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I 

PREFACE 

 

In the present thesis the analysis of change is approached from the perspective of differential 

psychology. Its goal is to strengthen, refine and extend the liaison between the methods of 

differential psychology and indicators of change by comparing and integrating “conventional” 

and “new” methods for the analysis of change, critically reviewing existing procedures, and 

applying innovative new techniques to the analysis of practical problems.  

 

Although the thesis is more comprehensive, and unique in its integration of various aspects of 
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• Voelkle, M. C., & Sander, N. (in press). University drop-out: A structural equation 

approach to discrete-time survival analysis. Journal of Individual Differences. 

• Voelkle, M. C. (2007). Latent growth curve modeling as an integrative approach to the 

analysis of change. Psychology Science, 49(4), 375-414  

• Voelkle, M. C. (2007, April). Autoregressive latent trajectory models: A 

reconsideration. Paper presented at the Annual Meeting of the American Educational 

Research Association, Chicago. 
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1 INTRODUCTION 

“I want to take the risk and argue as forcefully as I can for some selective optimizing [of 

research activities] by refocusing the targets to which the methods of differential psychology 

are applied. The targets I wish to promote are selected indicators of change. This implies 

paying less attention to applying the methods to single occasion scores” (Nesselroade, 2002, 

p. 548). 

 

The remarkably strong statement of John R. Nesselroade quoted above was taken from his 

presidential address Elaborating the Differential in Differential Psychology given to the 

Society of Multivariate Experimental Psychology, Saratoga Springs, NY, October 2000. In 

his address he promotes a “liaison” (Nesselroade, 2002, p. 548) between the methods of 

differential psychology and indicators of change and calls for a refinement, strengthening and 

extension of this liaison. The guiding idea of the present thesis is to take up the call and 

contribute to this goal by (a) comparing and integrating “conventional” and “new” methods 

for the analysis of change, (b) critically reviewing existing procedures and (c) applying 

innovative new techniques to the analysis of practical problems. 

 

In line with Nesselroade (2002), the analysis of change will be approached from a differential 

perspective, focusing on interindividual differences in intraindividual change over time. Per 

definition this requires the analysis of intraindividual changes but also the analysis of 

interindividual differences, which are independent of time but may be related to time-varying 

characteristics. 

 

Throughout the thesis a generalized latent variable perspective is adopted (Muthén, 2002). 

Originally, structural equation modeling (SEM) was not developed for the analysis of 

longitudinal data (e.g., Bollen, 1989), but it was soon discovered that it can easily be applied 

to the analysis of change (Meredith & Tisak, 1984, 1990). Although various other techniques 

exist for the analysis of longitudinal data, SEM is characterized by great flexibility, which 

oftentimes permits the integration of other approaches as special cases, making it particularly 

suited for the analysis of change.  
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Two studies serve as examples of the more general methodological considerations put 

forward throughout the thesis. The first study (Section 3.3) is a reanalysis of data on skill-

acquisition in the complex problem solving scenario TRACON (Ackerman, Kanfer, & Goff, 

1995). A latent growth curve analysis of skill-acquisition and its determinants (Voelkle, 

Wittmann, & Ackerman, 2006) is used as a stepping stone towards a critical reconsideration 

of the integration of autoregressive and latent growth curve models1. The second study 

(Section 4) is a new study on university drop-out, thus methodological aspects and substantive 

findings are considered to be of equal importance.  

 

1.1 The analysis of change in differential psychology 

As pointed out by Gottman (1995), “the study of change became the business of science” (p. 

vii) ever since Galileo’s law of inertia overthrew Aristotle’s conception of a stable and 

harmonic universe. Abandoning the idea that all objects have a natural place in universe, but 

are in constant change, the analysis of things turns into the analysis of change of things. As a 

consequence, methods for the analysis of change are as manifold as science itself. Although 

they are unified in declaring change as their main object of investigation, there are great 

differences of what constitutes change, or how to best analyze it. Accordingly, existing 

methods are often closely bound to a particular discipline or sub-discipline, rendering any 

comprehensive overview impossible. The spectrum ranges from the study of a single subject 

assessed at comparatively few time points to the study of large samples repeatedly measured 

on multiple variables over a long period of time. Typical examples are – but are not limited to 

– the analysis of panel data (e.g., Wooldridge, 2007; Hsiao, 2005) and time series analysis 

(e.g., Lütkepohl, 2005; Lütkepohl & Krätzig, 2004) in sociology and econometrics, latent 

growth curve modeling (e.g., Bollen & Curran, 2006; Duncan, Duncan, & Strycker, 2006) and 

hierarchical linear modeling (e.g., Raudenbush & Bryk, 2002) in the behavioral sciences and 

closely related techniques in the health and medical sciences (e.g., Fitzmaurice, Laird, & 

Ware, 2004), including the analysis of small sample or single subject designs (e.g., 
                                                 
1 The original latent growth curve study is already published and is explicitly not part of the present thesis. To 

avoid any redundancies, the description of the theoretical background and the original analysis is kept to an 

absolute minimum. For more detailed information the reader is referred to the Voelkle, Wittmann and Ackerman 

(2006). 
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Kratochwill & Levin, 1992; Hoyle, 1999; Barlow & Hersen, 1984; Kazdin, 1982), models for 

intensive longitudinal data (e.g., Walls & Schafer, 2006) and high-frequency data (e.g., 

Dacorogna et al., 2001) in such diverse areas as ambulatory assessment or the analysis of tick-

by-tick data in financial markets. Although there is an overlap in content and method among 

the disciplines, different focuses and different terminologies make it difficult to see 

commonalities or to transfer a procedure from one field of research to another. The same is 

true for a universally valid definition of longitudinal research or a systematization of the 

rationales and methods for the analysis of change. However, as pointed out by Baltes and 

Nesselroade (1979), there is at least one common definitional criterion namely that “the entity 

under investigation is observed repeatedly as it exists and evolves over time” (p. 4). While 

Baltes and Nesselroade (1979) refer to longitudinal research, I prefer the more neutral term 

analysis of change, but adopt the same conditio sine qua non for the analysis of change in the 

present thesis2.  

 

Five primary rationales for longitudinal research can be distinguished in the behavioral 

sciences (Baltes & Nesselroade, 1979, p. 22ff.): a) the direct identification of intraindividual 

change, b) the direct identification of interindividual differences in intraindividual change, c) 

the analysis of interrelationships in (behavioral) change, d) the analysis of causes 

(determinants) of intraindividual change and e) the analysis of causes (determinants) of 

interindividual differences in intraindividual change. Practical examples and statistical 

methods for all five rationales can be found in the present thesis, albeit some aspects are 

emphasized more than others. Obviously, the first rational is a prerequisite for all subsequent 

analyses and is inextricably tied to the assumption that the same entity is observed at least 

                                                 
2 The reason why I prefer the term “analysis of change” to “longitudinal analysis” is that the former explicitly 

includes the analysis of two-wave data (i.e., change scores), which will be discussed in more detail in Section 

1.2.2. As pointed out by Rogosa (1988; 1995), it is a “myth” that “two observations a longitudinal study make” 

(1995, p. 8) so I think it would be better to reserve the term longitudinal for studies with at least three or more 

time points. Although – technically speaking – two observations do a longitudinal study make, this notion 

resulted in a number of misconceptions. However, because similar arguments can be raised against the use of 

“analysis of change”, the two terms are used somewhat inconsistently. It is important, though, to note that two 

time points are not sufficient to analyze the shape (i.e., curve) of change over time. In the words of Rogosa, 

Brandt and Zimowski (1982): “two waves of data are better than one, but maybe not much better” (p. 744). 
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twice3. All methods treated in the following somehow deal with the identification of 

individual change, although they differ in how this information is used. As will be discussed 

at length in Section 2, traditional methods place great emphasis on mean changes, ignoring 

much of the valuable information provided by individuals, while this information is of 

primary interest for many of the more recently developed methods. The same is true for the 

identification of interindividual differences in intraindividual change (b). If change over time 

has been observed on an individual level, it becomes possible to describe differences between 

entities. In growth curve modeling, a common way to capture these differences is to estimate 

the variance of the individual growth rates (i.e., the linear and/or nonlinear slopes). 

Subsequently, it becomes possible to analyze interrelationships in change (c). This can be 

done with respect to different aspects of change in the same attribute, or with respect to 

interrelationships in constancy and change between different attributes over time4. An 

example of the former would be the correlation between a positive linear growth factor and a 

negative quadratic growth factor, as described in more detail in Section 3. An example of the 

latter would be parallel (multivariate) growth processes, which will not be discussed within 

the context of this thesis (but see McArdle, 1989; MacCallum et al., 1997; Bollen & Curran, 

2006). Once change over time can be described (a-c), it becomes possible to turn to the 

prediction of change, either within the individual (d) or across individuals (e). The last two 

aspects are often closely related. To illustrate this point, consider the analysis of university 

drop-out, which will be discussed in Section 4. A student who fails all of his courses is 

required to leave the university at some point in time. In other words, he changes his status 

from being enrolled during a couple of semesters to the status of being no longer enrolled. 

The determinant of this intraindividual change was the university grade. Similarly, one could 

analyze the likelihood of dropping out (i.e., the hazard rate, see Section 4.2.1) over time and 

relate this variable to university grade. The strength of the relationship indicates to which 

                                                 
3 As Baltes and Nesselroade (1979, p. 23f.) point out, if perfectly identical entities would have been exposed to 

identical conditions across time, the cross-sectional methodology would be a true alternative to repeatedly 

measuring the same entity. However, in the behavioral sciences this is a completely unrealistic assumption, so 

that usually the “cross-sectional methodology is not a direct approach to the study of intraindividual change” 

(Baltes & Nesselroade, 1979, p. 24). 
4 This distinction is not made by Baltes and Nesselroade (1979). 
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degree interindividual differences in intraindividual change (i.e., in drop-out) are “caused” by 

university grade (e).  

 

1.1.1 A differential perspective 

As already suggested by the title, the analysis of change is approached from the perspective of 

differential psychology, thus it is the last aspect – the analysis of determinants of 

interindividual differences in intraindividual change – which is of central interest in the 

present thesis.  

 

More than a century ago, Stern (1900; 1921, p. 15-19) laid the methodological foundations of 

individual differences psychology by distinguishing between the analysis of the variation of a 

single attribute across many individuals (Variationsforschung), the analysis of the correlation 

between different attributes across many individuals (Korrelationsforschung), the analysis of 

the variation across different attributes within a single person (Psychographie), and the 

analysis of differences between two or more individuals across many attributes 

(Komparationsforschung). His classification clearly dominated the first 50 years of research 

in differential psychology and is still used today, with the vast majority of studies falling into 

the second category of correlational research (Amelang & Bartussek, 1997, p. 31). However, 

it is an implicit assumption of this classification that individuals do not change over time. This 

was made explicit by Cattell (1957; 1966), who proposed a more general classification: the 

ten dimensional basic data relation matrix (BDRM), better known in its simplified version, 

the covariation chart (e.g., Cattell, 1980, p. 97ff.). The covariation chart explicitly contains 

time (situations) as a third dimension, making it possible to account for potential changes. At 

about the same time Cattell introduced his covariation chart and proposed different factor 

analytic techniques to summarize the information contained in the three dimensions, first 

statistical attempts were made to employ factor analysis to the organization of individual 

growth curves (Tucker, 1958; Rao, 1958). From the perspective of differential psychology, 

this was a major step forward, away from the analysis of mean changes towards the 

estimation and prediction of individual trajectories. Since that time, two trends can be 

observed. On the one hand, there is a steady improvement of statistical procedures to describe 

and predict individual differences in change over time. Although the advancement was slow 
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at the beginning, there has been a great increase in research activities throughout the last 

decade or two (see the next Section 1.1.2). However, at the same time this field of research 

gains momentum, it appears to lose touch with traditional methods to analyze change over 

time. As will be discussed in Section 2, this is unfortunate, because it creates a gap between 

two research traditions which is not only counterproductive but also unnecessary (Cronbach, 

1957, 1975). On the other hand, it appears to me that applied research does not keep pace with 

many of the methodological advancements. Although there are more and more studies using 

new methods for the analysis of change, even traditional strongholds in differential 

psychology, such as research on learning or cognitive development, are lagging behind 

methodological innovations.  

 

1.1.2 A structural equation modeling perspective  

The individual differences perspective is complemented by a methodological focus on 

structural equation models (SEM)5. An overview of structural equation modeling is beyond 

the scope of this thesis but is provided for example by Bollen (1989). The underlying 

principles relevant for this thesis, however, will be recapitulated whenever necessary. I will 

mainly adopt the traditional LISREL notation (Bollen, 1989, p. 10ff.), but will partially 

deviate from this procedure across the three main parts of the thesis in order to improve 

readability by being closer to the original literature. All changes in notation, however, are 

clearly indicated.  

 

Structural equation modeling is probably one of the prime examples of the possibilities that 

can open up when targets to which the methods of differential psychology are applied are 

refocused to indicators of change (see Nesselroade, 2002). As pointed out at the beginning, 

originally SE-models were not developed for the analysis of change but were always closely 

associated with differential psychology (Bollen, 1989; Bentler, 1980, 1986; see also 

Hershberger, 2003; Wolfle, 2003). Tucker (1958) and Rao (1958) were the first who 
                                                 
5 Technically speaking, structural equation models are a special case of the more general latent variable models, 

with standard latent growth curve models being a special case of structural equation models (e.g., Muthén, 

2002). However, because the terms are treated fairly interchangeably in the literature, they are also used more or 

less synonymously in the present thesis.  
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simultaneously – but independently of each other – proposed the application of factor analytic 

techniques to the organization of individual growth curves. Early applications of their method 

can be found in Scher, Young and Meredith (1960). Attempts to model individual growth 

curves were made even earlier (Wishart, 1938; Robertson, 1908, 1909), a major breakthrough, 

however, was the work of Meredith and Tisak (1990; 1984), who demonstrated how SEM can 

be used to analyze change over time. This was the birth of latent growth curve modeling. A 

more comprehensive review of the history of LGCM is provided for example by Bollen and 

Curran (2006, p. 9ff.) or McArdle and Nesselroade (2002). Among others, it was primarily 

McArdle (1986; 1988; 1989; 1991; McArdle & Epstein, 1987; McArdle & Hamagami, 1991, 

1992) who advanced the original LGCM approach and applied it to a variety of 

methodological and substantive problems. Especially during the last couple of years, the 

original structural equation modeling approach – involving LGCM as a special case – has 

been extended in many different directions, so that a complete overview is hardly possible and 

certainly not reasonable for the purposes of the present thesis. A useful systematization, 

however, was proposed by Muthén in his seminal article Beyond SEM: General Latent 

Variable Modeling (2002; see also Muthén & Muthén, 1998-2007b; Muthén, 2001a; Muthén, 

2001b; Muthén & Muthén, 2000). Based on his work, Figure 1 provides an overview of the 

different modeling options made possible by second generation structural equation models 

(Muthén, 2001b). Other than Muthén’s more general model (e.g., see Figure 1 in Muthén, 

2002), Figure 1 has been particularly adopted to methods for the analysis of change, which are 

of relevance to this thesis. For a description of the more general latent variable framework, the 

reader is referred to the original literature. 

 

Figure 1 is a pictorial representation of a system of simultaneous equations using standard 

path diagram symbols (e.g., Bollen, 1989, p. 32ff.). Other than the path diagrams, which will 

be employed later on, Figure 1 serves only the purpose of illustrating the various modeling 

options and is not meant to represent a model, which could be estimated6. Squares represent 

manifest variables and circles latent variables. Both can be continuous or categorical, as 

indicated by the normal distribution, respectively the horizontal line, within some squares or 

                                                 
6 As a matter of fact, it is quite obvious that the model would not be identified (unless very specific constraints 

are imposed).  
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circles. The four manifest variables represent the repeated measures at four time points, with 

the two continuous latent variables representing different aspects of growth over time (e.g., 

linear or nonlinear change, or true interindividual differences at a given point in time, see 

Section 2). The growth factors, as well as the repeated measures can be regressed on other 

categorical or continuous observed variables as illustrated by the upper right square. In 

addition, different classes of trajectories may be identified as illustrated by the categorical 

latent variable (circle) in the upper left corner of Figure 1. Finally, the triangle represents the 

constant 1 (actually a unit vector), so that the regression of any of the variables on 1 

corresponds to the intercept of the regression equation. A more detailed description will be 

provided in the course of the thesis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Framework for the analysis of change using SEM. The letters (a) to (e) correspond 

to the five rationales for longitudinal research as proposed by Baltes and Nesselroade (1979).  

 

All five rationales for longitudinal research put forward by Baltes and Nesselroade (1979) are 

contained in Figure 1. The individual (factor) scores of the two continuous latent variables 

capture intraindividual change over time (a). Accordingly, their variance maps interindividual 

differences in change (b). As indicated by the double-headed arrow between the two 

continuous growth factors, different aspects of change can be interrelated (c). Determinants of 

intraindividual changes (d) and interindividual differences in intraindividual change (e) may 

be categorical or continuous and may either affect the growth factors or have a direct impact 
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on the manifest indicators. Without specific constraints, however, any direct impact would 

only predict interindividual differences at a given point in time, but no changes. Finally, the 

single-headed arrows connecting the observed variables represent an alternative way to model 

change, which will be discussed in more detail in Section 3. Still other ways of modeling 

change (e.g., full ARMA models, see Section 3) are possible, but only techniques, which will 

be treated in this thesis, are contained in the Figure. It is obvious, that the present thesis is 

somewhat selective with respect to the methods used for the analysis of change and the 

emphasis that is put on certain aspects within these methods. However, as will be discussed 

throughout the next four sections, these methods are often particularly suited for the analysis 

of change from an individual differences perspective. But far be it from me to claim any 

completeness of coverage of methods for the analysis of change in differential psychology. 

 

1.2 Statement of purpose 

The general purpose of the present thesis is to strengthen, refine and extend the liaison 

between the methods of differential psychology and indicators of change as promoted by 

Nesselroade (2002). As noted above (page 1), three attempts are made to contribute to achieve 

this goal. Accordingly, the thesis is structured in three major parts. The purpose of the first 

part is to bridge the gap between “traditional” and “new” methods for the analysis of change 

by discussing latent growth curve models as a general data-analytic approach for repeated 

measures designs. The purpose of the second part is to critically review a newly proposed 

procedure (ALT-models) by pointing to problems in interpretation, which were not 

considered before. Finally, the purpose of the last part is to highlight the advantages offered 

by some recent developments in the analysis of change using categorical variables. A new 

study of university drop-out serves as an example. With the present thesis it is hoped to 

appeal to the methodologically interested reader and applied researcher alike. As a matter of 

fact, the most general objective may be to strengthen the liaison between the development of 

new methods and their use in applied research.  
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1.3 Overview 

In the first part (Section 2) latent growth curve models are discussed as a general data-analytic 

approach to the analysis of change. Conventional, but popular, methods of analyzing change 

over time, such as the paired t-test, repeated measures ANOVA, or MANOVA, have a 

tradition, which is quite different from the more recently developed latent growth curve 

models. While the former originated from the idea of variance decomposition, the latter have 

a factor analytic background. Accordingly, “traditional methods”, which focus on mean 

changes, and “new methods”, with their emphasis on individual trajectories, are often treated 

as two entirely different ways of analyzing change. In this section, an integrative perspective 

is presented by demonstrating that the two approaches are essentially identical. More 

precisely, it will be shown that the paired t-test, repeated measures ANOVA, and MANOVA 

are all special cases of the more general latent growth curve approach. Model differences 

reflect the underlying assumptions, and differences in results are a function of the degree to 

which the assumptions are appropriate for a given set of data. Theoretical and practical 

implications are set forth, and advantages of recognizing latent growth curve models as a 

general data-analytic system for repeated measures designs are discussed. 

 

After highlighting the versatility, generality and flexibility of the LGCM approach, the second 

part (Section 3) takes a more critical stance on these alleged advantages and stresses the 

importance of a good theory. In this section, a critical reconsideration of the recently proposed 

simultaneous estimation of autoregressive (simplex) structures and latent trajectories (so 

called Autoregressive Latent Trajectory (ALT) models, Bollen & Curran, 2004) is provided. 

ALT models are becoming an increasingly popular approach to the analysis of change. 

However, while historically autoregressive (AR) and latent growth curve models have been 

developed independently from each other, the underlying pattern of change is often highly 

similar. In this part it is argued that in practice, autoregressive (simplex) processes can be 

inextricably confounded with nonlinear growth curve patterns. It is shown that an integration 

of linear LGC- and AR-models can lead to severely biased parameter estimates. Accordingly, 

researchers are cautioned that the combination of autoregressive and latent growth curve 

models will often fail if the existence of nonlinear change cannot be ruled out. All arguments 

are illustrated by empirical data on skill acquisition, and a simulation study is provided to 
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investigate the conditions and consequences of mistaking nonlinear growth curve patterns as 

autoregressive processes. 

 

While the first and second part are primarily of a theoretical nature, the third part (Section 4) 

is concerned with the application of an innovative technique to the analysis of an important 

practical problem: university drop-out. Accordingly, this part has a twofold purpose: Firstly, a 

new approach to the analysis of change using categorical variables will be reviewed and, 

secondly, a new study on university drop-out will be introduced. With increasing competition 

among institutes of higher education regarding student selection, drop-out becomes a 

politically and economically important factor for universities. While a number of studies 

address this issue cross-sectionally by analyzing drop-out across different cohorts, or 

retrospectively via questionnaires, few of them are truly longitudinal and focus on the 

individual as the unit of interest (e.g., Gold & Kloft, 1991). In contrast to these studies, an 

individual differences perspective is adopted in the present thesis. For this purpose, a hands-

on introduction to a recently proposed structural equation approach to discrete-time survival 

analysis is provided (Muthén & Masyn, 2005). Particularly for the study of individual 

differences, this technique is superior to traditional procedures. It not only permits an accurate 

analysis of drop-out over time and its determinants, but also accounts for potential 

heterogeneity among subjects. In a prospective study, N = 1096 students were observed across 

four semesters. As expected, average university grade proved to be an important predictor of 

future drop-out, while high school GPA yielded no incremental predictive validity but was 

completely mediated by university grade. Accounting for unobserved heterogeneity, three 

latent classes could be identified with differential predictor-criterion relations suggesting the 

need to pay closer attention to the composition of the student population. An exploratory 

analysis of a self-report measure as an additional predictor is provided and the findings are 

discussed in the light of recent statistical advances and the current controversy about student 

selection. 
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2 LATENT GROWTH CURVE MODELING AS A GENERAL DATA-ANALYTIC 

SYSTEM FOR REPEATED MEASURES DESIGNS 

Almost forty years ago, Cohen (1968) showed that the analysis of variance (ANOVA) and 

multiple regression analysis are essentially identical data analytic systems. His publication 

received so much attention among social scientists like few other articles since that time. This 

was even more surprising, given that the actual message was not new, and the underlying 

mathematical principles were well known among statisticians. As a matter of fact, it was less 

the ”discovery” itself, but more the theoretical and practical implications that came along with 

it, which caught the attention of many researchers. A few years earlier, Cronbach (1957), in 

his presidential address at the Sixty-Fifth Annual Convention of the American Psychological 

Association, called for an integration of the “two disciplines of scientific psychology” (p. 

671): Experimental and Correlational Psychology. Even though the distinction between the 

two disciplines alludes to more than the use of different statistical procedures, the focus on 

individual differences made regression techniques particularly interesting to correlational 

psychologists. Experimental researchers, on the other hand, were typically more interested in 

group differences, thus preferring the analysis of variance. By demonstrating that ANOVA 

and multiple regression (MR) yield the same results if group membership is coded as a set of 

dummy variables in MR, Cohen (1968) provided the methodological basis for an integration 

of the two disciplines. Today, this is common knowledge among social researchers, even 

though some introductory statistics texts still treat multiple regression and ANOVA as if these 

were two completely unrelated techniques. Although not new in statistical content, Cohen’s 

work (Cohen et al., 2003; Cohen & Cohen, 1983; Cohen, 1968) had a tremendous impact on 

the statistical thinking of many researchers. On the one hand, it showed experimental 

researchers the limits of the analysis of variance and exemplified the strict assumptions which 

are associated with these models. To cite just one example, it is quite difficult to examine the 

joint impact of a continuous and a categorical variable on a (continuous) dependent variable 

within the framework of the analysis of variance. While the analysis of covariance 

(ANCOVA) allows to adjust for a continuous covariate, it assumes that the regression slopes 

are identical across all levels of the independent variable(s). This assumption corresponds to 

an interaction of a categorical and continuous predictor, which could be easily tested within 
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the multiple regression framework (Cohen, 1968, p. 439). On the other hand, it demonstrated 

the flexibility of multiple regression, while at the same time pointing correlational researchers 

to the dangers of this flexibility by comparing it to traditional ANOVA techniques. Referring 

to the example above, probing the interaction between a single four category variable and a 

continuous predictor would require the inclusion of three additional regression terms (e.g., 

Aiken & West, 1991). Although statistically possible and sometimes meaningful, one must 

take great care to safeguard against alpha inflation, loss of power, or the interpretation of 

practically irrelevant effects. Finally, however, Cohen’s work helped to integrate two different 

ways of statistical thinking. The analysis of group differences and individual differences were 

no longer viewed as fundamentally different research approaches in need of different 

statistical procedures, but were shown to be closely related. As a result, researchers not only 

gained a better understanding of the strengths and weaknesses of their preferred statistical 

approach, but psychological research in general moved towards a fusion of its two disciplines 

(Cronbach, 1975; Cook & Campbell, 1979). 

 

Today, we find a similar situation in the analysis of change. On the one hand, there are the 

“traditional approaches” dealing with the analysis of mean changes, on the other hand there 

are the “new methods for the analysis of change” (Collins & Sayer, 2001) focusing on 

individual changes over time. Both classes comprise an entire family of different models, with 

the repeated measures ANOVA and Latent Growth Curve Models (LGCM) being the two 

most prominent representatives of either class.  

 

The ANOVA for repeated measures was developed as a direct extension of the fixed-effects 

techniques of the analysis of variance pioneered by Fisher in the 1920s and ‘30s (e.g., Fisher, 

1925). As shown in Equation (1), the basic idea is to partition the total sum of squares (SSTotal) 

into one part which is caused by interindividual differences (SSBetween) and one part that is due 

to intraindividual changes over time (SSWithin). Below I will come back to Equation (1), for 

now it suffices to recall that this allows us to control for systematic but often unwanted 

between-subject variance. 
 

(1)BetweenWithinTotal SSSSSS +=
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What is not apparent from Equation (1) is the fact that this approach depends on a number of 

strict assumptions. As a matter of fact, the underlying assumptions are often so unrealistic that 

they are hardly ever met in practice. As a consequence, alternative procedures, such as the 

multivariate analysis of variance (MANOVA), have been proposed for analyzing repeated 

measures. Although less restrictive, MANOVA is a direct extension of the analysis of 

variance and rests upon the same underlying idea of variance decomposition. Central to both 

approaches is their focus on group changes instead of individual changes. The separation of 

between- and within-subject variance is merely a means to the end of controlling for 

differences between subjects in order to partition the remaining within-subject variance into 

variation due to potential covariates (SSA) and variance not accounted for (SSError). As shown 

in Equation (2), only group mean differences )( •− xxt for time point t = 1…T are of interest, 

while all person (i = 1…N) specific deviations are treated as error variance. 
 

(2)

As will be discussed below, this approach is often not only overly restrictive, but also ignores 

valuable information contained in the data. 

 

While interindividual differences in intraindividual change are treated as error variance in 

traditional methods, they are of primary interest in latent growth curve modeling. As 

discussed in Section 1.1.2 it was Meredith and Tisak (1990; 1984), who demonstrated that 

SEM can be used to analyze longitudinal data. Using a slightly different notation, they 

showed that individual change over time can be expressed as a structural equation 

measurement model (Equation (3)), while interindividual differences in intraindividual change 

correspond to the latent variable structural model (Equation (4)). The T repeated points of 

measurement are represented by the T × 1 vector x. Accordingly, τ is a T × 1 vector of 

intercepts and ε a T × 1 vector of person and time point specific error terms. η is an m × 1 

vector of (growth) factors with the T × m factor loadings matrix Λ. As illustrated in Equation 

(4), the latent factor(s) can be regressed on other exogenous or endogenous variables 

(represented by the n × 1 vector ξ, respectively η) weighted by the m × n matrix Γ, 

respectively the m × m matrix Β. Analogous to Equation (3), α is an m × 1 vector of intercepts 

ErrorAWithin SSSSSS +=

∑
=

•−=
T

t
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and ζ an m × 1 vector containing the error terms. Equations (3) and (4) will be discussed in 

more detail further below. The resulting approach to the analysis of change is very general, 

and as noted by Meredith and Tisak (1990) “with imagination and careful attention to detail, 

given suitable identification, every form of repeated measures ANOVA or MANOVA can be 

built up as a special case” (p. 114). 
 

