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Non-Technical Summary 
This paper studies implications of uncertainty about the arrival date of a competitive CO2 backstop 

technology for the design of cost-effective carbon dioxide (CO2) emission trading schemes. The long-

run stabilization of atmospheric CO2 concentrations at significantly lower levels requires the 

deployment of a wide portfolio of CO2 emission abatement options such as input substitution, 

switching to less CO2-intensive energy sources, and technical change. Especially the last abatement 

option has received much attention in the environmental economic literature, as it has been found that 

technology externalities associated with technical change can lead to improvements in the cost-

effectiveness of environmental policies such as trading schemes to abate CO2 emissions. Typically 

implicit in this finding is the assumption that one can foresee and anticipate all new technologies. 

Given the typically large technological uncertainties, however, this is not always a realistic assumption 

and the arrival date of a new technology can still be uncertain. In this paper, we translate technological 

uncertainty regarding the arrival date of a new technology into non-anticipation of the arrival date and 

study the implications of such non-anticipation for the design of cost-effective environmental policy.  

In particular, we develop a dynamic computable general equilibrium model that captures the 

empirical links between CO2 emissions associated with energy use, the rate and direction of technical 

change and the economy. We draw on endogenous growth models and specify technologies as stocks 

of knowledge capital that are sector-specific investment goods and have associated positive technology 

externalities (i.e. knowledge spillovers). In addition, we introduce CO2 capture and storage (CCS) in 

the electricity sector as the backstop technology under study. CCS is a known CO2 abatement 

technology that involves the separation and concentration of CO2 produced in industrial and energy-

related sources, the transportation to a suitable storage location (e.g. an aquifer, depleted oil field, or 

the ocean), and the storage preventing its release to the atmosphere for a prolonged period of time. 

CCS has not arrived yet and in our model the arrival date is either anticipated or not. We define the 

arrival date as the date at which CCS becomes commercially available and competitive. Once 

competitive, large scale deployment of CCS could then allow for a continued reliance on fossil fuels in 

the supply of primary energy while at the same time reducing CO2 emissions over the course of this 

century. As it stands now, however, such competitiveness requires stringent CO2 emission reduction 

policies and large uncertainties remain regarding the (cost) potential of CCS. Policy simulations and a 

Monte Carlo uncertainty analysis reveal the implications of uncertainty about the arrival date of CCS 

for the design of cost-effective CO2 emission trading schemes.  

We find that the discounted welfare loss associated with the cost-effective CO2 emission trading 

schemes is lower in the simulation in which competitiveness of the CCS technology is unanticipated. 

CO2 shadow prices are higher in the period before the CCS technology becomes competitive in this 

simulation relative to the simulation where competitiveness is anticipated, reflecting a shift of 

emission reduction efforts to earlier years. By not simply postponing emission reduction until the CCS 

technology becomes competitive in the electricity sector, one relies more on economy-wide technical 
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change and its welfare-enhancing technology externalities, thus allowing for a slightly higher steady 

state in this simulation. Regarding the steady state, we find in both simulations that it is characterized 

by technical change which is directed toward sectors with relatively low CO2 intensities enjoying 

higher levels of technology externalities than the CO2-intensive sectors. CO2 emission trading schemes 

are thus more cost-effective if they are differentiated in such a way that the CO2-intensive sectors face 

the relatively high CO2 shadow prices. Essentially, the policy is one of encouraging growth in sectors 

with relatively high levels of technology externalities and discouraging growth in those with relatively 

low levels. Our Monte Carlo uncertainty analysis confirms the robustness of our findings to an 

uncertain cost and performance parameterization of the CCS technology although the precise 

quantitative findings vary considerable with the uncertain parameterization. 

Our findings underline once more the importance of technical change as an abatement option; not 

only through radically new abatement technology, but also in the form of incremental technical 

change. We should be careful not to become complacent by postponing some of our emission 

reduction efforts awaiting the silver bullet technology on the horizon in the energy sector. Acting in 

such a way is not advisable given the large uncertainties that typically surround new technologies. 

Besides spreading the risks that some technologies might fail, diversifying the investment portfolio can 

lead to lower welfare costs of environmental policy because of the technology externalities associated 

with technical change.  

 

Das Wichtigste in Kürze 
Dieses Papier untersucht die Implikationen von Unsicherheit bezüglich der Verfügbarkeit einer 

kompetitiven Technologie zur Kohlenstoffabscheidung und –speicherung auf die Ausgestaltung 

kosteneffektiver CO2 Emissionshandelssysteme. Zu diesem Zweck wird ein dynamisches rechenbares 

allgemeines Gleichgewichtsmodell entwickelt, welches den empirischen Zusammenhang zwischen 

CO2 Emissionen, Rate und Richtung des technischen Wandels und wirtschaftlichen Aktivitäten 

berücksichtigt. Kohlenstoffabscheidung und –speicherung wird als sogenannte Backstop-Technologie 

modelliert, deren Wirtschaftlichkeit antizipiert wird oder eben nicht. Die Simulationsergebnisse 

zeigen, dass die diskontierten Wohlfahrtsverluste der Klimapolitik niedriger sind, wenn die 

Technologie zur Kohlenstoffabscheidung und –speicherung nicht antizipiert wird. In diesem Fall sind 

die Preise für CO2 Emissionszertifikate vor der unerwarteten Einführung der Backstop-Technologie 

relativ hoch. Es wird nicht einfach auf die Wirtschaftlichkeit der Kohlenstoffabscheidung und –

speicherung gewartet. Vielmehr wird ohne die Berücksichtigung von Kohlenstoffabscheidung und –

speicherung ein strikterer Politikpfad zur Erreichung der klimapolitischen Ziele implementiert, der die 

Internalisierung von technologischen Externalitäten und somit ein höheres Wohlfahrtsniveau 

ermöglicht. Die Umweltpolitik sollte gegeben der großen technologischen Unsicherheiten vorsichtig 

sein, Vermeidungsanstrengungen zu verschieben und auf eine Wunderwaffe zu Lösung des 

Klimaproblems im Energiesektor zu warten. 
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Abstract 

This paper studies implications of uncertainty about the arrival date of a competitive CO2 backstop 

technology for the design of cost-effective CO2 emission trading schemes. For this purpose, we 

develop a dynamic general equilibrium model that captures empirical links between CO2 emissions 

associated with energy use, the rate and direction of technical change and the economy. We specify 

CO2 capture and storage (CCS) as the backstop technology whose competitiveness is anticipated or 

not. We find that the discounted welfare loss associated with the environmental target is lower if CCS 

is not anticipated and that CO2 shadow prices are then relatively high in the years before CCS is 

competitive. By not simply postponing the implementation of an emission reduction strategy until 

CCS is competitive, one relies more on economy-wide technical change and its welfare-enhancing 

technology externalities, thus allowing for a higher steady state. 

 

Keywords: CO2 capture and storage, computable general equilibrium modeling, directed technical 

change, emission trading, technological uncertainty 

 

JEL classification: D58, D83, H23, O33, Q43 

 3



Technological uncertainty and cost-effectiveness of  

CO2 emission trading schemes 

 

 

1. Introduction 

The long-run stabilization of atmospheric carbon dioxide (CO2) concentrations at significantly lower 

levels requires the deployment of a wide portfolio of CO2 emission abatement options such as input 

substitution, switching to less CO2-intensive energy sources, and technical change (IPCC, 2007). 

Especially the last abatement option has received much attention in the environmental economic 

literature, as it has been found that technology externalities associated with technical change can lead 

to improvements in the cost-effectiveness of environmental policies such as trading schemes to abate 

CO2 emissions. Typically implicit in this finding is the assumption that one can foresee and anticipate 

all new technologies. Given the typically large technological uncertainties, however, this is not always 

a realistic assumption and the arrival date of a new technology can still be uncertain. In this paper, we 

translate technological uncertainty regarding the arrival date of a new technology into non-anticipation 

of the arrival date and study the implications of such non-anticipation for the design of cost-effective 

environmental policy. We refrain from studying the role technology policy can play to correct 

technology externalities or to overcome related uncertainties for now. Instead, we first focus on CO2 

emission trading schemes as our environmental policy under study and address related questions such 

as: What are the corresponding CO2 shadow prices in both the case of a new technology’s arrival date 

being anticipated and not anticipated? As a result, what are the effects on the rate and direction of 

technical change in both cases? What are the implications for the discounted welfare loss of the trading 

scheme? The key feature of the new technology under study is its function as a backstop for CO2 

emissions associated with energy use, in that the new technology enables society to produce a perfect 

substitute for CO2-intensive electricity at a non-increasing marginal cost.  

Previous investigations concerning these questions include the studies on optimal resource 

depletion under technological uncertainty by, among others, Dasgupta and Heal (1974), Kamien and 

Schwartz (1978) and Dasgupta and Stiglitz (1981). Using theoretical models, these studies analyze the 

effects of uncertainty regarding the arrival date of a backstop technology on the optimal depletion rate 

and price of an exhaustible natural resource and in the case of Kamien and Schwartz also on optimal 

research and development (R&D) efforts.1 In a computable general equilibrium setting, Popp (2006), 

Gerlagh and van der Zwaan (2006) and Otto and Reilly (2006), among others, study optimality and 

cost-effectiveness of climate policy if there is a backstop technology available in the energy sector, 

although these studies do not account for any technological uncertainty. We proceed by combining the 

                                                           
1 To gain a better understanding of the relation between these studies and our research questions, consider the absorptive 
capacity of CO2 sinks such as forests and oceans as exhaustible natural resources that can be depleted by excessive CO2 
emissions. 
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analysis of technological uncertainty of Dasgupta and Heal (1974), Kamien and Schwartz (1978) and 

Dasgupta and Stiglitz (1981) with the methodology and cost-effectiveness criterion of Otto and Reilly 

(2006).   

