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Abstract

We introduce NATIX, an efficient, native repository for storing, retrieving and managing tree-

structured large objects, preferably XML documents. In contrast to traditionallarge object (LOB)

managers, we do not split at arbitrary byte positions but take the semantics of the underlying tree

structure of XML documents into account.

Our parameterizable split algorithm dynamicaiJy malntains physical records of size smaller than

a page which' contain sets of connected tree nodes. This not only improves efficiency by clustering

. subtrees but also facilitates their compact representation.

Existing approaches to store XML documents either use flat files or map every single tree node

onto a separatephysical.record. The increasedflexibility of ourapproach results in higher efficiency.

Performance measlirements validate this claim. '

1 Introduction

The concept of semistrucured data has gained wide acceptance, especially in the incarnatibnof XML

(extensible markup language, [1]). XML is being adopted as an easy-to-write,easy-tocparse language to

exchange semistructured data in commercial, financial, medical, scientific and other applications.

With the advent ofstandardized APIs for semistructured data like the document object model (DOM,

[2]), the mere exchange of textual representations with generating at one end and parsing at the other

will not be sufficient for all applications. Direct access to and manipulation of the 'documents' tree

structure and; asa consequence, efficient storage managers for tree-structured datawill be required. We

encountered the need for efficient, updateable storage of XML data while designing a data repository for

•Part of this work was supported by the German Ministry of Education and Research (BMBF),FKZ 08C5853'2
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an electronic version of the "Biochemical Pathways Atlas" [3]' a large collection of chemical reactions

annotated with textual descriptions, WWW references, and multimedia data.
!

The existing approach es to store semistructured data or structured documentscan be divided into
I
I h .t ree categones:

Flat Streams In this approach, trees are serialized into byte streams, for example by means of a markup
I

language. Für large streams, some mechanism isused to distribute the byte streams on disk pages.
. ,

The mechanism can be a file system, or a BLOB manager in a DBMS.

This method is very fast when storing or retrieving whole documents or big contiriuous parts of

documents. Accessing the docurilents' structure is only possible through parsing [4].

A Web server's HTML file tree, stored in the file system, is a simple example.

Metamodeling A different method is to model and store the documents or data trees using sarne

conventional DBMS and its data model [5,6, 7, 8].

In this case, the interaction with structured databases in the same DBMS is easy. On the other

hand, scanning a whole document or parts of a document, as needed for example when recon-

structing a textual representation, is slower as in the previous method; creation of just one typical

web page from its abstract syntax tree requires retrieval of maybe thousands of databaseobjects.

Other representations requires complex mapping operations to reproduce a textual representation

[9]' even duplicate elimination may be required [10].

In general, this approach introduces additional layers in the DBMS between the logical data and

the physical data storage, slowing down query processing.

j Mixed There are several attempts to merge the two "pure" methods above.

Redundant To get the best of both worlds, data is held in two. redundant repositories, one flat

and one metamodeled [11]. Updates are propagated either way, or only alloweQ in one of the

repositories: This allows for fast retrieval, but leads to slow updates and incurs significant

overhead for consistency contro!.

Hybrid In hybrid approaches, a certain level of detail of the data is configured as "threshold".

Structures coarser than this granularity live in a structured part of the database, finer struc-

tures are stored in a "flat object" part of the database [12].

NATIX, our XML repository at Mannheim University is similar to the hybrid systems, with two

I extensions: First, our "flat" parts of thedatabase are riot completely flat, but clustered groups of tree
I . .
1 nodes treated as atomic records by the lower levels of NATIX. Second, the "threshold" need not be

: statically configured, but can be a dynamic value, adapting to the size and structure of documents at
i
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Tuntime. As subtrees of t'he document are changed, clustered ,nodes can become records of their own

01' again be merged into clusters. To satisfy special application requirements, clustering of certain node

typescan be enforcedor foibidden by a configuration matrix.

We consider our enhancements to the hybrid systems significant and introduce a new category: We

call this kind ofstorage organization Native XML Repository.

