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Abstract

Most seale-spaee eoneepts have been expressed as parabolie or hyperbolie par-
tial differential equations (PDEs). In this paper we extend our work on seale-spaee
properties of elliptie PDEs arising from regularization methods: we study linear
and nonlinear regularization methods that are applied iteratively and with dif-
ferent regularization parameters. For these so-ealled nonstationary iterative reg-
ularization teehniques we darify their relations to both isotropie diffusion filters
with a sealar-valued diffusivity and anisotropie diffusion filters with a diffusion
tensor. We establish seale-spaee properties for iterative regularization methods
that are in eomplete aeeordance with those for diffusion filtering. In particular,
we show that nonstationary iterative regularization satisfies a causCl,lityproperty
in terms of a maximum-minimum principle, possesses a large dass of Lyapunov
functionals, and converges to a constant image as the regularization parameters
tend to infinity. We also establish continuous dependence of the result with re-
spect to the sequence of regularization parameters. Numerical experiments in two
and three space dimensions are presented that illustrate the seale-space behavior
of regularization methods.

Keywords: regularization methods, diffusion filtering, scale-spaces, Lya-
punov functionals

1 Introduction
Decades after Iijima's pioneering axiomatic work in the sixties [27, 52]' scale-spaces have
become widely-used tools in image processing and computer vision [23, 33]. Alvarez
et al. [3] have shown that imposing a reasonable set of architectural, invariance and
simplification properties automatical1y leads to scale-spaces that can be described in
terms of partial differential equations.
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Partial differential equations may be classified into three main types: parabolic equa-
tions behaving in a diffusion-like manner, hyperbolic processes with wave-like character,
and elliptic PDEs that can be related to variational problems. For more details on PDEs
we refer to Colton [14].

Examples for PDE-based scale-spaces incude parabolic PDEs such as linear and
nonlinear diffusion scale-spaces [27, 37, 49]' but also curvature scale-spaces like mean-
curvature motion [4, 30] and affine morphological scale spate [3, 40]. Hyperbolic PDEs
with scale-space properties are given by the dilation and erosion equations arising from
continuous-scale morphology [3, 6, 7, 8, 29].

Recently, Scherzer and Weickert [42] showed that a large class of regularization meth-
ods reveals the same scale-space properties as diffusion filtering, if one regards the regu-
larization parameter of these elliptic PDEs as ascale parameter. This class includes the
linear Tikhonov regularization as well as many nonlinear regularization methods that
can be regarded as modified total variation (TV) denoising strategies.

The goal of the present paper is to extend this theory to regularization methods that
are applied iteratively and with different regularization parameters. This framework
is important since one can show that iterating regularization methods improves the
restoration results in some cases [42]' and varying the regularization parameter can be
useful for accelerating the filtering procedure. We also extend our work by clarifying
relations between diffusion filtering with nonmonotone fluxes or anisotropie diffusion
filtering with a diffusion tensor on one hand, and iterated convex regularization methods
on the other hand.

Our paper is organized as follows: In Section 2 and 3 we survey scale-space proper-
ties of diffusion filtering and noniterated regularization, respectively. Afterwards, this
framework is extended to iterated nonstationary regularization in Section 4, where de-
tailed proofs are presented. Section 5 gives an interpretation of diffusion filtering with
nonmonotone fluxes or diffusion tensors in terms of iterated convex regularization meth-
ods. In Section 6 our theory is illustrated by experiments with 2D MR images and 3D
ultrasound data.

Related work. Often there have been fruitful interactions between linear scale-
space techniques and regularization methods. Torre and Poggio [47] emphasized that
differentiation is ill-posed in the sense of Hadamard, and applying suitable regularization
strategies approximates linear diffusion filtering or - equivalently - Gaussian convolu-
tion. Much of the linear scale-space literat ure is based on the regularization properties of
convolutions with Gaussians. In particular, differential geometrie image analysis is per-
formed by replacing derivatives by Gaussian-smoothed derivatives; see e.g. [18, 31, 44]
and the references therein. In a very interesting work, Nielsen et al. [32] derived lin-
ear diffusion filtering axiomatically from Tikhonov regularization, where the stabilizer
consists of a sum of squared derivatives up to infinite order.

