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Abstract

‘This paper is concerned with the construction of circulant preconditioners for Toeplitz
systems arising from a piecewise continuous generating function with sign changes.

If the generating function is given, we prove that for any € > 0, only O(log N) eigenvalues
of our preconditioned Toeplitz systems of size N x N are not contained in [-1—¢, —1+€]U
[1—¢,1+¢]. The result can be modified for trigonometric preconditioners. We also suggest
circulant preconditioners for the case that the generating function is not explicitly known
and show that only O(log N) absolute values of the eigenvalues of the preconditioned
Toeplitz systems are not contained in a positive interval on the real axis.

Using the above results, we conclude that the preconditioned minimal residual method
requires only O(N log® N) arithmetical operations to achive a solution of prescribed preci- .-
sion if the spectral condition numbers-of the Toeplitz systems increase at most polynomlal
in N. We present various numerical tests. ‘

1'_ Introduction

Let Lo, be the space of 27r-per10d1c Lebesgue integrable real-valued functions and let Car be

the subspace of 2m-periodic real-valued continuous functions with norm

I£lle = max 17O (7 € Cax):

The Fourier coefficients of f € Ly, are given by -

1

ar = ar(f) := 5

f( Jemdt (k)
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and the sequence {An(f)}3_, of (N, N)-Toeplitz matrices generated by f is defined by

Ay = An(f) = (a5-()) o -

Since f € Ly is real-valued the matrices Ay (f) are Hermitian.
We are interested in the iterative solution of Toeplitz systems

An(f)z =0, (1.1)

where the generating function f € L. To be more precise, we are looking for good precondi-
tioning strategies so that Krylov space methods applied to the preconditioned system converge
in a few number of iteration steps. Note that by the Toeplitz structure of Ay each iteration
step requires only O(N log N) arithmetical operations by using fast Fourier transforms.
Preconditioning techiques for Toeplitz systems have been well-studied in the past 10 years.
However, most of the papers in this area are concerned with the case where the generating
function f is either positive or nonnegative, see for instance [4, 3, 18, 6, 16, 9] and the references
therein. In this paper, we consider f that has sign changes. The method we propose here will
also work for generating functions that are positive or nonnegative.

Up to now iterative methods for Toeplitz systems with generating functions having different
signs were only considered in [18, 20] and in connection with non-Hermitian systems in [7, 5).
In [7], we have constructed circulant preconditioners for non-Hermitian Toeplitz matrices with
known generating function of the form '

f=ph,

where p is an arbitrary trigonometric polynomial and A is a function from the Wiener class
with |h| > 0. We proved that the preconditioned matrices have singular values properly
clustered at 1. Then, if the spectral condition number of An(f) fulfills ko(An(f)) =
-the conjugate gradient method (CG) applied to the normal equation requires only O(log N)
 iteration steps to produce a solution of fixed precision. However, in general nothmg can be
said about the eigenvalues of the preconditioned matrix. :

In this paper, we consider real-valued functions f € Lo, of the form

f=psh, | ’ (1.2)

‘where ’
pe(t) =[] (2 - 2cos(t—t3 %, s —Zs] | (1.3) -

j=1

Is a trigonometric polynomial with a finite number of zeros t; € [-m,7) ( = 1,... ,u) of even
order 2s; and where h € Ly is a piecewise continuous function with simple discontinuities at
& (7 =1,...,v), ie. there exist h(¢; £0) and h(£; + 0) — h(&; — 0) = a; 75 0. For- s1mphc1ty
let h(&;) = (h (f- —0) + k(& +0))/2. Further, we assume that

{la(®)] : t € [-m,m); Ih_(t)_l >0} C [A,hy], : (1.4)

where 0 < h_ < hy < co. In particular, we are interested in the Heavyside function h.
A similar setting was also considered in [18]. S. Serra Capizzano suggested the applica-
‘tion of band-Toeplitz precondltxoners Apn(ps) in comblnatlon with CG applied to the normal



equation. He proved, beyond a more general result which can not directly be used for précon—
ditioning, that at most o(\V) eigenvalues of the preconditioned matrix Ay (ps) "1 An(f) have
absolute values not contained in a positive interval on the real axis.

A result with o(IV) outlyers was also obtained in [19], where the application of preconditioned
GMRES was examined.