In particular, we build on Otto et al. (2006) and Otto and Reilly (2006) and develop a dynamic 

computable general equilibrium model that captures the empirical links between CO2 emissions 

associated with energy use, the rate and direction of technical change and the economy. We draw on 

endogenous growth models of Romer (1986), Rivera-Batiz and Romer (1991) and Acemoglu (2002) 

and specify technologies as stocks of knowledge capital that are sector-specific  investment goods and 

have associated positive technology externalities (i.e. knowledge spillovers). In addition, we introduce 

CO2 capture and storage (CCS) in the electricity sector as the backstop technology under study. CCS is 

a known CO2 abatement technology that involves the separation and concentration of CO2 produced in 

industrial and energy-related sources, the transportation to a suitable storage location (e.g. an aquifer, 

depleted oil field, or the ocean), and the storage preventing its release to the atmosphere for a 

prolonged period of time. CCS has not arrived yet and in our model the arrival date is either 

anticipated or not. We define the arrival date as the date at which CCS becomes commercially 

available and competitive. Once competitive, large scale deployment of CCS could then allow for a 

continued reliance on fossil fuels in the supply of primary energy while at the same time reducing CO2 

emissions over the course of this century. As it stands now, however, such competitiveness requires 

stringent CO2 emission reduction policies and large uncertainties remain regarding the (cost) potential 

of CCS (IPCC, 2005). Policy simulations and a Monte Carlo uncertainty analysis reveal the 

implications of uncertainty about the arrival date of CCS for the design of cost-effective CO2 emission 

trading schemes. 

The remainder of this paper is organized as follows. Section 2 describes the main characteristics 

of our dynamic general equilibrium model including the specification of technical change. Section 3 

describes the knowledge capital accounting in the input-output tables underlying our model, the data 

and central parameter values used in the model and the calibration of the CCS technology. Section 4 

discusses the simulations, their results as well as an uncertainty analysis. Section 5 concludes. 

 

2. Model description 

In our dynamic general equilibrium model several economic agents interact over time by demanding 

and supplying commodities on markets. These agents are a representative consumer, producers of final 

goods in production sectors i and firms in intermediate sectors i manufacturing sector-specific  

knowledge capital for the respective production sectors. The sectors are: (1) agriculture, (2) CO2- 

intensive industry, (3) non-CO2 intensive industry and services, (4) trade and transport, (5) energy, (6) 

CO2-intensive electricity and (7) non-CO2 intensive electricity, where the energy sector comprises the 

oil and gas industries. Primary factors include physical capital, labor and primary energy and are 

mobile between sectors. Agents behave rationally and, unless specified otherwise, have perfect 
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foresight. We present a detailed structure of the model in Appendix A, and discuss the main model 

elements below.  

 

2.1. Household behavior 

A representative consumer maximizes intertemporal utility (henceforth referred to as discounted 

welfare), depending on the intertemporal budget constraint. Discounted welfare is a nested constant 

elasticity of substitution (CES) function of the discounted sum of consumption over the time horizon 

and is measured as equivalent variation (see equations A.14 and A.15 in Appendix A). Environmental 

quality does not enter the utility function, implying independence of the demand functions for goods 

with respect to environmental quality. 

 

2.2. Production of final goods 

Production of final good i (Y ) is characterized by a production possibility frontier, which is 

determined by a CES function of knowledge capital ( ) and a nested CES function ( ) of 

physical capital, labor, energy inputs and other intermediate inputs (see equation A.1 for the full 

specification). Intermediate usage of the primary energy inputs oil, gas, and coal entail CO2 emissions, 

which might be subject to quantity constraints (i.e. the CO2 emission trading schemes) and 

concomitant CO2 shadow prices.

H KLEM

2 To meet these constraints, several CO2 abatement options are 

available to the producer. These options include, among others, a reduction in overall energy use, a 

shift away from fossil fuels as input and technical change to increase efficiency of production or to 

develop CO2 abatement technology. Regarding technical change, knowledge capital is rival, 

excludable and sector specific. Hence, owners can prevent others from using their knowledge capital 

by means of patent protection, but one type of knowledge capital is too different for the production of 

goods in other sectors. Moreover, there exists a technology externality in production ( H ), as 

knowledge embodied in the sector-specific stocks of knowledge capital spills over to firms in the 

respective production sectors. In contrast to , which is excludable knowledge capital, H H is non 

excludable and firms regard it as exogenous. The technology externality is also sector specific because 

we assume that knowledge capital in one sector is too different to benefit from innovations in other 

sectors. Formally for a firm in sector i:  

( )( )1,, , ,=  1
H

H HH H
i ti t i i t i i tY H H KLEM

ρ
ρ ρα α+ −  (1)

where ρ is related to the elasticity in production σ according to ( )1ρ σ= − σ

1

, where the α’s are value 

shares determined by base year demands and where 0 H
iα≤ ≤ . The technology externality in 

                                                           
2 We do not specify a damage function for CO2 emissions. CO2 emissions do therefore not lead to an environmental 
externality in our model and firms only reduce their CO2 emissions because of the CO2 emission trading schemes.  
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production is governed by , , = i t i tH H γ  where the parameter γ  regulates the magnitude of the 

technology externality. If γ
 
is zero, the production possibility frontier of a given firm in a sector is 

unaffected by the aggregate stock of knowledge capital in that sector. This specification of the 

production possibility frontier draws on Arrow (1962) and Romer (1986) and is also very similar to the 

specification used in Goulder and Schneider (1999) and Otto et al. (2007). The technology externality 

to an individual firm in a sector is introduced in a CES function by a scale factor, which is an 

increasing function of the aggregate stock of knowledge capital. Although the technology externality 

generates increasing returns to scale at the sector level, it is exogenous to the individual firm allowing 

us to avoid problems related to non-convex optimization. Together with adoption of knowledge 

capital, this technology externality drives productivity growth in the production sectors. Firms in 

production sector i maximize profits over time subject to their production possibility frontier. 

Homogeneity of degree one and perfect competition guarantee zero profits.  

 

2.3. Investment in knowledge capital 

Firms in intermediate sector i invest in knowledge capital that is appropriate for the production of final 

good i according to an innovation possibility frontier (see equation A.4 for the full specification)1. 

Investment in knowledge capital ( R ) is a deterministic process and the innovation possibility frontiers 

are continuous, which allows us to avoid problems due to uncertainty or integer variables. Technical 

change is ‘directed’ to a specific sector if its investment in knowledge capital increases relative to 

other sectors. Investments in knowledge capital merely involve final goods as input. This does not 

mean that final goods are directly converted into knowledge capital, but rather that the inputs 

necessary for production of final goods are used, in the same proportions, for innovation instead. In 

addition, there is a delayed technology externality in innovation since aggregate but sector-specific 

investments in knowledge capital ( R ) of the previous period have a positive external effect on the 

efficiency of a firm’s current investments in that sector. Formally for a firm in sector i:  

,, ,=  i ti t i tR R Y  (2)

where , , 1= i t i tR Rξ
−  and where ξ  regulates the magnitude of the technology externality in innovation. 

Knowledge spillovers and network effects, among others, underlie this technology externality. We also 

specify this technology externality operating within each sector only, since we assume that knowledge 

capital in the different sectors is too different to benefit from technical changes in other sectors. 

Knowledge capital investments accumulate into sector-specific stocks according to:  

                                                           
1 Naturally, there are more institutional structures that support a decentralized equilibrium. Firms in each production sector, 
for example, can invest in their type of knowledge capital themselves, e.g. in house innovation. The precise institutional 
structure is irrelevant as long as investments in knowledge capital are made according to identical innovation possibility 
frontiers. 
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( ), 1 , ,= 1 + H
i t i t i tH Hδ+ − R  (3)

where Hδ is the depreciation rate of knowledge capital (see equation A.5 for the full specification). 

Firms in intermediate sector i maximize profits over time subject to their innovation possibility 

frontier. Again, homogeneity of degree one and perfect competition guarantee zero profits. 

 

2.4. The backstop technology 

In addition to these incremental investments in knowledge capital, we introduce gas-fired electricity 

generation technologies with CCS (henceforth referred to as the CCS technology) as a backstop 

technology in the CO2-intensive electricity sector (CIE). The CCS technology is considered to be a 

perfect substitute for gas-fired electricity generation technologies without CCS, but is not yet 

competitive. The CCS technology is characterized by a function of knowledge capital, physical capital 

( ), labor ( ), intermediate natural gas inputs from the energy sector ( ), associated CO2 

emission rights ( ), intermediate electricity inputs ( EL ) and an Armington (1969) aggregate of 

other intermediate inputs ( ). Formally for a firm in the CO2-intensive electricity sector:  

K L NRGY

EM
A

( )( )1,, ,=  1 ,

H
HH H

i ti t i i t i i tY H H KLEM
H ρ

ρ ρα α+ −  CIEi =  (4)

but now where: 

( ), , ,
K L Y EM EL A

i t t t NRG t i t t i tKLEM K L Y EM EL Aα α α α α α= + + + + + ,

                                                          

 (5)

and where the value shares sum up to one. Assuming fixed proportions between inputs other than 

knowledge capital ensures that the CCS technology is specified as a discrete technology. We assume 

that engineers and scientists working in conventional power plants in the CO2-intensive electricity 

sector would also be involved in applying the CCS technology and the same type of knowledge capital 

can therefore be used for both technologies.3 Figure 1 illustrates the production structure and the 

specification of technical change in our model. 