Nonlinear diffusion filtering can be regarded both as a restoration method and a
scale-space technique [37, 49]. When considering the restoration properties, natural
relations between biased diffusion and regularization theory exist via the Euler equation
for the regularization functional. This Euler equation can be regarded as the steady-
state of a suitable nonlinear diffusion process with a bias term [13, 36, 43]. A popular
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specific energy functional arises from unconstrained total variation denoising [1, 10, 11].
Constrained total variation also leads to a nonlinear diffusion process with a bias term
using a time-dependent Lagrange multiplier [39].

Strong and Chan [46] proposed to regard the regularization parameter of total varia-
tion denoising as ascale parameter. The present paper extends and completes our recent
work on scale-space properties for noniterated regularization [42]. Following [26, 41, 46]
we interpret the regularization parameter as a diffusion time by considering regular-
ization as time-discrete diffusion filtering with a single implicit time step. Numerical
implications of this relation are discussed in [51]' and a shorter preliminary version of
the present manuscript has been presented at the Second International ConJerence on
Scale-Space Theories in Computer Vision [38].

2 Diffusion Filtering
In this section we review essential scale-space properties of nonlinear diffusion filtering.
The presented results can also be extended to a broader dass of methods induding reg-
ularized filters with nonmonotone flux functions and anisotropie filters with a diffusion
tensor. More details and proofs can be found in [49].

We consider a diffusion process of the form 1

Otu(X, t)

onu(x, t)

u(x,O)

\7. (g(l\7uI2)\7u) (x, t)

o
J(x)

on n x [0,00)

on r x [0,00)

on n.
(1)

The image domain n <:;;; lE,d is assumed to be bounded with piecewise Lipschitzian
boundary r with unit normal vector n, and J E Loo(n) is a degraded original image
with a := ess info fand b := ess sUPo J.

The diffusivity 9 satisfies the following properties:

1. Smoothness: 9 E Coo([O, 00))

2. The flux g(S2)S is monotonically increasing in s.

3. Positivity: g(s) > 0 for all s :2:: o.

Under these assumptions there exists a unique solution u(x, t) of (1), such that Ilu(t) 11£2(0)

is continuous for t :2:: O. Here and in the following we use the abbreviation u(t) for u(., t).
It should be noted that this continuity property is necessary for relating structures over
scales and for retrieving the original image for t -+ O. It is one of the fundamental
architectural ingredients of scale-space theory. Furthermore, it is possible to show that
u(x, t) E Coo(O x (0,00)).

1We denote by (a, b) the open interval with startpoint a and endpoint b, (a, b] denotes the interval
which is open at a and closed at b, and [a, b] denotes the closed interval.
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Diffusion processes with refiecting boundary conditions preserve the average grey
level: 1~llu(x, t)dx = Mf for all t > 0,

with

Mf := 1~llf(x) dx .

A constant average grey level is essential for scale-space segmentation algorithms such
as the hyperstack [34]. It is also a desirable quality in medical imaging where grey values
measure physical quantities of the depicted object, for instance proton densities in MR
images.

The unique solution of (1) fuHills the extremum principle

a :S u(x, t) :S b on n x (0, T]. (2)

The extremum principle is an equivalent formulation of Koenderink's causality require-
ment [25]. Together with the continuity it ensures that level sets can be traced back in
scale.

Another important simplification property can be expressed in terms of Lyapunov
functionals. For all r E C2[a, b] with r" ;::::0 on [a, b], the function

V(t) := cjJ( u(t)) := l r( u(x, t)) dx

is a Lyapunov functional:

1. It is bounded from below: cjJ(u(t));:::: cjJ(Mj) for all t;:::: o.

2. It is smoothly decreasing:

(a) V EC[O,oo) n C1(0,00)
(b) V'(t) :S 0 for all t > O.

