used:

» Synchronization using 1/0 read and write accesses from processor to device
» PIO datatransport between processor and device
* DMA datatransport between device and memory

A fourth possibility is not used in the classical approach, but will be introduced in the fol-
lowing sections:

» Synchronization over memory

28 COMMUNICATION IN PARALLEL COMPUTERS

Queue Organization. In order to decouple the producer and the consumer of data, buffers
arerequired. The hardwarerepresentation isafirst-in-first-out (FIFO) buffer. Thisstructure
cannot be implemented efficiently in software, where data always resides in main memory.
Therefore, pointer-based wrap-around queues as shown in Figure 2-8 are used.

Queue

Upper bound
Producer writes < °

L,

if ((tail +1) mod queuesize != head)
——e Write pointer at queue tail {

enqueue message at tail
tail = (tail + 1) mod queuesize

Dequeue:
if (tail 1= head)

{

. dequeue message from head
Read pointer at queue head head = (head + 1) mod queuesize

}

Consumer reads

Lowgr bound

Figur e 2-8. Pointer-based wrap-around queue

The basic pointer scheme has the disadvantage that pointers have to be exchanged between
consumer and producer for every access to the queue. Queue pointers are usually commu-
nicated using memory operations to memory-mapped /O space of the device.

Improvementsto the scheme are depicted in Figure 2-9. Lazy pointersimprove the enqueue
operation: for an enqueue, it is sufficient to know that enough free space isin the queue. It
is not necessary to know the amount of free space precisaly. Thus the producer has a copy
of theread pointer that is potentially stale. This copy hasto be updated only if the free space
in the queue is under a certain threshold. For the write pointer, the lazy pointer does not
work. Not updating the write pointer means that the consumer is not notified of new entries
in the queue, which resultsin a higher latency.

Another improvement are valid bits that are embedded in every queue entry. The software-
based approach, which isimplemented in the * T-ng [95] for example, embeds valid bitsin
the data object that represents aqueue entry, i.e. the valid bits are part of the queue payload.
Thus, the processor can read a queue entry speculatively, and determine whether the entry
isvalid or not. In one scheme, abit with thevalue ‘0’ meansinvalid, ‘1’ valid. The producer
setsthishitto ‘1’ in every entry it enqueues, the consumer hasto reset thisbit to ‘0’ after it

COMMUNICATION IN PARALLEL COMPUTERS 29

has consumed the entry. In this scheme, the consumer does not need to observe the write
pointer at all. The drawback of this approach is that the consumer has to write to the queue
entry, causing additional memory traffic. Sense reverse avoids this problem by changing
the meaning of the sense reverse bit for every pass through the queue, so that the bitsin the
entries do not have to be changed.

A general drawback of software-based valid bitsis that they consume entry payload. This
may not be a major problem if the queue entries are control information, but it may be a
severe limitation if queue entries contain payload data.

Hardware-interpreted valid bits have been implemented for example in the Cray T3E (see
Section 2.6.2 on page 60). The advantage of hardware-interpreted bits is that they alow
advanced notification mechanisms, as explained in the next paragraphs. Also, they do not
reduce the payload that can be used by software.

queue synchronization

pointers lazy valid bits
pointefs/\
hardware _software
interpreted interpreted

Figure 2-9. Queue synchronization design space

Process Notification (see Figure 2-10). A process has to be notified that a queue entry has
been added by a device, and thus should check queue pointers or valid bits. Most devices
use interrupts for signaling to the processor. However, today’ s interrupt mechanisms only
signal that something happened, they do not carry any information about what happened in
adevice. Interrupts are signaled to a processor, which usualy calls the interrupt handler of
the operating system or the device driver. Thus, interrupt signaling involves amuch higher
latency than polling mechanisms and is less useful for tightly coupled coprocessors.

In the polling scheme, a process is continuously reading on a synchronizing data structure,
as aqueue pointer for example, to detect achange. The downside of this method is that the
Jprocess occupi es processor resources, and may cause traffic on the path between processor
and device. Another option is to suspend the execution of the thread until a change

30 COMMUNICATION IN PARALLEL COMPUTERS

occurred. In the Cray T3E, aload to a memory location whose hardware valid bit is ‘O’
stalls, thus stalling the process. However, the processor is blocked by the process. SMT pro-
cessors as the Sun T2 (see Section 2.6.1) or HEP [32] avoid this blocking, as the processor
resources are still available for the other threads running on the processor.

consumer process notification

active passive
priess process
polling
direct, as e.g. interrupts

in multithreaded
architectures

Figure 2-10. Consumer process notification design space

The ATOLL NIC [26] [29] introduced a mechanism to mirror device registers into main
memory, so that a process can access those instead of the real device registers. Coherence
ismaintained by updating the main memory image, called replicator page, periodically. The
main advantage of this method is that a polling process will only access the cache instead
of continuously generating /O traffic. A very crucia issueis the update frequency. A low
frequency increases the latency until a process gets hold of avalue change of adevice reg-
ister. A high frequency in the best case has the same latency as a PIO access, but will gen-
erate unnecessary bus traffic.

2.3.2 Device Virtualization
Virtualized devices allow user-space access to the device for multiple processes at the same
time. Three major challenges have to be solved:

» How isthe context of aprocess, i.e. status registers and queues handled, and where is
the home of these data structures?

» How can requests from processes be controlled so that they do not overflow the device?
* How can the device reliably protect processes from each other?

COMMUNICATION IN PARALLEL COMPUTERS 31

If avirtualized device supports a large number of contexts, the corresponding data struc-
tures cannot efficiently be held on the device. A solution to thisisto make main memory to
the home of all context information. The device caches these contexts.

At the sametime, it must be ensured that device buffers do not overflow with requestsfrom
different processes. To allow processes to determine whether they can submit a request to
the device, an submission of such a request must be an atomic operation as read-modify-
write. Many systems do not support these operations on the I/O bus. A conditiona store
buffer [124][120] is an alternative to implement an atomic accessto bufferson avirtualized
device. Information about the request is encoded in the address bits of a read request to
device |/O space. The device answers with a read response, which contains information
whether the regquest insertion into the buffer was successful or not.

| instruction

, devicebaseunused) |, VP , command

32 or G4 bit (n)
~ T
12 1 0
virtual
| mapped page address | | page offset
PRk i e A R R R R | address
| 1 1
| 1 1
! ! 1
physical
| I T Y N) oy v I?thSI?all II)algle Inurlnll}elr Ll I] Y N T I I | | Ll IIJage OTrSIeF Ll I ad("—ess
| i i
| 1 1 1
! 128 ! v 1

L representation

16 bit 12 bit
Figure 2-11. Address decoding for aread request to a conditional store buffer in Extoll [121]

The requesting process can be identified if a process or context ID is encoded in the read
reguest as well. Processes are protected from each other if only that memory-mapped 1/0
space is mapped into process memory that corresponds to the assigned process ID. An
example for such an encoding isthe one used in Extoll, as shownin Figure 2-11. It uses 16
bit of the address to decode the virtual process identifier (VPID), and additional 12 bit to
decode the command which should be enqueued.

A more detailed description of these problems and possible solutions in the context of
Extoll isgivenin[121].

32 COMMUNICATION IN PARALLEL COMPUTERS

2.4 Cache Coherencefor Shared Memory Systems

The most important aspect of shared memory systems is the single address space view. A
differentiation of the memory access models UMA, NUMA and COMA has aready been
performed in Section 2.2.1. Other important aspects, shown in Figure2-12, will be
described in the following sections.

shared memory computers

cache coherence single address space interconnect memory serialization
protocol memory access topology con3|stency
see 2.4.2, UMA, NUMA, COMA see 2 4.1 see 2.4.5
2.4.3 and 2.4.4 see 2 2 1
switched us hierarchical
network

Figure 2-12. Design space of shared memory computers

A key point isthe memory consistency model of a system. The memory consistency model
defines how operations on memory that are performed by one processor in ashared memory
system affect the memory as seen by the other processors in the system. The consistency
model requires some form of serialization of simultaneous memory requests to the same
address.

Processorsin shared memory systems usually have private caches. If a processor modifies
acached line, amechanism is required that keeps these caches coherent. These aspectswill
be analyzed in detail in the next sections.

Another important criterion is the topology of the interconnect between processor caches
and memory. In principle, any type of interconnection network may be used. Bus-based
interconnection networks have been very common in the past. Very small scale system may
use a single bus as interconnect, while larger systems may use multiple parallel or hierar-
chical buses, as for example in the NEC AzuzA [98] and Sun’s XDBus architecture [14].
Broadcast-based cache coherence protocol s can be implemented on buses easily. However,
both broadcast protocols aswell as busses generally do not scale well. In contrast, the scal-
ability of switched interconnection networks is much better. Today, there is a clear trend
towards direct networks of NUMA nodes, as depicted in Figure 2-13.

COMMUNICATION IN PARALLEL COMPUTERS 33

Hierarchical combinations of different interconnection networks are possible as well. For
example, the Dash [97] shared memory computer connects clusters of 4 processors with a
bus, while the clusters are interconnected using a 2D torus direct network.

Processor Processor

Processor Processor

Processor Processor

(a) single bus-based UMA (b) direct network NUMA

Figure 2-13. Common topologies for small scale shared memory computers

2.4.1 Consistency Modelsfor Shared Memory

In order to develop paralle applications for shared memory systems, programmers need a
solid idea of how memory behaves with respect to reads and writes to memory addresses.
The memory consistency model of a system is the set of rules that a system employs on
Memory acCesses.

Strict consistency isthe most stringent model of memory consistency. It requiresthat every
read or write must be globally visible before any other read or write can be issued. Thus, it
imposes a static ordering of memory accesses of al processors. Such a system would not
require any other mechanism for synchronization, as it is synchronous by compile time.
However, is not applicable to multiprocessor systems at al, as they gain from issuing and
executing operations independently of each other.

A realistic model of consistency in multiprocessor systemsis the model of sequential con-
sistency. The original definition from Lamport [55] is: “ A system is sequentially consistent
if the result of any execution is the same if any operations of all the processors were exe-
cuted in some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” A more handy definition has been
derived by [56]:

34 COMMUNICATION IN PARALLEL COMPUTERS

“A system is sequentially coherent if the following conditions are true:
(A) All processors issue memory accessesin program order.

(B) If aprocessor issues a STORE, then the processor may not issue another memory access
until the value written has become accessible by all other processors.

(C) If aprocessor issues aLOAD, then the processor may not i ssue another memory access
until the value which isto be read has both been bound to the LOAD operation and become
accessible to all other processors.”

The classical consistency model is sequential consistency. However, modern processors
may issue instructions out of order and speculatively, which suggests the same for read
operations. Section 3.1.2 showsthat the standard memory type of AMD Opteron processors
does not perform any ordering among reads. Reads may also pass writes if they do not go
to the same address. Systems with consistency models that are weaker than the sequential
consistency model are called relaxed consistency models. A summary of possible relax-
ations and their implementationsis given in [57]. A commonality between all those optimi-
zations is that they do not reorder reads and writes that go to the same destination.

In the weakest consistency models, no ordering constraints at all are applied to memory
operations per se. Ordering and thus consistency can only be maintained using synchroni-
zation primitives asfences. One of those modelsisweak consistency [58], an improved def-
inition is given by Gharachorloo [59]:

“(A) before an ordinary load or store accessis allowed to perform with respect to any other
processor, all previous synchronization accesses must be performed, and

(B) before a synchronization accessis allowed to perform with respect to any other proces-
sor, al previous ordinary load and store accesses must be performed, and

(C) synchronization accesses are sequentially consistent with respect to one another.”

Obviously, weak consistency can emulate sequential consistency by performing an explicit
synchronization after every memory access. The idea of weak consistency is nevertheless
to perform synchronization on a coarse grain level. Thus, it iswell suited for systemswere
a fine grain synchronization is to expensive, as in SANs or LANs. For example,
MPI[73][74] uses aweak consistency model for its RDMA protocol.

Transactional memory coherence and consistency [117][118] is an approach to raise the
level on which consistency is performed from instructions to transactions. A transaction is
a block of instructions that is executed and completes as an atomic unit. Among transac-
tions, sequential consistency is maintained. Only if atransaction completes, the changes it
made to memory are made globally visible by broadcasting these changes to all other pro-
cessors. |f another processor detects a change of amemory location that is used by that pro-

COMMUNICATION IN PARALLEL COMPUTERS 35

cessor, it must roll back and reprocess the current transaction. A transaction may only
completeif all previoustransactions completed. Although theideaof hardware-based trans-
actional memory systems is relatively old, intense research only started within the last
years.

2.4.2 Cache Coherence Protocols

In ashared memory system, multiple caches may hold copies of the same memory location
at the sametime. A basic requirement of al consistency modelsis that caches do not hold
different values for the same memory location at the same time. The point in time at which
thisis guaranteed for a memory operation is called the commit point of the operation. The
mechanism that ensures that is called the cache coherence protocol.

cache coherence protocols

cache to cache . :OfOtOCtC"t_ treatment of
//”?F‘ers\ implementation conflicting copies
ndne modified all cached) /\
‘writeback) cachelines cachelines invalidate update
software based hardware based

\

protocol type

broadcast hybrid/ directory
based hierarchical based

Figure 2-14. Design space of cache coherence protocols

Invalidate vs. Update protocols. Inconsistencies between caches may occur only when at
least one processor writes to a memory location, either into its own cache or back to main
memory. If the same location is cached in other caches, a cache coherence protocol must
ensure that these caches do not keep the old value of the memory location. There are two

36 COMMUNICATION IN PARALLEL COMPUTERS

possible ways to ensure this: One solution is that all other caches have to invalidate their
copies before a processor is allowed to write to a memory location. The mechanism how
this is done depends on the cache coherence protocol. One possibility isto explicitly send
invalidation messages to all other caches that may have the memory location cached.

Instead of invalidating other cache entries, these entries might as well be updated with the
new data. The advantage of this method is that a subsequent read from the remote proces-
sors will result in cache hit instead of a miss. In a bus-based system, thisis can be imple-
mented easily, asall caches snoop the bus and can copy the updated valueinto their caches.
However, the scalability of other topol ogies would be smashed if these updates would have
to be broadcast to every node. Update protocols have a second problem: a processor does
not write cachelines, but words of a much finer granularity, as for example 32bit. Theoret-
ically, every such small grain writes would have to trigger an update of the cacheline. A
write-buffer mechanism could be used to perform updates at a cacheline granularity.

For these reasons, basically all cache coherence protocols are invalidation-based protocols.
Mukherjee [112] started with an analysis of how prediction mechanisms may be used to
control update mechanisms. This research is being continued by other groups [114] [115]
[116]. As prediction is speculative, all such protocols are based on invalidation-based pro-
tocols.

CC protocols and memory coherence. A processor that maintains sequential ordering
among writes can only execute a write when the previous write has committed, i.e. it has
been observed globally. A necessary condition, and usually also a sufficient one, isthat all
caches have seen the write. Thus, the cache coherence protocol must acknowledge that a
memory operation has been seen by al cachesto the requesting cache. Only then acacheis
capable of putting the respective memory coherence model into effect.

Another requirement of memory consistency modelsisthat awrite transaction on the coher-
ent interconnect appears to be an atomic operation. To be more precise, it is sufficient for
the sequential consistency model and al derived models of consistency that operations to
the same location appear to be atomic. Writesto different memory locations from different
processors do not have to appear atomic among each other.

If operations on the same memory location were not atomic, two writes from different pro-
cessors to the same memory location at the same time could cause an inconsistent state of
the respective cachelines. In an update-based cache coherence scheme, this could result in
different caches holding different values for the same memory location at the sametime. In
an invalidation-based protocal, it could result in the invalidation of both writes, thus rees-
tablishing the previous value of the memory location, which is not legal either. As awrite
operation may cause communication among multiple caches, the memory controller and a

COMMUNICATION IN PARALLEL COMPUTERS 37

directory, it is by no means atrue atomic access. Chapter 2.4.5 will show how this problem
may be resolved.

Cacheto cachetransfers. If aprocessor requests amemory location that is cached as mod-
ified in another cache, this modified value has to be transported to the requester. One pos-
sible solution is a write-back of the dirty line back to memory, so that the memory can
satisfy the read request. A faster solution is the direct cache-to-cache transfer of the modi-
fied line that is started by the probe. Depending on the protocol, an additional write-back
may also be triggered.

Another possibleimprovement is adirect cache to cache transfer of unmodified cachelines.
The reason to do so is that a remote cache can access data much faster than the memory
controller that hasto access slow DRAM memory. On the other hand, thereis no guarantee
at al that the requested memory location can be delivered by a cache.

To achieve the lowest memory access latency in all cases, cache coherence protocols that
support cache to cache transfers may request the memory location from the physical main
memory at the same time when sending out the probes. As it is not known if the DRAM
accessisrequired, and if it contains the recent value at al, this memory access can be seen
as a speculative memory access. In case a cache could deliver the data, a special memory
cancel packet may be send to the memory controller to stop the memory access. In contrast,
a hon-speculative memory access is given if the memory access occurs after it has been
found out that remote caches cannot satisfy the request. This can be determined by the probe
responses in broadcast based protocols, or by a directory lookup in directory based proto-
cols.

2.4.3 Broadcast Protocols

Broadcast-based cache coherence protocols are a natural choice for shared memory com-
puters that are interconnected with a single bus. Write access to a busis granted to at most
one bus master at atime, while all other endpoints on the bus listen to the transaction of the
bus master. Thisis precisely abroadcast communication pattern.

In such a bus-based system, a coherent cache has to snoop on al memory requests on the
bus. The cache has to check whether it caches the same memory location. In the case of a
possible coherence conflict, the cache has to respond on the bus within a certain timeframe
to resolve this problem. Thus, broadcast-based cache coherence protocols in a bus based
system are also called snoopy protocols.

In al other topologies than a bus, a broadcast must be implemented explicitly by sending
broadcast messages to every cache. Due to network contention, it is difficult to guarantee
that al caches can respond to a broadcast within a fixed, short period of time. Therefore,

38 COMMUNICATION IN PARALLEL COMPUTERS

every cache hasto send aresponse, no matter if it detects a conflict or not. The requesting
cache has to collect al responses before it may proceed.

interconnect
topology

bus other

M ¥

snoopy explicit
protocol broadcasting

Figure 2-15. Influence of the interconnect topology on broadcast based protocols

The most basic cache coherence protocol would allow a memory location to be cached by
at most one cache at the same time. The most significant problem of this protocol is that
processes or threads that run on different processorsin a shared memory system often share
read-only memory, as for example program code. In this case, the simple protocol would
be highly inefficient, as the ownership of the cacheline would have to toggle with every
access in case more than two processors access the cacheline at the same time.

Thus, the simplest protocol that has been used in systems allows shared reading. It isimple-
mented in the M S| protocol, named after the three states in which a cache entry may be:

e Invalid: The cache entry isnot valid.

« Shared: The cache entry is valid; the respective cacheline may be shared with other
processors. The cacheline is unmodified, i.e. it contains the same data as the corre-
sponding memory location. Before writing to a cacheline in the shared state, other
entriesin other caches have to be invalidated.

* Modified: The cacheline contains data that has been written by the processor. The cor-
responding memory location has not been updated yet and therefore does not hold the
actual value. The cacheline is exclusively held by this cache, therefore read and write
operations can be performed on this line without notification of the other processors. If
the cache decides to evict the cacheline, it has to be written back to memory.

The MESI protocol improvesthe MSI protocol by adding the exclusive state. It is one of the
most popular protocols. For example, itisimplemented in Intel’s |A-32 and | A-64 proces-
sors[70]. The exclusive state is used to indicate that the respective cachelineis exclusively
cached by the processor, but, in contrast to the modified state, unmodified. This reduces

COMMUNICATION IN PARALLEL COMPUTERS 39

snooping or probing traffic for datathat is not shared between caches: a processor can write
to a cacheline that is in exclusive state due to a previous read, and thus silently change the
state to modified without notifying other caches. In order to decide whether a cacheline
should be allocated as exclusive or as shared upon aread miss, different read or prefetch
instructions may be supported by the processors. A read_exclusive, sometimes also called
read_with_intend_to_modify, may be used instead of a “standard” read if the processor
intends to write to the cacheline soon. A good choice for the standard read isto allocate the
cacheline in the shared state if others share it, and otherwise on exclusive state. A
read_shared may also be beneficial in some systems.

These instructions have their equivalent in the bus or interconnect protocol:
* A read_exclusive will beissued for the respective instruction, or for awrite miss.

* A read_shared will be issued for the respective instruction, or for aread missin the
instruction cache.

* For al other read misses, a standard read will be issued.

The MERSI protocol, which is implemented in the IBM PowerPC 970 [72], is another
improvement to the MESI protocol. Upon a read request, it allows to transfer a shared,
unmodified cacheline directly between caches. The motivation to do so is that a cache's
access time is significantly lower than the one of main memory DRAM. For not wasting
bandwidth, the MERSI protocol ensures that at most one cache is delivering acachelinein
such atransfer, even if it is cached in multiple caches. The most recent reader of a shared
cacheline will hold the line not in the shared state, but in the recent state. Only the cache
that has the linein the recent state may forward the cacheline to the requester, after that, it
hasto change the state to shared. The reason why the most recent reader of the cachelineis
the one that has to forward the data is the assumption of temporal locality: the most recent
reader is also assumed to evict the cacheline after the caches that read the line before. If the
most recent reader of the cacheline evictsthe line, a subsequent read miss from any proces-
sor to the same address will have to fetch the data from memory, even though the cacheline
may be present in the shared state in some caches.

In the following, two other improvements of the MESI protocol will be described in detail,
the MOESI and the MESIF protocols.

2431 MOESI

MOESI is an extension of the MESI protocol, and being used by AMD in their AMD64
architecture processors[20]. Thefive states of acache entry are modified, owned, exclusive,
shared, and invalid.

40

COMMUNICATION IN PARALLEL COMPUTERS

The global state of amemory locationin MESI corresponds substantially with the states of
the respective cache entries. The global states of MESI, which also exist in MOESI, are:

invalid, i.e. not present in any cache,
modified exclusive, i.e. present in exactly one cache in the modified cache entry state,
unmodified shared, i.e. present in one or more caches in the shared cache entry state,

unmodified exclusive, i.e. present in exactly one cache in the exclusive cache entry
State.

MOESI adds a new global state, which does not correspond directly with the cache entry
state, but with a combination of two cache entry states:

modified shared. The location is present in exactly one cache in the owned state, and in
any number of caches in the shared state at the same time.

Read Hit

Read Hit
Write Hit

Write Hit .
Exclusive Read Miss?/

Read as exclusive Miss

Read H_it,
Write Hit Shared Read Miss?/

Read as shared Miss

Read

1: The cacheline is fetched from memory.
2: The cacheline is fetched from memory if it is shared
shared unmodified, and send from another cache
if it is shared modified.

Snoop response from
other processors

Figure 2-16. MOESI state diagram for a requesting cache

COMMUNICATION IN PARALLEL COMPUTERS 41

So, MOESI can share a cacheline among caches that is modified. In contrast to the MESI,
protocol, amodified cacheline does not need to be written back to memory in order to share
the memory location. The owned state has been introduced to mark exactly one cache entry
that the respective cache it is the one who must forward the line in the case of subsegquent
read request from other nodes. Also, it must write the line back to memory if the cacheline
isevicted.

shooped Read(S)

snooped Read(E)

snooped Read(sS) nooped Read(E) |snooped Read(S)

snooped Read(E)
writeback

ooped Read(E)

Cacheline has to be writ-
ten back to memory or to

writeback the requesting cache

Snooped Read(S
Cacheline has to be for-

forward | warded to requesting
cache

Figure 2-17. MOESI State diagram for a snooping cache

The description of the MOESI protocol from the requester’s viewpoint, as depicted in
Figure 2-16, is asfollows:

» Read Hit: No coherency actions have to be taken.

* Read Miss: if there are other cachesin the states exclusive, shared or modified, the

cacheline goes frominvalid to shared, otherwise it goesto exclusive. If another cacheis
in exclusive, this other cache goes to shared too; if another cacheisin modified, this

other cache goes to owned.

42 COMMUNICATION IN PARALLEL COMPUTERS

« Write Hit: The master’s new state is modified. If the cacheline has been in exclusive or
modified, no coherency bus transactions have to be done. If the cacheline has beenin
shared or owned, all other caches in state shared have to be invalidated.

* Write Miss: The cacheline goes from invalid to modified. All other caches holding this
line go to invalid.

Figure 2-17 shows the state transitions of snooping caches.

2432 MESF

The MESIF protocol has been suggested by Intel [62]. Basically, it is an improvement of
the MERSI protocol. MERS! alowed only the forwarding of unmodified cachelines.
MESIF allows the forwarding of both modified and unmodified data.

Read Hit

Read Hit

Write Hit

Write Hj

Exclusive Read Miss1
Read as exclusive Mi

Read Hit;
Write Hit
Shared Read Miss2/
Read as shared Miss

Read

1: The cacheline is fetched from memory.
2: The cacheline is fetched from memory if it is shared
shared unmodified, and send from another
cache if it is shared modified.

Snoop response from
other processors

Figure 2-18. MESIF state diagram for a requesting cache

COMMUNICATION IN PARALLEL COMPUTERS 43

In the case of forwarding a modified cacheline, the line is simultaneously written back to
memory, so that MESIF does not have to distinguish between modified shared and unmod-
ified shared: there is only the latter global state. In al other respects, the F state behaves
exactly like the R state: the most recent requesting cache has the cache entry in F state, al
other sharersin S.

snooped Read(E)
forward

snooped Read(S)
forward

shooped Read(E)

forward snooped Read(E)

forward

snooped Read(S)
forward
writeback

Cacheline has to be writ-
writeback| ten back to memory Snooped

ead(S) snooped Read(S)
forward

Cacheline has to be for-
forward | warded to requesting
cache

Figure 2-19. MESIF state diagram for a snooping cache

The description of the MESIF protocol from the requester’s viewpoint, as depicted in
Figure 2-18, is asfollows:

* Read Hit: No coherency actions have to be taken.

» Read Miss: if there are other caches holding the line in any state, the cacheline goes
from invalid to forward, otherwise it goesto exclusive. If another cacheisin exclusive,
this other cache goes to shared. If another cache isin forward, this other cache goes to
shared, and forwards the line to the requesting cache. The same appliesif another cache
isin modified, additionally, the cacheline is written back to memory.

44 COMMUNICATION IN PARALLEL COMPUTERS

» Write Hit: The requester’s new state is modified. If the cacheline has been in exclusive
or modified, no coherency bus transactions have to be done. If the cacheline hasbeenin
shared or forward, all other caches holding the same cacheline have to be invalidated.

* Write Miss: The cacheline goes from invalid to modified. All other caches holding this
line go to invalid.

Figure 2-19 shows the state transitions of snooping caches. It can clearly be seen that the
idea of the protocol isto forward data directly from cacheto cacheif possible. On the other
hand, it ensures that at most one processor is forwarding data

Hierarchical Buses. The scalability of abusisvery limited. Asthe available bandwidth of
a bus is constant, the per-processor bandwidth decreases with a larger number of proces-
sors. Hierarchical snoopy buses are a better scalable solution, but only if the traffic on the
individual bus segments of the hierarchy can be reduced. The two-level hierarchy of the
NEC AzuzA [98] is an example of such a system (see Figure 2-20). The addresses of all
memory requests on the local buses are broadcast on the system address bus. The system
address controllers (SAC) listen to all these addresses. The SAC incorporates asnoop filter,
so that snoop requests are only forwarded to the local busif there is any chance that one of
the processor’ s caches holds the requested memory block.

: : HEHHEE :
ol T T T ol T T T ol v T T Tl Ul Tl ©
cllc|lc|l S cllc|lc|l c cllc|lc|l S cllcllc| c
A A i i A i 1 i A
v v v v
' v 3 t s 3 re 3 43 5
< || SAC < SAC < SAC < SAC
D) [¢) D
3 3 3 3 ==
y
y ‘ Address network

Data crossbar chip

Figure 2-20. Hierarchica snoopy-bus NUMA system

COMMUNICATION IN PARALLEL COMPUTERS 45

2.4.4 Directory-Based Protocols

Directory-based cache coherence has been proposed by Censier & Feautrier in 1978 [65],
even before bus based coherence was introduced. In such aprotocol, adirectory keepstrack
of the state of memory blocks. The directory contains the state of every block that is cur-
rently being cached, and information about which processors have copies of that memory
block in their caches, and in which stateit is.

Generally, directory lookups replace broastcasts. For example, a read exclusive request
from a cache upon acache misswill cause alookup. If the lookup showsthat no other cache
holds a copy of the memory location, the requester can allocate the cache entry in the exclu-
sive state. If the directory entry showsthat other caches hold the samelocation, invalidation
messages will be send to those caches. If another cache holds a modified copy of the cach-
eline, it must aso be notified to forward thisline.

directory protocols

setof |ocation organization entry direct_ory granularity
states type caching
distributed centralized none atdirectory switch level
: controller
cache only full directory
=>sparse
directory
fully dynamic limited
mapped pointer pointer dir.
allocation

Figure 2-21. Design space of directory cache coherence protocols

The design space of directory cache coherence protocolsis shown in Figure 2-21.

The set of states. Theoretically, directory protocols canwork if the state of amemory loca
tionisheld in the directory only. However, this would mean that a cache has to perform an
directory access every time it wants to change the state. Therefore, the state is included in
the cache entries as well. Generally, it must be ensured that directory and cache entry state
are consistent. Some inconsistency may be allowed: A cache entry may transition from the
exclusive state to amodified state without requesting the update from the directory, which
would involve communication latency in the memory access. Aswell, a cache may evict a

46 COMMUNICATION IN PARALLEL COMPUTERS

cacheline in a non-modified state without updating the directory. This reduces traffic for
cache evictions. On the other hand, it increases traffic in the case another cache wants to
acquire the same memory location later on, as an invalidation has to be sent to the first
cache. Usually, only a small fraction of the memory locations that a processor caches is
shared and written to by processes, so that this strategy usually leads to an overall decrease
of traffic

The MESI state set iswell suited for the use with directories and has frequently been imple-
mented, for example in the Dash system [97]. If the protocol alows cachesto silently tran-
sition from E to M, the directory does not need to distinguish between both states, but only
knowsthe M S| state set.

Instead of the MESI state set, the MOESI state set might be used aswell asabasisfor direc-
tory-based protocols. For cache to cache forwarding of unmodified cache lines, extensions
like MERSI and MESIF are not required. A node that should forward a cacheline could just
be selected from the list of nodes in the directory. A variety of selection criteria could be
used. For example, the most recent requester could be chosen, if it ismarked in the directory
entry. Another criterion could be to select a cache that is close to the original requester.

Location. As there is exactly one directory entry for every (cached) memory block, the
directory should be placed at the respective memory controller. Most shared-memory mul-
tiprocessors use distributed memory. In such an architecture, distributed directories should
be used: to every physica memory component, a directory is attached that contains the
directory information regarding the memory component.

memory block state {M,S,I}
n bit entries for n caches

Data S[1|0j0)1} ---------mmmm - 0

| Data | L [

Memory Blocks Directory Contents

Figure 2-22. Directory contentsin afull mapped directory. There is abit for every cache, stating
whether the memory block is cached by that cache (bit=1) or not (bit =0)

COMMUNICATION IN PARALLEL COMPUTERS 47

Organization of Directory Entries. Depending on the way thisinformation is held by the
directory, directories can be divided into three classes:

Fully-Mapped Directories[65]: in adirectory of thistype, the directory information for
amemory block has a bit for every processor cachein the system (see Figure 2-22).
Thisisan inexpensive and fast solution for small scale multiprocessor systems. For
systemswith ahigher number of processors, the directory becomes quite large. Another
drawback is that the maximum number of processors is determined by the directory
structure. As aresult, full mapped directories do not scale well.

Limited (Pointer) Directories [68] are similar to full-mapped directories. They differ in
so far that they have entries for a fixed number n of caches, which may be smaller than
the total number of cachesin the system. Therefore bit flags are not unique and have to
be replaced with pointers to caches. For example, the directory might support 128 pro-
cessor caches, which would require 7 bit pointers. The directory might now have 8
pointer entries, resulting in amemory use of 7*8=48 hit to store the pointers, compared
to 128 bit for afull-mapped directory. In this example, only 8 caches can share a spe-
cific cacheline. If a9th cache requests to share it too, one of the other caches has to
invalidate the cacheline.

These directories overcome the problem of adirectory line getting too large in large
systems. However, they do have a scaling problem too, since the number of caches that
can hold a memory block simultaneously is fixed by the directory line size.

Dynamic Pointer Allocation Directories [69] work with pointers aswell. But instead of
storing them in afixed number of fields, they are stored in adynamic list. The space for
storing list elements can be shared among al memory block entries. There is more
overhead both in the directory logic and the directory memory space, although memory
space is much more efficiently used since it can be shared among all memory blocks.
Thisisthe most flexible model.

Organization of the directory. A full directory implementation has one entry for every
memory block. A scalable solution would be to keep the directory in main memory. On the
other hand, the accessto the directory istiming critical. Thus, the directory should beimple-
mented in afast memory technology, and be implemented on the same chip as the memory
controller. This limits the scalability of the memory size of anode.

Anideato decreasethe size of afull directory isto increase the memory block size of direc-
tories to a multiple of the cacheline size. However, the larger the memory block size
becomes, the more drastic isthe effect of false sharing: if one processor writesto a memory
location, all cached copies of the memory block will have to be invalidated.

48 COMMUNICATION IN PARALLEL COMPUTERS

In contrast, a sparse directory [66] keeps directory information only for a part of the
memory blocks. Due to the limited size of processor caches, only a small fraction of main
memory iscached at the same point intime. It issufficient to have directory entriesfor those
memory blocks that are currently cached. A sparse directory is build like a cache without a
back-up store. Every entry in the cache consists of an address tag and the directory entry
itself. If a directory entry does not exist for a memory location, the memory block is
uncached. If anew entry isallocated, an old entry has to be removed, which is selected by
a cache replacement mechanism as in any other cache. However, areplacement means that
the respective cachelines have to be invalided. Also, the cacheline may have to be written
back if itisdirty.

For a system with a central directory, the number of entriesin the directory must be at least
the same as the accumulated number of entries in the system’s caches. This theoretically
limits the scalability of the number of processors in the system, but a central directory is
very limited in its scalability anyway.

Systems with distributed directories have the potential to scale better. If every distributed
part of the directory would have to be able to hold the status of all cache entries of al inthe
system, thiswould destroy the scalability. Thus, the size of the distributed directories must
befixed. Thisisnot aprobleminitself: if asystemisscaled up in asmart fashion by increas-
ing the number of processors, memory controllers and (distributed) directories, the number
of memory accesses per memory controller should not increase significantly. In particular,
the number of memory blocks per directory that is cached does not necessarily increase.

While a sparse directory significantly reduces the number of entries that have to be stored,
the number of bitsto store per entry increases, as atag hasto be stored with every entry. An
example of a central, sparse directory is the Intel Xeon architecture (see Section 2.5.1).

Caching. A full directory that is implemented in slow memory may be cached directly at
the directory controller [67]. Another way to speed up directory lookups upon a memory
operation of a processor would be to cache directory entries close to the processor. Thisis
difficult, as such directory caches must be kept coherent with the main directory. An inter-
esting approach are switch directories [119], which are used to speed up cache to cache
transfers. In adirectly interconnected NUMA architecture, every switch has a small direc-
tory. The state of the directory is maintained by keeping track of memory requests and
responsesthat cross the switch. Requests from caches are sent to the main directory. If there
isahit in any of the switch directoriesin the path, this directory may redirect the request to
a cache that holds the cacheline, so that a cache-to-cache transfer of this cacheline is sped

up.

COMMUNICATION IN PARALLEL COMPUTERS 49

2.4.5 Serialization of Conflicting Accesses

Cache coherence protocols as presented above ensure that caches can be kept consistent.
They do that by giving only one cache write access to the same memory location at atime,
and invalidating cached copies that hold old values of a memory location. Also, these pro-
tocols support sequential consistency, if every component acknowledges invalidation
requests and aprocessor waitsfor arrival of al those acknowledgements beforeissuing sub-
seguent memory accesses. However, one problem has not been discussed yet: what happens
if two or more processors access the same memory location at the same time?

Processor Processor

PO P1
t=0 Lii_py. L:i
t=1 In
t=2

Ack.
t=3
Ac|
t=4 L:e
t=5
v L:e

Figure 2-23. Conflict caused by simultaneous access to the same memory location

Assume for example a 2-node direct network system, using a MESI cache coherence pro-
tocol. Both processors have the same memory location L not cached yet. If one processor
PO decides to obtain an exclusive copy, it sends an invalidation message to P1. Upon the
receipt of the acknowledgement, the cache of PO getsits exclusive copy. However it might
also be the case that both processors decide to obtain an exclusive copy of L at about the
same time, as shown in Figure 2-23. PO sends an invalidation request at t=0, P1 at t=1, so
that both requests overlap due to the latency of the network. Both processes will have to
acknowledge the requestsimmediately in order to avoid adeadlock. If both processors con-

50 COMMUNICATION IN PARALLEL COMPUTERS

tinue to pursue their requests, both will have an exclusive copy of the request at the same
time, which is an inconsistent state.

Conflicts may always occur when at least one of the simultaneous requests tries to acquire
a cacheline in exclusive state. Depending on the protocol and the implementation details,
conflicts may also occur in other cases.

There are two very different approaches how such conflicting accesses can be treated. One
solution introduces a centralized serialization of all requests to the same memory location.
A request may only proceed beyond the serialization point if al previous requests to the
same location finished, i.e. have been globally observed. The other possible solution isto
alow such conflicting accesses, but to resolve conflictsif they occur. Figure 2-24 showsan
overview about which strategy may be used in which system.