In the following, we construct circulant preconditioners for the minimal residual method (MIN-
RES). Note that preconditioned MINRES avoids the transformation of the original system
to the normal equation but requires Hermitian positive definite preconditioners. Then, the
preconditioned matrices are again Hermitian, so that the absolute values of their eigenvalues
coincide with their singular values. If the generating function is given, we prove that for
any € > 0, only O(log N) singular values of the preconditioned matrices are not contained
in [1 —¢€,1 4 ¢€]. We also construct circulant preconditioners for the case that the generating
function of the Toeplitz matrices is not explicitly known. For this, we use positive repro-
ducing kernels with special properties previously applied by the authors in [16, 9] and show
that O(log N) singular values of the preconditioned matrices are not contained in a positive -
interval on the real axis. Then, if in addition x2(AN(f)) = N¢, preconditioned MINRES
converges in at most O(log N) iteration steps. In summary, the proposed algorithm requires
only O(N log? N) arithmetical operations.

This paper is organized as follows: In Section 2, we introduce circulant preconditioners for
(1.1) under the assumption that the generating function of the sequence of Toeplitz matrices is
known and prove clustering results for the eigenvalues of the preconditioned matrices. Section
3 deals with the construction of preconditioners if the generating function of the Toeplitz
matrices is not explicitly known. In Section 4, we modify the results of Section 2 with respect
to trigonometric preconditioners. The convergence of MINRES applied to our preconditioned

Toeplitz systems is considered in Section 5. Finally, we present numerical results in Section
6. ' :

2 Circulant preconditioners involving generating functions

First we introduce some basic notation. By Ry(M) we denote arbitrary (N, N )-rhatrices of
rank at most M. Let. M y(g) be the circulant (N, N)-matrix

: , ol \\ V7!
Mny(g) == Fy diag | g A Fy,
=0
where F' 5 denotes the N-th Fourier matriz

1 .. N—ll
Frn = — ( —21n]k/N)
NEYUN\® Jk=0

"and where F* is the transposed complex conjugate matrix of F'. For a trigonometric polyno-

na .
mial ¢(t) ;= Y. qre'®®, the matrices An(g) and M y(q) are related by

k=-n1 .
An(g) = My(q) + R (ny +ng) e
(see [14]). For a function g with a finite number of zeros we define the set Iy (g) by
2l |
In(g)={l=0,...,N—=1:¢ (7’\;—) #0}.

3



and the points zy,(g9) ({1 =0,... ,N —1) by

[

Ar it leln(g),
zny(g) = i

N~ otherwise,

where [ € {0,... ,N — 1} is the next higher index to ! so that I € In(g). For N large enough
we can simply choose [ =1+ 1 mod N. By My 4(f) we denote the circulant matrix

Myy(f) = Fy diag (f(znu(9)))/Lg" Fiv- (2.2)

If g has m zeros, then we have by construction that

My(f) = Myg(f) + By(m). (2.3)

Assume now that the sequence { Ay (f)}F¥=; of nonsingular Toeplitz matrices is generated by
a known piecewise continuous function f € Ly, of the form (1.2) ~ (1.4). Then we suggest
the Hermitian positive definite circulant matrix My ¢(|f}) as preconditioner for MINRES.

We examine the distribution of the eigenvalues of MN,f({fl)_%AN(f)MN,f([fl)‘%.

The following theorem is Lemma 10 of [22] written with respect to our notation.

Theorem 2.1 Let h € Lo be a plecewise continuous function having only simple disconti-
nuities at §; € [-m,m) (j =1,...,v). By Fn we denote the Fejér kernel

N-1 k ) N-1 k v
- Fn(t) = 1= ) e*t =142 1 — — Jcoskt (2.4)
/N ‘ k=§—1)< |N> : I;( N) .
_ { % (sin (%) /sin (3))2 t#0, . (25)
1 _ t=0 '

and by Fn*h the cyclic convolution of Fy and h. Then, for any ¢ > 0, there exist constants
0 < e1 £ ¢z < oo independent of N so that the number v(e; Ay) of eigenvalues of Ay (h) —
'~ M n(Fy * h) with absolute value exceeding ¢ can be estimated by .

cilog (N) <v(e; An) < cé log (N).

In other words, we have by Theorem 2.1 that

An(h) =MN(-7:N*h)+VN‘+"UN» (2.6)
where V y is a matrix of spectral norm < ¢ and where

cilogN < rank (Uy) <co log.N.

Using Theorem 2.1, we can prove the following lemma.



Lemma 2.2 Let f = psh € Lo be given by (1.2) - (1.4). Then, for any € > 0 and sufficiently

large N, the number of singular values of MN,f(lh[)‘%AN(h)MN (i)~ 3 which are not
contained in the interval [1 —¢,1 + €] is O(log N).