(3)
 

(4)

By demonstrating how to use common methods of covariance structure analysis to analyze 

individual growth curves, they prepared the ground for present-day latent growth curve 

models. Even though the technique has been extended during the last decade, the 

mathematical basis is still the same. With some exaggeration, one could even say that there 

are little advancements that were not envisioned in the original Meredith and Tisak (1990) 

paper. This also applies to this first part of the thesis, where no large claim of originality is 

being made. As a matter of fact, most of the material presented herein has already been 

published in some scattered articles or chapters. However, I am not aware of any systematic 

discussion of the conditions and consequences of integrating traditional analysis of variance 

techniques into a general LGC-modeling framework. Typically, “traditional” methods to 

analyze change and latent growth curve models are discussed separately, thereby emphasizing 

their differences instead of their commonalities. In my view, however, much can be learned 

about either approach by taking a closer look at their interrelationship. Latent growth curve 

modeling must not be viewed as just another “tool in the toolbox of methods” but should be 

understood as a very general data analytic system for repeated measures designs, which 

incorporates paired t-tests, repeated measures ANOVA, and MANOVA as special cases. It is 

hoped that the present thesis will help to evoke a similar “new look” (Cohen & Cohen, 1983, 

preface) on the analysis of change as Cohen’s (1968) seminal article on multiple 

regression/correlation analysis forty years ago. 

 

2.1 Outline 

This first major part of the thesis (i.e., Section 2) has three subsections and a concluding 

discussion. In the first section (Section 2.2) I begin with the analysis of two-wave data and 

εΛητx ++=

ζΒηΓξαη +++=
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demonstrate how the paired samples t-test can be viewed as a special case of a latent growth 

curve model. Emphasis will be put on conceptual differences between change scores, 

residualized (true) gain scores and latent difference scores. In Section 2.3, the discussion is 

extended to multi-wave data by contrasting repeated measures ANOVA, MANOVA and 

LGCM. The underlying assumptions of each approach will be highlighted and advantages of 

LGCM to analyze change will be discussed. Section 2.4 deals with different ways to predict 

change and provides a comparison across methods. I conclude with a discussion of the 

theoretical and practical implications of latent growth curve modeling as a general data 

analytic system. 

 

2.2 Two-wave data 

Two repeated points of measurement are the minimum requirement for the analysis of change. 

Although two time points do not constitute a real longitudinal study (Rogosa et al., 1982; 

Singer & Willett, 2003), the simple pre-post-test is probably one of the most often used 

research designs in experimental research (but see Footnote 2). For example, one might be 

interested in the effectiveness of an intervention, or improvement on a learning task, where 

the performance of each individual has been assessed at the beginning and at the end.  

 

Table 1 shows the scores of N = 17 female and N = 18 male participants on a hypothetical 

learning task, where performance has been assessed on four consecutive time points (x1 to x4). 

The data will be used to illustrate the main arguments throughout the remainder of this 

section. Each score might correspond to the average number of points obtained and points lost 

in a computer based complex problem solving scenario. Typical examples of such tasks are 

TRACON or ATC (e.g., Ackerman, 1992; Ackerman & Kanfer, 1993). However, because the 

data were chosen only for illustrative purposes, the reader is welcome to think of any other 

(learning) task.  
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Table 1 Example data set of a hypothetical learning task with four repeated points of 

measurement (x1 - x4) and two predictors (g and sex). 

Subject x1 x2 x3 x4 g sex 
1 2.28 2.28 2.81 4.49 97.32 M 
2 0.12 2.26 2.94 5.42 99.95 M 
3 0.46 1.47 1.63 2.95 88.71 F 
4 0.52 2.03 2.76 3.69 94.31 F 
5 0.01 1.72 3.08 3.56 93.76 F 
6 0.11 1.98 3.71 6.94 119.01 M 
7 1.10 2.19 2.21 5.00 95.31 F 
8 0.77 2.03 2.91 4.33 99.51 F 
9 1.06 1.64 1.94 1.97 84.48 F 
10 2.85 2.57 3.13 4.85 94.19 M 
11 1.28 2.54 2.59 3.18 96.29 F 
12 2.36 3.58 6.28 8.15 95.76 M 
13 2.15 3.84 4.26 6.34 111.21 M 
14 1.04 2.57 3.15 3.00 104.6 F 
15 1.70 3.52 5.24 5.85 99.82 M 
16 1.14 1.53 2.55 2.45 109.44 F 
17 0.45 2.12 1.71 4.41 99.83 F 
18 0.75 2.28 3.83 4.20 94.98 M 
19 0.44 2.79 5.35 5.77 105.06 M 
20 1.68 3.12 4.21 5.51 87.19 M 
21 1.93 3.22 4.08 5.40 110.82 M 
22 1.15 1.75 1.83 1.36 87.71 F 
23 1.85 2.82 3.97 5.09 101.72 M 
24 0.38 0.85 2.86 3.14 98.57 F 
25 1.90 2.56 3.28 3.75 108.68 M 
26 0.91 1.91 3.00 5.67 87.62 M 
27 1.72 2.75 3.70 5.24 100.65 F 
28 0.82 2.88 4.20 5.09 102.93 M 
29 0.37 2.00 3.38 5.00 103.51 F 
30 0.82 2.44 2.18 5.22 97.84 F 
31 0.73 1.84 2.45 4.38 102.03 F 
32 1.54 2.91 4.38 5.07 105.19 M 
33 1.03 2.97 4.83 6.07 110.35 M 
34 0.60 2.69 3.54 4.84 119.71 M 
35 0.89 2.51 3.81 5.73 100.3 F 
Mean 1.11 2.41 3.37 4.66 100.24  
SD 0.71 0.65 1.08 1.40 8.40  

 

 

Total: covariances (correlations) 
 x1 x2 x3 x4 

 x1 
0.500 
(1.00)    

 x2 
0.274 
(.601) 

0.418 
(1.00)   

 x3 
0.259 
(.339) 

0.525 
(.754) 

1.162 
(1.00)  

x4 
0.222 
(.224) 

0.604 
(.666) 

1.111 
(.734) 

1.971 
(1.00)

 

Women: covariances (correlations) 
 x1 x2 x3 x4 

 x1 
0.178 
(1.00)    

 x2 
0.106 
(.517) 

0.238 
(1.00)   

 x3 
0.027 
(.096) 

0.122 
(.377) 

0.444 
(1.00)  

x4 
-0.024 
(-.046) 

0.331 
(.543) 

0.410 
(.492) 

1.566 
(1.00)

Mean 0.817 1.999 2.632 3.801 

 
Men: covariances (correlations) 

 x1 x2 x3 x4 

 x1 
0.664 
(1.00)    

 x2 
0.216 
(.492) 

0.291 
(1.00)   

 x3 
0.072 
(.095) 

0.357 
(.713) 

0.861 
(1.00)  

x4 
-0.025  
(-.030) 

0.218 
(.398) 

0.610 
(.648) 

1.030 
(1.00)

Mean 1.390 2.788 4.058 5.472 

Note: SD = Standard Deviation; F = Female (F = 
0), M = Male (M = 1).  



LGCM AS A GENERAL DATA-ANALYTIC SYSTEM  - 18 -

 

Before taking a closer look at this example, one of the most basic questions is whether 

peoples’ performance is significantly better at the end of the task than at the beginning. This 

question can be easily addressed by a paired samples t-test. For this purpose, one would 

compute the mean ∑ −= )(/1 14 xxNd of the difference d between x1 and x4. Under the 

assumption that d is roughly normally distributed, the ratio of d  to its standard error 

constitutes the well known t-test for repeated measures as shown in Equation (5). 
 

(5)

For d = 4.660 - 1.112 = 3.549 and standard deviation σd = 1.423, the test statistic t = 14.750 

is highly significant in this example (df = 34, p < .01)7. Computing the difference between 

pre- and post-test corresponds to a separation of between- and within-person variance as 

shown in Equation (1). By subtracting initial performance from final performance, 

interindividual differences (SSBetween) are kept constant and the analysis concentrates on the 

within-subject variation (SSWithin). In this regard, the paired t-test is identical to a one factor 

repeated measures ANOVA which will be discussed later on.  

 

2.2.1 A latent growth curve approach to the analysis of two-wave data 

The t-test can also be specified as a structural equation model (SEM) as graphically illustrated 

by Figure 2A. By fixing all factor loadings, we essentially realize the assumption of classical 

test theory (CTT) that an observed score is the sum of a true score and an error component 

(Gulliksen, 1950; Lord & Novick, 1968). 

 

 

 

 

                                                 
7To minimize the problem of rounding errors, most results will be reported with a precision of up to three 

decimal places in this section. Computations, however, will be made with a higher precision. This may result in 

some minor inconsistencies in the text, but will prevent us from carrying along rounding errors and will improve 

overall precision. 

N
SD
dt

d

0−
=
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A)           B) 

 

 

 

 

 

 

 

 

Figure 2 Path diagram of a paired samples t-test (A) and a base-free measure of change 

model (B). The triangle represents the constant 1. Accordingly, the two regression weights α0 

and α1 are the means of the two latent factors η0 and η1. φ represents their covariance and β10 

the regression weight of the regression of η1 on η0. The dotted error terms (ε1 and ε2) indicate 

that the model does not account for measurement error (mean(ε1) = mean(ε2) = sd(ε1) = 

sd(ε2) = 0). 

 

In Equation (6) this assumption is illustrated for the first point of measurement (x1), where η0 

refers to the true score and ε1 to the error at time point one. 
tp 

(6)

Applying the same assumption to x4 (i.e., x4 = η4 + ε4 with η4 = η0 + η1) and solving for η1, 

Equation (7) is obtained by simple algebraic transformations. 
 

(7)

Obviously, η1, as specified in this model, maps true intraindividual change from pre- to post-

test (Steyer, Eid, & Schwenkmezger, 1997). Looking at the t-test from this perspective points 

to another crucial assumption of the conventional t-test, that is the absence of any 

unsystematic (measurement) error. As a matter of fact, setting the variances, covariances and 

means of all error terms to zero – as indicated by the dotted lines in Figure 2A – is necessary 

for the SE-model to be identified. Using the general matrix notation introduced in Equation 

101 εη +=x

)()( 11441 εεη −−−= xx

1 1 1 0 
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(3) and (4), the t-test can be expressed as a special case of a latent growth curve (SEM) model 

with 

 

Since no predictors of change are considered in this section, ξ, Γ, Β and ζ simply drop out of 

Equation (4). Allowing the covariance (φ) between η0, and η1 to be freely estimated, the 

resulting model is just identified (df = 0) and the critical ratio of α1 = 3.549 to its standard 

error (S.E. = 0.237) is asymptotically identical to the t-value of the paired samples t-test 

reported above8. Appendix 1 provides the input specifications for the structural equation 

modeling program Mplus (Muthén & Muthén, 1998-2007a). 

 

2.2.2 Change scores, residualized gain scores and latent difference scores 

In case the reliability (rtt) of the measurement instrument(s) would be known, adopting the 

SEM approach allows us to take this knowledge into account by fixing the variance of the t = 

1…T error terms to var(εt) = (1 - rtt(xt))*var(xt). As long as E(εt) = 0, a comparison of means 

via the paired t-test or LGCM, would still yield identical results, while all higher moments, 

such as the variances and covariances of the two latent variables, will differ. Especially when 

analyzing predictors and correlates of change, this has some profound implications and as 

pointed out by Raykov (1999), modeling change on a latent dimension is often a better 

approach than modeling observed change scores. To elaborate on this point, consider 

Equation (8), which defines the reliability of change scores as a function of the reliability of 

the pretest x and the reliability of the post-test y. 
 

(8)

rxy denotes the correlation between pre- and post-test and σ the standard deviation. Based on 

this formula, the simple difference score has been vehemently criticized and researchers have 

even been advised to avoid the gain score altogether and “frame their questions in other ways” 

                                                 
8 Maximum likelihood (ML) estimation was used, thus the critical ratios follow approximately a z-distribution 

and results will be asymptotically equivalent, given the usual assumption of multivariate normality is met. 
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(Cronbach & Furby, 1970, p. 80). The reason for this lies in the fact that in order to obtain 

reliable difference scores, the reliability of the pretest and the reliability of the posttest must 

be high, while at the same time their correlation should be low. If one of these conditions is 

not met, the reliability rtt(d) will be low, so that “the difference score between two fallible 

measures is frequently much more fallible than either” (Lord, 1963, p. 32). Especially the last 

condition of a low pre-post-test correlation has caused some confusion about the meaning of 

gain scores, known as the “reliability-validity paradox”. As Bereiter (1963) pointed out, a low 

correlation between pre- and post-test indicates that different constructs are being measured 

and as soon as we cannot be sure that we are measuring the same thing, there is no point in 

analyzing change over time. As a consequence, a number of different strategies have been 

proposed to somehow correct or improve the gain scores prior to investigating any correlates 

or predictors of change (see Cronbach & Furby, 1970). The most popular approaches are 

probably the residualized observed difference score (DuBois, 1957) and the base-free 

measurement of change (Tucker, Damarin, & Messick, 1966), which I will come back to 

below (see also Raykov, 1992, 1993a, 1993b). 

 

Eventually, however, it was a series of papers by Rogosa et al. which heralded a reorientation 

in the analysis of change (Rogosa et al., 1982; Rogosa & Willett, 1983, 1985b; Rogosa, 

1988). By demonstrating that “many of the deficiencies that have been attributed to 

differences scores in the behavioral sciences literature are a result of misunderstandings” (p. 

730), Rogosa et al. (1982) took on the defense of the difference score. Their arguments are 

well documented and shall not be repeated at this point (but see Rogosa et al., 1982, p. 730ff.; 

Rogosa, 1995). Based on their arguments, it is now clear that the general criticism on the 

difference score was completely unwarranted (Willett, 1997, p. 215). Rogosa et al. (1982, p. 

728) carefully distinguished between true change and observed change and refocused the 

analysis of change on the individual by employing a linear growth model as shown in 

Equation (9), which is essentially a simple case of Equation (3). 
 

(9)

ωi(t) is the true score of person i at time point t. For just two measurements (x1 and x4), η1 is 

identical to the difference between the two true scores ω4 and ω1 as demonstrated in Equation 

(7). As a matter of fact, if the reliability of both measures is known and accounted for, the 

tt iii 10)( ηηω +=
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variance of the latent slope factor η1 is identical to the variance of gain scores corrected for 

attenuation. Based on Lord (1956, Formula 8), McNemar (1958, Formula 3) demonstrated 

that the variance of the true difference scores can be defined as shown in Equation (10). 
 

(10)

2
Diffωσ denotes the variance of the true difference (ωDiff) between x1 and x4, r14 is their 

correlation and 2
tεσ the error variance at time point t. In the example introduced above, d was 

the difference between x4 and x1 with d = 3.549 and σd = 1.423. Given the observed 

correlation r14 = 0.224 (see Table 1) and assuming a reliability of rtt(x1) = .80 and rtt(x4) = .85, 

we obtain 2
Diffωσ = (0.500 + 1.971 - 2*0.224*0.707*1.404) - (((1 - .80)*0.500) + ((1 - 

.85)*1.971)) = 1.630. This is equivalent to the variance of η1 in the general latent growth 

curve model with error terms fixed to (1 - rtt(xt))*var(xt) as discussed above9. The according 

Mplus syntax can be easily obtained by replacing the two lines “x1@0” and “x4@0” in 

Appendix 1 by “x1@0.010” and “x4@0.296”. 

 

As pointed out by Tucker et al. (1966), the variance of the true difference scores can be 

further partitioned into variance of true independent (base-free) change scores and true 

dependent change score variance. The latter depend entirely on the pre-test, while the former 

are entirely independent of it. Even though Rogosa et al. (1982) have warned researchers to 

exercise “extreme caution” (p. 741) when using and interpreting residual change measures, it 

may sometimes be important to distinguish between change which would have occurred if 

                                                 
9 As before, the equivalence holds only asymptotically because maximum likelihood estimation was used for the 

LGCM estimation. In the present case, σ(η1) = 1.254 (LGCM-ML) and 
Diffωσ = 1.277 (Equation (10)). In this 

example the covariance matrix provided in Table 1– instead of the raw data – could be used as input for Mplus. 

This allows the user to specify any number of observations, without changing the actual information contained in 

the data. Using a sufficiently large sample size (e.g., 3500) the results differ by less than three digits after the 

decimal point. 
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everyone started out equal, and change which is a direct function of the pre-test10. The 

variance of true independent gain scores 2
γσ can be computed in two steps. First, the observed 

post-test scores are regressed on the pre-test scores, divided by the reliability of the pre-test, to 

obtain the unstandardized regression coefficient a (see Tucker et al., 1966, p. 462 & technical 

appendix). 
 

(11)

Second, given a, 2
γσ can be computed as shown in Equation (12). 

              2
1

2
14

2
4

2
1414 )(2)( xttxxxtt xraarxr σσσσσ γ +−=  (12)

In our example, a = (0.224*1.404)/(0.80*0.707) = 0.556, so that 2
γσ = 0.85*1.971 - 

2*0.556*0.224*0.707*1.404 + 0.5562*0.80*0.500 = 1.552. Asymptotically, the same base-

free measure of change can be obtained by regressing the latent (true) difference factor η1 on 

η0. This can be easily done by extending the structural equation model specified above by 

setting 

 

The variance of the disturbance term (var(ζ1)) is equal to the variance of the base-free 

measure of change ( 2
γσ ) as proposed by Tucker et al. (1966). Figure 2B shows a path diagram 

of the model and Appendix 2 contains the according Mplus syntax. 

 

To summarize, it has been shown that the paired samples t-test is a special case of the general 

latent growth curve model. If the reliabilities of the pre- and post-test are known, LGCM 

allows the computation of latent difference scores, equivalent to gain scores corrected for 

attenuation as proposed by Lord (1956) and McNemar (1958). In addition, it is possible to 

                                                 
10 As will be discussed in the next section, the residualized gain scores (or more generally speaking the 

covariance between intercept and slope) are a direct function of the position of the intercept in time (Rovine & 

Molenaar, 1998; Stoel & van den Wittenboer, 2003; Biesanz et al., 2004). Especially when the time point of the 

pre-test is arbitrary (as it is often the case in multi-wave studies), this must be taken into consideration when 

interpreting residualized gain scores. 
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distinguish between true dependent and true independent (base-free) gain scores as originally 

suggested by Tucker et al. (1966). Usually, however, reliabilities are not simply known but 

must be estimated and a good theory is imperative for doing so. Traditionally, reliability 

estimates were obtained based on the principles of classical test theory (Gulliksen, 1950; Lord 

& Novick, 1968) by using retests, parallel tests, or various estimates of internal consistency. 

The often inadequate adoption of CTT to the analysis of change was probably one of the main 

reasons for difference scores to fell into disgrace in the early seventies (Cronbach & Furby, 

1970). Clearly, a measurement instrument which exhibits high retest reliability cannot be 

suitable for assessing change over time, and it is problematic to define reliability of change 

indirectly via a lack of stability as done in the traditional Formula (8) (see also Wittmann, 

1997, 1988). Naturally, this also applies to the analysis of change via latent growth curve 

modeling. However, other than the use of observed difference scores, LGCM provides the 

flexibility to specify a model of change, which best fits the underlying theory of change. 

Basically, there are two ways to incorporate theory into our model in order to obtain true 

change scores (Raykov, 1999). Either multiple indicators must be employed at each time point 

and theory dictates the specification of the construct in question, or more than two time points 

must be observed and theory dictates the nature of change over time. In the first case, at least 

two indicators are required for model identification, in the second case at least three time 

points must be available. Figure 3A gives an example of a true change score model with two 

indicators, while Figure 3B shows a base-free measure of change model with two indicators.  

For a more detailed discussion of this approach see Raykov (1992). Although the 

specification appears to differ, the two models are mathematically identical to the models 

presented by Raykov (1992), but do not require the use of nonlinear parameter constraints. 

Especially the latter case, however, opens up a variety of different models of change, which 

will be discussed in the next section. 
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A)            B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Path diagram of a true change score model with two indicators (A) and a base-free 

measure of change model with two indicators (B). The triangle represents the constant 1. 

Accordingly, the two regression weights α0 and α1 are the means of the two latent factors η0 

and η1. φ represents their covariance and β10 the regression weight of the regression of η1 on 

η0. ηt=1 is the true status at time point 1 and ηt=2 the true status at time point 2. Other than in 

Figure 2, the variances of the error terms (ε1 and ε2) are no longer constrained to zero. 

 

2.3 Multi-wave data 

2.3.1 A latent growth curve approach to repeated measures ANOVA 

Having at least three time points, the repeated measures ANOVA is probably one of the most 

often employed statistical procedures for the analysis of change. It is implemented in all major 

statistical packages and its basic idea is comparatively easy to understand. Especially applied 

researchers, however, are often unaware of the strict (and oftentimes unrealistic) assumptions 

the repeated measures ANOVA rests on. Conceiving repeated measures ANOVA as a special 

case of a more general latent growth curve model not only helps to gain a better 

understanding of the assumptions underlying ANOVA, but also points to (new) ways how to 

test and cope with violations of standard assumptions.  
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As introduced in Formula (1), the repeated measures ANOVA decomposes the total variance 

additively into variation due to interindividual differences between subjects (SSBetween) and 

individual differences within the same subject (SSWithin). On a conceptual level it is important 

to realize that repeated measures ANOVA assumes a single variable with a single total 

variance (i.e., SSTotal) which is decomposed, instead of multiple variables, which is the idea 

underlying MANOVA. The univariate conceptualization of change implies that a potential 

covariance between average interindividual differences and interindividual differences in 

intraindividual change is not part of the model. Analogous to the paired t-test (see the 

comparison of simple gain scores versus residualized gain scores), this is not to say that such 

a covariance may not exist, it is just not part of the analysis because of the assumption of a 

single variable. However, as discussed in the previous section on two-wave data, it is 

precisely this covariance which often not only exists, but is the cause for several logical, 

statistical and conceptual confusions (Lohman, 1999).  

 

As shown in Equation (2), the SSWithin can be further partitioned into variation due to 

systematic change over time (SSA = SSwithin(time)) and remaining error variance (SSError)11. 

Returning to our example data set of Table 1 with four time points (x1 to x4), a repeated 

measures ANOVA yields SSTotal = SSWithin + SSBetween = 288.858 + 85.356 = 374.214. Table 2 

shows the results of the full analysis.  

                                                 
11 Other, and maybe more useful, decompositions are possible but shall not be discussed in this thesis (but see 

Cattell, 1966; Wittmann, 1988). 
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Table 2 Repeated measures ANOVA. 

Source SS df MS       F      p G-G H-F

Within(Time) 236.514 3 78.838 153.625 .000 .000 .000
Within(Error) 52.345 102 0.513   
Within Subjects 288.858 105 2.751   
Between Subjects 85.356 34 2.510   
Total 374.214 139 2.692   

Polynomial Contrasts (Within) 
Linear 235.735 1 235.735 215.300 .000  
Error(linear) 37.227 34 1.095   
Quadratic 0.000 1 0.000 0.000 .990  
Error(quadratic) 8.916 34 0.262   
Cubic 0.778 1 0.778 4.267 .047  
Error(cubic) 6.201 34 0.182   

Note: SS = Sum of Squares; MS = Mean Squares; df = degrees of freedom; G-G = 

Greenhouse-Geisser; H-F = Huynh-Feldt. 

 

The same analysis can be carried out as a special version of a latent growth curve model. For 

this purpose, the (measurement) error variance-covariance matrix Θε is again assumed to be 

zero, and the original variables are transformed by a contrast matrix Λ. The intercepts of the 

original variables are freely estimated, while the means of the transformed (latent) variables 

are all constrained to zero );( 0α0Θε == . For the present example with four repeated 

measures, the model is defined as shown below and as graphically depicted in Figure 4. 

 

 

 

 

 

 

 

 

 
Figure 4 Path diagram and parameter estimates of a repeated measures ANOVA/MANOVA. 
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Appendix 3 contains the according Mplus Syntax. 

 

For the moment, let us ignore the unconstrained matrix Φ with variance 2
ησ and covariance φ 

between the latent variables, but I will come back to this important point further below. The 

transformation (factor-loading) matrix Λ is chosen in a way that places the first factor η0 at 

the “center” of the observed time period (Wainer, 2000). The variance of η0 corresponds to 

the interindividual differences at the time point where the factor loadings of all other factors 

are zero. In standard latent growth curve modeling this is usually the first point of 

measurement, but it can be easily changed as illustrated by the present example (see also 

Rovine & Molenaar, 1998; Stoel & van den Wittenboer, 2003; Biesanz et al., 2004). After 

centering the first factor, it maps interindividual differences in average performance, thus it is 

equivalent to the between-subject variance of the repeated measures ANOVA. As a matter of 

fact, multiplying the variance of η0 = 2.439 by 35 (the number of participants) we obtain the 

SSBetween = 85.36 reported in Table 2. Because the intercepts of the manifest variables match 

their observed means, the group mean differences due to time (SSwithin(time)) can be computed 

as shown in Equation (2). Unfortunately, standard SEM software does not automatically 

provide this computation, but it can be easily done by hand. The unbiased12 variance of the 

four means is 2.253, so that SSwithin(time) = N*(T - 1)*2.253 = 35*3*2.253 = 236.514, which 

corresponds to the SSwithin(time) contained in Table 2. Analogous to 35 times the variance of the 

first factor, which corresponds to the SSBetween, the sum of (35 times) the variance of the 

remaining three latent variables corresponds asymptotically to the SSError (35*1.063 + 

35*0.255 + 35*0.177 = 52.325) as shown in Table 2 and Figure 4. The sum of squares within 

subjects is now readily computed by adding SSwithin(time) and SSError (SSWithin = 236.514 + 

52.325 = 288.84). Another way to compute the sum of squares within is to constrain the 

intercepts of the observed variables to zero (τ = 0, see Figure 5).  

                                                 
12 This is the variance provided by most statistic programs (i.e., the SS are divided by (N-1) instead of N) 
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Figure 5 The same ANOVA/MANOVA model as shown in Figure 4 with all means of the 

latent variables constrained to zero versus (//) freely estimated. Intercepts (τ) of all manifest 

variables are fixed to zero. 

 

Now, the sum of (35 times) the variance of the three last latent variables corresponds no 

longer to the SSError, but the SSWithin (35*7.792 + 35*0.255 + 35*0.200 = 288.65). Finally, the 

total variance is obtained by adding SSBetween and SSWithin (85.36 + 288.84 = 374.20). 

 

2.3.2 Trend analysis 

Knowing that there are significant changes in means across time is often just a first step 

towards a more detailed analysis of this change. Thus, the analysis of variance is usually 

complemented by a trend analysis using single degree of freedom polynomial contrasts (e.g., 

Cohen et al., 2003, p. 219 & 575f.). The goal is thereby to examine which function (i.e., 

linear, quadratic, cubic, etc.) provides the best description of the changes in means. For this 

purpose, the person (i) and time point (t) specific scores (xit) are regressed on the predictor 

time (t = 1…T). To obtain orthogonal contrasts, t is transformed into t* so that the condition 

)**(
1∑ =

−
T

t t tt = 0 is met, with *t  being the mean of t*. The transformation is done via the 

matrix Λ as introduced above. A more detailed introduction to trend analysis is provided by 

Maxwell and Delaney (2000, p. 207ff.). The lower part of Table 2 contains the T-1 

polynomial contrasts for the repeated measures analysis using any conventional statistical 
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software package. Figure 5 shows the according LGCM path diagram and Appendix 4 

provides the Mplus Syntax. The factor loadings of each of the three last latent variables (η1-

η3) correspond to the three orthogonally transformed predictors “time” (λt), with λ0 = 1 as 

shown in Equation (13). Setting λ0 = 1 does not change the interpretation of the polynomial 

contrasts, but only the variance and covariances of η0 as apparent when comparing Figure 4 

and Figure 5. This choice was made in order to stay consistent with the output of most 

statistics programs, where α0 is treated as a normal intercept (weighted by one). Note, 

however, that now the variance of η0 no longer corresponds directly to the between-subject 

variance.  
 

(13)

As for all LGC-models, this requires a reconsideration of researchers familiar with traditional 

confirmatory factor analysis, since factor loadings are not regression weights but correspond 

to the predictors, weighted by the means (i.e., fixed regression coefficients) of the latent 

variables. Readers only familiar with hierarchical linear modeling (HLM, e.g., Bryk & 

Raudenbush, 1992) may find this notion far less confusing. In the same way the means of the 

latent factors in Figure 5 correspond to the regression weights of a polynomial function, the 

according sum of squares can be computed by comparing the variance of the latent factors in 

a model where all means have been constrained to zero to a model where all means have been 

freely estimated (see Appendix 4). As discussed above and illustrated by Figure 5, the sum of 

squares within (SSWithin) which can be explained by a linear mean trajectory (SSLinear) is 

35* 2
1ησ (constrained) - 35* 2

1ησ (unconstrained) = 35*7.792 - 35*1.063 = 235.515 = SSLinear, 

where constrained refers to the model with α = 0 and unconstrained to the model where all 

means are freely estimated. The same is true for the quadratic (SSQuadratic = 35*0.255 - 

35*0.255 = 0.000) and cubic (SSCubic = 35*0.200 - 35*0.177 = 0.805) polynomial contrasts. 