 

 

 
 
 
 
 
 
 
 

 
3 Firms in the CO2-intensive electricity sector thus invest in the type of knowledge capital also of use in the CCS technology. 
For an alternative specification in which the backstop technology uses a separate type of knowledge capital, of which the 
corresponding investment’s effectiveness is uncertain, see Bosetti and Tavoni (2007) in a different model setup.  
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Figure 1. Production structure and specification of technical change 

 Sectoral output 

Notes: The specifications have been simplified for illustrative purposes. Please see equations A.1 through A.5 in Appendix 
A for the full specifications. The dotted arrows represent the technology externalities and σ denotes the substitution 
elasticities in production. 

 

 

2.5. Equilibrium and growth 

We solve the model so that each agent’s decisions are consistent with welfare maximization in the case 

of the representative consumer and profit maximization in the case of firms in the intermediate and 

production sectors. When income is balanced and markets clear at all points in time as well, the output, 

price and income paths constitute an equilibrium. Markets for production factors and final goods are 

perfectly competitive but initially there is no market for CO2 emission rights. The technology 

externalities support increasing returns in the production and innovation possibility frontiers and cause 

private and social returns to knowledge capital to diverge. 

Economic growth reflects the growth rates of the labor supply and stocks of physical and 

knowledge capital. Growth of the labor supply is exogenous and constant over time (see equation 

A.33). Growth rates of both capital stocks stem from endogenous saving and investment behavior (see 

equations A.4 and A.6). The economy achieves balanced growth over time with the stocks of physical 

and knowledge capital growing at the same rate as the labor supply.  

 

σ = 1
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CO2-intensive 
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knowledge capital 
Intermediate energy  

inputs 

Fossil 
fuels 

CO2 emission 
rights 

Without CCS With CCS 
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σ = ∞

σ = 0 
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3. Model calibration  

In this section, we describe the calibration of our model in which we pay special attention to the 

accounting of knowledge capital and the CCS technology. Computable general equilibrium models 

that build on input-output tables as part of the national accounts typically have difficulties accounting 

for knowledge since national input-output tables extended with satellite accounts on knowledge flows 

are scarce. Since investment data on knowledge capital that is consistent with the system of national 

accounts is presently available in the Netherlands, we calibrate our model to the Dutch economy. We 

describe our accounting for knowledge capital in Section 3.1. In Section 3.2 we present the data and 

central parameter values used in the model and in Section 3.3 we describe the calibration of the CCS 

technology.  

 
3.1. Knowledge capital accounting 

Knowledge capital accounting requires the identification and capitalization of knowledge flows and 

subsequent incorporation of these flows in the national accounting matrix (Statistics Netherlands, 

2000). The UN expert group on the measurement and treatment of non-financial assets focuses on the 

recording of R&D and intangible capital.4 We take a slightly broader perspective on knowledge and, 

besides expenditures on R&D, identify investments in information and communication infrastructure 

(ICT) as a knowledge flow. ICT is included because of its role in disseminating and storing 

knowledge. ICT is therefore an important part of the infrastructure required for knowledge to be 

productive (Haan and Rooijen-Horsten, 2004). A subsequent step involves capitalization of the 

selected knowledge flows so that we can record services derived from the knowledge stocks in 

separate arrays in the national accounting matrix. We capitalize knowledge flows into a single stock. 

An additional (column) account then registers investments in the stock of knowledge capital whereas 

an additional (row) account registers the derived services in the national accounting matrix. Originally, 

investment in ICT is reported as investment and expenditures on R&D are reported as derived 

services. Regarding the capitalization itself, we use the perpetual inventory method, which is a 

commonly used method to measure capital stocks and is in line with, for instance, the Frascati manual 

for surveys on R&D (OECD, 2002). A key parameter in the perpetual inventory method is the 

depreciation rate, for which additional information is required. We assume the Dutch economy to be 

on a steady state in 1999, which implies a fixed relation between investments in and services derived 

from the sector-specific stocks of knowledge capital. This relation then gives us the total column and 

row accounts for knowledge capital stemming from the two knowledge flows.  

To avoid double counting of the knowledge flows, we debit selected entries of the national 

accounting matrix. This debiting is straightforward for expenditures on ICT: since investments in ICT 

are originally reported as investments in physical capital, we debit the investment (column) account 

                                                           
4 This group is better known as the Canberra II Group and is formed as part of the process of updating the 1993 System of 
National Accounts. 
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with the amounts of investment in ICT. However, debiting is less straightforward for expenditures on 

R&D as the intermediate goods matrix of the national accounting matrix needs to be debited. In this 

case, we need to make an assumption as to which entries of the intermediate goods matrix to debit. 

One can either assume that R&D leads mostly to disembodied knowledge or that it leads to knowledge 

embodied in tangible goods and services.5 If we assume that knowledge is embodied, the intermediate 

goods matrix can be debited in a straightforward manner proportionally to the intermediate input 

shares in total output of the sectors (see Terleckyj, 1974). The former assumption, however, 

necessitates the additional step of creating an interindustry technology matrix to debit the intermediate 

goods matrix proportionally to an R&D indicator such as the number of patents that a sector 

manufactures and uses (see e.g. Scherer, 1982). Since the superiority of using R&D indicators is not 

immediately clear and their availability is typically patchy for non-industrial sectors such as services, 

we follow Terleckyj (1974) and use intermediate input shares for our purposes. We balance the 

national accounting matrix by adjusting the (row) account for labor.  

 

3.2. Data and parameter values 

Besides accounting for knowledge capital, we make further data adjustments to account for CO2 

emissions associated with energy use. We divide the electricity sector into CO2-intensive and non-CO2 

intensive electricity generation using techno-economic data for the key technologies that are sufficient 

to give an appropriate representation of both types of electricity generation (Böhringer et al., 2003). 

Table B.1 in Appendix B presents cost structures and market shares of the electricity generation 

technologies in the Netherlands. Further, we obtain data on fossil fuel inputs in the Netherlands from 

the GTAP-EG database (Paltsev and Rutherford, 2000) and match this data with CO2 emission data for 

the Netherlands (Koch et al., 2002). Table B.2 presents the resulting national accounting matrix and 

Table B.3 reports factor and CO2 intensities. 

Turning to model parameters, we use the national accounting matrix of the base year to calibrate 

the parameters of the functional forms from a given set of quantities, prices and elasticities. We base 

our choice of elasticities and other parameter values on reviews of the relevant literature (see Tables 

A.5 and A.6). The substitution elasticity in discounted welfare ( ρ ) is assumed and lies between 

smaller values typically found in time series studies, e.g. Hall (1988), and larger values typically found 

in studies that also exploit cross-sectional data, e.g. Beaudry and Wincoop (1996). We obtain the 

substitution elasticities in production from the TaxInc model (Statistics Netherlands, 1990). We use 

the substitution elasticity between knowledge capital and remaining inputs ( Hσ ) from Goulder and 

Schneider (1999). The substitution elasticity in aggregate electricity production ( ELσ ) is assumed. We 

assume a 5 percent interest rate (r), a 5 percent depreciation rate of physical capital ( Kδ ) and a 25 

percent depreciation rate for knowledge capital ( Hδ ). Regarding the latter depreciation rate, Pakes 

                                                           
5 See van Pottelsberghe de la Potterie (1997) for a more detailed discussion of both assumptions. 
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and Schankerman (1979) study patent renewals in the United Kingdom, Germany, France, the 

Netherlands and Switzerland and find a point estimate for the depreciation rate of 25 percent with a 

confidence interval between 18 and 35 percent. This estimate is consistent with data on life spans of 

applied R&D expenditures, which suggests an average service life of four to five years. In addition, we 

assume a coefficient value for the technology externality in innovation (ξ ) of 20 percent, being the 

difference between the private and social returns to knowledge capital. The former is at least equal to 

the 25 percent depreciation rate whereas estimates of the latter lie in the range of 30-60 percent (see 

e.g. Mansfield et al., 1977; or Jones and Williams, 1998). We base the coefficient value for the 

technology externality in production (γ ) on Coe and Helpman (1995), who estimate the elasticity of 

R&D stocks on total factor productivity at 9 percent for non-G7-OECD countries. Together with the 

knowledge capital accounting, these two parameter values provide the empirical basis for the 

technology externalities. Finally, we consider a 42-year time horizon defined over the years 1999 

through 2040 and calibrate the model to a steady-state growth rate (g) of 1.5 percent.  