Conflict Avoidance. In bus-based systems, a central serialization isintrinsic to the system.
Even if memory accesses are issued at the very sametime by different processors, they will
haveto compete for bus arbitration. Depending on the arbitration policy, one of the requests
will “win” and go first. The other processor’s cache snoops on the address of this request,
and thus can determine that is not allowed to issue the request until the request for the first
processor has completed.

Other network topologies do not have such a serializing characteristic. A solution to this
problem is a central instance that every request to a memory location has to pass. It keeps
track of memory operations that did not commit yet. If an operation to the same memory
location arrives, it is queued and will only be handled if the previous request committed.

In directory-based system, arequest from acache will always go to the respective directory
first. Thus, the directory isapoint where serialization of accessesto the same memory loca-
tion can be performed by buffering incoming requests until all previousrequeststo the same
memory location have completed. If the directory is distributed throughout the system, the
ordering point is distributed just the same way.

COMMUNICATION IN PARALLEL COMPUTERS 51

protocol type

broadcast based directory based

M 4

topology
explicit serialization of
conflicting accesses

bus direct network

¥

snooping-based
serialization

conflict treatment

explicit serialization of conflict resolution
conflicting accesses *

resolution type

abort and retry graceful
conflicting access resolution

Figure 2-24. Treatment of conflicting accesses

In systems that implement an explicit broadcast, ordering can be done the same way at the
memory controller. In MOESI, a cache does not broadcast invalidations directly to other
caches. Instead, it sends a request to the memory controller. The memory controller queues
these requests, and issues the invalidation requests only if there is no active request to the
same memory location. Acknowledgements may be sent to the original requester directly,
in order to reduce the waiting timefor this processor. In this case, the requester hasto notify
the memory controller that the request completed. For example, AMD Opteron processors
use this method.

52 COMMUNICATION IN PARALLEL COMPUTERS

Figure 2-25 (a) and (b) show the respective flow of packets. An important characterization
criterion for these protocols is the maximum number of hops that have to be taken on the
path from the processor’ s request until the processor getsall required replies. The serializa-
tion based broadcast protocol requires three hops to be taken. A directory based protocol
will aso require three hopsif it hasto send directed probesto caches. Otherwise, it isatwo
hop protocol.

Conflict Resolution. Another strategy isto allow conflicts, but to resolve them when they
occur. Theideais to speed up accesses for which a conflict does not occur. The resolution
of aconflict, however, will usually be more expensive in terms of latency. So conflict res-
olution may offer benefits over conflict avoidanceif conflictsoccur only for asmall fraction
of all memory accesses.

Figure 2-25 (c) shows how aread access without conflicts may look like. All requests can
be sent out in paralel, without having to take an extra hop to the memory controller. This
may reduce latency compared to the serializing solution. If a conflict occurs, it will be
detected from at least one of the conflicting requesters. A conflict occurs if the requester
gets probes from another cache for the same memory location for which an own request is
currently active. After it has been detected, there are different ways how a conflict may be
resolved. In the decentralized solution, every processor that sees a conflict could for exam-
ple abort its memory request, and start the request over again after a short waiting period.
This mechanism is similar to the store conditional instruction (STWCX) of the PowerPC
processor architecture [71]. A conditional store is executed only if since the last load and
reserve instruction (LWARX), requests to the same address have not been observed on the
processor bus. However, in the case of cache conflict resolution, aborts and restarts of
memory request should be done in hardware, transparently to the software. If both request-
ers observed the conflict, they will both restart their requests. In order to avoid these
reguests to collide again, they should not restart the request immediately, but e.g. with a
random delay.

In the case of the MESI protocol, this method works as described above. Forwarding pro-
tocolsas MOESI are more challenging: adirty copy of the requested memory block may be
transmitted to the requester that detected a conflict. Thus, the request cannot be simply
aborted. Instead, it must be assured that the dirty copy does not get “lost”, and in particular,
that it reachesthe other requester in the conflict, asit may not have detected the conflict and
thus needs the dirty copy.

COMMUNICATION IN PARALLEL COMPUTERS 53

Read_exclusive Data
CPUQ —» DIR/—> CPUO —> DIR/ (a) directory-based
MC MC

Invalidation Bcast
Read_exclusive /v

CPUO——» MC =——» >> CPUO %EMC (b) broadcast-based
\ with serialization and

speculative memory

access
Data

Invalidation Bcast

PUO 4 :‘, CPUO » MC (c) broadcast-based

\ with speculative

memory access

Read_exclusive Data
mMC

Invalidation Bcast (d) broadcast-based
/ S Read Data with non-speculative

CPUO T—» \A —» CPU0 ————» MC —» CPUO memory access

Figure 2-25. Transfers for aread_exclusive request for different conflict treatment strategies

Hum et al. [63] propose a mechanism as in Figure 2-25 (d) for the MESIF protocol. Here
the conflict is not resolved by canceling the current request. Instead, every requester reports
the conflict to the other requesters. This assures that all know of the conflict, as it may be
the case that only one detected it. The basic ideais asfollows: any node that wantsto obtain
a cacheline in an exclusive state must read it using the port_read_invalidate line (PRIL)
command, even if it has been cached before in the shared state. If the requested memory
block is being cached in aremote cache C, in a state that allows forwarding, this cache will
forward the lineto the first request it received. Thus, one of the requestersisthewinner C,
which may use the cacheline. The loosing requester C; will be blocked, as C, does not
answer any requests to the memory location until C,,, acknowledgesto C; that potential con-
flicts have been resolved. Before doing so, C,, will report the conflict to the memory con-

54 COMMUNICATION IN PARALLEL COMPUTERS

troller, which thus can defer memory requests that might come from C;. Also, the memory
controller will advise C,, to forward the cacheline to C, and invalidate it in C,,,.

Similarly, if no cache can forward the data, a winner will get a read response from the
memory with the valid data. Again, the memory will advise C, to forward the cacheline to
C;. Theread request from C; will not be answered with delivering the data, but with a noti-
fication that C,, will deliver the data.

There is adso avariant of this protocol [64], in which the winner is not alowed to use the
data. Instead, it is stored in abuffer. The memory controller then decides about the order in
which the caches are served with the data.

2.5 Introduction to x86 Systems

The market for high-performance processors is dominated by x86-architecture processors
from Intel and AMD. Like a perpetual motion machine, their large market share yields a
good performance to price ratio, which again leads to alarge market share.

Intel’ s x86 architecture is very conservative: the northbridge is an external chip to the pro-
cessor, theinterface isbased on asnoopy-bus protocol. On the other hand, Intel hasaunique
technological advantage. As a result, Intel can integrate more SRAM memory on chip,
which allows the integration of larger caches as well as the implementation of directories.

AMD’s architecture is different. The integration of the northbridge functionality into the
processor chip, and an efficient, serial HyperTransport protocol between chips alow the
construction of glueless NUMA shared memory systems. Both architectures will be pre-
sented in the following two sections.

2.5.1 Intel Xeon Architecture

The block diagram of atypical Intel Xeon dual processor system is shown in Figure 2-26.
For example, the Bensley platform integrates two Xeon 5000 processors and the 5000x
northbridge chipset. Processor and northbridge are connected over the Intel Front Side Bus
(FSB). Both FSBs are independent buses and connected to a switch in the northbridge. The
FSB consists of a parity protected 64 bit wide data bus, and a 36 bit wide address bus. With
a data rate of up to 1333MHz, the raw bandwidth of the data bus is 10.5 GByte/s. The
address bus has half the datarate, and thus has a peak bandwidth of 3 GByte/s.

COMMUNICATION IN PARALLEL COMPUTERS 55

Intel@631XESE 632 XESBI—{ == |
- I/ O Controller Hub

[| |
L]
] »
Hetony
| P Y

Figure 2-26. A 2-processor Intel Xeon system

The Bendley platform integrates a coherence directory, called snooping filter, in the north-
bridge chip. Thedirectory holds entriesfor all memory blocksthat are cached in the system,
i.e itisasparsedirectory. Thedirectory hasasize of 1 MB, and isorganized in two affinity
groups, which each consist of 8 kilo sets that are 16-way each. The pseudo-LRU agorithm
isused as replacement policy. If anew entry isallocated in the directory, it will be allocated
in the affinity group that is assigned to the processor from which the memory request was
issued. Thus, the affinity group implicitly encodes the processor cache that caches the
memory block. This saves one bit per directory entry (see Figure 2-27).

A directory lookup including ECC check is done within one clock cycle. Every lookup is
followed by awrite to the directory. Either, anew lineisalocated, or the pseudo-LRU bits
are updated. The directory is clocked with 533 MHz, which means that the directory can
perform 267 MLUU (Mega Look-Up Update) Operations per second, which fits to the
incoming request rate of 267 MHz.

The directory can hold information for up to 16 MB of processor cache. To support larger
caches or a larger number of processors, the size of the directory scales with the total

56 COMMUNICATION IN PARALLEL COMPUTERS

amount of processor cache in the system. Announced have been the Cranberry Lake plat-
form, which supports 2 Xeon 5000 processors with 24MB cache, and the Caneland plat-
form, supporting 4 Xeon 7000 with 64MB total cache [54].

Snoop Filter Physical Address Partitioning

Tag (21h) Set (13b) Byte Offset (6b)

A[39:19] Al18:6] A[S5:01

Snoop Filter Entry

Bits Value
[31] Redundant bit.
530:34 ECC check bits

State of the cache line

1 The cache line is in E/M state, 1.e. the line is either exclusive (but clean) or modified (dirty) state.
0 The cache line is in non-E/M state, i.e. S state if Bus presence vector is non-zero or I state if Bus
presence vector is zero.

Bus presence vector

. [00] The entry is invalid

1 [xx] The entry is present in any of the processor L2 in the corresponding FSB. Busd is the least
significant bit. Bus0 corresponds to FSBO on the Intel S000 series chipset MCH. Busl correspending

to FSB1

[20:0] | Tag portion of the address

Figure 2-27. Snoop filter entry format and address partitioning [38]

COMMUNICATION IN PARALLEL COMPUTERS 57

252 AMD

The AMD Opteron architecture is designed to build up small-scale NUMA systems. It
employs a direct network architecture. Every node integrates processor cores, caches, cHT
routing resources and the northbridge on one single chip, as shown in Figure 2-28.

AMD Dual Opteron processor

AMD Dual Opteron processor

memory controlle|

v

Figure 2-28. 2nd and 3rd generation AMD Opteron processors

The number of HyperTransport links and processor cores per chip depends of the processor
generation. The third generation Opteron, codenamed Barcelona, supports up to four cores
and four HT links as well. HyperTransport links can be configured to be either coherent
links to connect other processors, or noncoherent links. In this case, the HT link interface
functionsasan I/0 bridge. Anintegration of more coresisforeseeable: an 8-core processor,
codenamed Sandtiger, is announced for 2009.

Figure 2-29 shows the topology for an 8-chip system, based on 2nd generation Opterons
that support up to three HT links. As the broadcast-based MOESI coherence protocol sig-
nificantly increases the latency of memory accesses for networks with alarger diameter, 2-
and 4-chip systems prevail. The Opteron system architecture, and in particular the integra-

58 COMMUNICATION IN PARALLEL COMPUTERS

tion of devices, will be evaluated in detail in the next chapter. Intel isdeveloping avery sim-
ilar NUMA processor interconnect, called CSI or QuickPath [43].

DRAM DRAM DRAM DRAM
Opteron f—— Opteron fe— Opteron = Opteron fe== 1/O
——

I < I
Opteron fe=== Opteron e Opteron e Opteron f— /O
DR!AM DR!AM DR!AM DRLM

Figure 2-29. An 8-node Opteron topology

2.6 Examplesof Parallel Systems

The following sections detail some other very interesting architectures. They are good
examples to demonstrate state of the art parallel computing. The following systems will be
described: the Sun UltraSPARC T2, Cray T3E, XT3 and XT4, and the IBM BlueGene/L.
Additionally, network interfaces that are connected over standardized peripheral interfaces
will briefly be described.

2.6.1 Sun UltraSPARC T2

Multithread architectures as the HEP [32] and Tera [33] supercomputers exploit thread
level parallelism (TLP). The UltraSPARC T2 processor [17] [18] is the most recent com-
mercial implementation of a TLP-exploiting processor.

Asshown in Figure 2-30, the T2 features 8 processor cores with L1 caches. In every core,
8 different strands can be loaded at the same time; two of these may run simultaneously.
Every core hastwo integer pipelines, onefloating point and one memory pipeline. The exe-
cution of strands is switched every cycle using a last-recently-issued policy. Only those
strands are considered that are marked as available. A strand may become unavailable for
different reasons, the most important oneisan L1 cache miss. A strand becomes available
again as soon as the event is resolved.

The L1 cache consists of an 18 kByte, 8-way set associative instruction cache with a cach-
eline size of 32 byte, and an 8 kByte, 4-way set associative data cache with a cacheline size
of 16 byte.

COMMUNICATION IN PARALLEL COMPUTERS 59

A remarkable difference to most other architectures are the L2 caches. They are not located
at the processor core, but at the memory controllers and hold entries of the memory range
of the respective memory controller. Every of the four memory controllers, called memory
control unit (MCU), has two sets of L2 cache. Thus, coherence does not need to be main-
tained among the larger L2 caches, but only between each of the L2 caches and the smaller
L1 caches. A directory-based protocol is being used, the directory controller is located at
the L2 cache. Thetotal size of the L2 cachesis4 MByte. All setsare 16-way set associative
with acacheline size of 64 bytes. The cache hit delay is 26 cyclesfor dataand 24 cyclesfor
instructions. L2 and L1 caches are interconnected by two unidirectional 8x8 crossbars.
Arbitration prioritizes the oldest requests.

Cache<->Processor Crossbar

bank

| MCU |
e~ |2 bank
| MCU |
| MCU |
— |2 bank

L+ L2 bank

—{ L2 bank
NCL
| L2 bank

,_
7

4 L2 bank
=—1 L2 bank

1

System Interface

Data Management Unit

. . (DMU)
Network Interface Unit
(NIU) High Speed 10
Core
A
_________________________________ , ST
10Ghb 10Gh x8 PCI Express

Figure 2-30. The Sun UltraSPARC T2 processor [17]

The System Interface Unit (SIU) isthe interface to 1/0 devices. It directly interfacesthe L2
caches. However, writes are bypassed directly to the DRAM controller. A packet based pro-
tocol with credit based flow control is used between SIU and 1/O components, which are 2
integrated 10 GB Ethernet MACs and one x8 PCI express link.

60 COMMUNICATION IN PARALLEL COMPUTERS

All parts of the chip above the system interface unit are in the core clock domain of 1.5
GHz. The SIU has a 350 MHz interface to the I/O modules. The T2 protects memory and
datapaths outside of the processor core with parity bits.

Figure 2-31. The Sun T2 die with an area of 342 mm?

2.6.2Cray T3E

The Cray T3E [84] was the successor of the T3D and has been presented in 1996. It con-
nects up to 2048 processing el ements (PE) using adirect interconnection network with a3D
torustopology. Routing in thisnetwork isfully adaptive and minimal path [85]. Asdepicted
in Figure 2-32, every PE consists of one DEC Alpha 21164 processor, up to 2 GB local
memory, control logic and arouter for the interconnection network.

The T3E isanot atrue distributed shared memory system: A processor can directly access
only its local memory. However, a global shared memory view allows the processor to
access remote memory using put/get semantics. All communication is done using the so-
called E-registers, aset of 512 user and 128 system registersthat are part of the control logic
of aPE. In contrast to the local memory, which may be cached by the processor, these reg-
isters are memory mapped 1/0 space to the processor, and thus uncacheable. Puts and gets
can be initialized by writing the respective command to the E-register file. One parameter
isthe E-register which isthe local source for a put or the local target for a get. The remote
addressis specified using an address index, which will be used to lookup the global virtual
address and also thelogical PE number, which then isused for alookup in the routing table.

COMMUNICATION IN PARALLEL COMPUTERS 61

Upon arrival of areguest on aremote PE, the global virtual addressistranglated into alocal
physical address.

Both puts and gets can work on 32bit and 64 bit words or on vectors of 8 of these words
with an arbitrary stride. Theresult of aput will be placed in the specified E-register. Aslong
as the put does not complete, the register is marked “invalid’. A load operation from the
processor on aninvalid register will stall until the register content isavailable. It isassumed
that 128 E-register are sufficient to generate enough overlap to be able to utilize the full
maximum PE-to-PE bandwidth.

‘iﬁ]" —= gg <o
i

{ —»
-— [e——

Router .
——n T Bidiractional

3D torus

o

Figure 2-32. T3E PE Block diagram [84]

With amechanism that is also based on the E-registers, it isalso possibleto send and receive
messages. There is also a hardware barrier mechanism: Instead of a dedicated barrier net-
work asinthe T3D, barrier messages are sent as packetsin adedicated virtual channel over
the interconnect fabric. Every PE has 32 Barrier synchronization units (BSUs). Every such
unit can implement anode in abarrier tree. A register within the BSU indicates which net-
work directions are children to the tree, and whether the local PE is a child. If the BSU is
not the root node, it also contains the direction of the parent node in the tree. The BSU aso
keeps track of which child nodes have entered the barrier. If all child nodes entered, a cor-
responding message is sent to the parent node. As soon as the root node has been reached,
completion messages are multicast downwards the tree.

2.6.3Cray XT3 and XT4

Cray callsthe XT3[91] and XT4[92] systems to be successors of the T3E, and indeed, the
system architectureisvery similar. Asin the T3E, adirect network with a3D torustopol ogy
connects up to 30508 compute PESin both systems. From the available documentation, the
only difference between both systems seems to be that the SeaStar 2 interconnect of the

62 COMMUNICATION IN PARALLEL COMPUTERS

XT4 offers a higher bandwidth than the SeaStar interconnect of the XT3. So, while the
remainder of the section describes the X T4, most facts also apply to the XT3.

Every PE consists of an AMD Opteron processor with up to 8GBytes of local memory. A
SeaStar chip is directly connected to the processor over a non-coherent HyperTransport
link. With awidth of 16 bit and a clock of 800MHz, it offers a bidirectional bandwidth of
6.4Gbyte/s. Additionally to the compute PES, asystem may contain service PEs, which may
be configured to provide login, 1/0, system or network services. The operating system on
the compute PEsis a UNICOS/Ic microkernel, Linux is running on the service PES.

CHX
B Dusl P

- EI 18 GB

.G - 128 GBS

pirect Gornect
Memary

Figure 2-33. XT4 processing element block diagram [92]

The block diagram of the SeaStar2 chip, shown in Figure 2-34, resembles very much the
diagrams of the dedicated NICs presented in Section 2.6.5. And indeed, it is not build to
support afine-grain, hardware-based communication scheme known from the T3E, but to
support the MPI 2.0 [74] and SHMEM software libraries. I/O is done using the Lustre clus-
ter file system [93].

COMMUNICATION IN PARALLEL COMPUTERS 63

Figure 2-34. Cray SeaStar2 block diagram [92]

2.6.41BM BlueGene/L

The IBM BlueGene/L [101] is designed for high numbers of computing nodes. The cur-
rently fastest supercomputer in the world is a 106,496 node BlueGene system [99]. These
nodes are interconnected by three dedicated networks [100]. The most important network
isa 3D torus network with virtual cut-through, adaptive routing. This network is used for
point-to-point message passing between the nodes. Deadlocks are avoided by the use of
four virtual channels. Every hop in the network adds alatency of 100 ns, the unidirectional
bandwidth of every of the six links of anodeis 1.4 Gb/s. A barrier network isimplemented
with four global OR structures over al nodes. A collective network allowsto statically built
up a broadcast topology which may be used for one-to-all and all-to-one communication
patterns. As the collective network interface of every node has three bidirectiona links, a
natural choice for this network isabinary tree.

Every node of the system, as depicted in Figure 2-35, hosts two PowerPC 440 processors
that have been enhanced with an additional floating point unit.

Processor local bus (4:1)

COMMUNICATION IN PARALLEL COMPUTERS

9 /
2.7 GB/s 256
! 11 GB/s
32K/32K L1 5 S
E [=] 4-MB
440 l:enlrml 2 B Shared nbodded
processing) = embedde
unit (CPU) [> 3 A s DRAM
s | i) 5 directory
Double- o -l 2 for L3 cache
hummer = | 256 3 embedded or
FPU = 2 memory
]
Snoop 3 3
32K/32K L1 < 2| mncludes ":';
440 CPU = g [error =i
1o £ |256| [=] |correction|+ =
= |=— | control o0
processor 2 eOr S oy
{1 = (ECC) |&™™
Double- g_ 256
hummer 9 11 GB/s
FPU
f | 128
i i
Ethemet|(JTAG Torus | | Collective | | ; Olobel i
G || AR E interrupt/ control
lockbox with ECC
T P P P
! * i ! 5.5 GB/s
Gigabit IEEE 6 out 3 out 4 global 144-bit-
Ethernet 1149.1 and6in, and 3 in, barriers wide
(JTAG) eachat eachat or DDR
14Gb's 28Gh/s interrupts 256/512 MB
link link

Figure 2-35. BlueGene/L node architecture

2.6.5 NIson Sandardized Peripheral Interfaces

In contrast to the full system solution, many

networks are built up by equipping standard

computers with a network interface adapter at a standard peripheral interface. PCl Express

is by far the most frequently used interface.

Such NI adapters either connect to a Gigabit

Ethernet, 10 Gigabit Ethernet or Inifiniband network [90], or to one of the few proprietary

networks as Extoll, Quadrics [88] or Myrinet

ilar to the Cray SeaStar NIC (see Section 2.6.

[87]. Intheir functionality, they are very sim-
3), for example.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 65

3I mproving Deviceto
Pr ocessor
Communication

This chapter analyzes device to processor communication in HyperTransport based direct
network NUMAs. Compared with processor to device communication, the device to pro-
cessor direction suffers from the following problems:;

* While aprocessor can directly communicate to a device, there is no mechanism for a
device to directly notify athread from adevice in an efficient way.

» Section 3.1 shows that data transport to the processor using PIO reads has a much
worse performance than PIO writes. The latency of adata transport using DMA isalso
not optimal, as this mechanism involves slow DRAM accesses.

Besides these inefficiencies, memory and 1/O bottlenecks further increase the impact of
communication latency between device and processor. A tighter coupling of device and
processors is thus required. This tighter coupling must be carried out on a physical level,
e.g. by system-on-chip integration. As well, a closer coupling on the protocol level is
required.

This chapter focuses on the evaluation of coherent devices, i.e. devices that take part in the
cache coherence protocol. Only little research has been carried out in this areain the past,
so that the evaluation in this thesis is a magjor contribution to the scientific community.
Another significant contribution is the concept of the transfer cache, which is being devel-
oped in this chapter.

The remainder of this chapter is organized as follows. The classical PIO access to a device
is analyzed in Section 3.1. Section 3.2 will give an overview of the design space for
improvements. Section 3.3 discusses memory and i nterconnect bottlenecks, and showswhy

66 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

an on-chip integration of latency sensitive devicesisnecessary. The design spacefor coher-
ent devices is analyzed in Section 3.4. Section 3.5 examines the performance of these
devices, while Section 3.6 presents the transfer cache, a caching solution for non-coherent
devices.

3.1 Hyper Transport Devices and Accelerators

The various offsprings of the PCI protocol have for along time been the standard for con-
necting devices, including accelerators and network interface controllers. After the PCI and
PCI-X protocols, PCl Expressis the currently predominating protocol.

Usually, peripheral devices are connected to the processor over one or more bridges, which
may be implemented in separate chips, called the chipset. AMD Opteron processors cur-
rently provide the potentially best connection to devices, as they integrate the northbridge
functionality into the processor chip (see Figure 3-1). Thus, devices and accelerators may
be directly connected to the processor over a HyperTransport link. This decreases the
number of crossed chip boundariesto the minimum. Additionally, it avoids the latency that
isintroduced by the HT-to-PCl Express bridge, which ismainly caused by protocol conver-
sions and synchronization between the different clock domains.

AMD Dual Opteron processor

AMD64 AMD64
CPU core CPU core

L11 L1D L11 L1D
cache cache cache cache

L2 cache L2 cache

' Y / PCle slots
T/cHT links HT to PCle_}
' I Bridge }
memory controlle * \

1 HTX slot

Figure 3-1. Comparison of HTX and PCI Express connections to the processor

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 67

Opteron processors can use up to four HT linksfor cache-coherent communication between
different processorsin multiprocessor systems. In this case, they use the cache-coherent HT
protocol, which is not part of the public HT specification, but AMD proprietary and confi-
dential. To connect devices or other bridges to the processor, the respective HT links are
configured to be non-coherent and thus use the open HyperTransport specification. In this
case, the HT link within the processor has to translate accesses from the noncoherent
domain into the coherent domain and vice versa. By doing so, every such noncoherent HT
link has the functionality of an I/O bridge. Due to the similarity of non-coherent and coher-
ent HT protocols, protocol conversion and synchronization overhead can be minimized.

Thus, the direct connection of HyperTransport devices and accelerators to an Opteron pro-
cessor, also referred to as direct connect architecture (DCA), isthe best possible solution to
connect to the processor via an 1/0O bus. The following sections will analyze the HT con-
nection using a theoretical model, while Section 4.1 will give details about the physical
implementation.

3.1.1 The Hyper Transport Protocol

HyperTransport is a packet-based communication protocol for datatransfer. There arethree
versions of HyperTransport: HT 1.05 has been developed in 2001, and was updated by HT
2.0 in 2004. In April 2006, HT 3.0 [47] has been defined as the next successor. Current
Opteron processors follow the HT 2.0b specification [46], HT 3.0 devices or systems are
not available yet. Therefore thiswork focuses on the implementation of an HT 2.0b device.
Additionally to the HyperTransport specification, the precise behavior and in particular the
initialization of HT devicesin Opteron based systemsis specified by AMD [22].

A HyperTransport link consists of two sets of unidirectional signals. Each set can be distin-
guished into three signal types. CAD (command, address, data), CTL (control) and CLK
(clock). The CAD linesare used to transport command and data packets, whilethe CTL line
distinguishes between command and data packets on the CAD lines. The HT protocol sup-
ports CAD buses with awidth of 2, 4, 8, 16 or 32 bit. The width of the CAD busisusualy
called the width of the HT link. If more than 8 CAD lines are used per link and direction,
every group of 8 signalshasitsown CLK signal. These groups of signalsare synchronously
transmitted with the source associated CLK signal. This means that one CLK and its asso-
ciated group of CAD signals must be routed with equal length traces in order to minimize
skew. Thedatatransferred on the CAD busis 32bit aligned, independently of the buswidth.
All transferred packets have at least a size of one doubleword, i.e. 32bit. HT 2.0 allows fre-
quencies from 200MHz to 1.4GHz. Current Opteron processors use link widths of 16 bit
and freguencies of up to 1GHz. In Opteron systems, all devices start at power up of the
system with 200MHz and 8hit wide links. The BIOS checks the capabilities of all devices

68 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

by accessing the HT register space of each device, and sets new values for frequency and
width for every link according to the capabilities of the two devicesthat sharethelink. After
that, it forces are-initialization of all HT devices to establish the new parameters.

HyperTransport topologies consist of three different device types, which are distinguished
by their connection to other HT devices (see Figure 3-2). Generally, HyperTransport
devices are connected in chains. There can be up to 32 devicesin onesingle chain. Different
chains can be connected with each other by HyperTransport bridges. The top of achainis
awaysabridge. Caveshaveasinglelink, thusthey form thelower end of an HT chain. Tun-
nels have two links and are connected at least with the upstream link with one device, or
with both links to different devices.

CPU
upstream

HOSt | Memory
Bridge

downstream

F HT-HT
Bridge

\/
HT Con- ‘ HT Tunnel HT Tunnel

nection
A * A
Y

i HT Cave HT Cave

Figure 3-2. HyperTransport topology [51]

In order to decouple response from their requests, the packets are transferred in split phase
transactions. This basic function is shown in Figure 3-3 with an example of read and write
operations. A transfer always starts with a control packet. Three types of control packets
can be distinguished: information, request, and response packets. Information packets are
used for flow control and synchronization. Request packets initiate a transaction. Response
packets contain the answer to a corresponding request. Control packets have asize of 4 or
8 bytes or, if they use addresses of 64bits instead of 40bit addresses, the extended format
with asize of 12 bytes. If atransfer contains payload data, the next data packet which is sent
onthelink belongsto this packet. A data packet can have amaximum size of up to 64 bytes.
Sending other control packets during a stream of data packets at every 32 bit boundary is

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 69

allowed, but only if this control packet is not followed by data. Otherwise it could not be
possible to determine which control packet the data belongs to. This mechanism makes it
possible to send urgent control packets with priority.

Packets travel in different virtual channelsin order to avoid deadlocks. Within these chan-
nels, al data packets move along with the control packets. The virtual channels are classi-
fied into three sets: posted requests, non-posted requests, and responses. Posted requests do
not get aresponse packet from the receiver. Non-posted requests always need aresponse to
complete the outstanding transaction. However, these sets are not totally independent of
each other, as there is the option to order non-posted requests and responses in relation to
posted packets on a packet by packet basis.

Read Request:
Request Packet
HT Requester '

Data Packet

HT Target

} Time to proc-
ess request

Response Packet

HT Requester |- HT Target
Write Request:
Data Packet Request Packet
HT Requester P| HT Target

} Time to proc-
ess request
HT Target

Response Packet

HT Requester |-

Figure 3-3. HyperTransport read and write request packet flow

Comparison with PCI Express. Brian Holden [45] [50] showed that the HyperTransport
protocol offers significantly lower latencies than PCI-Express. This is due to the fact that
PCI-Express uses a small number of high-speed seria lines, instead of a larger number of
lines with reduced frequencies as HT. This high-speed seriadization and de-serialization
process together with DC-free 8b/10b coding generates significant latency.

70 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

HyperTransport Packet Format PCl Express Packet Format
T : e T :
Hg_agrer L DATA] Framing S;quobnco Header |, DATA ., ECRC LCRC Framing
12 bytes h 4 - 64 bytes 1 umber S N N

(12 or 16 bytes overhead)

0% overhead e DATA LMK LAYER

(8 bytes overhead)
PHYSICAL LAYER

(20 percent 8b/10b
encoding overhead)

1] 4
""""""""""""" A A 4- 4095 A A
J bytes
TRANSACTION/DATA LINK LAYER
8-12 bytes overhead
TRANSACTION LAYER
PHYSICAL LAYER

Figure 3-4. HyperTransport and PCl Express packet formats [49]

3.1.21/0in HTX Systems

Memory types. The AMD 64bit architecture specification [20] differentiates memory into
six subtypes (see Figure 3-5). The classical 1/0 memory is of type uncached (UC), having
the highest ordering restrictions for both reads and writes. “Reads from, and writes to, UC
memory are not cacheable. Reads from UC memory cannot be speculative. Write-combin-
ing to UC memory is not allowed. Reads from UC memory cause the write buffers to be
written to memory and invalidated.” The second type of memory that is often used for 110
memory is write-combining memory (WC). It has a more relaxed ordering scheme, reads
do not automatically cause the write buffersto be written out. It further improves write per-
formance by combining stores to the same memory block in a buffer, so that they can be
written out on the interconnect in a single access. There are several occasions when the
buffer will be written back, the most important ones being writes to WC memory outside of
the memory block of the buffer, and UC memory reads. Reads from WC memory can be
speculative.

Main memory is usually cacheable memory of type write-back (WB), allowing speculative
reads. There are no ordering constraints between different reads. Reads may also passwrite
accesses, if not destined to the same address. Stores of the processor will be written to the
cache. Writes to the physical memory only occur if amodified cachelineisevicted. In con-
trast, writesin awrite-through (WT) memory will update the main memory always, aswell
as the cacheline. Allocation of new cachelines does not occur for WT writes. Write-pro-
tected (WP) memory isthe third type of cacheable memory.

All memory types have in common that writes are committed only in order.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 71

Memory Access Memory Type

Allowed uc/cD wc wp wT We
Out-of-Order no yes yes yes yes
Read Speculative no yes yes yes yes
Reorder Before Write no yes yes yes yes
Out-of-Order no yes no no no
] Speculative no no no ne no

Write -
Buffering no yes yes yes yes
Combining' no yes no yes yes

Note:
1. Wite-combining buffers are separate from write buffers

Figure 3-5. Memory accesses and memory types in the AMD 64bit architecture [20]

3.1.30rderingin PIO

Ordering in interconnects is a key issue, as it can directly impact the performance of the
interconnect. The following paragraphs detail ordering for PIO accesses to memory-
mapped 1/0 devices. Any processor in an Opteron-based x86 system may issue write and
read requeststo any device outside of the coherent HT fabric, thusincluding any non-coher-
ent HT devices. Theimmediate destination for such requestsisthe particular 1/O bridge that
connects to the device. The I/O bridge then has the responsibility to forward the request to
the device. Different ordering mechanisms are used for the coherent and the noncoherent
HT links.

Ordering in noncoherent HT. In the NHT domain, ordering can be established quite eas-
ily. By default, ordering is performed asfollows: Packets within every virtual channel (VC)
are ordered among each other. Also, packets of the non-posted virtual channel may not pass
packets of the posted channel. As read requests and non-posted write requests travel in the
non-posted VC, while posted writes travel in the posted channel, this has the following
implications:

* Read requests are ordered among each other.

» Non-posted write requests are ordered among each other.
» Posted write requests are ordered among each other.

* Read requests cannot pass any write request.

72 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

» Non-posted write requests cannot pass posted write request.
» Posted write requests may pass both read requests and non-posted write requests.

In system, non-posted writes can be observed in the configuration phase of the system, i.e.
during the boot up phase. In normal operation, posted writes are used. However, the north-
bridges may be configured to support legacy | SA devices. The use of posted writesin com-
bination with non-posted reads on the HT bus leads to an ordering scheme which matches
the ordering requirements of the UC memory type of the AMD 64bit architecture specifi-
cation, except for the fact that nHT imposes ordering among read requests.

Processor Processor
Load/Sfore Unit Load/Store Unit

‘ System re\u\st interface ‘

(1) Write reques!

(2a) response

Memory
Controller/
Directory

Controller/

. L’Idge(s (2) response
Directory B

/Bridge(s)

(2b) posted write request*
Device Device

Figure 3-6. Device access using memory-mapped 1/0 in Opteron systems

Ordering in the coherent HT. How exactly routing of 1/0 requestsis donein cHT is out
of the scope of this thesis, mainly because the cHT protocol is confidential. Nevertheless,
it issufficient to say that cHT does not apply ordering constraints between V Csin the fab-
ric, for the sake of better performance of the interconnect. Also, the nHT ordering solution
isuseful for thenHT chain topology, but may not work in the switched cHT fabric support-
ing arbitrary topologies.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 73

Instead, ordering in the cHT fabric can only be established using an end-to-end protocol.
Therefore, all requestsin cHT have to generate aresponse, including requestsin the posted
VC. If aprocessor wantsto ensure that arequest r1 should commit before request r2, it will
have to wait for the response of rl before issuing r2. Theoreticaly, this is a much more
promising way to establish ordering, as it allows processors to order only those accesses
that really require ordering. The disadvantage is, however, that a series of ordered accesses
cannot be simply streamed out as it is possible in nHT. Instead, every access can only be
issued to the fabric if the previous response arrived, which may decrease the bandwidth
available to the device significantly.

Figure 3-6 shows how cHT and nHT ordering play together for a read and a posted write
reguest. End-to-end ordering is performed between processors and 1/0 bridges within the
cHT domain. Inthe case of aread, end-to-end ordering is performed between processor and
the device.

3.1.4 Ordering PIO Write Requests

The performance impact of ordering for a sequence of ordered accesses from a processor to
abridge in the cHT domain can be calculated. All calculations assume virtual cut through
routing, which impliesthat the response to apacket can be generated just after receiving the
header. Packet header sizes are neglected. The system parameters as introduced in
Section 1.5 are used, the relevant ones are repeated in Figure 3-7:

Name Abbrev. Latency in ns

Response processing delay trpr 4[Time to process a read
response containing data

Link delay tiink 21|One-way latency of HT links

Xbar delay tbar 4|Delay of HT Switch

Figure 3-7. System parameters

The round-trip latency, which is the time it takes after starting to send a packet till the
responseisreceived, is:
tq = 2hops(t i) T +trpr

Xbar Xbar

where hops is the number of hops between processor and bridge. Thetimein HT cyclesto
inject a packet into the HT network depends on the packet size s, and the link width per
clock cyclew:

fy = 2

inj w

74 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

In ordered accesses, the next packet can beinjected at time t,, = max(t;;, t,,) after the pre-

vious packet. Obviously, thereisonly an ordering impact on performanceif t,, <t . Inthis
case, the effective send bandwidth of the link used in the transfer is decreased by a factor
of i/t

tini

BWesr = t_nlB\Ninj

rtl
Assumed that the processor does not buffer requests that it committed to the fabric?, the
time the processor is occupied with the sending process is increased by the same factor:

tr'[l

tett = 7 tinj = Ly
inj

Figure 3-8 shows the effect for Bw,; and t for different packet sizesand different number
of hops between processor and bridge. The performance decrease for streams of small
packet sizesisdramatic. For adirect connection, only packetswith asize of 32 byte or more
can fully saturate the link. The direct connection performs much better than the one- and
two hop configurations, as all communication is done within one chip. For reference, the
diagram also shows how 128byte packets would perform, however, this packet size is not
supported by the HyperTransport protocol.