(3)

Lyapunov functionals show that diffusion filters create simplifying transformations: the
special choices r(s) := IsIP, r(s) := (s - Mj)2n and r(s) = sln(s), respectively, imply
that all LP norms with p ;::::2 are decreasing, all even central moments are decreasing,
and the entropy S[u(t)] := - In u(x, t) In u(x, t) dx, a measure of uncertainty and missing
information, is increasing with respect to t. Lyapunov functionals have been used for
scale-selection and texture analysis [45]' for the synchronization of different diffusion
scale-spaces [34]' and for the automatie determination of stopping times [53]. Moreover,
they allow to prove that the filtered image converges to a constant image as t tends
to 00: limt-+oo Ilu(t) - M fIILP(n) = 0 for p E [1,(0). For d = 1 we have even uniform
convergence.
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3 Regularization

An interesting relation between nonlinear diffusion filtering and regularization methods
becomes evident when considering an implicit time discretization [26, 41, 46]. The first
step of an implicit scheme with step-size h in t-direction reads as follows.

u(x,h)-u(x,O)
h

Onu(x, h)

u(x,O)

V'. (g(lV'uI2)V'u) (x, h)

o
1(x) .

(4)

In the following we assume the existence of a differentiable function 9 on [0,(0) which
satisfies g' = g. Then the minimizer of the functional

(5)

satisfies (4). This can be seen by calculating the formal Gateaux derivative of T in
direction v, i.e.

(T'(u), v) = lim _T_(u_+_tv_)_-_T_(u_)= { 2(u - j)v dx + h ( 2g(lV'uI2)V'uV'v dx.
t-+O+ t in in

We remark that for the numerical solution of parabolic differential equations several
numerical schemes rely on implicit time discretizations, since they are unconditionally
stable, i.e., for any choice of the time discretization the solution is stable with respect to
data perturbations. In our context the unconditional stability of time implicit numerical
schemes for solving the parabolic differential equation could as weIl be derived from
regularization theory.

Since a minimizer of (5) satisfies (T'(u), v) = 0 for all v, we can conclude that the
minimizer satisfies the differential equation (4). If the functional T is convex, then a
minimizer of T is uniquely characterized by the solution of equation (4).

T( u) is a typical regularization functional consisting of the approximation functional
Ilu - 11112(n) and the stabilizing functional In g(lV'uI2) dx. The weight h is called reg-
ularization parameter. An extensive discussion of regularization methods can be found
in [16].

Now we sketch our scale-space theory for a broad class of regularization methods.
For proofs and full details we refer to [42]. Let 9 satisfy the following properties.

I. g(.) is continuous for any compact K ~ [0, (0).

11. g(O) = min{g(x): x E [O,oo)} ~ O.

IH. g(I.12) is convex from JEd to JE .

IV. There exists a constant c> 0 such that g(s) - g(O) ~ es.
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V. gis monotone in [0, (0).

These assum pt ions guarantee existence and uniqueness of a minimizer Uh far the regu-
larization functional (5) in the Sobolev space2 H1(O).

IH. implies that g(I.12)., where 9 = 9' is monotone, i.e., for all SI, S2 E ]Rd

Assumptions 1.-V. are satisfied for the following regularization techniques:

1. Tikhonov regularization:

2. The modified total variation regularization of Ito and Kunisch [28]:

3. The modified total variation regularization of Nashed and Scherzer [35]:

4. The regularization of Geman and Yang [22] and Chambolle and Lions [10]:

-f£ IsI2

Isl- ~
~lsI2+~(~-E)

Iisl ::; E

E ::; Isl ::; ~
Isl > ~ .

5. Schnörr's [43] convex nonquadratic regularization:

Isl ::; cp
Isl > cp .

Assumption IV. on 9 is violated for the total variation regularization in its original
formulation by Rudin et al. [39]. Note that far TV-regularization l\lul only exists as a
measure (see [17]). Therefore, we cannot set g(~) = ~ to obtain TV-regularization.
Consequently, we cannot derive an equivalent optimality condition for a minimizer of
(5). In this case our mathematical framework cannot guarantee existence of a minimizer
of (5) in H1 (0), and in turn we have no existence theory for the partial differential
equation (4). However, this does not mean that it is impossible to establish similar
results by using other mathematical tools in the proofs; see e.g. the recent existence
and uniqueness results by Andreu et al. [5].

2A function f belongs to the Sobolev space Hm(o) if fand all its derivatives up to order m belong
to £2(0). For more details on Sobolev spaces we refer to Adams [2].

6



The functional IIUhll£2(fl) can also be shown to be continuous in h :::::O. Regarding
spatial smoothness, the solution belongs to H2(O). This result is weaker than for the
diffusion case where we have Goo results.