 

3.3. Calibration of the CCS technology 

Electricity generation technologies fired by natural gas and coal are being used for respectively base- 

and mid-load electricity demand in the Netherlands. Table 1 shows the expected costs of the electricity 

generation technology fired by natural gas with CCS in the Netherlands.6 These costs are based on a 

natural gas combined cycle and include cost estimates for CO2 capture, but not storage. We assume 

that all CO2 captured in the Netherlands can also be stored safely for a prolonged period of time and 

we use a cost estimate of 5 €/t CO2 stored, which includes pipeline transport up to 500 kilometers. 

Finally, we incorporate transmission and distribution costs to make a clean comparison with the cost of 

conventional electricity in the model.  
 

                                                           
6 A much more detailed comparison of the various CCS technology options for The Netherlands can be found in Damen et al. 
(2006). 
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Table 1    Cost of electricity with CO2 capture and storage (CCS) in the Netherlands (€ct/kWh) 

  Without With 
  CCS CCS 

Electricity generation and CO2 capture    
   Capital   1.5 
   Fuel   3.0 
   Operation and maintenance   0.5 
CO2 storage   0.2 
Transmission and distribution   2.9 
Total     7.5 8.1 
Markup (%)  0   8 
CO2 capture rate (%)  0 85 

Notes:  The CCS technology is based on a natural gas combined cycle, which is the predominant electricity technology in the 
Netherlands. Fuel costs of natural gas are based on 4€/GJ and storage costs are based on 5 €/t CO2. We draw on Damen et al. 
(2006) for CCS related data, IEA (1999) for transmission and distribution cost shares and Eurostat for the cost of 
conventional electricity. 
 

Overall, electricity generated by the natural gas combined cycle with CCS is 8 percent more 

expensive than the cost of conventional electricity. This estimate corresponds with other studies (see 

e.g. McFarland et al., 2004). Yet, since the components of CCS are in various stages of development 

and none of these electricity generation technologies have yet been built on a full scale with CCS, 

ultimate costs of the CCS technology cannot be stated with certainty. Neither do we know its full 

potential with precision. We address both these uncertainties in Section 4.5 below. Nevertheless, we 

assume that further technical change will bring down costs or increase its potential or both over time. 

Finally, we assume that adoption can be immediate once the CCS technology becomes competitive to 

keep our policy simulation comparison focused on the implications of the (non-) anticipation 

assumption for the cost-effectiveness of CO2 emission trading schemes.7 

 

4. Simulations  

We distinguish two simulations with respect to the anticipation of competitiveness of the CCS 

technology as a radically new CO2 abatement technology. In simulation ANT, competitiveness of the 

CCS technology is anticipated. In simulation UNANT, however, such competitiveness is not 

anticipated. To ensure comparability of the welfare results between both simulations, we partition the 

model for simulation UNANT into one version for the period before the arrival of the competitive CCS 

technology (henceforth referred to as first period) and another version for the period after its arrival 

(henceforth referred to as second period). The exact arrival date is taken from simulation ANT and this 

date determines the exact periods of the partitioned model versions for simulation UNANT. The 

                                                           
7 In reality, adoption of new technologies tends to be a more gradual process. The typical adoption path is S-shaped over 
time, rising only slowly in the beginning, then rising rapidly for a couple of years and finally slowing down as the technology 
matures and the market becomes saturated (Geroski, 2000).  

 13



UNANT model version for the first period is calibrated to the regular starting values in 1999, but 

without the CCS technology being an option in the model. The UNANT model version for the second 

period, however, is calibrated to the equilibrium values of the first period at the date of arrival, but 

now with the CCS technology being a competitive electricity generation technology in the CO2-

intensive electricity sector. As the CCS technology is not an option in the first period and the second 

period is only specified from the date of arrival onward, competitiveness of the CCS technology 

cannot be anticipated in advance.  

For each simulation, we then analyze cost-effectiveness of an environmental policy that 

achieves a 40 percent reduction in cumulative emissions as counted from the year 2007, with the 

policy being implemented until the end of our model horizon. We measure the emission reduction 

relative to the no-policy reference case. The emission reduction approximates stabilization of CO2 

emissions at 6 percent below 1990 levels for the Netherlands, as agreed upon in the Kyoto protocol. 

This assumes the stabilized level would also apply in post-Kyoto commitment periods (i.e. after 2012) 

to the end of the model horizon. Our environmental policy takes the form of CO2 emission trading 

schemes (i.e. CO2 emission constraints) and the concomitant CO2 shadow prices are determined 

endogenously in the model (see equations A.1, A.29 and A.38). We follow Otto et al. (2006) and Otto 

and Reilly (2006) and differentiate the CO2 trading schemes according to the characteristics of the 

sectors (CO2-intensive or non-CO2 intensive). We label the agriculture sector, non-CO2 intensive 

industries and services, and the non-CO2 intensive electricity sector as non-CO2 intensive sectors and 

CO2-intensive industries, the trade and transport sector, the energy sector and the CO2-intensive 

electricity sector as CO2-intensive sectors. We then conduct a gridded search across the parameter 

space of the trading schemes to find the cost-effective differentiation between CO2-intensive and non-

CO2 intensive sectors. Specifically, we vary the exogenous CO2 emission constraint for the non-CO2 

intensive sectors and compute the corresponding constraints for the CO2-intensive sectors that are 

necessary for total emissions in production to be reduced by 40 percent. This way, we obtain multiple 

sets of differentiated CO2 emission constraints. We subsequently use the model to compute the general 

equilibrium result associated with each set of differentiated constraints and identify the cost-effective 

set. To avoid leakage of CO2 emissions to consumption, we also abate these emissions using a 

separate, but otherwise identical quantity constraint (see equations A.14, A.28 and A.37). To avoid 

leakage of CO2 emissions to other countries, we assume trading partners of the Netherlands to 

introduce similar environmental policies. The Armington specification, as opposed to a Heckscher-

Ohlin specification, closes international trade in a way that limits this leakage effect (see equations A.8 

and A12). Besides studying the cost-effective CO2 emission trading schemes in Section 4.1, we 

explore their implications for the direction of technical change, the production structure, and 

discounted welfare in Sections 4.2 through 4.4 and test the sensitivity of our results in Section 4.5. 
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4.1. Cost-effectiveness of the CO2 emission trading schemes in both simulations 

As a first result, we find that the CCS technology becomes competitive in the year 2022 under the 

cost-effective CO2 emission trading schemes in simulation ANT and impose this arrival date as an 

exogenous assumption in simulation UNANT. Table 2 shows the corresponding CO2 shadow prices. 

We find that CO2 shadow prices are higher in the first period (i.e. before the CCS technology is 

competitive) in simulation UNANT than they are in simulation ANT. In the second period (i.e. after the 

CCS technology has become competitive), however, not all shadow prices remain higher in simulation 

UNANT than in ANT. Indeed, the shadow price in the CO2-intensive sectors is now relatively lower in 

simulation UNANT. Anticipation versus non-anticipation of the CCS technology’s competitiveness 

explains this result. In simulation ANT, agents anticipate the competitiveness of the cheap CO2 

abatement option in the future and find it cost-effective to postpone some of the emission reduction 

until the CCS technology is competitive and abatement costs are lower. In simulation UNANT, agents 

do not anticipate this competitiveness, therefore do not initially postpone some of the emission 

reduction and thus initially reduce their emissions more compared to simulation ANT. Because of the 

relatively higher emission reductions in the first period, however, emission reductions can be lower in 

the second period in simulation UNANT than in simulation ANT. With hindsight, the CO2 emission 

trading schemes have been too stringent in the first period in simulation UNANT and can now be 

relaxed somewhat in the second period. This result is in line with the theoretical findings by Dasgupta 

and Heal (1974) and Dasgupta and Stiglitz (1981) that uncertainty in the arrival date of the backstop 

technology leads to more conservation in the period before the backstop technology has arrived.8  

 
Table 2    Cost-effective CO2 shadow prices in both simulations 

Simulation Shadow prices (€/t CO2) 

 CO2 Non CO2 
 intensive intensive 

REF          Reference case of no policy   0.0   0.0 
ANT          Competitiveness of the CCS technology is anticipated 11.9   0.6 

UNANT    Competitiveness of the CCS technology is unanticipated   
 First period before the CCS technology is competitive 15.5 10.6 
 Second period after the CCS technology is competitive   7.7   6.5 

 
 

 