100% »

90% -

80% -

70%

% -
60% —&— 0 Hops

50% 1 —=— 1 Hop

20% 1 2 Hops

30% -

% of theoretical performance

20% -

10%

0%

4 8 16 32 64 128
packet payload in bytes

Figure 3-8. Relative performance for streams of different packet sizes

1. Asdescribed later in this chapter, this assumption is valid for current Opteron processors.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 75

Impact of bridge behavior. Uptill now, the response processing delay t,,, was considered
to beafixed, small number. Thisbehavior correspondsto aqueuein the bridge of indefinite

size. Inredlity, t,,, may beinfluenced by the following issues:
» The device may temporarily not be capable to consume or process the packet.

» Thelink speed between bridge and device may be smaller than the one in the cHT fab-
ric.

» Background traffic, i.e. packets that are send to the bridge by other processors.

» Buffer spacein the bridge. Buffers within the bridge can generally reduce the impact of
above problems.

Device and application behavior determine whether a device may temporarily not be capa-
ble to process packets. There is no direct influence of the interconnect, however, buffers
anywhere in the path between bridge and device may help to relieve temporary problems.
Of course, the maximum bandwidth between a single processor and the device cannot be
increased, but the processor could be done with the sending process earlier, thus decreasing
the negative impact on t, . In essence, such a buffer would decouple processor and device
during adatatransfer. The buffer must be located after the ordering point in the bridge. t,

is only improved if the response is sent immediately, buffering within the write-request-
response |oop would not have animpact on t,,. aslong asastrict ordering scheme of writes
isused.

If the link between bridge and deviceis slower than the link between processor and bridge,
t.or May aso increase. In current systems, 1GHz links in the cHT domain and 400MHz
links to the device are popular. Large enough buffers within the bridge could thus signifi-

cantly reduce the impact on processor execution time for writes.

To find out about buffer sizes, the following experiment has been performed in an 9th gen-
eration Opteron-based system with a directly connected nHT device: the device is config-
ured to not react on write request, but to leave them in the HT queues, so that no credits are
send back. Then a sequence of write requestsisissued to different address |ocations within
the BAR addressrange of the device. The processor stalled when trying to do the 16th write.
At the same time, the HT queue in the device contained 14 entries. This means, that there
isvirtually no queue spacein the bridge. Asaresult, it can be noted that buffer space should
be introduced into the bridge to improve processor execution times for I/0O accesses.

Further improvements in performance for write requests with smaller sizes or from proces-
sors farther away from the bridge could probably only be made if ordering is handled dif-
ferently, or if ordering is weakened.

76 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

3.1.5 Ordering PIO Read Requests

1/0 read accesses suffer from the same problem as writes. However they are even more
affected, asthe ordering point isthe device, and thus the round-trip latency of aread access
iseven higher. A theoretical analysis of this problem, as performed in the previous section
for write access, shall be waived. However, the performance has been measured in the real
system and is described in Chapter 4.1.1.

3.1.6 Potential Incremental Solutions

The currently used workaround to cope with the bad PIO performance is to reduce PIO
accesses as possible. Instead data is transferred using DMA. A DMA mechanism aso has
the advantage that main memory can be used as buffer space, which is significantly larger
and better scalable in size than device memory. Also, main memory is cacheable.

To raise the PIO read performance, a processor could read larger chunks from device
memory that is marked prefetchable. In analogy to the write buffers, aread buffer could be
used to read cacheline sized blocks. This could improve PIO read performance signifi-
cantly.

3.2 The Space of Analysis

This section analyzes the design space for devices at the coherent processor interface or
below. Two key issues have to be solved in this analysis. which datais sensitive to latency,
and how can alow latency be reached? The latency depends on how datais buffered on the
path between producer and consumer. The location and size of buffers thus is the second
important topic.

3.2.1 Latency-Sensitive Data

Communication from a device to a process can be considered to be a stream of data. There
is at least one stream from the device to every process that uses the device. An important
consideration is how these streams of data are organized, and how and where the streams
can be buffered. The previous chapter showed that queues are a very important form of
communication between NIC and processor. Thus, in most cases the communication
streamswill be organized as queues. However, non-queue-based data streams, asin the put/
get communication mechanism, can also be observed.

An important question is: which data streams or parts of data streams are sensitive to
latency and thus require an improvement in performance? Two types of latency can be dis-

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 77

tinguished: the latency of the data-transport from device to processor when the processor is
aready waiting for it, either actively using polling or passively as in multithreaded archi-
tectures. The other type of latency is the read access latency to data that has been made
available by the device.

(a) processor reads after data is ready One read Subsequfirlwlto :;ads may

Processor Get & process Data Read Get & process Data-—-——-—- >
Device Ready Data >

Time e

(b) processor is polling

Read Latency Read Latency

Subsequent reads may
follow

Processor «{ polling }—b{ Get & process Data Read Get & process Datar-—-——-—- >
Device Ready Data >

One read

Polling Latency Read Latency

Figure 3-9. Latencies

The overall deviceto processor latency isaso called startup latency, as it occurs only once
for every block of data (see Figure 3-9). For large blocks of data, it composesonly afraction
of the total latency, and thus can be neglected. For small data blocks, this latency becomes
the most significant latency in the transfer.

The latency of processor read accesses to data that already has been made available by the
device is important because this latency increases processor execution time and thus
decreases processor throughput. If DMA accesses are performed by the device, the read
access latency equals the physical main memory access latency. The figure shows that the
use of larger data packetsto transport datato the processor has the potential to decrease the
overal latency, asfewer memory requests are required to obtain afixed sized block of data.

In contrast to the device to processor latency, the read access latency can be hidden. The
prefetch engines of processors can detect access patterns to memory when they have afixed
stride, and in particular if they have aunit stride. Start-up latency occurswhen thefirst cach-

78 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

elines are read until the prefetch logic starts prefetching. Thus, latency can be hidden for
larger objects, but small data objects to which reads cannot be predicted do not profit at all.

An intermediate conclusion is that both the device to processor latency and the processor
read latency should be minimized for small data objects.

Inamodern NIC like Extoll, the relevant data structures that profit from alatency reduction
are:

» Descriptor and notification queues. Entries in these queues are typically not larger than
one cacheline.

e Fast and small grain communication mechanisms, as for example small grain send/
receive as used in the Extoll Ultra mechanism. While this mechanism is queue-based,
non queue based mechanisms as afine grain put/get mechanism could profit aswell.

In applicationsthat are sensitive to end-to-end communication latency between nodesin the
system, queues will typically be empty or amost empty, as processors are waiting for
entries to be placed in the queue. In this case, device to processor latency is critical. If
throughput is more important than end-to-end communication latency, the read latency
should be minimized.

The fact that only small data objects must have low latency, and that these will typically be
consumed soon from the queue is an excellent basis for optimizations. It opens up the pos-
sibility to implement fast data buffering solutions without excessive hardware overhead.

3.2.2 Buffering

To decouple the execution of processor and device, there must be buffering capabilitiesin
between the communication partners. The design space of such buffers is shown in
Figure 3-10. With such buffers, the latency of a communication between device and pro-
cessor depends on the access latency of the memory technology, as well as on the logical
and physical location of the buffer.

Thelogical location determineswhich address or register space the buffer belongsto. Buff-
ersthat are logically placed in the device are accessible from the processor using memory
accesses to the memory-mapped device. Besides the classical 1/0 device memory, a coher-
ent device may exhibit the memory range as coherently cacheable.

A system’s physical main memory is hot only the largest memory in asystem, it isalso the
one that scales best. A logical placement in the system’s physical main memory thus has
the big advantage that it allows buffered streamsto inexpensively grow in size. Thisis par-
ticularly useful for NICsthat are using lossless networks, asafull receive side buffer in one
of the NICs will cause congestion in the network. Also, data structures for virtualized

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 79

devices supporting the simultaneous direct user-level access of hundreds or thousands of
threads may need the size and scalability of physical main memory.

For the physical implementation, two options can be distinguished: implementations in
small-capacity, fast memory technologies as SRAM, or onesin higher latency, high capac-
ity memory technologiesas DRAM. Physical main memory isslow DRAM, all other buffer
implementations use faster memory. However, slower memory technologiestypically offer
more capacity than faster ones.

buffers

logical location physical location physical

/I\ of data implementation

processor physical device

register file main memory fast: slow:
memory SRAM, registers DRAM
main device processor
memory memory register file
and/or directly
\ / attached memory
caches

device specialized processor
cache cache cache

Figure 3-10. Buffer design space

The physical location of buffered data may be anywhere on the path between device and
processor. However, the logical location may reduce the number of choices. All logical
locations have their natural physical locations. For the logical locations in physical main
memory or in a coherent device memory, caching is possible. Caches may improve perfor-
mance as fast memory technologies can be used due to their relatively small size. Also, a
good placement of caches may improve access latency. In the best case, the use of caches

80 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

avoids any DRAM accesses in the timing critical path between device and processor, and
performs DRAM accesses only for victim writebacks, or if queues grow large.

The cache can be implemented in the device that provides data to the requesting processors
via a direct cache-to-cache transfer. Another option is to stream data into the processor’s
cachethat islikely the one that will work in that data. Chapter 5 will give an outlook about
this approach. A third possibility is the use of other caches, as e.g. dedicated message
caches or the transfer cache proposed in this work.

3.2.3 Feasible Solutions
Based on the previous two subsections, the following conclusions can be drawn that guide
the devel opment of improved mechanisms:

* Queue-based communication must be supported. Other mechanisms can and should be
supported aswell.

» Support for efficient, low latency data transport between device and processor if the
queues are filled sparsely.

« At the same time, queues should be alowed to grow large, which means their home
should be physical main memory.

Processor
Core

Cache Interconnect

L2 Cache
Possible views:
~ -coherent memory controller

-coherent cache
Forward cache % cHT Processor Interconnect .

Memory/ CHT to
Cache | Directory HT bridge
Controller
? Classical I/O device view
NIC

Figure 3-11. NIC locations

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 81

Two suggested architectures place a coherent device at the coherent processor interconnect
(see Figure 3-11). Thefirst one is a device that acts as a coherent memory controller, i.e.
gueues are located in device memory. The second suggestion is a device with a device
cache. The logical home for queues is physical main memory. A third suggestion also
homes queues in physical main memory and adds a special transfer cache to the memory
controller. As DMA is currently the best method to transfer data from device to processor,
all solutions have to compare with a corresponding DMA solution.

The fourth potential solution is to stream data directly into the processors caches. This
approach exhibits some problems that are not present in the other solutions. One major
problem that occurs in multiprocessor systems is how the target cache can be identified.
Chapter 5 provides an outlook on direct cache access mechanisms.

3.3 Memory and I nterconnect Bottlenecks

The memory bottleneck iswell known [7]. It isless commonly known that the interconnect
between chipsin computers has become asimilar bottleneck. This chapter demonstratesthe
impact on small-scale NUMA systems, and concludes with a recommendation for tighter
system-on-chip (SOC) integration.

Memory and 1/O bottlenecks. Gordon Moore's prediction [106] that the number of tran-
sistors that can be placed economically onto a single chip doubles every two years still
holdstrue. Thisleadsto acontinuousincreasein processor performance. Figure 3-12 shows
that the theoretical peak performance in million instructions per second (MIPS) has
increased thousand fold within the last 15 years. Thistheoretical peak performanceisnot a
good measure for the real systems performance, asit isinfluenced by the memory and I/0
subsystem as well as by the utilizable parallelism of applications. It is, however, a good
measure to show the capabilities of the processor core itself.

82 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

1000000

100000 -

10000 +

MIPS

1000 +

100 T T T T T T
1990 1992 1994 1996 1998 2000 2002 2004 2006

Year introduced to market

Figure 3-12. The development of processor speeds of x86 processors

In contrast, 1/0 buses have doubled their performance only every 36 months [103].
Figure 3-13 shows that the maximum bandwidths of DRAM memoriesand 1/0 buses! have
increased by afactor of ten within the last ten years. Compared to the increase in processor
speed within the same time period, the performance gap increased tenfold!

Besides bandwidth, latency is another important performance criterion for memories and I/
O buses. The figure shows that the random access latency increases similarly to the band-
width, although the increase is | ess stable. The development of the latency of a direct chip-
to-chip 1/0 link is more difficult to trace. Usually, target latencies are not part of the spec-
ification, but are considered implementation details. The latency of adirect link of a chip-
to-chip interconnect is composed of the following parts:

e Thetimefor the physical transmission of signals between two chips. Asthistime only
depends on the distance of the chips, it remains constant.

1. Only PCl-derivatives have been used, as they are the de-facto standard 1/0O bus.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 83

* Processing on transmit and receive side scales with technology. There is no room for
architectural improvements to reduce latency. Instead, the pin count limitation of pro-
cessors led to a development of 1/O interfaces that use high-speed seria transmission.
This adds even more latency, caused by the de-/serialization, 8b/10b encoding, scram-
bling, error correction and detection steps that have to be performed.

Thus, the scalability of the link latency is very limited with current technologies. Technol-
ogies as proximity communication [107] might resolve such restrictions in the future.

The processor | nterconnect. An al-embracing comparison of processor interconnect per-
formanceisdifficult, asthese interconnects are usually confidential. Generally, these inter-
connects are subject to the same technological conditions as 1/0O interconnects. A case in
point isacomparison of the latenciesin processor clock cyclesfor the Motorola 68030 pro-
cessor, released in 1987, and one of today’'s Opteron processors. The 68030 accessed
DRAM memory over abusinterconnect. Thelatency for aDRAM read operation consisted
of 3 processor clock cycles for the bus arbitration, and additional 5 clock cycles until the
DRAM delivered the requested data. In contrast, a point-to-point HT link has a latency of
at least 60 3GHz Opteron clock cycles, the DRAM access accounts for at least 120 clock
cycles. To send the response back to the processor, additional 60 clock cycles pass.

100 0.03
-+ 0.025
10 -+ 0.02
n —#— Memory Bandw idth
-~ [2]
m +0.015 ¢
] .
VO Bandw idth
1 0.01
— —e— Reciprocal Memory
Latency
-+ 0.005
0.1 0

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Year introduced to market

Figure 3-13. The development of DRAM memory and |/O bus speeds

Memory and I/O hierarchies. Memory technologies that are currently being used allow
the integration of fast SRAM memory on CMOS logic processes. The downside is that

84 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

SRAM cells consume alarge real estate. Thus, SRAMs have only small storage capacities.
DRAM, on the other hand, can be integrated much denser, but access latencies are high.
Also, few solutions exist to integrate DRAM into logic processes. The solution to thisisthe
use of amemory hierarchy, as explained previously in this work.

Figure 3-14 shows the latency of memory requests, separated into the impact of memory
and interconnect technology. It shows that the performance difference in terms of latency
between the hierarchical levels are of the same magnitude for both memory and intercon-
nect technology, with the exception of the lowest level in the memory hierarchy.

Access latency of Access latency of
memory technology interconnect technology

Register 1 processor clock cycle 1 processor clock cycle

<20 processor clock
cycles, depending on size On same SOC <20 processor clock cycles

Memory
Controller w/ DRAM

Disc I >1ms System Area Network >1lus

Figure 3-14. Read access latency, depending on memory and interconnect technology

>40ns Off chip >40ns

The usage of amemory hierarchy aimsto reduce both interconnect and memory latency by
placing fast caches closeto the processors. Thisworkswell in particular if memory accesses
are predictable and thus may be prefetched.

Figure 3-15 displays the access latency of DRAM memory in dependence of the distance
between requestor and memory in an HT network in hops. Cache coherence mechanisms
arenot considered, the diagram simply showsthe latency of theinterconnect and the latency
of the DRAM access itself. The access latency of the DRAM is the limiting factor only if

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 85

the memory request’s source is on the same chip. As soon as chip boundaries have to be
crossed, the interconnect latency is larger than the DRAM access latency.

250

200 4
B Interconnect
@ DRAM Access
50 A H H
0 T T T
0 3

1 2

[
o
o

=
o
o

Latency (ns)

Number of Hops

Figure 3-15. Overall DRAM read access latency in Opteron system relation to number of hops to
take

3.3.1 Influence of the Cache Coherence Protocol

If the coherent fabric that connects processors and memories spans over multiple chips, the
interconnect latency also impacts broadcast based cache coherence protocols. Figure 3-16
shows the latencies that are observed for a processor read access on physically local
memory inthe NUMA-type of system that isassumed in thiswork. Even in the two proces-
sor configuration, which is the smallest configuration where probes have to cross chip
boundaries, the latency of the probing over the interconnect is worse than the DRAM
latency and thus affects overall latency dightly. For larger configurations, the probing
latency is clearly dominating the overall memory access latency.

In a three hop coherence protocol, as analyzed here, the latency of a memory access to
remote memory isincreased by the time the request travels to the remote memory control-
lers. In two-hop protocols, this does not happen, but the latency of aread to local memory
will be about the same as in the three hop protocol, as the hop from a processor to a local
memory controller has arelatively low latency.

Thus, an effective solution for both types of protocols must take the broadcasting of probes
out of the critical path of the memory access. Directories are away to do so by decreasing

86 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

the number of probes that have to be sent out. In the best case, probing has not to occur at
al for a memory access, thus decreasing the overall latency of the memory access drasti-
cally for a4 processor system. A directory also decreases traffic on the interconnect, andis
less vulnerable to congestion in the interconnect.

Configurations

1 Processor 2 Processors 4 Processors

Cache Cache Cache

Cemon | Cemon |)
N

SN
Cache

Memory .
NN

Cache

NN
Cache Cache

Cemony |
p —

emory)
N

120

100 4

80

60

40 A

memory read delay (ns)

20

1 2 4

number of processors in the system

Figure 3-16. Latency of aread operation on physically local memory with broadcast based
coherence

The theoretical results from Figure 3-16 can also be observed in the real system. An evalu-
ation of the memory bandwidth on a dual-socket Opteron system using the STREAM
benchmark [110] has been performed. The dual processor performance has been measured
by starting one STREAM process and using the “numatools’ [109] to bind the process and
its memory to the same node. The single processor performance has been measured by
removing one processor. This evaluation showed that the memory bandwidth that is
reported by the benchmark drops by 5% to 7% for the two processor system.

Thus, the usage of a directory to reduce memory latencies becomes beneficial even for
small-scale NUMA systems.

Also, atighter integration of the system will reduce the radius of the coherent fabric, and
thus generally decrease the latency of coherence protocols.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 87

3.3.2 Summary

The best possible solution to reduce the communication latency isthe integration of all per-
formance critical components of a system into a single system-on-chip (SOC). Off-chip
communication should be avoided just as DRAM accesses are avoided. The Sun T2 issuch
asystem that leadsthe way for atight physical integration of processors, memory, and NIC.

If multiple such SOCs areinterconnected to build up a shared memory system, the commu-
nication latency impact of broadcast-based coherence protocols should be avoided even for
small-scale systems. Instead, coherence on a chip-to-chip level should be maintained using
directory based protocols.

Only such devices should be integrated into the SOC that are used widely and where low
access latency is required. Traditionally, only network interface controllers belong to this
class. However, one can imagine that FPGA or GPU coprocessors may become popular as
well.

Thus, the remainder of this chapter will analyze the integration of aNIC device into such a
SOC. Asthetransition to such asystem should rather be an evolutionary processthan arev-
olution, it will also be analyzed how mechanisms would perform in traditional systems.

Problemsof SOC integration. A SOC integration does not comefor free. Inthefollowing,
problems are discussed that are in the way of such a solution:

» Limited on-chip resources. NIC buffers and directories need memory, which is expen-
sive both in terms of silicon area and power consumption. Aslong asthis problemis
not solved by the use of new memory technologies as Z-RAM [34], it may be necessary
to use NICs with lower buffer requirements.

» Reduced Yield. Additiona functionality on achip increasesthe diesize. Thelarger the
size of adie, the higher isthe probability of faults on the die. Thiswill awaysleadto a
decreased yield.

* Reduced Modularity. Traditional systems allow replacing or recombining of parts of
the system as needed if these parts are implemented on different chips. For example, for
x86 processors several northbridges and southbridges exist that may be developed at
different pointsin time. On a SOC, such afunctional part is not a chip, but an 1P block
on the single die. That means that a part of the system can only be exchanged by modi-
fying the whole system. The reduced modularity may also increase therisk: if one IP
block of a SOC fails, it may turn the whole system useless.

88 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

* Pin Limitation. Complex designs like SOCs will usually be limited by the number of
available pins. A NIC requires a number of pinsfor communication, these must be
taken away from other components on the chip. A potential solution may be the sharing
of pinsfor different functions. For example, one of the HyperTransport links of an
Opteron could be shared, so that either the HT link can be used, or the integrated NIC.

e Multi-SOC systems. It isvery likely that such SOCswill be used to build up larger
shared memory systems. Not much will be won if this system does not decrease inter-
chip communication significantly. Processor cores should preferably use local memory,
and inter-chip probing must be decreased with directories for example. Aswell, proces-
sors should use the local NIC device for best performance. Of course, this also changes
thread scheduling policies. Threads should preferably be scheduled to a“home node”.

3.4 Devices at the Coherent I nterconnect

A processor interconnection network in a small-scale shared memory multiprocessor
system usually distinguishesthree main classes of ‘ clients' that are attached to the network.

Oneclient isaprocessor core with its associated caches. Usually, the processor core and the
caches share one common interface to the network, called the system request interface
(SRI). An SRI may also be shared among multiple processor cores, which isin particular
the case if these cores share a cache. An SRI has master functionality in the classical sense:
it may issue coherent and noncoherent read and write requests, and collects the associated
responses. The SRI is also target for probe requests, and must respond to these.

The coherent memory controller is the classical slave device: it responds to memory
requests. Inthe analysis performed here, it isalso responsiblefor generating probe requests.
A cache coherence directory is, from the interconnect’ s viewpoint, part of the memory con-
troller, asit is simply ameans to reduce probing traffic.

1/0 bridges are the third kind of clients. Like an SRI, abridge must be able to create coher-
ent and noncoherent requests as a consequence of requests on the 1/O interconnect side.
From the coherent interconnect’s viewpoint, it is the target for memory requests to 1/0
devices, and the source of responses. In contrast to the coherent memory controller, it does
not generate probe requests, as memory behind the bridge, and thus on the 1/0 bus, is non-
coherent by definition. In essence, an 1/0 bridge’ sfunctionality from the coherent intercon-
nects viewpoint is a subset of the combined functionality of SRI and memory controller.

Accordingly, Figure 3-17 showsthe possible views of adevicethat is attached to a coherent
interconnect. (@) is a non-coherent device that is connected as an |I/O device. The views of

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 89

a device as amemory controller or a cache are depicted in (b) and (c). A device might as
well be a combination of these views.

Functionality. A coherent device may use a cache that is kept coherent by the hardware
protocol. The possible benefit of such a cache in a networking device is being discussed in
Section 3.4.1. However, this thesis will focus on performance improvements.

Processor Processor Processor

Cache Cache Cache

cHT
network

cHT
network

cHT
network

110
Bridge(s)

Memory
Controller/
Directory

Memory
Controller/
Directory

Memory
Controller/
Directory

Memory
Controller/
Directory

Device

Device Device

(@) (b) (©

Figure 3-17. Views of adevice in acoherent processor interconnection network

Performance Improvements. The coherent protocol alows other mechanisms of data
buffering and transport between device and processor than pure 1/O protocols. This may
alow faster or more efficient datatransport. In particular, the over-all latency for datatrans-
port between device and processor register may be decreased. Aswell, the read latency of
the processor on such datamay be lower, thusincreasing processor throughput. An analysis
of the different design choicesis donein Section 3.5.

3.4.1 Devices with Coherent Caches

Processors benefit from caches because of the spatial and temporal locality of a program’s
memory accesses. For most programs, it can be observed that after any access to memory,
there is a high probability that a nearby memory is accessed very soon. Therefore it is
advantageous to fetch alarger memory block upon aload request from a processor and to
store it in a cache frame. Subsequent accesses to this block will hit in the cache and thus
have a much lower latency than an access that has to be forwarded to physical main mem-

90 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

ory. In the optimal case, the whole working set of an application fits completely into the
cache. In this case, cachelines do not get evicted from the cache, al accessesto the memory
will hit in the cache after the very first access to the respective memory block.

Besides the reduction of read latency, caches al'so improve the write behavior. In a write-
back cache, amemory location that is repeatedly written to by a processor will just update
the cache. An access to the physical main memory occurs only on an eviction of the cach-
eline. This saves bandwidth both on the system interconnect and the memory controller.

Devices may display a similar spatial and temporal locality for their memory accesses.
However, there may be adifference in granularity of those accesses. While general purpose
processors usually only support load and store operations with a size of up to 128hit,
devices are optimized for their specific tasks and thus may support memory accesses that
are much larger. The impact of this difference can be made clear with the example of a
linear accessto subsequent memory addresses. In aprocessor, acasein point for this behav-
ior istheinstruction cache. Here, acacheclearly improvesread latency: loopsin theinstruc-
tion stream lead to a good tempora and spacial locality of instruction references.

A typical example of adevice that is accessing memory isaNIC that is reading a memory
area in order to transmit it over the network. As the NIC knows the size of the transfer
beforehand, it can directly fetch the memory area using overlapping memory accessesin an
optimal way. In thisexample, thereis also no temporal locality of thisdata, asit will not be
used by the NIC again. A caching of such datain the NIC would not introduce any benefit.

A NIC's memory accesses to other data structures show access patterns that can be
improved by caching them on the device. In the case of Extoll, virtual device contexts and
associated data structures that reside in main memory should be cached on the device.

Cache Coherence. The important question is how a device cache is being kept coherent
with the system. Noncoherent devices cannot take part at the hardware cache coherence
protocol. With noncoherent devices, coherency can only be maintained explicitly by soft-
ware. If devices are part of the coherent domain, caches may be kept coherent by the hard-
ware protocol.

The design space of device cache coherenceis presented graphically in Figure 3-18. If data
is not shared between device and system, it is obviously not necessary to maintain any
coherency at all. However, such private data does not need to reside in system memory.
Instead, it could be stored in memory directly attached to the device. This would not only
result in lower memory access latencies, but also avoid the occupation of system intercon-
nect and memory. Thus, it can generally be assumed that most of the memory a device will
cacheisindeed shared.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 91

data sharing

shared not shared or
read-only
on device caching *
no coherence
required
no caching caching
coherence, but device coherency
outside of
coherent domain
managed explicitly hybrid solution HW-based coherence
and manually by SW protocol

Figure 3-18. Coherence of device caches

If shared data is cached, the only solution that is possible for non-coherent devices is that
coherence is managed by software on the host system, usually this is done on an API or
driver level. No matter how thisisimplemented in detail, if aprocessor writesto a memory
location that might be cached in adevice, it hasto either invalidate or update the respective
cache entry in the device. If the same quality of consistency should be achieved that isused
within the system, software will have to wait for a response before it can proceed. The
device, on the other hand, simply hasto move dataout to the coherent domain if it iswritten
by the device. An option for this are write-through caches. As aresult, maintaining coher-
enceis expensive for modified data that might be cached, but it imposes no overhead at all
for al other accesses.

In contrast, broadcast based hardware cache coherence protocols do not provide agood dif-
ferentiation between data that might be cached somewhere else and data that is not cached
somewhere else. For all accesses, there is a certain amount of overhead introduced by the
coherence protocol. However, this overhead is much smaller than with software based
coherence schemes.

92 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

In comparison of both mechanisms, software based coherence performs better if the
memory region that might be cached in devices is very limited. It performs better if the
coherence scheme can be relaxed. Hardware based schemes are to be preferred if the
memory region that might be cached is larger.

3.5 The Perfor mance of Coherent Transfers

This section analyzes the design space for coherent devices in terms of latency improve-
ments. The analysis focuses on the device-to-processor communication path. It compares
the latencies that can be expected using coherent devices with the performance of DMA.

The main question is: how fast can a cacheline, which isthe smallest granularity of datain
a coherent environment, be transmitted? Such a cacheline may be of any of the data types
that require alow latency transmission, as described in Chapter 3.2.2.

Figure 3-19 shows the flow diagram for device to processor communication using conven-
tional DMA. A write access by a device isfollowed by aread request from a processor to
the same memory block.

The timing between both accesses depends on the notification mechanism (see
Section 2.3.1) that is being employed. The lowest latency can be achieved if the datathat is
written contains information about its validity, asvalid bits for example, and the processis
polling on it. In this case the processor is polling on the line in the cache. The write request
by the device causes an invalidation probe to be sent to this cache. After the cacheline has
been invalidated, the next processor read causes the line to be fetched from memory. The
second dependency between both requests occurs at the memory controller. Here the read
request is queued until the previous write request finishes. This has to be done to maintain
coherence, as explained in Section 2.4.5 on page 49.

If interrupts are used to signal anew queue entry, thereisasignificant timeinterval between
both accesses, caused by the delay introduced by the interrupt handling mechanisms. Inthis
case, the overall latency of the data movement from device to processor is determined by
the interrupt mechanism and can hardly be optimized using coherent data transport mecha-
nisms. Here, another number is more interesting: the latency of the processor’s read.

Some assumptions have to be made regarding the behavior of the memory controller. A
classical memory controller works on request after request. It may reorder accesses to
memory internally to optimize access to the banks, but a read-after-write hazard is avoided
only by forcing the write to memory before reading the address. This mechanism is
employed in the SUN T2, for example. It is avery inefficient mechanism. Its performance
influence is particularly bad with high background traffic, as a read request may have to

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 93

wait a significant amount of time until the previous write to the same address has been per-
formed. But even in the absence of background traffic, this may affect latency. In these
cases, thiswork will also present the timing for a memory controller in which such datais
being forwarded to respond to the read request earlier.

: ; CPU1
Write Write /Pv }A SourceDone
Dev —%» Br —» MC Z—» CPU2 — MC —Pp Br —p MC

/.

CPU3 /

l read request waits until

invalidation triggers read previous request is done

if process is polling

Read CPU1 \A
CPU —p MC <:—P> cru2 ER 31 cpy =Ly e
\ cpus —7 f
RResponse

without directory

with directory, line cached in CPU3

Write Write
Dev —» Br —p MC

SourceDone
\p‘ PR MC —»Br —» MC
CPU3

|

Read
cPU —MC cPU =D yme

\ RResponse 7

Figure 3-19. DMA transfer by device with subsequent processor access

Another assumption has been made regarding the target memory controller for DMA
accesses. The following comparison assumes that the target memory controller for device
memory accesses is aways the memory controller that islocal to the processor, i.e. within
the same NUMA node. The reason to do so isthat thisis the best casein the DMA scheme.
It is a feasible assumption for modern virtualized accelerator devices that provide direct

94 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

user-space access. Every thread may have its own queuesin its own memory range, which
may be allocated on the same node on which the thread is running.

3.5.1 Devices with Coherent Caches

Thefirst variant of adevice that uses the cache coherence protocol is adevice with acoher-
ent cache. In a queue-based communication scheme, the queue’s home is main memory.
However, if the device inserts a new entry into the queue, this element is not copied to
DRAM using a DMA mechanism. Instead, it is allocated in the device's cache. The entry
must be allocated in amodified state, asthe valueis different from the valuein DRAM, and
copiesof thiscachelinein other caches must beinvalidated. A subsequent read request from
aprocessor will cause the cacheline to be forwarded from the device' s cache to the proces-
sor’s cache. The corresponding flow diagram is depicted in Figure 3-21. The idea behind
thismechanism isthat an accessto acache’ sfast on-chip SRAM ismuch faster than DRAM
accesses that are performed in the DMA scheme.

device cache

organization

dedicated queues based on CAM cache
Transparency Replacement Set of Cached Granularity
Policy cacheline states objects

Figure 3-20. Design space for device cache implementation to speed up queues

In the following, the design space of such implementations (see Figure 3-20) is analyzed.

Cache Organization. A cache can be organized as an explicit set of queues, just asit would
be implemented in a memory-based scheme. A suggestion for such an implementation are
»cacheable queues‘[10]. As already outlined in Chapter 3.2.2, dedicated queue structures
are less advantageous for the use in virtualized devices. Also, the implementation of such
gueues as a coherent memory controller, as described in Section 3.5.2, is more promising.
Therefore, the following paragraphs will focus on the second choice: an implementation as

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 95

aCAM-based cache. Such a cache may be used not only for queues, but other datatransfers
aswell.

c2D Ay CPU1 \A

Dev —» Mc Z<Fp cruz PR Y pev —pMC

\A Dev /v
read request waits unti
invalidation triggers read previous request is done
if process is polling
Read CPU1 \\\\‘
SD
CPU — MC é cruz PRY cpu == MC

Dev RR

without directory

with directory, line cached in CPU3

c2D
Dev —¥» MC

D
\P PR ev —PMC
CPU3

|

Read
CPU —MC cpu =2 me

\\\‘ Dev

P RR
Figure 3-21. Caching instead of DMA transfer

Cache replacement palicy. A device that caches data for its own use may use the same
replacement policies as a processor. However, this is different for queue mechanisms.
Queue entries will never be read by the device, and they will be read only once by the pro-
cessor in most cases. Thus, cachelines should be evicted as soon as aread access by a pro-
cessor has been seen. New cache blocks are allocated using empty, i.e. invaid, cache
entries. Nevertheless, depending on the associativity of the cache, it may happen more or
lesseasily that an empty cache frame cannot be found for aline. Now, there are two choices:
either the cacheline bypasses the cache and is directly written to main memory. Or, an entry
in the cacheis replaced. Assuming that a small number of queuesis cached, areplacement

96 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

means that entries that are close to the head are being replaced by tail entries. In the worst
case, al process reads would be served from main memory, asthey are being evicted from
the cache before they can be read by the processor.

Bypassing means that the heads of the queue stay in the cache and are not replaced, so that
at least a part of the processor read requests could be served from the device cache. On the
other hand, a scheme without replacement may |leave stale entriesin the cache, for example
if areceiving process terminates before reading the entry.

Generally, the efficiency of these mechanisms depends on the number of applications that
are communicating with the device, the cache size, and the communication pattern. The
communication pattern directly influences queue sizes and residence time in the cache.
Thus, it is difficult to predict which of the mechanism performs better. This can only be
found out with an evaluation in the system.

Cacheline states. In order to alow a cache to cache forwarding of the cacheline in a
MOESI based system, it must be alocated on the M state. A subsequent read-exclusive
request from a processor would cause the devices cache to forward the value to the
reguester and invalidateits copy. If the subsequent read is aread-as-shared request, it would
cause the device' s cacheline to change the state to O, and establish a shared copy in the pro-
cessor’s cache. In the case of a device-to-processor queue, thereis no use for the cacheline
any more, so that the cacheline may be evicted as soon asit changesits stateto O.

An alternative for the device is to always transfer ownership by signaling in the read
response to the requesting cache that the new cacheline state must be M. This frees the
device from awriteback of the cacheline. However, the original MOESI and MESIF proto-
cols do not support this.

Cached Objects. Asexplained in Section 3.2.2, only some data structures need to be made
available with alow latency. Only those should be cached, all other data should bypass the
cache and be written to main memory. This avoidsthat relevant cachelines are squeezed out
of the cache, and also keeps the cache as small as possible. The question how data can be
distinguished into worthy of caching and not worthy of caching on the device leads to the
guestion of how transparent a device cache should be.

Transparency. In adevice or accelerator context, it isbeneficial if the cacheistransparent
to the device itself. In this case the cache is only part of a specific interface, and can easily
be replaced by a different interface without the need to change the structure of the device
itself. In afully transparent design, the question what should be cached can only be deter-
mined at the cache, for example using address-based prediction [112]. If the constraint of a
totally transparent cache is weakened, such a decision can be made at the level of afunc-
tional unit in the device. The most basic implementation is a single cache hint bit, stating if

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 97

the cacheline should be cached or not. Such a hint is the hardware equivalent to prefetch
instructions of a processor, which also allows to define the caching behavior for individual
cachelines.

Granularity of cached objects. As data transport for coherent communication is always
performed by transferring cachelines, lowest latency can always be reached by aligning
data structures as queue entries to cacheline boundaries. If a queue entry has asmaller size
and thus does not fill out an entire cacheline, there will be a gap between entries. Of course,
aqueue entry is alowed to have a size of multiple cachelines as well.

A device cache may cache other structures than queues as well. For example, received data
for get operations can be cached. If thisdatais not aligned to and sized as cachelines, there
isaproblem, as the remaining part of an incomplete cacheline may contain valid user data
that must not be overridden. Thus, the memory block must be read from the coherent sys-
tem, before the device' s data can be inserted to the cacheline. Thisis not very efficient in
terms of latency and hardware complexity of the device cache. Thus, such unaligned or
miss-sized data should be written to the memory controller instead of being cached by the
device.

Mem P1 P1 Mem
Mem PO Mem PO P1 Mem
Dev
Dev Dev
Mem P2 P3 Mem
. non-coherent configurations
4—P» HTIlink g
44— cHT link
coherent configurations
Mem PO P1 Mem
Mem PO
Dev
Dev
Mem P2 P3 Mem

Figure 3-22. Configurations with coherent device caches

98 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

In the following two sections, the performance of device to processor transfers of such
coherent device caches will be analyzed for off-SEC and on-SOC devices.

3.5.1.1 Off-SOC Devices

Figure 3-22 shows configurations of one, two and four node system topologies that have
been evaluated, the respective latencies are given in Figure 3-23.

In the single node configuration, the coherent cache has aworse performancethan the DMA
scheme. Thisisdueto thefact that the coherent domain now crosses chip boundaries, which
increases probing latency drastically compared to the single processor system, where prob-
ing occurs on chip. Also, the single node configuration is the only one in which buffer-for-
warding in the memory controller has a positive effect.

Thus, coherent devices should always be integrated into the coherent fabric so that they do
optimally not increase the depth of a invalidation broadcast tree, measured in the number
of hops. Thetopologiesfor two and four node systems thus have been chosen to be optimal,
assuming that every NUMA node hasthree coherent links available. To have afair compar-
ison between protocols without the influence of the topology, the same dense topology has
been applied for the noncoherent device.