Proof. By (2.6) and since the eigenvalues of M y ¢(|h|) are restricted from below by h_, it
remains to show that for any € > 0 and sufficiently large N, except for O(log V) eigenvalues,

all eigenvalues of My ¢(|h|)~' M y(Fn * h) have absolute values i in [l —&,1+¢]. Indeed we

will prove that there are only O(1) outlyers.

For this we follow mainly the lines of proof of Gibb’s phdnomenon. Without loss of generality
we assume that h € Lo, has only one jump at &; = 0 of height ;.

First we examine Fy g, where g is given by

By (2.4) and since g has Fourier series

=1
x)wzzsinkx
k=1
~-we obtain
N-1
/]—'N dt_x+2z<——ﬁ)smk:v =z +2(Fn *g)(z)

and further by (2.5)

: 2
' 1 (% [sin &t T
o = 55 [ (5 2) dt~ %

1 [ (sinfft 2dt+1 ”( 1 1 Nt 2dt z
TN, \TE ) TN \mdE T 32/ V02 T3

and by partial integration and deﬁnition ofg

ln&
(Fr e 0)(@) —ola) = 0 F)]

+ si (N.’L‘) - 5 + O(N 1) (117'6 (0171-))7
2 . ,

y
where si (y =/ Tt t. We are interested in the behavior of

o

(Fx ;g) (2]7\;1) —g <%§l) =si (2n) - T +ONTY (=0, B’-] _1).

Here [z] denotes the smallest integer > z. It is well known that ll)m si (z) =%
00

. I =1(N) = oo for N — o0, then, for any € > 0, there exists Ny = Ny(¢) so that

N

2y

T Thus, if

(N*g)<27rl) g(—zﬂ>'<“—h—‘—s forall N>No (2‘7)‘




The same holds if we approach 0 from the left, i.e. if we consider 2#x{/N for! = [%] oo, N—1.
Next we have by definition of g and h that

h(@) = h(z) - = g(a)

is a continuous function. Since Fy is a reproducing kernel, for any e > 0, there exists
" Ny = Ny(e) so that for all L € {0,... ,N — 1}

' 2 o
‘(}'N*h) (2]’\;1) - h(;\;l>’ < gh_ forall N>Np (2.8)

Assume that [ = [(N) — oo for N — oo (I € {0,... ,[-12!] — 1}). Then we obtain by (2.7)
and (2.8) that for any € > 0 there exists N(¢) = max (Ny, Ny) so that

e (38) (3] e () 52
¢ fonen ()5 (3)

}(fN*h)<27fl)_h<2_“>ﬂl < eh. forall N > N(e)

N N -
and consequently, since |k (2£) | > h_ (I € In(f)),

Fn *h) (5
l—e< l( IIVh 21)”(1N)|

Sl+e (Leln(f). - (29)

Let m < p + v denote the number of zeros of f which are equa.l to.one of the points 2l /N
(I=0,...,N —1). Then the set

{ |(Fn = h) (BH)]
|h (%)

contains at least N — m absolute values of eigenvalues of My ¢(|h|) VM y(Fn * h) and we
conclude by (2.9) that except for O(1) eigenvalues and sufficiently large N, all eigenvalues of
My ¢(|h]) "' M n(Fn * h) have absolute values contained in [1 —€,1 +¢]. This completes the
proof. : ]

: IGIN(f)}

Remark 2.3 In a similar way as above we can prove that for any ¢ > 0 and N sufficiently
large, the number of eigenvalues of Ay (h) with absolute values not in the interval (h-—e,hy]
is O(log N). :

Note that the property that at most o(N) elgenva.lues of An(h) have absolute values not
contained in [h_ — €, hy] follows simply from the fact that the singular values of Ay (h) are
distributed : as |k} [13, 19]. a

Theorem 2.4 Let f = p;h € Loy be given by (1.2) — (1.4). Then, for any € > 0 and
sufficiently large N, except for O(log N) singular values, all singular values of

My s(If)" T An ()M ()73

are contained in [1 — ¢, 1 + €].



Proof. The polynomial ps in (1.3) can be rewritten as

bs = pp,

where '
n

= H(l e 14 git)ss E s; =S,
j=1

and p(t) is the complex conjugate of p(t). By stra.xghtforward computa.tion it is easy to check
that ‘

An(f)

An(P) + Ry(s) An(p) + R (s)
An(p) + Rn(2s), ' (2.10)

where only the first s columns (rows) of R?V(T)(s) are nonzero columns (rows).