In analogy to diffusion filtering, the average grey level invariance

l Uh dx =l f dx for an h :::::0

and the extremum principle

a ::;Uh ::; b for an h :::::0

can be established.
Moreover, Lyapunov functionals for regularization methods can be constructed in a

similar way. For an r E G2 [a, b] with r" :::::0, the function

(6)

is a Lyapunov functional:

1. It is bounded from below: cP(Uh) :::::cP(M 1) for an h :::::o.

2. It is continuous and decreasing with respect to the original image:

(a) V E G[O, (0),
(b) DV(h) := Ifl r'(uh)(Uh - Uo) ::; 0, for an h :::::O.

(c) V(h) - V(O) ::; 0 for an h :::::o.
Here, a difference between Lyapunov functionals for diffusion processes and regular-

ization methods becomes evident. For Lyapunov functionals in diffusion processes we
have V'(t) ::; 0, and in regularization processes we have DV(h) ::; O. DV(h) is obtained
from V'(t) by making a time discrete ansatz at time O. We note that this is exactly
the way we compared diffusion filtering and regularization techniques. It is therefore
natural that the role of the time derivative in diffusion filtering is replaced by the time
discrete approximation around O.

Again, these Lyapunov functionals allow to prove convergence of the filtered images
to a constant image as h -+ 00. For d = 3, however, the convergence result is slightly
weaker than in the diffusion case.

d = 1: Uh converges uniformly to M f for h -+ 00

d = 2: lim Iluh - M fIILP(fl) = 0 for any 1 ::; p < 00
h-roo

d = 3: lim Iluh - M fIILP(fl) = 0 for any 1 ::; p ::; 6
h-roo
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4 Iterated Regularization
Regularization can be applied iteratively where the regularized solution of the previous
step serves as initial image for the next iteration. Für small regularization parameters,
iterated regularization becomes therefore a good approximation to a nonlinear diffusion
filter.

Let us consider an iterative regularization process with a sequence of positive reg-
ularization parameters 1l := (hkhEN. With T := (tkhEN we denote the sequence of

d. "d.ff. . ". ",k h N h hcorrespon mg 1 uSlOn tlmes , l.e., tk := L...-i=l i. ote t at tk - tk-1 = k.
The n-th iteration of the nonstationary iterative regularization method reads as

follows:

Ull(x, t) - u ll(x, tn-d
t - tn-1

onull(x, t)

ull(x,O)

\7. (g(l\7ull
I
2)\7ull) (x, t)

o
f(x)

t E (tn-l, tn], x E 0

x E r (7)

xEO

where now t - tn-1 serves as the regularization parameter in the interval (tn-1, tn]. The
superscript 1l at u refers to the fact that u is dependent on the discretization time
in t direction. In the following we establish a scale-space theory für nonstationary
iterated regularization. The terminology "iterative" refers to the fact that Tikhonov
regularization is implemented iteratively. The terminology "nonstationary" refers to
the fact that the parameters hk may vary during the iterative process.

A minimizer u E H1 (0) of the functional

(8)

satisfies (7) at time tE (tn-1, tn]. Ifthe functional Tt
ll is strictly convex, then a minimizer

of Ttll is uniquely characterized by the solution of equation (7). Und er these assum pt ions
the minimizer of (8) exists and is unique in Hl(O) (cf. [42]).

Moreover, the spatial smoothness increases in each iteration step: a more detailed
analysis using techniques from [54] shows that after n iterations the solution belongs
to the Sobolev space H2n(o) for fixed t E (tn-1, tn] (provided the diffusivity 9 is suffi-
ciently smooth). This suggests that, if one uses the regularized solution for calculating
derivatives of order 2n, one should perform at least n iterations.

As for noniterated regularization, the average grey level invariance, temporal conti-
nuity in the L2-norm and a maximum principle hold, if the function fJ satisfies 1. - v.
This can be seen, by noting that in the interval (tn-1, tn] iterated regularization is non-
iterated regularization with initial data ull(tn_1) and regularization parameter t - tn-1.
The results in [42] imply that in each interval [tn-1, tn] the average grey level invariance
holds, the function ull(t) is bounded by the maximal and minimal values of ull(tn_1),
and the function is continuous with respect to t. The rest of the assertion follows by an
inductive argument.
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(9)

Using these properties we are able to establish a Ljapunov theory for iterated regu-
larization.