With an optimal topology, the dual NUMA node configuration performances are equal. The
latencies for the probe broadcasts are the same, and so are the polling and memory access
latencies. Differences can only be observed if the topology is not selected in an optimal
way. In the noncoherent example, P1 observes a higher polling latency if it is not directly
connected to the device.

In the quad node configuration, probing latency is much higher than DRAM access latency
and clearly dominates timing. Here, the cache-transfer mechanism is faster: if data comes
from memory, the processor hasto wait for all probes before it can use the respective data.
If aprocessor receives aread response from a cache, it can immediately use the data. Asthe
device is connected to the processors so that is has only 1-hop distance to every CPU,
latency is lower as if the CPU has to wait for every devices response, due to the fact that
there exist 2-hop connections between processors.

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 99

single node NUMA system

W
S
3

Latency (ns)
(S N n
S & S &
s 3 3 3

@
S

TN

CPU Read Access Latency

o

Polling Latency

‘D Non-coherent m Non-coherent buffered m Coherent with cache

Latency (ns)

300

250

200

150

100

50

dual node NUMA system

CPU Read Access Latency

Polling Latency

Latency (ns)

300

250

200

quad node NUMA system

]

CPU Read Access Latency

Polling Latency

‘EI Non-coherent CPU 1 O Non-coherent CPU 2 @ Coherent with cache ‘ ‘D Non-coherent ® Coherent with cache

Figure 3-23. Performance of off-SOC device with coherent cache

Influence of a coherence directory. A directory may reduce the latency of memory
accesses if the latency of the probing is higher than the latency of the DRAM access. This
is due to the fact that using a directory, probes may be avoided at all in the best case.

In the topologies that are discussed here, only the four node topology displays a probing
latency that is significantly higher than the DRAM access latency. In the best casg, i.e. the
accessed memory is on the same node as the processor, and no other processor is caching
the line, performance increases up to the performance of the single node system.

Thus, the presence of a directory may improve performance, but will not make a direct
cache to cache transfer more efficient.

What would the use of MESIF change? The implementation is analyzed for the MOESI
protocol. In MOES!I, a request is sent to the memory controller first for every memory
access. Thisis avoided in the MESIF protocol, so that a cache to-cache transfer generally

100 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

has alower latency. Thiswork assumes a best-case DMA, i.e. that DMA memory ison the
same chip as the processor that is requesting it. In this case, the overhead for thisfirst hop
isrelatively small, so that a coherent cache in a MESIF system would not perform signifi-
cantly better. However, MESIF would avoid a performance decrease in case the processor
is not on the same chip as the memory controller.

3.5.1.2 Deviceswith Cachesin SOCs

If adeviceisintegrated onto the same chip as processor and memory, the situation is dif-
ferent. The device cache can be accessed with alow latency, as no chip boundaries have to
betraversed. An on-SOC device with acoherent cache decreases|atency drastically. In par-
ticular, the processor read latency would decrease by afactor of four (see Figure 3-24).

In contrast, if classical DMA isused, processor read latency does not improve compared to
an external device. The polling latency would decrease by about 20% compared to the off-
SOC solution.

920

System on chip

80

Processor

70

60 4

50

40

Latency (ns)

30

20

10

Cache

Memory
Controller/
Directory

Device CPU Read Access Latency Poliing Latency

‘I:l Non-coherent m Non-coherent buffered m Coherent with cache

Figure 3-24. CPU read latency for on-SOC devices with a cache

The model that has been used for calculation assumes that the SOC features multiple pro-
cessor cores with either separate or shared caches. Cache coherence is maintained by a
broadcast or directory based protocol. If the number of caches that has to be kept coherent
is relatively small, these design choices influence the latency of the transfer only margin-
aly, assumed that contention is being neglected.

SOCs that integrate a number of processor cores, memory controller and a networking
device are frequently used for processors that target networking applications, as for exam-

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 101

ple the XLR processor family from Raza Microelectronics, which features up to 8 muilti-
threaded processor cores, DDR2 memory controllers and two 10Ghit Ethernet devices
[104]. Another example isthe Sun T2 (see Section 2.6.1).

M ulti-Chip environments of SOCs. In amulti-chip environment, every chip has adevice
instance. Even if the processor core and the cache that communicate with each other are on
the same chip, the performance gain would be nullified if communication involves inter-
chip probing. With the use of directories for the main memory, latency can be maintained
at the same level asin asingle SOC system.

3.5.2 Devices with a Coherent Memory Controller

A very different approach is adevice that acts as a coherent memory controller. Asin PIO,
data flows from the device to the processor through read accesses to device memory. How-
ever, the processor’ s performance on cacheable memory is higher.

Another improvement over PlO are better premises for efficient consumer process notifi-
cation (as introduced in Section 2.3.1). If valid bits are used for queue synchronization, a
processor using PIO on uncachable memory has to continuously poll on the device mem-
ory, both wasting process and interconnect bandwidth. Using a coherent memory controller
in the device, the processor polls on the cache, not occupying any interconnect bandwidth.
A processor instruction that waits until a cacheline with a certain address is invalidated
externally could even save processor resources, which is particularly useful for SMT archi-
tectures.

device coherent memory

I
Transparency Physical memory Organization Directories
to device implementation

Figure 3-25. Design space of coherent memory on the device

The design space for devices with coherent memory controllersis shown in Figure 3-25.

Organization. Thiswork focuses on aqueue-based communication between processor and
device. This means, that the coherent memory controller implements physical memory for
these queues. RMA operations that target memory that is homed in another memory con-
troller arethus not supported. Neverthel ess, a device acting as acoherent memory controller
does have applicationsin other fields, as for example shared memory controllers as Exten-

102 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

diScale[108], transactional memories or simply memory that isimplemented in a different
technology, as FLASH memory for example.

The physical memory implementation. As explained earlier, DRAM technology
accountsfor alarge part of memory access latency, and thus should be avoided in the com-
muni cation path between device and processors. Thus, afast memory technology asembed-
ded SRAM or ZRAM should be used if performance improvements are the goal. Another
choice may be slower but larger memory, as external SRAM or DRAM, in combination
with atransparent cache on the device.

The performance for a device using a fast embedded memory is shown in Figure 3-26. As
expected, a speed-up cannot be achieved for off-chip devices. The on-chip solution shows
alatency decrease by afactor of four in both the polling latency and processor read access
latency.

System on Chip

Processor

Memory
Controller/
Directory

Device

(a) off chip device (b) on chip device

120 120

100 A 100

~ 801 ~ 80
) @
£ £

3 60 | 3 60
c c
Q Q
® ®

S 40 1 - 404

20 20 4

0 : 0 :
CPU Read Access Latency Polling Latency CPU Read Access Latency Polling Latency
O DMA m Direct memory ‘El DMA m DMA buffered m Direct memory

Figure 3-26. Latency of a device acting as coherent memory controller

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 103

M ulti-chip systems. So far, these numbers are for a one chip solution. In amulti-chip sys-
tem, communicating processor cache and device should be on the same cache to achieve
best latencies. Even in this case probing over chip boundaries would destroy the perfor-
mance benefit. In a small device memory, the implementation of a directory is not very
expensive and solves this problem.

3.6 Transfer Cache

The previous approaches showed that a performance gain with coherent devices can only
be achieved for systems on a chip. External coherent devices suffer from the fact that in a
transaction, chip boundaries have to be crossed multiple times. In contrast, aDMA transfer
crosses the boundary only once, as it pushes the datato memory.

Thus, an improvement for external devices isto move only the device cache into the pro-
cessor chip, and leave the device off the processor chip. Thus, a chip boundary has to be
crossed only once.

transfer cache

Location Coherence state Organization What to cache device cache
handling considerations
see 3.5.1

Figure 3-27. Design space for transfer caches

Location. In a multi-chip system, data can be cached in a coherent cache in the processor
node to which the device is connected. Or, it can be cached at the node that is the home to
the respective memory address, as shown in Figure 3-28. In this case, the cache can be
implemented either as a coherent cache or behind a memory controller. As requestsin a
MOESI system are always directed to the memory controller first, an implementation in the
same node is suggestive.

104 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

Processor chip Processor chip

Processor Processor

cHT CHT
XBar XBar
Memory Memory
Controller/ | Cache Controller/ | Cache
Directory Directory
_q\z e
A 4

[
Device
Transparently cached

in home node

Figure 3-28. Transparent caching in memory controller of home node

Organization. The transfer cache can be implemented as any of the types presented in
Section 3.5:; as a coherent memory controller, or as a coherent cache. While the coherent
cache can be used for all purposes, the memory controller implementation is rather limited.
Ontheother hand, itismore efficient if arequest isdirectly served by amemory controller,
rather than forwarding the request to the cache. A combination of the advantages of both
methods is a cache in the main memory controller that is transparent to the coherence pro-
tocol. Dueto the transparency, the access pattern of such atransfer cacheisthe sameasfor
aDMA access (see the flow diagram in Figure 3-19).

For such a cache, the considerations about device caches from Section 3.5.1 hold valid.
However, thereis a difference regarding the coherence state of cacheline:

State of the cachelines. A transparent cache within the memory controller must be kept
coherent with the main memory. This can be done easily if the cache does not contain older
values of acachelinethan physical main memory. Also, dirty entries must be marked so that
they are written back eventually.

In abroadcast based protocol, this consistency scheme would work, but also would beinef-
ficient. A processor cachereading alinethat is present in the transparent cache will receive
the response that contains the data very soon, but must wait until all probe responses arrive
before it can forward data to the processor. Thus, the beneficia effect of afast cache would
be reduced. As a solution, a transparent cache should contain directory information for all

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 105

cached lines. Depending on the size of the system and the type of directory, the size of the
required field isrelatively small compared to the cache entry itself.

For the transfer cache suggested here, coherence state information can be encoded implic-
itly. A cachelineisfilled by anorma DMA accessfrom adevice. All processor caches have
to evict this line from their caches. As described in Section 3.5.1, a subsequent read hit in
the transfer cache should |ead to the eviction of the cacheline from thetransfer cache. Thus,
the presence of a cacheline in the transfer cache implies that the line is modified and not
cached elsewhere. Then, probing does not need to occur upon aread request to that line.

What to cache. For the transfer cache, the differentiation between data that should be
cached and other data is even more important than for a cache on the device. A large part
of all write requests to the memory controller will be victim write-backs from the proces-
sor’s caches. Those must not be cached, as this would pollute the cache.

Data can be distinguished at two locations: either in the transfer cache, or by the device. In
the transfer cache, the decision can be made based on the source of the request, which will
be an 1/0 bridge, and the address, either by atable-lookup or prediction. Besides the ques-
tion whether such mechanisms have the desired effect, they add significant logic overhead
into the path of every write request to the memory controller.

(a) off chip device (b) on chip device

120 120

100 100

80 - 80

60 4 60 4

Latency (ns)
Latency (ns)

0] 40 1

20 —— 20

0 - _ 0

CPU Read Access Latency Polling Latency CPU Read Access Latency Polling Latency

‘D DMA O DMA buffered m Cached memory @ DVA m DMA buffered m Cached memory

Figure 3-29. Transfer cache latencies

Thus, | suggest using the same methodology as for the device integrated cache: the func-
tional units of the device determine what data should be cached. This information must be
transmitted to the memory controller with the write requests. The most simple “cache hint”
isaonebit field in the HT packet.

106 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

Figure 3-29 shows the transfer cache latencies. Processor read accesses to the cache have
about the same latency as the other on-chip coherent solutions. This latency staysthe same
for the off chip implementations as well. Polling latency can be decreased by ~40% for the
off-chip implementation, and ~50% for on-chip implementations.

An interesting system for atransfer cache implementation is the Sun T2. A device' s write
requestsinthe T2 passalevel of cache on their way to the home memory controller: the L2
cache. Instead of building a dedicated transfer cache, the general purpose L2 cache might
be used to cache such transfers.

3.7 Resaults

3.7.1 Conclusion

Off-chip devices. Both coherent queue-based device implementations show no perfor-
mance benefit for an off-chip device. This analysis assumed the same link speeds for all
links. In reality, a device may not be able to run at the same link speed as the processors.
Thiswould further decrease the performance of coherent solutions!

90

80 -
70 -
60 -

50 +——

40 -

Latency (ns)

30 A

20

10

CPU Read Access Latency Polling Latency

‘El DMA m DMA buffered @ Transfer cache 0O Direct memory B Coherent with cache

Figure 3-30. Latency summary for on-chip devices

Another important consideration is that such a cache-coherence device may increase the
diameter of the coherent fabric. Thus, probe-broadcast may take longer, thusincreasing the
latency of every memory request in system. If the device is connected over a slower link,

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 107

or cannot keep pace with the number of incoming probes, this may have a severe impact on
system performance. However, a device acting as a coherent memory controller without a
coherent cache does not need to receive probes. Here, only asymmetric probing isrequired.

Allinall, cache coherent interfaces cannot be recommended for external devicesthat imple-
ment queue based interfaces. Thisisin contrast to previous research done by Mukherjee[9]
in 1998. The prime reason for thisisthat Mukherjee assumed memory latenciesto be 3x the
one-way hop latency (120 nsvs. 40 ns), while the factor is ~2 today.

The proposed transfer cache is the only solution to significantly decrease latencies for
device to processor communication for off-chip implementations. It does not increase the
diameter of the coherent network, and implicitly includes coherence state information.

SOC devices. Figure 3-30 shows the latencies for a SOC implementation on the device. A
device with a coherent memory space offers the lowest latencies.

The only disadvantage of such devicesisthat thisinterfaceisless universal, asonly arela-
tively small amount of memory can be implemented on devices. Caching, in contrast, is
more universal, as it allows caching of the complete main memory range of the system.
Device caching and atransfer cache have about the same performance in a chip SOC.

In a multi-SOC-chip environment, access latencies stay the same for direct memory
devices, if processor memory and device are on the same chip and directories are being used
to maintain coherence. If processor, device and memory controller are distributed on differ-
ent chips, latencies mainly depend on the number of hops between processor, device and
memory controller that arein the critical path. Table 3-1 shows the number of hops, which
can directly be obtained from the respective flow diagrams. If processor, device and
memory controller are distributed randomly in the system, direct memory has the lowest
number of hops to take, followed by the transfer cache, traditional DMA and the device
cache.

Table 3-1. Number of hopsin the critical path between device and processor

#hops processor read polling
DMA without (with) 3(2 4
directory

Direct Memory 2 3
Transfer Cache 2 4
Device Cache 3 5

108 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

The decision making process to select the architecture with the lowest latency is shown in
Figure 3-31. A short summary of the conclusions follows:

» External coherent devices do not decrease the latency of device to processor communi-
cation. In contrast, coherent caches in devices may significantly slow down all memory
accesses of the system. Only atransfer cache improves performance of external
devices.

» A system-on-chip implementation of processor and device isinevitable to reach lowest
latencies. In this case, all mechanismsthat have been analyzed in thisthesis offer asig-
nificant performance improvement over classical DMA.

» For SOCsin which processor cores communicate with devices on the same SOC, the
direct memory mechanisms clearly offers the lowest latency.

All inall, the concept of the transfer cache as proposed in thiswork is particularly promis-
ing. Besides the performance advantages, devices can stay outside of the coherent domain.
In practice, getting access to the proprietary, non-standardized coherent protocols may be
difficult. Another point is that the cache hints that are embedded in the request packets can
be used for direct processor cache access (DPCA) mechanisms as well. Thus, these mech-
anisms can be compatible with each other. An outlook on DPCA solutions is given in
Chapter 5.

Support off-chip
devices?

yes

nterface mapable t0
device memory?

Transfer cache

Small memory
requirements?

yes

Choice of Transfer
cache or device
cache

Coherent device
memory controller

Figure 3-31. Decision process for coherent devices

IMPROVING DEVICE TO PROCESSOR COMMUNICATION 109

3.7.2 Related Work

This section summarizes related work to coherent deviceinterfaces or SOC integration that
has not been presented as a compl ete system in Chapter 2.

SOC integration. [80] compares the placement of an Ethernet NIC on-die in asingle pro-
cessor system with classical off-die approaches. The finding that an on-die NIC has a
slower performance than an off-die NIC cannot be explained by the authors. A second sug-
gested architecture streams all received data of the NIC into the processors L2 cache,
although the mechanism how thisis supposed to work is not described.

[83] proposes a register-mapped interface to message-passing NICs. Besides an implemen-
tation in the register file of a processor, implementations as an either on- or off-chip cache
are proposed. In both cases, abusis assumed asinterconnection network between processor
and caches.

Coherent Devices. Except for coherent shared memory systems, coherent NICs are not
commonly used. Muckherjee [9] presented and simulated so called “cacheable queues’,
which are very similar to the device cache and coherent memory device solutions presented
in this work. Muckherjee analyzes systems where device and processor are on different
chips, and findsthat coherent transfersare faster than conventional DMA. Thisisin contrast
to this thesis. This difference can clearly be traced back to the worsening of interconnect
and memory bottlenecks.

A device based on theidea of Muckherjeeisthe INIC prototype system of a 10 GBit Ether-
net NI1C [89]. JNIC onloads much of the protocol processing overhead to one of the general
purpose processors in the system. Queues that reside in the coherent memory of the device
are for communication between the hardware and the software part of the NIC.

110 IMPROVING DEVICE TO PROCESSOR COMMUNICATION

HT AND CHT PROTOTYPES 111

4HT and cHT Prototypes

This chapter describes the specification and implementation of coherent HyperTransport
(cHT) and noncoherent HyperTransport (NHT) solutions for the Extoll NIC. The focus of
this chapter lies on the noncoherent and coherent infrastructures that handle the data
exchange between device and the other components of the system.

Thefirst section of this chapter describes the specification and implementation of a Hyper-
Transport coreto utilize the direct connect architecture as described in Section 3.1. A direct
connection to an Opteron processor is achieved by mapping the core onthe HTX board. The
current implementation of the nHT Extoll NIC isthe UltraNIC, as depicted in Figure 4-1.

Link —
Port 0

A
A\ 4

nHT Ultra

nHT >
) core > Xbar | unit

n| Network »| Extoll
Port Xbar

A
A

9 bit parallel LVDS
P Link
16 bit) <+
H Port 1
yperTransport
link

Figure4-1. UltraNIC

Section 4.2 details the coherent HyperTransport interface for Extoll, which is based on the
ideas of devices with a coherent cache or a coherent memory controller, as developed in
Section 3.4 and Section 3.5.

112 HT AND CHT PROTOTYPES

4.1 TheHT Coreand Interface

The HyperTransport core has two different interfaces: On the one side are the HyperTrans-
port send and receive links, as specified in the HyperTransport protocol. On the other side,
thereisthe application interface, which allows FPGA designsto accessthe HyperTransport
core. Thisinterface consists of three queuesin each direction, onefor every virtual channel.
Applications can access these using a valid-stop synchronization mechanism. Control and
attached data packets can be delivered smultaneously over the 160-bit-wide interface (96
bit to handle extended control packets, 64 bit for data packets).

/ CRC CHECK| WR_El DECODE CTRL o \
HT_CLK_U] | __UPPER ‘ P—| BUFFER
DEC DATA 64 - g
— 4 >
o CAD CAD_U 2 > UPPER SHIFTIN 5, - NP—G—LQ
PWROK ISERDES SYNC CTL 4l = el - P_Cl
RESET_N- a4, CTL o RESPRE%ER VARIPEY g - R Gy
CAD il / | [] IGNORE_D - NP_DL G
CTL e 32 CAD i T SYNC CAD L 32 S e SHIFT_CONH | 7, P_D{ S
HTCLK VALID_L 1 =
= lWR_EN et - trror | LOVER DIR_CONF = s D-_Sbi
/
FT_CLK_L T BYTE | RESSEN ORDERy
CRC CHECK| READ_ RELEASE.q >z
LOWER
BITSLIP {i— CONFIG i)
. — s ¢ o
BS CTLFAST INT |- =
HT K I / conrre | LINK_WIDTH | e
. = CREDIT
mterf?ee | 2
TINK_FREQ HIFTOUT
— INIT_OUT CRC ENABLE =
RCLIG,. iCORE_CLK GEN @]
REFCLK—pm | REFCLK - STOP_OUT CRC S
RO o
DB4 —_
5
RESPONSE | ¥ 8
L CAD_INIT 32, 2 BUFFER =
- -
CAD'H OSERDES | g <N - ¥ OUTPUTGEN p— NP_Clegi—| =3
CTLg—] - il - P_C la— Q
- Tryp CREDIT REMOTE = (@)
Py </ . e — R_C et
- 64 SHIFTOUTS, — ¥ D
acTL 4l 7 > NP_D fegf
- : - 5, EMPTY]
- , D e —
“SDAA o N o
<MD o [ORF;}Z A
M 3 v EF
3x
NP/PIR

Figure 4-2. Block diagram of the nHT core [51]

With amaximum HT link width for Opteron systems of 16 bit, the performance of the link
depends mainly on the link clock frequency. One limiting factor is the speed of the serial I/
Os. In the FPGA used on the HTX boards, they limit the speed to 400-MHz DDR, thus
HT400. Xilinx serializer/deseriadizer (SERDES) blocks parallelize/serialize the link by a
factor of four, so that the frequency of theinternal core clock is200 MHz, and the data path

HT AND CHT PROTOTYPES 113

has awidth of 64 bit. The SERDES blocks are controlled by a*“bitdip” module to generate
proper alignment to 32-bit boundaries.

An important constraint is to process this data stream with the lowest number of pipeline
stages and reasonabl e resource requirements.

Scalability and portability. The HT coreisimplemented in the Verilog hardware descrip-
tion language. This makesthe design easily portableto other platforms, asFPGAsor ASICs
from other vendors. Only device- or process-specific hard macro blocks have to be
exchanged. These are SRAMS, DLLsor PLLSs, I/O cells and the serializers and deserializ-
ers.

The scalability of HT core implementations in FPGAs to higher HT link clock frequencies
is limited (see Figure 4-3). Faster 1/O cells are already available in the newest generation
devices, but the maximum internal clock speed is unlikely to scale up by the same factor.
Thus, FPGA implementations of an HT core for higher link clock frequencies require a
completely new design of the core, with a higher paralélization degree. The downside of
thisis a significantly increased complexity, which increases the number of utilized FPGA
resources and the length of pipelines. It is also questionable if applications in an FPGA
could take advantage of the resulting high bandwidth.

800

700
600 /
500

400

300

core clock frequency (MHz)

200

100

0

200 400 600 800 1000 1200 1400
HT link speed

ow __ __ __________JX

implementation I " implementation
HT core on Xilinx Virtex-4 Current AMD Opteron processors

Figure 4-3. Scalability of the HT core

114 HT AND CHT PROTOTYPES

Significant performance improvements can only be expected if ASIC are used instead of
FPGAs. ASIC implementations in modern process technologies with internal clock fre-
guencies of 500 or 600MHz are very feasible. Thus, the current design is the perfect choice
for FPGA implementation and verification of high-speed designs that will be implemented
in an ASIC, as the HT core is the same for both. If different core architectures would be
used for different implementations, an FPGA-based verification could not prove that the
ASIC implementation works.

bitTine|| 7 | 6 5 | a4 [3 2 1 0
0 SeqlD[3:2] Length[2:0] Rsv StateHint[1:0]
PassWD| SeqiD[1:0] UnitiD[4:0]
Mask/Count[3:2] | Compat SrcTag[4:0]

Addr[7:2] Mask/Count[3:2]

Addr[15:8]

Addr[23:16]

Addr[31:24]

Addr[39:32]

Addr[47:40]

Addr[55:48]

Addr[63:56]
11 command type | D_att | BAR | reserved

OO (N[~ |W|[N|F

=
o

Figure 4-4. Command packet format at application interface

Theapplication interface. The 96 bit sized on-chip control packet isbasically the same as
thelargest HT control packet, which is an extended packet that uses 64 bit addresses. 8 bits
of redundant information have been removed and are used for an internal tag (marked green
in Figure 4-4). Associated datais transmitted 64 bit parallel.

Asin Extoll, most devices will have to connect multiple internal units to the HyperTrans-
port interface. A crossbar is the most universal switching structure, as it allows multiple
concurrent transactions. The Extoll on-chip HT crossbar is such an implementation that is
based on the HT protocol [122] and is directly connected to the HyperTransport core.

HT AND CHT PROTOTYPES 115

4.1.1 Results

The resource requirements of the 16bit HT400 core implementation on a Xilinx Virtex-4
FX 60 are shown in Table 4-1. The hardware latency of the crossbar is 12 internal clock
cyclesfor theinbound path from link to application interface, and 6 cyclesfor the outbound
path.

Table 4-1. HT core resource requirementsin a Virtex-4 FX 60 FPGA

Resource absolute relative
Logic Slices 5,222 20%
Look-up tables 6,371 12%
Flip-flops 2781 5%
FIFO16/ 33 14%
RAMB16s

DCMs 3 25%
ISERDESs 10 1%
OSERDES 9 1%

Table 4-2. Hardware latencies of the core

Clock | Dday@ | Delay@ | Delay@
Direction | Cycles | HT200 HT400 HT1000

In 12 120 ns 60 ns 24ns

Out 6 60 ns 30ns 12 ns

Performancein the system. The 16bit HT400 core has been evaluated [127] in the system
described earlier in this chapter. PIO accesses from the process to the device are one type
of transaction. For write accesses, the memory type “write combing” has been used, which
combines stores to subsequent addresses into one write access with the maximum size of
64bytes. For these writes, the sustainable bandwidth is 874 MB/s.

For read accesses, both the bandwidth and latency can be measured. The latency is39 HT
core clock cycles, which corresponds to 195 ns. For read accesses, only 32 hit read accesses

116 HT AND CHT PROTOTYPES

can be observed. This of course implies that larger processor reads result in afairly high
latency, ase.g. an 128 bit read is executed using 4 individual ordered 32 bit reads, resulting
in alatency of 780 ns. The bandwidth for readsis thus quite low: 20 MByte/s.

The second type of accesses are thoseinitiated by the device: DMA operations. The achiev-
able bandwidth dependsonthe HT packet size. Using thelargest HT packet size of 64 bytes,
write bandwidth goes up to 1410 MB/s, while read bandwidth is 1040 MB/s.

Performance of the Ultra NIC. The Ultra unit targets low latency communication with
small messages. Figure 4-5 shows the half round trip latency, measured with the NetPI PE
benchmark. The latency seen on the Extoll API level is below 1lus, which is an excellent
result when compared to other NICs [125]. These are the results of an PFGA prototype
design with an HT200 core and an internal clock frequency of only 100MHz. Due to tech-
nical difficulties, Ultra has net been evaluated using the HT400 core. However, significant
performance improvements can be expected.

NetPIPE (ping pong)
1.7

1.6
OpenMPI over Ultra2
15
14 1

13}

in usec

12}
11}
1 | Ultra2 API

half round-trip latency

0.9

1 2 4 8 16 32
message size in bytes (log)

Figure 4-5. Ultra ping-pong latencies in atwo-node network [125]

Allinal, theHT coresuccessfully exploitsthe potential of the used FPGA intermsof band-
width, latency and resource utilization. Offering an HT400 connection, and thus a bidirec-
tional bandwidth of 3.2 GByte/s, the HT core can be used for more than just prototyping.
The performance is sufficiently good to serve as a production coprocessor board as well.

HT AND CHT PROTOTYPES 117

4.2 The Coherent HT Infrastructure

The guiding idea of the coherent device infrastructureis that the noncoherent Extoll device
should be able to use the coherent communi cation mechanisms that have been described in
the previous chapter. At the same time, changes to the Extoll core should be as minimal as
possible.

While the previous chapter showed that performance increases cannot be expected from an
implementation in an external device, such an implementation isthe only way to proof that
the mechanism works.

A second thought isthat the cHT infrastructure should be designed in such away that other
applications may be using it, and in particular those that intrinsically need a coherent
memory view. Such applicationsare in particular NI devicesthat provide a coherent shared
memory view of the system, or testbeds for transactional memory systems.

This section describes the coherent solutions that have been proposed and analyzed in
Section 3.4 and Section 3.5: a coherent device cache and coherent device memory space by
embedding a transparent memory controller.

4.2.1 The Coherent Fabric

Figure 4-6 shows a block diagram of the coherent HyperTransport device infrastructure.

The coherent device fabric is organized very similar to that of an Opteron northbridge. The
CHT crossbar is the central unit in the coherent part, over which all other components get
connected with each other. The configuration of the coherent part, and in particular the con-
figuration of the routing tables, is done using the same set of configuration registers as
Opteron northbridges. Due to the similarities with a Opteron northbridge, changes in the
BIOS can be kept at a minimum.

As specified by AMD [22]%, amaximum of four HT units IDs per NUMA node exist. Indi-
vidual generations of Opteron processor may have restrictions about the functionality of
units. In the 9th generation Opteron’s used in this project, unit IDsare: “0” for 1/0 bridges,
“1" and “2" for processors/caches, and “3” for coherent memory controllers.

1. All following details about AMDs architecture are al so taken from this document.

118 HT AND CHT PROTOTYPES

Coherent fabric Max. 4 Non-coherent device
coherent units

. Functional |
1/0 Bridge Unit 0

<4—p Coh.cache @¢—Pp
cHT nHT
Gl Gere Xbar Xbar
ﬂ
Functional |
Memory Ctrl.
Y Unit n
Embedded SRAM
lexternal xRAM

Figure 4-6. The coherent device infrastructure

4.2.2 Unitsand Crosshars.

AscHT units, thefollowing types of unitsexist: acHT/nHT bridge, a cache, and a coherent
memory controller. Not al units have to be present, instead, they may be combined with
each other depending on the requirements of the specific application. All these unitshave a
noncoherent HT Crossbar compatibleinterfaceto the application side. Thisallowstoimple-
ment noncoherent devices behind the coherent part.

Theneed for two crossbar switches. The coherent fabric has two crossbar switches, that
arerelatively closeto each other. Every crossbar hasalatency of three clock cyclesand also
introduces some wiring complexity. This may be a problem especially for implementations
on FPGAs, where routing resources are limited. However, the following advantages clearly
outweigh the disadvantages of having two crossbars:

 In order to keep changes to the noncoherent functional units as small as possible, their
on-chip nHT interface should not be changed. Thus, the nHT crossbar is essential to
connect the various functional units, and thus is required.

HT AND CHT PROTOTYPES 119

» Theprevious chapter showed that a coherent fabric should be as densely interconnected
aspossible. A cHT crossbars opens up the possibility of adding more cHT linksto the
device. While an implementation in the HTX slot does currently not allow the use of
more than one link, implementations in the processor socket could easily do so.

The interface between cHT crossbar and the coherent unitsisjust as specified by the cHT
protocols.

The noncoherent HT crossbar routes requests based on the address. Thus, every unit at a
switch port that may be target of requests has a unique address space. Responses are routed
based on the SourceTag field inthe HT packet. The coherent memory controller can beinte-
grated just the same way. For an access to the coherent cache, the cache access (C_acc) bit
must be set, as this overrides address based routing. Thus, the command packet forward
must contain the C_acc hit in the tag.

bit time 7 | s s | 4 | 3 2 1 0
0 SeqID[3:2] Length[2:0] Rsv StateHint[1:0]

PassWwD| SeqiD[1:0] UnitiD[4:0]
Mask/Count[3:2] | Compat SrcTag[4:0]

Addr[7:2] Mask/Count[3:2]

Addr[15:8]

Addr[23:16]

Addr[31:24]

Addr[39:32]

Addr[47:40]

Addr[55:48]

Addr[63:56]
11 command type | D_att | BAR | C_acc | res.

O[N] |~ |W[(N]|F

=
o

Figure 4-7. Coherent cache-aware command packet format at the nHT crossbar.

4.2.3cHT/nHT Bridge

The cHT/nHT bridge alows noncoherent device functionality without any changes in the
device behind the coherent fabric or the corresponding software. Due to the similarities
between cHT and nHT protocols, the essential functionality is small.

Accesses from the coherent domain may can only be noncoherent read and write requests.
The bridge trandate these from the cHT protocol to the nHT protocol, and vice-versa for

120 HT AND CHT PROTOTYPES

responses from the device. For some requests, the bridge also has to send a response back
to the requester in the coherent fabric.

Device-initiated sized read or sized write requests to the coherent domain must be for-
warded into the coherent domain. Thisincludesarouting tablelookup. For reads, the bridge
will not only get aread response, but also has to collect probe responses. For writes, order-
ing must be maintained. Thus, write requests are only forwarded if all previous writes have
been acknowledged.

4.2.4 Cache Design

There are 2 potentia applications for acoherent device cache. A general data cache, asdis-
cussed in Section 3.4.1 on page 89, and a queue cache. A general cHT data cache has been
implemented [129]. Only small modifications are required to use this cache as a queue
cache. The following section gives a brief overview about the cache implementation and
modifications that are required for a queue cache.

For agenera cache, the following transactions go over the coherent interface:
1. Read requests due to misses in the cache, and corresponding read and probe responses.

2. Changeto dirty request due to awrite hit to a non-exclusive cacheline, or due to the
new allocation of a complete cacheline.

3. Write requests due to cache evictions of modified data.

4. Probing requests caused by accesses of remote processors or devices. These must be
answered by either a probe response or aread response with the cacheline data.

Transactions 1 through 3 are all initiated by the device. Only transactionstype 4 isinitiated
externally. In a queue cache, transactions as in 1 do not occur. Mechanism 2 takes place
when new entries are inserted into the queue by the device. Data is transported to the pro-
cessors caches via 4. Write-backs, item number 3, occur if a processor reads a queue entry,
but the obligation to write the dirty cacheline to memory does not move to the processor
cache.

Figure 4-8 shows the top level diagram. Two units can access the cache data. The probe
handler isresponsible for all requests from the outside. Its main task isto answer incoming
probe requests either with probe responses, or with read responses.

The cache logic module is responsible for all requests that originate from the device. It is
organized as a pipeline and can thus process multiple requests simultaneously (see
Figure 4-9). The XBar input stage obtains control packets over the nHT crossbar. In the
next pipeline stage, a cache lookup occurs. As the cache may be busy with other requests,
this operation may stall for some clock cycles. Depending on the type of request and the hit/

HT AND CHT PROTOTYPES 121

missinformation from the cache, the cache FSM unit schedul es the request to the next pipe-
line stage.

Upon a read hit, the direct response unit will generate a response. For a read miss, the
request store unit will generate a request on the cHT side, and also allocate an entry in the
reguest queue and in the cache. The allocation of anew cache entry may evict another entry.
If this entry is modified, it is written back to main memory by the CacheLineAdmin unit.
Responsesto these requests arrive at the request match unit, which matches the request with
the entries in the request queue. Then, the cache store unit writes the entry to the cache and
at the same time forwards the response the requester on the nHT side.

PROBE
[Froee | RoBE
CACHE MEMORY nHT interface
cHT interface
2 ’—>_
»
g {_NonrosTeD |
CACHE
<)l
T g e—
N
ROUTING
[Poste |« LOOKUP

Figure 4-8. Cache top level diagram [129]

A write hit will be forwarded to the cache store unit, which inserts the datainto the cache-
line. If the state of the cacheline is not an exclusive one, the CacheLineAdmin stage must
send invalidations to all other caches. In this case, the cache entry is marked “busy” and
may not be used unit all caches have acknowledged.

A write misswill generally bypass the cache and proceed directly to the CacheLineAdmin
stage. An exception are write misses that write a complete cacheline of data. Asfor aread
miss, a cache entry has to be allocated. After that the CacheStore unit writes the data into
the cacheline. The CacheLineAdmin unit must also generate invalidations on the coherent
HT.

122 HT AND CHT PROTOTYPES

It requires two modifications to turn the cache into a queue cache:

» Asanalyzed in Section 3.5.1 on page 94, it depends on factors like cache size and the
number of queues in the system whether cacheline replacement or bypassing should be
used. Thus, the cache should support both methods. The mode can be selected by the
devicedriver by setting afield in the configuration register space of the cache. This can
happen anytime during normal operation.

» Upon an external read via a probe request, the cacheline should be evicted from the
cache.

[— ——an.
A A nHT control & data packet
-
<4— Cache Store
Request Match <
> ¢ flow control
y nHT control & data packet
Direct Response)
v _§ ¢ flow control
c
2 P fl I
= ow contro
% Write Stage —g
y & ¢ nHT data packet
cHT interface nHT interface
y 'V
al
< Request Store € N %
g g ; HT control ket
o nHT control packe
- 5 R =3
(] °
a s
— £ 4 @
¢ N % flow control
» Cache Line Admin <

T

Figure 4-9. Block diagram of the cache logic module [129]

Ultra Implementation with coherently cached queues. The only modification to the
Ultra unit when it is used with the coherent cache to implement cacheable queuesisthat it
must set the C_acc bit for such datathat should be cached in the device. AsUltraisdesigned
for low-latency, fine-grain communication, all received data and the corresponding control
data are ideally cached. Thus, the Ultrareceiver must set C_acc for all writes of such data
to efficiently make use of the queue cache.

HT AND CHT PROTOTYPES 123

4.2.5 Transparent Memory Controller in the Device

The memory controller provides a coherent memory space to the host system. A top level
block diagramisshownin Figure 4-10. It is designed for adatacommunication from device
to the host system as described in Section 3.5.2. The device needs write access to the
memory space, while the host system should obtain both read and write access. An addi-
tional write accessfor the device makes the memory controller amuch more universal mod-
ule.

Requests to the memory space by the host behave just exactly like requests to the system’s
coherent memory. The device driver controls which memory regions reside on the on-
device memory and which reside on the system’s main memory, and configures address
registers in the functional units correspondingly. For the functional units of the device, the
on-device memory controller is fully transparent. The FUs simply perform memory
accesses, which will be routed by the crossbar either to the host bridge or to the on-chip
memory.