Since | f| = pp|h| the eigenvalues of My f(|f|) "L An(f) coincide with the eigenvalues of
By(f) = My, (Ih)™2 My, s ()™ An()Mn () M s(RDTY2. (211)

Now we obtain by (2.10), (2.1) and (2.3) that

1

By(f) = Muys(1h))"3 My ;(p) " An(p) An(h) An ()M y,; (5) "My £ (|h]) % + Ru(25)
= Mys(h) 7 My ;(p)" (My(p) + Ru(s +m)) An(h) -
(My,#(p) + R(s +m)) My s(5) "My £(|hl)™* + Ry (25)
= Mys(lh))" 3 An(R)My,;(|h])"F + Ry(4s +2m). (2.12)

By Lemma 2.2, for any € > 0 and N sufficiently large, except for (’)(log N) smgular values,

“all singular values of My ¢(|h|)~ 2AN(h)MN (|~ 7 are contained in [1—¢g,1 +€] Now the
assertion follows by (2. 12) and Weyl’s mterlacmg theorem [12, p. 184]. ' .

3 Circulant preconditioners involving positive kernels

In many applications we only know the entries ax(f) of the Toeplitz matrices A (f), but
not the generating function itself. In this case, we use even positive reproducing kernels
Ky € Cor. These are trigonometric polynomials of the form

N-1 .
Kn(t) = cNpo +2 Z ek cos kt, “CNg = ar(Kn) €R
. k=1 ‘
satisfying Ky > 0,
1 T
o [ Ex®di=1 | (3.1)

-7

and the reproducing property
lim ||f — Ky * flloo=0 forall fe Cap.
N—o0 .



Since

N-1
(K @)= o [ OKve-tdt= Y alfevse,
k=—(N-1)

the cyclic convolution of Ky and f is determined by the first NV Fourier coefficients of f. As
preconditioner which can be constructed from the entries of Ay (f) without explicit knowledge
of f we suggest the circulant matrix My gy« (|Kn * f|).
In order to obtain a suitable distribution of the eigenvalues of the precondltloned matrices,
we need kernels with a special property which is related to the order

0= max sy

J=Ll.,p

of the zeros of p;.
The generalized Jackson kernels Jm N of degree < N —1 are defined by

Knn(t) = Jm,N(t) = Am,N (%El%é/%z) (meN), | (3‘2)'

where n := |2=1]| + 1 and where Ay v is determined by (3.1). Here [t| denotes the largest
integer < t. In particular, we have that

1-2
A'rn,N ~N m ’

i.e. there exist positive constants c;,cz so that ¢y N172™ < A, v < ea N172™. See [10, pp.
203 - 204]. A possibility for the construction of the Fourxer coefficients of Jr, v is prescribed
in [9)].

The B-spline kernels Bm N of degree < N — 1 are deﬁned by

" where M,,, denotes the centered cardinal B-spline of order m and

v ' sint.
|t £0,
sinct:=¢ ¢ #
_ 1 ¢t=0.

See [16, 8]. Since
. B N (t) := M2m Z Mo, (——) cos @t

the Fourier coefficients of By, y are given by values of centered cardinal B- sphnes Note that
J1,N = By n is just the Fejér kernel Fy.
The above kernels have the following important property

Theorem 3.1 Let f = psh € Lon be given by (1.2) - (1.4). Assume that for all t; (j €
{1,...,u}) with t; = & for some k € {1,... ,v} and sgnh(& + 0) # sgnh(€&x — 0) there
exists a neighborhood [t; — ¢;,t; + €5] (gj > O) of t; so that f is a monotone function in this
neighborhood and moreover f(t; —t) = —f(tj+t) (0 <t <¢;). Let Ky = K n be given by
(3.2) or (3.3), where . '

' m>oc+1.




Then there exist 0 < a < 8 < oo so that for N — oo, except for O(1) points, all points of the
set {2wl/N : 1l € In(f)} fulfill

(B = £) (D)

FEh S

QI+

% < . (3.4)

Proof. 1. First we consider the upper bound. Since p; and Ky are nonnegative, we obtain

(K D@ < 5= [ IOlp) Ko - 1)t

In [16, 9], we proved that m > o + 1 implies that for all z € Iy(ps) 2 In(f), there exists a
constant 0 < ¢ < oo so that '
(Kn * ps)(z)

ps(z)
Thus, since |h(z)| > h_ for (z € In(f)), we obtain
| (Bw * £)(@)| _ hs (Kn *p5)(3) _ hy

1f (=) ~ h_ ps(z) < ;L-:C (IL‘EIN(f))

<c.