Naturally, the sum of squares of the three orthogonal polynomial factors add up to the total 

sum of squares within subjects explained by time (SSWithin(time) = 235.515 + 0.000 + 0.805 = 

236.32, which corresponds to the SSWithin(time) = 236.514 reported in Table 2. As before, minor 

differences between the LGCM results and the repeated measures ANOVA are in part due to 

the different estimation procedures and in part due to rounding errors. Knowing all sum of 

squares and the according degrees of freedom, F-tests can be computed as shown in Table 2. 

ititx ελαλαλαα ++++= 3322110 ****1
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Given the usual assumptions (primarily normal distribution of the observed variables), this 

test is asymptotically equivalent to the squared critical ratio (c.r.) of the means provided by 

standard SEM software. The critical ratio is computed by dividing the parameter estimate (in 

this case the mean) by its standard error. In our example c.r.(α1) = 2.594 / 0.174 = 14.887, 

c.r.(α2) = 0.013, and c.r.(α3) = 2.112. Asymptotically, the critical ratios follow a z-

distribution, so we find that p(α1) < .01, p(α2) > .05 and p(α3) < .05. Apparently, a straight 

line describes the changes in means very well, but there also appears to be a slightly cubic 

trend. Squaring the critical ratios, we get close to the F-ratios obtained by computing standard 

polynomial contrasts as shown in Table 2.  

 

An alternative (new) approach to significance testing of the polynomial contrasts would be to 

compare the unconstrained model as shown in Figure 5 to a restricted model where the mean 

of a single latent variable has been constrained to zero (e.g., α1 = 0). If the observed data 

follow a multivariate normal distribution, (N-1) times the maximum likelihood fitting function 

(e.g., Bollen, 1989, p. 107ff.) approximates a χ2 distribution with degrees of freedom equal to 

the degrees of freedom of the model in question. The difference of two χ2-values follows 

again a χ2 distribution with degrees of freedom equal to the difference of the degrees of 

freedom of the two models. Because the unconstrained model shown in Figure 4 and Figure 5 

is just identified, it fits the data perfectly, thus χ2(unconstrained) = 0 and df(unconstrained) = 

0. In order to test for a linear mean trajectory, α1 would have to be constrained to zero, 

resulting in a χ2(constrained) of 69.729 with df(constrained) = 1. The difference 

χ2(constrained) - χ2(unconstrained) = 69.729 - 0 = 69.729, with df = 1 - 0 = 1, is highly 

significant (p < .01). The same significance tests can be conducted for a quadratic and cubic 

trajectory (χ2(quadratic) = 0.000, p > .05, and χ2(cubic) = 4.199, p < .05). Despite the fact that 

the results are very similar in this example, it must be emphasized – once again – that the 

likelihood-ratio (i.e., χ2-difference) approach is a large-sample method as compared to the 

finite-sample method of comparing the sum of squares (Raykov, 2001). Although the 

likelihood-ratio approach may offer some advantages over traditional tests, it is unclear 

whether (and under which conditions) it is appropriate for small samples. Future research is 

needed to address this issue.  
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2.3.3 Overall significance tests and underlying assumptions 

In the same way significance tests are conducted for the T-1 polynomial contrasts, the changes 

in means over time can be tested for significance. In standard repeated measures ANOVA this 

is readily done by computing F = (SSWithin(time) / (T - 1)) / (SSWithin(Error) / (T - 1)*(N - 1)) as 

shown in Table 2. This (univariate) test is identical to a comparison between the abridged 

(i.e., (T - 1) × (T - 1)) covariance matrix Φ, with all means being constrained to zero and the 

unconstrained matrix. Equation (14), shows the computation of the univariate F-test, with ΦR 

denoting the mean-constrained covariance matrix and ΦF denoting the unconstrained (free) 

matrix as shown in Figure 5 (separated by // in Figure 5). The trace (tr()) of a matrix is the 

sum of all elements in the main diagonal (i.e., the sum of squares within). 
 

(14)

In our example, tr(ΦR) = 8.246 and tr(ΦF) = 1.494, so that F = 153.63. This corresponds to the 

univariate F-ratio provided in Table 2, which can be obtained using any major statistical 

software package. 

 

A more detailed discussion of Equation (14) will be provided below. At this point, however, it 

is important to have a closer look at the within-subject variance-covariance matrix Φ, which 

has been deliberately ignored so far. In order to be a meaningful statistic (i.e., to follow an F-

distribution), the computation of F depends on the assumption of homogeneity of treatment 

difference variances, which is identical to the assumption of sphericity. Sphericity implies the 

equality of the variances of the differences between all possible pairs of repeated measures. If 

this assumption is not met, the mean differences over time (i.e., SSWithin(time)) would have to be 

qualified based on the changes in variance and thus would not be a reasonable estimate of the 

overall time effect. As a result, the p-values would be biased, leading to an inflated type I 

error. In practice, the assumption of sphericity is often equated with the assumption of 

compound symmetry. Compound symmetry exists if the variance-covariance matrix of the 

repeated measures contains the same elements on its main diagonal (equal variances) and the 

same elements off the main diagonal (equal covariances). If all variances are equal and all 

covariances are equal (possibly different from the variances), the variances of the differences 

between all possible pairs of repeated measures must be equal too. As a matter of fact, 
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compound symmetry is a special case of sphericity, that is if the assumption of compound 

symmetry is met, the assumption of sphericity is also met and the F-ratio follows an exact F-

distribution. However, there are cases where the observed measures do not exhibit compound 

symmetry, but the sphericity assumption is still met, so that the repeated measures ANOVA 

F-test remains correct13. 

 

As demonstrated by Raykov (2001), both assumptions can be tested via structural equation 

modeling and as will be shown below, even the – usually more complicated – test of 

sphericity is quite easily conducted within the general LGCM framework. Let Σ be the T × T 

covariance matrix of the repeated measures and let ρ denote a correlation coefficient, then Σ 

should equal 

 

if the assumption (H0) of compound symmetry is met. The alternative hypothesis (H1) is 

readily formulated by removing the restriction of equal variances and covariances. In order to 

test whether the assumption of compound symmetry holds in the present example (Table 1), 

we would maintain the model as shown in Figure 4, but set  

against Φ (i.e., Σ) as defined above. This results in a χ2(-difference) of 66.014 with 8 degrees 

of freedom, which is highly significant (p < .01), suggesting that the assumption of compound 

symmetry is not met. As a consequence, the F-test of a standard repeated measures ANOVA 

would not be correct. Appendix 5 provides the Mplus input. However, because compound 

symmetry is only a sufficient but not necessary assumption of the repeated measures ANOVA 

F-test, researchers are better advised to test directly for violations of sphericity, even though 

some authors argue that this distinction is hardly ever relevant in applied research (Maxwell 
                                                 
13 Huynh and Feldt (1970) speak of Type S and Type H matrices and provide an example of a matrix meeting the 

assumption of sphericity but not the assumption of compound symmetry. 
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& Delaney, 2000, p. 473). The same way we can test for deviations from compound 

symmetry, we can test for deviations from sphericity (see Raykov, 2001). The only difference 

is that this test refers to the orthogonally transformed variables, instead of the untransformed 

variables. As introduced above, the orthogonal transformation (actually orthonormal 

transformation with respect to η1 - η3) is implemented by the choice of Λ. Sphericity exists if 

the variance-covariance matrix of the T-1 transformed variables contains no off-diagonal 

elements and only equal variances on the main diagonal (i.e., H0: Φ = σ2*I, with I being a (T-

1) × (T-1) identity matrix). In the present case, we would maintain Λ as shown below,  

against Φ with all elements being freely estimated (see Figure 5). Note that the (T-1) 

orthonormally transformed variables must meet the assumption of sphericity, while a different 

variance (σ2
BS) and covariance (φBS) is permitted for the between-subject factor. In the present 

example, this results in a χ2(-difference) of 45.664 with 5 degrees of freedom, which is again 

highly significant (p < .01), suggesting that the assumption of sphericity is not met. Having 

worked out the transformation matrix (Λ), which is provided by most statistic programs or can 

be looked up in any standard statistics textbook, the above test is as easily implemented as the 

test of compound symmetry. Therefore I see no reason why one should settle for second best 

(i.e., testing the assumption of compound symmetry), but recommend testing directly for 

sphericity. Appendix 6 provides the Mplus syntax for the test of sphericity. As mentioned 

above, this test is a large sample test, and its performance is not very well known in finite 

samples such as the present one. Especially for large samples, however, the test may 

constitute an interesting alternative to Mauchly’s criterion W (Mauchly, 1940; see also 

Mendoza, 1980), which tests the assumption of independence and homoscedasticity of the 

transformed repeated measures. Mauchly’s criterion W is defined as shown in Equation (15), 

with Σ being the sample covariance matrix of the untransformed variables with df = N - 1 and 

T - 1 being again the number of orthogonal contrasts.  
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(15)

For f = ((T2 - T) / 2) - 1 and d = 1 - (2*T2 - 3*T + 3) / (6*(T - 1)*(N - 1)), the product -(N - 

1)*d*ln(W) follows approximately a central χ2 distribution with f degrees of freedom if Φ 

meets the assumption of sphericity (e.g., see Huynh & Feldt, 1970, p. 1588). In the present 

case, W = 0.271 and the according χ2 = 42.706 with f = 5 degrees of freedom for  

and Σ as shown in Table 1 (covariance matrix). Again the assumption of sphericity must be 

rejected (p < .01). Although the results are fairly similar, future research is necessary to 

provide a better comparison of the traditional Mauchly's test (Mauchly, 1940) and the LGCM 

likelihood ratio-approach introduced above. 

 

Regardless of which test is being used, it is obvious that the data do not meet the assumption 

of sphericity and the F-test must not be trusted. As a matter of fact, the repeated measures 

ANOVA F-test is quite sensitive against violations of the sphericity assumption (e.g., Vasey 

& Thayer, 1987; Keselman & Rogan, 1980) and it is important to take appropriate action 

(e.g., see the three step approach of Greenhouse & Geisser, 1959; Keselman et al., 1980). For 

this purpose, a number of adjusted univariate tests have been developed. The three most 

prominent approaches are probably the Geisser-Greenhouse lower bound correction, Box’s ε̂  

adjustment, and the Huynh-Feldt ε~ adjustment. All three of them are based on a correction of 

the degrees of freedom for the critical F value. A more detailed description is beyond the 

scope of this thesis, a good overview, however, is provided by Maxwell and Delaney (2000, 

p. 475ff.). 

2.3.4 A latent growth curve approach to multivariate analysis of variance 

Even though the adjustments are a simple and effective way to deal with violations of the 

sphericity assumption, the principle problem of how to interpret any effects in the presence of 
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variance and covariance changes over time remains. The multivariate approach to the analysis 

of variance (MANOVA) offers a solution to this problem. As mentioned above, MANOVA 

assumes several different variables (instead of a single variable whose variance is 

decomposed in within- and between-subject variance), which may very well exhibit different 

correlations among each other. As a matter of fact, all models introduced so far (see Figure 4 

and Figure 5) are actually MANOVA models because all elements in Φ were freely estimated. 

Other than the test statistics computed in repeated measures ANOVA, the multivariate 

approach explicitly accounts for these variances. Returning to Equation (14), which shows the 

computation of the univariate F-test, we find that by taking the trace of Φ, all off-diagonal 

elements have been ignored in the ANOVA approach (i.e., all covariances were assumed to be 

irrelevant). The multivariate analog of Equation (14) simply replaces the trace by the 

determinant, thus taking into account all elements of Φ. Equation (16) shows the multivariate 

test statistic based on the same constrained and unconstrained matrices as described above 

(e.g., Maxwell & Delaney, 2000, p. 589). 
 

(16)

In the present example (see Table 1), |ΦR| = 0.259 and |ΦF| = 0.034, so that F = 71.560 

(dfnumerator = 3, dfdenominator = 32), indicating that there are indeed significant mean changes 

over time (p < .01). By considering all variances and covariances among the (transformed) 

measures, the F-ratio no longer depends on the assumption of sphericity14. This is a major 

advantage, because the assumption of sphericity is not only very restrictive, but often 

unrealistic and hardly ever met in the behavioral sciences. Other than the corrections, which 

are only approximate, the multivariate approach offers an exact test of differences in means 

over time. Accordingly, the type I error rates are correct even if the assumption of sphericity 

is violated. On the downside, the traditional repeated measures approach has greater power to 

detect any potential effects if the assumption of sphericity is met. A more comprehensive 

                                                 
14 While the multivariate approach does not depend on sphericity, it assumes multivariate normality which is – 

strictly speaking – more restrictive than the assumption of univariate normality underlying the standard repeated 

measures ANOVA. However, for practical purposes – and other than the assumption of sphericity – this 

difference is typically negligible. 

)1/(
)1/()(

+−
−−

=
TN

T
F

F

FR

Φ
ΦΦ



LGCM AS A GENERAL DATA-ANALYTIC SYSTEM  - 37 -

 

comparison of the two approaches to the analysis of change is provided by Maxwell and 

Delaney (2000, chapter 13). 

 

The LGCM likelihood-ratio test for polynomial contrasts proposed above can be easily 

generalized to a test of any changes in means over time and constitutes a (new) alternative to 

the multivariate F-test of Equation (16). The according test statistic corresponds to the χ2-fit 

of a LGC-model as shown in Figure 5, where the means of all three growth factors (η1 - η3) 

have been constrained to zero (α1 = α2 = α3 = 0). In our example χ2 = 71.483 with df = 3, 

which is again highly significant (p < .01), indicating that there are significant mean changes 

over time. As before, the likelihood-ratio test may be an interesting alternative in large 

samples, given its ease of implementation, and its independence of the sphericity assumption. 

The according Mplus syntax is identical to the syntax shown in Appendix 4, with the only 

difference that the mean of the latent intercept remains unconstrained ([int*]) in both models.  

 

While the relative advantages and disadvantages regarding type I and type II error rates of the 

repeated measures ANOVA and MANOVA are comparatively well known, future research is 

necessary to evaluate the performance of the likelihood-ratio test. Especially for many time 

points the new approach appears to be promising, since it allows the specification of any 

within-subject covariance structure. For example, it would be possible to implement the 

assumption of what we might term “partial sphericity”, that is the assumption of sphericity for 

a part of Φ but not the entire matrix as required by the multivariate approach. In other words, 

the LGCM approach offers all advantages of MANOVA regarding potential violations of 

sphericity, while being more flexible by offering the option to impose specific constraints on 

the within-subject matrix. This should result in a decrease of type II errors, while type I error 

rates and the correctness of parameter estimates should remain unchanged. 

 

2.3.5 The latent growth curve modeling perspective 

Putting the within-subject covariance matrix into the center of interest is probably the biggest 

difference – and at the same time the greatest advancement – of LGCM over traditional 

techniques. In repeated measures ANOVA the focus lies only on mean changes, while the 

remaining within-subject variance is viewed as error variance and is assumed to have a very 
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restrictive form. The MANOVA approach is more flexible with respect to the nature of the 

within-subject covariance matrix (Φ), but the matrix is still treated as pure error (co)variance. 

In LGCM, however, this matrix is of central interest, because it maps individual changes over 

time as well as interindividual differences in individual changes. In other words, the focus is 

shifted away from mean changes towards changes of individual entities (i.e., persons). To 

illustrate this point, consider the model as shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6 Saturated latent growth curve model with a factor loading matrix as described in the 

text. 

 

The factor loading matrix Λ is defined as shown below and corresponds to the conventional 

LGCM setup, where η0 maps true interindividual differences at the first point of measurement 

(i.e., the latent intercept is positioned at the first point of measurement). 
 

The mean of the second latent variable (η1) corresponds to the average linear increase from 

one time point to the next, the mean of η2 maps the average quadratic increase and η3 the 

average cubic increase. The changes in means can be described as shown in Equation (13), 

with α0 = 1.112, α1 = 1.681, α2 = -0.500, and α3 = 0.111. For instance, the mean of the last 
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point of measurement t = 4, would be predicted to be 4τ̂  = 1.112 + 3*1.681 + 9*-0.500 + 

27*0.111 = 4.66. Because the model is saturated, the predicted mean is identical to the sample 

mean as shown in Table 1. In contrast to Equation (13) where any interindividual differences 

are contained in the error term (εit), the interindividual differences in intraindividual change 

over time are now mapped by the variance of the three growth factors. Figure 7A illustrates 

this variation and Appendix 7A contains the Mplus input for the according LGC-model.  
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Figure 7 Performance on a hypothetical learning task as introduced in Table 1. The points 

along the dotted line indicate mean performance, as well as the corresponding standard 

error, at each time point. The two solid lines represent the trajectories of the best and worst 

individual at the last point of measurement. (A) Saturated (descriptive) model; (B) estimated 

linear model. 

 

While we see a significant increase in mean performance over time, the increase is also 

characterized by large interindividual differences. As demonstrated above, this within-subject 

variance is simply treated as error variance in traditional approaches. However, from Figure 

7A it should also be apparent that the within-subject variance is unlikely to be unsystematic as 

assumed by the repeated measures ANOVA. As a matter of fact, the fan-spread pattern of 

increasing variance observed in Figure 7A is quite typical for learning data in the behavioral 

sciences (Kenny, 1974; Campbell & Erlebacher, 1970). Even though the fan-spread effect 

does not present a problem for the multivariate approach to the analysis of change, MANOVA 
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still focuses on changes in means instead of providing a closer investigation of the within-

subject covariance matrix. This, however, is readily accomplished by latent growth curve 

modeling. As described above, the LGC approach can be used to test the assumption of 

compound symmetry or sphericity (for additional tests see Raykov, 2001), but it is also 

possible to test much more refined hypotheses. For example, one might be interested in 

testing the degree to which the data follow a specific trajectory over time and to what extent 

individuals deviate from the average trajectory. In other words, LGCM offers great flexibility 

in testing very specific hypotheses regarding change. While this can result in quite complex 

models, the most basic latent growth curve models are actually very parsimonious, requiring 

much fewer parameters to be estimated than standard MANOVA models. Especially applied 

researchers are often not aware of this fact. Other than traditional techniques, however, 

LGCM buys its advantages from the existence of a good theory. If no prior theory of mean 

changes and/or individual changes can be formulated, LGCM might indeed have little value 

over traditional methods. If, however, some prior theory exists, rival hypotheses can be 

formulated and explicitly tested against each other. As an example, we might suspect that the 

learning “curves” of the 35 individuals contained in Table 1 and depicted in Figure 7A can be 

sufficiently well described by a straight line. A standard latent growth curve model as shown 

in Figure 8 and as defined below, constitutes such a test. The according Mplus syntax can be 

found in Appendix 7B. 

 

 

 

 

 

 

 

 

 

Figure 8 Linear latent growth curve model. 
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The most obvious difference to all previous models is that the variances of the error terms are 

freely estimated and are no longer constrained to zero. By imposing a theory of change on the 

data, the within-subject variance-covariance matrix Φ could be further partitioned into mean 

changes over time, systematic individual deviations from the average (linear) trajectory, and 

time point specific residual variances represented by Θε. It is important to note that the 

partitioning of the within-subject variance into “systematic” variance contained in Φ and 

“error” variance (Θε) is contingent on the underlying theory of change. In that sense it is 

difficult to distinguish between systematic time point specific variance and pure measurement 

error, or more generally to distinguish between reliability and validity of change (Voelkle, 

2005). Figure 7B shows the estimated individual trajectories using a linear LGC-model. If the 

usual assumptions of structural equation models are met (primarily multivariate normality) 

and sample size is large enough, the resulting model fit provides a test of the goodness of 

approximation of the estimated trajectories to the observed trajectories shown in Figure 7A. 

The evaluation and interpretation of fit indices works as usual and will not be reviewed in this 

thesis (but see Bollen & Long, 1993; Schermelleh-Engel, Moosbrugger, & Müller, 2003). 

Note, however, that it is also possible to compare competing models of change (nested and 

non-nested, see Levy & Hancock, 2007). For example, by adding a quadratic growth 

component, it could be easily tested whether a quadratic growth curve model fits the data 

significantly better than a linear one. In the present example, the linear model as shown in 

Figure 8 results in χ2 = 6.180 with 5 degrees of freedom (p > .05), indicating a good model fit. 

After introducing an additional quadratic growth factor as shown in Figure 9, the fit improves 

slightly (χ2
quadratic =4.138) but the improvement is not significant (χ2

Diff = χ2
linear - χ2

quadratic = 

6.180 - 4.138 = 2.042 with dflinear - dfquadratic = 5 - 1 = 4, p > .05) so that the more 

parsimonious linear model would be retained. The Mplus input for the quadratic LGC-model 

is provided in Appendix 7C.  
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Figure 9 Quadratic latent growth curve model. 

 

In the linear model, the means of the latent intercept and the latent slope are both significant 

(α0 = 1.207, p < .01, α1 = 1.153, p < .01) indicating that average performance in the learning 

task is significantly different from zero at the first point of measurement and that people 

exhibit a significant mean improvement of about 1.153 units from one time point to the next. 

In this regard, LGCM is similar to repeated measures ANOVA, in that it shows that the means 

differ over time. By imposing a linear trajectory, however, we also test the shape of the 

overall curve, which can be well described by a straight line as suggested by the good model 

fit. In addition to mean changes, there are significant interindividual differences in true initial 

performance indicated by the significant variance of the latent intercept (σ2(η0 ) = 0.284, p < 

.01). Finally, people show significant interindividual differences in their improvement over 

time. This was already suggested by the strong fan-spread pattern in Figure 7A and is mapped 

by the significant variance of the linear latent growth curve factor (σ2(η1) = 0.149, p < .01). 

As illustrated by Figure 7A and B, the mean changes, as well as the interindividual 

differences in initial performance and change over time, are well described by a linear latent 

growth curve model. As an alternative, it is also possible to permit (some of) the factor 

loadings to be freely estimated. This gets close to traditional confirmatory factor analysis 

(CFA), where no predefined growth curves are imposed on the data. In the present example 

we could modify the linear LGCM by allowing the last two factor loadings of η1 to be freely 

estimated and let the data “tell us” the best shape of the trajectory. This would fit a “linear 

spline” to the data (see Meredith & Tisak, 1990), resulting in the two loadings λ31 = 1.772 and 
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λ41 = 2.767 and a model fit of χ2 = 1.558 with 3 degrees of freedom. However, because the 

improvement in model fit over the more restrictive linear model is not significant (χ2
Diff = 

6.180 - 1.558 = 4.622 dfDiff = 2, p > .05), the more parsimonious linear LGCM should be 

retained. Regardless of whether the factor loadings are freely estimated or fixed based on an 

existing theory, the present example illustrated that LGCM combines the analysis of mean 

changes, as provided by traditional analysis of variance techniques, with a more detailed 

analysis of the within-subject covariance matrix. It is this shift in focus – away from group 

changes towards individual changes – which makes LGCM such a versatile and promising 

technique. 

 

To summarize, it has been shown that repeated measures ANOVA and MANOVA are 

essentially special cases of the more general latent growth curve modeling approach. That 

being said, differences exist with respect to the underlying estimation procedure. LGC-models 

are typically based on (large-sample) ML estimation, while least square estimation is 

employed for (finite-sample) ANOVA and MANOVA type models. Different estimation 

techniques are based on different assumptions (e.g., multivariate normality and/or a 

sufficiently large sample) and will produce different results based on the degree to which the 

assumptions are met in a given sample. A more detailed comparison of different estimation 

techniques is beyond the scope of this section (but see Bollen, 1989), and I settle for a 

comparison on the model level in the present thesis. Regarding model specification, however, 

it has been shown that the standard repeated measures ANOVA is identical to a LGC-model 

with the assumption of a spherical covariance matrix among the latent growth factors. Based 

on research by Raykov (2001) it was demonstrated that the assumption of compound 

symmetry and sphericity can be easily tested within the LGCM framework and a likelihood-

ratio based alternative to Mauchly’s criterion W has been proposed. Likewise, alternative 

likelihood-ratio tests were proposed for polynomial contrasts, which have been demonstrated 

to be easily incorporated into the general latent growth curve approach. Other than repeated 

measures ANOVA, neither the multivariate analysis of variance, nor LGCM rests on the 

assumption of sphericity. As a matter of fact, the saturated LGC-model is equivalent to 

MANOVA, but other than MANOVA, latent growth curve modeling allows the researcher to 

impose specific constraints on the covariance matrix of the latent variables. Again, a 
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likelihood-ratio test has been proposed as an alternative to the multivariate F-test employed in 

MANOVA, but future research is necessary to evaluate the validity of such a test. Finally, it 

has been argued that LGCM is characterized by a shift in focus, away from the analysis of 

mean changes, towards the analysis of individual trajectories. This change in perspective is 

characterized by (a) the possibility to formulate and test much more sophisticated hypotheses 

regarding the within-subject covariance matrix than possible with traditional methods. The 

need to have a good theory underlying one’s model specification (b), and great flexibility of 

incorporating predictors of change (c), which will be the topic of the next section.  

 

2.4 Predicting change 

The biggest advantage of being able to better describe (individual) changes over time is the 

possibility to better predict these changes. In this section it will be demonstrated how to use 

categorical and continuous variables to explain interindividual differences in change. 

Traditional methods will be compared to the more general LGCM approach. As before, I will 

proceed in three steps by first considering two-wave data before moving to more complex 

multi-wave designs. Finally, some more recent developments will be outlined. 

 

2.4.1 Predicting change in two-wave data 

The prediction of pre- to post-test change is very straightforward. As demonstrated in the first 

section, a paired samples t-test corresponds to a latent growth curve model as shown in Figure 

2A. This model can be easily extended by regressing η0 and/or η1 on potential predictors as 

illustrated by Figure 10A. As also discussed above, the paired samples t-test is identical to an 

independent t-test on the difference scores (i.e., x4 - x1). Thus, a regression of η1 on group 

membership is identical to the regression of the difference scores on group membership, as 

long as the error variances of x4 and x1 are constrained to zero. Likewise, a regression of the 

observed difference scores on one or more categorical and/or continuous variables is identical 

to the prediction of η1 by the same predictors. 
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A)      B) 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Path diagram of a paired samples t-test (A) and a base-free measure of change 

model (B) using either “sex” or “g” as predictor for individual difference in pre- to posttest 

(x1 to x4) changes (sex // g). The predictor g is z-standardized. Men are coded as 1 and women 

as 0. 

 

Figure 10A illustrates this fact for either sex or g as predictor of initial performance (η0) and 

change over time (η1). Appendix 8 contains the according Mplus syntax. If the independent 

variable is in deviation form (i.e., its mean is zero), the intercept of the dependent variable 

corresponds to its mean (e.g., Aiken & West, 1991). For this purpose, g was z-standardized 

prior to including it as a predictor. Now, the mean of the latent growth factor (α1 = 3.549) is 

equal to the mean difference between pre- and post-test. As demonstrated in the first section 

(see Equation (5)), this difference is highly significant (p < .01). By regressing η1 on g, a 

regression coefficient (γ1g = 0.539) is obtained, which maps the difference in improvement 

from pre- to post-test between people with an average intelligence (i.e., g(standardized) = 0) 

and people one standard deviation above average (g(standardized) = 1). Dividing the 

coefficient by its standard error (S.E. = 0.223), we find that the difference in mean 

performance is significant (p < .05). The same is true for the prediction of η0, where the 

regression coefficient (γ0g = -0.031) indicates that people one standard deviation above 

average on g, start off somewhat worse at the beginning of the learning task as compared to 
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people with an average intelligence. The difference, however, is small and not significant 

(S.E. = 0.119, p > .05). The same interpretation holds for using the categorical variable gender 

instead of g as a predictor (see again Figure 10A). In the example women are coded as zero, 

so the mean of η0 corresponds to the average performance of women at the first point of 

measurement. The regression coefficient (γ0sex = 0.573) indicates that men are slightly better 

than women in their initial performance and dividing γ0sex by its standard error reveals that 

this difference is indeed significant (S.E. = 0.215, p < .05). Likewise, men show a larger 

improvement from pre- to post-test than women. On average, women improve about α1 = 

2.984 units as compared to an increase of α1 + γ1sex = 2.984 + 1.099 = 4.083 units of men. The 

difference is again significant (γ1sex = 1.099, S.E. = 0.437, p < .05). The test is asymptotically 

equivalent to the independent samples t-test (using the pre-post difference scores (x4 - x1) as 

dependent variable) and the repeated measures ANOVA for two time points and one 

(categorical) between-subject factor. Table 3 compares the LGCM estimate (γ1sex) with the 

results of a t-test and repeated measures ANOVA obtained by using any major statistical 

software package.  

 

Table 3 Independent samples t-test, repeated measures ANOVA and LGCM approach to 

testing the difference in pre- to post-test improvement between men and women. Note that 

(asymptotically) all three approaches will yield identical results. 

                                                      Independent samples t-test 
Mean difference (x4 - x1) t df p 

1.099 -2.444 33 .020 
                                                        Repeated measures ANOVA 

 F df p 
Source    
Time 246.979 1 .000 
Time*sex 5.972 1 .020 

                                                             LGCM 
 Estimate (γ1sex) Standard error (SE) p 
 1.099 0.437 .020 

Note: t2 = F for dfnumerator = 1. 