Theorem 1 (Lyapunov functionals for nonstationary regularization methods)
Let D ~ jRd, d = 1,2,3 with smooth boundary. Let f E L=(D) with essential minimal
value a and essential maximal value b. Moreover, let 1{ be a sequence of positive numbers
hk, satisfying limk--t= hk = 00. Then the foltowing properties hold:

(a) For alt r E C2[a, b] with r" ~ 0, the function

Vll(t) := cjJ(ull(t)) := L r(ull(x, t)) dx

is a Lyapunov functional for iterative regularization:

1. It is bounded from below: cjJ(ull(t)) ~ cjJ(Mj) for alt t ~ 0,

2. It is continuous and decreasing with respect to the original image:

(a) Vll E C [0, 00 ) ,
(b) DVll(t) := ID r'(ull(x, t) (ull(x, t) - ull(x, tn-I)) dx::; 0,

for alt t E (tn-I, tn],
(c) Vll(t) - Vll(tn_l) ::; 0 for alt tE (tn-I, tn].

Moreover, if r" > 0 on [a, b], then Vll(t) is astriet Lyapunov funetional:

3. cjJ(u 1£ (t)) = cjJ(M j) for alZt E [0, 00) if and only if
ull(t) = M f on D for t > 0, and ull(., 0) = M f almost everywhere on

D.

4. If t > 0, then DVll(t) = 0 if and only if ull(t) = M f on D.

5. Vll(T) = Vll(O) for T > 0 if and only if
f = M f almost everywhere on D, and ull(t) = M f on D x (0, T].

(b) (Convergenee)

d=l: ull(tn) eonverges uniformly to Mf for n ---+ 00

d=2: lim Ilull(tn) - MfIILP(D) = 0 for any 1 ::; p < 00
n--t=

d=3: lim Ilull(tn) - MfIILP(D) = 0 for any 1 ::; p::; 6
n--t=

Proof: Using the general result in [42] it follows that the assertions claimed in part
(a) hold on the subintervals (tn-I, tn]. Moreover, from the results in [42] it follows that
continuity of u(., t), with resped to t, also holds on [tn-I, tn]' By induction with respect
to n the assertions of part (a) follow.

We turn to a verification of the assertions of part (b): since ull(tn) satisfies the first
order optimality condition for a minimum of the functional Tt~ we get

(u 1£( tn), V}P(D) + (tn - tn-d (g(l\7u 1£( tn) 1
2) \7u 1£( tn), \7V} P(D)

= (ull(tn-d,V}P(D)
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and taking v = u1-l(tn) shows that

Ilu1-l(tn) Ili2(11) + (tn - tn-1) (g(l\7u1-l(tn) 1

2)\7u1-l(tn), u1-l(tn)) £2(11)

= (u1-l(tn_1),U1-l(tn))£2(11) .

Since (g(l\7u1-l(tn)12)\7u1-l(tn), \7u1-l(tn))£2(11) is positive, which follows from the convex-
ity of g, we find that u1-l(tn) is uniformly bounded in £2(D).

Since u1-l(tn) minimizes the functional Tt~ we immediately get that

Ilu1-l(tn) - u1-l(tn-1)lli2(11) + (tn - tn-1) 1g(l\7u1-l(x, tn)12) dx

::; (tn - tn-d 1g(l\7u1-l(x, tn_1)12) dx. (10)

Thus, the sequence II1 g(l\7u 1-l(tn) 1
2) dx is monotonically decreasing in n.

Now we show that

(11)

Since u1-l(tn) is the minimizing element of (8) (for t = tn), we have

Dividing the inequality by hn = tn - tn-1 and noting that hn ~ 00 shows that

Together with II. we get

(12)

Since u1-l(tn) is uniformly bounded in £2(D), it has a weakly convergent subsequence.
Using IV. it follows that the weak limit is a constant function. Since iterative regu-
larization is grey level invariant, we find that the limit is the constant function M f.
Moreover, from (12) it follows that the H1-seminorm is strongly convergent to O. Thus,
the sequence {u 1-l(tn)} nEN itself is strongly convergent, i.e.