2. Next wé deal with the lower bound.

2.1. Let z € In(f) be not in the neighborhood of t; (j = 1,...,u), i.e. there exist bj >0
V)

independent of N so that |z —t;| > b >0 (j = 1,... Then |[f(z)] > ¢ > 0 for all
z € In(f). Further, since K is a reproducing kernel and by using the same arguments as in
the proof of Lemma 2.2 if z is in the neighborhood of some & (k = 1,... ,v), we obtain that,

for any € > 0 there exists N(g), so that except for at most a constant number of points, all

- considered points z € In(f) satisfy
| (En* f)(@) = f@)| Sce (N2 N(e)

and thus -

BN« @) o, ce .
@ 2 @ s

2.2.. It remains to consider the points z = z(N) € In(f) with A}im z(N)=t; j=1,...,u).
, - —00 ' :
For simplicity we assume that

ps(t) = (2 — 2cost)’ = (2 sin(t/2))*,

i.e. p, has only a zero of order 2s at t; = 0. Let z = 2(N) € Iy(f) with |

lim z(N)=0.

N—=oo




. For any fixed 0 < b < m we obtain

b

(Kn+£)m) = 5 / FOKn(z — )i + / FOKn(z )i + / F(OKnlz ~ ) do)
] _b T+T | T ) :
= fO)Kn(z —t)dt + fa:—t)KN()dt-i- flz+t)Kn(t)dt)

o / b+/a: bl/x .

and since f is bounded

(KN%f)(x)—_;?/bf()KNx—tdt 7x 7
- b+z  b—

By definition of Ky we see that for any fixed 0 < b<m
m
/ Kn(t)dt < const N™2m+1 - (3.5)

so that we get for small z (e.g. z < b/2)

. b . .
(Ky * f)(z) = -2-1; / FOKn(z —t)dt + O(N-2m+1y. (3.6)
: )

2.2.1. Assume that h has no jump at ¢; = 0 with sign change. Then there exists £.> 0 so -

-that h(t) > h_ or h(t) < —h_ for t € [—¢,¢]. We restrict our attention to the case h > h_.

Since 0 < h— ps(t) < f(t) < hy ps(t) (¢ € [~e,€]) and p, is monotone increasing on (0, ), we
obtain for z(N) € (0,e) NI N( f) and N sufficiently large that :

O o S VI
/f 55 Ko (e = () e z“/ Pty K= =) de

€

, h_— ps(t) —.Z‘.

> 1= [ ey e
z(N)
E—Z(N).

_ b (0

Ds
| h+ / mlv_))KN(t) dt >,C ] (37)

with a posxtlve constant ¢ independent of. N. On the other hand, we have by definition of
ps and since by assumption s < m — 1 that f(z(N)) > h_&éN"25 > h_&éN~2"t2 Then we
obtain by (3.6) with b = ¢ and (3.7) that for NV large enough

(En * f)(@(N))
f(z(N))

> const

with a positive constant const independent of N.

10




The proof for z(N) € (—¢,0) N In(f) follows the same lines.

2.2.2. Finally, we assume that h has a jump at ¢; = 0 with sgnh(0 + 0) # sgnh(0 - 0).
Without loss of generality let (0 4 0) > 0. Then, by assumption on f, there exists €, > 0'so’
that h(t) = —h(—t) for t € [0,&1]. Thus, »

/ F(O)Kn(z —t)dt = /f(t)(KN(t—x) —Kn(t+z))dt. 38
—€1 0 '
We consider points of the form
y = yp(NV) :=2N7—r—rzk (k€ N)

with A}im yx(N) = 0, where v := mn/N in case of Jackson kernels and 7 := 1 in case of
— 00
B-spline kernels. Then we have for ¢ € [0,¢;] that

A _ Sin(nt/Z)' 2m sin(nt/2) \*™ ..
jm”“‘”“jm”v‘”y)“*mw((m) - (wram) ) &9

and consequently for sufficiently small €1 and y, since sin is odd and monotone 1ncreasmg on
(0,7/2) that
TNt —y) =~ Tmn(t+y) >0 forallte (0,e).