The remainder of thepaper is organized as folIows. Section 2 describes a tree model ofthe data we

want to manage and the physical organization used to store that data. Section 3 describes the methods ,

used to dynamically maintain this physical organization. Section 4 gives some performance results.

Section 5 reviews related work and shows how it fits into our model. Section 6 concludes the paper.

2 Preliminaries

Let us first present a abrief NATIX architectural overview, and describe which part of NATIX this' paper

is about, The logical data model andour modelfor physical storage organization are also detailed in

this section,
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I
:<SPEECH>
~SPEAKER>DTHELLD</SPEAKER>
~LINE>Let me see your eyes;</LINE>
I<LINE>Look in my face. </LINE>
'</SPEECH>

OTHELLO Let me see your eyeSj Look in my face.

Figure 2: A fragment of XML with its iJ,ssociated logical tree

,2.1 NATIX Overview

:Figure 1 shows the mainmodules of NATIX.

The core of the system is a "classical" physical record manager which is responsible for disk rncrnory

;management and buffering. It accesses raw disks or file system files and provides a memory space divided

,inte) segments, which are a linear collection of equal~sized pages. Pages can be as large a; 32K. Each

;page can be a plain page (for indices and user-defined structures), or holds one or more records. Pages

i are organized as slotted pages, records are identified by a pair (pageid, slat) (called record ID or RID).

On top of the record manager operates a tree storage manager that, maps the trees used to model

, documents (see section 2.2 below) into records. The methods used in this tree storage manager are the

topic of this paper.

Additional modules of NATIX exist, but are not detailed here. They include index management,

i the (not yet implemented) query engine, the schema manager, and the document manager. The doc-
,
Jument manager allows application access to documents on node and document granularity. It checks

; schema consistency, called documeid validation in the XML world, performs necessary index updates

! and integrates document fragments from other sources into a single document viewfor the user. The

! schema manager maintains the system catalog data needed by the document manager, which includes

! the Document Type Definitions (logical XML schema information) and physical schema information and

I statistics. The system catalog itself is stored as a collection of XML documents inside the system.

2.2 Logical Model

A popular anduseful model for XML documents is the labelled tree [2, 13]. General graphs, which are

often use~ to model semistructured data, are represented in XML using special IDREF attributes[l]' and

XLinks [14]' for intra- and inter-document. references, respectively.

We use ordered trees in which each non-Ieaf node is labelled with a symbol taken from an alphabet

~DTD. Leaf nodes can also be labelled with arbitrinily long strings over a different alphabet (~*). Figure 2

shows an example of an XML fragment and its associated tree. Note that the shown XML document
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is missing the schema, called document type definition (DTD). Details of XML schema descriptions do

not concern us here, for our purposes, the DTD is just a way of specifying the node alphabet ~DTD.

Additionally, the DTD canplace constraints on how node labels can be combined.

Note that our data model is very similar to an abstract syntax tree and can easily be generated byan

XML parser. It also captures all information present in the textual representation of a document, most

notably the order of childelements.

2.3 Physical Model

We now elaborate on our physical data model. Besides explaining our o~n physical tree representation,

we hope to provide a general terriiinology for the description of storage formats for tree~strucured data,

which cän later be used to compare different approaches (see section 5).

Thelogical pata tree is materialized as a physical data tree, which isbuilt from the originallogical

nodes and additional nodes needed to manage the physicalstructure of large trees. Large trees are trees

that cannot be stored on a single disk page.

The-following sections describe three ways to classify the physical nodes we use to store the logical

tree.

Note that, in the following, we use the terms node and object synonymously .. On the other himd, a

Tecord is something different: It may contain a set of nodesjobjects, as explained below .

. 2.3.1 Object Content

One classification we use for physical nodes is based on their content:

Aggregatenodes are inner nodes of the tree. They contain their respective childnodes.

Literal nodes are leaf nodes containing an uninterpreted stream of bytes, like text strings, graphics, or

audio/video sequences.

Piöxy nodes are no des which point to different records. They are used in the representation of large

trees, as detailed in section 2.3.3.

2.3.2 Node representation

lnstead of storing each tree node in aseparate record, we store whole documents (or subtrees of doc-

uments) tagether in one record. This record is treated as atomic by the underlying re cord manager.