By virtue of the Sobolev embedding theorem [2] it follows in particular that we obtain
the following convergence results for n ~ 00.

d=l: u1-l(tn) converges uniformly to Mf
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d=2: IluH(tn) - Mfllip(D) -+ 0 for any 1 ~ p < 00

d=3: IluH(tn) - Mfllip(D) -+ 0 for any 1 ~ p ~ 6

This concludes the proof.
The assumption that the sequence of regularization parameters hk tends to infinity

does not restrict practical applications. It actually suggest that in numerical simulations
a monotonically increasing step size in time is very appropriate. Such an adaptation
strategy would use small time steps in the beginning when much is happening, and
afterwards, when the diffusion process slows down, the time step size becomes larger.

The previous result holds independently of the sequence 1-l = {hd kEN. For numerical
realizations of nonstationary iterated regularization it is important to verify continuous
dependence of uH(t) with respect 1-l. In order to prove this result we first show that the
functional uH(t) is Lipschitz continuous. Let 1-l be a sequence of positive regularization
parameters and let T be the according sequence of diffusion times. Moreover, let Tl and
T2 be two positive numbers in the interval (tk-l, tk]. Then

(u(Td - U(tk-l),v)£2(D) + (Tl - tk-l) (g(IU(Tl)12)V'U(Tl)' V'v)£2(D) = 0

and

(U(T2) - U(tk-l),V)L2(D) + (T2 - tk-l) (g(IU(T2)12)V'U(T2), V'v)£2(D) = o.
Taking the difference of both equations gives

(U(Td - U(T2),vh2(D)

+ (Tl - tk-l) (g(IU(Tl)12)V'U(Tl) - g(IU(T2)12)V'U(T2), V'vh2(D)

(T2 - Tl) (g(lV'u(T2)12)V'U(T2), V'vh2(D) = o.
Taking v = U(Tl) - U(T2) and using the monotonicity of g(I.12). gives:

IT2 - TII
Ilu(Tl) - U(T2)11£2(D) ~ ---llu(T2) - U(tk-l)II£2(D) .

T2 - tk-l
In particular for Tl and T2 both greater than tk-l + c, with c > 0,

(13)

Ilu(Td - U(T2)11£2(D) ~ GEh - Tll,

where GE is independent of the particular choice of 1-l as long as tk-l is an element of 1-l.
With this Lipschitz continuity we are able to prove continuous dependence of uH(t)

on 1-l.

Lemma 1 Let 1-ln, n E N and 1-l be sequences of positive regularization parameters,
where each sequence converges to infinity. Let Tn, n E N and T be the according
sequences of diffusion times. Let

t'k -+ tk for n -+ 00, uniformly in k .

Then
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Proof: By means of the assumption on uniform convergence of f'k to tk we get that,
for any t E (tk-1, tk), there exists a sufficiently large index no E N such that for all
n 2: no also t E (t'k-l' t'k). Using that u1in(t) minimizes the functional Tt1i

n and u1i(t)
minimizes the functional Tt1i we get

o (u1in (t) - u1in (t'k-l)' V)P(fl)

+ (t - t'k-l) (g(IVu1in(t) 1
2)Vu1in (t), VV)P(fl)

and

o (u1i(t) - u1i(tk_d,v)P(fl)

+ (t - tk_l)(g(IVu1i(t)12)VU1i(t), Vvh2(fl).

Choosing v := u1i(t) - u1in(t) and subtracting these two equations gives

Ilu1in(t) - u1i(t)II~2(fl) + (u1in(t'k_l) - U1i(tk_l),U1i(t) - u1in(t)h2(fl)

+ (t - t'k-l) (g(IVu1i(t)12)Vu1i(t) - g(IVu1in(t) 12)Vu1in (t),

V(u1i(t) - u1in(t)))P(fl)

- (tk-1 - t'k-l) (g(IVu1i(t)12)Vu1i(t), V(u1i(t) - u1in(t))h2(fl) = o.

Using that g(I.12). is monotone, it follows from (14) that

(14)

Finally, we apply an inductive argument with respect to k. Let

For k = 0 this is trivially satisfied, since u 1i (., 0) = U1in (., 0) = f . Then it follows from
(15) that, for any t E (tk-l, tk),

Ilu1i(t) - u1in(t)IIL2(fl) --+ 0 for n --+ (Xl .