Furfher, by definition of the B-spline kernels
 Baw(t=9) = Bn(t+y) = Bh(t—y) — Bhy(t+y) + ONTH),
where BSn,N( )= —71;’; Mz:, ) (sinc (ﬁ%)) and similarly as in (3.9) we sée tha&
B?nyN(t —y) =By n(t+y) >0 for all ¢ € (0,¢1).
By assumption h does not change the sign in (0,,). Then we obt:.a.iri by (3.8), monot'onicityv
of ps in (0,7) and m > s + 1 that '

/%Kw(y¥t) dt 2 Z—‘ /K?v(t—y)—K?v(Hy)dt +‘O(N‘1), (3.1'0)

where K0 € {Tm,n, B, O v} Setw=w(N):= z"m Then yr = yx(N) = wk and there exist
r= r(N) € N (r > k) so that e; = wr + &, where 0 < & = €1(N) < w. Now it follows

r—k—1 yk+w(l+1) o

/Kz‘ir(t—"yk).—K?v(H»yk)dt = > K (t — i) — K3 (¢ +yx) dt
Yk A (=0 yk+wi A
' kg WU+ b1 WD)
. / KY(dt — 3 / K9(¢) dt
=0 wl l=r—k wl
w €1+yk
> /K t)dt — / K (t)dt-
-0 £1+Yr—w '

11



and further by (3.5) and since lim y; =0,
) N—ooo

Yk
Straightforward computation yields
2rm/(N7) ) ' T

K%(t)dt > const /(

0 0

sinu

2m
> du > const.
U

Hence we get for N large enough that

€1
./Kzov(t“yk)—KR/(t+yk)dt > const

Yk

and by (3.10) that
7 i )
—E/ f(yk)KN(yk t) dit 2 const.

with positive constants const independent of N.
Now we consider z(N) € In(f) with yx(N) < z(N) < yg41(N).
Let 2(N) := z(N) = yx(N).> 0. Then

. &1 w
/ KR (t —yk) — KR (t + yp) dt > / KX (t)dt + O(N~ZmHL)
0

(3.11)

€1 ' €1-2(N) | :
[ roKse-sta = [ g s0) Knl- nv) dt
—€ —e1—2z(N) '

e1—z(N)

_ / F(t+ 2(N)) Kn(t —yp(N)) dt

—&1

+ / fE+2(N) Kn(t — ye(N)) dt

—€1—Z(N)
and since f is by assumption monotone increasing on [—¢1, €1]

e1—-2(N) : —e1+2(N)

[ foxe-aoma = [ joRve-wa s [0 Ka -z a

—1
—e14+z(N) -

— [ sorxt-war + [ 50 Ex-zn) e

1 €1
€1

. / f(t)KN(t—yk(N))dt

e1—z(N)

12
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"and by (3.5) and since f is bounded
[ 10 Kxe-20m a2 [ 10 Knte— ) a + O (31
By assumption z(N) =  yx(N) (0 < ¢ < 2). Thus

T £ Kn(t - o(V)) dt T £ Kn(t - ye(N)) dt
et — > const —*

f(z(N)) - flyr(N))

and since f(yx(IN) > const N=2° and m > s + 1 we obtain by (3.12), (3.11)‘ that for N large
enough

[ 1O Kn(e-a)dt/ 1=(N) 2 const

with a nonnegative constant const independent of N. Finally, we use (3.6) with b = £; and
again m > s + 1 to finish the proof. [

To show our main result we also need the following lemma.

Lemma 3.2 Let A € CV'V be a Hermitian positive definite matrix having N —n, eigenvalues

in [a—,a], where 0 < a_ < ay < oco. Let B € CV'V be a Hermitian matrix with N — nj

singular values in [b_,by], where 0 < b_ < by < co. Then at least N — 4n) — ny eigenvalues
of A B are contained in [—a4by, —a-b_]U[a_b_,a,by].

Proof. 1. Assume first that ny =0, i.e. A hasonly elgenvalues in[a_,ay]. Let \; (B) denote
the j-th eigenvalue of the matrix B. We consider the eigenvalues of B —tA ™! w1th respect
to t € R. By Weyl’s interlacing theorem (see [12, p. 184]) we obtain for t >0 that

t t

A(B)—— <\ (B-tA™) < \(B) - —  (313)
a_ a4 ‘ :
and for ¢t < 0 that ‘
M(B) - = < A (B—tA™Y) < \(B) - . (314
. a4 . a_

Let Aj(B) € {—by,—b_]. Then we obtain by (3.13) and (3.14) that A; (B —tA™!) < 0 for all
t > —a_b_. On the other hand, we see by (3.13) and (3.14) that ); (B —tA™1) > 0 for all
' t < —a4by. Thus, since A; ( - tA‘l) = \;(t) is a continuous fu'n»ctlon in t € R, there exists -
€ [—ayby, —a_b_] such that \; (B — tJA"l) = 0. This implies that t; € [—a;by,—a_b_]
. 1s an eigenvalue of AB. Consequently, every \;(B ) € [—b4, —b_] corresponds to an eigenvalue
tj € [~atby, —a_b_] of AB. (Eigenvalues are called with multiplicities.)