Each rEkord contains exactly one stlbtree. The root Hodes of each record's subtree are called standalone

'objects. Other no des are called embedded objects.This is a .second way of classifying our physical nodes.
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Figure 3: One possibility for distribution of logical no des on records

The record size has an upp'er limit, the page size. This raises opportunities to optimize the subtree

I representation inside the records. Since our algorithm and its ptesentation do not depend Oll a specific

:re cord representation, we present the low-Ievel details only in Appendix A.

i 2.3.3 Large Trees

. Typical data trees may not fit on a single disk page. So our physical object model must provide a
I
mechanism for distributing data trees over several pages.

One method often used in document management systems is to store a "fl51t" representation (like
I

the one described in Appendix A) as a BLOB (binary Zarge abject) and use a mechanism for rnanaging

large byte collections inside the storage manager (see [15, 16, 17]). We feel that this approachwastes the

: available structural information about the data, because treating the representation as a BLOB regards

; all bytes as equal:
!

A certain amount of insertions, removals and updates of objects stored in this way would lead to an

i unfavorable distribution of the data. Some part of even a smallobject would reside on one page, and

the remainder on a different page.

To avoid this, we semantically split large objects based on the underlying tree structure. We partition

the data tree into subtrees, and store each subtree in a single record less than a page in size. Connected

subtrees residing in other records are represented by Praxy abjects. Proxy objects consist 01' the R.IDor
! the record which contains the subtree they represent. Substituting all proxies by their respective subtrees

reconstructs the original data tree.

Asampleis shown in figure 3. To store the given lpgical tree (which, say, does not fit on a page), the

physical data tree is distributed over three records rl, r2 and r3. To achieve this, two p,roxies (PI and P2)

are used in the top level record. Two helper aggregate objects (hl and h2) have also been added to the

physical object tree. They are needed to group the children below PI and P2 into records.

This leads to our third c1assification dimension: Physical objects drawn as dashed ovals like the
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Figure 4: Multiway tree representation of records

proxies PI, P2. and the helper aggregates hI, h2, needed only for the representation of large data trees, are

ealled 5eaffolding objeets, while,objects representing logical nodes (li) are.called Faeade objeets.

Note thaI. the sampie physieal tree is o~ly one possibllity to store the shown logical tree. There

are more, since more of the logical tree's edges could be represented by proxies. The creation and

.maintenance of such physical trees in our XML repository NATIX, is described in the remainder of this

paper.

3 Dynamic niaintenanGe of an efficient storage organization

We will now present the onIine algorithm used by our N ATIX repository for dynarriic maintemLnce of

physical trees. -The principal problem adressed is thaI. arecord containing a subtree can grow larger than

apage if anode is added or grows.

In this case, the subtree contained in the record has 1.0 be partitioned into several subtrees which can

subsequently be distributed on one or more additional records and pages. Scaffolding nodes (proxies and

maybe aggregates) have 1.0 be introduced into the physical tree to link the new recordstogether.

To describe our tree storage manager and our split algorithm, it is useful to view the partitioned tree

as an associative data structure forfinding leaf nodes. We will first explain this metaphor, andafterwards

u~(' it 1.0 detail our algorithm. Possible extensions to the basic algorithm and a flexible configuration

meehanism 1.0 adapt it 1.0 special appIications conclude this section.

3.1 Multiway tree representation of records

A data tree that has been distributed over several records can be viewed as a multiway tree with the

records as nodes, each record containing a small part of the logical data tree.In theexample in figure 4,

T3 is blown up, hinting at the flat representation of the subtree inside record T3. The references to the

child recordsare proxy objects.
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1. Determine the record r into which the node has to be inserted.

2. If there is not enough space onthe page, try to move r. If the record still does not fit, split th~ record:

(a) Deterrriine the separator by recursively.descending into the r's subtree

(b) Distribute the resulting partitions onto records

(c) Insert the separator into the parent record, recursively calling this procedure

3. Insert the new node

Figure 5: The Tree Growth Procedure

If viewed this way, our partitioned tree resemblesa B-Tree-structure, as often used by traditional

large objed managers, with the particularity that the "keys" are not taken froma simple domain like! . ' .
. integers or strings. Instead, they are based on structural features of the data tree.