Now, let t = tk .

• If t'k > tk, then we have t = tk E (t'k-ll t'k) and analogously as above one can show
that (15) holds with t replaced by tk. Repeating the above arguments we find that
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• If f'k ::; tk, then let to ::; f'k fixed. Then it follows from triangle inequality that

The second and third term on the right hand side of the last inequality are of
the order max{lto - tkl, Ito - tri} (cf. (13)) (independent of n) - note that tr
converges uniformly to tk' Since tr -+ tk we can choose to in such a way that
max{lto ~ tkl, Ito - tri} becomes arbitrarily small. Moreover, the frist term tends
to zero, since to is an interior point of (tk-1, tk). These arguments show that

Hence, the lemma is proved.

We can use this lemma to show continuous dependence of V1-l(t) on 1l:

Theorem 2 Let the assumptions oJ Lemma 1hold. Then JOT, any t E [0,(0),

Proof: Using the Cauchy-Schwarz inequality it follows that

By virtue of Lemma 1 it follows that Ilu1-l(t) - u1-ln(t)IIL2(o) tends to zero. Since T is
continuously differentiable, the first expression on the right hand side is bounded and
the proof is accomplished.

5 Extensions to the Noneonvex Case and Anisotropie
Filters

The previous sections analyze relations between regularization methods and diffusion
filters for the case that o9(lsI2) is convex in s. This implies that the diffusive £lux is
monotonously increasing in s in the sense that

(g(lsl)s - g(ltl)t, s - t) ~ 0 for all s, t E jRd.

In the context of diffusion filtering, however, nonmonotone fluxes leading to forward-
backward diffusion processes are used frequently. While the earliest representative of
this dass, the Perona-Malik filter [37] is ill-posed, several well-posed forward-backward
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diffusion filters have been proposed afterwards; see e.g. [9, 49]. They offer the interest-
ing property that they ean enhanee features like edges or flow-line struetures without
renouneing smoothing properties in terms of Lyapunov funetionals. It is also possible to
replaee the sealar-valued diffusivity 9 by a diffusion tensor D allowing true anisotropie
behavior.

These extensions are eovered by the diffusion model

OtU(X, t)

(D\7u, n)

u(x,O)

\7. (D(Jp(\7u(J))\7u) (x, t)

o
j(x)

on n x [0,00)

on r x [0,00)

on n
(16)

where U(J := K(J * U denotes the eonvolution of U with a Gaussian K(J of standard
deviation (J, and Jp is the so-ealled strueture tensor [19]

Jp(\7u(J) = Kp * (\7u(J \7u;'),

a very useful matrix for the analysis of edges, corners and eoherent struetures. This
model formulation eomprises the regularized diffusion filter of Catte et al. [9] as well as
edge-enhaneing anisotropie diffusion filtering [48] and eoherenee-enhaneing anisotropie
diffusion filtering [50].

By assuming that the diffusion tensor D is asymmetrie matrix-valued Coo function
of Jp that remains uniformly positive definite, one ean prove that all theoretieal results
from Seetion 2 earry over [49]. Well-posedness is aehieved in the noneonvex ease by the
Gaussian smoothing in U(J; see also [9].

Beeause of the Gaussian eonvolutions there is no straightforward way to derive a
diffusion filter of this type as a minimizer of some energy functional. It is, however, in-
struetive to study a semi-implieit time diseretization of such a filter: it approximates the
diffusion tensor D at the old time level and the remainder of the divergenee expression
at the new level. Such a diseretization gives

U
1i
(x,t) - u

1i
(x,tn_l) = \7. (D(Jp(\7U1i(X,tn_I)))\7U1i(x,t)). (17)

t - tn-I

It ean be regarded as an iterative regularization seheme where

Tt1i(u) .- Ilu - u1i(tn-dlli2(O)
+ (t - tn-I) L (\7uf D(Jp(\7u;;(tn-I)))\7u dx (18)

is minimized. Now we are approximating a possibly noneonvex smoothing problem by a
sequenee of quadratic (and henee eonvex) regularization functionals.3 As a consequence,
the theoretieal results for iterated regularization that we derived in Seetion 4 may also
be extended to this ease.