The examination of \;(B) € [a-b-,ab;] follows the same lines. _

In summary, N — n; eigenvalues of AB are contained in [—ayby, —a—_b_]U [a_b_,a by].

2. Let n; eigenvalues of A be outside [a_,ay]. Then, since A is positive definite, the matrix
can be splitted as '

A2 = 4% 4 R(ny), | (3.15)
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where A"/ is Hermitian with all eigenvalues in [a",a}/“] and R(ny) is a Hermitian matrix

of rank ny. The eigenvalues of AB coincide with the elgenvalues of AY2BAY?. Hence it
remains to show that at most 4n; + ng singular va.lues of AY2B A2 are not contamed in
[a_b_,a4by]. By (3 15) we have

AV2BAY? = AY*BAY? y R2my),
2 .
(a2Ba1?)" = (A/BAl/Z) + R(dny). (3.16)

By 1. all but ny singular values of A’BA'* are contained in [a_b_,a;by]. Then (3.16)
and Weyl’s interlacing theorem yield the assertion. : [ |

"Theorem 3.3 Let f--= psh € Lop be given by (1.2) — (1.4). Assume that for all ij (j €

{1,...,u}) with t; = & for some k € {1,... ,v} and sgnh(é; + 0) # sgnh({, — 0) there-

exists a neighborhood [t; — €;,t; + €] (€5 > 0) of t; so that f is a monotone function in this

neighborhood and moreover f(t; —t) = —f(tj+1) (0 <t <¢j). Let Ky = Ky v be given by

(3.2) or (3.3), where ’
m>2o+1.

By a' [ we denote the constants from Theorem 3.1.
Then, for any € > 0 and suﬁczently large N, except for O(log N). singular values, all singular

values of My (|Ky * f])~ 2AN( YMn(|Kn * f|)~ ? are contained in [ —€,8+¢].
Proof. Let By(f) be.deﬁned by (2.11). Then we obtain by (2.12) that

My gy (|Kn * £)73 AN(f) M N kyxs(IKn * i (3.17)
= MNKN*faKN*f|>-%MNf<p>MNf(|h|)* By(f) -

My ;(|h))? My ;(p) MNKN*f(IKN * f)72
= My gyes(|Kn * f)72 MNf(P)MNf(Ih|)2 MNf(Ihl)_fAN(h)MNf(lhl)

My §(1h))2 My,;(5) My giyes(|Kn * f)72 + R(ds+2m). (3.18)

The distribution of the eigenvalues of My, f(|h|)“%A N(R)M y ¢( |h|)_% is known by Lemma
2.2. It remains to examine the eigenvalues of the Hermitian positive definite matrix

My p(B)E My 1(5) My s (1K % F1)™ M, () MNfuhl)% .

These eigenvalues coincide with the reciprocal eigenvalues of My ¢(| f|)™* My xy« s (| Kn*f])-

By definition of M y ,9 and since Ky is a reproducing kernel, except for O(1) eigenvalues, all

- eigenvalues of My #(|f)™Y My ky«t (KN * fl) are given by [(Ky * f)(2nl/N)|/|f(2nl/N)
(I € In(f)). Thus, by Theorem 3.1, for N — oo only O(1) eigenvalues of -

My ¢(|f]) My ky«s(|Kn* f])~! are not contained in [a, 5]. Consequently, by (3.18), Lemma
2.2, Lemma 3.2 and Weyl’s interlacing theorem at most O(log N) singular values of

MN,KN*f(|KN ";fl)_%AN(f)MNKN*f(lKN * f|) 2 are not contained in [Ol — &, ﬂ + 8] H
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4 Trigonometric preconditioners

In addition to Section 2, we suppose that the Toeplitz matrices Ay € RMN are symmetric,
i.e. the generating function f € Lo, is even. This. suggests the application of so-called
trigonometric preconditioners. Note that in the symmetric case the multiplication of a vector
with Ax can be realized using fast trigonometric transforms instead of fast Fourier transforms
(see [14]). In this way complex arithmetic can be completely avoided in the iterative solution
of (1.1). This is one of the reasons to look for preconditioners which can be diagonalized by
trigonometric matrices corresponding to fast trigonometric transforms instead of the Fourier
matrix Fy. : '

In practice, four discrete sine transforms (DST I — IV) and four discrete cosine transforms
(DCT I-1V) were used (see [21]). Any of these eight trigonometric transforms can be realized
with O(N log N) arithmetical operations. Likewise, we can define preconditioners with respect
to any of these transforms.