Coherence
manager

A

A

A A 4
Network P Port 0k N?RAM Port 1
handler [emory

A A A A

Host
handler

HT Xbar
interface

—>

A

CHT core €———pp=

Queue interface

Ordering
unit

A

\ 4

P Directory |«

Figure 4-10. Coherent memory controller

4.3 Summary

This chapter detailed the implementation of the noncoherent HyperTransport core, which
is the heart of the direct connect architecture. Performance results are excellent, and very
promising for faster implementations of the core. The HT core implementation is already
being used for both research and production systems.

124 HT AND CHT PROTOTYPES

This chapter also specified the coherent environment and its components. A full specifica-
tion is essential to prove the functionality and has been performed with success. Also, the
coherent HT core, the cHT crosshar, and the coherent cache have been implemented and
tested in the FPGA prototype system. As predicted in Chapter 3, the performance of an
external coherent device isworse than for noncoherent devices, especidly if the link to the
deviceisaonly an HT400 link. Thus the coherent framework will not be used for an FPGA
production system. However, it is an excellent testbed for the verification of ASIC-imple-
mented coherent designs, and for the research on coherent networks in SOCs.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 125

58uggestionsfor Direct
Processor Cache Access

This chapter provides an outlook on direct processor cache access (DCA) architectures.
DCA has the same goal asthe transfer cache that has been proposed in Chapter 3: data that
iswritten by the device and will very soon be consumed by a processor is cached in order
to minimize access latencies. DCA moves the cache much closer to the processor, asit uses
the standard data caches of the processor. Thus, the read access latency that occurs when a
processor reads this dataisfurther reduced. In contrast, significant reductions of the overall
latency of atransfer between device cannot be expected when compared with the coherent
solutions and the transfer cache as presented in Chapter 3. Just asin the other mechanisms,
DCA must occur in a cache coherent fashion, which cost some time.

Nevertheless, the reduction of the processor read access latency that DCA bringsis signif-
icant for overall application performance [40].

Many considerations that have been made for the coherent device cache and the transfer
cache in Section 3.5.1 and Section 3.6 hold true for DCA as well. This includes the types
of datathat should generally be cached, and which component of the system can best decide
this.

However, two key challenges have to be solved to enable DCA architectures. Thefirst one
occurs in multiprocessor systems, where the right target processor hasto beidentified. The
second one is the development of a data transport mechanism into the processor caches.

Section 5.1 first shortly describes the design space. Then, the design space is narrowed
down by creating a mapping from device contexts over processes to processors, and ana-
lyzed in Section 5.1.1. Section 5.2 proposes four alternative mechanisms how DCA could
be implemented in a HyperTransport based system that uses an IOMMU.

126 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

5.1 The Design Space

The most important design aspects of direct processor cache access mechanisms as shown
in Figure 5-1 shall be briefly discussed.

Initiation. A DCA is per definition triggered by the producer of data, i.e. the device. How-
ever, the device does not necessarily need to be the initiator for the actual transfer of data.
For example, the device may send a prefetch hint message to the processor. The processor
then can decide to actively pull the respective data into the cache. If the deviceis theiniti-
ator, it pushes data into the processor cache.

Mapping. A key problem for DCA mechanismsin multiprocessor systemsisto identify the
right processor cache that should be the target for a DCA. Assuming virtualized devices,
the task isto map adevice context to athread. In a second step, the processor must be iden-
tified which executesthisthread. Other information besidesthe device context, asfor exam-
ple the source of a message may be included in the mapping process as well.

Theoretically, address based mapping can be used instead of context based mapping. Inthis
case, large address mapping tables must be maintained.

direct processor cache access

initiation processor location of flexibility ~ target cache
mapping mapping resource of mapping

Figure 5-1. Design aspects of DCA mechanisms

The L ocation of mapping resources can be at the device, at the 1/0 bridge for noncoherent
devices, or at the memory controller. A device based mapping has the advantage that map-
ping resources scale with the number of devices. The interconnect to the device, as Hyper-
Transport for example, must support DCA packets.

If the mapping is performed by the bridge, most details of the DCA protocol may be hidden
from the device, which increasesinter-platform compatibility. DCA mapping could beinte-
grated into existing data structures, as the 1/0 memory management unit (IOMMU). An
IOMMU may allow adeviceto perform the addresstrandation itself usingan |OTLB. Sim-
ilarly, the device could be allowed to perform the mapping using the same TLB.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 127

Flexibility. A process or thread may be statically bound to a processor. In this case, the
mapping does not have to be changed during lifetime. However, it may be disadvantageous
if the process can never be scheduled to a different processor. If processes are allowed to
be scheduled to other processors, mapping tables must be updated. Also, there is a penalty
for every such processor switch, as the newly assigned processor has a cold cache. Thus,
even for adynamic scheduling of threads, processor switches should be avoided.

Target Cache. As atarget cache, any of the data caches that is associated with the target
processor can be used. |n some systems, multiple processor cores sharealevel of cache. For
example, four-core Opteron processors share an L3 cache. If thisL3 cacheis selected as a
target cache, a process does not need to be bound to a single processor core. Instead, it has
to be bound to the group of cores, on which it can be scheduled freely.

5.1.1 Device - Thread - Processor Relations

In a symmetric multiprocessor environment, DCA is complicated by the fact that a thread
typically may be scheduled to any processor of the system. However, DCA can only work
if thisprocessor can beidentified. This chapter discusses how adevice context, athread and
the processor can be associated with each other.

A device context may be areal, explicit context, asin the virtualized Extoll architecture. In
devices where no explicit context exists, it can be implicitly given by the informationin a
packet header. For TCP/IP packets, the combination of the target TCP port and target |P
address may define such a context.

Every device context is mapped to a single process exclusively. The relation between con-
text and thread is not bijective: a process may use several contexts at the same time.

The device-thread relation. When analyzing how incoming requests are distributed to
processes or threadsin the system, two application models have to be considered. One pos-
sibility isthat anumber of different and independent processesis running in the system. As
a process can only run one processor at atime, a binding between a device context and a
process may thus explicitly define the processor which is assigned to the process.

The second application model is a humber of worker threads that are used to process
requests. There are no differences between the worker threads, any thread may work on any
reguest that is coming in from the network. Thistype of application istypical for commer-
cial workloads as web servers and database servers. In a socket based environment, every
worker thread has an exclusive set of portsthat it uses to work on incoming requests. This
port has been assigned to the thread when the socket based connection was established.
Thus, there exists a device context to thread relation as well.

128 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

The thread-processor relation. If a process is in execution on a processor, there is a
clearly defined relation between the thread and the processor. In particular, a thread can
determine the current processor on which it isrunning. However, thisis not sufficient for a
implementation of DCA. Packets for a process may arrive as well while the process is not
in execution.

In essence, DCA requires athread-processor relation that does not change frequently. This
is the case if the operating system’s scheduler avoids to shift threads between processors.
Besides DCA, there are other potential benefits of such apolicy. InaNUMA system, it is
advantageous if athread is running on the same die that holds the processes memory (see
Section 3.3). Also, if athread has been de-scheduled only for a short period of time, a part
of the current working set of the thread may still be present in this processor’s cache. A
rescheduling to the same processor can thus significantly decrease the start-up penalty that
is caused by a cold cache. Under Linux, the kernel-level “numalib” library and the
“numact!” tool [109] give users explicit control over the allocation of memory and proces-
sors. Using these functions, a process can for example be bound to a specific processor so
that it executes only on this processor. It also can be bound so that it executes preferably on
this processor.

Asthe operating system or the thread itself know the processor that is currently assigned to
the process, thisinformation can easily be communicated to create a context-thread-proces-
sor relation.

A different approach is to create a direct context-processor relation. Such a solution is
implemented with the Receive Side Scaling (RSS) [39] mechanism. Intel claims [37] that
the distribution of incoming packets to processorsisone of the large bottlenecksin TCP/IP
processing using modern 10GbEthernet NICs. RSS specifies a way how a processor can
determine the target processor that has to process an incoming packet. Thisis done by com-
puting a hash function on certain parts of the packet header, including source and destina-
tion IP addresses. Source and destination port may also be part of the address. The hash
result is used to select atarget processor over an indirection table in the device. The inten-
tion of RSSis not to fill the processor’s cache, but to send a directed interrupt to the pro-
cessor. However, this mechanism can be used for DCA purposes just as well, and in
particular, both applications may work very well together.

Mapping in virtualized environments. A context-thread-processor mapping istrivial for
non-virtualized devices, as the number of contexts and threads is one. In a virtualized
device, someform of table must be present, which isindexed with the context identifier and
returnsthe related processor |D. Several logical locations of thistable are possible. The pro-
cessor |D field may just be integrated into the context information. Ancther location may
be the data structures that are used by the IOMMU.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 129

One of the main tasks of the IOMMU isto map virtual device addressesthat adeviceisissu-
ing to physical addresses. IOMMUSs for x86 have been suggested by both AMD [42] and
Intel [41]. In these architectures, the IOMMU manages a device table!. The entry of such a
table holds, as the most important value, the root pointer of the page table that is used for
address trandation.

One useful application of thismodel isto give avirtual device the opportunity to accessthe
address space of a process using process virtual addresses, i.e. the virtual address space of
the processor and the device areidentical. This can be accomplished if every virtua device
has a device entry in the device entry table of the IOMMU, and the page table root pointer
points to the page table root of the process. In this usage model, a processor ID or CPU ID
field could be integrated into the device table entry, as shown in Figure 5-2. In contrast to
other solutions, this solution could not only work in cases where the device decides based
onit’sfunctionality if amemory access should use DCA. It isalso possible to useamemory
mapping by marking pages table entries as DCA-enabled pages.

In the case that adevice uses an IOTLB to cache trandlations from the IOMMU pagetables,
the device should cache the processor ID aswell in order to avoid an IOMMU lookup.

255 224
[Reserved |
pFE] 152
[Reserved |
191190 189 168 187186 185 163 163 180179 160
‘é ‘é IntCtl -E :f: % 3‘-: Reserved Interrupt Table Root Pointer [51:32]

S31.3 | = | =]|—=

150 [EXFEEREN %1%
[Interrupt Table Root Pointer [31:6]]1{;[IntTabLen JnJ
127 106 105 103 103 102 101 100 99 9% 97 98
[Reserved ‘ CPUID {S}'i,\fgil}‘_xl SDJ;‘:: lle(i lsﬂs&l 1 J
o . 118 it 1l
[Reserved [DomainID[15:0] |
& 62 61 60 52 51 32
fn:s| m‘| IR] Reserved] Page Table Root Pointer [51:32) |
31 211 9 8 7 10
| Page Table Root Poinrer [31:12] | Mode{2:0] | Reserved |T\| v |

Figure 5-2. A potential integration of a CPU ID filed in adevice table entry, based on the AMD
IOMMU specification [42]

1. Whileboth architectures are very similar to each other, they use different naming conventions. Here AMD’s
naming conventions will be used.

130 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

5.2 DCA for Hyper Transport

The analysis performed above sufficiently shows on what a DCA transport protocol may
build upon. Methods have been proposed in which the device or the IOMMU have the
knowledge which processor will access the data.

Now, suggestions for DCA data transport mechanisms for the coherent HyperTransport
network are presented. The next subsection introduces an indirect cache access mechanism,
where the data is prefetched by processor logic based on prefetch hints of the device or
IOMMU. Thereafter, three mechanisms for a push-style data transport into a processor’s
cache are presented. All three mechanisms require some packet format changes to existing
packets and new commands for control packets. Drafts of these modifications will be pre-
sented, except for the Write Allocate (WRA) packet, asthisis a packet of the coherent HT
protocol, and the presentation in this work might violate non-disclosure agreements.

5.2.1 Indirect Cache Accessvia Prefetch Hint

This solution reuses the prefetching logic that isimplemented in processors. Usually, these
prefetching engines are triggered by regular accesses to data like burst and strides. Now,
this prefetching engineistriggered by the device, which sends a prefetch hint to the proces-
sor.

TD

Dev ﬂb MC ——» Dev S—D> MC Directory clean

PrefetchHint
CPU
/ CPU1
pev YRy vic %‘; CPU2___» MC ™0 , pey SP > MC Directory not clean/
. CPU3 ﬁv No directory

PrefetchHint CcPU

Figure 5-3. Indirect cache access via prefetch hint

An important question is at what point in time the prefetch request is sent. Lowest latency
can be reached if the prefetch hint is sent directly after sending the write request. Theoret-
ically, there is the chance that the processor prefetches the line before the write request has
reached the memory controller. The most critical situation occurs if the line is aready

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 131

cached, and the prefetch arrives before the invalidation from the memory controller. Exper-
imentation or simulation must be performed to determine the best strategy.

bit time 7 | s s | 4 | s | 2 1 | o
0 Addr[7:6] Length[2:0] Rsv StateHint[1:0]
Addr[15:8]
Addr[23:16]
Addr[31:24]
Addr[39:32]
Addr[47:40]
Addr[55:48]
Addr[63:56]

N(fo|la(bh|W[IN|F

Figure 5-4. Sized-write payload for prefetch hint

In the case of the HyperTransport protocol, the prefetch hint packet can be a standard HT
sized posted write packet. Thus, changesto the HT protocol are not necessary. The packet
is targeted to processor address space, which may be integrated into the configuration
address space of the processor. The packet payload, shown in Figure 5-4, consists of a
single 64bit word, which must contain the address of the cacheline. The remaining space
can be used for a coherence state hint and alength-field to allow prefetch hints for multiple
consecutive cachelines at once:

» SateHint[1:0]: Hint to the processor in which state of the coherence protocol the line
should be fetched.

e Length[2:0]: If >0 number of following cachelines with subsequent addresses that
should be fetched as well.

e Addr[63:6]: Address of the cacheline that should be prefetched in a cacheline-sized
granularity.

5.2.2 Direct Cache Access

Direct accessto the processor cache by the device without the use of prefetch hints promises
lowest latencies. However, in asystem that uses the memory controllers to serialize simul-
taneous requests to the same memory address, any DCA transfer must also be subject to this
serialization processto avoid memory inconsistencies. A direct point-to-point transfer with-
out involvement of the memory controller is not allowed. The three following options
mainly differ in how they access the serialization point.

132 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

Dey WRA cPU S—zDPMC
Validam &v Dev Directory clean
MC
Dev WRA CPU EPMC
/ .
Validats™a o B gzﬂi /’ Ly e zgedci:cégor:c;t clean/
™ cpus o

Figure 5-5. Cache update with parallel accessto MC and CPU

Option one. The device sends an update directly to the target cache, and a validation
reguest to the memory controller at the same time (see Figure 5-5). The CPU collects both
the write_allocate (WRA) packet and all probe responses that are send to it due to the val-
idation request of the device. However, the matching of WRA and PR packets poses some
problems. First of all, probe responses are always generated as a direct or at least indirect
response to a request from the processor that will later receive the probe response. Thus,
matching can be done using a sequence identifier that has been assigned by this processor.
The scheme presented here is different, as the request is generated by the device. Matching
can only be performed if additional information is provided. Either the probe response must
carry thememory addressinit’s header, which meansasignificant overhead. Alternatively,
it must contain both the devices ID and it's sequence ID. Another issue is the size of the
matching queue: in order to avoid deadlocks, it must be large enough so that it never blocks
incoming requests. Due to these problems, this option is not a solution for DCA.

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 133

WR
Dev CPU ™ Dev Write Hit

WR Validate PR D
Dev CPU —>» MC —» CPU S—>M(: Write Miss &

D Directory clean
Dev
. CPU1

WR Validate \A sSD

Dev CPU —» MC ﬁv} CPU2—3p CPU —»MC Write Miss &
\A cpu3z _-Y ™ Directory not clean/
PR Dev No directory

Figure 5-6. Cache update with serial accessto CPU and MC

Option two. An dternativeisto send datato the target cache without notifying the memory
controller directly. The target cache then hasto do just exactly the same asif the processor
had written to the cacheline: If thelineis not in an exclusive or modified exclusive state, a
message has to be send to the memory controller, and eventually invalidation-probes have
to be sent to other caches. A flow diagram for this case is shown in Figure 5-6.

This mechanism providesthe best possible performancein the case that the respective cach-
eline is already present in the target cache in an exclusive state, which may be caused by a
previous prefetch by the processor.

A critical issue regarding the latency of aDCA operation isthat the processor isin the flow
path that makes the request globally visible. Considering that DCA is an speculative opti-
mization to speed up memory accesses that are likely to be performed in the future, it is
clear that requests from the processor should have priority over DCA requests. If thisleads
to asituation in which DCA-initiated requests are queued at the processor, the time until the
request will be observed globally increases. As aresult, the write bandwidth of the device
decreasesif it performs write ordering.

134 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

WR WRA TD

Dev —» MC CPU MC Directory clean
?B\\A Dm/jil»MC
CPU1
T D .
pev YRy vc /—P> CPU2—p MC WRA cpu MC Directory not clean/
S cpPU3_-7 ~1 No directory
PR Da/jﬁleC

Figure 5-7. Cache update with serial access over MC and CPU

Option three. The memory controller is the target for the device’s writes, as in conven-
tional DMA. The memory controller then can update aprocessor cache, either with adirect
update, or with a prefetch hint. A benefit of this schemeis that processors are not required
to perform the requested updates to guarantee consistency.

For amapping by the device, the format of write request packets must be modified, asit has
to include the target processor ID. Current HT packet headers do not provide sufficient
spacefor thisfield. In HT3-based systems, this can be done by introducing anew extension
packet. This extends HT control packets to a size of 96 bit for standard HT packets using
40 bit sized addresses, and to a size of 128 bit for HT packets using 64 bit sized addresses.
The extension has to be appended to the header only for such packets that should be for-
warded. A draft of such an extension is shown in Figure 5-8.

e SateHint[1:0]: Hint to the processor in which state of the coherence protocol the line
should be fetched.

e DCAUnitID[7:0]: Unit ID of the DCA destination.

bittime|| 7 6 s | 4 | s | 2 | 1] o
0 01 Cmd[5:0]= 111110
1 Isv. | StateHint[1:0]
2 DCA Unit ID[7:0].
3 rsv.

Figure 5-8. Proposed HT 3.0 packet extension for write packets with a cache hint

SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS 135

From thisfirst analysis, option three seemsto be the most advantageous solution. However,
future work must perform an in-depth analysis and comparison of these mechanisms.
Another consideration isto support processor-to-processor DCA with the same mechanism.

5.3 Related Work

A patent by Intel [61] describes the sketchy idea of a data structure that can be used for an
DCA mechanisms based on address ranges. This mechanism is embedded into an IOMMU-
like structure.

A dedicated network cache to speed up the receive operation in message passing NICs is
suggested in [78]. The cacheis parallel to the normal data cache of the processor, and can
be accessed using special network load and network_store instructions. Besides the mes-
sage data, a cache entry contains the message 1D, which is used to unambiguously identify
the message and to bind it to it’s target address. Also, it contains the network tag and pro-
cess tag fields, which point to the respective network memory or process memory home
address of the cacheline. Before a process performs a receive operation on a message, the
memory tag isthe valid pointer to the home address, after it has been received, the process
tag isthe pointer to the message, and buffer spaceinthe NIC can befreed. Asall 3tagshave
to be searched associatively, the authors suggest an implementation as 3 different caches.
In multiprocessor environments, a message predictor [79] shall be used to find the appro-
priate processors cache.

136 SUGGESTIONS FOR DIRECT PROCESSOR CACHE ACCESS

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 137

6Reliabi|ity In a Direct
| nter connection
Networ k

Direct interconnection networks are the state-of-the art network topology to interconnect
processors in small-scal e shared memory multiprocessor systems. Besides small-scale sys-
tems, direct interconnects can a so be applied to large networks, as for example in the Cray
XT3 and XT4 (see Section 2.6.3), IBM BlueGene (see Section 2.6.4) or Extoll, which all
employ a 3D torus topology.

Reliability of suchlarge networksisof highest importance: either, because systemsare used
in environments where failures are unacceptable, as for example in banks. Another reason
for the need for reliability isthe sheer size of systems. The likelihood of most faults scales
with the system size. Thus, the mean time between failures may be reduced to alevel where
asystem may become useless. At the same time, areliable network should be able to offer
lowest latencies and high scalability.

With Extoll, anetwork has been devel oped that provides areliable service. The Extoll net-
work protocol significantly improves communication over high-speed 8b/10b encoded
serial links by providing a loss-less service. A significant improvement over state-of-the-
art protocolsisin particular the development of aprotocol that uses error correcting control
characters and link based retransmission.

A second significant improvement over state-of-the-art networks is a hardware imple-
mented mechanisms to allow deadlock-free routing in regular networks with faulty links.

This chapter describes the Extoll network and network protocol, focusing on how reliability
isachieved. Section 6.1 gives an overview about the design space for areliable direct inter-
connect networks. Section 6.2 and Section 6.3 detail the Extoll network, focusing on the

138 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

fault tolerance for faults on the link. An outlook about on-chip mechanisms is given in
Section 6.4.

6.1 Faults

A faultisadefect or abnormal condition that potentially may lead to thefailure of asystem.
For example, abit flip in amemory dueto cosmic radiation isafault. Not all faultsturninto
an error, which isthe invalid state of the system. If an error occurs which cannot be recov-
ered, the system has afailure.

Hardwarefaults, i.e. faultsthat are not caused by software behavior, can be categorized into
hard faults and soft faults. In a hard fault, the physical hardware is broken and does not
operate in the way it is supposed to. Typical hard faults in computer networks are power
failures of individual nodes and link cable faults.

Soft faults are transient faults. They affect only the information that is stored on the chip or
link. As soon as the system has been brought into avalid state, which in the worst case may
regquire areset, it continues to operate normally.

Faults can beresolved at different levels. Hardware bit faults for example can be efficiently
corrected locally in hardware. Even some hard failures, as a defective memory cell, may be
resolved efficiently in hardware. Other faults must be treated on higher levels. In the end,
the highest tolerance against faults can only be achieved by high-level mechanisms as
checkpointing and redundant processes and nodes. However, there are strong reasons to
treat at least some faults directly in hardware:

* Methods like checkpointing or high-level redundancy are relatively expensive, evenin
the absence of faults. If faults can be treated more efficiently on lower layers, the per-
formance/price ratio may be significantly better if the system relies on these mecha-
nisms and reduces high-level mechanisms.

» From Amdahl’s law, it follows that faults that occur frequently should be resolved
faster for a better system performance. The resolution of rare faults may be expensive
but still will not affect performance significantly. Due to the ever increasing system
sizes and speeds, in particular transient faults are becoming much more likelier, and the
need for an efficient resolution isincreasing.

» Thedetection of afault must occur in any case. Depending on the type of fault, the
immediate resolution in hardware may not cost significantly more.

Relevant faults that may occur in the Extoll network are:

» Transient faults with bit errors on the links. Aslong as components of the link do not
have design flaws, these faults have the characteristics of Gaussian noise.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 139

» Other transient faults on the links, e.g. burst errors when the bit synchronization at the
receiving side of aserid link islost.

e Transient faults with bit errors on chip.
e Permanent faults of links, e.g. if cables are broken or accidentally unplugged.

» Permanent faults of Extoll chips. Except for the burn-in and wear-out phases, the only
relevant hard faults are power faults. These can efficiently be reduced by using redun-
dant power supplies. If apower failure still occurs, it will affect not only the Extoll
chip, but the entire node. Thus, such afailure must be resolved at a higher level. The
network only has to ensure that routing around the faulty components is possible.

6.1.1 Units

In contrast to the burn-in and wear-out phases, the failure rate for most componentsin adig-
ital system during the useful life period is constant. The occurrence of failuresin any system

or subcomponent is frequently measured as failuresin time (FIT):
1E|T = Afailure
10°hours

The reciproca vaue of the failures in time is the mean time between failures (MTBF).
Together with the mean timeto repair (MTTR), the avail ability of asystem can be specified

as.
MTBF

Availability = MTBE + MTTR

Besides the availability of a system, the correctness of resultsis an important property of a
system. This section aimsto increase the availability of the system by increasing the MTBF
due to soft errors either in chips or on links, and at the same time to ensure correctness.

If the probability of errors depends on the amount of data that is processed or transmitted
rather than on the time that passes by, an error ratio is abetter measuring unit than FIT. The
bit error ratio (BER) for the transmission over a physical mediais such aparameter: itisthe
ratio of erroneous bits per transmitted bits. More frequently, BER is trandlated as bit error
rate. This reflects the fact that bit errors are caused mostly by random noise. In such sys-
tems, the BER equalsthe bit error prabability p(e). The BER can be converted to FIT if the

data frequency is known:
FIT 1
10°. 360 FREQ

BER =

140 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

6.1.2 Soft Error Nature and Rates

Today, the most important source of soft errors on chips are cosmic particles. High energy
neutrons may produce ions when they hit silicon nuclei. These ions may change the charge
especially of reverse-biased junctions [146]. Figure 6-1 shows that the cosmic ray flux
increases with the height above sea level. Soft errors due to radiation thus increase by the
same amount.

Leadville, CO

10000 -

5000 p—

City altitude (ft)

- /- New York City
i L)

5x 10>

Cosmic ray flux —

Figure 6-1. Cosmic ray flux increases with the altitude [148]

Another source of ions are radioactive impurities in the packaging materials. The same
applies for solder bumps, although lead free solder has much lower impurities than leaded
solder. In the past, neutron interactions with borophosphosilicate glass (BPSG), a material
that has been used to form insulator layers, also were a source of ions.

Soft errors caused by radiation affect DRAM, SRAM, sequential and combinational logic.
In memories, more than one cell may be hit by a single event, causing a multi-bit error
[154]. Therefore, RAMs are usually organized so that physically adjacent cells are not log-
ical adjacent, so that only single bit errors occur per word.

Flip-flops and logic nets are also subject to soft faults caused by radiation. In logic nets,
such an event may cause a glitch. In sequential logic, the logic net drives one or more flip-
flops, either directly or indirectly over other logic nets. A fault only occurs if a flip-flop
samples the glitch. The strength of the glitch is determined by the capacitance of the net.
Timing critical paths are more affected. Currently, it is being assumed that the error rate in
static logic is significantly lower than for sequential logic.

The most interesting question is how the soft error rate will impact future chip designs.
Ever-shrinking geometries and voltages lead to lower chargesin logic and memory. Thus,
an ion’s impact becomes more important. Against that works that logic elements occupy a
smaller area, which decreases the chance of a hit. Figure 6-3 shows how the soft error rates

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 141

for SRAM scale with technology. It shows a steady increase of the system SER, which is
mainly caused by the growing size of systemsand anearly constant bit SER. Hazuchaet al.
[147] find a similar development, with aslight increase of bit SER by 18% per technology
generation. In contrast to SRAM or logic, the DRAM vulnerability is decreasing constantly
when measured per bit, as shown in Figure 6-2.

A 6 mm? examplein amodern 90nm logic CM OS process! based on the vendors SER spec-
ifications shows that raw FIT rates are around 13 FIT/kbit for flip/flops, and around 8 FIT/
kbit for SRAM at an atitude of 300 m above sealevel. Thus, for a chip with 10 kbit of flip-
flops and 32 kbit SRAM memory, the FIT rateis 385 FIT. In a system with 1000 chips, an
upset in the SRAM occurs every 3.85*10% hours, i.e. every 1.2 years.

1 == o T 10
——0 1 Mbit
Normalized 14 =
3 cell capacitance g 1
3o 107 g
Ta . o g
@ E Normalized -4 £ ot [
%% junction volume | 3 = %
L [=] —
- > o
@ Y = w —2
85 o \ N 3 g 10
[} 107 | \ 2 =
= 1 < "
2 \ voua‘ge 2 o T N4 Ghits....;
o)
y — # DRAM bit SER
102 - i 107
1,000 100 1,000 100
Technology (nm) Technology (nm)

(a) (b)

Figure 6-2. Soft fault rate scaling for DRAM [146].

& SRAM system SER "
1 X * SRAM bit SER -~ elo
3 4 S -% ¥ SEAN Bk SR %QCJ
= < | = 100 Y &
= KW
T o ~0 4 g I,X/
S g a8 (2 .
= 4 = =
33 S 8 10 /f“ i
To & |2 7% With BPSG
BT q0?r T Normalized |\ 5 % /
E capacitance| \l. 12 éfll. E 1 \—0 B Y
= ¢ Normalized . g
volume “x‘_ /
A Voltage A /
103 L 29 i 1 1 0 /
1,000 100 1,000 100
(a) Technology (nm}) (b) Technology (nm)

Figure 6-3. Soft fault rate scaling for SRAM [146]

1. Such dataisstrictly confidential. Thus, more details cannot be given here.

142 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

Bit errorson paths between chips. Noise on cables or traces between chips can also lead
to soft errors. All components on the path between two chips have an influence on the error
rate: transmitters and receivers on the chip, the package, PCB traces, connectors and cables.
Thus error rates depend on the detailed configuration of the system and can only be
obtained by detailed measurements in the system [141]. Extoll is not limited to one such
configuration, instead, a variety of configurations is thinkable: electrical or optical high
speed seria transmission over cables, parallel eectrical transmission using low-voltage
digital signaling (LVDS) or backplane transmission. Thus, it is sufficient to use the rule of
thumb estimation that raw bit error rates are in the order of 10 12 to 10 "1° for cable based
transmission, as for examplein an optical cablethat is specified for up to 20 GBit/s[143].

With an BER of 10'1° on asingle 10GBit/s link, a bit error will occur every 10°th second,
i.e. ever 27 hours. A 1000-node 3D torus topology has 6000 unidirectional links, alink bit
error occurs every 16 seconds. Assuming that bit errors are unrelated, multi-bit errors in
datawords are rather unlikely. With the same BER, the praobability of atwo bit error w=2
within a code word size of n=10 bit and ps~=BERIs:

p=(Dpl1-p)" ™" = 45107

In the above example, thisoccurs every 1.1 billion years. It can be concluded that single bit
error correction is essential for systems with alarger number of links. Double-or more bit
detection is not necessarily required when random bit faults are assumed.

Obviously, bit errors on the link are by orders of magnitude more frequent than SEUs on
chip. Error correction on linksisin any case required. However, such rules of thumbs must
be treated with care.

Which faults turn to errors? A classification of the outcomes of a bit fault is shown in
Figure 6-4. This classification is a modified version of the classification introduced in
[149]. Not every fault leads to an error and failure of the system, even if it cannot be cor-
rected. Such afault is called benign fault. An example for such an fault isabit error in the
empty part of aFIFO queue. As such an empty entry will never be read and used, this fault
does not generate an error. If afaulty bit is used and the fault is relevant to the program or
application and cannot be corrected, an error occurs. Such errors can be classified into
detected errors, and errors that silently corrupt data.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 143

Faulty bit is used
and relevant?

no ves

Bit is protected?

Detection & correction
System or

application detects
problem?

Detection

no

Figure 6-4. Classification of the possible outcome of soft bit faults

6.1.3 Error Correcting and Detecting Codes

Bit error detection and correction both rely on redundancy, i.e. they require additional
resources. For digital systemsthisimplies that information in this systemis represented, or
coded, in aredundant way. Depending on their capabilities, these coding schemesare called
error detection codes (EDC) or error correction codes (ECC).

A code consists of aset of code words. The number of bitsinwhich two distinct code words
differ is called the Hamming distance (HD) of those words. Increasing the Hamming dis-
tance between two valid code words, and thus adding redundancy in the code, means that
an increased number of bits may change without flipping one code word into the other.

144 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

only detection
possible
corrected to ay T corrected to a,

d(ay,ay)

Figure 6-5. Geometrical interpretation of Hamming distances

The minimum of the Hamming distances between every single pair of wordsin acode is
the minimal Hamming distance of acode, often smply called the Hamming distance of this
code. A code that is able to detect all errors with f, faulty bits must have a minimal Ham-
ming distance d,,, of at least:
dmingg = fo+1
To correct a code word in which some bits have been altered, this erroneous word can be
mapped to the valid code word with the lowest Hamming distance. In a geometrical inter-
pretation, all words on the cloud around &, in Figure 6-5 will be mapped to this code word.
Thus, the minimum Hamming distance must be greater to assure that the clouds around dif-
ferent valid code words do not intersect with each other:
dming,, = 2-f,+1

corr

Often, codes are used that correct errors with up to fo faulty bits, while at the same time
detecting errors with fo>fq. bits. The most popular codes from this group have single error
correction, double error detection (SECDED) capabilities. Although a dmin for thiscaseis
usually not given in the literature, it can easily be constructed: In the first step, a SEC code
isconstructed from the original code. In the second step, asingle error detection (SED) code

is applied to the SEC code. Thus, the required Hamming distance is:
dmin = (foq—feo) +2-fo+1 = fq+fe +1

Thisapproach to classify error correcting codesisvery useful if errorsthat may occur inthe
system are rare and by their physical nature limited to a fixed burst length. In particular,
single hit errors are a frequent phenomenon of errorsin systems.

All error correcting codes have to introduce a minimum redundancy to reach agiven dmin-
det OF dming,,. With a given code word length I, and the number of redundant positionsk,

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 145

the error correcting code will have the length n=1+k. The following equation shows how k
can be computed for adesired dmin. The derivation of this equation can be found for exam-

plein [134]. '
e

I +K
2> 3 (11
i=0
Besides correcting al bit errorsthat are below the Hamming limit, codes differ in how good
the can detect and/or correct errors with a higher number of faulty bits. Thisis of impor-
tance for systems with other fault models, as burst faults for example.

While alarge variety of error correcting or error checking codes exists, only asmall selec-
tion adds little redundancy while at the same time having alow coding and checking com-
plexity. A low complexity is important for the implementation in timing critical hardware
components.

Hamming Code. The Hamming code is a linear block code, i.e. it encodes fixed length
channel words. It has a Hamming distance of dmin=3, and corrects single bit errors. The
number of check bitsthat are required can be determined by evaluating the equation above,
which simplifiesto: 2“>k+1 + 1. The extended Hamming code has a dmin=4 and adds the
capability to detect two-bit errors. The construction of these codesfor agiven | can befound
in the literature [134][135]. [142] shows that for a system with a purposely increased raw
BER of 3.2*10°°, Hamming coding increases the BER to 3.86* 10716

Cyclic Redundancy Codes (CRC) are cyclic codes over the Galois field of two elements
GF(2). CRCs are used for error detection. The CRC agorithm can be described as a poly-
nomial division in GF(2). Binary datais represented as a polynomial, where the single bits
of the word are the coefficients. For example, the word ‘10011101’ is represented as
X+ x3+x%+x% . The data word u(x) is divided by a generator polynomial g(x). The
remainder of thisdivisionisthe CRC value. Thisvalueisappended to the dataword to form
acodeword. A CRC check consists of arecomputation of the CRC of the dataword part of
the code word, and a comparison with the CRC value in the code word.

A commonly used notation is CRCI, where | denotes the most significant term for which
the coefficient is 1. CRCs are capable to detect any burst errors where the distance between
the first and the last erroneous bit is smaller or equal tol.

Finding the best CRC polynomial and length for an application is generaly difficult, asthe
quality depends on the dataword length and a Hamming distance requirements. Evaluations
of polynomials can be found in [136][137].

A straightforward hardware implementation of the CRC calculation is a linear feedback
shift register (LFSR) as shown in Figure 6-6. The drawback of thisimplementation is that

146 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

only one bit of the dataword can be shifted into the register at atime. Parallel implementa-
tions can be constructed by expanding the equations for multiple clock cycles[138], which
can be done automatically in the HDL code[139]. With additional parallel logic, thetiming
critical path can be reduced to one XOR gate [140].

Figure 6-6. Linear feedback shift register for g(x) = x3 + x? + 1 [139]

6.1.4 SEU Tolerant Design

On chip. Logic on achip can be differentiated into control logic and data paths. The treat-
ment of bit faultsthat are caused by single event upsetsisdifferent for both types, as shown
in Figure 6-7. Control logic can be replicated on amodule level. The most frequently used
replicationistriple modular redundancy (TMR), which has originally been proposed by von
Neumann [144]. Here, three instances of amodule work in parallel, and a“ majority organ”
determines the output that is generated by the TMR block. If information redundancy is
used, fault checking and fault correction state machines can be constructed, for example
using Hamming-coded state vectors [145].

For data paths, atriple redundancy does not offer any benefits over a correction schemelike
Hamming, but requires significantly more resources. Thus, error correcting codes are usu-
ally employed to protect data paths. Theoretically, backwards error correction (BEC) pro-
tocols could be used in chip for communication between components that are protected
otherwise. In the general case, this would drasticaly increase communication protocol
overhead and lead to unpredictable latencies of data paths. At the same time, additional
buffers and acknowledgements cannot decrease resource utilization compared to FEC
mechanisms.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 147

on-chip soft fault tolerance

control logic data paths
modular redundancy information redundancy information redundancy
e.g. triple redundancy * *
fault tolerant forward error correction

state machines

Figure 6-7. Chip soft fault tolerance design space

Links. Soft fault correction on links is somewhat different. While the physical link itself is
aways a data path without logic, data that is transmitted on the link can be distinguished
into payload data and link control information. Control information is such data that con-
trolstheflow of payload data and thus determines the state of both the transmitting side and
the receiving side. For both, FEC and BEC mechanisms are possible, as shown in Figure 6-
8.