                                                           
8 If the arrival date of the backstop technology is certain, Dasgupta and Stiglitz (1981) find it optimal to have the resource 
depleted by the arrival date. If this date is uncertain, however, they find it optimal to be prudent and maintain a positive stock 
until the backstop technology has arrived. A higher discount rate that includes a penalty for when one has depleted the 
resource before the backstop technology has arrived is the certainty equivalent rate and leads to the same prudence result 
(Dasgupta and Heal, 1974; Dasgupta and Stiglitz, 1981).      
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Furthermore, we find that it is cost-effective in both simulations to differentiate the CO2 emission 

trading schemes between CO2-intensive and non-CO2 intensive sectors such that shadow prices are 

relatively higher in the former. In principle, cost-effectiveness of emission trading schemes requires 

equalization of marginal abatement costs across sectors and therefore uniform price instruments. Yet, 

if there are technology externalities such as knowledge spillovers or learning, it has been shown that it 

becomes more cost-effective to differentiate the trading schemes by sectors, according to the relative 

difference in technology externalities (see Otto et al., 2006  for a detailed explanation). Specifically, 

two effects determine the equilibrium differentiation by sectors in our model. On the one hand, 

technology externalities have an indirect and negative effect on abatement costs in our model and the 

externalities hence provide an incentive to differentiate the emission trading schemes in such a way 

that sectors with a relatively high level of technology externalities face the relatively high CO2 shadow 

prices (Bramoullé and Olson, 2005; Rosendahl, 2004). Such differentiation shifts some of the 

abatement burden toward the sectors with the relatively high levels of technology externalities, leading 

to enhanced productivity of abatement efforts in these sectors and thus making best use of this 

abatement cost effect. On the other hand, technology externalities also have a direct and positive effect 

on productivity and output levels in our model and the externalities hence provide an incentive to 

differentiate emission trading schemes in such a way that sectors with a relatively low level of 

technology externalities face the relatively high CO2 shadow prices (Otto et al., 2006). Such 

differentiation shifts some of the abatement burden away from the sectors with the relatively high 

levels of technology externalities and thus allows these sectors to make best use of this production cost 

effect. As the technology externalities have a direct effect on total factor productivity and only an 

indirect effect on abatement costs in our model, the production cost effect is strong relative to the 

abatement cost effect. We therefore find it cheaper to let the CO2-intensive sectors, with relatively low 

levels of technology externalities, face a relatively high CO2 shadow price and thus bear relatively 

more of the abatement burden.9 Essentially, the policy is one of encouraging growth in sectors with 

relatively high levels of technology externalities and discouraging growth in those with relatively low 

levels of technology externalities. 

 

4.2. Effects on the rate and direction of technical change in both simulations 

The rationale behind the different levels of technology externalities between sectors is that policy 

instruments aimed at CO2 emission reduction, such as our emission trading schemes, tend to direct 

technical change toward non-CO2 intensive sectors because of their relatively low CO2 intensities, 

yielding relatively higher levels of technology externalities in these sectors (see for a detailed 

exposition of the equilibrium bias of technical change Otto et al., 2007). The electricity sectors, for 

example, redirect their R&D toward biomass and wind technologies resulting in relatively more 

                                                           
9 Taking this finding to its logical conclusion implies that the first best set of CO2 shadow prices are sector specific, not just a 
single price for all CO2-intensive or non-CO2 intensive sectors.  
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knowledge spilling over from the development of these technologies than fossil fuel electricity 

technologies. Figure 2 shows the effects of the cost-effective CO2 emission trading schemes on the rate 

and direction of technical change in all CO2-intensive and non-CO2 intensive sectors in our model. We 

find that indeed the non-CO2 intensive sectors overall invest more in knowledge capital compared to 

the CO2-intensive sectors as well as compared to the reference case. A notable change in this 

investment pattern occurs during the first years after the CCS technology has become competitive, 

since more electricity (and hence energy) can now be generated in a non-CO2 intensive manner and 

since the economy is now able to climb back to a slightly higher steady state than before the 

competitiveness of the CCS technology. Especially the CO2-intensive electricity sector invests heavily 

in its stock of knowledge capital during this decade to be able to match supply to increased demands 

for its electricity that comes with both the CCS technology and the higher steady state. This change in 

the investment pattern corresponds well with the theoretical finding by Kamien and Schwartz (1978) 

that shows R&D efforts for the backstop technology to not begin immediately and to be single-peaked.  
 

Figure 2    Effects of the cost-effective CO2 emission trading schemes on investments in knowledge 

capital in both simulations 
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Notes: R is investment in knowledge capital, CI refers to the CO2-intensive sectors, NCI refers to the non-CO2 intensive 
sectors, REF refers to the reference case of no policy, ANT refers to the simulation where competitiveness of the CCS 
technology is anticipated and UNANT refers to the simulation where competitiveness of the CCS technology is not 
anticipated. 
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Figure 2 also shows that this investment pattern is more pronounced if competitiveness of the 

CCS technology is not anticipated. As discussed above, agents then do not initially postpone some of 

the emission reduction leading them to direct relatively more knowledge capital investments toward 

non-CO2 intensive sectors in the first period before the competitiveness of the CCS technology than if 

they could anticipate its competitiveness. In effect, the non-CO2 intensive sectors enjoy relatively 

higher levels of technology externalities, exploit therefore more of the production cost effect and lift 

the whole economy to a slightly higher steady state in the first period. We find this net result despite 
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the decrease in the level of technology externalities and abatement cost effect in the CO2-intensive 

sectors. After the CCS technology has become competitive in the second period, agents invest more in 

knowledge capital, now that the economy is in a higher steady state in simulation UNANT compared to 

simulation ANT. All sectors benefit from this expansion except for the non-CO2 intensive electricity 

sector, which sees some of its knowledge capital investments redirected to the CO2-intensive 

electricity sector for the benefit of the CCS technology.  

 

4.3. Effects on production in both simulations 

Effects of the cost-effective CO2 emission trading schemes on the production structure are similar to 

the effects on investments in knowledge capital discussed above. Most notably, our emission trading 

schemes encourage and discourage growth according to CO2 intensity with CO2-intensive sectors 

decreasing their overall production relative to the reference case and non-CO2 intensive sectors 

increasing their overall production. Figure 3 shows this pattern of biased growth for all production 

sectors in simulation UNANT. The energy sector, for example, has a relatively high CO2 intensity, 

faces the higher CO2 shadow price and therefore decreases its production significantly. The opposite 

applies to the non-CO2 intensive industry and services sector. Figure 3 also shows a readjustment of 

production levels to the higher steady state that the competitiveness of the CCS technology allows for 

from 2022 onward. This readjustment is especially visible in the energy sectors. The CO2-intensive 

electricity sector, for example, drastically increases electricity generation to match supply to increased 

demands for its electricity that come with both the CCS technology and the higher steady state. Being 

the supplier of fossil fuels for the CO2-intensive electricity sector, the energy sector follows suit. To 

some extent, the increase in the CO2-intensive electricity sector’s output comes at the cost of the non-

CO2 intensive electricity sector’s output. Consequently, the electricity market share of the latter falls 

back from 14.2 percent in 2021 to 12.2 percent in 2040, which is closer to the 10 percent share in the 

reference case. 

Although not shown in Figure 3, these effects of the cost-effective CO2 emission trading schemes 

on the production structure are more pronounced in simulation UNANT than in simulation ANT. As 

discussed above, agents do not postpone some of the emission reduction if they do not anticipate the 

CCS technology becoming competitive. They therefore steer the economy more forcefully in a non-

CO2 intensive direction in the first period in simulation UNANT and consequently to a slightly higher 

steady state and associated production levels in the second period. 
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Figure 3    Effects of the cost-effective CO2 emission trading schemes on production in simulation UNANT 
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Notes: Y is production, AGR refers to the agricultural sector, CII refers to CO2-intensive industries, TT refers to the trade and 
transport sector, SER refers to non-CO2 intensive industries and the services sector, NRG refers to the energy sector, CIE refers to 
the CO2-intensive electricity sector, NCIE refers to the non-CO2 intensive electricity sector, REF refers to the reference case of no 
policy, ANT refers to the simulation where competitiveness of the CCS technology is anticipated and UNANT refers to the 
simulation where competitiveness of the CCS technology is not anticipated. 
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4.4. Effects on welfare in both simulations 

As a consequence of our steady state result, we find that the discounted welfare loss of the cost-

effective CO2 emission trading schemes relative to the reference case is reduced by 0.11 percentage 

points from 1.89 percent in simulation ANT to 1.78 percent in simulation UNANT. True, merely adding 

the CCS technology as an abatement option in the model leads to a greater reduction in the discounted 
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welfare loss of the emission trading schemes: it decreases from 2.37 percent in a hypothetical 

reference case of cost-effective CO2 emission trading schemes and no CCS technology option to the 

1.89 percent in simulation ANT. But by not simply postponing the emission reduction until a silver 

bullet technology comes along, agents direct technical change even further toward non-CO2 intensive 

sectors and therefore reduce the welfare losses of the emission trading schemes even further. 

 

4.5. Uncertainty analysis 

To account for parameter uncertainties regarding the competitiveness of the CCS technology, we 

perform a simple Monte Carlo uncertainty analysis that quantifies the overall uncertainty of our model 

outputs in relation to these parameter uncertainties. The Monte Carlo analysis involves random 

sampling from distributions of the selected parameters and successive runs of the original model. To 

obtain a good approximation of the output distribution, we run the model for 1000 samples. As the 

specific parameters subject to analysis we select the cost markup of the CCS technology over the cost 

of conventional electricity and the CO2 capture rate of the CCS technology. Values of both parameters 

are uncertain and are expected to have a direct effect on the competitiveness of the CCS technology 

and hence our model and simulation results. The cost markup ranges between 7 and 15 percent and the 

capture rate between 85 and 95 percent. These ranges are in line with recent survey studies (Damen et 

al., 2006; IPCC, 2005). Since we have information only on the range of possible values for these 

parameters, but not on their distribution, we draw from a uniform distribution.  