This analogy gives us a familiar framework with which we can describe the algorithms used to maintain
I
: the clustering of our records .

.3.2 . Algorithm für Tree Growth

: Figure 5 shows the basic structure of our algorithm for adding nodes to a tree. The following subsections

will explain the steps in detail.

3.2.1 Determining the Insertion Location

I In order to insert a new node in into the logical data tree as a child node of' h 1 it must be decided

I where in the physical tree the insert should takeplace. In the presence of scaffolding nodes, t.here rnay

exist several possibilities, as shown by the dashed lines in figure 6 (the nodes drawn as dashed ovals are.

scaffolding nodes); the new node in can be inserted into ra,rb, or rc. In our system, this choice may be

!

Figure 6: Possibilities to insert a new node in into the physical tree
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Figure 7: A record's subtree beforea split occurs

determined by a configuration parameter, as explained in seetion 3.3.

3.2.2 Splitting arecord

Having decided on an in~ertion location, it is possible that the designated record's disk page is fuH. In
, '

this case, the system tries to movethe record to a page withmore free space. If this is not possible,

because the record as such exceeds thenet page capacity, the record has to be split.

Determining the'separator Suppose that, in figure 6 we want to add in to record rb, which cannot

grow. Hence, rbmust be split into at least two records r~ and r~, and instead of Pb in the parent record

ra, we need aseparator with proxies pointing to the new records to indicate where which part of the old

record was moved.

In B- Trees, a median kE~ythat partitions the data ele~ents into two subsets is chosen as separator. In

our Lree storage manager, the data in the records is not one-dimensional, but tree-structured. It follows

thaI, our separator has tobe tree-structured as weIl.

In fact our algorithm slices a smaIl subtree off the old record's root. This small subtree then servers

as aS separator. The remaining forest of subtrees is the data that has to be distributed onto the new '

records.

Figure 7 shows the subtree of one record just before a split. It is partitioned into a left partition L

. and a right partition R, and the separator S. This separator will be moved up to theparent record,

where it indicafes into which records.the descendant no des were moved as a result of the split operation.

Already a. single node d uniquely determines this partitioning (in the example, d = h): The separator

S consists of all the nodeson the path from d to the subtree's root (in the example, S = {11,j6}),

excluding d .. The Bubtree below d, the subtrees of d's fight siblings, and all subtrees below nodes that

are right siblings of nodes in S' comprise the right partition. (in the example, R = {h, fs, ... ,114}), the

remaining nodes comprise the left partition (in the example, L =12, ... ,15).
Hence, our split algorithm must find anode d, such that the resulting Land Rare of equal size.
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Actually, the desired ratio between the sizes of Land R is a configuration parameter (the split target),

which can, for example, be set to achieve very small R partitions to prevent degeneration of the tree if

insertion is mainlyon the right side (as whencreating a tree in pre-order from left to right). Another

configuration parameter available for fine-tuning is the spiit tolerance, which states how much the al-

I gorithm may deviate from this ratio. Essentially, the split tolerance specifies a minimum size for the

I subtree of d. Subtrees smalleI' than this value are not split, but completelymoved into one partition to

prevent fragmentation.

To determine d, the algorithm starts at the subtree's root and recursively descends into the child

whose subtree contains the physical "middle" (or the configured split target) of the record. It stops when

it reaches a leaf, or when the subtree size in which it is about to descend is smaller than allowed by the

split tolerance parameter.

In the example in figure 7, the size of the subtree below h was smalleI' than the split tolerance,

otherwise, the algorithm had descended further and made h part of the separator.

Distributing the nodes on records After determining the partitioning, the contents of the record

has to be distributed onto new records.