 

Finally, the covariance between ζ0 and ζ1 maps the relationship between pre- and post-test 

after controlling for any predictors. Using gender as a predictor, there is a slight, but 
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significant correlation between pre- and posttest (φ01 = -0.427, corr = -0.437, S.E. = 0.156, p 

< .05), while the correlation gets smaller and is no longer significant after controlling for g 

instead of gender (φ01 = -0.254, corr = -0.259, S.E. = 0.159, p > .05). This suggests that part 

of the covariation between pre- and post-test is “caused” by intelligence. However, because 

the sample size is small (and of course the fact that the data were chosen for illustrative rather 

than substantive purposes) one must be careful in interpreting this finding. 

 

As demonstrated in Section 2.2.2, the LGCM approach allows us to take the reliabilities of x1 

and x4 into account, should they be known. Likewise, predictors can be included in the base-

free measure of change model as shown in Figure 10B. Appendix 9 contains the according 

Mplus input for the base-free measure of change model and reliability corrected indicators. 

Now, the effect of gender on improvement (η1) is independent of any prior performance. That 

is, if men and women had started out equal on the learning task, they would still differ in their 

change from pre- to post-test by about 1.716 units. This difference is larger than in the 

previous (difference score) model and is highly significant (γ1sex = 1.716, S.E. = 0.435, p < 

.05). The effect of gender on η0 remains unaffected by analyzing residualized (true) gain 

scores instead of direct difference scores. However, it is now possible to obtain and test the 

indirect effect of gender via η0 on η1. The estimate is simply computed by multiplying β10 

with γ0sex. The standard error is readily provided by Mplus (command IND in Appendix 9). 

The indirect effect (γ0sex*β10 = 0.573*-1.077= -0.617), however, is not significant (S.E. = 

0.322, p > .05). The same procedure can be adopted in testing the direct and indirect effects 

of g instead of sex (see Figure 10B and Appendix 9). Note, that the LGCM approach makes 

no difference between categorical and continuous predictors. This stands in contrast to the 

repeated measures ANOVA, where the between-subject factor must be categorical. If this is 

the case, the results are identical as shown in Table 3. ANOVA, however, cannot be employed 

if g would be used as a predictor instead of gender. In the case of two-wave data, taking the 

difference between x4 and x1 and regressing it on any continuous predictor easily circumvents 

this problem. This cannot be done in multi-wave data as will be discussed in the next section. 

In addition, the predictor is assumed to be measured without error in standard regression or 

ANOVA type procedures. This is also no longer true for the LGCM approach, where we can 

easily adjust for unreliability of the predictor in the same way the dependent variable(s) were 
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adjusted for unreliability. Moreover, the independent variables need not be directly observed, 

but may be latent. This is only possible using the LGCM approach. 

 

Of course more than one predictor can be considered at a time and it is possible to include 

interactions among predictors. All this is not different from any standard regression analysis 

and shall not be reviewed in this section (but see Cohen et al., 2003; Aiken & West, 1991). In 

structural equation modeling, multiple group analysis is another option to test hypotheses 

involving categorical (grouping) variables. An introduction to multiple group analysis can be 

found in any SEM textbook (e.g., Bollen, 1989, p. 355ff.). One advantage of multiple group 

analysis is the possibility to test for differences in variances across groups instead of being 

limited to mean differences as it is the case in linear regression. From the previous analyses 

we know that men are significantly better in true initial performance, as well as improvement 

from pre- to post-test. Accordingly, we might set up a model, which accounts for this fact by 

allowing the means of the two latent variables to differ across groups. In a next step, however, 

it might be interesting to see whether men are not only better, but exhibit larger 

interindividual differences as compared to women. This test is readily implemented by 

comparing a model where the variances of η0 and η1 are constrained to equality across groups 

to a model where the variances are allowed to be freely estimated. Figure 11 shows the 

parameter estimates of the unconstrained model and Appendix 10 contains the according 

Mplus syntax.  
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Figure 11 Multiple group analysis using gender as grouping variable. All freely estimated 

parameters are allowed to differ across groups (saturated model). 
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Constraining both variances to equality (σ2(η0men) = σ2(η0women) = 0.408, S.E. = 0.097, p < .01 

and σ2(η1men) = σ2(η1women) = 1.602, S.E. = 0.382, p < .01), we obtain a model fit of χ2 = 7.546 

with 2 degrees of freedom. Allowing the variances to differ, the model is just identified with 

zero degrees of freedom, so the χ2 reported above indicates that the two variances (taken 

together) differ significantly across groups (p < .05). As apparent from Figure 11, men exhibit 

an over three times larger variance at the pre-test, while the post-test variance is almost 

identical for men and women (σ2(η0men) = 0.627, S.E. = 0.209, p < .05; σ2(η1men) = 1.646, S.E. 

= 0.549, p < .05 and σ2(η0women) = 0.167, S.E. = 0.057, p < .05; σ2(η1women) = 1.687, S.E. = 

0.579, p < .05). As a matter of fact, when constraining the post-test variance to equality, the 

drop in fit is negligible suggesting that men and women do not differ in their variability of 

pre- to post-test change (χ2
Diff = 7.546 - 7.056 = 0.49, dfDiff = 2 - 1 = 1, p > .05). Reintroducing 

g as a predictor of η0 and η1 allows us to test (possibly quite sophisticated) interaction 

hypotheses. For example, by comparing a model where γ1g is constrained to equality across 

the two groups to a model where γ1g is allowed to differ is equivalent to testing an interaction 

between g and sex. A significant χ2
Diff would suggest that the effect of g on pre- to post-test 

change differs between men and women. One can think of numerous other hypotheses, which 

are readily formulated and tested within this general framework. As discussed in Section 

2.2.2, the LGCM approach gets particularly interesting if more than one (parallel) measure 

was obtained at each time point, so that the error terms can be estimated rather than being 

constrained a priori (see Figure 3). 

 

2.4.2 Predicting change in multi-wave data 

The option to use difference scores as dependent variable in a pre- to post-test analysis makes 

it easy to analyze and predict change in two-wave data. This is no longer true for the 

prediction of change over multiple waves. As discussed in the previous section, traditional 

methods are often based on very restrictive assumptions, such as compound symmetry or 

sphericity, which still apply when it comes to the prediction of change. Furthermore, there are 

additional assumptions that must be met when including predictors. Finally, the exclusive 

focus on mean changes – instead of individual trajectories – restricts MANOVA and ANOVA 

to the use of categorical predictors. The more general LGCM approach is not only more 

flexible with respect to those assumptions, but offers a convenient way to test them. 
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Moreover, it is not limited to categorical predictors but allows for any combination of 

categorical and/or continuous variables.  

 

Using the same factor loading matrix as before,  

η0 is again “centered”, mapping average interindividual differences across all four time points. 

Thus, a regression of η0 on a categorical predictor corresponds to the between-subject analysis 

in a repeated measures ANOVA. Figure 12 shows the according path diagram for our 

example data set. Appendix 11 contains the Mplus input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Repeated measures (M)ANOVA with one between (sex) and one within (time) 

subject factor, where only between-subject variance is predicted by sex (no interaction 

between time and sex). Parameter estimates on the right side of the graph are obtained when 

fixing the regression coefficient of η0 on sex to zero (γ0sex = 0). 
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Constraining the regression coefficient γ0sex to zero, the variance of η0 (σ2(η0) = σ2(ζ0) = 

2.439) corresponds to the between-subjects sum of squares divided by N (35*2.439 = 85.36 = 

SSBetween; see Table 2). When regressing η0 on gender (γ0sex = 2.230), the remaining variance 

corresponds to the variance not accounted for by sex (σ2(ζ0) = 1.197), so that the sum of 

squares explained by sex are SSBetween(sex) = 85.36 - 35*1.197 = 43.47, corresponding exactly 

to the SSBetween(sex) obtained by any standard software package. Likewise, F = 

(SSBetween(sex)/dfBetween) / (SSBetween(error)/dfBetween(error)) = (43.47/1) / (41.89/33) = 34.25, 

suggesting that there are significant differences in mean performance between men and 

women (p < .01). Since the variance of the other factors is not affected by the introduction of 

a predictor, the change over time can be evaluated as discussed above (compare Figure 12 and 

Figure 5). However, while the prediction of interindividual differences in average 

performance does not depend on the within-subject covariance matrix (Φ), the analysis of 

interindividual differences in change over time does. In addition, the introduction of a 

categorical predictor requires that the variance-covariance matrix (Φ) is identical across all 

levels of the predictor (in our example for men and women). It is important to note that the 

two assumptions of sphericity and homogeneity of variance are independent, so it can easily 

happen that one assumption is met, while the other is not (Maxwell & Delaney, 2000, p. 534). 

This makes the estimation of an interaction between a within-subject factor and a between-

subject factor much more demanding. The prediction of within-subject variance is easily 

implemented by regressing all growth factors (η1 – η3) on the independent variable(s) in 

question. Figure 13 shows the according path diagram (with Λ as shown above) and Appendix 

12 contains the Mplus syntax. As a reminder, the within-subject main effect due to time can 

be computed by constraining the means of η1 – η3 to zero (in addition to setting γ1sex = γ2sex = 

γ3sex = 0), and comparing the sum of the residual variances to the sum of residual variances 

after allowing the means to be freely estimated.  
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Figure 13 Repeated measures (M)ANOVA with one between (sex) and one within (time) 

subject factor. Interindividual differences in change over time are predicted by sex 

(interaction between time and sex). Parameter estimates on the right side of the graph are 

obtained when setting the regression coefficients γ1sex = γ2sex = γ3sex = 0. 

 

The prediction of change by gender corresponds to an interaction effect of the between-

subject factor sex and the within-subject factor time. This is readily apparent from Figure 13 

where the effect of sex on x is mediated by η. This is not true for the prediction of the 

between-subject variance, because all factor loadings of η0 are identical, thus the effect is 

simply multiplied by a constant. For example – and as shown above – if all factor loadings of 

η0 are constrained to 0.5, the variance of η0 corresponds to the average between-subject 

variance, while the mean (α0 = 4.624) must be divided by two in order to obtain the average 

performance of women on the learning task ( womenx = 2.312). When setting γ1sex = γ2sex = γ3sex 

= 0, the sum of the variances of η1 to η3 is 1.063 + 0.255 + 0.177 = 1.495. Multiplying 1.495 

by the number of subjects, the sum of squares between persons is SSBetween = 35*1.495 = 

52.325, which is the sum of squares after controlling for the within-subject factor time (note 

that α1 to α3 are freely estimated). The resulting sum of squares can be further partitioned into 

one part which is due to gender differences and one part which is independent of gender and 
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independent of mean changes over time. This is readily computed by reintroducing the direct 

effects of sex on η1, η2 and η3. The estimates are shown in Figure 13. The sum of the 

variances of η1 to η3 is 0.870 + 0.255 + 0.169 = 1.294. After multiplication with N, this 

corresponds to the SSWithin(error) after accounting for changes over time (main effect time) 

and gender differences in change over time (time*sex), and is identical to the SSWithin(error) 

obtained by any conventional software package (SSWithin(error) = 45.29). As a consequence, 

the interaction between time and sex can be easily computed by subtracting 45.29 from 

52.325, resulting in an effect of SSWithin(time*sex) = 7.035. The F-test can be computed 

accordingly, with F = (SSWithin(time*sex)/dfWithin(time*sex)) / (SSWithin(error)/dfWithin(error)) = 

(7.035/3) / (45.29/((35-2)*(4-1))) = 5.13 suggesting that men and women differ significantly 

in their change over time (p < .05).  

 

In order for the F-value to be a reasonable test statistic, not only the assumption of sphericity 

must be met, but also the assumption of equal variances and covariances across groups (i.e., 

the homogeneity of variance assumption). The latter is true for the traditional repeated 

measures approach as well as the LGCM approach. If the assumption is not met, it would not 

make sense to compare mean changes across groups, since the within-subject error terms (i.e., 

the residual within-subject (co)variance matrix) would differ, making it a futile comparison. 

Other than ANOVA or MANOVA, however, LGCM provides not only a direct test of this 

assumption, but offers an alternative to the F-ratio, which neither depends on the assumption 

of sphericity nor on the assumption of variance homogeneity. For this purpose, gender is not 

treated as an exogenous variable, but as a grouping variable in a multiple-group analysis, as 

described above. Figure 14 shows the according model and Appendix 13 the Mplus input.  
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Figure 14 Multiple group analysis using gender as grouping variable. All freely estimated 

parameters shown in the path diagram are allowed to differ between groups (saturated 

model). Parameter estimates on the left side of the graph are obtained when all variances and 

covariances of the four factors are constrained to equality, but the means are allowed to 

differ across groups. Comparing the two models tests the assumption of variance 

homogeneity. 

 

The assumption of variance homogeneity can be simply tested by comparing a model where 

all elements in Φ are constrained to equality across groups15 to a model where all elements in 

Φ are allowed to differ (see Raykov, 2001). Since the two models are nested, a likelihood-

ratio test can be carried out to test the significance of any differences between the models. 

                                                 
15 Constraining all elements (i.e., means, variances and covariances) to equality across groups results in the same 

parameter estimates as shown in Figure 5. However, because the factor loadings of η0 are now constrained to 0.5 

(instead of 1.0 as in Figure 5), all estimates associated with η0 in Figure 5 must be multiplied by two in order to 

obtain the same estimates. 
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φ03 = -0.013 

φ12 = 0.063 

φ13 = 0.055 

φ23 = 0.115 
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Technically speaking, the null-hypothesis (H0) states that Φ(men) = Φ(women), while the 

alternative hypothesis assumes that there are significant differences between the covariance 

matrices of the two groups (H1: Φ (men) ≠ Φ(women)). For T repeated measures, the within-

subject matrix contains T*(T + 1)/2 non-redundant elements, resulting in a χ2-difference test 

with 4*5/2 = 10 degrees of freedom in the present example. The test of variance homogeneity 

is readily implemented by constraining all ten elements in Φ to equality across groups as 

shown in Appendix 13. The means of the latent variables are allowed to differ across groups 

and may be freely estimated. The constrained model results in a χ2 of 18.262 with 10 degrees 

of freedom. Since this value must be compared to a saturated model with χ2 = 0, the model fit 

indicates that the homogeneity assumption may be met (p > .05). As before, the reader is 

reminded that the test is actually a large sample test and its performance is not very well 

known in small samples. In large samples, however, it might be an interesting alternative to 

the popular Box M test (Box, 1949) as pointed out by Raykov (2001).  
 

(17)

As shown in Equation (17), Box’s M statistic is also based on the likelihood-ratio test. G is 

the number of groups (g = 1…G; e.g., males and females), Ng is the sample size in each 

group, and Sg the within group covariance matrix. S is the covariance matrix pooled across all 

groups (i.e., )/()1(
1

gNN g
G

g g −−= ∑ =
SS ). In the present example, M = 17.183. For small 

samples an F approximation is used to compute its significance, indicating that the covariance 

matrices are not significantly different across groups (F = 1.491, df1 = 10, df2 = 5163.441, p > 

.05; see Box (1949) for details). This stands in contrast to the assumption of sphericity, which 

was clearly violated. Notice that sphericity was not tested by either of the two tests, although 

a combined test of sphericity and variance homogeneity would be possible using the LGCM 

approach. With respect to variance homogeneity, the LGCM based test and Box’s test yield 

very similar results in our example. However, since the LGCM approach requires large 

samples, Box’s M statistic may be better suited for small sample sizes. Having said that, 

Box’s test appears to be overly sensitive to non-normality (Tabachnick & Fidell, 2001; 

Stevens, 2002), a problem that might be less severe for the LGCM based test with large 
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1
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sample sizes. Future research might address this apparent trade-off by means of a Monte 

Carlo Simulation. 

 

The LGCM approach offers not only a direct test of the assumptions of sphericity and/or 

homogeneity of variance, but can account for these violations. The multiple group analysis 

allows researchers to formulate and implement very specific hypothesis regarding possible 

group differences in Φ. Given the usual assumptions of structural equation models are met 

(primarily multivariate normality and/or a sufficiently large sample size), the resulting 

parameter estimates and significance tests (i.e., likelihood-ratio tests) are correct. Note that 

this is not true for the F-ratio as described above, which always depends on the assumption of 

variance homogeneity across groups. Another important advantage of LGCM is the option to 

use continuous predictors instead of categorical predictors. This is not possible in standard 

ANOVA or MANOVA and opens up a wide field of new applications. In the example this 

would simply mean replacing sex by g in Figure 12 and Figure 13 as well as Appendix 11 and 

Appendix 12. Finally, it is straightforward to combine the use of continuous and/or 

categorical exogenous predictors and multiple group analysis (i.e., categorical predictor). This 

is a great improvement over traditional techniques, because it allows a detailed analysis of 

interindividual differences in individual change over time making use of all available 

information (e.g., no need for categorization of continuous predictors). At the same time, the 

assumptions of variance homogeneity and sphericity are no longer indispensable, but may be 

relaxed if necessary. However, future research is necessary to explore the differences of the 

approaches with respect to accuracy, power and robustness under various conditions. The 

great flexibility of LGCM is certainly an advantage, but also calls for a thorough matching of 

theory and statistical modeling. Eventually, it is up to the researcher to define the most 

appropriate model for his or her purposes.  

 

2.4.3 Extensions 

As mentioned in the introduction (Section 1.1.2), the basic latent growth curve model has 

been extended in numerous ways during the last couple of years. An overview of these 

extensions is provided for example by Bollen and Curran (2006), Duncan, Duncan and 

Strycker (2006), or in the excellent book edited by Moskowitz and Hershberger (2002). With 
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respect to the prediction of change, however, there are at least three extensions worth 

mentioning. First, the effect of any time-invariant predictor on x must not necessarily be 

mediated by the growth factors but may be direct and time-varying (Stoel, van den 

Wittenboer, & Hox, 2004; Muthén, 1991). This is easily accomplished by regressing x 

directly on the predictor(s) with all regression weights allowed to be freely estimated. Second, 

the predictors themselves can change over time, what is not possible in traditional repeated 

measures ANOVA or MANOVA designs (e.g., Bollen & Curran, 2006, p. 192ff.). The impact 

of time-varying predictors may again change over time or be time-invariant (i.e., the 

regression weights are constrained to equality). Third, it is possible to estimate parallel 

growth processes with average performance and/or rate of change of one process affecting 

average performance and/or rate of change on another variable. An introduction is given for 

example by Bollen and Curran (2006, p. 198ff.), or Curran and Willoughby (2003). Finally, 

the LGCM approach has been combined with other techniques to analyze change over time 

such as the autoregressive model (Bollen & Curran, 2004), which will be discussed in more 

detail in Section 3. All of these extensions are not possible with traditional techniques like the 

paired samples t-test, ANOVA or MANOVA, making a comparison impossible. For more 

detailed information on these extensions, the interested reader is referred to the above-

mentioned literature. 

 

To summarize, it has been shown that LGCM is a very general approach to the prediction of 

change. The conventional t-test, repeated measures ANOVA and MANOVA are all special 

cases of the more general latent growth curve approach. For the simplest case of only two 

time points, the use of difference scores constitutes an easy way to analyze interindividual 

differences in change. In this case, and for only two groups, the independent samples t-test, 

repeated measures ANOVA with one between-subject factor, MANOVA and LGCM as 

shown in Figure 10A yield identical results. In addition, the LGCM approach offers a 

convenient way to analyze and predict residualized (true) gain scores. Finally, LGCM can 

account for imperfect reliability of the criterion and/or predictor. Especially for more complex 

models with multiple measurements taken at each time point and complex (latent) predictors 

this is a great improvement over traditional techniques. For multi-wave data it has been 

shown that the repeated measures design with one between- and one within-subject factor 

(also known as split-plot or mixed design, see Maxwell & Delaney, 2000, p. 517ff.) can be 
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easily incorporated into the more general LGCM approach. Other than the traditional 

methods, however, LGCM is not limited to the use of categorical predictors. As a matter of 

fact, quite complex interaction hypotheses including categorical and/or continuous predictors 

can be tested. The assumption of variance homogeneity across groups, which is crucial for 

repeated measures ANOVA and MANOVA, can be tested within the LGCM framework, but 

other than ANOVA or MANOVA, LGCM can also account for violations of this assumption 

by offering an alternative to the conventional F-test. The most striking difference between 

LGCM and ANOVA/MANOVA is the greater flexibility of the former as compared to the 

latter. While this is certainly an advantage, it demands great diligence from the researcher 

when setting up the model and interpreting results.  

 

2.5 Discussion 

By demonstrating that the analysis of variance and multiple regression are essentially 

identical data analytic systems, Cohen (1968) prepared the ground for a new way of statistical 

thinking among social scientists. Instead of treating ANOVA and multiple regression as 

different techniques, he pointed to the generality of MR, which comprises the analysis of 

variance as a special case. This prepared the ground for more refined analyses regarding 

group differences and interindividual differences, helping ultimately to bridge the gap 

between experimental and differential psychology. In this section it has been argued that it is 

time for a similar reconceptualization in the analysis of change. During the last decade there 

has been an almost exponential increase in methodological and applied articles using “new 

methods for the analysis of change” (Collins & Sayer, 2001). The new procedures focus on 

intraindividual variability instead of mean changes, which have been of central interest in 

traditional methods such as the paired samples t-test, repeated measures ANOVA or 

MANOVA. The notion that the latter are just a special case of the former has always been 

present (Meredith & Tisak, 1990), but most of the current literature treats techniques rooted in 

the analysis of variance (i.e., t-test ANOVA, MANOVA) and factor analytic techniques (i.e., 

latent growth curve modeling) as largely unrelated. This is unfortunate, because much can be 

learned about either approach by examining their commonalities as well as their differences. 

Of course there exist some noteworthy exceptions, for example chapter three in Duncan, 

Duncan and Strycker (2006) to name just one, but I am not aware of any comprehensive 
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treatment of this topic. The present thesis attempts to fill this gap in a didactic manner by 

demonstrating the equivalence of traditional techniques (t-test, base-free measures of change, 

repeated measures ANOVA, polynomial contrasts, MANOVA) and the more general latent 

growth curve models, if certain assumptions are met and certain constraints are imposed. All 

arguments have been illustrated by a hypothetical data set on skill-acquisition. 

 

There are a number of problems associated with such a didactic approach. First and foremost, 

it falls short to set out the mathematical relationship between the models introduced, even in 

cases where it would be possible to do so. In addition, the relationship between models can 

only be demonstrated on a conceptual (model-) level, since the actual estimates are affected 

by the estimation procedure, rounding errors and even differences in the software packages 

employed – although the last two issues are largely negligible. Especially the estimation 

procedure, however, depends greatly on sample size. Thus finite-sample differences in 

parameter estimates can be quite substantial. This is especially true if the sample is as small as 

the one used in this section. On the other hand, the use of a small set of raw data enables the 

reader to reproduce all analyses and results using different software packages or even hand 

calculation where possible. In addition, it is much easier to follow a simple, albeit artificial, 

example as compared to the typically much more complex real-world studies. Because of the 

partially didactic nature of this section I opted for the small sample example.  

 

Considering the fact that the sample size in the present example is clearly too small for the 

more complex (e.g., multiple group) LGCM analyses, it is surprising that most parameter 

estimates turned out to be quite similar to the ones obtained by traditional methods in our 

example. Nevertheless, it must be emphasized – once again – that LGCM is a large sample 

method and cannot be recommended if the sample size is small and the assumptions of 

traditional methods are met. Having said that, it is difficult to tell when the sample size is 

“large enough” for LGCM. As long as the analysis is restricted to simple (saturated) models 

focusing on mean changes, LGCM and traditional techniques yield identical results even for 

very small samples. For more complex models, however, differences can be quite substantial. 

On the other hand, obvious violations of central assumptions underlying traditional techniques 

(such as sphericity and homogeneity of variance) may justify the use of LGCM despite an 

“insufficient” sample size. Clearly, there is a need for future research to shed light on the 



LGCM AS A GENERAL DATA-ANALYTIC SYSTEM  - 60 -

 

complex interaction between these factors (sample size, underlying assumptions, model 

complexity) in order to determine the optimal procedure for the analysis of change for a given 

set of data. Similar arguments can be made for most fit indices employed in LGCM, which 

are also greatly affected by sample size. This topic has been deliberately ignored because it is 

no different from standard structural equation modeling and a more detailed discussion would 

go far beyond the scope of this thesis. 

 

If sample size is sufficiently large, LGCM can be conceived as a general data analytic 

approach to the analysis of change. As discussed throughout this section, it comprises many 

traditional methods as special cases. It offers direct tests of important assumptions and allows 

researchers to account for potential violations of these assumptions. In addition, it can easily 

handle categorical as well as continuous variables. Its biggest advantage over conventional 

techniques such as the t- test, ANOVA or MANOVA, however, is its flexibility with respect 

to the specification of the within-subject variance-covariance matrix Φ. Almost any 

hypothesis regarding interindividual differences in intraindividual change can be tested by 

imposing specific constraints on Φ. This argument generalizes to the prediction of change as 

discussed in Section 2.4. It is this shift in focus – and no substantial differences – that makes 

“new methods for the analysis of change” different from “traditional” techniques. At the same 

time, however, it shows how the approaches relate to each other and how they can be 

integrated.  
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3 A RECONSIDERATION OF AUTOREGRESSIVE LATENT TRAJECTORY 

(ALT) MODELS FOR THE ANALYSIS OF SKILL-ACQUISITION 

As discussed in the first part, the number of studies employing longitudinal panel data has 

increased exponentially during the last couple of years. Although there are numerous ways to 

analyze change over time, two broad classes of models can be distinguished: models of group 

change and models of individual change, with the autoregressive model (AR) and the latent 

growth curve model (LGCM) being the most prototypical representatives of either class (e.g., 

Raykov, 1998). In particular, AR models have a long history and have been employed across 

a wide range of different disciplines (Anderson, 1960; Guttman, 1954; Humphreys, 1960; 

Kessler & Greenberg, 1981). Standard AR models, however, are only a special case of the 

more general class of stationary time series models, so-called Autoregressive Moving 

Average (ARMA(p, q)) models, which combine an autoregressive part of order p with a 

moving average part of order q (Box & Jenkins, 1976). Although it is advisable to consider 

these more complex models as alternatives when modeling change over time (Sivo & 

Willson, 2000; Sivo, Fan, & Witta, 2005), the present section is confined to the most common 

case of an autoregressive model of order one, also known as simplex model (see Guttman, 

1954). The simplex (AR) model can be written as 

 

(18)

with yit being the observed value on the dependent variable y for person i at time point t for t = 

1, 2, 3…T, αt being the intercept at time point t, and ρt(t-1) being the autoregressive parameter. 

The person and time point specific disturbances (εit) are commonly assumed to be mutually 

uncorrelated, with E(εit) = COV(yi(t-1), εit) = 0 although the assumptions can be relaxed if 

necessary. In line with Bollen and Curran (2004), yit at the first time point (t = 1) is treated as 

predetermined throughout the thesis, but I will come back to this issue later on. 

 

As described in Section 2, the analysis of individual trajectories has an equally long history, 

reaching back to the beginning of the 20th century (e.g., Robertson, 1908; Wishart, 1938), 

however, it was not until Meredith and Tisak (1984; 1990) demonstrated how individual 

growth curves can be estimated by structural equation models, that latent growth curve 

modeling became so popular. As described in Section 2, the basic idea of LGC-models is to 

ittitttit yy ερα ++= −− )1()1(
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specify a trajectory of common shape (e.g., linear or quadratic) for all persons, but with 

individually varying growth parameters. As shown in Equation (19), yit is now expressed as a 

direct function of time λt (e.g., λt = 0,1,…T), and in contrast to the AR model defined in 

Equation (18), the intercept αi and regression weight βi (slope) are not fixed for the entire 

group, but are “random coefficients”, that is they can take on different values for each person. 

 

(19) 

This approach can be regarded as a multilevel model where Equation (19) refers to the first 

level, while Equation (20) and (21) correspond to the second level. As shown in Equation (20) 

and (21), the random coefficients can be regressed on other time-invariant covariates (xi) with 

the regression coefficients γα, respectively γβ (but see Stoel et al., 2004). In case all level two 

predictors are in deviation form, µα and µβ correspond to the mean intercept, mean slope 

respectively, of the entire group. Accordingly, ζαi and ζβi represent the person specific 

deviations from the average trajectory, which cannot be explained by the time-invariant 

covariates. 

 

(20) 

 

(21) 

As illustrated for example by Bollen and Curran (2006), the standard LGC-model can be 

easily extended to the multivariate case with parallel growth processes, latent indicators, or 

the inclusion of time-varying covariates (see also MacCallum et al., 1997; McArdle, 1988). 

However, throughout this section, I constrain myself to the unconditional univariate case, 

even though the general findings are expected to hold for more complex models (compare 

Equation (3) and (4)) for the general matrix notation of standard LGC-models)16. 

 

After the advent of LGC-models, the AR model often got criticized as being inappropriate in 

most cases, and some researchers even claimed the inherent superiority of LGC-models over 

traditional methods of analyzing change (Rogosa et al., 1982). Despite these claims, the two 

approaches continued to coexist as two alternative ways to parameterize change until very 

recently Bollen and Curran demonstrated that “the autoregressive and trajectory [LGC] 

models are special cases of a more encompassing model that we call the autoregressive latent 

                                                 
16 As noted in Section 1.1.2 a slightly different notation is used to improve readability.  

ittiiity ελβα ++=
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trajectory (ALT) model” (2004, p. 336; see also Curran & Bollen, 1998; 2001). Even though a 

full integration of general ARMA(p, q) and LGC-models has yet to be provided, Bollen and 

Curran (2004) showed how the ALT model can be expressed as a structural equation model as 

defined in Equation (22) with a selection matrix P to select the observed variables oi as shown 

in Equation (23). 