Figure 4 shows the results of the Monte Carlo analysis with respect to the arrival date of the CCS 

technology, CO2 shadow prices and discounted welfare. The plots consist of boxes that show the 

interquartile ranges of these model outputs with the left and right edges drawn at the 25th percentile 

and 75th percentile (hinges). Whiskers extend from each hinge to the minimum and maximum 

observed output values. Squares indicate median values and diamonds show the original values as 

found in the previous sections. Although we observe some spread in the selected model outputs, we 

find that our main results are robust within the ranges of the markup and capture rate parameters of the 

CCS technology. Turning to the first of these model outputs, we find that the interquartile range for the 

arrival date of the CCS technology comprises 5 years from 2024 to 2028 and that the median date of 

arrival is 4 years later than the original year 2022. These findings confirm an expected sensitivity of 

the competitiveness of the CCS technology to precise values of the markup and capture rate 

parameters. These findings also imply that our chosen estimates of these parameter values, although in 

line with related studies, lead to a relatively optimistic picture regarding the technology’s 

competitiveness. CO2 shadow prices are not greatly affected by the different parameter values, 

however. The CO2 shadow prices remain higher in the first period in simulation UNANT compared to 

both the second period and simulation ANT. Also, the shadow prices remain relatively higher in the 

CO2-intensive sectors in both simulations in all samples. Finally, the interquartile range for discounted 

welfare is large and amounts to over 0.15 percentage points in both simulations, confirming that the 
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discounted welfare loss of our emission trading schemes depends to a large extent on the CCS 

technology being an abatement option in the model or not and from exactly which year onward. Yet, 

the discounted welfare loss remains relatively smaller if competitiveness of the CCS technology is 

unanticipated in all samples.  

 
 

Figure 4    Monte Carlo uncertainty analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                

Notes: CI refers to the CO2-intensive sectors, NCI refers to the non-CO2 intensive sectors, ANT refers to the simulation where 
competitiveness of the CCS technology is anticipated, UNANT refers to the simulation where competitiveness of the CCS 
technology is not anticipated, 1st period refers to the period before the CCS technology is competitive and 2nd period refers to the 
period after the CCS technology has become competitive. Boxes show the interquartile ranges of the selected model outputs with 
the left and right edges drawn at the 25th and 75th percentile. Whiskers extend from the edges to the minimum and maximum 
observed output values. Squares denote median values and diamonds denote the original values as found in Section 4.2. If both 
the median and original values overlap, only the median is shown. CO2 shadow prices in the first period of simulation UNANT are 
unaffected by the Monte Carlo analysis as there is no CCS technology option in this period.  
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5. Conclusions 

Technical change as a pollution abatement option has received much attention in the environmental 

economic literature since it has been found that technology externalities associated with technical 

change can improve the cost-effectiveness of environmental policies such as trading schemes to abate 

CO2 emissions. Typically implicit in this finding is the assumption that one can foresee and anticipate 

all new technologies. Given the typically large technological uncertainties, however, this is not always 

a realistic assumption and new technologies can still come as a surprise. As a caveat, we did not study 

the role technology policy can play to bridge the gap between private and social returns to technical 

change or to overcome related uncertainties. Instead, we first addressed more general questions related 

to technological uncertainty and the design of cost-effective CO2 emission trading schemes: What are 

the corresponding CO2 shadow prices in both the case of a new technology being anticipated and not 

anticipated? As a result, what are the effects on the rate and direction of technical change in both 

cases? In which case is the discounted welfare loss of the CO2 emission trading scheme the lowest? 

To answer these questions, we developed a dynamic CGE model in which we specified CCS as a 

backstop technology in the CO2-intensive electricity sector that becomes competitive at some point in 

the future. A comparison between a simulation where competitiveness of the CCS technology is 

anticipated and a simulation where competitiveness is not anticipated revealed the implications of 

uncertainty in the arrival date of a competitive CCS technology for the design of cost-effective CO2 

emission trading schemes.  

We find that the discounted welfare loss associated with the cost-effective CO2 emission trading 

schemes is lower in the simulation in which competitiveness of the CCS technology is unanticipated. 

CO2 shadow prices are higher in the period before the CCS technology becomes competitive in this 

simulation relative to the simulation where competitiveness is anticipated, reflecting a shift of 

emission reduction efforts to earlier years. By not simply postponing emission reduction until the CCS 

technology becomes competitive in the electricity sector, one relies more on economy-wide technical 

change and its welfare-enhancing technology externalities, thus allowing for a slightly higher steady 

state in this simulation. Regarding the steady state, we find in both simulations that it is characterized 

by technical change which is directed toward sectors with relatively low CO2 intensities enjoying 

higher levels of technology externalities than the CO2-intensive sectors. CO2 emission trading schemes 

are thus more cost-effective if they are differentiated in such a way that the CO2-intensive sectors face 

the relatively high CO2 shadow prices. Essentially, the policy is one of encouraging growth in sectors 

with relatively high levels of technology externalities and discouraging growth in those with relatively 

low levels. Our Monte Carlo uncertainty analysis confirms the robustness of our findings to an 

uncertain cost and performance parameterization of the CCS technology although the precise 

quantitative findings vary considerable with the uncertain parameterization. 

Our findings underline once more the importance of technical change as an abatement option; not 

only through radically new abatement technology, but also in the form of incremental technical 
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change. We should be careful not to become complacent by postponing some of our emission 

reduction efforts awaiting the silver bullet technology on the horizon in the energy sector. Acting in 

such a way is not advisable given the large uncertainties that typically surround new technologies. 

Besides spreading the risks that some technologies might fail, diversifying the investment portfolio can 

lead to lower welfare costs of environmental policy because of the technology externalities associated 

with technical change. Finally, our case of the CCS technology shows the political economic 

limitations in designing a differentiated policy instrument. With the CCS technology deployment, the 

CO2-intensive sectors become much less CO2-intensive, which blurs the traditional delineation of 

environmental policy along the lines of CO2 intensity. Environmental policy has to be flexible to take 

into account these technological developments. 
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Appendix A.  Structure of the model 

This appendix provides an algebraic summary of the model. We formulate the model as a mixed 

complementarity problem using the Mathematical Programming System for General Equilibrium 

Analysis (Rutherford, 1999), which is a subsystem of the General Algebraic Modeling System (Ferris 

and Munson, 2000). In this approach, three classes of equilibrium conditions characterize an economic 

equilibrium: zero profit conditions for production activities, market clearance conditions for each 

primary factor and good, and an income definition for the representative consumer. The fundamental 

unknowns of the system are activity levels, market prices, and the income level. The zero profit 

conditions exhibit complementary slackness with respect to associated activity levels, the market 

clearance conditions with respect to market prices, and the income definition equation with respect to the 

income of the representative consumer. The notation zΠ  denotes the zero profit condition for activity z 

and the orthogonality symbol  associates variables with complementary slackness conditions. For 

the sake of transparency, we use the acronyms CES (constant elasticity of substitution), CD (Cobb 

Douglas), and LT (Leontief) to indicate functional form. Differentiating profit and expenditure 

functions with respect to input and output prices provides compensated demand and supply 

coefficients (Hotelling’s lemma), which appear subsequently in the market clearance conditions. An 

equilibrium allocation determines production levels, relative prices, and incomes. The model is solved 

for a finite number of time periods. To avoid the consumption of the complete stocks of knowledge 

and physical capital in the last period, terminal constraints are necessary. We constrain the growth 

rates of investments in the last period to the growth rate of a quantity variable—in this case 

intratemporal utility. The advantage of these terminal constraints is that they impose balanced growth 

but neither specific stocks nor specific growth rates in the last period (Lau et al., 2002). These 

constraints therefore suit models in which growth rates are endogenously specified. We choose the 

price of discounted welfare as numeraire and report all prices in present values. Tables A.1 through A.6 

list the nomenclature. 

⊥

 

A.1. Zero profit conditions 

Production of goods: 

( ), , , , , , ;Y H KLEM H
i t i t i t i t i tH CES r p pγ σ−Π ≡ − ≥ 0       ,i tY⊥  1,..,i I= ;  1,..,t T= (A.1)

where: 

( )( ), , ,, , ; ;KLEM A KE KLE KLEM
i t i t i t t i ip CES p CES p w σ σ=    

( )( ), ,, , ; ;KE K EL FF E KE
i t t t i t i ip CES r CES p p σ σ=    
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, ,
FF
i t NRG tp p=  i=AGR,SER,TT,NRG 1,..,8t =  

( ), , , ;FF CO
i t NRG t t ip CES p p σ= AL FF  ,i CII CIE=   

( ), , ,FF EM
i t NRG t NCIp LT p p=  ,i AGR SER=  9,..,t T=  

( ), , ,FF EM
i t NRG t CIp LT p p=  ,i TT NRG=   

( ) ( )( ), , , , , ;FF EM COAL
i t NRG t CI t CI ip CES LT p p LT p p σ= EM FF ,i CII CIE =   

 

Production of electricity with the CCS technology: 

( ), , , , , , ;Y H KLEM H
i t i t i t i t i tH CES r p pγ σ−∏ ≡ − ≥ 0  tiY ,⊥  CIEi = ;  1,..,t T= (A.2)

where: 

( ), ,, , , , ,
KLEM K EL A
i t t t j t t i tp LT r w p p p=   NRGj = ;  1,..,8t =

( )A
ti

EL
t

EM
CItjt

K
t

KLEM
ti ppppwrLTp ,,, ,,,,,=   NRGj = ;  9,..,t T=

 

Aggregate production of electricity:  

( ), ; 0EL EL EL
t i t tCES p pσΠ ≡ − ≥  tEL⊥  i EL∈ ; 1,..,t T=  (A.3)

 

Investments in knowledge capital:  

, , 1 , , 1 0R H
i t i t i t i tR p pζ−

− +∏ ≡ − =  ,i tR⊥  1,..,i I= ;  1,.., 1t T= −

H

(A.4)

, , 1 , 0R T
i T i T i T iR p pζ−

−∏ ≡ − =  ,i TR⊥  1,..,i I=  

 

Stock of knowledge capital: 

( ), , ,1H H H H
i t i t i t 1p r pδ += + −  ,i tH⊥  1,..,i I= ;  1,.., 1t T= − (A.5)

, ,
H H T
i T i T i

Hp r p= +  ,i TH⊥  1,..,i I=   
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Investments in physical capital:  

( )( ), 1, , ;I K FDI A
t i t t t tCD p CES r p pσ +Π ≡ − = 0K  tI⊥  1,.., 1t T= −  (A.6)

( )( ), , , ;I K FDI A
T i T T TCD p CES r p pσΠ ≡ − = 0TK  TI⊥    

where domestic investment in physical capital is first combined with foreign direct investment into an 

Armington (1969) aggregate, satisfying investment demand for physical capital. 