Consider a partitioning as implied by node d = h in figure 7. The separator is removed from the old

record's subtree, as in figure 8(a). In the resulting forest of subtrees, root nodes in the same partition
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that were siblings in the original tree are groupedunder one scaffolding aggregate. In figure 8(c), this

happened ät nodes h] and h2. Bach resulting subtree is then stored in its own record. These new records

(TI,'" ,'1'4) are called partition records.

Inserting the separator The separator is moved to the parent record and inserted instead oE the
'. .

proxywhich referred to the old, unsplit record, figure 8(b). The edges connected to the nodes in the

partition records are replaced by proxies Pi. Since children with the same parent are grouped in one

scaffolding aggregate, for each level of the separator a maximum of three nodes isneeded, one proxy for

the left partition record, one proxy for the right partition record, and one separator node.

To avoid unnecessary scaffolding records, the algorithm considers two special cases: First, if a partition

record would consist of just one proxy, the record is not created and the proxy is inserted directly intö

, the separator.Second, if the root node oE the separator is a scaffolding aggregate, it is disregarded, and

the children of the separator root are inserted in the parent record instead.

To ensure th~t the parent record contains enough space to hold the separator, the insertion procedure

is recursively called for the parent record using the separator as the node to be inserted. If the old record

had no parent record, anew root record for the tree is created which contains just the separator.

3.2.3 lriserting the New Node

Finally, the newnode is inserted into its designated partition record.

The splitting process operates as if the new ,node had aheady been inserted into the old record's

subtree, for two reasons. First, this ensures enough free space on the disk page oE the new node's record.

Second, it also results in a preferable partitioning since it takes the space needed by the new node into

account when determining the separator.

3.3 The Split Matrix

When designing the storage manager for the biochemistry database mentioned in the introduction, it

quickly became evident that it is.not always desirableto leave full control over data distribution to the

algorithm. Special application requirements had to be.considered. In general, it should be possible to

benefit from knowledge about the application'saccess patterns,

If parent-child navigation from one type of node to another type is frequent in an application, we

want to pre~ent the split algcirithm from storing them in separate records. In other contexts, we want

certain kinds of subtrees always to be stored in aseparate record, for example to collect some kinds oE

information in their own physical database area.

To express preferences regarding the clustering of anode type and its parent node type,. we introduce

a Split Matrix as parameter to our algorithm:
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The Split Matrix S consists of elements Sij, i, j E ~DTD. The elements express the desired clustering

behaviourof anode x with label j as children of anode y with label i:

o x is always kept as a standalone

record and ne ver clustered with y

Sij = 00 x is kept as long aspossible

in the same re cord with y

other the algorithm may decide

The algorithm as described in section 3.2 acts as if a11elements of the Split Matrix were set to the

: value other. It is easily modified to respect the Split Matrix:

When moving the separator to the parent, a11nodes x with label j under a parent y with label 'i are

: considered part of the separator if Sij = 00, and thus moved to the parent. If Sij = Ö, sueh nodes i are

always created as standalone objeet and a proxy is inserted into y. In this ease, x is never moved into

its parent as part of the separator, and treated for splitting purposes like the root reeord.

We also use the Split Matrix as the eonfiguration parameter for determining the insertion loeation 01'

I a new node (see seetion 3.2.1): When a new node x (label j) sha11 be inserted as a ehild of node y (label

i), thenif Sij = 00, x is inserted into the same reeord y. If Sij = other, then the node is inserted on the

same reeord as one of its designated siblings (wherever there is more free spaee). If Sij = O,.x is stored

as a standalone node and treated as deseribed above.

In the future, we plan to enrieh the semanties of the Split Matrix to support even more adaptable

algorithms. For examf)le, theother values eould eontain traversal frequeneies gathered from profile

; traees.

It should be noted that, the Split Matrix is an optional tuning parameter: It is not needed to store

, XML düeuments, it only provides a way to make certain aceess patterns of the ap11ieation known to the

storage manager. The "default" split matrix used when nothing else has been specified is the one wi th

a11entries set to the value other.

As a side effeet, other approaehes to store XML and semistruetured data ean be viewed as instances

of our algorithm with a eertain form of the Split Matrix, as deseribed in seetion 5.