 

(22)

 

(23)

ηi is a vector containing all observed variables in the model (i.e., the repeatedly measured 

variables, time-varying and time-invariant covariates, if applicable, and the latent intercept 

and slope), µ is a vector of means or intercepts, and ζi a vector of residuals. Finally, Β is a 

coefficient matrix relating the variables defined in ηi to each other. A discussion of the 

general equation is provided by Bollen and Curran (2004) along with some examples of 

linear17 ALT models. 

 

By integrating two of the most widely used techniques for analyzing change over time, the 

ALT model is a very flexible and powerful new technique. In fact, Bollen and Curran (2004) 

concluded that “…within nearly any situation in which either the autoregressive or the latent 

trajectory [LGC] model might be applied, the ALT model provides the potential to synthesize 

aspects of these two approaches as opposed to selecting just one or the other” (p. 378). As an 

example they reanalyzed a covariance matrix published by Rogosa and Willett (1985a), which 

was generated by a linear growth curve model18 and was originally used to show that a 

simplex model fits the data “better than it should”. When estimating a linear ALT model, 

none of the autoregressive parameters were significantly different from zero. Because the first 

point of measurement must be treated as predetermined in order to avoid the problem of 

infinite regress (e.g., Bollen & Curran, 2006, p. 211), the AR and latent growth curve model 

are not nested and cannot be directly compared. However, using a special form of the latent 

growth curve model where the first point of measurement is treated as an exogenous variable 

(i.e., predetermined), a direct comparison between the two models via the joint likelihood 

                                                 
17 Strictly speaking, by linear I refer to the first order polynomial equation, which could still correspond to a 

nonlinear growth curve, given a different parameterization of time or a transformation of the repeated measures. 
18 Rogosa and Willett (1985) speak of a “constant rate of change model”. 

iii ζΒηµη ++=

ii Pηo =
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ratio test becomes possible, which also supported the “true” latent growth curve model. Based 

on these findings, the authors concluded that “this illustrates how the new ALT model can 

sometimes distinguish between the autoregressive and the latent trajectory models, a 

possibility not considered in prior research” (Bollen & Curran, 2004, p. 369). 

 

In this section, I will demonstrate that while this may sometimes be the case, such a procedure 

rests on the strong assumption that any nonlinear change processes can be ruled out a priori. 

In the presence of nonlinear change over time, however, such a procedure can be very 

misleading. As a matter of fact, even if the ALT model fits the data considerably better than a 

standard linear LGC-model, parameter estimates can be much more biased in the ALT as 

compared to the (worse fitting) growth curve model. Given that many, if not most, 

longitudinal processes are nonlinear (e.g., learning curves), routinely considering ALT models 

as an alternative to LGC-models without testing for nonlinear change may be more 

misleading than the interpretation of “inappropriate” linear LGC-models. Interestingly, 

already Rogosa and Willett (1985) suggested that a covariance matrix similar to the one used 

by Bollen and Curran (2004) could be constructed using a nonlinear growth curve model. 

Unfortunately, they do not provide such a matrix in their original article, but as it will be 

demonstrated below, in such a case the ALT model would likely not be very helpful in 

distinguishing between autoregressive and latent growth curve models. 

 

3.1 Outline 

The autoregressive latent trajectory model can be a valuable tool for the analysis of change. 

However, while it is well known that different parameterizations of change can yield highly 

similar, if not even identical results (e.g., Hamaker, 2005; Sivo & Willson, 2000), omitting 

relevant change processes can also severely bias parameter estimates (e.g., Sivo et al., 2005). 

It is the purpose of this section to show that autoregression as part of an ALT model may in 

fact be due to nonlinear change over time. This is demonstrated for the most common case of 

a linear LGC-model, where the addition of autoregressive parameters results in a substantial 

improvement of fit. If not explicitly tested for nonlinear change, however, the resulting ALT 

model will yield highly biased parameter estimates. Since few multi-wave studies are truly 

linear, nonlinearity should always be considered as an alternative explanation for AR 
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processes in ALT models. It is concluded that the ultimate decision how to model change can 

only be made on theoretical grounds, and researchers are cautioned to use ALT models to 

integrate, or distinguish between, autoregressive (simplex) and latent growth curve models, 

unless the existence of nonlinear change can be ruled out. 

 

In the following section, I will first review the ALT model as introduced by Bollen and 

Curran (2004) and discuss problems that arise in the presence of nonlinear change. The 

specification of a quadratic ALT model is provided in Appendix 14. Second, an empirical 

example of a nonlinear growth curve model is provided, which illustrates several of the 

problems researchers are faced with when deciding between different methods of analyzing 

change. Third, the results of a Monte Carlo Simulation are reported which examines the 

conditions and consequences of mistaking nonlinear growth curve patterns as autoregressive 

processes. Finally, all findings will be discussed and I conclude with some general 

recommendations regarding the choice of the optimal model. 

 

3.2 Nonlinear autoregressive latent trajectory models 

Figure 15 provides a graphical representation of a quadratic growth curve model (solid lines) 

and an unconditional ALT model for six points of measurement. The general specification of 

a quadratic ALT model as a synthesis of both models (not shown in Figure 15) is provided in 

Appendix 14. As discussed above, please note that yi1 is again treated as predetermined in 

order to circumvent the problem of an infinite regress (see Bollen & Curran, 2004). 
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Figure 15 Quadratic LGC-model for the analysis of skill acquisition in TRACON (solid lines). 

For the linear model β2 must be dropped. For the linear ALT model the dotted lines are 

added, while the double lines have to be removed (together with the quadratic growth factor 

in our example). For the sake of clarity, parameters have been omitted from the diagram. The 

triangle at the top represents the constant 1. Its regression weights are the means of the three 

latent factors and y1. 

 

Using simple path tracing rules or covariance algebra, it is easy to express the observed 

variances and covariances among the repeated measures as a function of the model parameters 

(θ). For example, for a second order polynomial (quadratic) ALT model the covariance 

between the second and third repeated measure can be expressed as  

COV(y2, y3) = E(y2 y3) = E((ρ21 y1 + λ2α α + λ2β1 β1 + λ2β2 β2 + ε2) (ρ32 ρ21 y1 + ρ32 λ2α 

α + ρ32 λ2β1 β1 + ρ32 λ2β2 β2 + ρ32 ε2 + λ3α α + λ3β1 β1 + λ3β2 β2 + ε3)), 

 

(24) 

where α is again the latent intercept, β1 the linear slope, and β2 the quadratic growth factor. 

As demonstrated by Rovine and Molenaar (1998; Stoel & van den Wittenboer, 2003; Biesanz 

et al., 2004), the covariances between the growth factors are a direct function of Λ. For 

reasons of clarity, it can therefore be assumed that COV(α, β1) = COV(α, β2) = COV(β1, β2) = 
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0. After computing the expected values according to standard assumptions (e.g., Bollen, 

1989) and rearranging the terms, Equation (24) can also be written as 

E(y2 y3) = ρ21 ρ21 ρ32 VAR(y1) + ρ32 VAR(ε2) + λ2α λ2α ρ32 VAR(α) + λ2β1 λ2β1 ρ32 VAR(β1)

+ λ2α λ3α VAR(α) + λ2β1 λ3β1 VAR(β1) 

+ [    λ2β2 λ3β2 VAR(β2) + λ2β2 λ2β2 ρ32 VAR(β2)    ]. 
(25) 

A more detailed derivation of Equation (25) can be found in Appendix 15. 

 

The first line of Equation (25) is affected by the autoregressive parameters, the second part 

corresponds to a standard linear LGC-model, and the last part in squared brackets contains the 

nonlinear part (also affected by the autoregressive parameter ρ32). Let us ignore the nonlinear 

part for a second and consider a standard ALT model. If in fact a true (positive) 

autoregressive process underlies the data, looking at it this way, it becomes easily apparent 

that omitting the first AR part must necessarily increase the variance estimates of the latent 

growth curve factors since the factor loadings as well as the observed COV(y2, y3) are all fixed 

values. This could also be demonstrated in a recent study by Sivo, Fan and Witta (2005). As 

part of a more extensive Monte Carlo Simulation, they investigated the biasing effect of an 

unmodeled autoregressive process on a linear growth curve model and found that the variance 

of the latent intercept and slope was increased by more than 300%. Other than in the present 

study, however, they used a more restrictive model where the autoregressive parameters were 

not permitted to vary between waves, but were constrained to the value of the first 

autoregressive coefficient. 

 

Reintroducing the nonlinear part complicates matters. If the true individual growth curves 

follow a quadratic function, omitting the first and last part (i.e., fitting a standard LGC-

model), must again result in an overestimation of the variance of the growth parameters. 

Hence, the biasing effect of omitting the nonlinear growth part is the same as omitting the AR 

part. Not considering nonlinear change as an alternative explanation, the AR parameter 

account for part of this variance, which can result in substantial parameter bias as will be 

demonstrated below. As also apparent from Equation (25), if the underlying change process is 

truly nonlinear (e.g., quadratic) and is modeled as such, the omission of true autoregressive 
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effects would also result in a bias of the (linear and nonlinear) growth parameters. I would 

thus expect the findings of Sivo, Fan and Witta (2005) to generalize to the nonlinear case. 

However, other than the more restricted model they used in their simulation study, the ALT 

model as introduced by Bollen and Curran (2004) is much more flexible. This is especially 

true as the number of measurement points increase, making the ALT a much more flexible, 

but less parsimonious model as compared to the more restrictive quadratic growth curve 

model. If nonlinearity is present, introducing AR parameters will almost always result in a 

clear improvement of model fit, associated with a systematic pattern of significant 

autoregressive parameters. Accordingly, as long as nonlinearity cannot be ruled out as the true 

reason for this improvement, such a model cannot be trusted. Depending on the true 

trajectories, parameter bias can be quite severe. The conditions under which nonlinear growth 

curve patterns are most likely mistaken as autoregressive processes and the resulting 

parameter bias will be examined in more detail in the Monte Carlo Simulation presented in 

Section 3.4. 

 

3.3 An empirical example from the analysis of skill-acquisition 

Before taking a closer look at parameter estimation, let us consider an empirical example with 

data on skill acquisition in a computer based complex air traffic control simulation. The 

scenario, called TRACON, which stands for Terminal Radar Approach CONtrol, is licensed 

software and has been developed by Wesson International. In the simulation, the subjects take 

over the position of an air traffic controller and are responsible for securely guiding planes 

through a designated air sector. Points are given for each successful accomplishment of an 

airplane’s flight plan, while penalty points are deducted for commission and omission errors 

regarding a number of different rules and regulations which must be followed. A detailed 

description of the task is beyond the scope of the thesis, but see Ackerman (1992) or 

Ackerman & Kanfer (1993). In the original study, which was conducted by Ackerman, Kanfer 

& Goff (1995) and is published in the Journal of Experimental Psychology: Applied, the 

authors were interested in various cognitive and noncognitive determinants of skill 

acquisition. In a reanalysis of these data, a latent growth curve approach was adopted to gain a 

better understanding of the nature of interindividual differences in intraindividual change over 

time by focusing on individual skill acquisition curves. The study is published in Learning 
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and Individual Differences (Voelkle et al., 2006) and serves as starting point for all 

subsequent considerations (see Footnote 1).  

 

Throughout six different sessions, a total of 93 participants worked on TRACON for 2.5 

hours per session. Each session consisted of five independent 30 min trials, which were 

aggregated to session scores. Apart from a short videotape that explains the rules and general 

handling of TRACON and was shown prior to actual practice, the task was new to all 

subjects. Because the simulation is relatively complex, even after 2.5 hours time on task, 

average performance was quite low as illustrated in Figure 16. Throughout the next sessions, 

however, performance improved continuously, although at a lower rate during the last two to 

three sessions, suggesting the beginning of asymptotic performance of some participants. 

Despite the clear general trend, there are substantial individual differences in initial 

performance as well as the rate of skill acquisition. The combination of a comparatively steep 

increase of performance at the beginning with a leveling off towards the end, along with a 

slightly increasing variance is typical for many learning tasks19. 

 

Because of the large individual differences in skill acquisition as shown in Figure 16, a latent 

growth curve approach was adopted to capture the individual trajectories and ultimately 

predict differences in learning, in line with the purpose of the original study (see Voelkle et 

al., 2006).  

 

                                                 
19 The same pattern was already observed in Figure 7A (Section 2.3.5). It was Kenny (1974; see also Campbell 

& Erlebacher, 1970) who coined the term “fan-spread effect“ for this pattern of increasing variance. 



ALT-MODELS: A RECONSIDERATION  - 70 -

 

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

pl
an

e s
 h

an
d l

ed

 

 

Figure 16 TRACON performance across six sessions. The points along the dotted line 

indicate mean performance, as well as the corresponding standard errors, at each session. 

Solid lines represent individual trajectories of the 5% best and 5% worst participants of the 

entire sample (at the sixth session) and are intended to serve as an example of intraindividual 

variation, as well as interindividual differences in intraindividual change over time. 

Reprinted with permission from Voelkle, Wittmann & Ackerman (2006). 

 

3.3.1 Linear LGCM 

Although the trajectories appear to be slightly nonlinear, due to reasons of parsimony (e.g., 

Popper, 1989) it makes sense to start out with a linear LGC-model. As mentioned above, 

Figure 15 provides a graphical representation of the model. The data contain no missing 

values and show no significant deviation from multivariate normality (Mardia's coefficient = 

2.66, n.s., Mardia, 1970, 1974), thus Maximum Likelihood (ML) estimation was used. The 

results of the linear LGC-model are shown in the third column of Table 4. The model 

converged without any problems and all parameter estimates are in the expected direction and 

of expected size. On average, participants were able to handle 9.51 planes correctly after the 

first 2.5 hours and improved at a rate of about two planes per session. The mean trajectory as 

well as the large and significant interindividual differences in individual learning rates 

(VAR(α) = 28.89 and VAR(β1) = 0.50, both p < 0.001) correspond to the descriptive results 

               1      2      3      4    5      6 
 

        sessions of practice 
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shown in Figure 16. Obviously, however, the model fit is bad, so the parameter estimates 

should not be trusted (see Table 4). 

 

Table 4 Model fit and parameter estimates of a linear LGC, linear ALT, and quadratic LGC-

model. 

 Estimates Linear LGC 
model

Linear ALT 
model 

Quadratic LGC 
model

χ2, df (p-value) 152.82, 16 (0.00) 3.66, 8 (0.89) 30.55, 12 (0.00)
AIC 174.82 41.66 60.55
BIC 176.63 44.79 63.02
CFI  0.86 1.00 0.98
SRMR 0.02 0.00 0.01

Model-Fit 

RMSEA 0.31 0.00 0.13
Mean(α) 9.51** 6.44 n.s. 8.23**
Mean(β1) 1.99** -0.48 n.s. 3.29**
Mean(β2) -- -- -0.24**
Mean(y1) -- 8.13** --
VAR(α) 28.89** 7.15 n.s. 19.99**
VAR(β1) 0.50** 0.199 n.s. 4.22**
VAR(β2) -- -- 0.13**
VAR(y1) -- 22.16** --
COV(α,β1) 0.275 n.s. -1.14 n.s. 3.26*
COV(α,β2) -- -- -0.54*
COV(β1,β2) -- -- -0.69**
COV(y1,α) -- 9.95 n.s. --

Growth Curve 
Parameters 

COV(y1,β1) -- -1.46 n.s. --
ρ21 -- 0.66 n.s. --
ρ32 -- 0.76 n.s. --
ρ43 -- 0.78 n.s. --
ρ54 -- 0.81 n.s. --

Autoregressive 
Parameters 

ρ65 -- 0.84 n.s. --
Note: * p < 0.05; ** p < 0.01; n.s. p ≥ 0.05; α = intercept; β1 = linear slope; β2 = quadratic 

slope; y1 = performance at first point in time; ρ = unstandardized AR parameter. 

 

3.3.2 ALT-model 

A nonlinear learning curve was already suspected to be the cause of the bad model fit, a 

possibility that will be explored further below. However, from other complex problem solving 

scenarios (e.g., TAILORSHOP in the version of Süß et al. (1991; see also Süß, 1996), for an 
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overview and a taxonomy of other scenarios see Wagener (2001)), it is known that some 

actions that are taken in one trial have an effect that carries through all subsequent trials, 

unless the actions are explicitly reversed in a subsequent trial. To give an example, in the 

scenario TAILORSHOP, participants have to manage a shirt factory and earn as much money 

as possible within a period of 12 simulated months20. For this purpose they have to buy 

machines, hire workers or lay people off, spend money on advertising and so on. A more 

detailed description of the task can be found in Funke (1986, p. 53ff.) and Süß (1996, p. 

100ff. & p. 144f.). By default, the same amount of money spend on advertising during the 

first period will be spend in any subsequent period, unless the amount is explicitly changed by 

the user. However, because this is often not done, the initial action (indirectly) affects 

performance in all subsequent sessions. Such an effect is best described by an autoregressive 

model of order one (AR(1)). Irrespective of any autoregressive process (due to carry over 

effects of unintentional actions), it is expected that people improve over time and that there 

are substantial interindividual differences in the acquisition of skill. Thus, the ALT model 

appears to be an appropriate model to account for both processes. Other than in 

TAILORSHOP, the points gained in TRACON are not cumulative (see Voelkle et al., 2006), 

so the presence of an (additional) autoregressive process seems less intuitive. Nevertheless, 

one might suspect other factors that may cause an autoregressive effect. For example 

motivation or self-efficacy has been discussed to be an important covariate, which may result 

in an autoregressive effect if not accounted for (for an analysis using self-efficacy as a time-

varying covariate, see Voelkle, 2004, p. 81ff.). Taking Bollen and Curran’s (2004) claim that 

ALT models can help to distinguish between AR and LGC processes seriously, it seems 

reasonable to estimate an ALT model before proceeding with the interpretation of results or 

any other analyses. In order to avoid the complications associated with the first point of 

measurement, yi1 is again assumed to be predetermined as it is throughout the entire section 

(Bollen & Curran, 2004; Curran & Bollen, 2001; see also Du Toit & Browne, 2001). As 

shown in Figure 15, this requires to treat yi1 as exogenous, what results in non-nested models, 

thus prevents a direct comparison of the two models by means of the likelihood ratio test. In 

                                                 
20 TAILORSHOP was originally developed by Dörner and Funke (see Funke, 1986) and used by Putz-Osterloh 

(1981; Putz-Osterloh & Lüer, 1981). The version I refer to is an adaptation of Süß et al. (Süß et al., 1991; Süß, 

1996). 



ALT-MODELS: A RECONSIDERATION  - 73 -

 

absolute terms, however, the model fit of the ALT model is clearly better than the model fit of 

the linear LGC-model (see Table 4). As shown in Table 4, with a nonsignificant χ2 of 3.66 (df 

= 8, p > 0.05) the model fit is excellent. Constraining all autoregressive parameters to zero, 

the restricted model can be compared to the ALT model, what also results in a significant 

likelihood ratio of χ2
Diff = 78.04 (dfDiff = 5, p < 0.001). Despite the good model fit, all 

autoregressive parameters are nonsignificant. Furthermore, almost the entire variance of the 

growth factors got “absorbed” by yi1, resulting in a nonsignificant variance of α and β1. As a 

consequence, correlations between the factors and yi1 are extremely high but not significant 

(COR(y1, α) = 0.79; COR(y1, β1) = -0.70; COR(α, β1) = -0.96, all n.s.). In addition, after 

controlling for the (significant) mean of yi1, the mean of the latent intercept is no longer 

significant, while the mean slope even becomes negative. This is a puzzling situation, since 

the almost perfectly fitting ALT model suggests that there are neither autoregressive effects 

over time, nor that people acquire skill at all – not to speak of significant interindividual 

differences in skill acquisition. Referring to Figure 16 and knowing the underlying task, this is 

indeed hard to believe. Taking the analysis one step further and dropping the growth curve 

part altogether, we gain 2 degrees of freedom and obtain again an almost perfectly fitting 

AR(1) model (χ2 = 8.6, df = 10, p > 0.05; CFI = 1.00; RMSEA = 0.00; SRMR = 0.00) with 

significant AR parameters (standardized ρ21 = 0.85, ρ32 = 0.92, ρ43 = 0.96, ρ54 = 0.96, ρ65 = 

0.95, all significant with p < 0.001). If model fit would be the only criterion in deciding how 

to model change, it would have to be concluded that earlier performance is the best predictor 

of later performance and that participants show no significant differences in their acquisition 

of skill. By doing so, we would have removed far from our original intention of examining 

and predicting interindividual differences in learning by employing a technique that is simply 

not capable of addressing this question (Rogosa et al., 1982; Rogosa & Willett, 1985a; 

Rogosa, 1995). In addition, the question of how to interpret the autoregressive parameters 

would have to be raised, since the points gained across the TRACON practice sessions are not 

cumulative and performance in session 1 cannot “cause” performance in later sessions. This 

argument is similar to the arguments raised by Stoolmiller and Bank (1995; see also Marsh, 

1993). 
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3.3.3 Nonlinear LGCM 

Paying attention to Rogosa’s (1995) assertion that “the basis for analyzing change is the 

individual history” (p. 5), let us consider a different approach. As shown in the last column of 

Table 4, introducing an additional quadratic growth factor improves model fit considerably as 

compared to the linear LGC-model (χ2
Diff = 122.27, dfDiff = 4, p < 0.001). With exception of 

the RMSEA all model fit indices are also acceptable. The parameters are similar to the linear 

LGC-model and are all of expected size. On average, people can handle about 8.23 planes 

correctly after the first 2.5 hours and improve at a linear rate of about 3 planes per session. 

The negative quadratic slope of β2 = -0.24 (p < 0.001) captures the beginning asymptotic 

performance during the last few sessions. As in the linear model, there is significant variation 

in all three growth factors (p < 0.001). In an empirical study, researchers would probably stop 

at this point and move on to the introduction of level two predictors, irrespective of the 

inadequate RMSEA21. For the purpose of the present thesis, however, it should be mentioned 

that the fit can still be improved by extending the model by a higher order polynomial growth 

factor. As a matter of fact, introducing a cubic growth factor would improve model fit again 

significantly. Although the model quickly converges, it results in an improper solution by 

estimating two negative error variances (ε1 and ε6), sometimes also referred to as Heywood 

cases. Since neither of the variances is significant, following the procedure proposed by Chen 

et al. (2001) and constraining the two error variances to a small positive value (VAR(ε1) = 

VAR(ε6) = 0.01) results in an excellent model fit (χ2 = 5.9, df = 9, p > 0.05; CFI = 1.00; 

RMSEA = 0.00; SRMR = 0.00) and appropriate parameter estimates (Mean(α) = 8.13**; 

Mean(β1) = 3.85**; Mean(β2) = -0.52**; Mean(β3) = 0.04 n.s.; VAR(α) = 22.15**; VAR(β1) = 

13.69**; VAR(β2) = 2.14**; VAR(β3) = 0.03**; COR(α,β1) = 0.06 n.s.; COR(α,β2) = 0.01 

n.s.; COR(α,β3) = -0.06 n.s.; COR(β1,β2) = -0.92**; COR(β1,β3) = 0.805**; COR(β2,β3) = -

0.97**). Again, all parameter estimates are in the expected direction and of expected size and 

correspond to the underlying theory of skill acquisition. Finally, with df = 9, the third order 

                                                 
21 Introducing a single error covariance between ε2 and ε3 would result in an acceptable model fit with χ2 = 15.6, 

df = 11, p > 0.05; CFI = 1.00; RMSEA = 0.07; SRMR = 0.01. Given there exists a plausible post hoc explanation 

for this covariance, this would probably be an appropriate strategy in the context of discovery, but not in the 

(stricter) context of justification. 



ALT-MODELS: A RECONSIDERATION  - 75 -

 

polynomial growth curve model is more parsimonious than the AR model (df = 8), and the 

model fit of the two models is almost identical. For a more detailed discussion of the 

nonlinear (quadratic) LGCM analysis see Voelkle et al. (2006). 

 

3.4 A simulation study 

In order to illustrate how easily a true nonlinear growth curve model can be mistaken as an 

ALT model and to investigate the extent of parameter bias, a Monte Carlo Simulation was 

carried out. As with most simulation studies the number of possible conditions which could 

be simulated approaches infinity. Even for a standard quadratic growth curve model, at least 

six parameters (three means and three variances of the latent intercept, and the two growth 

factors) must be defined, left alone more complicated models with non-zero covariances 

between the growth factors and/or among the error terms. With just three different values for 

each parameter (three different conditions), this would result in a total of 36 = 729 different 

models, which would go far beyond the scope of this thesis. Hence, only a few selected 

conditions can be reported. Eight different conditions were chosen, which, from experience 

with data on learning and skill-acquisition, can be considered as theoretically most interesting 

and typical for many practical applications. 

 

3.4.1 Procedure 

A quadratic growth curve model for T = 6 time points was generated for N = 500 cases. The 

mean of the latent intercept and latent linear slope, together with the variance of the intercept 

and slope was kept constant at a value of 1.0 for all conditions. Equation (26) gives the 

according matrix Byβ as defined in Equation (A3) and the variance/covariance matrix of the 

factors (Ψ) as used in the simulation.  
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For the parameterization of change as shown in Equation (26), all covariances between the 

factors were set to zero. This was done for reasons of simplicity, however, as discussed above, 

the covariance between intercept and slope is a direct function of the choice of λ. The mean of 

the quadratic growth factor was set to either 0, -0.2 or 0.2, while the standard deviation was 

chosen as 0.2, 0.4, or 0.6 to mimic small, medium and comparatively large individual 

differences in the quadratic growth curves. All data were generated by the statistical software 

package “R” version 2.3.0 (R Development Core Team, 2006), and Mplus 3.13 (Muthén & 

Muthén, 1998-2007a) was used to carry out the SEM analyses. Appendix 16 contains an 

example of the according R-syntax. For each of the 3*3 = 9 conditions, 1000 datasets were 

generated, and either a linear LGC-model, a quadratic LGC-model, or an ALT model was 

fitted to each dataset. This results in a total of 3*3*3*1000 = 27000 structural equation 

models to be estimated22.  

 

3.4.2 Results 

Table 5 shows the average parameter estimates and fit indices of 1000 sample datasets (N = 

500) and eight different conditions for the true quadratic LGC-model as generated by “R”. 

Appendix 17 contains the according Mplus syntax. With as many as 1000 models to be 

estimated in each condition, some solutions do not converge. The number of models that did 

not converge within the Mplus default maximum number of iterations is listed below the 

Table (labeled A to H from left to right)23. The second column (“Mean”) in Table 5 

corresponds to the average parameter estimate across all conditions24.  

 

 

                                                 
22 To enhance the clarity of presentation, the results of only eight instead of nine conditions are reported. This 

results in a total of 24000 structural equation models to be estimated. 
23 Maximum number of iterations for the Quasi-Newton algorithm. The default maximum number of steepest 

descent iterations for the Quasi-Newton algorithm is 20 (see Muthén & Muthén, 1998-2004, p. 381). 
24 For the quadratic growth factor it is not reasonable to compute the average estimate across conditions since it 

was varied from a positive to a negative value. Thus, the mean is not reported in Table 5. 
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Table 5 Quadratic Latent Growth Curve (LGC) model. 

 True Mean(β2) / True SD(β2) 
 Mean -0.2/0.2 -0.2/0.4 -0.2/0.6 0.2/0.2 0.2/0.4 0.2/0.6 0.0/0.4 0.0/0.6
Mean(α) 1.000 1.001 0.999 0.998 1.000 1.002 1.001 1.002 1.001
Mean(β1) 0.998 0.998 0.999 1.004 0.998 0.994 1.003 1.001 0.999
Mean(β2)  -0.200 -0.199 -0.201 0.199 0.201 0.198 -0.000 -0.000
VAR(α) 1.003 1.001 1.004 1.012 1.013 0.989 1.001 1.010 1.005
VAR(β1) 1.005 1.001 1.008 1.016 1.014 0.999 1.015 1.005 1.029
VAR(β2)  0.039 0.160 0.361 0.040 0.159 0.358 0.159 0.359
COV(α,β1) -0.006 -0.006 -0.008 -0.020 -0.013 0.009 -0.016 -0.012 -0.016
COV(α,β2) 0.000 0.000 0.001 0.002 0.002 -0.002 0.002 0.002 0.003
COV(β1,β2) -0.001 -0.000 -0.003 -0.002 -0.002 -0.001 -0.002 0.000 -0.007
ρ21    
ρ32    
ρ43    
ρ54    
ρ65    
χ2 (df) 12.030 12.00 11.82 12.12 12.07 12.15 11.91 12.11 12.050
AIC 15253.54 14445.44 15793.18 16935.53 14454.90 15782.96 16926.30 15791.24 16922.69
BIC 15316.76 14508.66 15856.40 16998.75 14518.12 15846.18 16989.52 15854.46 16985.91
CFI 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
SRMR 0.020 0.021 0.020 0.021 0.021 0.021 0.021 0.021 0.021
RMSEA 0.010 0.010 0.010 0.011 0.011 0.011 0.010 0.011 0.011

 

Note: The first column “Mean” corresponds to the mean parameter estimate across all 

conditions. Number of models that did not converge within the Mplus default maximum of 

1000 iterations for each condition (from left to right): A) 52, B) 51, C) 86, D) 49, E) 34, F) 

59, G) 42, H) 68. 