 

Stock of physical capital:  

( ) 11K K K
t t t

Kp r pδ += + −  tK⊥  1,.., 1t T= −  (A.7)

K K T
T T

Kp r p= +  TK⊥    

 

Goods traded on domestic markets are combined with imported goods into an Armington aggregate, 

which satisfies demand for intermediate and final goods:  

( )( ), , , ,, ; ;A IM M A A
i t i t j t i i tCES p CES p pσ σΠ ≡ − ≥ 0  ,i tA⊥  

1,.., ; ;
1,..,

i I j
t T

E= ∉⎧
⎨ =⎩

 (A.8)

 

An exception is coal imports, which are directly used in certain CO2-intensive industries and the CO2-

intensive electricity sector: 

0≥−≡∏ COAL
t

FX
t

IM
t pp

COAL

 COAL
tIM⊥ 1,..,t T=  (A.9)

 

Imports of goods:  

, 0
YIM FX IM

i t t tp pΠ ≡ − ≥  ,
Y
i tIM⊥  1,..,i I= ;  1,..,t T= (A.10)

 

Foreign direct investment: 

0FDI FX FDI
t t tp pΠ ≡ − ≥  tFDI⊥  1,..,t T=  (A.11)

 

Exports of goods: 

( ),, 0
YEX EL FX

t t i t tCD p p pΠ ≡ − ≥  Y
tEX⊥  i EL∉ ; 1,..,t T=  (A.12)
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Exports of physical capital: 

K
tEX⊥  1,..,t T=  0

KEX K FX
t t tr p− ≥  Π ≡ (A.13)

Intratemporal utility: 

 

( )( ),, , ; ;W FX E YE A W
t t j t t W tCES p CES p p pσ σ − ≥ 0 tW⊥  j E∉ ; 1,..,t T=  Π ≡ (A.14)

E
W

where: 

( ),, ;E EL
t t NRG tp CES p p σ=   1,..t ,8=  

( )( ),, , ;EL EM
t t NRG t WES p LT p pEp C E

W  9,..,t T=  = σ
 

 

Intertemporal utility (discounted welfare): 

( ); 0U W U
tCES p pρ − =  Π ≡ U⊥   (A.15)

A.2. Market clearing conditions 

oods: 

 

G

, ,
R AI
i t i ttY R I

Π ∂Π∂Π
= + +∑, , ,

, , ,

, ,

         
Y

j t j t t i t
ij t j t j t

W EX
Yt t

t t
j t j t

A
p p p

W EX
p p

∂
∂ ∂ ∂

∂Π ∂Π
+ +
∂ ∂

 ,j tp⊥ j E ; 1,..,t T∉ =  (A.16)

, ,
, ,

, , ,

, ,

        
Y

R YI
i t i tt

j t j t t i t
ij t j t j t

W EX
Yt t

t t
j t j t

Y R I
p p p

W EX
p p

∂Π ∂Π∂Π
= + +
∂ ∂ ∂

∂Π ∂Π
+ +
∂ ∂

∑
 

,Y

,j tp⊥ j NRG= ; 1,..,t T=  

,
, ,

, , ,

R I EL
i t t t

j t j t t t
j t j t j t

Y R I
p p p

∂Π ∂Π ∂Π
= + +
∂ ∂ ∂

 EL ,j tp⊥  j EL∈ ; 1,..,t T  =

 

Electricity: 

,
,

YY EX W
i t Yt t

t i t tEL EL EL t
t t t

Y EX W
p p p
∂Π ∂Π ∂Π

= + +
∂ ∂ ∂∑  t

ELp⊥  1,..,t T=  EL
i

(A.17)
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Knowledge capital (in market): 

, , ,
,

,

H Y
i t i t i t

i tH H
i t

r H
Y

r rδ
∂Π

=
+ ∂

 ,
H

i tr⊥  1,..,i I= ; 1,..,t T=  (A.18)

Knowledge capital (in stock): 

 

, 1 0i t iH H= =  , 1
H
i tp =⊥  1,..,i I=  (A.19)

( ), , 1 , 11i t i t i tH H Rδ − −= − +  H
,
H
i tp⊥  1,..,i I= ; 2,..,t T=  

( ) , ,1 H
i i TTH H Rδ= − +  i T

TH
ip⊥  1,..,i I=  

 

Physical capital (in market): 

,
,

KYK I EX
i t Kt t t t

t i t tK K K K
it t t

r K I Y EX
r rδ

∂Π∂Π ∂Π
= + +

+ ∂ ∂ ∂∑  K
tr⊥  1,..,t T=  

r r
(A.20)

Physical capital (in stock):  

 

1 0tK K= =  1
K
tp =⊥   (A.21)

( ) 1 11t t tK K Iδ − −= − +  K K
tp⊥  2,..,t T=  

( )1 K
T TTK K I= − +  δ TKp⊥   

 

Labor: 

,
,

Y
i t

t i
i t

tw
∂Π

=
∂∑  tw⊥  1,..,t T=  L Y (A.22)

Coal (imports): 

 

,
,

Y
i tCOAL

t iCOAL
i t

tIM Y
p
∂Π

=
∂∑  t

COALp⊥  1,..,t T=  (A.23)
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Import aggregate: 

,
, ,

,

A
i tY

i t i tIM
i t

IM A
p
∂Π

=
∂

 ,
IM
i tp⊥  1,..,i I= ; 1,..,t T=  (A.24)

rmington aggregate: 

 

A

,
, ,

,

Y
i t∂Π

,
A
i tp⊥  1,..,i I= ; 1,..,t T=  i t i tA

i t

A Y
p

=
∂

 (A.25)

 

oreign investments: F

I
t∂Π

t tFDI
i t

FDI I
p

=
∂∑  FDI

tp⊥  1,..,t T=  (A.26)

 

oreign exchange: F

,
,

             

YYEX
Yt

K

COAL

IMEX
i tKt

t t tFX FX FX
it t t

IM FDI W
COALt t t
t t tFX FX FX

t t t

Y
i tBOP EX EX IM

p p p

IM FDI W
p p p

∂Π∂Π
−

∂ ∂ ∂

∂Π ∂Π ∂Π
− − −

∂ ∂ ∂

∑
FX
t

∂Π
= +

p⊥  1,..,t T=  (A.27)

 

CO  emissions in consum2 ption: 

9

WT
W t

tEM
t W

EM W
p=

∂Π
=

∂∑  EM
Wp⊥   

 

O2 emissions in production: 

(A.28)

C

,
YT
i tY ∂Π

= ,
9

c i tEM
i t c

EM Y
p= ∂∑∑  c

EMp⊥  ,c CI NCI=  (A.29)

 

tratemporal utility: In

U∂Π W
tp⊥  1,..,t T=  t W

t

W U
p

=
∂

 (A.30)
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Intertemporal utility (discounted welfare): 

U

BU
p

=  Up⊥   

.3. Income balance  

t
t

(A.31)

 

A

( ),0 0
TH TK

i i i
EM Y FX

t t c c t
i t c

B H p TH K p TK= − + − +∑ w L p EM p BO+ +∑ ∑  P∑  (A.32) 

 

s 

y of lab

L  

A.4. Endowment

Suppl or: 

( ) 1
01 t

tL g −= +  1,..,t T=  (A.33)

 

Balance of Payments: 

( )1t
1

0
t BOP−   1,..,t T=  BOP g= + (A.34)

 

A.5. Terminal constraints 

Terminal constraint for physical capital: 

1 1− −

=T T

T T

I W
I W

 TK⊥   

 capital: 

(A.35)

 

Terminal constraint for knowledge

,i T TR W
=  iTH⊥  

, 1 1i T TR W− −
 (A.36)

 

.6. CO2 emission constraints 

  

 

A

CO2 emission constraint in consumption: 

( ) ( ) 1
0

9
1 1

T
tW W

t
EM a g EM−

=

= − +∑  (A.37)
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CO2 emission constraint in production: 

c  ( ) ( ) 1
T

tY Y−
0

9

1 1c c
t

EM a g EM
=

= − +∑  ,c CI NCI=  (A.38)

where:  