4 Performance Results

In 'this seetion we will present some results eoneerning the storage and retrieval of a large doeument

eo11eetion with NATIX' tree storage manager.
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4.1 Environment and test data

The implementation of the record and tree storage managers wasdone in C++. Measurements were

taken on a Pentium-II 333Mhz machine with 128MB RAM under Windows NT 4.0, using an IBM DCAS

34330W disko Direct disk access and no operating system buffering was used by the record manager. As

document collection. served an XML markup version of Shakespeare's plays [18]. The total size of the

documents is aboutß MB, their tree representations contain about 320000 nodes total.

4.2 Configuration

.We compare two configurations of our system: First, we configure the Split Matrix with all elements set

(,0 ,sij = O. This emulates the approach of storingeach tree node in aseparate record together with a-

list. of child references. In this case, records are never split, unless the list of children does not fit onto a

. single page. The record manager was told to store parent with children and sibling nodes on the same

page if possible. In the following sections, this configuration is called the 1:1 configuration.

Second, we set all elements of the Split Matrix ,sij to the value other, giving our algorithmfull control

over the distribution of the nodes onrecords. In the following sections, this configurationis called the

1:n, or native XML configuration.

Note that,a "one record" configuration with all matrix elements set to 00 does not work because we

could not store any document larger than a page.

In both cases, the split target was set to ~ to produce two partitions of equal size in each split. The

split toierance was set to 110 th of a page. The buffer size was 2 MB, enough to hold at least one document

in any representation. The page size was varied between 2K and 32K. The buffer was cleared at the start

of each operation.

4.3 Operations Measured

For storage, we used an XML parser written in C and inserted the document treein two different

insertion orderS. First, in pre-order, to represent a "bulkload" of or consecutive appends to a textual

representatiori. Second, we traversed the binary tree representation of the document tree (inwhich each

node has its first child as left binary child and next sibling as right binary child [19])with breadth-first

sea.rch to insert the nodes, resulting in an incremental update pattern where inserts occur distributed

over the whole document.

Four kinds of retrieval operations were performed: A full pre-order tree traversal, and three pattern

matching queries. The first query retrieves all speakers in the third act and second scene of eyery play,

which rrieans it accesses all leaf nodes of a certain type in one selected subtree of the document. The

second query recreates the textual representation of the complete first speech in every scene, hence
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Figure 9: Insertion

reading a lotof small continguous fragments of each document. Last, a simple path query was evaluated

, by reading only the opening speech of each play.
I

. 4.4 Results

Figures 9 tü 14 show the results. The operation times result form averaged series of measurements and
. .

. are given in milliseconds, and areshown as a function of the pagesize; it can be seen that page size has

a significant influence on performance.

:4.4.1 Update
,
I
I Update is faster when the algorithm has full control over the distribution of nodes on n~cords. If updates

are scattered all over the data, the difference can be almost an order of magnitude. rhis is probably a

result of the very localized access pattern when nodes are grouped into records, both in terms of main

and secondary memory.

Interestingly, our approach benefits from larger page sizes, while the "traditional" approach of storing

: each node in aseparate record performs best when using "traditional" small 2-4K pages.
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-+- RecOrd:Node 1:1,
Incremental Updates

____ Record:Node .l:n,

Incremental Updates
-t- Record:Node 1:1, Append

----*- Record:Node 1:n, Appen

7000 12000 17000 22000 27000 32000
Page size (bytes)

Figure 10: Full tree traversal

Note that, the best result (4K pages) of the"I:I"-approach is more than 50% slower than the best

result (32K pages) of the native format when using pre-orderinsert.

To permit bettet resolution for the faster runs, the update times for incremental updates and 1:1

format are only shown for pages up to 6K in size. After that, they increase alm ost linearly to above

1000000ms for 32K pages. Hence, incremental updates are faster by at least a factor of three when using

.the native format.

4.4.2 FuB tree traversal

When traversing the full tree in preörder, again the best result is achieved by using the native format
with a large page size. It is faster by 20% than the best result for the single record approach. In this
ca~e, large page sizes are good for everyone, because all data has to be read anyway, and loading large
continguous chunks is faster than loading small ones. . .