Both FEC and BEC mechanisms consume link bandwidth, the total occupied bandwidth for
FEC codes is the sum of the codeword length | and the number of redundant positions k:
Neec = I+ Keec

For BEC mechanisms, a part of the overhead is caused be the retransmission and the trans-
mission of acknowledgements. However, for the low BERSs that are present, the influence
of the retransmission can be neglected:

Ngec = ! +Kgec * lack

Thus, the overhead of both mechanisms depends only on the bits that are appended for cor-
rection and to acknowledge the reception. For very small |, for example alink character, an
correcting code typically has less overhead than a BEC approach, as the acknowledgement
will have about the same size |. Askggc grows faster than kg with |, backward error cor-
rection will have less overhead for alarge |. However, assuming 64byte data words, a FEC
using a Hamming code with kggc=10 has still less overhead than a BEC with a parity bit
ksec=1 and an acknowledge character size of 18 bits. But a FEC has some major limita-
tions:

148 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

» If alow latency hardware implementation is the goal, scalability of | islimited by com-
putational complexity. Also, acheck can only be performed if all data of the code word
is present at the sametime.

» FEC protocols cannot correct words that get lost either completely or partially, which
may happen in cable transmission.

 If line codes like 8b/10b are used, an FEC may be difficult or impossible to implement
(see Section 6.1.6).

Asaresult, BEC is being used for bit error correction in Extoll, while small control words
are protected using forward error correction.

link soft fault tolerance

control information payload data
forward error protocol check with backward error forward error
correction backward error correction correction
correction

(retransmission) (retransmission)

N/

link-based
retransmission

Figure 6-8. Link soft fault tolerance design space

Besides the overhead on the link, backward error correction requires buffer space on the
transmit side of alink. The size of the retransmission buffers depends on the link round-trip

latency t,; in clock cycles:
_ Vsignal A
propagate — t c*

t, = 2(t *+togic) * tinsert * thie» With t

propagate insert
The propagation delay tygpagate depends on the Iength%% the cable and the velocity of the
electrical or optical signal, which can be estimated to vg,=3.3ns/m. All other delays occur
on chip and are directly measured in clock cycles. Logic delays of the transmit and receive
side are summarized in tjog;c. Thelength of aflitin clock cyclesisty;;. Onthereceiver side,

the link may be busy, so that an acknowledgement may be inserted only after tj,yt. IN the

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 149

case of Extoll, acknowledgements may be inserted only in between flits, so in the worse
Case tingert= Hit-

Therequired size of buffer space is then t;; times the width of the link. For an FPGA-based
Extoll implementation with serial links, te,c=100ns, 1;=20m, t,5c=24 cycles which is
mainly caused by the serial transceivers, tinsrt = tiit = 32 cycles, t,; = 140 cycles, so that
buffers must have a minimum size of 280 bytes, which corresponds to the size of 4.4 flits.

6.1.5 Retransmission Endpoints

A link-based retransmission protocol scales with the network size, as every link that is
added to the network brings all resources with it that are required to fully utilize the link.
Naturally, it protects only against errors on the link.

Retransmission Endpoints

end-to-end link based

blocking non-blocking

Figure 6-9. Retransmission in networks

In contrast, an end-to-end retransmission protocol covers the complete path between two
communicating nodes, and thus may protect against all types of errors on the path in
between. End-to-end retransmission can be either blocking or non-blocking.

A blocking retransmission delays the termination of a network transaction. Depending on
the type of transaction, this may delay communication processes. Nevertheless, it is fre-
quently being used, as no or little hardware is required to implement this protocol. The
Extoll functional unitsimplement such an end-to-end acknowledgement, which can option-
aly be switched on.

A non-blocking retransmission between end nodes does not introduce this delay. It works
very similar to the link retransmission: in both protocols, transmitted data is buffered in a
dedicated buffer until the reception has been acknowledged. To fully utilize the bandwidth
of the network, buffers must be designed so that they can hide the round-trip latency to all
other nodes in the network. This includes link delays, on-chip delays, and delays through

150 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

congestion. Thus, the scalahility of thissolution islimited: if the network is extended, buff-
ers must be sized up.

However, the biggest problem of end-to-end protocols are the acknowledgements. They
must carry a sequence ID, and must be routable. Thus, they areflits on its own, consuming
link and crossbar bandwidth. Thus, acknowledging flitsis inefficient. Instead, packets are
acknowledged. For small packets, for which Extoll is optimized, this does not significantly
improve the situation. For larger packets, this increases the round-trip latency and thus the
reguired end-to-end retransmission buffer sizes for a non-blocking end-to-end retransmis-
sion protocol.

As a conseguence out of these considerations, Extoll uses link-based retransmission.

6.1.6 Serial Transmission

The Extoll protocol is designed so that parallel and serial links are supported. In a parallel
link, dataistransmitted over parallel lines. Additional lines carry control and clock signals.
In aseria protocol, these additional signals have to be multiplexed together with the data
signalsonto one singleline. Thus, aline code hasto be used. The code must assurethat there
are sufficient transitions between 0 and 1 in the transmitted code words.

Also amuch higher datasignaling rateis being used on serial links. Thisisdone using AC-
coupled transmission. The generation of very low frequency patterns on the link must be
avoided. Thisis aso called a direct current (DC) free transmission. This can be achieved
when the line coding ensures that the number of 0's and 1's is equal within a short time-
frame. The timeframe must be shorter than the controlling interval of the receiving ampli-
fier.

Another important issue in serial transmission is the alignment of the serial data stream to
word boundaries. Here aline code may provide alignment information in the code words.
The 8b/10b code has a set of comma symbols which can be used for alignment, due to their
unique bit patternswith respectively 5 consecutive 0’ sor 1's. However, thereisno real need
for such comma symbols. The alignment must be found once at the initialization of thelink.
Afterwards, it simply must be ensured that the clock isrecovered properly. Thus, it is better
to find the alignment at link initialization using longer training patterns.

The standard line code for serial transmission is the 8b/10b transmission code [150], which
isbeing used for example in PCI Express, Infiniband, Gigabit Ethernet and HyperTransport
3.0.

In the 8b/10b code, an 8bit data word is translated into a 10 bit line code word, also called
character. The difference between the number of 0'sand 1’ sis called the disparity of acode
word. Some 8 hit words have a trandation with a disparity of zero. All others have two

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 151

trangdlations: one with adisparity of +2, i.e. withsix 1’sand four 0's. The second translation
istheinverted code word, which then has adisparity of -2. The running disparity isthe sum
of the disparities of all words that have been sent in the past. The running disparity will be
either +2, 0, or -2, i.e. thelink is completely DC freein the long term. This can be achieved
in the coding step by selecting the code word with the inverse disparity than the current run-
ning disparity. Also, every two code words that are transmitted one after another will have
a maximum combined disparity of |2|. Another feature of the code is that a sequence of
morethan 5 1'sor 0's cannot occur in any combination of code words.

Besides the 28 data words, there exist 12 control characters. The nami ng conventions for
data and control charactersare D.x.y and K.x.y, with 0<x<31 and 0<y<7 . 8b/10b coding
is performed by coding the first 5 bits with 5b/6b coding, and the remaining 3 bits with 3b/
4b coding. X and y denominate the respective 5b/6b and 3b/4b characters. K.28.1, K.28.5
and K.28.7 are comma characters. They are the only oneswith the sequence“1100000” and
“0011111" and thus can be used to align the serial stream to word boundaries.

In the context of fault tolerance, an important topic is how bit errors on the 10b characters
behave and how they can be detected at the receiver. Although the 8b/10b coding is widely
used, | could not find an in-depth analysis of the 8b/10b protocol in the presence of transient
bit faults in the literature. Thus, the following analysis is a significant contribution that
revalues the behavior of the 8b/10b protocol in the presence of faults.

Some errorsin the 10b domain will turn characters into invalid characters. In this case, the
8b/10b decoder detects an out-of-table error. As a single bit error changes the disparity of
a code word, other single bit errors will be detected by the disparity check. However, the
disparity check may not precisely detect which character wasthe faulty one: characterswith
azero disparity delay the error detection. Also, multi bit errors, either within asingle char-
acter or in adjacent characters, may not be detected by checking the disparity.

State of the art 8b/10b based transmission relies on the checks for out-of-table and disparity
errors. If an error occurs, a possible solution is to re-initialize the link, as for example
HyperTransport 3.0 does.

Hamming Distances of Control Characters. The set of control characters can be used to
encode protocol information. For fault tolerance, large Hamming distances are desirable.
However, Figure 6-10 shows that Hamming distances vary. An important character is
K.28.7, asthisis the only character that cannot be turned into a data character by a single
bit error. A maximum sized set including K.28.7 that has a minimum Hamming distance of
3 and thus can correct single bit errorsis{K.28.7, K.27.7, K.28.3}. This set is being used
in the Extoll protocol. If error correction among K characters does not play arole, alarger

152 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

set with HD=2 can be constructed: {K.23.7, K.27.7, K.28.1, K.28.2, K.28.3, K.28.5,
K.28.6, K.29.7, K.30.7} .

K 23 7 'K 27 7 'K 280 'K 28 1' 'K 282 'K 283 'K 284 'K285 'K286 'K287 'K297 K307
K_23_7 0 2 4 5 3 3 4 5 3 4 2 2
K_27_7 2 0 4 5 3 3 4 5 3 4 2 2
K_28_0 4 4 0 3 3 2 3 2 4 4
K 28 1 5 5 3 0 2 2 3 2 4 3 3
K_28 2 3 s 2 0 2 3 4 2 3 5 5
K_28 3 3 3 3 2 2 0 2 2 5 5
K_28_4 4 4 2 3 3 4 4
K_28 5 5 5 3 2 4 2 2 3 3
K_28 6 3 3 4 2 2 0 3 5 5
K_28 7 4 4 2 3 3 3 0 2 2
K_29_7 2 2 4 3 5 5 4 3 5 2 0 2
K_30_7 2 2 4 3 5 5 4 3 5 2 2 0

Figure 6-10. Hamming distances of 8b/10b control charactersin the 10b domain

General Fault Correction or Detection mechanisms. When fault detection or correction
methods like Hamming codes or CRCs are used for additional protection of transmitted
data, these can be applied either on the unencoded binary data, or on the line code (see
Figure 6-11). Checks then will be performed either in the 8b domain or in the 10b domain.

error detection or correction

in liné code after line code
domain decoding

Figure 6-11. Error detection or correction for line codes

Checksin the binary coded domain. Systems usually perform error detection or correc-
tion inthenormal binary coded domain. Thisisthe most flexible solution, as the check may
be performed at any place in the normal binary coded domain. In particular, end-to-end
checksin software are possible. However, bit errors on the line code words may cause more
complex error patternsin the binary domain. Figure 6-12 showsthat single bit errorson 10b
encoded words may cause bit errors of up to 5 bitsin the 8b domain, even though the prob-
ability for 5Shit errors to be generated is very low.

This means that an SEC code would have to provide a Hamming distance of 5+3=8: error
correction becomes very inefficient. Error detection also becomes less efficient. In particu-
lar, CRC checks on data that have been designed to reliably detect bit faults of up to n bits
may fail to do so. However, due to the burst error detection capability of CRCs, a 16 bit

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 153

CRC can detect al bit errors within adjacent 16bits, and thus detects all errors that occur
within two adjacent 10b characters. Thus, CRC calculation in the binary domainisstill very
valuable.

HD>1 HD in 8bit domain
1 2 3 4 5 6 7 8

Number of 10b
word pairs*

141044 685 660 396 285 3 0 20% 8r*

*= the two different encodings per character have been treated as different words
**= these pairs consist of one K and one D character each - faults thus can be distinguished by the protocol

Figure 6-12. 10b word pairs with a Hamming distance of 1 and their Hamming distances on the
8hit domain

Checks in the 10b domain. Error detection and correction in the 10b domain would cir-
cumvent the previously described problem of error multiplication. Basically, the design
space shows two potential approachesto do so:

Error control bits may be inserted into the 10b stream after the 8b/10b encoder of the
sender. On the receiving side, these characters must be removed before feeding them
into the decoder. One proposal [158] isto add FEC bits in the 10b coded stream. In
order to not destroy the 8b/10b’s guarantees like DC-balance, every inserted FEC bit is
directly followed by its complement. They protect every 8 10b words using 8 FEC hits.
Asthe 8 complement bits are also included, the overhead of this mechanism in terms of
bandwidth is 17%. Error correction can only be performed in the 10b domain on the
complete block of 96 bits, which adds additional latency.

Theinsertion of a packet based CRC directly into the 10b domain would avoid the
problem of latency, and reduce the bandwidth overhead. In such a solution the CRC
must be extracted based on the protocol, which essentially means that the link port
logic must operate in the 10b domain. The 10b CRC calculation may protect packet
payloads better against multi-bit errors, but not control information that is outside of
packets.

Error control information isinserted in the 10b domain aswell, but in the form of valid
10b characters. The author tried to map a Hamming (7,4) code into 10b characters: this
issimply not possible due to the restrictions of the 10b coding space. A different
approach isto search the set of 10b characters for a set of characters that has a mini-
mum Hamming distance. Using a brute force search, a set of 16 D characterswith a
minimum HD=4 has been found (see Figure 6-13). Asthereisno intrinsic logic func-
tion to correct errors, alookup based decoding must occur.

The combination of this set of D characters with a set of K characters can be used to

154 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

construct control words with alarge Hamming distance. Thisis done for the Extoll pro-
tocol (see Section 6.3.2). The set can be used to correct single bit errorsin 10b charac-
ters.

D_14 1D 20 _1]D_20 6D 22 3D_28 2[D 28 5D 6 2 [D_14 6D 25 3D 17 5D 3 6 [D 5 3[D 10 3D 3 1 [D 11 D 17 2
D_14_1] 0 4 8 4 4 4 4 4 6 8 8 6 4 4 4 8
D_20_1] 4 0 4 4 4 4 4 8 6 4 8 4 6 4 8 4
D_20_§ 8 4 0 4 4 4 4 4 6 4 4 4 6 8 8 4
D 22 3 4 4 4 0 4 4 4 4 4 6 6 4 4 6 6 6
D_28 2 4 4 4 4 0 4 4 4 4 8 8 6 6 8 4 4
D 28 5 4 4 4 4 4 0 8 4 4 4 8 6 6 8 8 8
D 62 4 4 4 4 4 8 0 4 8 8 4 4 4 4 4 4
D_14 6 4 8 4 4 4 4 4 0 6 8 4 6 4 8 4 8
D 25 3 6 6 6 4 4 4 8 6 0 4 6 4 4 6 4 4
D 17 5 8 4 4 6 8 4 8 8 4 0 4 4 6 4 8 4
D36 8 8 4 6 8 8 4 4 6 4 0 4 4 4 4 4
D53 6 4 4 4 6 6 4 6 4 4 4 0 4 4 6 4
D_10 3 4 6 6 4 6 6 4 4 4 6 4 4 0 4 4 6
D31 4 4 8 6 8 8 4 8 6 4 4 4 4 0 4 4
D_11 2] 4 8 8 6 4 8 4 4 4 8 4 6 4 4 0 4
D_17 2 8 4 4 6 4 8 4 8 4 4 4 4 6 4 4 0

Figure 6-13. Set of 16 D characters with a minimum HD=4

Alternatives. An alternative to 8b/10b is a combination of 64b/66b coding and scrambling,
whichis being used in 10 Gigabit Ethernet. While it hasless overhead than 8b/10b coding,
it al'so guarantees atransition between 0 and 1 only every 66 bit. By means of scrambling,
it is considered likely that there are enough additional transitions in the code words to
recover aclock, and also to be DC free. As a self-synchronous scrambler is being used, bit
errors in the 66b domain do not convert into multi-bit errors in the 64b domain. A coding
like 64b/66b is not considered for use in Extoll, as the minimum data unit on the link has a
sizeis3x 64 bit. A different 64b/66b protocol could have been devel oped that does not have
this restriction. However, a 64bit code word width increases latency on the transmit side if
the internal with is much smaller. Also, more should be known about the reliability of such
acoding for use in aloss-less network. Due to the previously described problems with 8b/
10b coding and the overhead of 20% that is introduced by this coding, future work should
closer evaluate this type of coding.

6.1.7 Faultsin Regular Networks

Routing intopologieslike 3D tori isoptimized for the specific topology. In particular, dead-
locks are usually avoided by restricting the number of allowed routes between nodes.

Figure 6-14 shows a network using dimension order routing in a 2D grid topology. In
dimension order routing, al routing stepsinto the X direction must be performed before any
routing step into the Y dimension is allowed. Thus, thereisno legal path from the sending
node to the receiving one.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 155

® ® ® ® @ node

truncated node

® ® P ® @ sender

—— link
packet following rout. algo.

® ® ._;.¢ ——p» packet violating rout. algo.

o0 0/

\ link failure

Figure 6-14. Deadl ock-free routing violation dueto link failure

One solution to this problem isto change the routing algorithm so that irregular topologies
are assumed. This usually resultsin amuch lower performance throughout the network. In
large networks, there isagood likelihood that there is at least onefailed link or node in the
system at any given time, so that the network will rarely work using the optimal routing
algorithm.

Caused by this prablem, many techniques have been proposed to avoid this solution in
wormhole-routed networks. Instead, these techniques concentrate to allow packets on paths
that are affected by the failure to take paths through the network that violate normal routing
rules, but still do not cause deadlocks. Most route schemes introduce additional virtual
channelsto alow to route around afault [152][153][155]. These additional virtual channels
have the drawback that they require additional buffer capacity. Also, the complexity of vir-
tual channel handling in aswitch isrelatively high, as can be observed in the Extoll switch.

A different approach is to partition the path into as many partitions that every partition is
deadlock free in itself (see Figure 6-15). Packets are extracted from the network at every
node at a partition boundary, called intermediate node, beforeit isinserted again. Asresult,
the complete route is deadlock free as well. Multiple intermediate nodes may be used.

In a software-based solution [156], such packets are extracted at intermediate nodes by
writing them to the system’s main memory. Software must reinject these packets into the
network. Thus, this mechanisms has arelatively high latency. [157] proposesto use a set of
nodes that act as intermediate nodes only, called lamb nodes.

156 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

® ® ® ® @® node
target node
o sender node

o intermediate node
—— link

® @ ® e — > packet after interm. node

packet following rout. algo.

o .0 o/

\ link failure

Figure 6-15. Fault-tolerant routing over intermediate nodes

However, the software-based solution can be significantly improved, when the following
points are considered:

* Inthe case of static source path routing, complex routing decisions have not to be per-
formed at the intermediate nodes. Thus, the control logic can be implemented in the
NIC in hardware.

* Itisnot necessary to remove packets completely from the network. In particular, a
store-and-forward architecture is not required. Instead, an intermediate node can
directly forward a packet. Deadlocks can sufficiently be avoided if thetail of apacket is
removed from the network in the case the head of the packet blocks.

» Especially for small packets, fast NIC internal buffers may be used for extracted pack-
ets. If thisbuffer fills, the node's main memory must be used to store extracted packets.
The on-chip buffer may hide the memory access latency completely in this case.

Such an hardware implementation is the HAP of Extoll, descried later in Section 6.3.6.

6.2 The Extoll Networ k

Extoll is a direct interconnection network (IN), and thus connects computing nodes in an
Extoll network without the need for centralized switches. With six bidirectional links per
node, the target network topology for Extoll is a 3D-torus, as shown in Figure 6-16. Extoll

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 157

is based on the experiences made with the Atoll network [27], which isadirect IN with a
2D-torus topology. The advantage of direct INsisthe good scalability of such a system: if
the number of nodesin anetwork isincreased, buffering and switching resources automat-
icaly increase by the same amount.

A —
e = e =

bidirectional
Links

Figure 6-16. 3D-Torus topology

The Extoll network is optimized to achieve high bandwidths and low latenciesfor thetrans-
fer of small packet sizes. Wormhol e routing is being used in the network. In wormhol e rout-
ing, a packet traverses the network in a pipelined fashion. Flow control is performed on
small blocks of data, called flow control digits (flit). Buffering in the network occurs only
onflit level. Buffering on packet-level, asin store-and-forward and virtual -cut-through net-
works, is not done.

Packets find their way through the network using source path routing. In contrast to table-
lookup-based routing schemes, the path through the network is determined by the source
node. Thus, routing is fixed, which isin contrast to adaptive routing schemes. The advan-
tage of source path routing is that routing decisions can be made extremely fast in every
switch. Inadirect IN, thisisof particular importance, asthe number of switches on the path
of amessage may become much larger than for topologies with centralized switches.

The network that isimplemented in every Extoll chip is shown in Figure 6-17. At the heart
of the network is the Extoll switch, which is based on a unidirectional 12x12 crossbar. 6
ports of the switch connect to the link ports. Towards the functional units of the NIC, four
network ports tranglate between NIC and network protocols. A multicast port is used for

158 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

hardware-based support of multicast and broadcast packets. The high availability port
(HAP) is being used mainly to resolve problems that arise out of link failures.

A

vYYy

Link .
porto [€W LkPHY P

A

Network
Port 0

Extoll

Network n Xbar
Port 3

A
\ 4

NIC/
Host

Multicast
Port

High
Availability g
Port
A A
<

Barrier |
Unit

v

A
y

Link .
ports [P LinkPHY <P

A

v

A

Figure 6-17. A node of the Extoll network

Every packet’ s payload startswith arouting string (see Figure 6-18). It consists of unitsthat
havethe size of physical transfer digits (phits), which is 16 bit. In standard source path rout-
ing, routing pits contain only the destination port of the next switch, and are striped of after
each switch. Extoll integrates a delta routing: every routing phit is valid for the number of
hops specified in the counter fields. In every switch, counters are decremented, and the phit
isonly removed if both counters are zero. In aregular 3D torus topology and if link cables
are connected in a consistent fashion (e.g. positive X direction on port 7, negative X direc-
tion on port 8, positive Y direction on port 9, and so on) three routing phits are sufficient to
address 256,000 nodes. A fourth routing phit is needed to select the desired network port.

For deadlock avoidance in the network, two virtual channel groups can be used. Every of
these groups consists of 4 virtual channels (V Cs) which may be used to reduce the impact
of head of line blocking.

Credit based flow-control is used between every two Extoll switches to avoid buffer over-
flowsin the switches and to make buffer space guarantees for the different virtual channels.
Extall is an input buffered switch, with a buffer capacity of 32 flits. This buffer size has
been selected so that two buffer slots are reserved for every VC, and a single packet stream
on one virtual channel can saturate the link [130].

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 159

Parallel applications frequently use barriers to synchronize among the different threads or
processes. A hardware-based barrier mechanism has beenintegrated into Extoll. The barrier
unit supports up to 16 hardware barrier groups at the same time. Barrier information ismul-
tiplexed on the Extoll links.

Extoll Packet

|soP| Routing |soc| command |[soD Data EOP
0 Destination
3 Port

4

Low-VC
Counter
High-vC
Counter

Figure 6-18. Extoll packet and routing format

9
10

15

6.2.1 Packet and Flit Protocol

The Extoll has been optimized for small message transfer. Thus, the overhead for small
packetsin the network must be assmall aspossible. A packet consists of the segments: rout-
ing, command and data. The packet injection and extraction points into and from the net-
work are the network ports.

The Extoll packet size does not have an upper bound defined by the protocal. It is left to
layers on top to specify a maximum transmission unit (MTU) if this should be desired. A
packet is transmitted with a sequence of flow control digits (flits), as shown in Figure 6-19.
A flit can hold up to 32 phits of payload. With aphysical transfer digit (phit) size of 16 data
bits plus 2 control bits, the payload of oneflit is64bytes, which correspondsto the cacheline
sizein most systems. Within the payload, transitions to the command and data sections are
marked with start-of-command (SOC) and start-of-data (SOD) phits. Every flit is framed
with start and end phits and a 16bit CRC. Although theoretically, a framing on the start of
aflit would be sufficient, the end-of-flit character provides additional security at little cost.

Thefirst and last flits of a packet are marked with start-of-packet (SOP) and end of packet
(EOP) phitsrespectively. All other framing wordsin theflits are start-of -flit (SOF) and end-

160 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

of-flit (EOF). The start phits include information about the virtual channel in which a flit
flows. Extoll supports 8 different virtual channels. Thelink protocol has been optimized to
provide maximum Hamming distances for this number of channels. It can be slightly mod-
ified to support more virtual channels, at the cost of a reduced Hamming distance. As al
flits of one packet flow in the same virtual channel, flits of different packets can be inter-
leaved in the links.

EXTOLL Packet

| soP | Routing |soc| command |soD Data EOP
Link FLIT 1
— [sorP| Routing | soc |command [SOD | CRC|EOF |
Link FLIT 2
- » [SOF Data

Figure 6-19. Extoll packet and phit framing

6.3 Extoll Link Error Correction

Extoll uses bidirectional links to connect nodes in the network (see Figure 6-20). This
alows to transmit flow control and retransmission protocol information backwards. The
link can be separated into aphysical layer (PHY') and alogical link layer. Different physical
layersmay be used for Extoll, althoughit isoptimized for an 8b/10b-coded high speed serial
transmission.

The logical link layer, consisting of link in- and out-ports, multiplexes data streams from
the crossbar and the barrier moduleto thelink, aswell as credit information that comesfrom
the crosshar. The link layer is aso responsible to correct errors on the link. In a classica
layered protocoal, all link errors should be handled by the link port, and be transparent to the
switch layer of the network. Unfortunately, such a complete encapsulation can only be
implemented in astore and forward fashion. As Extoll isdesigned asalow latency network,
store and forward at every link port is not feasible. Thus, error correction by the link is not
fully transparent to the layers above.

The remainder of this section describes the mechanisms to correct errors on the links.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 161

Extoll Extoll
Xbar (Lt Link] Xbar
< In port ¢ ’ In port »
¢ Link PHY |9 Cable | Link PHY ¢
» Link Link <
Barrier p Out port Out port ¢ Barrier
Unit Unit
d »
< »

Figure 6-20. A link between two nodes in the Extoll network

6.3.1 The Physical Link

Thetarget link mediafor Extoll is ahigh-speed serialized optical transmission. The devel-
opment of ahigh-speed serial link PHY iscomplex and out of the scope of thiswork. How-
ever, experiences in the design of such links in OASE and with FPGAs [133] allow to
presume a general architecture of such alink, as depicted in Figure 6-21.

Link -
¢) - <
Control to/from g
. FSM
Link port A
Opticallelectrical
10 ble
8b/10b AN - 1 . SFP cal
8/ R - 7=, Serializer 74} Output Cell P iansceiver
Data from / 4
link port
A 4
Link Check (&
FSM * *
F N
Opticallelectrical
8 10 cable
4 / 8b/10b |y De- 1 P SEP
Dat‘a to 4 decoder |V 7/ serializer Tt CEl | Transceiver ¢
link port

Figure 6-21. Functional block diagram of the PHY in the FPGA prototype

Such alink PHY performs alow-level initialization, which includes the use of training pat-
terns to align the 8b/10b decoder. The alignment will not be verified any more during
normal operation. The state of the link and errors in the 8b/10b decoder are signaled to the
link port. Expected errors on a seria link that are visible to the link port are:

» Transient, random single bit errors.

162 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

* Very long bursts of bit faults, e.g. if the receiver looses bit alignment.
» Permanent link failure, e.g. through an unconnected cable.

Errors of the latter kind can be detected by the physical link itself. However, it may take a
while until areceiver may take notice. Experiments showed that the high-speed serial trans-
ceivers of an FPGA detect this after a time period much longer than milliseconds. During
this period, arbitrary data is being forwarded to the link port. Thus, the link port must be
able to detect this situation early.

Parallel cabling is also supported in Extoll, although parallel cables are not considered to
be the link that will be used in production Extolls. Due to the much lower complexity, the
paralel link has aso been used in the design and evaluation phase. The cabling technology
from Atoll has been reused for Extoll. An Atoll link cable is a 68 pin twisted pair cable.
Using source synchronous transmission, every direction of the link has eight data, one con-
trol and one clock line. An additional line per direction is used to detect whether acableis
connected on the other end. Using DDR signaling, data frequencies of up to 300 Mbps have
been verified.

Expected faults on a paralel link that are visible to the link port are:

» Transient, random single hit errors.

o Static faults on one or multiple LVDS pairs that lead to constant or frequent bit errors.
» Permanent link failure, e.g. through an unconnected cable.

A link detection mechanisms based on the cable detect line and clock detection are used.
However, these mechanisms alone have turned out to be not sufficient for reliable link
detection. For example, static faults in LVDS pairs require testing at link initialization.
Thus, an initialization sequence has been developed [132], which is similar to the unitiza-
tion and training of aserial link. The following section will detail the coding for serial links.
If parallel links would be used in production systems, the coding would have to be adapted
to provide Hamming distances in the binary coded domain. Such a development is simple,
and thusis not presented here.

6.3.2 Protocol Encoding for Serial Links

Besides start and end characters, an Extoll protocol must support credits and acknowledge-
ments. These characters must encode additional information as e.g. the virtual channel
number, which must be bit error protected. Additionally, idle, retransmission and manage-
ment characters exist. Asthe number of K charactersisby far not sufficient to encode these
Extoll control characters, a combination of K characters and the set of D characters with
HD=4 is used. This choice also fits well the Extoll phit size of two 8b/10b characters. To

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 163

avoid confusions between Extoll and 8b/10b characters, Extoll characters are referred to as
phits.

Encoding for single bit FEC. Section 6.1.4 shows that for control phits, FEC is suited
well. For packets, a retransmission based protocol is more efficient. As explained above,
forward error correction on 10b characters requires alookup table. Here, adesign choiceis
whether one lookup occurs for a complete phit, or if the characters of the word are looked
up independently of each other. The size of the table is critical for the feasibility of an
implementation. The simplest implementation isaROM, where theincoming phits or char-
acters are used as an address to read the corrected and 8b decoded value. For alookup of a
20 bit phit, the table would have asize of at least 2%° - 18bit = 2MByte, and thusis not realiz-
able. If the two10b characters are looked up separately, a single table with two read ports
and asizeof 2'. 9bit~ 1kByte issufficient. However, the separate lookup requires that the
first and the second character position of the phit exhibit an HD >3 individually. This
restricts the set of usable K charactersto the set of {K.28.7, K.27.7, K.28.3}, which limits
the coding space for Extoll control phits. Figure 6-22 shows the Extoll control phits.

Name Upper Byte Lower Byte |[Name Upper Byte Lower Byte
SOP_VCO K 283 D 14 1 NACKO K_27_7 D31
SOP_VC1 K 28 3 D_20_1 NACK1 K_27_7 D 112
SOP_VC2 K 283 D_20_6 NACK2 K_27_7 D_17_2
SOP_VC3 K 28 3 D 22 3 NACK3 K_27_7 D _25_3
SOP_VC4 K _28 3 D_28 2 NACK4 K_27_7 D_17 5
SOP_VC5 K 28 3 D_28_5 NACK5 K_27_7 D 36
SOP_VC6 K _28 3 D 6_2 NACK6 K_27_7 D 53
SOP_VC7 K 28 3 D_14 6 NACK7 K_27_7 D _10_3
SOF_VCO K 283 D 31 CREDITO K_28 7 D 14 1
SOF_VC1 K_28_3 D_11 2 CREDIT1 K_28_7 D_20_ 1
SOF_VC2 K_28 3 D_17_2 CREDIT2 K_28 7 D_20_6
SOF_VC3 K 28 3 D_25 3 CREDIT3 K_28_7 D_22 3
SOF_VC4 K 28 3 D_17_5 CREDIT4 K_28 7 D 28 2
SOF_VC5 K _28 3 D_3_6 CREDITS K_28_7 D 28 5
SOF_VC6 K 28 3 D53 CREDIT6 K_28 7 D 6 2
SOF_VC7 K_28_3 D_10_3 CREDIT7 K_28_7 D_14 6
SOS K_28 7 D_10_3 EOP_ERR K _28_7 D31
ACKO K_27_7 D 14 1 EOF_ERR K_28_7 D 11 2
ACK1 K_27_7 D_20_1 EOP K_28 7 D_17_2
ACK2 K _27_7 D_20_6 EOF K_28 7 D _25_3
ACK3 K_27_7 D _22_3 RETRANS K _28_7 D_17_5
ACK4 K _27_7 D_28_2 IDLE K_28 7 D 36
ACK5 K_27_7 D_28_5 MNGT K_28 7 D 53
ACK6 K _27_7 D 6 2 SOD K_29 7 K_28 3
ACK7 K_27_7 D_14_6 SOC K_30_7 K_28_3

Figure 6-22. Extoll control phits

164 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

Multi-Bit errors. Dueto the Hamming distance of 3, only single bit errors can be corrected.
Multi-bit errors within the same character may not be detected. The set of D characterswith
HD=4 has SECDED capabilities.

While Section 6.1.2 showsthat multi-bit errorswithin a 10b character are very unlikely, and
thus are not considered to occur by most system designers. Assumed they would occur, the
vast mgjority of multi-bit errors will be detected, either by the 8b/10b decoder or through
protocol checks. However, there are cases where a multi-bit error within asingle character
leads to an undetectable error (see Figure 6-24). Multi-bit error detection on the Extoll con-
trol phits could be improved by doing only error checking instead of correction. The link
protocol does not have to be changed for this.

All'in all, the Extoll link protocol encoding that has been proposed in this section provides
areliable transmission of control information on links in the presence of single bit faults.
This avoids the loss of data and inconsistent states of the links, which may occur in other
state of the art implementations of 8b/10b encoded links. Single bit FEC for control infor-
mation is a significant improvement over state of the art 8b/10b protocols.

6.3.3 ThelLogical Link Layer: theLink Port

A link port consists of two parts: the link in-port as the receiver, and the link out-port asthe
sender (see Figure 6-23). A central point inthelink out port isthe arbiter, which multiplexes
the link between packets from switch and barrier module, and control phitsin around robin
fashion. The buffer space which isused for the retransmission buffersis also used to buffer
incoming data streams. Therefore, barrier and switch have separate retransmission buffers.
The flit CRC is aso recomputed and inserted into the flit here.

Link level error checking is performed by the link in-ports. Operation of the link can be dif-
ferentiated into the initialization phase and normal operation mode. Link port initialization
isstarted as soon asthe physical link layer has successfully initialized. During initialization,
bit errors on the link can either be ignored or lead to arestart of the initialization. During
normal operation, areceiving link may be in any of the three super states: intra-flit, inter-
flit, and waiting-for-retransmission. The last possible state is link failed. These states are
from atheoretical point of view, an implementation will feature a much more detailed set
of states.

The inter-flit state is the typical state for an idle link. In this case, only IDLE phits cross
the link. It is also the default state after initialization. Other allowed phits in this state
besides IDLE are: SOP_VCx, SOF_VCx, SOS, ACKx, NACKx, RETRANS and CRED-
ITx. If any other phit is received in this state or the 8b/10b decoder signals an error that
cannot be corrected by the FEC mechanism, it can only be caused by an error on the link.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 165

In this casg, the link port requests a retransmission from the sender. Although thisis only
required in the case that a packet got corrupted, error detection mechanisms are more light-
weight if aretransmission is requested in any case. The reception of an SOP, SOF or SOS
phit leadsto atransition into the intra-flit state, an detected error to waiting-for-retransmis-
sion.

18

8b/10b 20 /
to barrier decoders </ Deserializer
L Barrier

-
{ &

'« K <
& 7 Synchonization Stripe Idles
44— Xbar
to Xbar 8b/10b
< Protocol FSM FEC <
hl <o 18 Decoder
Credits to Xbar Y ¢
CRC
Check [
Ack Control
from Xbar Phit Generator

from barrier .
Barrier

Buffer module

I P To link encoders

Xbar
Buffer module

\:{ P

Figure 6-23. Thelink port

from Xbar.

During the intra-flit state, al data phits and SOC, SOD, EOP, EOF, EOP_ERR and
EOF_ERR control phits are allowed. If any other flit isreceived or the 8b/10b decoder sig-
nals an uncorrectable error, the flit in transition is terminated directly after the erroneous
phit with an end-error character. If the error occurs in the very first data phit of aflit, the
minimum size of 3isviolated. Asthe Extoll switch removesflitsthat aretoo small, it is not
necessary to fill theflit with dummy datato increasetheflit size. If aCRC error is detected,
the end phit is replaced with an end-error phit in the same place. Erroneous flits that started
with an SOP or SOSwill be concluded with EOP_ERR. Thisclosesthevirtual channel after
the flit, which is important as the routing string in the flit may be affected, and thus the
retransmitted flit must open the virtual channel. Erroneousflitsthat started with an SOF will

166 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

be concluded with an EOF_ERR, which keeps the virtual channel open for the retransmis-
sion of theflit and for following flits. An error also leads to the transition into the waiting-
for-retransmission state. Otherwise, the reception of an EOP, EOF, EOP_ERR or
EOF _error leads to a transition to the inter-flit state. To avoid oversized packets due to a
corrupted end of aflit, such flits will be truncated at the maximum allowed size and ended
with an error character.

If an uncorrectable error occurred, the current and all subsequent flits are ignored. It isa
necessity to ignore flitsto maintain strict ordering among them. Only the other control char-
acters will be interpreted. If a RETRANS character is sampled, a transition into the inter-
flit-state, and thus normal operation, occurs. Protocol checking as described above has to
continue.

If multi-bit errorsin single 10b characters are assumed to occur or forward error correction
is switched off, amajor issueisthat an erroneous control phit may be one of those that start
or end aflit. Thus, the state after the error can only be determined by looking at the phit that
follows the erroneous phit.

If any further error occurs between the first error and the starting retransmission, thereisa
good likelihood that the physical link has a permanent problem that causes a burst error.
Thismay happen for exampleif the serial receiver has not detected yet that a cable has been
removed. Thus, areceiving link transitionsinto thelink failed state, and waitsfor resolution
by the management software as described in Section 6.3.4.

The retransmission protocol. The retransmission protocol ensures that packets are not
corrupted. If thereceiving side of alink detects an error that might possibly affect aphit like
described above, a retransmission request is sent to the sending side. All flits that are
received between the detection of an error and the start of the retransmission are ignored,
asthisisthe only way to guarantee that ordering among phitsis being maintained. Theoret-
ically, it would be sufficient to maintain ordering only among flits of the same virtual chan-
nel. Asthe information about the virtual channel may be subject to link errors, all flits must
be retransmitted. The cost for the retransmission in terms of bandwidth and latency can be
neglected in any case, as retransmissions occur infrequently.