 

A.7. Nomenclature 
 
Table A.1    Sets and indices 

Sectors and goods (aliased with j) 

( ) ( ) 1
0

9
1  1

T
tY Y

c c
c c t

EM a g EM−

=

= − +∑ ∑∑  

 
 

i  , , , , , ,AGR IND TT SER NRG CIE NCIE  

E  , ,NRG CIE NCIE  Energy (sectors) 

Electricity (sectors) 

Fossil fuel (sectors) 

Sectors according to CO2 intensity 

EL  ,CIE NCIE  

FF  ,COAL NRG  

c  : , ,CI IND TT ,
: , ,

NRG CIE
NCI AGR SER NCIE

 

t  1,..,T  Time periods 

 

Table A.2    Activity variables 

Production of goods in sector i at time t ,i tY  

tEL  Aggregate production of electricity at time t 

Stock of knowledge capital in sector i at time t 

Term al stock of knowledge capital in secto

,i tH  

iTH  in r i  

,i tR  Investments in knowledge capital in sector i at time t 

time t tK  Stock of physical capital at 

TK  Terminal stock of physical capital 

tI  Investments in physical capital at time t 

,i tA  Armington aggregate of domestic and foreign intermediate goods in sector i at time t 

,
Y
i tIM  Aggregate imports of goods in sector i at time t 

COAL
tIM  Aggregate imports of coal at time t 

tFDI  Foreign direct investment at time t 

Aggregate exports of goods at time t Y
tEX  

 33



K
tEX  Aggregate exports of physical capital at time t 

tW  Intratemporal utility at time t 

U  Intertemporal utility (discounted welfare) 

 

Table A.3    Income and endowment variables 

B  Budget of the representative agent 

0BOP  I estic representative agent  nitial Balance of Payments of the dom

tBOP  B ive agent at time t 

I al in sector i   

I

Initial endowment of labor 

alance of Payments of the domestic representat

0iH  nitial stock of knowledge capit

0K  nitial stock of physical capital  

0L  

tL  Endowment of labor at time t 

0
WEM  Initial allowances of CO2 emissions in consumption 

WEM  Overall allowances of CO2 emissions in consumption 

0
Y
cEM  Initial allowances of CO2 emissions in production sector c 

ions in production sector c Y
cEM  Overall allowances of CO2 emiss

 

Table A.4    Price variables (in present values) 
p  Prices 

FX
tp  Price of foreign exchange at time t 

EMp  Shadow prices of CO  emissions 2

tr  Rental rate of capital at time t 

tw  Wage rate at time t 
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Table A.5    Parameters 

Description Value 

a  Overall CO2 emissions reduction 0.40 

ca  CO2 emissions reduction in sector c Iterative 

γ  Coefficient of technology externality in production 0.09 

ξ  Coefficient of technology externality in innovation 0.20 

g  Growth rate 0.015 

r  Interest rate 0.05 
Kδ  Depreciation rate of physical capital 0.05 
Hδ  Depreciation rate of knowledge capital 0.25 

 
 
Table A.6    Elasticities 

Description Value 

Elasticity of substitution in discounted welfare  
ρ  Between time periods 0.5 

Elasticities of substitution in intratemporal utility  
YE
Wσ  Between energy and other goods  0.5 

E
Wσ  Between electricity and fossil fuels 0.7 

Elasticities of substitution in international trade  
Aσ  Between domestic and foreign commodities 4.0 

Elasticities of substitution in aggregate electricity production  
ELσ  Between CO2-intensive and non-CO2 intensive electricity  2.5 

Elasticities of substitution in production   AGR CII SER  TT NRG CIE NCIE 
Hσ  Between knowledge capital & rest  1.0 1.0 1.0 1.0 1.0 1.0 1.0 

KLEM
iσ  Between intermediate inputs & rest 0.4 0.5 0.7 0.7 0.9 0.1 0.1 

M
iσ  Between intermediate inputs  0.1 0.2 0.3 0.3 0.5 0.1 0.1 

KLE
iσ  Between labor and remaining inputs 0.3 0.3 0.4 0.4 0.5 0.1 0.1 

KE
iσ  Between physical capital and energy  0.7 0.7 0.7 0.7 0.1 0.7 0.7 

E
iσ  Between electricity and fossil fuels 0.5 0.5 0.5 0.5 0.1 0.5  

FF
iσ  Between fossil fuels 0.9 0.9 0.9 0.9 0.1 0.5  

Notes: Abbreviations of the sectors are: agriculture (AGR), CO2-intensive industry (IND), non-CO2 intensive industry and 
services (SER), trade and transport (TT), energy (NRG), CO2-intensive electricity (CIE) and non-CO2 intensive electricity 
(NCIE). 
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Appendix B.  Data  
 
 
Table B.1 Cost and market shares of electricity technologies (%) 
 Cost shares Market 

share 
 Physical 

Capital 
Labor Energy Intermediate 

inputs 
Total  

CO2 intensive       
 Natural gas fired 24.9   5.6 62.2   7.3 100.0 56.9 
 Hard coal fired 38.6   5.6 23.7   9.0   76.9 25.5 
 Oil fired 46.9   2.2 40.3 10.6 100.0  7.6 
Non CO2 intensive       
 Biomass 18.8   6.6  58.5   83.9  4.6 
 Nuclear 59.0   5.1  17.4   81.5  4.4 
 Wind 86.4 19.8   106.2  1.0 
Source: Böhringer et al. (2003) 
 

Table B.2 National accounting matrix with knowledge accounting for the Netherlands in 

1999 (billion euro) 

 AGR     CII  SER   TT   NRG   CIE  NCIE     EX       C        I       R       S        Total
AGR 16.8 0.1 0.1 2.3 0.0 <0.1 28.2 7.4 0.7 1.0 0.1 56.7
CII 0.9 5.9 1.8 11.1 0.2 0.1 0.1 33.2 4.0 0.3 4.9 <0.1 62.3
SER 0.6 0.8 4.1 5.6 0.3 <0.1 <0.1 79.9 7.1 0.5 1.2 <0.1 100.5
TT 4.4 5.9 18.8 103.1 1.3 0.7 0.1 30.8 160.9 89.4 22.3 0.2 437.8
NRG 1.0 1.3 2.0 2.1 4.5 0.9 9.9 5.4 0.1 0.8 0.1 28.0
CIE&NCIE 0.6 0.8 0.7 1.3 0.1 3.4 0.5 1.2 2.2 <0.1 0.4  11.1
Imports 14.3 21.0 13.8 60.3 6.2 1.3 62.9 23.6  0.3 203.6
Net taxes  0.7 0.1  1.0 4.2 4.6 0.4 <0.1    7.7
Labor 6.0 10.9 33.2 133.5 1.3 0.8 0.1    185.8
K 11.7 10.1 25.5 89.1 8.7 2.2 0.3 0.6 17.0 3.5   168.6
H 1.1 5.4 1.4 24.8 0.8 0.4 <0.1    33.9
Total 56.7 62.3 100.5 437.8 28.0 10.0 1.1 183.7 266.8 118.0 30.5 0.5 

Notes: Abbreviations are: exports (EX), consumption (C), investment in physical capital (I), Investment in knowledge capital 
(R), supply changes (S), services from physical capital (K), services from knowledge capital (H). Abbreviations of the sectors 
are: agriculture (AGR), CO2-intensive industry (IND), non-CO2 intensive industry and services (SER), trade and transport (TT), 
energy (NRG), CO2-intensive electricity (CIE) and non-CO2 intensive electricity (NCIE). Sources: Statistics Netherlands 
(2000), Haan and Rooijen-Horsten (2004), and own calculations. 
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Table B.3: Selected factor intensities of the Dutch economy in 1999 (% of gross sectoral output) 

 Knowledge capital Physical 
capital 

Labor CO2 

Sector R&D ICT Total    

Production       

 CO2-intensive sectors 3.3 0.7  4.0 23.2 23.0     0.07 

  CO2-intensive industry 8.3 0.4  8.7 16.2 17.5   0.08 

  Trade and transport 0.8 0.6  1.4 25.4  33.1   0.04 

  Energy 1.8 1.2  3.0 31.1   4.8   0.04 

  CO2-intensive electricity 1.3 2.3  3.6 21.9   7.8   0.41 

        

 Non-CO2 intensive sectors 3.7 1.5  5.2 20.4 28.2 <0.01 

  Agriculture 1.5 0.5  2.0 20.7 10.5   0.01 

  Non-CO2 intensive industry and 
services 4.1 1.6  5.7 20.4 30.5 <0.01 

  Non-CO2 intensive electricity 1.3 2.3  3.6 25.4  5.5   0.00 

       

Consumption        0.01 
Note: Capital intensities are respectively services derived from knowledge and physical capital expressed as percentages of 
gross sectoral output. CO2 intensities are CO2 emissions in Mt. expressed as percentage of gross sectoral output in billion 
Euros. Two types of knowledge are included in our working definition of knowledge capital: research and development 
(R&D) and information and communication technology (ICT). We obtain data on knowledge capital from Haan and Rooijen-
Horsten (2004) and data on CO2 emissions from the GTAP-EG database (Paltsev and Rutherford, 2000) and the Emission 
Monitor for The Netherlands (Koch et al., 2002). 
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