4.4.3 Query 1

When retrieving leaf nodes of a ~ertain type in a selectedsubtree of each document, the best behaviour is

again shown by the native format after incremental updates. Incremental updates do not produce a good

clust.ering für t.he single-record approach. The resulting [andorn access pattern slows query evaluation
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Figure 11: Selection on leaf nodes of document subtree (Query1)

after incremental updates.

The native format after pre-order insert also does not perform well, because the physical tree is linearly

i degenerated. To reach the specified nodes, nearly the whole document data is loaded into memory.

4.4.4 Query 2

I In this query, small contiguous fragments of the documents are retrieved. Hence, small pages result in

; better access times for all storage formats. In the native format after incremental updates, the nodes

, belonging to each fragment usually are clustered within the same record,so query time is halved compared

to the other formats.

, 4.4.5 Query 3

, In this querY,again the balanced treeafter incremental updates on the native format results in the best
! .

I performance. The physical record tree has only a depth of 2, so just two disk accesses are needed to
i
: reach each requested speech.

The degenerated tree after pre-order insert again leads to unnecessary reads for thenative format.
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Figure 12: Small continguous fragments (Query2)

4.4.6 Space Requirements

The space requirements given is the total number .of bytes on disk used to store the documents.

As expected, the native format has a much better space utilization due to the compact subtree

representation inside the records (Appendix A). The single records for each node carry a lot of overhead, .

most notably bigparent and childreferences, and slot information for each record.

The space utilization is hetter for largei pages, since less per-page administration space is needed~

For the native förmat, less splits and proxies are needed for large pages, which furt her ieduces the space

overhead.

The reduced space requirements give an additional opportunity für faster query processing: .If the

logical structure and order of the nodes is irrelevant for a query (e.g. scan all elements of a given type),

a simple scan of the documents requires time proportional to the amount of 1/0 required, which is

significantly less if the native format is used.
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Figure 13: Single path for each document(Query3)

I

;5 Related Work

: Other work on efficient storage for (binary) large objects [15, 16, 17] also uses trees to organize the

: physical distribution of the data, but does not exploit the internal semantic structure of large objects.

:Objects are split at arbitrary byte positions.
,

Not much work on efficientstorage organization for semistructured data currently exists. There are

-otherproposed repositories for semistructured data, not focussing on storage organization, as detailed

POET

r inthe following.
I

Flat files are studied- closely by Abiteboul et al. [4]. There, a parser is used to gain access 1,0 the
i
I

i document structure and evaluate queries.
I
, Metamodeled systems in the categorization of seetion 1 are already commercially available.

! (POET Content Management system [6]) and ObjectDesign (Excelon [8]) each use their object-orient.ed

i database systems (POET Server and ObjectStore, respectively) 1,0 store and model SGML/XIvIL doc-
I

. uments as trees. They use aseparate record for each tree node, whichin the terminology of sect.ion 2

means that each facade node is a standalone node, and all aggregates contain exclusively proxies. This is

equivalent to a configuration of our algorithm with all elements of the Split Matrix set 1,0 0 as evaluated
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Figure 14: Space requirements

The Lightweight Object REpository (LORE, [5]) uses a graph model as weIl. Like POET and Excelon,

it stores each node in its own record, although the system is not developed on top an existing OODBMS.

Their focus is on query processing.

A different metamodeling approach to store XML is STORED [lOJ.Fot a dass of documents, a

relational schema is rautomatically created and the documents are stof(~~din any existing RDBMS. This

automatic schema creation is a complex'operation, needed every time a new document type is encoun-

tered. Storing XML documents requires pattern matching to map the graph data to relational data,

another com'plex operation, needed every time a document is stored. Incremental updates to the XML

tree, and the ordering of elements inside a document are not considered. Retrieving documents requires

duplicate elimination, since a single XML node can be stored in more than one tuple. To enable lossless

storage of documents that do not fit into the schema, an 'overflow store' is needed. Thefunctionality

required from this overflow store is the same as for a fuIl-fledged XML repository.