Thebasic ideais asfollows: All flits that are transmitted over the link are also copied to a
retransmission buffer in the sending link. If the receiving part of the link positively
acknowledges the reception of aflit, the buffer space can be freed. If the acknowledgement
is a negative acknowledgement, the sending part will instead initiate aretransmission of all
flits in the retransmission buffer. The retransmission begins with a RETRANS phit. The
retransmission of the flitsfollows the same rules as the normal transmission of flits. In par-
ticular, retransmitted flits are also protected by the retransmission protocol.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 167

In order to alow the sending link to detect lost acknowledgements, an indirect relation of
acknowledgements to flits is introduced. Both sides of alink implement counters. On the
sending side, the counter is incremented for every flit that is sent. The receiver increments
it for every received flit. The acknowledgements ACKO...ACK7 and NACKO...NACK7
correspond to the counter values for the acknowledged flit in the receiving side of alink.
The size of the counters is a trade-off, as the available code space for control phitsin the
10b domain is limited.

The following link errors can be corrected using the retransmission protocol:
» Bit errorsin dataflits and framing control phits.
e Lossof upto7 ACKsinarow.

e Lossof aninfinite number of NACK or RETRANS. Both are protected using time-out-
based resending of NACKS. If the retransmission does not start after the time-out
period, the NACK is being resent.

* The complete loss of flits can only happen in the case of alink failure. Thus, this case
does not need to be covered by the retransmission protocol, but will be covered by the
link failure resolution mechanism that is described in the next section.

Credit phits can be lost if abit error occursin a credit phit, as credits cannot be recovered
by the retransmission protocol. Although the loss of a single credit is not critical, it may
degrade performance. Thus, software must be notified in the event of unexpected phits on
the link viathe Extoll register file, so that it can check the creditsin the crossbars.

Using the protocol described here, areliable and order-maintaining retransmission of phits
can be ensured in the case of bit errorsin flit payloads.

Using FEC coded control phits, the protocol is highly reliable for the expected source of
error: rare, noise-induced single bit errors. For multi-bit errors in control phits, the vast
majority should be detected by out-of-table, disparity, or out-of-control-phit space checks.
The protocol can detect and resolve some of such undetected errors (see Figure 6-24). This
provides some additional security.

168

from character

to character

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

Always Detected by
Protocol Check?

Minimum errornous
bits in single character
for non detectable error
(correction/detection)

impact

SOP_VCx, SOF_VCx

SOP_VCy, SOF_VCy
sos

ACKn, NACKn, CREDITh,
EOX, IDLE

No
No

3bit, 4bit errors
2bit, 3bit error

data corruption
data corruption

ACKy, NACKy No 3bit, 4bit errors data corruption in case of retransmission
ACKy, NACKx CREDITn No 2bit, 3bit error Xbar buffer overflow

EOx, IDLE, Sox Yes
SOP_VCx, SOF_VCx No 2bit, 3bit error data corruption

SOs ACKn, NACKn, CREDITn,
EOX, IDLE

EOx any
ACKm, NACKn No 3bit, 4bit errors data corruption in case of retransmission
IDLE No 2bit, 3bit error Credit loss

CREDITX S0p_vey, SOF Voy, Eox NeSHE

CREDITY No 3bit, 4bit errors Xbar buffer overflow or data corruption
ACKn, NACKn No 2bit, 3bit error data corruption in case of retransmission

IDLE CREDITn No 3bit, 4bit errors Xbar buffer overflow or data corruption
SOP_VCy, SOF Vey, Eox NS

Special Characters

SOC, SOD belong to CRC protected flit payload
MNGT, RETRANS reinitialization of link
D.x.y

Figure 6-24. Protocol detection of multi-bit errorsin phits

6.3.4 Temporary or Permanent Link Failure

A link failure can have several reasons: cables that are accidentally removed, dysfunctional
cables or transmitters, or temporary problemslike alost bit alignment. In the classical layer
model, atemporary failure of alink may be considered to be resolved by the link layer. A
permanent link failure must be resolved by the network layer to re-establish avalid routing
inthe system. Asboth faults can be resolved with similar resolutions, they will be described
here together.

In Extoll, apermanent link failure requires the modification of the static routing through the
network by the management software. As this process usually takes a while, the network
should continue to operate until new routing tables take effect, even though the perfor-
mance may be reduced. As Extoll shall be alossless network, arequirement is that packets
and flits that are traversing afailing link do not get lost. Therefore, three key issues can be
identified when resolving alink failure:

» Packetsthat traversed the link while the fault occurred must be reassembled.
» All other packets that request the link later on must be rerouted.
* Routing tables must be modified to reflect the changed topology of the network.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 169

Immediate Reaction. The first two points are the immediate reaction on faults in order to
keep the network working. Figure 6-25 (b) shows the algorithm implemented in Extoll.
Thisisthe one where most actions can directly be taken in hardware, and thus lowest laten-
cies can be expected. For reference (a) shows an implementation where the route of the
detour is handled by the management software.

Link Failure

Link Failure
detected by link por

yes yes

Reinitialize link on Reinitialize link on
PHY level PHY level

Detour new
requests to HAP

Detour new
requests to HAP

HAP automatically
forwards detoured
requests in HW

Reinitialization

Yes
successful?

Synchronize state Reinitialization

of send and successful?
no receive link ports
A
Reassemble

Packets after link

Reinject detoured
packets in HAP
(by management
software)

Reinject detoured
packets in HAP
(by management
software)

no

v

Remove Detour

Reassemble
Packets after link

Synchronize state
of send and
receive link ports

A

Continue detour...
Remove Detour

(@ (b)

Figure 6-25. Link failure treatment by the Extoll network (b) and software based alternative (a)

If afailureisdetected, are-initialization of the link can betried, either by software or auto-
matically in hardware. Something which has to happen in hardware is to detour routing
reguests from packets that are destined to the broken link to the HAP. Thisavoidsthat such
packets cause a head of line blocking, which soon can congest the whole network. This sit-

170 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

uation is depicted in Figure 6-26, where packet pl is stuck on a broken link and packet p2
is detoured to the HAP.

Packet p1, tail Packet p1, head

Cable
— NEOTR 4—; Linki —p — Lmkjé A Netw
> - ol /Z’%n, POt0 |g— y Port 0 L
7 7y ry

. .
Packet p2 . / . . .
¢ Extoll . . Extoll X >
Xbar Xbar etwork | o »
X .

NIC/ N N NIC/
Fost Multicast . . Multicast Fost
ulticas . . ulticasf
Port . . Port
. .

. .

Hit High
Availability Availability - |«——pp»!

i

Port

A A A

Barrier Barrier
Unit L unit [>
A |

ink Link
ort5 Port5

7y
Y

Figure 6-26. Scenario after a detected link failure

Further actions depend on whether the link has been successfully re-initialized. In the case
of apermanent failurethe following steps haveto be performed, which are all software con-
trolled over register interfaces to the network units:

» All packets that have been in transfer on the link have been split into a head and atail,
which must be recombined. The tails are being extracted over a dedicated path to the
HAP. A loopback over the link port receive side and the crossbar is not possible, asthe
crossbar may be blocked by packet heads that flow in the other direction: al virtual
channels and/or buffer space may be in use. Also, the number of the virtual channel
must be maintained, as this number isrequired in order to stick the right packet flows
together. The Crossbar would change the virtual channel of packets. Thus, a separate
data path is being used between HAP and link port. The tail will then be injected into
thereceiver’slink port, so that the packets continue to flow through the network (see
Figure 6-27).

The correct joint between head and tail must be determined before the injection of the
tail. Asthe breaking link may have lost some acknowledges, the retransmission buffer
may hold some flits that already have been transferred correctly. These must be
removed from thetail. A network using sequence numbersin theflits could use those to
determine the joint. In Extoll, sending and receiving part of the link count aflit
sequence number when sending or receiving error-free flits. Asflitsare only lost on a
link failure, a comparison of the counters is sufficient to determine the joint.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 171

Another consideration is how packet tailstravel to the other link port. In an HPC cluster
environment, there istypically a second network, which can be used in this. It may also
be possible to use the Extoll network. However, it must be ensured that packet tails do
not get stuck at alink which is congested by the header of the same packet, as this
would result in a deadlock.

» Packets that have been detoured to the HAP will be reinjected into the network. As
ordering among packets is not required, reinjection can take place in parallel to the
recombination of messages on thelink. In the currently implemented solution, the HAP
automatically looks up an alternative route to the neighboring node in a small lookup
table, and prepends this route to the original routing string of the packet. A manage-
ment software based solution would determine the target of the packet by analyzing the
routing string. The old routing string is replaced with anew routing string that avoids
the faulty link.

Packet p1, tail Packet p1, head

<

> Lin
P Port0

v\

y

7l Porto

Port 0

Extoll . . Extoll
Network i i Network
< P Xbar Packet p1,tail extraction Packet p1,tail injection Xbar g
71 Port3) P ! Port 3

NIC/ : : NIC/
Host N . . N Host
Multicast Multicast |

Port Port

A
A\ 4

v
v

A
Y

h 4

5 : : Figh
g . . g
< » ilability P i Availghili »
It . . ort \‘
A A ¢ ¢ '3 A
< \ Barrier Barrier | >

\ ® Unit Link Link unit |
< » Port5 ¢ > Port5 > »

Figure 6-27. Packet tail extraction and injection due to permanent link failure

In the case of atemporary failure, the actions are different:

» Assoon asthe physical link isinitialized again, transmission on the link can continue
asnormal. Credits may have been lost, so that credits have to be recounted.

* The detour can be removed.

L ong-term reaction. For a longtime reaction on a permanently failed link, routing tables
must be changed. The fast and efficient computation and distribution of routing tables may
be a difficult task, in particular as the network will have an irregular topology after alink

172 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

failure. A routing method for such network topologies using routing over intermediate
nodes has been developed in Section 6.1.7.

6.3.5 The Extoll Switch

An in-depth description of the crossbar can be found in [130] and [131]. Here, only fault
correction mechanisms are described.

Actionsdueto link layer fault correction. In aclassical layered protocol, al link errors
should be handled by the link port, and be transparent to the switch layer of the network.
Unfortunately, such a complete encapsulation can usually be only implemented in a store
and forward fashion. As Extoll is designed as alow latency network, store and forward at
every link port isnot feasible. As aresult, the Extoll switch has to cope with the following
issues:
» Flits coming from the link ports may have alength of 3 instead of the minimum length
of 4 phits. The crossbar must extract and discard these phits. This solution reuses cross-
bar logic that discards empty routing phits due to the stripping of routing characters.

» Erroneousflits, marked with EOP_ERR or EOF_ERR, flow through the network. Flits
starting with SOF and ending with EOF_ERR simply follow the flow of the virtual
channel. Flits starting with SOP and ending with EOP_ERR may have a corrupt rout-
ing. They will be routed through the network until they hit a network port, or until all
routing characters have been stripped off, and thus can be discarded. A random bit error
in the routing sting may violate the rules of the deadlock free routing algorithm, and
thus such a packet may cause a deadlock. In the case of a deadlock, the flit will bein
the flit buffer of a switch in-port in one piece and wait for the grant of avirtual channel.
Extoll changes the destination port of such flits to the HAP, which never blocks. In the
HAP, the flit can be deleted.

» Credit re-count. In particular after alink failure, credits may have been lost. Software
must be able to stop individual link ports of a crossbar, read credit counts, and set credit
counters.

Switch level fault correction. On the switch level, the only fault that can happen in the
absence of hit errors on chip is a packet that requests an output port that is not available. A
port may not be available either because it does not exist in the physical implementation, or
because of an unconnected link cable or another failure on the link. Such packets will be
routed to the HAP and treated there. The switch detects both cases by checking availability
information from the link.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 173

6.3.6 The High Availability Port

The main task of the high availability port (HAP) isto resolve problems caused by tempo-
rary or permanent failure of the links. As already explained in the previous sections, the
HAP is being used to detour packets that request a link that is unavailable. Also, the HAP
is being used to extract and reinject packet tails respectively from and into the links. Both
events occur only until routing tables have been changed.

HAP
10
10y
DMA Read Control Fifo|«¢ dout 1
RT3 N < P data Gout_vaid
fu_d va - con- P v
P EOP_E out
5) _’ : Output EOF_E_out
M.* — 4—verter |« 18} Control EOP_out
fu_ca_va 7 EOF out
> < >
DMA)l DMA Read Fifo » VC_out
4 fusopd 1&‘ SOP_out
= = SOF. it
iz Read
o
)
< 3credit valid_in
3 Fifo VC Counter 43 3 < creditVC in
al
v l
k'Y . Credit
J.& l& 8 | Rerouting table Administration
1 Te E (write port credit_valid_out 3p
3m 3 Pt not llustrated) >l creditvC_out &
1d - < 8 »
p| Fifo VC Counter P }g
<4 > | din_valid
al
< < P
)) Routin 18 d
ht_stop_d q DMA < MA Write Control Fifoi«¢ HAP 3 Interpreger
= = » {1
d
ht_stop_ca EW . Core <
rite >
)
18 Din Mux
Wl_ 18 > | and Regs SOP in
> MINCNE] 'ﬁ DMA Write Fifo ‘ — =
¢ ht d mod. BigBen SOF_in
i »i EOP_in
< Lo b b P> EOF in
» ! 2 EOP_E_in
EOF E_in
3 VC_in

Figure 6-28. High Availability Port [131]

A third task isto improve routing in aregular network which has turned to a network with
an irregular topology dueto link or node failures, as described in Section 6.1.7.

The HAP has three interfaces: to the Extoll switch, to the host viathe HT interface, and to
thelink ports (see Figure 6-28, where the direct interface to the link portsisnot yet shown).

TheHAPisvirtua channel aware. It usesthe same credit based input buffer asthe crossbar.
Packets or flits from the network will stream into this buffer first. The further proceeding
depends on the type of the flit, which the HAP may determine by looking at sideband sig-
nals from the crossbar, and by interpreting the first routing phit:

174 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

» If the HAP has been directly addresses, the first routing phit contains the HAP address,
as HAP routing phits are not consumed by the crossbar. If aHAP is directly addressed,
it must act as an intermediate node. Thus, such a packet will be forwarded to the out
port of the HAP. If the in-port buffer isfull, it will be forwarded to the DMA buffers.
Succeeding flits of the same packet follow in this path. However, once aflit of a packet
has been written to host memory, all succeeding flits have to follow to maintain order-
ing among them.

» Packets that have been rerouted can be determined by sideband signals. A routing
lookup in the rerouting table occurs. Then the path is the same as for the previous type
of packets.

» Flitsfrom the direct interface from the link ports are written into a dedicated host mem-
ory region viaDMA.

» All other flits have been routed to the HAP asthey end with an error phit. They will we
written into a separate DMA region as well.

Data that is written to the node's main memory is stored in a raw format. To simplify
address handling, every burst of three consecutive 18 bit phits is stored in a 64 bit aligned
memory word.

The output control module multiplexes the interfaces to the crossbar between the different
packets that come from the input buffer or main memory. It uses round-robin arbitration
among those packets for which credits are available.

The DMA read buffer hides RAM read latency by reading head data as soon as DMA
gueuesin RAM contain valid entries.

6.3.7 Barrier

Extoll implements barrier logic in hardware [132]. All nodes that take part in a barrier
belong to the same barrier group. Extoll provides support for up to 16 barrier groups at a
timein the network.

Softwarethat entersabarrier signalsthisviathe register interface of the barrier module, and
also requests the status of a barrier there. Extoll barriers are tree-based, where the nodes of
the barrier tree are mapped onto the Extoll nodes.

To achieve lowest latencies, tree-node logic is independent of the Extoll crossbar switch.
However, barrier datais multiplexed on the Extoll linksto avoid the cost of an extrabarrier
network. Thus, the barrier logic can be seen as a second switch layer.

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 175

Asdepicted in Figure 6-29, the barrier modul e hosts 16 barrier group units, i.e. one separate
unit for ever barrier group. The scalability of the number of barrier groupsis only limited
by the hardware resources.

o s sgues lid :
L Barrier Group Unit 0 =< It \ljuh) Barrier Outport () —s= valid
iJ grand
W4 —] Borrier ™ aoun I I — dua2ik
dataFromLink —<—a 3) L Packet
Link down BID” _Jdown _| i
Inport 0 [D Generator
down
‘ -
- - s
valid . =
. " I;m Barrier Outport 5 —= valid
= lata2link
y 3
valid —| . i . L, Packet
Barrier down $
dataFromLink —<—m{ . Generator
Link |dowp)
Inport 5)
up Barrier Group Unit | §7eduest
grant
= - alid
R et it [o
up. |down valid B Host Outport
Host BID ;I.-\\u?
Inport u
I down

member_node

parent_node

valid
childs

valid valid

I . . = - BIDY
1 Barrier Registerfile Interface

Figure 6-29. The barrier module [132]

Thebarrier input and output ports decode and encode the barrier messages into/from Extoll
packets. To distinguish them from normal, crossbar-routed packets, they start with the
Start-of-Specia (SOS) phit. From the network protocol point of view, a barrier packet
behaves just the same way as crosshar packets. Theoretically, a barrier packet may span
over multiple flits. However, thisis not required, barrier packets are minimum size packets
of 4 phits, as shown in Figure 6-30.

As barrier messages are Extoll packets, the same fault tolerance mechanisms that protect
other Extoll packets protect barrier packets. However, one difference exists: barrier packets
are not routable, and thus are not reroutable by Extoll hardware. If alink ismarked asfailed,
management software must be notified, which must then extract these flits and inject them
to the other end of the faulty link until it has changed barrier tree mapping.

176 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

Extoll Barrier Packet
| sOS |Payload| CRC | EOP |

15 65 2 1 0
| reserved | Barierip |uP| |

$

DOWN

Figure 6-30. Extoll barrier packet format

6.3.8 The Network Port

The interface between NIC functional units and the network is the network port. The gen-
erator serializes the 64 bit data words from the functional units to the 18 bit wide phit for-
mat, breaks up data into flits and does the framing. At the interface to the network, it must
be virtual channel and credit aware.

The network port analyzer receives packets from the network. Asthe endpoint of acommu-
nication as seen by the network layer, the analyzer hides errors in the network from the
functional units.

Network Port - Generator Network Port - Analyzer

—— clk — clk
——Jres_n ——Jres_n

64 64
+2 dataHP2NP dataNP2XBAR i i dataXBAR2NP dataNP2HP #2
——<— frameHP2NP sopNP2XBAR SOpXBAR2NP frameNP2HP |—4—or
—— sopHP2NP sofNP2XBAR sofXBAR2NP sopNP2HP —
——— eopHP2NP eopNP2XBAR eopXBAR2NP eopNP2HP —

eofNP2XBAR eofXBAR2NP flit_errorNP2HP ———
— validHP2NP — | eop_eXBAR2NP validNP2HP ———
stopXBAR2NP validNP2XBAR — eof eXBAR2NP

4 SOpNP2HP | 3 | chamelXBAR2NP CreditVONP2XBAR bt

—~— utilizationHP2NP — | validxBAR2NP creditVC_validNP2XBAR |———
—— | stopHP2NP

Figure 6-31. Network Port Generator and Analyzer [126]

Impact of faults on the analyzer. In order to minimize latency and avoid a store-and-for-
ward implementation, the generator may brake up packetsinto flits arbitrarily. Packets will

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 177

be delivered to the receiving network port in the same way as they have injected by the
sender network port, with the following restrictions:

* Flitsmust have aminimum size of 4 phits, i.e. there must be at |east one payload phitin
each flit. The maximum payload size, including SOC and SOD words, is 32 phits.

» Switches in the network may consume routing phits, these phits are removed from a
flit. Thus, the routing section of aflit shrinks with phit granularity. A flit that contains
routing only may be removed completely during its path through the network.

» To verify the command of a packet, the end character must be checked not to be an
EOP_ERR or EOF_ERR. To reduce the latency of this check, sender network ports
must end aflit as soon as the command frame ends.

» Asaresult of alink error, erroneous flits may continue to travel through the network
and arrive at network ports. Erroneous flits end with one of the two error fits:
EOP_ERR and EOF_ERR. A network port can simply ignore and discard both types of
erroneousflits, as aretransmission will follow up. A flit that is market as erroneous
may contain all types of errors. Particular errors are data bit errors, and wrong payload
sizes. Both EOP_ERR and EOF_ERR end phits may be present for those errors. A third
type of erroneous packets are misrouted packets. These start with SOP and end with
EOP_ERR.

The straight forward implementation of the network port isastore and forward architecture,
inwhich datais forwarded to the functional units only after it has been verified. Thisintro-
duces an additional latency that depends on the flit size. For maximum sized flits, this
latency sums up to ~30 clock cyclesto the overall packet transmission latency.

An dternative implementation might speculatively forward data to functional units, and
verify or disapprove it later on. However, functional units must not change the state of the
system, unlessit isrecoverable, before the command has been verified. Otherwise, all types
of undefined and illegal behavior might occur.

6.4 On Chip Protection

The previous sections described how the Extoll network copes with link faults. Paths on
chipsare not protected against bit faultswith this protocol. To establish a protection against
transient bit errors, which is the relevant type of fault, several potential solutions exists.
This section shall give an outlook about the design space.

The most important question is whether error detection or correction is performed. Asthe
Extoll network shall be lossless even without an end to end retransmission protocol, error

178 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

correction isrecommended. Figure 6-32 shows the design space, which also depends on the
granularity of protection.

Using aflit-based granularity, the space for the CRC phit which is being used for off-chip
error detection could be used for CRC on the chip aswell. Asthelink out-port must recom-
pute the CRC to be able to differentiate between link errors and on-chip errors, thisis also
the place where an on-chip CRC error isbeing checked. Asthe packet based CRC isalready
being used, thissolution has very low overhead and thusisthe best option if error correction
is not required.

on-chip soft fault tolerance

gran-ularity
flit based word width
detection, ECC detection ECC
using CRC e.g. parity bit
detection scheme correction scheme correction scheme

Figure 6-32. On-chip data path protection

For forward error correction, ageneral requirement is that a check isto be performed every
time datainterpreted by control logic. In the Extoll network, phits that are interpreted are
control characters and routing phits. One solution is to protect the 16 bit wide data path
together with the predecoded control character signals with a Hamming code, which adds
5 control bits.

A different approach could use the CRC phit for a Hamming code over the complete flit.
Error correction can be done at the link out-ports: if an on-chip error is detected, the port
concludes the flit with an EOP_ERR or EOF_ERR, corrects the flit in the retransmission
buffer and retransmitsit. Control phits can be protected by changing the coding to a Ham-
ming code instead of using the link protocol encoding. The only problem are routing phits,

RELIABILITY IN A DIRECT INTERCONNECTION NETWORK 179

which areinterpreted and modified by the Extoll Crossbar. Future research may find asolu-
tion for thisissue.

To achieve further improvements in rdiability, protection of control structures like state
machines may be considered.

6.5 Summary

The Extoll protocol and control character encoding efficiently protects against all types of
link faults. Single bit FEC for control information is a significant improvement over state
of the art 8b/10b protocols. This avoids the loss of data and inconsistent states of the links,
which may occur in other state of the art implementations of 8b/10b encoded links. A cor-
rection of on-chip transient bit errors can be added.

The hardware-based routing over intermediate nodes provides a mechanism to improve
routing in regular networks with faulty links.

The direct overhead per flit is three phits. When maximum sized phits are used, this over-
head reduces the bandwidth that is avail able to 91.5%. I n the backwards direction, acknowl-
edgements and credits are an additional overhead, reducing the effective payload
bandwidth to 85% of theraw link bandwidth. Besidesthe overhead that isintroduced by the
protocol, line coding adds additional overhead. As 8b/10b coding itself has a 20% over-
head, the total effective payload bandwidth is 67%.

The closest competitor to the Extoll protocol is Infiniband, which isalossy network. Com-
pared to framing in Infiniband, theflit framing of Extoll isonly 2 byteslarger, asInifiniband
uses single K charactersfor that.

The only significant difference in bandwidth between Extoll and Infiniband occurs for
larger packets: Infiniband sends packetsin one piece, whereas Extoll partitions packetsinto
flits, which haveto be framed individually. Thisis not caused by the fault tolerant protocol,
but by the general architecture of the network. Infiniband uses virtual cut-through routing,
while Extoll uses wormhole routing, which requires much less buffer space. If Extoll’ s flit
size, and thus the buffers in Extoll, would be doubled to 128 bytes, efficiency would rise
from 85% to 92%.

180 RELIABILITY IN A DIRECT INTERCONNECTION NETWORK

CONCLUSION 181

7Conc|usi on

The steady performance growth rate of computer systems can only be maintained in the
future by exploiting parallelism at the level of threads and processes. Parallelism requires
efficient and fast communication methods among the components of a system. One major
goal of thisthesiswas to research and find solutions to remove the performance bottleneck
of network interface controller to processor communication.

Besides the link bandwidth, the latency that is observed on this path plays a fundamental
role for overall system performance. This latency directly increases the overall communi-
cation latency between two nodes. Additionally, the access latency that is observed by the
processor affects the throughput of the processor adversely.

To achieve a significant decrease in latency at al, on-chip communication is mandatory.
Communication over chip boundariesis just as expensive in terms of latency as a DRAM
memory access. Theintegration of network interface, processor cores and memory control-
ler onto the same die will become even more important in the future, as the processor to I/
O performance gap is still widening.

A closer coupling has not only to occur on the physical level, but on the protocol level as
well. For processors, caching of datais one of the most crucial factorsfor processor perfor-
mance. For device to processor communication, caching of datais currently not employed.
A tighter integration of devicesinto the system must consider these protocols.

Asmost of today’ s computing nodes are now shared memory multiprocessors, the essential
communication mechanism in today’ s computing nodes is the cache coherence protocol. A
comprehensive and up-to-date description of shared-memory design space is given in this
work. Although explicit broadcast protocolsin direct interconnect networks have changed
the conditions under which coherence protocols have to operate, cache coherent communi-
cation has not been amain focus of both researchers and authorsin the last years. Thus, the
in-depth description of the state of the art for small scale shared memory systemsis a pre-

182 CONCLUSION

requisite for any further work in this area, and cannot be found in its up-to-dateness else-
where.

A first implementation of a closer coupling of device and processor is the Hyper Transport
direct connect architecture, based on the HyperTransport I P core and the HTX board. The
HyperTransport IP core already has evolved from a research project to a product, and is
freely available under an open-source license. The coherent version of the core is distrib-
uted to licensees of the coherent protocol by AMD. Both cores find large interest in both
industry and academia. Thus, they areasignificant practical contribution to the community,
leveraging research and design of coherent devices and coprocessors of different kinds.

Another contribution of thiswork is the evaluation of cache coherent devices, focusing on
the critical path of device to processor communication. Performance estimations in this
work are based on RTL implementations using the HyperTransport and coherent Hyper-
Transport interconnects. Compared to abstract, high level simulations, this guarantees a
solid quality of the results. Also, these prototypes verify the proper functioning of the pro-
posed concepts.

To the best of my knowledge, only Mukherjee [9] has proposed a similar architecture:
external coherent devices in bus-based systems. Mainly due to the widening processor-to-
memory and processor-to-1/0O gaps, the situation has changed since then: performance
increases through coherent transfers cannot be expected for external devices. However, for
highest performance, devices and coprocessors must be integrated into the chip in a SOC-
like fashion. In this case, coherent devices exhibit a significantly improved performance
over classica DMA.

A completely new ideain thiswork, and thus a key contribution, isthe transfer cache. It is
the only architecture of those that have been analyzed in this work that improves the pro-
cessor read latency even for external devices. Also, devices do not need to participate at the
coherence protocol. In practice, getting accessto the proprietary, non-standardized coherent
protocols may be difficult due to legal and political reasons. Thus, the transfer cache is a
very promising concept, which fits particularly well with for example the Sun UltraSparc
T2 memory architecture, asthe existing second level caches can be used astransfer caches.

Another option for future improvements are direct processor cache access mechanisms. The
placement of data directly into the processor caches leads to best processor read latencies.
Compared to NICs in the processor core or specialized network message caches, DCA isa
universal mechanism that can be used by all devicesin the system. Such mechanisms have
virtually not been researched yet. The outlook presented in thisthesisisan excellent starting
point for intense work on DCA mechanismes.

CONCLUSION 183

While thefirst part of thiswork deal s with the optimization of deviceto processor commu-
nication, the second part concentrates on the opposite side of the NIC: the network itself.

Again, research in this field is driven by the growing exploitation of parallelism. Higher
paralelism leadsto increased network sizeswith larger numbers of nodes. For example, the
currently fastest supercomputer [99] has 106,496 computing nodes. At the same time, par-
alelism and complexity of the individual nodes are increasing as well. With growing
system sizes, the likelihood of faults per system isincreasing. Transient bit faults on chips
become more significant. On links, both transient and permanent faults have always been a
problem. But not only the larger number of links increases fault rates. Transient fault rates
per time increase with higher link data frequencies. Such faults can now be considered to
beregular events, so that fault handling must be efficient and thus occur on the lower levels
of the network.

Thiswork presents the fault tolerant Extoll network protocol, aimed to be used in small- to
large-scal e direct interconnection networks. The protocol protects against transient faults of
thelink that are due to Gaussian noise. Control information is protected using forward error
correction. Payload datais protected by alink-based retransmission protocol. Besides tran-
sient bit faults, the protocol protects against temporary and permanent link failures without
any loss of data. Asaresult, the Extoll link protocol is, to the best knowledge of the author,
the only successful implementation of atruly fault-tolerant network protocol based on 8b/
10b link coding. Under the constraints given by the 8b/10b protocol and Extoll network
requirements like small flit sizes and flit-based credits, the over-all maximum bandwidth
utilization of the Extoll protocol of 85% is the best that can be achieved to guarantee fault
tolerance. 8b/10b’'s efficiency of 80% further reduces the bandwidth. Thus, future work
must evaluate closer how 8b/10b coding can be replaced, for example using mechanisms
that are based on scrambling.

The High Availability Port is another significant improvement of fault tolerance. It is the
first and only hardware-based routing mechanism that uses partitioned routing between
intermediate nodes. In every large network, there is a good chance that at least onelink is
broken at any time. Thus, networks with a regular topology will in fact be irregular net-
works. The HAP allows an efficient and deadl ock-free rerouting around faulty components,
while all packetsthat are not directly affected by the fault can continue to use optimal rout-
ing algorithms.

184 CONCLUSION

All in al, this thesis developed new architectures and methods to solve two significant
problems of modern network interface controllers. a significant increase in the latency of
device to processor communication, and efficient and reliable error correction on network
links. For both areas, solutions have been devel oped and implemented that are already suc-
cessfully used in practice. Aswell, methods have been proposed and analyzed that may be
used in future systems.

185

AAcr onyms

AP Application Programming Interface

ASIC Application-Specific Integrated Circuit

BAR Base Address Register

BEC Backward Error Correction

BER Bit Error Rate, also Bit Error Ratio

CAM Content-Addressable Memory

CHT Cache Coherent HyperTransport protocol.

CMOS Complementary M etal—-Oxide—-Semiconductor

DC Direct Current

DCA Direct Processor Cache Access

DIMM Dua Inline Memory Module. A printed circuit board with a speci-
fied interface, typically holding a number of SDRAM chips.

DMA Direct Memory Access

ECC Error Correcting Code

FEC Forward Error Correction

FIFO First-In First-Out, a strategy for buffers

186

FIT
FLIT
FPGA
FU
HD
HPC
HT

HTX
IN

P
LAN
MIPS
MMU
MTU
nHT
NIC
NUMA
PCB
PE
PIO
RMA

SMP

FailuresIn Time

Flow-Control digIT, i.e. the smallest unit of flow control
Field-Programmable Gate Array

Functional Unit

Hamming Distance

High Performance Computing

HyperTransport protocol. May be followed by a number that speci-
fies the maximum clock frequency in MHz.

HyperTransport eX pansion, the standard for HT slots
Interconnection Network

Intellectual Property

Local Area Network

Million Instructions Per Second
Memory Management Unit
Maximum Transmission Unit
noncoherent Hyper Transport, see HT.
Network Interface Controller
Non-Uniform Memory Architecture
Printed Circuit Board

Processing Element

Programmed I nput/Output

Remote Memory Access

System Area Network

Symmetric Multiprocessor

SMT
SO-DIMM
SRAM
SRI

TCA

TLB

VC

VSM
ZRAM

Simultaneous Multi-Threading
Small Outline DIMM.

Static Random Access Memory
System Request Interface
Tightly Coupled Accelerator
Tranglation Lookaside Buffer
Virtual Channel

Virtual Shared Memory

Zero Capacitor Random Access Memory

187

188

(1]

(2]

[7]

(8]

189

BBiinography

J. von Neumann. First draft of a report on EDVAC. Technical Report, University of
Pennsylvania, 1945

M. D. Godfrey, D. F. Hendry. The Computer as Von Neumann Planned It. IEEE
Annuals of the History of Computing. Vol. 15, No.1, 1993

M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans. on
Computers C-21(9), pp. 938-960, September 1972.

D. Sima, T. Fountain, P. Kacsuk. Advanced Computer Achitectures: A Design Space
Approach. Addison Wesley, 1997.

H. Sharangpani, K Arora. Itanium Processor Microarchitecture. In |[EEE Micro,
p.24-43, Sept.-Oct. 2000.

X. Zang, A. Dasdan, M. Schulz, R. K. Guptaand A. A. Chien. Architectural adap-
tation for application-specific locality optimizations. In Proceedings of the 1997
|EEE international Conference on Computer Design, 1997.

W. A. WuIf and S. A. McKee. Hitting the Memory wall: Implications of the Obvi-
ous. Computer Architecture News, 23(1), pp. 20-24, March 1995

L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C Koryrakis, K. Olukotun.
Transactional coherence and consistency: simplifying parallel hardware and soft-
ware. Micro, |EEE Volume 24, Issue 6, Nov-Dec 2004

190

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Shubhendu Sekhar Mukherjee. Design and Evaluation of Network Interfaces for
System Area Networks. PhD. Thesis, University of Wisconsin-Madison, 1998

Shubhendu Sekhar Mukherjee, M. D. Hill. The impact of data transfer and buffer-
ing alternatives on network interface design. Fourth International Symposium on
High-Performance Computer Architecture, pp.207-218, 1-4 Feb 1998

T. Gross, D. R. O'Hallaron. IWarp - Anatomy of a Parallel Computing System. MIT
Press, Cambridge, Massachusetts, 1998

C. Whitby-Strevens. The Transputer. Proceedings of the 12th Annual International
Symposium on Computer Architecture (ISCA85), Boston, Massachusetts, U.S.,
June 1985

Joseph Carbonaro and Frank Verhoorn. Cavallino: The Teraflops Router and NIC.
Hot Interconnects 1V. pages 157 160, 1996

Ben Catanzaro. Multiprocessor System Architectures. Prentice Hall, Englewood
Cliffs, NJ, 1994

David Slogsnat. Smulation and Architectural Exploration of a Shared-Memory
Multiprocessor Node for Scientific Algorithms. Diploma Thesis, University of Man-
nheim, 2002

V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM reference manual, version 1.0.
Technical Report 9705, Rice University, 1997

Sun Microsystems Inc. OpenSPARC™ T2 System-On-Chip (SOC) Microarchitec-
ture Specification. July 2007

Sun Microsystems Inc. OpenSPARC™ T2 Core Microarchitecture Specification.
July 2007

Harlan McGhan. Niagara2 Opens the Floodgates. Microprocessor Report, Decem-
ber 2006

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

191

Advanced Micro Devices. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming. Revision 3.11, 2005

Advanced Micro Devices. Software Optimization Guide for AMD Family 10h Pro-
cessors. Revision 3.04, September 2007

Advanced Micro Devices. AMD BIOS and Kernel Developer's Guide for the AMD
Athlon 64 and AMD Opteron Processors. Revision 3.3, 2006

Wikipedia. Sreaming SMD extensions. Wikipedia Article, http://en.wikipedia.org/
wiki/Streaming_SIMD_Extensions, September 2007

Wikipedia. AltiVec. Wikipedia Article, http://en.wikipedia.org/wiki/AltiVec, Sep-
tember 2007

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. Dissertation,
Yale University, 1986

Lars Rzymianowicz, Ulrich Brining, Jorg Kluge, Patrick Schulz and Mathias
Waack. ATOLL: A Network on a Chip. Cluster Computing Technical Session (CC-
TEA) of the PDPTA'99 conference, in Las Vegas, June 28 - July 1 1999

H. Fréning, M. Nisdle, D. Slogsnat, P. R. Haspel, U. Briining. Performance Evalua-
tion of the ATOLL Interconnect. IASTED Conference, Parallel and Distributed
Computing and Networks (PDCN), Innsbruck, Austria, February 2005

U. Brining, W. Giloi. Future Building Blocks for Parallel Architectures. In Pro-
ceedings of the 2004 International Conference on Parallel Processing (ICPP04),
Montreal, Canada, 2004

Lars Rzymianowicz. Designing Efficient Network Interfaces For System Area Net-
works. Dissertation, University of Mannheim, 2002

Jon Beecroft, David Addison, David Hewson, Moray McLaren, Duncan Roweth,
Fabrizio Petrini, Jarek Nieplocha. QsNetll: Defining High-Performance Network
Design. IEEE Micro, vol. 25, no. 4, pp. 34-47, Jul/Aug, 2005

192

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Brightwell, Pedretti, Underwood. Initial performance evaluation of the Cray Sea-
Sar interconnect. 13th Symposium on High Performance Interconnects, 17-19 Aug.
2005

Smith, B. The architecture of HEP. On Parallel MIMD Computation: HEP Super-
computer and Its Applications, Ed. Massachusetts Institute of Technology, Cam-
bridge, MA, 41-55, 1985

R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The Tera computer system. SSIGARCH Comput. Archit. News 18, 3b, Sep. 1990

T. Hadfhill. Z-RAM shrinks embedded Memory. Microprocessor Report,
www.M PRonline.com, 2005

Intel. Intel® 1/O Acceleration Technology. Technology Brief, www.intel.com/go/
ioat, 2006

Intel. Intel® 82598 10 Gigabit Ethernet Controller. Product Brief, 2007

Intel. Intel® QuickData Technology Extends Flexibility of 1/O Acceleration. Tech-
nology @Intel Magazine, Volume 4, Issue 9, December 2006

Intel. Intel® 5000X Chipset Memory Controller Hub (MCH). Datasheet, September
2006

Microsoft. Scalable Networking: Eleminating the Receive Processing Bottleneck -
Introducing RSS. WinHEC, April 2004

R. Huggahalli, R. lyer, S. Tetrick. Direct Cache Access for High Bandwidth Net-
work /0. In Proceedings of the 32nd Annual international Symposium on Com-
puter Architecture (June 04 - 08, 2005). International Symposium on Computer
Architecture. IEEE Computer Society, Washington DC, pp50-59, 2005

Intel. Intel® Virtualization Technology for Directed I/O. Architecture Specification,
Revision 1.0, May 2007

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

193

AMD. AMD 1/O Virtualization Technology (IOMMU) Specification. Architecture
Specification, Revision 1.20, February 2007

David Kanter. The Common System Interface: Intel's Future Interconnect. Real
World Technologies, http://www.realworldtech.com/includes/templ ates/arti-
cles.cfm?Articlel D=RWT082807020032, August 2007

P. Conway, B. Hughes. The AMD Opteron Northbridge Architecture. IEEE Micro ,
vol.27, no.2, pp.10-21, March-April 2007

Brian Holden. Latency Comparison between Hyper Transport and PCI-Express in
Communications Systems. HyperTransport Consortium White Paper, November
2006

HyperTransport Technology Consortium. HyperTransport 1/0 Link Specification
Revision 2.00b. Document #HTC20031217-0036-0009, 2005

HyperTransport Technology Consortium. HyperTransport 1/0O Link Specification
Revision 3.00. Document #HTC20051222-0046-0008, 2006

HyperTransport Consortium. HyperTransport EATX Motherboard/Daughtercard
Specification. www.hypertransport.org, 2004

HyperTransport Consortium. The Future of High Performance Computing: Direct
Low Latency Peripheral-to-CPU Connections. www.hypertransport.org, November
2005

Duncan Bees, Brian Holden. Hyper Transport reduces delays in some applications.
EETimes 2004

Alexander Giese. Development and Verification of a Hyper Transport-Interface with
Optimizations for FPGA Environments. Diploma Thesis, Universitét Mannheim,
2006

PCI-SIG. PCI Express Base Specification 1.1. 2005

194

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

PCI-SIG PCI Express Base Soecification 2.0. 2007

Heise Newsticker. Neue Server Plattformen fuer zwei oder view Xeons. http://
www.hei se.de/newsticker/resul t.xhtml 2url=/newsti cker/mel dung/
88368& words=Clarksboro& T=clarksboro, April 2007

Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. |EEE Transactions on Computers, C-28(9):241-248, Sep-
tember 1979.