 

As apparent from the lower part of Table 5, the model fit for all eight conditions is excellent 

according to all standard fit indices (Bollen & Long, 1993; Beauducel & Wittmann, 2005), 

and estimates lie close to the population parameters. Since the data were generated by a 

quadratic LGC-model, this finding is not surprising and Table 5 serves merely as a standard 

of comparison for all subsequent analyses. 

 

Omitting the quadratic growth component results in a significant drop in fit for all conditions 

as shown in Table 6 (e.g., χ2
Diff = 199.94, dfDiff = 4, p < 0.001 for the first condition A) and all 

fit indices point to insufficient model fit. Appendix 18 contains the according Mplus syntax. 
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Table 6 Linear Latent Growth Curve (LGC) model. 

 True Mean(β2) / True SD(β2) 
 -0.2/0.2 -0.2/0.4 -0.2/0.6 0.2/0.2 0.2/0.4 0.2/0.6 0.0/0.4 0.0/0.6
Mean(α) 1.139 1.071 1.042 0.858 0.928 0.958 0.998 1.000
Mean(β1) 0.358 0.464 0.524 1.640 1.536 1.474 1.003 1.000
Mean(β2)    
VAR(α) 0.952 1.049 1.103 0.953 1.047 1.107 1.104 1.134
VAR(β1) 1.368 2.121 2.993 1.370 2.117 3.010 2.126 3.004
VAR(β2)    
COV(α,β1) -0.061 -0.166 -0.235 -0.061 -0.170 -0.234 -0.188 -0.248
COV(α,β2)    
COV(β1,β2)    
ρ21    
ρ32    
ρ43    
ρ54    
ρ65    
χ2 (df = 16) 211.94 198.53 379.46 211.61 282.21 379.42 198.53 327.54
AIC 14635.45 15968.35 17287.13 14640.34 16047.91 17297.08 15968.35 17241.98
BIC 14681.81 16014.71 17333.49 14686.71 16094.27 17343.44 16014.71 17288.34
CFI 0.862 0.866 0.733 0.862 0.805 0.734 0.866 0.772
SRMR 0.093 0.137 0.197 0.093 0.146 0.198 0.137 0.191
RMSEA 0.156 0.150 0.212 0.156 0.182 0.212 0.150 0.197

 

Note: Number of models that did not converge within the Mplus default maximum of 1000 

iterations for each condition (from left to right): A) 4, B) 0, C) 4, D) 5, E) 2, F) 1, G) 1, H) 3. 

 

The parameters, however, are not as severely biased as the lack of model fit seems to suggest. 

In fact, the mean of the estimated latent intercept shows only minor deviations from the 

population value, with a slightly positive bias when the population mean is set to µ(β2) = -0.2 

and a slightly negative bias for µ(β2) = 0.2. In addition, the bias gets smaller as the true 

standard deviation (σ) of the quadratic slope increases. The same is true for the variance of the 

latent intercept, which is slightly negatively biased for a small standard deviation of β2 in the 

population, and slightly positively biased for large σ(β2). The linear growth factor, however, 

is less accurate. Given the small bias of α, the variance of the latent slope must be 

increasingly positively biased with increasing standard deviation of β2, as illustrated in 

Equation (25) and A8. Likewise, the mean of β1 must be negatively biased when a negative 

quadratic growth factor is omitted and positively biased when the omitted quadratic 
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component is positive. For µ(β2) = 0, the linear slope remains unbiased as apparent from the 

last two columns in Table 6 (condition G and H). 

 

Having obtained such a bad model fit of the linear LGC-model, and knowing that the LGC-

model is just a special case of a more encompassing (ALT) model (Bollen & Curran, 2004), it 

seems reasonable to extend the analysis and estimate an ALT model. As a matter of fact, this 

will improve model fit substantially as shown in Table 7. Appendix 19 contains the according 

Mplus syntax. 

Table 7 Autoregressive Latent Trajectory (ALT) model. 

 True Mean(β2) / True SD(β2) 
 -0.2/0.2 -0.2/0.4 -0.2/0.6 0.2/0.2 0.2/0.4 0.2/0.6 0.0/0.4 0.0/0.6
Mean(α) 2.202 2.306 2.459 0.476 0.821 1.045 1.594 1.769
Mean(β1) -0.181 -0.204 -0.218 1.826 1.671 1.549 0.716 0.660
Mean(y1) 1.003 1.000 1.001 1.001 1.002 0.995 0.999 1.000
VAR(α) 1.983 3.599 6.043 2.712 5.079 7.193 4.616 6.818
VAR(β1) 1.305 2.848 5.580 1.768 3.746 6.572 3.444 6.200
VAR(y1) 1.500 1.497 1.495 1.501 1.496 1.507 1.502 1.494
COV(α,β1) -0.505 -1.827 -4.010 -0.863 -2.640 -4.865 -2.386 -4.557
COV(α,y1) 1.387 1.643 1.990 1.231 1.621 1.879 1.679 1.946
COV(β1,y1) -0.177 -0.276 -0.398 -0.067 -0.203 0.301 -0.252 -0.354
ρ21 -0.175 -0.269 -0.416 -0.106 -0.286 -0.388 -0.296 -0.412
ρ32 0.133 0.091 0.005 -0.137 -0.181 -0.190 -0.063 -0.106
ρ43 0.162 0.152 0.110 -0.028 -0.009 0.009 0.052 0.049
ρ54 0.164 0.235 0.268 0.062 0.125 0.191 0.159 0.217
ρ65 0.214 0.351 0.391 0.159 0.249 0.322 0.271 0.345
χ2 (df = 8) 34.57 33.66 33.59 10.43 12.41 18.43 20.27 24.79
AIC 14481.21 15812.44 16967.66 164.20 15793.08 16952.38 15807.65 16964.60
BIC 14561.29 15892.52 17047.73 164.20 15873.16 17032.46 15887.73 17044.67
CFI 0.981 0.981 0.981 0.003 0.996 0.992 0.991 0.987
SRMR 0.036 0.035 0.035 0.006 0.022 0.029 0.030 0.032
RMSEA 0.079 0.078 0.078 0.019 0.028 0.046 0.051 0.062

 

Note: Number of models that did not converge within the Mplus default maximum of 1000 

iterations for each condition (from left to right): A) 283, B) 142, C) 142, D) 4, E) 142, F) 287, 

G) 38, H) 121. 

 

Because yi1 is treated as an exogenous variable in the ALT model, the two models are not 

nested and the log likelihood ratio test cannot be applied. However, the Akaike (AIC) and 

Bayesian (BIC) information criteria, along with all other fit indices suggest an excellent 



ALT-MODELS: A RECONSIDERATION  - 80 -

 

model fit of the ALT model and a clear improvement over the linear LGC-model. In addition, 

the autoregressive parameters (ρ21 to ρ65 in Table 7) suggest a true autoregressive process by 

showing a perfect monotonic increase across all simulation conditions. As discussed above, 

the AR coefficients account for part of the quadratic growth process, so the particular pattern 

of change in the AR parameters depends on the shape of the underlying growth curves. Most 

parameter estimates, however, are severely biased. As before, the mean of the latent intercept 

is positively biased for µ(β2) = 0 or -0.2, and negatively biased for µ(β2) = 0.2, what is 

compensated by the higher variance of the quadratic growth factor in condition F (third 

column from right). While the mean and variance of the exogenous variable yi1 are estimated 

correctly, controlling for yi1 results in a greatly inflated variance of the latent intercept 

throughout all conditions. As in the previous example on skill acquisition, due to the extreme 

parameter bias, the latent linear slope (β1) can hardly be interpreted at all. Mean(β1) gets 

overestimated for µ(β2) = 0.2, and underestimated for µ(β2) = 0. In the presence of a slightly 

negative quadratic growth factor (µ(β2) = -0.2), the mean linear slope gets negative, 

suggesting no change, or even a change for the worse, as seen in the TRACON example. As 

discussed above, ignoring nonlinearity leads to a severe inflation of the variance of the linear 

slope factor (VAR(β1)) throughout all conditions. Although not the topic of this section, this 

will also affect the impact of potential level two predictors, and should be taken into 

consideration when analyzing and predicting individual differences in change. 

 

To summarize the findings of the Monte Carlo Simulation: First, if nonlinearity is not 

considered and explicitly tested, a true nonlinear LGC is likely to be mistaken as an 

autoregressive latent trajectory model (ALT) as it was the case for all simulated conditions. 

Second, in the presence of nonlinear change over time, model fit of an ALT model provides 

no information about parameter bias. As demonstrated above, all ALT models showed a good 

model fit, however, most parameter estimates were severely biased. Finally, model fit of a 

linear LGC-model is sensitive against moderate violations of linearity as simulated in the 

Monte Carlo Study. However, while model fit is likely to be improved by incorporating 

autoregressive effects, parameter estimates of the standard linear LGC are considerably less 

biased than parameter estimates of the ALT model. 
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3.5 Discussion 

Autoregressive (AR) and latent growth curve models (LGC) are probably the two most 

common ways to analyze multi-wave panel data. The possibility of synthesizing these two 

techniques into a single (ALT) model extends the existing arsenal of methods to analyze 

change over time by another powerful statistical instrument (Bollen & Curran, 2004). 

 

However, extreme caution must be exercised when using ALT models to integrate, or 

distinguish between, autoregressive (simplex) and latent growth curve models. It has been 

demonstrated that autoregressive (simplex) processes and nonlinear growth curve patterns can 

be inextricably confounded if the true growth curve process is unknown. Accordingly, 

researchers are cautioned to integrate linear growth curve and autoregressive models unless 

the presence of nonlinear change can be ruled out. If the true shape of the underlying 

trajectories is known, or in case the existence of nonlinearity can be ruled out on theoretical 

grounds, the ALT model is nevertheless an important extension of standard growth curve 

models. Of course, the same is true if the true autoregressive process would be known. In such 

a case, the ALT model can be used to test for additional growth curve processes, making it a 

powerful extension of standard AR models. Usually, however, neither the true AR nor the 

true shape of the trajectory is known. As demonstrated in this section, a good theory is 

therefore of paramount importance. An incorrectly specified ALT model can easily result in 

an excellent model fit associated with a deceptively systematic pattern of AR parameters but 

entirely wrong estimates. As a matter of fact, the substantial amount of bias will often render 

any theoretical conclusions impossible. Interestingly, in the empirical example, as well as the 

Monte Carlo Simulation, an also misspecified linear LGC-model yielded much better 

parameter estimates despite its significantly worse model fit, speaking for the “robust beauty” 

(Dawes, 1979, p. 571) of improper linear models. 

 

Although related, the focus of this section is different from the arguments made by Rogosa 

and Willett (1985a) who showed that the autoregressive simplex model fits a linear growth 

curve covariance structure (but see Mandys, Dolan, & Molenaar, 1994, for a counterexample). 

Nevertheless, our results support Rogosa and Willett’s (1985a) more general conclusion that 

different types of change processes may yield highly similar covariance structures. Thus, 
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deciding which method to use, or how to integrate both approaches, requires a deep 

theoretical understanding of the underlying data. As demonstrated in the present section, such 

a decision cannot be data driven but must ultimately be made on theoretical grounds. 
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4 A STRUCTURAL EQUATION APPROACH TO THE ANALYSIS OF 

UNIVERSITY DROP-OUT OVER TIME 

In the preceding parts of this thesis it has been argued that a major advantage of structural 

equation models is their increased flexibility as compared to other methods for the analysis of 

change. In the present section, this topic is picked up again and illustrated by introducing a 

new study on university drop-out. Thereby the previous discussion will be extended to the use 

of categorical indicators and categorical latent variables as shown in Figure 1.  

 

In a time of limited resources and fierce competition among universities, the problem of 

university drop-out becomes an increasingly important issue. However, there are different 

perspectives that must be distinguished when approaching this topic, each associated with 

different stakeholder groups and emphasizing different aspects of university drop-out. For 

instance, a drop-out after one year of university education is likely to be considered a waste of 

resources from the perspective of the university, because it has no benefit from the student. 

The tuitions and fees of most (public) institutions do not offset the actual costs caused by their 

students, so there is little value in an early drop-out. In addition, the drop-out could be 

interpreted as a result of deficient teaching or insufficient support, casting negative light on 

the quality of the institution. From the perspective of the individual student, however, the 

drop-out could as well be a positive event. There are famous examples of people dropping 

out, because they focus on their career in a non-academic setting or find a good job before 

earning their degree. Others may simply change to another – maybe better – university or 

continue education in a different field. Still others might even return to the same institution 

after taking a couple of years off. All of these examples have in common that university drop-

out must neither be a negative event for a specific person, nor that the reasons for it are 

always the same. Finally, from the perspective of society, a drop-out might either be a 

positive or negative event. On the one hand tax money was wasted by blocking a university 

place, on the other hand the student might have profited from the education – albeit his/her 

early drop-out – and can employ this knowledge in his/her new position.  
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Accordingly, a number of different definitions of “university drop-out” exist in the literature, 

depending on the perspective from which the problem is approached (e.g., Gold, 1988; 

Heublein, Schmelzer, & Sommer, 2005). For the purpose of the present study, the perspective 

of the university is adopted and drop-out is defined as any premature leave of the university 

without having gained a degree, irrespective of the reasons. This definition reflects the fact 

that any drop-out is a negative event for the university, but may nevertheless be worthwhile 

for the individual student or society. Similar to the different perspectives, which can be 

adopted when approaching this topic, there are probably as many reasons for dropping out of 

university as there are students. As a matter of fact, it is expected that students are a much less 

homogeneous group than suggested by most traditional studies. This heterogeneity, however, 

must be taken into account when examining potential determinants of university drop-out. 

While I am confident that the most prominent predictors can be identified and quantified, I do 

not expect these predictors to work equally well for all students. For example, high school 

grade point average (GPA) has been shown to be an important predictor of university drop-

out (e.g., Robbins et al., 2004). However, for students leaving university because they start 

their own business or continue education somewhere else, this predictor may not prove very 

useful. Ideally the true reasons for dropping out would be known and different subgroups 

could be identified. In most cases, however, this information cannot be obtained directly and 

the resulting unobserved heterogeneity must be inferred from the underlying data and must be 

taken into account accordingly. Failure to do so can result in severely biased parameter 

estimates and possibly wrong conclusions. 

 

Despite the general interest, there are comparatively few studies focusing on this topic in 

Germany. The most comprehensive documentation and analysis of university drop-out is 

probably the “Studienabbruchstudie 2005” by HIS (Heublein et al., 2005). Unfortunately, like 

most other studies it is a cross-sectional survey, comparing the number of graduates to the 

number of freshmen in this cohort. The most precise, thus methodologically best approach, 

however, is the analysis of individual histories. Regrettably, this avenue is hardly ever taken, 

what is mainly due to two reasons. First, a lack of suitable data sets, and second a lack of 

appropriate statistical procedures which are powerful, yet readily available and easy to 

communicate to stakeholders (Sedlacek, 2003; Heublein et al., 2005). Despite some efforts to 

remove this deficit (e.g., Cabrera, Nora, & Castaneda, 1993), prospective longitudinal studies 
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which allow researchers to track the individual history are still rare, presumably because they 

are expensive, take long and require a lot of data maintenance. In addition, the data are often 

more difficult to analyze if one wants to exploit the full potential of their longitudinal nature. 

 

Meanwhile, excellent introductions to the analysis of these data-structures are readily 

available and targeted to reach a wide audience, but the techniques remain underutilized in 

practice (Willett & Singer, 2004, 1991, 1993; Singer & Willett, 2003; Allison, 1982). Of 

course there exist notable exceptions (see Sedlacek, 2003 for an example in the German 

language area), but most of the work is either of a purely methodological nature or is based on 

suboptimal analysis procedures. In addition, few studies address the topic of unobserved 

heterogeneity. Especially the study of individual differences, however, should pay closer 

attention to this factor. In the past, much effort has been spent on identifying better predictors 

and establishing new constructs, but little research was concerned with the differential validity 

of existing predictors. I am convinced that a lot can be learned by taking into account the 

natural heterogeneity among subjects and paying closer attention to the performance of 

predictors in different subgroups. 

 

The present study takes up these issues and investigates the drop-out process at the University 

of Mannheim among a sample of N = 1096 students first time enrolled in Winter 2003 or 

Spring 2004. For this purpose, a structural equation (SEM) approach to discrete-time survival 

analysis (DTSA) is employed as recently proposed by Muthén and Masyn (2005). This 

approach provides an accurate analysis of the drop-out process over time, permits directed 

relationships among predictors (e.g., mediation effects) and accounts for unobserved 

heterogeneity among students. Finally, the implementation of DTSA into the general 

structural equation modeling framework – most researchers are familiar with – makes it easy 

to set up and communicate the analyses and results. 

 

Accordingly, the purpose of this part of the thesis is twofold. First, to examine university 

drop-out using a prospective longitudinal study conducted at the University of Mannheim 

with predictors obtained prior to university entrance. Although these types of studies yield the 

most precise estimates and are superior to cross-sectional studies, they are rare in Germany 

(but see Sedlacek, 2003; Brandstätter, Grillich, & Farthofer, 2002). Second, a new technique 
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will be employed for the analysis of these data, which has been recently proposed by Muthén 

and Masyn (2005). Because of the novelty, a short and hands-on introduction to the method 

will be provided and some comparisons to traditional procedures will be drawn. The new 

approach incorporates traditional discrete-time survival analysis into a latent variable 

framework, making full use of the information provided by time. In addition, even complex 

predictor-criterion relations can be modeled and tested while accounting for unobserved 

heterogeneity within the sample. As such, it is particularly suited for the analysis of individual 

differences, because it allows us to address questions, which could not be answered based on 

traditional techniques. In line with the general purpose of the thesis (see Section 1.2), it is 

hoped that the combination of a new study on university drop-out and the adoption of a new 

data-analytic technique will appeal to the applied and methodologically interested reader 

alike.  

 

4.1 Outline 

In the following section, the basic idea of a structural equation approach to discrete-time 

survival analysis will be introduced and advantages over alternative procedures will be 

highlighted. Subsequently, university drop-out will be investigated using this technique with a 

special emphasis on high school GPA and average university grade as the two most common 

predictors of dropping out. Results will then be reconsidered in the presence of unobserved 

heterogeneity and an additional non-academic predictor will be explored. Finally, findings 

will be discussed in the light of recent statistical advances and the current controversy about 

student selection. 

 

4.2 Method 

Section 4.2.1 provides a step-by-step introduction to discrete-time survival analysis using 

SEM. Readers familiar with this technique may choose to skip this part and go directly to 

Section 4.2.2, which contains some background information on the study and describes the 

sample used in the subsequent analyses. 
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4.2.1 A structural equation approach to discrete-time survival analysis 

4.2.1.1 Analyzing drop-out via logistic regression 

For some researchers the most intuitive way to analyze university drop-out is to record the 

number of drop-outs that occurred throughout a specific time period and relate this number to 

the number of people who did not drop out. As mentioned above, the data set that will be used 

in this section contains N = 1096 students first time enrolled in Winter 2003 or Spring 2004. 

The study ends with the beginning of the winter term 2005, so that the students have been 

observed across 4, respectively 3, semesters. A total of 186 students, that is 186/(1096/100) = 

17%, dropped out during this period. Computing an “event” variable which indicates whether 

someone has dropped out (event = 1) or not (event = 0), one could proceed to predict 

university drop-out by regressing this dichotomous variable on one or more covariates using 

standard logistic regression. For example university drop-out could be regressed on high 

school GPA as shown in Equation (27). 

(27)

In this example βe  = 1.68 (p < 0.01), indicating that the probability of dropping out is 1.68 

times higher for students with a GPA one standard deviation below average as compared to 

students with an average GPA (z-standardized and reverse scaled, i.e. the higher the worse the 

grade). For readers not familiar with logistic regression a good introduction can be found in 

Cohen et al. (2003). 

 

Although intuitively appealing, this approach would not only ignore valuable information 

regarding the timing of an event, but would be plain wrong. Since some students started their 

studies later than others, they had a lower chance of dropping out. Thus, the computed 17% 

drop-out rate must be an underestimation of the true drop-out rate and the resulting parameter 

estimates of the logistic regression will be biased accordingly. To illustrate this point, 

consider Table 8A, which shows four selected cases in the so-called “person-level” format.  

)(1
1)|1( cGPAe

GPAeventP +⋅−+
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Table 8 Person-Level and Person-Period data. 

A. Person-Level data set for four selected students. 

subject 1. semester 
(u1) 

2. semester 
(u2) 

3. semester 
(u3) 

4. semester 
(u4) 

GPA (z-stand.) 

A 0 0 0 0 0.51 
B 0 0 0 . -0.25 
C 0 0 1 . 0.10 
D 1 . . . -0.21 

 

B. Person-Period data set for the same four students as in Table 8A. 

subject event D1 D2 D3 D4 GPA (z-stand.) 
A 0 1 0 0 0 0.51 
A 0 0 1 0 0 0.51 
A 0 0 0 1 0 0.51 
A 0 0 0 0 1 0.51 
B 0 1 0 0 0 -0.25 
B 0 0 1 0 0 -0.25 
B 0 0 0 1 0 -0.25 
C 0 1 0 0 0 0.10 
C 0 0 1 0 0 0.10 
C 1 0 0 1 0 0.10 
D 1 1 0 0 0 -0.21 

Note: Drop-out: event = 1, no drop-out: event = 0; GPA z-standardized & reverse scaled. 

 

In this format, each row corresponds to a single person, while drop-out over time is coded in 

four separate dummy variables, according to the four semesters. In this example, two students 

(C & D) dropped out and two students “survived” (A & B). However, while we can be sure 

that student A did not drop out during the observation period, the study ended before student 

B entered his/her fourth semester, so it is unknown whether he/she might have dropped out in 

this semester. Missing information (because of prior drop-out or later enrollment) is 

represented by dots in Table 8A. One could think of three ad-hoc solutions to this problem, all 

three being inadequate. First, to delete all incomplete cases, that is exclude all students 

enrolled in Spring 2004, what would reduce the sample size considerably. Second, to treat all 

missing information as drop-outs, what would likely result in an overestimation of the drop-

out rate, or (third) treat all students with missing information as “survivors”, what would 

likely result in an underestimation of the drop-out rate. The fact that the event time (i.e., the 
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period in which a drop-out occurs) is unknown for some individuals is termed “censoring” by 

statisticians (e.g., Singer & Willett, 2003, p. 315ff.). Censoring occurs because a person is no 

longer under observation before the study ends (e.g., for a student entering the study in Spring 

2004 it is unknown whether he/she will drop out during his/her fourth semester), or because a 

person does not experience the event before the end of the study (e.g., the majority of students 

will not drop out of university before the end of the study after four semesters). Because 

censored observations are not adequately treated in a logistic regression analysis on 

aggregated data, this approach should not be used for analyzing university drop-out, despite 

its intuitive appeal. Even more important, the timing of an event is completely ignored, that is 

valuable information contained in the data remains unused. With such an analysis, potential 

changes in the risk of dropping out over time would remain undetected. As a consequence, 

results would be identical, regardless of whether the majority of students drop out after their 

first semester or after their fourth semester. Practical implications, however, would be quite 

different depending on the time students are most likely to drop out. Accordingly, I can only 

second Willett and Singer (1991) and “encourage educational researchers considering asking 

“Whether?” [an event occurs] to think about whether they would really like to know “When?” 

[an event occurs]” (p. 439). 

 

4.2.1.2 Taking time into account 

Life tables are probably the earliest attempts to deal with this problem (e.g., Cox, 1972; 

Kaplan & Meier, 1958). A life table shows the probability of a student in a specific semester 

dropping out in this semester. Table 9 gives an example of a life table for the present data set.  

 

For each semester (first column), the number of students at risk of dropping out (the risk set) 

is computed as the number of students who have not dropped out before minus the number of 

censored observations (i.e., the number of students who did not reach the semester before the 

end of the study). The risk of dropping out in a given semester (the hazard rate) is computed 

by dividing the number of events (the number of drop-outs) by the number of students at risk 
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in this semester25. Accordingly, the proportion surviving a given semester is simply one 

minus the hazard rate, and the cumulative proportion surviving (last column) is obtained by 

multiplying the proportion surviving of all preceding time periods. 

 

Table 9 Life table. 

time 

number entering the 

semester / number 

exposed to risk* 

“number 

withdrawing” 

number 

of 

events 

proportion 

terminating / 

hazard rate* 

cumulative 

proportion 

surviving 

1. semester 1096 0 30 .03 .97 

2. semester 1066 0 63 .06 .91 

3. semester 1003 117 49 .05 .87 

4. semester 837  44 .05 .82 

Note: “Number withdrawing” refers to students with no information on their enrollment 

status who did not drop out before (i.e., students first time enrolled in Summer 2004 who did 

not drop out). *Computation differs for continuous time survival data. 

 

Stated somewhat more technically, let T be a variable that indicates the discrete time period in 

which a drop-out occurs, then the hazard hj of experiencing the event in period j given that it 

was not experienced before, is defined as 

(28)

Thus the survival probability Sj (i.e., the probability of not dropping out in or before period j) 

can be expressed as 

(29)

where k indexes the time period (see last column in Table 9). The likelihood (li) of an 

observed “drop-out pattern” for a given person (e.g., “0”, “0”, “1”, “.” for student C in Table 

8A) is simply the hazard of dropping out in this semester multiplied by the (person specific) 

                                                 
25 If an underlying continuous survival process is assumed, the proportion terminating and the hazard rate are 

usually not identical (e.g., Singer & Willett, 2003, p. 330ff). 
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survival probability (see Equation (30)). The superscript δi indicates whether this person has 

dropped out during the observation period (δi = 1) or not (δi = 0, i.e., the person is censored). 

In case the student does not drop out, li is equal to the cumulative survival probability of this 

person. Accordingly, the likelihood L of observing a particular drop-out pattern in an entire 

(homogeneous) sample is simply the product of all individual likelihoods for i = 1…N 

individuals. 

(30)

Until now, only the unconditional likelihood was considered, that is no predictors were 

included in the model. Based on this likelihood, however, Singer and Willett (1993) 

demonstrated that parameter estimates using direct maximum likelihood estimation, as shown 

in Formula (30), are identical to maximum likelihood estimates using standard logistic 

regression26. Analogous to Formula (27), hij can be reparameterized as a logistic function of a 

number of covariates as shown in Equation (31).  

(31)

For this purpose, it becomes necessary to transform the person-level data structure (Table 8A) 

into a person-period data set (Table 8B). As illustrated in Table 8B, D1ij to DJij represent a 

sequence of dummy variables indexing the time period (e.g., D1ij = 1 when j = 1, else D1ij = 

0), with J being the last time period for anyone in the sample. P refers to the number of 

covariates, which can be time-varying or time-invariant. The procedure is described in more 

detail by Singer and Willett (1993). More general introductions to survival analysis can be 

found in Hutchinson (1988), Allison (1982), or the excellent book by Singer and Willett 

(2003). 

 

The probably biggest advantage of the approach presented above, is that it is straightforward 

and estimation can be carried out by most standard software packages. Censoring is 

adequately taken into account and as pointed out by Singer and Willett (1993), “the methods 

of discrete-time survival analysis [DTSA] provide educational statisticians with an ideal 

                                                 
26 This is no longer true if link-functions other than the logistic-hazard function are used. 
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framework for studying event occurrence” (p. 155) such as university drop-out. 

Unfortunately, the use of less optimal techniques often prevails among applied researchers. 

The SEM approach to DTSA (Muthén & Masyn, 2005), which will be introduced in the 

following section, may help to overcome this deficit. First, because many psychologists are 

trained in structural equation modeling, offering a different perspective on DTSA might help 

to get a better grasp on the technique. Second, the SEM approach is more flexible. It allows 

the analysis of direct and indirect relationships among predictors (e.g., mediation effects), and 

even permits the inclusion of latent variables. Finally, it becomes possible to account for 

unobserved heterogeneity, an important topic to which future research on individual 

differences in university drop-out should pay closer attention to. 

4.2.1.3 A structural equation approach 

Instead of coding time as dummy variables (see person-period data set in Table 8B), one 

could also define a set of J binary event history indicators uij where uij = 1 if person i drops 

out in time period j, uij = 0 if the person is at risk but does not experience the event in that 

period, and uij = Missing if the person has already experienced the event or is censored (i.e., is 

no longer at risk of dropping out). Thus, the event history indicators correspond to the 

“semester” variables in the person-level data set as shown in Table 8A. Reframing the 

problem in such a way, Muthén and Masyn (2005) demonstrated that discrete-time survival 

analysis corresponds to a conventional single-class latent class analysis with binary event 

history indicators. Figure 17 shows a path diagram for illustration.  
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Figure 17 Discrete-time survival analysis as a structural equation model with four binary 

indicators and one predictor for k = 1 (solid lines). The number of classes c can be easily 

increased (k > 1), taking unobserved heterogeneity into account. The dotted lines illustrate 

further modeling options such as the inclusion of additional predictors with time-varying or 

time-invariant direct or indirect effects. More complex models can be easily fit into this 

general SEM framework. 