Another relational approach is taken in the Monet database[7], where XML data is decomposed into '

binary relations. These relations, one for each tag name, contain the edges of the tree representation. This

is similar tu the approach of aseparate record per node, although efficient main-memory representations
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In contrast to traditionallarge object managers or file systems, our storage manager N ATIX uses

for small relations are used. As in STORED, incremental updates to the XML tree,and the ordering of
1

elements inside a document are not considered. The latter is of importance when trying to recreate a

textual document representation.

The hybrid HyperStorM system by Neuhold et al. [12J bears the most similarity to our approach.

In HyperStorM, the upper levels of the document tree are stored as standalone no des with proxies as

: in POET, Excelon and LORE. Certain node types are statically configured to be "flat", which in our

: terminology means they contain only embedded nodes. Embedded no des are stored as markup strings

and have to be parsed to access the structure. Proxies do not exist, which means that, in the suhtree

,below an embedded node, only more embedded nodes can exist. This is equivalent to our algorithm with

.a Split Matrix which containsonly 0 and CXl elements and no elements of value other. The configuration

of HyperStorM is static and done one the type level, while aur system dynamically makes splitting

decisions andallows configuration not only based on node type, but based on combinations of node type

and parent node type. They do not address the problem of splitting large "flat" objects, but leave this

to the underlying storage manager, an OODBMS.
!

,6 Conclusion and Future Work

,We have presented a method to dynamically mainÜlin efficient physical storage for large tree-structured

:objects. A flexible model to describe physical storage formats for trees was used to describe our algorithm
J
Ii and related approaches.
I

i

thesemantic structure of large objects to make bettel' splitting decisions. Our splitting algorithm is

configurable to a degree that allows to simulate other storage formats already in use for tree-structpred

I data. First measurements performed with XML data show the strengths of our approach. Updates and

i queries can be sped up by a factor of two or more. Space utilization is also bettel', by a factor of nearly

. two compared with other approaches.

In the future, besides studying and extending the effect of configuration parametercs on the splitting

i algorithm, query processing operators and index structures that support our storage structure will play

I a dominant role in our research.
I
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Figure 15: The tree from figure 2 represented as one record

ARecord representation

,This section explains the format used to store subtrees in flat records. As a result of the limited page size,

i we can materialize the parent-child-relationships rather efficiently, saving references pointing to nodes

! outside the record.

Inside each record, the nodes are stored within their respective parent aggregate objects, so the

complete subtree roöted at any given object consists ofall the übjects recursively contained in it. An
, .

Standalone objeets eontain their parent reeord as RID (8 bytes). The size of the objeet, whieh is

"equal to the size of the record, can be obtained from the slot informatiOn. Together with the type index,

a standalone header usually consumes 10 bytes.

example for the tree from figure" 2 is shown in figure 15.

Each record contains exactly one root node which containsall the other objects in the record (thc

'SPEECH node in the example above). As explained in section2.3.2, such objects are called sta:n.da.lone

. objects, while objects stored within other objects are called embedded objects.

The physical representation of objects on disk starts with a header describing the eontent type (ag-

: gregate, literal or proxy) and the logica.l type (e.g. the tag or attribute name for, Fa.eade objects), the

: size of the object and a pa.rent pointer. Literals are typed, currently either string literals,8jI6j32j64-Bit

: integer literals, float, or URI (Uniform Resource Identifier) literals.

Sinceon each page typieally only a limited set of (eontent type, logical type) eombinations oeeur, this

information is stored in the oi::Jjectheader as 2 byte offset into anode type table whieh is maintained on

. eaeh page.

" Pointers needed to materialize the relationships for the embedded nodes within one reeord only need

! 2 bytes, sinee a page is less than 64K in size. Sinee the embedded parent pointers are stored as offsets, the

byte represehtation of subtrees in reeords is loeation-independent, so that records ean be moved around

. on the page without modification.

Our layout results in a header of only 6 bytes. for embedded objeets, minimizing the overhead 1'01'

; storing the tree strueture. Note that, for example, storing vanilla XML markup with only a l-character

"tag name already needs 7 bytes « X > ... < jx > )!
!
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