Christian Scheurich, Michagl Dubois. Correct Memory Operation of Cache-based
Multiprocessors. In Proceedings of the 14th Annual International Sumposium on
Computer Architecture, pages 234/243, June 1987

Sarita V. Adve, Kourosh Gharachorloo. Shared Memory Consistency Models: A
Tutorial. Computer, vol. 29, no. 12, pp. 66-76, Dec., 1996

M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiproces-
sors. Proc. 13th Int’| Symp. Comp. Arch., pp. 434-442, June 1986.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory Multiproces-
sors. Proc. 17th Ann. Int'l Symp. Computer Architecture, 1990.

D. Culler, J. Singh. Parallel Computer Archtecture. A Hardware/Software
Approach. Morgan Kaufman Publishers, 1999

R. Madukkarumukumana et al. Performing Direct Cache Access Transactions
Based on a Memory Access Data Sructure. WIPO patent, publication number WO/
2007/078958 , 2007

H. Hum, J. Goodman. Forward Sate for use in Cache Coherency in a Multiproces-
sor System. WIPO patent, publication number WO 2004/060678 A2, July 2004

H. Hum et a. Speculative Distributed Conflict Resolution for a Cache Coherency
Protocol. WIPO patent, publication number WO 2004/061677 A2, July 2004

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

195

Beers, R. et al. Non-Speculative Distributed Conflict Resolution for a Cache Coher-
ency Protocol. US Patent No. 6,954,829 B2. October 2005.

L. Censier, P. Feautrier. A new solution to Coherence Problems in Multicache Sys-
tems. In |EEE Transactions on Computers, C(27):1112-1118, December 1978.

A. Gupta, W.-D. Weber, and T. Mowry. Reducing Memory and Traffic Requirements
for Scalable Directory-Based Cache Coherence Schemes. In International Confer-
ence on Parallel Processing, pages 1:312--321, Aug 1990

M. M. Michael, A. K. Nanda. Design and Performance of Directory Caches for
Scalable Shared Memory Multiprocessors. In Proceedings of the 5th international
Symposium on High Performance Computer Architecture, HPCA, 1999

Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An Evalua-
tion of Directory Schemes for Cache Coherence. In Proc. of the 15th Znt. Sym. on
Computer Architecture, pages 280-289, May 1988

Richard Simoni and Mark Horowitz. Dynamic Pointer Allocation for Scalable
Cache Coherence Directories. In Proc. of the Int. Sym. on Shared Memory Multi-
processing, pages 72-81, April 1991

Intel. Intel® 64 and | A-32 Architectures Software Developer's Manual. Version 023,
2007

IBM. PowerPC Architecture Book. Version 2.02, 2005

IBM. IBM PowerPC 970FX RISC Microprocessor User's Manual. Version 1.41,
November 2004

Message Passing Interface Forum. MPI: A Message-Passing Interface Sandard.
Available from http://www.mpi-forum.org/docs, 1995

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. Available from http://www.mpi-forum.org/docs, 1997

196

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

OpenMP Architecture Review Board. OpenMP Application Program Interface.
Version 2.5, Mai 2005

P. M. Behr, S. Pletner, A. C. Sodan. PowerMANNA: a parallel architecture based
on the PowerPC MPC620. Proceedings of the Sixth International Symposium on
High-Performance Computer Architecture, HPCA-6. , pp.277-286, 2000

Tanabe, N.; Yamamoto, J.; Nishi, H.; Kudoh, T.; Hamada, Y.; Nakajo, H.; Amano,
H. . MEMOnet: network interface plugged into a memory slot. Proceedings of the
IEEE International Conference on Cluster Computing, pp.17-26, 2000

Khunjush, F. and Dimopoulos, N. J. . Lazy direct-to-cache transfer during receive
operations in a message passing environment. In Proceedings of the 3rd Conference
on Computing Frontiers (Ischia, Italy, May 03 - 05, 2006), ACM Press, New York,
NY, pp. 331-340, 2006

Afsahi, A. and Dimopoulos, N. J. . Efficient Communication Using Message Predic-
tion for Cluster Multiprocessors. In Proceedings of the 4th international Workshop
on Network-Based Parallel Computing: Communication, Architecture, and Appli-
cations. Lecture Notes In Computer Science, vol. 1797. Springer-Verlag, London,
162-178, 2000.

Binkert, N. L., Saidi, A. G, and Reinhardt, S. K. . Integrated network interfaces for
high-bandwidth TCP/IP. In Proceedings of the 12th international Conference on
Architectural Support For Programming Languages and Operating Systems (San
Jose, Cadlifornia, USA, October 21 - 25, 2006). ASPLOS-XII. ACM Press, New
York, NY, pp. 315-324, 2006

L. Spracklen, S. G. Abraham. Chip Multithreading: Opportunities and Challenges.
In Proceedings of the 11th international Symposium on High-Performance Com-
puter Architecture (February 12 - 16, 2005). HPCA. IEEE Computer Society, Wash-
ington, DC, pp. 248-252, 2005

Manolis Katevenis. Towards Light-Weight Intra-CMP Network Interfaces. Work-
shop on On- and Off-Chip Interconnection Networks for Multicore Systems, Stan-
ford, California, 6-7 December 2006

(83]

[84]

(85]

[86]

(87]

(88]

(89]

[90]

[91]

[92]

197

D. S. Henry and C. F. Joerg. A tightly-coupled processor-network interface. In Pro-
ceedings of the Fifth international Conference on Architectural Support For Pro-
gramming Languages and Operating Systems (Boston, Massachusetts, United
States, October 12 - 15, 1992). R. L. Wexelblat, Ed. ASPLOS-V. ACM Press, New
York, NY, pp. 111-122, 1992

S. L. Scott. Synchronization and communication in the T3E multiprocessor. SIG-
PLAN, pp. 26-36, Sep. 1996

S. Scott, G Thorson. The Cray T3E Network: Adaptive Routing in a High Perfor-
mance 3D Torus. HOT Interconnects 1V, Stanford University, August, 1996

Michael Schlansker, Nagabhushan Chitlur, Erwin Oertli, Paul M. Stillwell, Jr.,
Linda Rankin, Dennis Bradford, Richard J. Carter, Jayaram Mudigonda, Nathan
Binkert, Norman P. Jouppi. High-performance Ethernet-based Communications for
Future Multi-core Processors. Supercomputer Conference, SC07, November 2007

C. Seitz, N. Boden, J. Seizovic, W.-K. Su. Myrinet: A Gigabit-per-second Local
Area Network. |EEE Micro, val 15, no.1, pp 29-36, 1995

F. Petrini, Wu-chun Feng; A. Hoisie, S. Coll, E. Frachtenberg. The Quadrics net-
work (QsNet): high-performance clustering technology. Hot Interconnects 9, 2001,
pp.125-130, 2001

M. Schlansker, N. Chitlur, E. Oertli, P M. Stillwell, Jr., L. Rankin, D. Bradford, R.
J. Carter, J. Mudigonda, N. Binkert, N. P. Jouppi. High-perfor mance Ether net-based
Communications for Future Multi-core Processors. Supercomputing Conference,
SCO07, Nov 10-16, 2007

Infiniband Trade Association. Infiniband Architecture Specification Volume 1.
Release 1.2, October 2004, and Infiniband Architecture Specification Volume 2.
Release 1.2.1, October 2006

Cray Inc. Cray XT3 Datasheet. http://www.cray.com/products/xt3/index.html. 2005

Cray Inc. Cray XT4 Datasheet. http://www.cray.com/products/xt4/index.html. 2006

198

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

Lustre Wiki. http://wiki.lustre.org/

Nikhil, R. S., Papadopoulos, G. M., and Arvind 1992. *T: a multithreaded massively
parallel architecture. In Proceedings of the 19th Annual international Symposium
on Computer Architecture (Queensland, Australia, May 19 - 21, 1992). ISCA '92.
ACM Press, New York, NY, 156-167, 1992

Derek Chiou, Boon S. Ang, Arvind, Michael J. Becherle, Andy Boughton, Robert
Greiner, James E. Hicks, James C. Hoe. SartT-ng: Delivering Seamless Parallel
Computing. In Proceedings of EURO-PAR 95, Stockholm, Sweden, 1995

B. S. Ang, D. Chiou, D.L. Rosenband, M. Ehrlich, L. Rudolph, Arvind. SarT-Voy-
ager: a flexible platform for exploring scalable SMIP issues. In Proceedings of the
1998 ACM/IEEE Conference on Supercomputing (San Jose, CA, November 07 -
13, 1998). Conference on High Performance Networking and Computing. |EEE
Computer Society, Washington, DC, pp. 1-13, 1998

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, Luis Stevens, Anoop
Gupta, John Hennessy. The DASH Prototype: |mplementation and Performance. In
Proceedings of the 19th International Symposium on Computer Architecture, pages
92-103, Gold Coast, Australia, May 1992

F. Aono and M. Kimura. The AzusA 16-Way Itanium Server. In |EEE Micro Septem-
ber-October 2000, p.54-60

TOP500 Supercomputer Stes, http://www.top500.0rg.

N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P.
Heidelberger, S. Singh, B. D. Steinmacher-Burow, T. Takken, M. Tsao, and P.
Vranas. Blue Gene/L Torus Interconnection Network. IBM J. Res. & Dev. 49, No. 2/
3, 265-276, 2005

A. Gara, M. A. Blumrich, D. Chen, G L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.
Haring, P. Heidelberger, D. Hoenicke, G V. Kopcsay, T. A. Liebsch, M. Ohmacht,
B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L
system architecture. BM J. Res. & Dev. 49, No. 2/3, pp. 195-212, 2005

199

[102] M. Ohmacht, R. A. Bergamaschi, S. Bhattacharya, A. Gara, M. E. Giampapa, B.
Gopalsamy, R. A. Haring, D. Hoenicke, D. J. Krolak, J. A. Marcdlla, B. J.
Nathanson, V. Salapura, and M. E. Wazlowski. Blue Gene/L Compute Chip: Mem-
ory and Ethernet Subsystem. IBM J. Res. & Dev. 49, No. 2/3, pp. 255-264, 2005

[103] The HyperTransport Consortium. HyperTransport Technology 1/0O Link. White
Paper, July 2001

[104] Raza Microelectronics, Inc. XLR Processor Product Overview. May 2005

[105] U. Brining. Lecture Notes for Computer Architecture I. University of Mannheim,
Germany, 2007

[106] Intel Corporation. Intel’s Official Moore's Law Page. http://www.intel.com/technol-
ogy/mooreslaw/

[107] R.J. Drost, R. D. Hopkins, R. Ho, I. E. Sutherland. Proximity communication. |IEEE
Journal of Solid-State Circuits, vol.39, no.9, pp. 1529-1535, Sept. 2004

[108] Newisys. ExtendiScale™ Technology: Large-Scale SMP Using AMD® Opteron™
Processors and Newisys® Horus AS C. White Paper, 2006

[109] Andi Kleen. ANUMA API for Linux. Technical Report, 2004

[110] John McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. http://www.cs.virginia.edu/stream/

[111] S. S. Mukherjee and M. D. Hill. The Impact of Data Transfer and Buffering Alter-
natives on Network Interface Design. Proceedings of HPCA98, Feb. 1998

[112] S. S. Mukherjee, M. D. Hill. Using prediction to accelerate coherence protocols.
Proceedings of the 25th Annual International Symposium on Computer Architec-
ture, pp.179-190, 27 Jun-1 Jul 1998

[113] Manuel E. Acacio, José Gonzdlez, José M. Garcia and José Duato. Owner Predic-
tion for Accelerating Cache-to-Cache Transfer Misses in cc-NUMA Multiproces-

200

[114]

[115]

[116]

[117]

[118]

[119]

[120]

sors. Proc. of the SC2002 High Performance Networking and Computing,
November 2002

S. Kaxiras, C. Young. Coherence communication prediction in shared-memory mul-
tiprocessors. Sixth International Symposium on High-Performance Computer
Architecture, 2000. HPCA-6. Proceedings, pp.156-167, 2000

S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A. Ailamaki, B. Falsafi. Mem+-
ory coherence activity prediction in commercial workloads. In Proceedings of the
3rd Workshop on Memory Performance Issues: in Conjunction with the 31st inter-
national Symposium on Computer Architecture (Munich, Germany, June 20 - 20,
2004). WMPI '04, val. 68. ACM Press, New York, NY, pp. 37-45, 2004

T. F Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki and B. Falsdfi.
Temporal Sreaming of Shared Memory. In Proceedings of the 32nd Annual interna-
tional Symposium on Computer Architecture (June 04 - 08, 2005). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
pp. 222-233, 2005

M. P. Herlihy and J. E. B. Moss. Transactional Memory: architectural support for
lock-free data structures. In Proceedings of the 1993 International Symposium on
Computer Architecture (ISCA), San Diego, CA, May 1993

L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis, B. Hertzberg., M .K.
Prabhu, H. Wijaya, C. Kozyrakis, K. Olukotun. Transactional Memory Coherence
and Consistency. In Proceedings of the 31st Annual international Symposium on
Computer Architecture (Minchen, Germany, June 19 - 23, 2004). International
Symposium on Computer Architecture. IEEE Computer Society, Washington, DC,
p. 102, 2004

R. lyer, L. Bhuyan, A. Nanda. Using Switch Directories to Speed Up Cache-to-
Cache Transfersin CC-NUMA Multiprocessors. IPDPS, p. 721, 2000.

T. Schlichter. Exploration of Hard- and Software Requirements for one-sided, zero
copy user level Communication and its Implementation. Diploma Thesis, Computer
Architecture Group, University of Mannheim, 2003

201

[121] H. Froning. Architectural Improvements of Interconnection Network Interfaces.
Inaugural Dissertation, University of Mannheim, Jul. 9, 2007.

[122] H. Litz. HTAX Specification. Technical Report, Computer Architecture Group, Uni-
versity of Mannheim, 2007

[123] P. Haspel. Researching methods for efficient hardware specification, design and
implementations of a next generation communication architecture. Inaugural Dis-
sertation, University of Mannheim, 2007

[124] L. Schaelicke, A. Davis. Improving 1/0 performance with a conditional store buffer.
MICRO-31. Proceedings. 31st Annua ACM/IEEE International Symposium on ,
pp.160-169, 30. Nov-2. Dec 1998

[125] H. Litz, H. Froening, M. Nuessle, U. Bruening. A HyperTransport NIC for Ultra-
low Latency Message Transfers. Technical Report, 2007

[126] D. Bayer. Designing the Network Port Element for the EXTOLL Network Chip.
Project Report, University of Mannheim, 2005

[127] D. Slogsnat, A. Giese, M. Nuessle, U. Bruening .A \ersatile, Low Latency Hyper-
Transport Core. Technical Report, 2008

[128] H. Froning, M. Nisdle, D. Slogsnat, H. Litz, U. Briining. The HTX-Board: A Rapid
Prototyping Sation. 3rd annual FPGAworld Conference, Stockholm, Sweden, Nov.
16, 2006

[129] S. Kapferer. Design Space Analysis and Implementation of a Cache Coherent
Device for HyperTransport. Diploma Thesis, University of Mannheim, 2007

[130] F. Udtzhdffer. Design and Implementation of a Virtual Channel Based Low-Latency
Crosshbar Switch. Diploma Thesis, University of Mannheim, 2005

[131] B. Geib. Improving and Extending a Crossbar Design for ASC and FPGA Imple-
mentation. Diploma Thesis, University of Mannheim, 2007

202

[132] N. Burkhardt. Fast Hardware Barrier Synchronisation for a Reliable Interconnec-
tion Network. Diploma Thesis, University of Mannheim, 2007

[133] S. Schenk. Configuration and Implementation of the Xilinx Multi Gigabit Trans-
ceivers. Project Report, 2007

[134] H. Klimant, R. Piotraschke, D. Schoenfeld. Informations- und Kodierungstheorie.
B.G Teubner 2003

[135] D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge:
Cambridge University Press, 2003

[136] P. Koopman, T. Chakravarty. Cyclic Redundancy Code (CRC) Polynomial Selection
For Embedded Networks. International Conference on Dependable Systems and
Networks (DSN'04), p. 145, 2004

[137] J. Ray, P. Koopman. Efficient High Hamming Distance CRCs for Embedded Net-
works. International Conference on Dependable Systems and Networks, DSN 2006,
pp.3-12, 2006

[138] T.-B. Pei and C. Zukowski. High-Speed Parallel CRC Circuitsin VLS. IEEE Trans.
Comm., val. 40, no. 4, pp. 653-657, Apr. 1992

[139] Sprachmann. Automatic Generation of Parallel CRC Circuits. IEEE Des. Test 18, 3
(May. 2001), pp. 108-114, 2001

[140] Yin-Tsung Hwang, Jiun-Yan Chen, Ming-Hwa Sheu. Automatic Generation of Pro-
grammable Parallel CRC & Scrambler Designs. |IEEE Workshop on Signal Pro-
cessing Systems Design and I mplementation, SIPS '06, pp.286-291, Oct. 2006

[141] P. Subbiah. Bit-Error Rate (BER) for high speed serial data communication. Tech-
nical Paper, Cypress Semiconductor, 2006

[142] L. Thon, H.-J. Liaw. Error-Correction Coding for 10Gh/s Backplane Transmission.
DesignCon 2004

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

203

Intel. Intel® Connects Cables. High-Performance 20 Gbps Optical Cables. Product
Brief, 2007

J. von Neumann. Prabailistc logics and the synthesis of reliable organisms from
unreliable components. Automata Studies, in Annals of Mahtematical Studies no.
34, pp. 43-98, Princeton University Press, 1956

P. Lala. Self-Checking and Fault-Tolerant Digital Design. Academic PresssMorgan
Kaufmann Publishers, 2001

R. Baumann. Soft errorsin advanced computer systems. Design & Test of Comput-
ers, IEEE, Volume 22, Issue 3, Page(s):258 - 266, May-June 2005

P. Hazucha, T. Karnik, J, Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S.
Hareland, P. Armstrong, S. Borkar. Neutron soft error rate measurements in a 90-
nm CMOS process and scaling trends in SRAM from 0.25-um to 90-nm generation.
Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International,
pp. 21.5.1-21.5.4, 8-10 Dec. 2003

J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin, M. Nicewicz, C.
A. Russdl, W. Y. Wang, L. B. Freeman, P. Hoser, L. E. LaFave, J. L. Walsh, J. M.
Orro, G J. Unger, J. M. Ross, T. J. O'Gorman, B. Messing, T. D. Sullivan, A. J.
Sykes, H. Yourke, T. A. Enger, V. Tolat, T. S. Scott, A. H. Taber, R. J. Sussman, W.
A. Klein, C. W. Wahaus. IBM experiments in soft fails in computer electronics
(1978-1994). IBM Journal of Research and Development, Vol. 40, No.1, 1996

S.S. Mukherjee, J. Emer, SK. Reinhardt. The soft error problem: an architectural
perspective. 11th International Symposium on High-Performance Computer Archi-
tecture, 2005. HPCA-11, pp. 243-247, 12-16 Feb. 2005

A. X. Widmer, P. A. Franaszek. A DC-Balanced, Partitioned-Block, 8B/10B Trans-
mission Code. IBM Journal of Research and Technology, Volume 27, Number 5,
Page 440, 1983

Rick Walker, Birdy Amrutur, Tom Knotts, Richard Dugan. 64b/66b coding update.
|EEE 802.3ae, Albuquerque, 3/6/2000

204

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Suresh Chalasani, Rgjendra V. Boppana. Communication in Multicomputers with
Nonconvex Faults. |EEE Transactions on Computers ,vol. 46, no. 5, pp. 616-622,
May, 1997

Chun-Lung Chen, Ge-Ming Chiu. A Fault-Tolerant Routing Scheme for Meshes
with Nonconvex Faults. IEEE Transactions on Parallel and Distributed Systems
Wvol. 12, no. 5, pp. 467-475, May, 2001

R.A. Reed, M.A. Carts, PW. Marshal, C.J. Marshall, O. Musseau, PJ. McNulty,
D.R. Roth, S. Buchner, J. Melinger, T. Corbiere. Heavy ion and proton-induced sin-
gle event multiple upset. IEEE Transactions on Nuclear Science, vol.44, no.6,
pp.2224-2229, Dec 1997

Maria Engracia Gomez, Nils Agne Nordbotten, Jose Flich, Pedro Lopez, Antonio
Rables, Jose Duato, Tor Skeie, Olav Lysne. A Routing Methodology for Achieving
Fault Tolerance in Direct Networks. |EEE Transactions on Computers ,vol. 55, no.
4, pp. 400-415, April, 2006

Young-Joo Suh, Binh Vien Dao, Jose Duato, Sudhakar Yalamanchili. Software-
Based Rerouting for Fault-Tolerant Pipelined Communication. |EEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 3, pp. 193-211, March, 2000

C. Hoand L. Stockmeyer. A New Approach to Fault-Tolerant Wor mhole Routing for
Mesh-Connected Parallel Computers. IEEE Trans. Comput. 53, 4 , pp. 427-439,
Apr. 2004

Donald H. McMahon, Alan A. Kirby, Bruce A. Schofield, Kent Springer. Data and
forward error control coding techniques for digital signals. US Patent Number
5144304, 1992

205

CList of Figures

Figure 1-1. Block diagram of the EXtoll NIC e 4
Figure 1-2. URraNIC . ..o e e e e e e 5
Figure 1-3. The HTX boardo e e 6
Figure 1-4. Design space diagramttt e e 7
Figure 1-5. Flow diagramo 8
Figure 1-6. MESI statediagram for arequestingcache i i, 8
Figure 1-7. MESI statediagram for asnoopingcache ninnnnnn 9
Figure 1-8. Design exploration design Spaceo oot it e 10
Figure 1-9. Four-node eXxampleottt 12
Figure 1-10. System parametersfor HT1000ot 12
Figure 2-1. The memory hierarchy of the Intel Itaniumprocessor [5]cv.t. 14
Figure 2-2. Classification of parallel architecturesaccordingtoSima 16
Figure 2-3. UMA, NUMA and COMA architeCtureS oo i i 17
Figure 2-4. Distributed memory architecture i 19
Figure 2-5. Goals of all communicationparadigmsot 20
Figure 2-6. Aspects of communication paradigms 20
Figure 2-7. Device integration deSign SPace oo vt ittt ittt 25
Figure 2-8. Pointer-based wrap-around qUEUEottt 28
Figure 2-9. Queue synchronization deSIgN SPaCE .« .« . v v v v ittt et i 29
Figure 2-10. Consumer process notificationdesignspace, 30
Figure 2-11. Address decoding for aread request to a conditional store buffer in Extoll [121] .. 31
Figure 2-12. Design space of shared memory COMPULErSt ene .. 32
Figure 2-13. Common topologies for small scale shared memory computers 33
Figure 2-14. Design space of cache coherence protocols. 35

Figure 2-15. Influence of the interconnect topology on broadcast based protocols 38

206

Figure 2-16. MOES state diagram for arequestingcache 40
Figure 2-17. MOESI State diagram for asnoopingcache iiiiiiiaan... 41
Figure 2-18. MESIF state diagram for arequestingcache 42
Figure 2-19. MESIF state diagram for asnoopingcache it 43
Figure 2-20. Hierarchical snoopy-busNUMA systemo iiiiiininiinn 44
Figure 2-21. Design space of directory cache coherence protocols 45
Figure 2-22. Directory contentsin a full mapped directory. Thereis abit for every cache, stating
whether the memory block is cached by that cache (bit=1) or not (bit=0) 46
Figure 2-23. Conflict caused by simultaneous access to the same memory location 49
Figure 2-24. Treatment of conflictingaccesses e 51
Figure 2-25. Transfersfor aread_exclusive request for different conflict treatment strategies .. 53
Figure 2-26. A 2-processor Intel Xeon system e 55
Figure 2-27. Snoop filter entry format and address partitioning [38] 56
Figure 2-28. 2nd and 3rd generation AMD Opteron ProCeSSOrS vvvvvveie e ieeeenennns 57
Figure 2-29. An 8-node Opteron topology v v vt it 58
Figure 2-30. The Sun UItraSPARC T2 processor [17] . ..o oot e i e 59
Figure 2-31. TheSun T2 diewithanareaof 342mm2 60
Figure2-32. TSEPE Block diagram [84]t e 61
Figure 2-33. XT4 processing element block diagram [92] i, 62
Figure 2-34. Cray SeaStar2 block diagram[92] i 63
Figure 2-35. BlueGene/L node architecturecc i 64
Figure 3-1. Comparison of HTX and PCI Express connectionsto the processor 66
Figure 3-2. HyperTransport topology [51]o e 68
Figure 3-3. HyperTransport read and write request packet flow 69
Figure 3-4. HyperTransport and PCl Express packet formats[49]n... 70
Figure 3-5. Memory accesses and memory types in the AMD 64bit architecture[20] 71
Figure 3-6. Device access using memory-mapped I/O in Opteronsystems 72
Figure 3-7. System parameterS 73
Figure 3-8. Relative performance for streams of different packetsizes 74
FiQUre 3-0. LatenCiesottt e e e e 77
Figure 3-10. Buffer deSign Spateo oottt e 79
Figure 3-11. NIC IOCaliONSot et e et e 80
Figure 3-12. The development of processor speeds of X86 processorsc....vuu... 82
Figure 3-13. The development of DRAM memory and I/Obusspeeds 83
Figure 3-14. Read access latency, depending on memory and interconnect technology 84

Figure 3-15. Overall DRAM read access latency in Opteron system relation to number of hopsto

207

BB . o 85
Figure 3-16. Latency of aread operation on physically local memory with broadcast based coherence

86
Figure 3-17. Views of a device in a coherent processor interconnectionnetwork 89
Figure 3-18. Coherence of devicecaches e 91
Figure 3-19. DMA transfer by device with subsequent processor access 93
Figure 3-20. Design space for device cache implementationto speedupqueues 94
Figure 3-21. Caching instead of DMA transfer i, 95
Figure 3-22. Configurations with coherent devicecaches oL, 97
Figure 3-23. Performance of off-SOC devicewith coherentcache 99
Figure 3-24. CPU read latency for on-SOC deviceswithacache 100
Figure 3-25. Design space of coherent memory onthedevice 101
Figure 3-26. Latency of a device acting as coherent memory controller 102
Figure 3-27. Design spacefortransfercaches i, 103
Figure 3-28. Transparent caching in memory controller of homenode 104
Figure 3-29. Transfer cache latenCieS oot e e i 105
Figure 3-30. Latency summary for on-chipdevices., 106
Figure 3-31. Decision processfor coherent devices 108
Figured-1. UIraNIC . ..o e e e e 111
Figure 4-2. Block diagram of thenHT core[51] 112
Figure 4-3. Scalability of the HT core e 113
Figure 4-4. Command packet format at applicationinterface 114
Figure 4-5. Ultra ping-pong latenciesin atwo-node network [125] 116
Figure 4-6. The coherent deviceinfrastructure 118
Figure 4-7. Coherent cache-aware command packet format at the nHT crossbar. 119
Figure4-8. Cachetop level diagram[129]t e 121
Figure 4-9. Block diagram of the cachelogic module[129]o .t 122
Figure 4-10. Coherent memory controller i 123
Figure 5-1. Design aspectsof DCA mechanisms 126
Figure5-2. A potential integration of aCPU ID filed in adevicetable entry, based onthe AMD IOM-

MU speCification [42]co it 129
Figure 5-3. Indirect cache accessviaprefetchhint 130
Figure 5-4. Sized-write payload for prefetch hint 131
Figure 5-5. Cache update with parallel accesstoMCandCPU 132
Figure 5-6. Cache update with serial accesstoCPUandMC 133

Figure 5-7. Cache update with serial accessover MCandCPUoott. 134

208

Figure 5-8. Proposed HT 3.0 packet extension for write packetswith acachehint 134
Figure 6-1. Cosmic ray flux increases with the altitude [148], 140
Figure 6-2. Soft fault ratescalingfor DRAM [146]. ...t 141
Figure 6-3. Soft fault rate scalingfor SRAM [146] e 141
Figure 6-4. Classification of the possible outcome of soft bitfaults 143
Figure 6-5. Geometrical interpretation of Hamming distances 144
Figure 6-6. Linear feedback shift register for g(x) =x3+x%+1[139]\ ovvnenennn... 146
Figure 6-7. Chip soft fault tolerancedesignspaceottt 147
Figure 6-8. Link soft fault tolerancedesign spaceot 148
Figure 6-9. Retransmission in Networkso e 149
Figure 6-10. Hamming distances of 8b/10b control charactersin the 10b domain 152
Figure 6-11. Error detection or correction for linecodes, 152
Figure 6-12. 10b word pairs with aHamming distance of 1 and their Hamming distances on the 8bit
JOMAIN e 153
Figure 6-13. Set of 16 D characterswithaminimumHD=4 154
Figure 6-14. Deadlock-free routing violation dueto link failure 155
Figure 6-15. Fault-tolerant routing over intermediatenodes, 156
Figure 6-16. 3D-TOorustopolOgYo vvi ettt e et 157
Figure 6-17. A node of the Extoll network i 158
Figure 6-18. Extoll packet and routingformat 159
Figure 6-19. Extoll packet and phitframing i 160
Figure 6-20. A link between two nodesinthe Extoll network 161
Figure 6-21. Functional block diagram of the PHY in the FPGA prototype 161
Figure 6-22. Extoll control phits i e e 163
Figure 6-23. The link port e e 165
Figure 6-24. Protocol detection of multi-bit errorsinphits............................. 168
Figure 6-25. Link failure treatment by the Extoll network (b) and software based alternative (a) . .
169
Figure 6-26. Scenario after adetected link failure, 170
Figure 6-27. Packet tail extraction and injection due to permanent link failure 171
Figure 6-28. High Availability POrt [131]coo it e i e 173
Figure 6-29. The barrier module [132] o e 175
Figure 6-30. Extoll barrier packetformat i 176
Figure 6-31. Network Port Generator and Analyzer [126] ..., 176

Figure 6-32. On-chipdatapathprotection i 178

	Tightly-Coupled and Fault-Tolerant Communication in Parallel Systems
	Contents
	1 Introduction
	1.1 The Extoll Project
	1.2 Physical Implementation
	1.3 Graphical Representations
	1.4 Methodologies
	1.5 A Theoretical Model for cHT/HT Performance

	2 Communication in Parallel Computers
	2.1 Caches
	2.2 Parallel Computing Architectures
	2.2.1 Communication Paradigms
	2.2.2 Remote Load/Store
	2.2.3 Put/Get
	2.2.4 Send-Receive

	2.3 Device Integration Design Space
	2.3.1 Process-Device Interaction
	2.3.2 Device Virtualization

	2.4 Cache Coherence for Shared Memory Systems
	2.4.1 Consistency Models for Shared Memory
	2.4.2 Cache Coherence Protocols
	2.4.3 Broadcast Protocols
	2.4.3.1 MOESI
	2.4.3.2 MESIF

	2.4.4 Directory-Based Protocols
	2.4.5 Serialization of Conflicting Accesses

	2.5 Introduction to x86 Systems
	2.5.1 Intel Xeon Architecture
	2.5.2 AMD

	2.6 Examples of Parallel Systems
	2.6.1 Sun UltraSPARC T2
	2.6.2 Cray T3E
	2.6.3 Cray XT3 and XT4
	2.6.4 IBM BlueGene/L
	2.6.5 NIs on Standardized Peripheral Interfaces

	3 Improving Device to Processor Communication
	3.1 HyperTransport Devices and Accelerators
	3.1.1 The HyperTransport Protocol
	3.1.2 I/O in HTX Systems
	3.1.3 Ordering in PIO
	3.1.4 Ordering PIO Write Requests
	3.1.5 Ordering PIO Read Requests
	3.1.6 Potential Incremental Solutions

	3.2 The Space of Analysis
	3.2.1 Latency-Sensitive Data
	3.2.2 Buffering
	3.2.3 Feasible Solutions

	3.3 Memory and Interconnect Bottlenecks
	3.3.1 Influence of the Cache Coherence Protocol
	3.3.2 Summary

	3.4 Devices at the Coherent Interconnect
	3.4.1 Devices with Coherent Caches

	3.5 The Performance of Coherent Transfers
	3.5.1 Devices with Coherent Caches
	3.5.1.1 Off-SOC Devices
	3.5.1.2 Devices with Caches in SOCs

	3.5.2 Devices with a Coherent Memory Controller

	3.6 Transfer Cache
	3.7 Results
	3.7.1 Conclusion
	3.7.2 Related Work

	4 HT and cHT Prototypes
	4.1 The HT Core and Interface
	4.1.1 Results

	4.2 The Coherent HT Infrastructure
	4.2.1 The Coherent Fabric
	4.2.2 Units and Crossbars.
	4.2.3 cHT/nHT Bridge
	4.2.4 Cache Design
	1. Read requests due to misses in the cache, and corresponding read and probe responses.
	2. Change to dirty request due to a write hit to a non-exclusive cacheline, or due to the new allocation of a complete cacheline.
	3. Write requests due to cache evictions of modified data.
	4. Probing requests caused by accesses of remote processors or devices. These must be answered by either a probe response or a read response with the cacheline data.

	4.2.5 Transparent Memory Controller in the Device

	4.3 Summary

	5 Suggestions for Direct Processor Cache Access
	5.1 The Design Space
	5.1.1 Device - Thread - Processor Relations

	5.2 DCA for HyperTransport
	5.2.1 Indirect Cache Access via Prefetch Hint
	5.2.2 Direct Cache Access

	5.3 Related Work

	6 Reliability in a Direct Interconnection Network
	6.1 Faults
	6.1.1 Units
	6.1.2 Soft Error Nature and Rates
	6.1.3 Error Correcting and Detecting Codes
	6.1.4 SEU Tolerant Design
	6.1.5 Retransmission Endpoints
	6.1.6 Serial Transmission
	6.1.7 Faults in Regular Networks

	6.2 The Extoll Network
	6.2.1 Packet and Flit Protocol

	6.3 Extoll Link Error Correction
	6.3.1 The Physical Link
	6.3.2 Protocol Encoding for Serial Links
	6.3.3 The Logical Link Layer: the Link Port
	6.3.4 Temporary or Permanent Link Failure
	6.3.5 The Extoll Switch
	6.3.6 The High Availability Port
	6.3.7 Barrier
	6.3.8 The Network Port

	6.4 On Chip Protection
	6.5 Summary

	7 Conclusion
	A Acronyms
	B Bibliography
	C List of Figures