 

Under the condition of missing at random (MAR, Little & Rubin, 2002), the maximum 

likelihood event indicator probabilities are identical to the hazard probabilities in Equation  

(30). Accordingly, DTSA can be seen as a special case of the more general structural equation 

modeling framework (e.g., Muthén, 2002). Ignoring the possibility that a person can be a 

member of multiple latent classes (ci) and setting the number of classes k = 1 for the moment, 

the hazard of dropping out can be expressed as a logistic function 

(32)

where 

(33)

The natural logarithm of the odds of dropping out versus not dropping out (i.e., logitijk) can be 

expressed as a function of a time-varying intercept vector βj, and a range of time-varying (zij) 

and time-invariant (xi) predictors. The factor loading matrix Λ can be used to specify various 
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functional forms of the logit hazard probabilities so that the resulting latent variable η can in 

turn be regressed on a set of time-invariant covariates (xi) weighted by γ and an intercept 

vector α. For a more detailed description of the model, the interested reader is referred to 

Muthén & Masyn (2005).  

 

Although the formulas may look daunting to less mathematically inclined readers, the basic 

idea is actually quite simple. As illustrated in Figure 17, information on drop-out across the 

four semesters is contained in the four indicators of the latent factor η. Analogous to latent 

growth curve modeling, the factor loadings can be chosen to represent a predefined “drop-out 

curve”. In the simplest case, they are all fixed to 1.0, suggesting that the effect of any 

covariate x on u is equal across time. As depicted by the dotted part in Figure 17, the effect of 

x on u may also be time-varying, a possibility which will not be considered in the present 

thesis. Finally, the SEM approach makes it feasible to estimate more complicated relations 

among predictors (e.g., indirect effects of x2 over x1 on η, and ultimately u, as shown in 

Figure 17). The most obvious difference to standard structural equation modeling is probably 

the use of binary indicators and a logistic link function instead of continuous indicators and a 

linear relationship (see Formula (32)). 

 

4.2.1.4 Accounting for unobserved heterogeneity 

As mentioned above, the approach can be extended to account for unobserved heterogeneity 

among subjects. Most statistical procedures are based on the assumption of a homogeneous 

sample, conditional on any covariates. In other words, it is assumed that drop-out among 

students and the prediction of drop-out is equal for all students, once we control for (known) 

covariates. As mentioned above, and as will be discussed in the next section, such an 

assumption appears to be particularly unlikely for the case of university drop-out. Going back 

to Equation (32) and (33), we find that the model can be easily extended to multiple classes 

by allowing k to be greater than 1. By increasing the number of classes, we attempt to account 

for unobserved heterogeneity among the students. It often seems reasonable that different 

groups of students have different baseline hazard rates of dropping out (i.e., a different 

intercept βjk in Equation (33)), with some groups exhibiting a high probability of dropping 

out, while for others the probability can be quite low. The same is true for the predictive 
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validity of any explanatory variable used in the model. For some groups we might expect 

quite substantial effects (e.g., for most students an effect of average university grade on future 

drop-out ought to be expected) while for others there might be no association at all (e.g., for 

students changing university or starting their own business, grades may not be very 

important). If information on the true reasons for dropping out cannot be observed and 

included in the model as additional predictors, allowing parameters (κzjk, κxjk, λujk, αuk, γuk) to 

vary across classes will – at least partially – account for the resulting heterogeneity and adjust 

results accordingly. Failure to account for heterogeneity in the sample, however, might 

severely bias parameter estimates, possibly leading to entirely false conclusions. 

Conceptually, the extension to multiple classes is easy, although computation can sometimes 

be difficult in order to make sure that the estimation process arrives at a globally optimal 

solution (Muthén & Shedden, 1999; Muthén, 2001a; Muthén & Masyn, 2005). Equation (30) 

can be easily extended to the case of multiple classes by summing the product of the 

individual likelihood and the probability of being a member of a class (πik) over all classes. 

Thus, the likelihood of an individual “drop-out pattern” is 

The probability of belonging to a specific group can in turn be regressed on potential 

predictors x via multinomial logistic regression (πik = P(ci = k | xi)).  

 

The integration of traditional discrete-time survival analysis into a generalized structural 

equation modeling framework offers many advantages. Most importantly, the focus of the 

analysis lies on the individual and on individual differences, making full use of the 

information provided by time (Willett & Singer, 1991). This is a great advantage over 

alternative methods such as logistic regression at a single point in time, or the comparison of 

survival curves across different (discrete) groups. In addition, the SEM approach offers great 

flexibility regarding the comparison of alternative models by constraining or freeing specific 

parameters. As will be demonstrated below, it is quite easy to examine differences in the 

hazard rate across time or define specific hazard functions. Furthermore, quite complex 

predictor-criterion relations such as time-varying, time-invariant, or mediation effects can be 

modeled and tested. Finally, it is possible to account for unobserved heterogeneity by using 

multiple latent classes. 
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4.2.2 University drop-out over time 

4.2.2.1 Background 

The analysis of university drop-out was part of a larger project, whose mission was to 

accompany and evaluate the endeavors of the faculties of the University of Mannheim with 

respect to the recruitment and the selection of students. Prior to university entrance, all 

applicants submitted their application documents and other relevant information through an 

internet-based fill-out form. In addition, they underwent a number of non-cognitive 

assessments. All objective information (e.g., grades) had to be supported by official 

documents and were verified by staff members of the university. More detailed information 

on the background of the study can be found in Sander (in press). 

 

4.2.2.2 Sample 

Data of 560 male and 525 female students (gender information is missing for 11 students) 

enrolled in six different faculties at the University of Mannheim were collected prospectively 

across four semesters for students first time enrolled in Winter 2003, and across three 

semesters for students first time enrolled in Spring 200427. The time period of four semesters 

corresponds to the German undergraduate studies ending with a “pre-diploma” (Vordiplom), 

which is comparable to the American Bachelor but is not considered a qualifying degree. 

Table 10 shows the number of students in each cohort and at each faculty, the average 

university grade across all semesters, high school GPA, and the number of students dropping 

out during the observation period. As discussed above, this number must not be confused with 

the total drop-out rate, because only the first four semesters were considered for the present 

study, and students entering in Summer 2004 naturally cannot drop out in their fourth 

semester.  

                                                 
27 At the time of the study, students at the University of Mannheim typically began their studies in the winter 

term, so that the number of students first time enrolled in Summer 2004 is much lower (see Table 10). 
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Table 10 Descriptive statistics on the number of students in each cohort and at each faculty, 

average university grade across all semesters, high school GPA, and the number of students 

dropping out across the observation period. 

 Frequency Percent 

Humanities 155 14.2 %

Business 426 38.9 %

Social Sciences 180 16.5 %

Mathematics & Computer Sciences 95 8.7 %

Law 112 10.2 %

Faculty 

Economics 126 11.5 %

Enrolled in Winter 03  920 83.9 %

Drop-out  186 17.0 %

 Mean Median SD

High school GPA 2.26 2.20 0.64

Avg. university grade 3.26 3.21 1.01

Note: SD = Standard Deviation. 

 

4.3 Analysis and Results 

4.3.1 A discrete-time survival analysis of university drop-out 

Figure 18 shows the estimated hazard and survival probabilities as defined in Formula (28) 

and (29).  
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Figure 18 Estimated survival (solid line, left axis) and hazard (dashed line, right axis) 

probabilities of university drop-out. 

 

As in the preceding sections, the computer program Mplus (Version 4.1, Muthén & Muthén, 

1998-2006) was used to carry out all subsequent analyses. For the simple case of an 

unconditional model with no restrictions on the baseline hazard function, the results are 

identical to the results of the life table described above and reported in Table 9. Appendix 20 

contains the according Mplus syntax28. Other than in the standard life table approach, as 

implemented in most statistic programs, it becomes possible to impose constraints on the 

hazard rate using SEM. This seems reasonable since the hazard rate is almost identical across 

the four semesters. Constraining it to equality results in a good fitting model (χ2 = 5.722, df = 

14, p = 0.97, AIC = 1506.81, BIC = 1511.812) with βj = -3.02 for all j. As apparent from 

Equation (32) and (33), this means that the average probability of dropping out is 

approximately 1/(1+e3.02) = 5 % in each semester. 

 

Having estimated the baseline hazard rate using an unconditional model, we can turn to the 

prediction of interindividual differences in university drop-out over time. As illustrated in 

Figure 17, this can be easily done by regressing η on one or more covariates x. The most 

                                                 
28 For all discrete-time survival analyses, maximum likelihood estimation – as described in the text – with robust 

standard errors is used (see Muthén & Muthén, 1998-2004, p. 368; see also Yuan & Bentler, 2000). 
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widely used predictor of academic success is certainly high school GPA (e.g., Gold & 

Souvignier, 2005) and in fact, introducing average GPA (z-standardized, reversed scaled) as a 

time-invariant covariate under the proportional hazard odds assumption (Cox, 1972) results in 

a highly significant effect on university drop-out (β = -3.14, p < .01, γ = 0.47, p < .01, eγ = 

odds ratio = 1.60). The according Mplus syntax is provided in Appendix 21. The 

proportionality assumption is implemented by regressing η on high school GPA, while fixing 

all factor loadings to one, and constraining the variance of η to zero29. The proportionality 

assumption is made in most standard discrete-time survival analyses, stating that the effect of 

a predictor is identical across all time points. Using the SEM approach, the assumption can be 

easily relaxed (dotted lines in Figure 17). However, allowing time-varying effects of high 

school GPA on drop-out neither improves model fit nor changes any substantial findings so 

that the more parsimonious proportional hazard odds model was retained. The results of the 

model are shown in Figure 19A.  

 

As described above and illustrated by Equation (27), an odds ratio of 1.60 means that the 

probability of dropping out versus not dropping out is 1.60 times higher for students having a 

high school GPA one standard deviation below average. Hence, the present study supports the 

often-replicated finding that GPA is a significant and important predictor of future university 

drop-out. In the present case, the odds ratio is similar to the odds ratio of 1.67 obtained via 

logistic regression on aggregated data (see Equation (27)). However, the reader is to be 

reminded that this must not necessarily be the case. As a matter of fact, differences between 

the (incorrect) analysis of aggregated data and survival analysis can be quite substantial. 

 

 

 

 

 

                                                 
29 This is identical to a regression of uij on xi with all regression coefficients (κxj) constrained to equality. The 

introduction of a latent variable η with zero variance and λuj = 1 for all j, is a convenient “trick” to impose the 

same constraints. 
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Figure 19 Three discrete-time survival models of university drop-out. A) Direct effect of high 

school GPA or (symbolized by //) university grade on drop-out. B) Direct and indirect effect 

(via university grade) of GPA on drop-out (i.e. partial mediation). C) Completely mediated 

effect of high school GPA (via university grade), on drop-out. All parameters are significant 

unless otherwise noted. For a description of the model set-up and discussion of parameter 

estimates the reader is referred to the text and Footnote 29. 
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4.3.2 Testing mediator effects in discrete-time survival analysis: The relationship between 

high school GPA, university grade and university drop-out . 

There is little controversy about the practical importance of considering the risk of dropping 

out when selecting students. However, with respect to student selection, the criterion of 

university drop-out is only important to the degree that it somehow helps to improve the 

selection process. For example, if the only reason why students drop out would be bad grades, 

there is little reason to consider drop-out as an additional criterion over and above university 

grades when selecting students. Of course there are other reasons one might be interested in 

when examining university drop-out (e.g. for capacity planning purposes or for assessing the 

costs associated with a drop-out), but from an individual differences perspective, university 

grades would suffice to map interindividual differences relevant to student selection. 

Accordingly, it is important to examine the exact relationship between high school GPA, 

university grades and drop-out. Figure 19 and Table 11 show the results of this analysis.  

 

Table 11 Parameter estimates and model fit for a mediated DTSA, with and without a direct 

effect of high school GPA on university drop-out as described in the text. 

 Estimates Odds (eestimate) Critical Ratio 

Intercepts (x1 - x4) -3.78** 43.8 25.24 

Drop-out ON university grade 1.35** 3.86 11.09 

University grade ON GPA 0.50** (0.51) -- 20.37 

Intercept (uni-grade) 0.07** -- 2.61 

R-square (x1 - x4) 0.36 -- -- 

R-square (uni-grade) 0.26 -- -- 

Model Fit AIC = 4061.12 BIC = 4086.11 adj. BIC = 4070.23 

Additional direct effect -0.14 n.s. 0.87 -1.52 

Model Fit (direct effect) AIC = 4060.91 BIC = 4090.90 adj. BIC = 4071.85 

Note: ** = p < 0.01; ON = “Regressed on”; AIC = Akaike information criterion; BIC = 

Bayesian information criterion; adj. BIC = Sample-Size Adjusted BIC; Standardized 

regression coefficients in parenthesis. 
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Apparently the effect of high school GPA on university drop-out is completely mediated by 

average university grade (z-standardized) across the four semesters. According to Baron and 

Kenny (1986, p. 1176f.; see also Judd & Kenny, 1981), complete mediation exists if (a) the 

initial variable is associated with the outcome, (b) the initial variable is correlated with the 

presumed mediator, and (c) after controlling for the mediator, the effect of the initial variable 

on the outcome is no longer significant. As demonstrated in the previous section, GPA is a 

significant predictor of university drop-out, thus condition (a) is met (see Figure 19A). 

Incidentally, the same is true for the direct effect of university grade on drop-out (γ = 1.35, eγ 

= odds ratio = 3.86, p < .01). The correlation between high school GPA and average 

university grade is r = 0.51, what is highly significant (p < .01) so that condition (b) is also 

met. In addition, the effect of high school GPA on drop-out is no longer significant once we 

control for average university grade (γ = -0.14, eγ = odds ratio = 0.87, p > .05; see Figure 

19B). The complete mediation model with the final parameter estimates is shown in Figure 

19C (γgrade = 1.35, eγ = odds ratio = 3.86, p < .01). Appendix 22 provides the input 

specifications for Mplus. 

 

Clearly all conditions for full mediation are met, showing no additional predictive validity of 

high school GPA over and above average university grade. This is a particularly interesting 

finding, since high school GPA is the most prominent selection criterion for university 

entrance. With a correlation of r = 0.51 between GPA and average university grade, our 

findings replicate the results of many other studies (e.g., see Moosbrugger & Reiß, 2005; 

Moosbrugger, Jonkisz, & Fucks, 2006), lending support to this practice. However, as pointed 

out in the introduction, there are good reasons to consider university drop-out as an additional 

criterion of successful education (at least from the perspective of the university). Although a 

high correlation between drop-out and average university grade ought to be expected, drop-

out is a qualitatively different criterion. The fact that the impact of high school GPA on drop-

out is completely mediated by average university grade does not necessarily demonstrate the 

unimportance of drop-out as an additional criterion, but rather points to the need of better and 

maybe qualitatively different predictors. In terms of Brunswik´s principles of symmetry an 

extension of the criterion space must come along with an extension of the predictor space 

(Brunswik, 1952; Wittmann, 1990). Additional information on model fit and the amount of 

explained variance is presented in Table 11. 
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The robustness of the findings was tested, by controlling for a number of background 

variables. Most importantly, there were substantial differences in grades across faculties 

(SSbetween = 125.59, SSError = 966.43, F(5, 1088) = 28.28, p < .01). Especially the 112 students 

of the law faculty had significantly better university (Mean = -0.68, z-standardized) and high 

school grades (Mean = -0.48, z-standardized) than the other students. The unusually good 

university grades of law students are due to the fact that grades collected at the law faculty 

only serve the purpose to verify the entry requirements for advanced courses. Thus, grades 

which entail a fail are not reported within this subsample. This makes it difficult to compare 

average grades across faculties, however, by dummy coding faculty membership and 

controlling for its effects on high school and university grades in the DTS-analysis, none of 

the findings reported above changed significantly. The same is true for gender differences. 

Even though men received slightly worse grades in high school (t = 3.6, df = 1083, p < .05, 

Cohen’s d = .16) and university (t = 5.2, df = 1083, p < .01, Cohen´s d = .31), the differences 

are rather small and controlling for it does not change any of the substantial conclusions. 

 

4.3.3 The final model: Accounting for unobserved heterogeneity 

Although the results seem to be fairly robust, given the multidetermination of university drop-

out, a truly homogeneous sample appears to be unlikely. As discussed above, students are 

probably much less homogeneous in their likelihood and reasons for dropping out than 

suggested by most studies on this topic. Accordingly, I tested for unobserved heterogeneity as 

described in Formula (32), (33) and (34) by increasing the number of latent classes in a 

stepwise fashion. As before, the baseline hazard probabilities were constrained to equality 

within groups, but were allowed to vary across classes. In addition, the regression of drop-out 

on university grade and the regression of university grade on high school GPA were allowed 

to differ between classes. All information criteria (AIC, BIC, adj. BIC), the Lo, Mendell and 

Rubin test (2001), and the bootstrapped likelihood ratio test (McLachlan & Peel, 2000) 
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supported a three class solution with different predictor-criterion relations30. Table 12 

contains the results of the final model. Appendix 23 contains the according Mplus syntax. 

 

The first and largest class (N = 689, 105 drop-outs, 15%) can be interpreted as a „normative 

class” with an average probability of dropping out and expected predictor-criterion relations. 

Similar in size to the results in Table 11, university grade has a significant effect on student 

drop-out and is closely related to high school GPA (standardized regression coefficient γ = 

0.77). With an over four times higher probability of dropping out versus not dropping out for 

students having a university grade one standard deviation below average, the effect is again 

quite impressive. 

 

 

 

 

 

 

                                                 
30 For a two-class solution: AIC = 4053.70; BIC = 4103.689; adj. BIC = 4071.927; Entropy = 0.44; Lo-Mendell-

Rubin adj. LR-Test = 47.210, p < 0.01; parametric bootstrap p < 0.01. For a three-class solution: AIC = 3967.37; 

BIC = 4042.366; adj. BIC = 39940.72; Entropy = 0.62; Lo-Mendell-Rubin adj. LR-Test = 63.37, p < 0.01; 

parametric bootstrap p < 0.01. For a four-class solution: AIC = 3987.25; BIC = 4087.24; adj. BIC = 4023.72; 

Entropy = 0.63; Lo-Mendell-Rubin adj. LR-Test = 20.67, p > 0.05; parametric bootstrap p > 0.05. For a one-

class solution see Table 11. The Lo-Mendell-Rubin adj. LR-Test compares the obtained model fit to the fit of a 

model with k-1 classes (H0). Thus a non-significant result suggests a lower class solution. 
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Table 12 Parameter estimates and model fit of a three class discrete-time survival mixture 

analysis.

 Estimates Odds (eestimate) Critical Ratio 

 Class 1 (N = 689, 15% drop-outs, mean = 0.66**) 

Intercepts (x1 - x4) -4.13**  62.30 14.66 

Drop-out ON university grade 1.49** 4.44 6.20 

University grade ON GPA 0.59** (0.77) -- 22.56 

Intercept (university-grade) 0.28** -- 5.18 

R-square (x1 - x4) 0.29 -- -- 

R-square (university-grade) 0.60 -- -- 

 Class 2 (N = 94, 65% drop-outs, mean = -0.84**) 

Intercepts (x1 - x4) -4.52**  91.84 4.84 

Drop-out ON university grade 2.03** 7.61 3.65 

University grade ON GPA 0.15n.s. (0.27) -- 1.76 

Intercept (university-grade) 1.33** -- 14.10 

R-square (x1 - x4) 0.25 -- -- 

R-square (university-grade) 0.07 -- -- 

 Class 3 (N = 313, 6% drop-outs, mean = 0.00) 

Intercepts (x1 - x4) -4.50**  90.02 6.83 

Drop-out ON university grade -0.32n.s.  0.73 -0.62 

University grade ON GPA 0.31** (0.54) -- 8.71 

Intercept (university-grade) -0.87** -- -18.46 

R-square (x1 - x4) 0.01 -- -- 

R-square (university-grade) 0.29 -- -- 

Model Fit AIC = 3967.37 BIC = 4042.37 adj. BIC = 3994.72 

Note: ** = p < 0.01; ON = “Regressed on”; Standardized regression coefficients in 

parenthesis. 

 

The second class is much smaller and their members have a much higher probability of 

dropping out (N = 94, 61 drop-outs, 65%). However, despite the high probability, GPA is not 
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a significant predictor of university grade31. In this group the characteristic “causal chain” of 

bad performance in high school leading to bad university grades and eventually resulting in an 

early drop-out no longer holds true. This is particularly interesting because it indicates that 

one of the most widely used selection criterion shows no predictive validity in the group with 

the highest risk of dropping out. This leads to two possible conclusions: Either, drop-out is 

simply unsystematic in this group and thus cannot be predicted, or there are reasons other than 

scholastic performance which are responsible for the high rate of drop-outs in this class. 

Unfortunately, no definite answer to this question can be provided in the present thesis, 

though the problem is addressed in an exploratory fashion further below. Nevertheless, with a 

7.6 times higher probability of dropping out versus not dropping out for students with grades 

one standard deviation below average as compared to students with an average grade, the 

close association between university grade and drop-out indicates that this class is not simply 

a “residual” class of students not fitting into the general pattern. However, it is up to future 

research to shed light on the causal direction of the relationship between university grade and 

drop-out. Given the distinctiveness of the group, it is not unlikely that students have already 

considered the possibility of leaving university and as a consequence did not prepare for their 

exams and got bad grades. Additional information is required to address this issue. The 

crucial point, however, is that while high school GPA is usually a good predictor of university 

grade (and thus university drop-out), drop-out cannot be predicted prior to university entrance 

in the class with the highest risk of dropping out. The high-risk group, however, is the group 

universities are most interested in and where a good prediction is most imperative. This 

demonstrates the urgent need for better – differentially valid – predictors, which are 

specifically tailored to certain subgroups (for a similar claim see Young, 2001, in the context 

of racial/ethical differences and sex differences). 

 

Finally, students in the third class have a very low probability of dropping out, more or less 

independent of their grades (N = 313, 20 drop-outs, 6%). Given the enormous disparity in 

education across different social strata in Germany (e.g., Baumert & Schümer, 2001), a class 

                                                 
31 GPA is also not a significant predictor of university drop-out. Permitting an additional direct effect of GPA on 

drop-out in this class does not improve model fit (“2 * LLDiff = 0.73, dfDiff = 1; AIC = 3967.91; BIC = 4047.90; 

adj. BIC = 3997.08; Entropy = 0.62). 
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with an essentially zero probability of dropping out does not seem unlikely. A formal test as 

described by Muthén & Masyn (2005), however, failed to provide evidence of a true “long-

term-survivor class”. Nevertheless, the drop-out probability is very low and as a consequence 

uncorrelated with average university grade, while the regression of high school GPA on 

university grade is of expected size and highly significant (γ = 0.54, p < .01). 

 

Two additional analyses were carried out in order to test the differences in predictive validity 

across the three classes and to safeguard against the interpretation of artificial results caused 

by a possible restriction of variance. First, the regression weights of the regression of drop-out 

on university grade, respectively the regression of university grade on high school GPA, were 

constrained to equality across all classes. The resulting two times the log-likelihood difference 

between the two models (2*LLDiff  = 2 * (2010.426 - 1968.687) = 83.48) can be tested against 

the critical χ2 value of 13.28 (df = 4). The difference is highly significant (p < .01), suggesting 

that the two regression weights differ significantly between the three classes. Second, the 

variance of the exogenous variable high school GPA was explicitly allowed to differ across 

classes. The resulting model is not only less parsimonious but the model fit is also worse 

(Log-Likelihood (LL) = 3500.86; AIC = 7047.71; BIC = 7162.70; adj. BIC = 7089.65; 

Entropy = 0.59). Accordingly, both approaches were not considered viable alternative 

explanations for the above findings. 

 

Unfortunately, no further information on the students’ background was available in the 

present study (e.g., socioeconomic status or education of parents). More extensive 

interpretations of the classes should therefore be handled with care. Future studies with 

additional background information are required to gain a better understanding of the 

substantive meaning of the classes. However, there is clear theoretical and empirical evidence 

for the existence of multiple classes within the sample and the differential predictor-criterion 

relations stress the importance of taking this heterogeneity into account. As demonstrated by 

the zero effect of high school GPA on average university grade in the high-risk class, ignoring 

heterogeneity will result in flawed generalizations and wrong conclusions. Especially when 

the focus is on the individual and on individual differences in university drop-out, the 

statistical procedure employed to study drop-out must account for existing heterogeneity by 
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allowing differential effects in different groups when theoretical and empirical evidence 

suggest their existence. 

 

The call for additional and qualitatively different predictors was accommodated in an 

exploratory fashion in the present study. As part of the application process, a number of self-

report measures could be obtained. Unfortunately, these measures were collected on a purely 

voluntary basis so that information is only available for a subsample of N = 541 students (49 

%). Among other information on interests, scientific thinking, and learning strategies, several 

beliefs and attitudes towards academic education were obtained. A complete review of the 

underlying idea and construction of the additional measures is beyond the scope of this 

section and will be provided elsewhere (Sander, in press). Interestingly, however, the 

forthright question after the importance of a university degree (six-point Likert-type scale) 

improved the prediction of drop-out across the four semesters significantly (γ = -0.32, eγ = 

odds ratio= 0.73, p < .01). That is, the higher the perceived importance of a university degree, 

the lower the probability of dropping out. Due to the restricted sample, the three class solution 

found earlier is no longer supported by the data. However, using the posterior probabilities 

obtained in the entire sample to classify students, separate analyses can be carried out for each 

group. Although the sample size in the high-risk group gets extremely low (N = 39, 24 drop-

outs, 62%), the strongest effect was found in precisely this group (logistic regression: γ = -

0.85, eγ = odds ratio = 0.43, p < .05). At this point, the well-known problems associated with 

self-report measures shall not be discussed, nor do I want to suggest that a simple question 

regarding the importance of a university degree would substantially improve the selection 

process in practice. However, the exploratory analysis illustrates the need – but also the 

possibility – to identify and employ qualitatively different predictors such as self-report 

measures to do justice to the multidetermination of university drop-out and the heterogeneity 

of the student population. Based on the three class solution found in the present study, future 

research should focus on the theory-driven construction of group-specific predictors. In 

return, a closer examination of the determinants of university drop-out will also result in a 

better understanding of the latent classes.  
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4.3.4 Limitations 

The lack of additional information that could be used to gain a better understanding of the 

latent classes is probably the biggest limitation of the present study. Theoretical and empirical 

evidence points to substantial heterogeneity within the student population. However, the 

present analyses fail to provide a final answer to the question of what causes this 

heterogeneity and how to make use of it regarding future student selection. It should be 

promising to incorporate variables in this line of research which proved to account for 

student’s drop-out as demonstrated by others (Tinto, 1993; Metz-Göckel & Leffelsend, 2001). 

These entail social and academic integration or motivational and individual assertions 

together with socio-demographic background variables such as family, debts, and life events. 

A further interesting observation was made by Lewin (1999). According to him only one 

tenth of the students dropping out do so because of perceived excessive demands. He arrives 

at a classification of the drop-out population which would be interesting to map onto the 

latent classes identified in this study.  

 

Simply ignoring the existence of heterogeneity – as it is done in many other studies on this 

topic – was shown to be not a viable solution. Future research, however, should pay closer 

attention to the psychosocial factors underlying these classes. Unfortunately, only very few 

prospective studies exist that allow the analysis and prediction of individual differences in 

university drop-out over time. Although the present study meets these requirements, a longer 

observation period (more semesters) and a more representative student sample would be 

desirable. Finally, the structural equation approach to discrete-time survival mixture analysis 

is still a comparatively new technique and there is little experience on its performance in 

practice (for a recent overview of the problems and advances in mixture modeling see 

Hancock & Samuelsen, forthcoming 2007). 

 

4.4 Discussion 

A new study on university drop-out at a German university was presented. At the same time 

an introduction to a recently proposed structural equation approach to discrete-time survival 

analysis was given. With this twofold purpose, the present work differs from many other 

studies, which either focus on methodological advancements or apply well-established (but 
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often inferior) procedures. This is unfortunate, because neither the development of new 

statistical techniques should be an end in itself, nor should applied research be constrained by 

existing methods, which do not provide answers to important practical questions or even run 

the risk of yielding incorrect results. Accordingly, a step-by-step introduction to DTSA using 

SEM was given in the first part, comparing it to existing techniques and pointing to 

advantages and potential problems of the new approach. The goal was thereby to provide the 

best possible description and prediction of interindividual differences over time. In the second 

part, the new technique was adopted to analyze university drop-out in a truly prospective 

longitudinal study conducted at the University of Mannheim. In line with previous research, 

high school GPA turned out to be an important predictor of future university drop-out. Its 

effect, however, was completely mediated by average university grade. Accounting for 

unobserved heterogeneity, three latent classes of students could be identified with differential 

predictor-criterion relations. Interestingly, in the class with the highest risk of dropping out, 

high school GPA showed no predictive validity, pointing to the practical relevance of 

considering heterogeneity. In an exploratory analysis, the self-report measure „importance of 

a university degree“ proved to be an additional predictor of university drop-out. This was 

especially true in the high-risk group as suggested by a small sample follow up analysis. 