3This convexification by freezing the nonlinear part also relates our method to the adaptive lin-
earization technique of Geman and Reynolds [21, 12] and the so-called Kaeanov method from elasticity
theory [20, 24, 51].
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Figure 1: Test images. (a) Left: MR image with additive
Gaussian noise (SN R = 1). (b) Right: Rendering of a
three-dimensional ultrasound data set of a human fetus.

6 Experiments
The numerical experiments are performed using the software package DIFFPACK from
the University of Oslo / Numerical Objects [15]. We have implemented the diffusion
equation with g(IVuI2) = JIVul2 + ß2 + alVul2 which is a modified total variation
regularization. For this diffusion filtering our theoretical results are applicable. The
term alVul2 is only of theoretical interest; in numerical realizations, the discretized
version of the gradient is bounded, and there is no visible difference between using very
small values of a (in which the theoretical results are applicable) and a = 0 (where our
theoretical results do not hold).

Our experiments were carried out for different sequences of time-steps and various
smoothing parameters ß. The influence of the parameter settings is as follows.

The impact of ß on the numerical reconstruction is hardly viewable in the range
from ß = 10-2 to 10-4. Even the convergence rate is, although slower for smaller ß,
hardly affected.

For small values of regularization parameters h (up to approximately 5.0), there is
no visible difference between iterated and noniterated regularization. The effect can
only be seen for larger values of h. This is illustrated in Figure 2. It shows the result of
noniterated and iterated regularization applied to the 2D MR image from Figure l(a).
The results are depicted at times t = 10, 30, and 100, respectively. For noniterated reg-
ularization this is achieved in one step, and for iterated regularization the regularization
parameter h = 1 was chosen and 10, 30, or 100 iterations were performed. We observe
that differences between the two methods are very small. They only become evident
when subtracting one image from the other. This also indicates that even the semi-
group property of regularization methods is weIl approximated in practice. It should be
noted that the semi-group property is an ideal continuous concept which can only be
approximated in time-discrete algorithms for partial differential equations.

As can be seen from the previous sections, the scale-space framework for noniterated
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and iterated regularization methods carries over to higher space dimensions. In the
next figure we present results from a three-dimensional ultrasound data set of a fetus
with 80 x 80 x 80 voxels. Also in this case the differences between noniterated and
iterated regularization are very small and iterated regularization appears to give slightly
smoother results. This is in complete accordance with the theory in Seetion 4.

7 Conclusions
The novelty of our paper consists of establishing sequences of parameter dependent
elliptic boundary value problems, namely nonstationary iterated regularization methods,
as scale-space techniques. They satisfy the same scale-space properties as nonlinear
diffusion £lltering. The key ingredient for understanding this relation is the interpretation
of iterated regularization methods as time-implicit or time-semi-implicit approximations
to diffusion processes. In this sense, the scale-space theory of regularization methods
is also a novel semi-discrete theory to diffusion £lltering. This time-discrete framework
completes the theory of diffusion scale-spaces where up to now only results for the
continuous, the space-discrete and the fully discrete setting have been formulated [49].

The synthesis of regularization techniques and diffusion methods may lead to a deeper
understanding of both £leIds, and it is likely that many more results can be transferred
from one of these areas to the other. It would e.g. be interesting to study how results for
optimal parameter selection in regularization methods can be used for diffusion £lltering,
or to further investigate the use of the iterated anisotropie functional (18) in the context
of regularization theory. It is also promising to analyze and juxtapose efficient numerical
techniques developed in both frameworks. First steps in this direction are reported in
[51].
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one iteration, t=10 10 iterations, t=10 difference

one iteration, t=30 30 iterations, t=30 difference

one iteration, t=100 100 iterations, t=100 difference

Figure 2: Results for the MR image from Figure 1Ca) with noniterated and iterated
regularization (ß = 0.001). The left column shows the results for noniterated, the
middle column for iterated regularization. The images in the right column depict the
modulus of the differences between the results for the iterated and noniterated method.
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1 iteration, t=8

1 iteration, t=20

4 iterations, t=8

10 iterations, t=20

l

Figure 3: Results for the three-dimensional ultrasound data fram Figure 1(b) with
ß = 0.001. The left column shows the renderings far noniterated, the right column
for iterated regularization. The regularization parameter for iterated regularization was
h = 2.
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