 

The findings have both theoretical and practical implications regarding student selection. 

From a theoretical perspective, a closer look at the interrelationship between high school 

GPA, average university grade and university drop-out has been provided. From a practical 

perspective, the completely mediated effect of high school GPA on university drop-out 

supported the universally accepted causal sequence of bad high school grades leading to bad 

university grades, which in turn are responsible for an early drop-out. A closer look, however, 

revealed that there are subgroups of students, for which this relationship no longer holds true. 

Apparently other (more or less homogeneous groups of) reasons exist which may cause a 

student to drop out. Although this should not be very surprising, to date research has failed to 

come up with predictors of university drop-out which are as good as high school GPA. This 

may be primarily due to the fact that research has always focused on the entire student 

population instead of concentrating on specific subgroups. This study suggests that the 

student population is a much less homogeneous group than often perceived. Accordingly, I 

am convinced that instead of coming up with creative new constructs in order to predict 
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university drop-out, future research should pay closer attention to the differential validity of 

existing predictors. Unfortunately, the present study is also limited with respect to 

theoretically derived additional predictors as discussed above. However, the approach 

introduced in this thesis can be easily extended and adapted to future studies on this topic. For 

example, it would be possible to take a closer look at the university grade of a student in 

relation to his/her high school grade. Maybe students who fall behind in their performance at 

the university – as compared to their high school performance – are the ones most likely to 

drop-out. This corresponds to an interaction between high school GPA and university grade. 

It can be easily tested by computing the product of (the standardized, see Aiken & West, 

1991) university grade and high school GPA and adding this term as an additional predictor to 

the final model. Of course, the interaction term is correlated with drop-out, but in the present 

study it shows no predictive validity once we control for GPA and university grade. Thus the 

question was not pursued in more detail. One could think of many other hypotheses (e.g. 

whether the effects of high school GPA, university grades or their interaction are actually 

time-varying rather than time-invariant), which can be easily tested within this general 

framework. As a matter of fact, researchers are encouraged to pursue these important – 

although more complex – questions.  

 

Ultimately, however, any analysis can only be as good as the quality of the underlying data. 

Given the importance of this topic, it is surprising how few universities address this issue in a 

systematic manner. There is a great need of longitudinal rather than cross-sectional studies, 

focusing on the individual history and on inter-individual differences in individual changes 

over time. Only such studies allow an optimal estimation and prediction of university drop-

out. Typically, however, demographic information, application documents, information on 

grades and enrollment status are readily available but are stored and processed in different 

departments, making it impossible to retrieve all relevant information. In the same way 

researchers are encouraged to adopt recent technology when addressing this topic, I appeal to 

policy makers to spend more resources on a better documentation of data, which should be 

made available to research. The costs appear to be small as compared to the gain in 

knowledge and the prospect of better approaches for selecting future and advising current 

students.  
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5 SUMMARY AND CONCLUSIONS 

The analysis of change is the backbone of science. Methods for the analysis of change have 

been developed in almost all disciplines of modern science. However, to the same extent the 

subject of interest differs from one field of research to another, the methods differ as well (see 

Section 1.1). In the present thesis, the analysis of change was approached from the perspective 

of differential psychology, by focusing on differences among individuals as they exist and 

evolve over time. Differential psychology is a particularly interesting domain for a 

dissertation on selected aspects in the analysis of change. Maybe more than other areas in the 

behavioral sciences, the study of individual differences has always been closely related to the 

development and extension of statistical procedures. To give just one example, modern 

theories on the structure of intelligence (e.g., Carroll, 1993; for a good overview of the 

extensive literature on this topic see McGrew, 2004) or personality (e.g., Cattell, 1957; 1978; 

Costa & McCrae, 1985; for an overview see Goldberg, 1993) are inextricably tied to the 

development of factor analysis at the beginning of the last century (Spearman, 1904, 1927; 

see also Thurstone, 1934; 1938). However, only recently researchers began to grasp the 

potential that opens up when the methods of differential psychology are applied to the 

analysis of change. The best example is the development of latent growth curve modeling 

(LGCM), which resulted from the application of conventional confirmatory factor analysis to 

longitudinal data. The almost exponential increase in methodological and applied literature on 

this topic underscores the importance of this development. As a matter of fact, research in this 

area is quite active, and I expect not only many methodological extensions in the near future, 

but also important new insights in applied research to the degree that these methods are being 

used in traditional strongholds of differential psychology, such as research on learning, 

intelligence or personality. Thus, I can only second Nesselroade (2002) in his call for some 

selective optimizing of research activities by refocusing the targets to which the methods of 

differential psychology are applied to selected indicators of change (see page 1). It is hoped 

that the currently increasing interest in this topic is just the beginning of a more general 

movement in differential psychology. However, there is also the danger that this development 

creates a new gap between traditional and new techniques (or more generally between 

different research traditions, see Section 2). This would not only be counterproductive, but 
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simply unnecessary. In addition, new methods may increase the risk of leading to wrong 

conclusions if not properly set up and interpreted (see Section 3). Finally, because the 

methods are often more complex and more difficult to learn, they run the risk of simply not 

being used in applied research, despite their superiority. 

 

The purpose of the present thesis was to take up Nesselroade’s (2002) call for a liaison 

between the methods of differential psychology and indicators of change. The three above 

mentioned problems were addressed in three major parts by discussing some selected aspects 

in the analysis of change. In the first part (Section 2) traditional and modern methods have 

been compared and latent growth curve modeling has been proposed as a general data analytic 

procedure for repeated measures designs. In the second part (Section 3) the integration of 

autoregressive and latent growth curve models has been critically reviewed and it has been 

argued that great caution must be exercised to avoid biased parameter estimates and 

subsequently wrong conclusions. In the last part (Section 4) a recently developed technique 

was employed for the study of university drop-out at the University of Mannheim. An 

overview of all three parts is given in Section 1.3 and a detailed discussion of the findings, 

limitations, and directions for future research is provided at the end of each part (i.e., Section 

2.5, Section 3.5, and Section 4.4). Accordingly, I refrain from another recapitulation at this 

point.  

 

The greatest strength of the present dissertation is also its greatest weakness: it is neither a 

methodological nor an applied thesis. Instead it falls somewhere in-between. On the one hand 

existing methods for the analysis of change were compared and even some new statistical 

tests have been proposed as alternatives to existing procedures. In this respect the thesis is 

primarily methodological. On the other hand, a new study of university drop-out has been 

introduced, adopting an existing – albeit comparatively new – approach to discrete-time 

survival analysis. In this respect the thesis is applied. The middle part – a reconsideration of 

ALT-models for the analysis of skill acquisition – is mainly methodologically oriented, but 

was motivated by applied research on skill acquisition as described in Section 3.3. This 

twofold focus makes the thesis necessarily less stringent than other endeavors, which are 

exclusively concerned with the development of a new method or the application of an existing 

technique. As a matter of fact, the choice of topics is fairly arbitrary and selective, considering 



SUMMARY AND CONCLUSIONS - 114 -

 

the full range of methods, issues and practical problems in the analysis of change and I am 

well aware of this fact. However, I am also convinced that more studies like the one at hand 

are needed which try to bridge the gap between the development of new methods and their 

use in applied research. Despite its selectivity in topics, it is hoped that the present thesis is a 

small contribution towards this goal. 
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Appendix 1 Paired samples t-test. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1 x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0; 

x4@0; 

[x1@0]; 

[x4@0]; 

[int*]; 

[diff*]; 

int WITH diff; 
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Appendix 2 Base-free measure of change. 

DATA:   FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1 x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0.09995234; 

x4@0.2955772; 

[x1@0]; 

[x4@0]; 

[int*]; 

[diff*]; 

diff ON int; 
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Appendix 3 Repeated measures ANOVA / MANOVA. 

DATA:   FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

x1-x4@0; 

[x1-x4*]; 

[int@0]; 

[slope@0]; 

[quad@0]; 

[cub@0]; 

int WITH slope; 

int WITH quad; 

int WITH cub; 

slope WITH quad; 

slope WITH cub; 

quad WITH cub; 

 



APPENDIX - 134 -

 

Appendix 4 Polynomial contrasts. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x2@1 x3@1 x4@1;  

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

  quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

  cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

  x1-x4@0; 

  [x1-x4@0];  

  [int@0];        ! [int*];  

  [slope@0];        ! [slope*]; 

  [quad@0];        ! [quad*]; 

  [cub@0];        ! [cub*];  

  int WITH slope; 

  int WITH quad; 

  int WITH cub; 

  slope WITH quad; 

  slope WITH cub; 

  quad WITH cub; 

Note. When replacing the part of the syntax in front of the exclamation mark by the part 

behind the exclamation mark, the means of all latent variables are freely estimated. 

Otherwise all means are constrained to one. 
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Appendix 5 Test of compound symmetry. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x2@0 x3@0 x4@0; 

slope BY x1@0 x2@1 x3@0 x4@0; 

quad BY x1@0 x2@0 x3@1 x4@0; 

cub BY x1@0 x2@0 x3@0 x4@1; 

x1-x4@0; 

[x1-x4*]; 

[int@0]; 

[slope@0]; 

[quad@0]; 

[cub@0]; 

int (a); 

slope (a); 

quad (a); 

cub (a); 

int WITH slope (b); 

int WITH quad (b); 

int WITH cub (b); 

slope WITH quad (b); 

slope WITH cub (b); 

quad WITH cub (b); 
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Appendix 6 Test of sphericity. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

x1-x4@0; 

[x1-x4*]; 

[int@0]; 

[slope@0]; 

[quad@0]; 

[cub@0]; 

slope (a); 

quad (a); 

cub (a); 

int WITH slope; 

int WITH quad; 

int WITH cub; 

slope WITH quad@0; 

slope WITH cub@0; 

quad WITH cub@0; 
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Appendix 7 Saturated LGCM (A), linear LGCM (B) and quadratic LGCM (C). 

A) 

TITLE: Saturated LGCM; 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int lin quad cub | x1@0 x2@1 x3@2 x4@3;  

[x1-x4@0]; 

x1-x4@0; 

 

B) 

TITLE: Linear LGCM; 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int lin | x1@0 x2@1 x3@2 x4@3;  

[x1-x4@0]; 

 

C) 

TITLE: Quadratic LGCM; 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int lin quad | x1@0 x2@1 x3@2 x4@3;  

[x1-x4@0]; 
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Appendix 8 Predicting difference scores. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4 sex;   !g; 

DEFINE: g = (g-100.2388571429)/8.400495003422; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0; 

x4@0; 

[x1@0]; 

[x4@0]; 

[int*]; 

[diff*]; 

int WITH diff; 

int ON sex;      !int ON g; 

diff ON sex;      !diff ON g; 

 

Note. If “sex” is replaced by “g” where indicated by an exclamation mark, the categorical 

predictor sex is replaced by the continuous predictor g. 
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Appendix 9 Predicting base-free measures of change. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4 sex;   !g; 

DEFINE: g = (g-100.2388571429)/8.400495003422; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0.09995234; 

x4@0.2955772; 

[x1@0]; 

[x4@0]; 

[int*]; 

[diff*]; 

diff ON int; 

diff ON sex;      !diff ON g; 

int ON sex;      !int ON g; 

MODEL INDIRECT: diff IND int sex;    !diff IND int g; 

 

Note. If “sex” is replaced by “g” where indicated by an exclamation mark, the categorical 

predictor sex is replaced by the continuous predictor g. 
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Appendix 10 Multiple group analysis. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

GROUPING IS sex (1 = male 0 = female); 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0; 

x4@0; 

x1@0]; 

[x4@0]; 

[int*]; 

[diff*]; 

int* (a); 

diff* (b); 

int WITH diff;     

MODEL female: 

int BY x1@1 x4@1;  

diff BY x1@0 x4@1;  

x1@0; 

x4@0; 

[x1@0];  

[x4@0]; 

[int*]; 

[diff*];  

int*;       !(a); 

diff*;       !(b); 

int WITH diff; 

Note. Introducing equality constraints by deleting the two exclamation marks allows to testing 

the hypothesis of equal variances across groups. See text for additional information. 
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Appendix 11 Predicting between-subject variance. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4 sex; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

x1-x4@0; 

[x1-x4@0]; 

[int*]; 

[slope*]; 

[quad*]; 

[cub*]; 

int WITH slope; 

int WITH quad; 

int WITH cub; 

slope WITH quad; 

slope WITH cub; 

quad WITH cub; 

int ON sex;      !@0; 

sex WITH slope; 

sex WITH quad; 

sex WITH cub; 

 

Note. The regression coefficient γ0sex can be constrained to zero by deleting the exclamation 

mark (and removing “;”). 
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Appendix 12 Predicting between- and within-subject variance. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4 sex; 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

x1-x4@0; 

[x1-x4@0]; 

[int*]; 

[slope*]; 

[quad*]; 

[cub*]; 

int WITH slope; 

int WITH quad; 

int WITH cub; 

slope WITH quad; 

slope WITH cub; 

quad WITH cub; 

int ON sex;           

slope ON sex;      !@0; 

quad ON sex;      !@0; 

cub ON sex;      !@0; 

 

Note. The regression coefficients γ1sex to γ3sex can be constrained to zero by deleting the 

exclamation marks (and removing “;”). 
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Appendix 13 Test of (co)variance homogeneity. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE x1-x4 g sex; 

USEVARIABLES ARE x1-x4; 

GROUPING IS sex (1 = male 0 = female); 

ANALYSIS: TYPE = MEANSTRUCTURE; 

MODEL: int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 

x1-x4@0; 

[x1-x4@0]; 

[int*]    (a); 

[slope*]   (b); 

[quad*]   (c); 

[cub*]    (d); 

int WITH slope  (e); 

int WITH quad  (f); 

int WITH cub   (g); 

slope WITH quad  (h); 

slope WITH cub  (i); 

quad WITH cub  (j); 

int*    (k); 

slope*    (l); 

cub*    (m); 

quad*    (n); 

MODEL female: 

int BY x1@0.5 x2@0.5 x3@0.5 x4@0.5; 

slope BY x1@-0.671 x2@-0.224 x3@0.224 x4@0.671; 

quad BY x1@0.5 x2@-0.5 x3@-0.5 x4@0.5; 

cub BY x1@-0.224 x2@0.671 x3@-0.671 x4@0.224; 
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x1-x4@0; 

[x1-x4@0]; 

[int*];   !!(a); !!! main effect sex  

[slope*];  !!(b); !!! sex*time 

[quad*];  !!(c); !!! sex*time 

[cub*];   !!(d); !!! sex*time     

int WITH slope;    !(e); !!! covariance homogeneity 

int WITH quad;    !(f); !!! covariance homogeneity 

int WITH cub;    !(g); !!! covariance homogeneity 

slope WITH quad;    !(h); !!! covariance homogeneity 

slope WITH cub;    !(i); !!! covariance homogeneity 

quad WITH cub;    !(j); !!! covariance homogeneity 

int*;      !(k); !!! variance homogeneity 

slope*;      !(l); !!! variance homogeneity 

cub*;      !(m); !!! variance homogeneity 

quad*;      !(n); !!! variance homogeneity 

 

Note. Multiple group analysis (saturated model). Introducing equality constraints by deleting 

the single (!) exclamation marks (and removing “;”) allows to test the assumption of 

(co)variance homogeneity across groups. By deleting the double (!!) exclamation marks the 

main effect due to gender and the interaction sex*time can be tested. See text for additional 

information. 
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Appendix 14 Specification of a quadratic ALT model. 

For the special case of an unconditional ALT model, ηi as defined in Equation (22) contains 

neither level two predictors nor time-varying covariates and therefore simplifies to  
 

(A1) 

where yi is a T × 1 vector of the repeated measures as defined in Equation (18) and (19), αi is 

typically just a scalar (i.e., the latent intercept as defined in Equation (19)), and βi is an o × 1 

vector of latent slopes, where o is the order of the polynomial growth function (i.e., o = 2 for a 

quadratic growth curve). Accordingly, µ reduces to a (T+1+o) × 1 vector containing the 

means of the repeated measures and of the latent intercept, latent slopes respectively, as 

shown in Equation (A2). 

 

(A2) 

The B matrix also reduces to 
 

(A3) 

where Byy contains the autoregressive coefficients. Byα is typically just a unit vector for the 

LGC-model, while the first element is fixed to zero if yi1 is assumed to be predetermined in 

the ALT model. Byβ is a T × o factor loading matrix defining the coding of time. Equation 

(A4) gives an example of a generic quadratic growth curve (o = 2), where λ can take on any 

value. Typically, however, λ is set to zero, thus positioning the latent intercept at the first 

point of measurement. 
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Bαα, Bββ, Bβα, respectively Bαβ, specify possible effects among the growth curve factors. In 

most cases, however, they are all set to zero, while the variances and covariances among the 

factors (Ψ) are freely estimated. As discussed in the text, the covariances between the growth 

factors are a direct function of λ, so λ must be chosen wisely (e.g., Biesanz et al., 2004; 

Rovine & Molenaar, 1998; Singer & Willett, 2003; Stoel & van den Wittenboer, 2003; 

Wainer, 2000; Willett & Sayer, 1994; see also Hancock & Choi, 2007). Finally, for the 

unconditional model oi = yi so that Ρ is simply a T × T identity matrix for selecting the 

observed variables. 

 

For a vector θ containing all model parameters, the model implied mean vector µ(θ) and 

covariance matrix Σ(θ) can be shown to be (see Bollen & Curran, 2004) 

 

(A5) 

and  

 

(A6) 

 

 

µΒ)Ρ(Ιµ(θ) 1−−=

.ΡΒ)Ψ(ΙΒ)Ρ(ΙΣ(θ) 11 ′′
−−= −−
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Appendix 15 Derivation of Equation (25). 

As discussed in the text, the covariance between y2 and y3 can be reproduced as a function of 

the model parameter as shown in Equation (24), which is repeated below (A7). 

COV(y2, y3) = E(y2 y3) = E((ρ21 y1 + λ2α α + λ2β1 β1 + λ2β2 β2 + ε2) (ρ32 ρ21 y1 + ρ32 λ2α

α + ρ32 λ2β1 β1 + ρ32 λ2β2 β2 + ρ32 ε2 + λ3α α + λ3β1 β1 + λ3β2 β2 + ε3)) . 
(A7) 

After computing the expected values according to standard assumptions (e.g., Bollen, 1989) 

and rearranging the terms, Equation (A7) can be broken down into thee parts: a pure 

autoregressive part, a nonlinear latent growth curve part unaffected by the AR coefficients, 

and a third part containing AR as well as LGC parameters. Equation (A8) illustrates this 

breakdown. 

E(y2 y3) = ρ21 ρ21 ρ32 VAR(y1) + ρ32 VAR(ε2) 
 

+ λ2α λ3α VAR(α) + λ2β1 λ3β1 VAR(β1) + λ2β2 λ3β2 VAR(β2) + λ2β1 λ3α COV(α, β1) + 

λ2α λ3β1 COV(α,β1) + λ2α λ3β2 COV(α,β2) + λ2β2 λ3α COV(α, β2) + λ2β1 λ3β2 COV(β1, 

β2) + λ2β2 λ3β1 COV(β1, β2) 
 

+ λ2α λ2α ρ32 VAR(α) + λ2β1 λ2β1 ρ32 VAR(β1) + λ2α λ2β1 ρ32 COV(α, β1) + λ2β2 λ2β2 ρ32 

VAR(β2) + λ2α λ2β2 ρ32 COV(α, β2) + λ2β1 λ2β2 ρ32 COV(β1,β2) + λ2β2 λ2β1 ρ32 COV(β1, 

β2) + λ2β2 λ2α ρ32 COV(α, β2) 

(A8)

Assuming that COV(α, β1) = COV(α, β2) = COV(β1, β2) = 0, Equation (A8) simplifies to 

Equation (25), which is repeated below (A9). 

E(y2 y3) = ρ21 ρ21 ρ32 VAR(y1) + ρ32 VAR(ε2) + λ2α λ2α ρ32 VAR(α) + λ2β1 λ2β1 ρ32 VAR(β1)

+ λ2α λ3α VAR(α) + λ2β1 λ3β1 VAR(β1) 

+ [    λ2β2 λ3β2 VAR(β2) + λ2β2 λ2β2 ρ32 VAR(β2)    ] 
(A9) 
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Appendix 16 Data generation for a quadratic LGCM using R. 

########################### 
### Quadratic LGC-Model ### 
########################### 
 
meanquad   <- -0.2 
sdquad     <- 0.6   
n.iter  <- 1000    
N   <- 500    
meanint  <- 1   
sdint      <- 1 
meanslope  <- 1         
sdslope    <- 1 
rquad      <- 0.50    
 
### Simulation ### 
 
iter <- 1 
while(iter <= n.iter ) 
{ 
 
int   <- rnorm(N, meanint, sdint) 
slope <- rnorm(N, meanslope, sdslope) 
quad  <- rnorm(N, meanquad, sdquad) 
 
Y1p  <- 1*int +  0*slope +  0*quad    
Y2p  <- 1*int +  1*slope +  1*quad     
Y3p  <- 1*int +  2*slope +  4*quad 
Y4p  <- 1*int +  3*slope +  9*quad 
Y5p  <- 1*int +  4*slope +  16*quad 
Y6p  <- 1*int +  5*slope +  25*quad 
 
e1  <- rnorm(N, 0, sd(Y1p) *(sqrt(1-rquad))) 
e2  <- rnorm(N, 0, sd(Y2p) *(sqrt(1-rquad))) 
e3  <- rnorm(N, 0, sd(Y3p) *(sqrt(1-rquad))) 
e4  <- rnorm(N, 0, sd(Y4p) *(sqrt(1-rquad))) 
e5  <- rnorm(N, 0, sd(Y5p) *(sqrt(1-rquad))) 
e6  <- rnorm(N, 0, sd(Y6p) *(sqrt(1-rquad))) 
 
Y1  <- Y1p  + e1 
Y2  <- Y2p  + e2   
Y3  <- Y3p  + e3 
Y4  <- Y4p  + e4  
Y5  <- Y5p  + e5 
Y6  <- Y6p  + e6 
 
data <- cbind(Y1, Y2, Y3, Y4, Y5, Y6)   
write.table(data, file = "D:\\...", append = FALSE, sep = " ", 
            eol = "\n", na = "NA", dec = ".", row.names = FALSE, 

col.names = FALSE) 
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#### MPLUS ### 
 
system(paste('"D:/..."', 'D:\\...'), wait = TRUE, invisible = TRUE) 
 
test <- scan(file="D:\\...", what = list(" "), skip=79) 
 
chi <- c(test[[1]] [2]) 
chi <- as.numeric(chi) 
df <- c(test[[1]] [6]) 
df <- as.numeric(df) 
p <- c(test[[1]] [8]) 
p <- as.numeric(p) 
CFI <- c(test[[1]] [28]) 
CFI <- as.numeric(CFI) 
AIC <- c(test[[1]] [47]) 
AIC <- as.numeric(AIC) 
BIC <- c(test[[1]] [50]) 
BIC <- as.numeric(BIC) 
RMSEA <- c(test[[1]] [70]) 
RMSEA <- as.numeric(RMSEA) 
SRMR <- c(test[[1]] [88]) 
SRMR <- as.numeric(SRMR) 
COV_IS <- c(test[[1]] [213]) 
COV_IS <- as.numeric(COV_IS) 
COV_IQ <- c(test[[1]] [219]) 
COV_IQ <- as.numeric(COV_IQ) 
COV_SQ <- c(test[[1]] [227]) 
COV_SQ <- as.numeric(COV_SQ) 
MEAN_I <- c(test[[1]] [234]) 
MEAN_I <- as.numeric(MEAN_I) 
MEAN_S <- c(test[[1]] [240]) 
MEAN_S <- as.numeric(MEAN_S) 
MEAN_Q <- c(test[[1]] [246]) 
MEAN_Q <- as.numeric(MEAN_Q) 
VAR_I <- c(test[[1]] [290]) 
VAR_I <- as.numeric(VAR_I) 
VAR_S <- c(test[[1]] [296]) 
VAR_S <- as.numeric(VAR_S) 
VAR_Q <- c(test[[1]] [302]) 
VAR_Q <- as.numeric(VAR_Q) 
 
output <- cbind(MEAN_I, MEAN_S, VAR_I, VAR_S, COV_IS, MEAN_Q, VAR_Q, 

COV_SQ, COV_IQ, chi, df, p, AIC, BIC, CFI, SRMR, RMSEA) 
 
### Output ### 
 
write.table(output, file="D:\\...", sep = " ", row.names = FALSE, 

col.names = FALSE, append=T) 
 
iter <- iter+1 
} 
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Appendix 17 Quadratic LGCM for simulated data. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE V1-V6; 

USEVARIABLES ARE V1-V6; 

MODEL: i s q | V1@0 V2@1 V3@2 V4@3 V5@4 V6@5; 

i WITH s; 

  i WITH q; 

s WITH q; 

! growth part; 

!V6 ON V5*; 

!V5 ON V4*; 

!V4 ON V3*; 

!V3 ON V2*; 

!V2 ON V1*;  

OUTPUT: TECH4 STAND; 
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Appendix 18 Linear LGCM for simulated data. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE V1-V6; 

USEVARIABLES ARE V1-V6; 

MODEL: i s | V1@0 V2@1 V3@2 V4@3 V5@4 V6@5; 

i WITH s; 

OUTPUT: TECH4 STAND; 
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Appendix 19 Linear ALT-model for simulated data. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE V1-V6; 

USEVARIABLES ARE V1-V6; 

MODEL: i s | V2@1 V3@2 V4@3 V5@4 V6@5; 

i WITH s; 

i WITH V1; 

s WITH V1; 

! AR part; 

V6 ON V5*; 

V5 ON V4*; 

V4 ON V3*; 

V3 ON V2*; 

V2 ON V1*;  

OUTPUT: TECH4 STAND; 
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Appendix 20 Unconditional DTSA. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE …; 

  MISSING ARE ALL (999); 

USEVARIABLES ARE x1 x2 x3 x4; 

CATEGORICAL ARE x1 x2 x3 x4; 

ANALYSIS: TYPE = Missing; 

  ESTIMATOR = MLR; 

MODEL: eta BY x1@1 x2@1 x3@1 x4@1; 

 eta@0; 

Output: TECH1 STAND; 

 

 

 



APPENDIX - 154 -

 

Appendix 21 Conditional DTSA using high school GPA as predictor. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE …; 

  MISSING ARE ALL (999); 

USEVARIABLES ARE x1 x2 x3 x4 GPA;  ! GRADE; 

CATEGORICAL ARE x1 x2 x3 x4; 

ANALYSIS: TYPE = Missing; 

  ESTIMATOR = MLR; 

MODEL: eta BY x1@1 x2@1 x3@1 x4@1; 

eta ON GPA;      ! GRADE; 

eta@0; 

[x1$1] (1); 

[x2$1] (1); 

[x3$1] (1); 

[x4$1] (1); 

Output: TECH1 STAND; 

 

Note. Replacing GPA by GRADE, university grade is used as predictor instead of high school 

GPA. 
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Appendix 22 Completely mediated effect of high school GPA on drop-out. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE …; 

  MISSING ARE ALL (999); 

USEVARIABLES ARE x1 x2 x3 x4 GPA GRADE; 

CATEGORICAL ARE x1 x2 x3 x4; 

ANALYSIS: TYPE = Missing; 

  ESTIMATOR = MLR; 

MODEL: eta BY x1@1 x2@1 x3@1 x4@1; 

eta ON GRADE; 

GRADE ON GPA; 

[x1$1] (1); 

[x2$1] (1); 

[x3$1] (1); 

[x4$1] (1); 

eta@0; 

Output: TECH1 STAND; 
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Appendix 23 Three class discrete-time survival mixture model. 

DATA: FILE IS "D:\…"; 

VARIABLE: NAMES ARE …; 

  MISSING ARE ALL (999); 

USEVARIABLES ARE x1 x2 x3 x4 GPA GRADE; 

CATEGORICAL ARE x1 x2 x3 x4; 

CLASSES = c(3); 

ANALYSIS: TYPE = Mixture Missing; 

  ESTIMATOR = MLR; 

ALGORITHM=INTEGRATION; 

STARTS = 1000 100; 

MODEL: %overall% 

eta BY x1@1 x2@1 x3@1 x4@1; 

[x1$1] (1); 

[x2$1] (1); 

[x3$1] (1); 

[x4$1] (1); 

eta ON GRADE; 

GRADE ON GPA; 

eta@0; 

[eta@0]; 

%c#1% 

[x1$1] (2); 

[x2$1] (2); 

[x3$1] (2); 

[x4$1] (2); 

eta ON GRADE; 

GRADE ON GPA; 

eta@0; 

[eta@0]; 

%c#2% 
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[x1$1] (3); 

[x2$1] (3); 

[x3$1] (3); 

[x4$1] (3); 

eta ON GRADE; 

GRADE ON GPA; 

eta@0; 

[eta@0]; 

%c#3% 

[x1$1] (4); 

[x2$1] (4); 

[x3$1] (4); 

[x4$1] (4); 

eta ON GRADE; 

GRADE ON GPA; 

eta@0; 

[eta@0]; 

Output: TECH1 TECH8 TECH11 TECH14 STAND; 
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