In this paper, we restrict our attention to the so-called discrete cosine transform of type
II (DCT-II) and discrete sine transform of type II (DST-II), which are determined by the
following transform matrices: ‘ ’

2\ 2k + 1)\ V!
_ . m . (= N J . N,N
- DCT-II - Cy (N) (e] €08 T )j,k=o e R
2\ /2 i+ 1)(2k + D\ V!
DST-II : SN = (N) (ejf‘ﬁrl sin U+ )§N+ )”).k 0 e RV,
’ Jk=

where ekN :=271/2(k = 0, N) and efcv :=1(k=1,...,N—1). We propose the preconditioners
DCT-1I:  Mny(f,C) = (C{) diag(If(@n)Di55" CN,

DST-II:  Muys(If,S) = (SK) diag(If@ny))Y, SY,

where

In .
N otherwise

{‘W if f(%)#0,
TN, =

and where I € {0,..., N — 1} is the next higher index to ! such that |[f(@ng)] >0. See [15].
Then we can prove in a completely similar way as in Section 2 that for any ¢ > 0 and
sufficiently large N except for O(log N) singular values, all singular values of

My ;(If,0) 3 An(f)Mny(If1,0)"F (O € {SH,C¥})

are contained in {1 — ¢,1 + €].

5 Convergencé of preconditiqned MIN_RES

In order to prescribe the convergence behavior of preconditioned MINRES 'w_ith our precon-

ditioners of the previous sections, we have to estimate the smaller outlyers for increasing
N. '

Lemma 5.1 Let f € La; be defined by (1.2)—(1.4). Assume thaf k2(An(f)) = O(N%)
(a > 0). Then the smallest absolute values of the eigenvalues of My s(|f D=1 Ax(f) and
My gyt (| KN * fI)™ An(f) behave for N — 0o as O(N~9).
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Proof. Since

1My (1D e
Al 2AvdD,

M N reynr (KN = f])ll2
I AN()l2

and both | My ¢(|f])ll2 and || M n xy+f(|Kn * f|)||2 are restricted from above, it remains to
show that there exists a constant ¢ > 0 independent of N so that

lAn(llz > .

IAN(F) My (IfDll2 <

1AM (F) ™ My s (K # FIl2 < ra(An(f))

The above inequality follows immediately from the fact that the singular values of Ay (f) are
distributed as |f| (see [13, 19]). N |

We want to combine our knowledge of the distribution of the éigenvalues of our preconditioned
matrices with results concerning the convergence of MINRES. '

Theorem 5.2 Let A € CN'V be a Hermitian matrix with p and q isolated large and smal]
singular values, respectively:

0<61§02§,..§aq < afog1<...onp<h
< ON—pt1<ON—p2<...<on (0<a<b< o).

Let v(k):=0ifk—p—q=0mod2 and v(k) := 1 otherwise. Then MINRES‘requires for the
solution of Az = b

| 2 7 b ) 1+ ()
k<2 <ln7_+,§ln(l+0k> +pl 2) / <ln——————1_(%)) +p+g+v(k)

. . .o . . . (kY
iteration steps to achieve precision T, i.e. JIJI%‘T)‘HZ < 1, where *) .= b — Az® and z*) js

the k-th iterate.

- The theorem can be proved by using the same technique as in [1, pp. 569 - 573]. Namely,
based on the known estimate '

llr®]]
———= < min max A
7O, < peehy "5 IPe(Aa)l,

- where II? denotes the space of pdlynomials of degree < k with p(0) = 1 and A; are the

exgenvalues of A, we choose py, as product of the linear polynomlals passing through the p+q
outlyers and the modlﬁed Chebyshev polynomials

a® — 22 ' a?
Tt(k—p—q)/zj (1+2 P ) [ Tie=r-a)r2) (1 g _a2> :

The above summand pln2 can be further reduced if ‘we use polynomials of hlgher degree for
the larger outlyers. :
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Note that a similar estimate can be ngen for the CG method applied to the normal equation
A*Ax = A*b. Here we need
) +p+gq

2 <b> ( 1+ (%)
k< |{In—+ In{— In
CUCHUCE:
< 7, where e®) .= z, — 2(*). Note that the latter

e 4
method requires two matrix-vector multiphcatlons in each iteration step.

iteration steps to archive precision

new@ 4

By Theorem 2.4, Theorem 3.3 and Lemma 5.1 our preconditioned MINRES with both pre-
conditioners My ¢(|f|) and My gy«f(|Kn * f]) produces a solution of (1.1) of prescribed
precision in O(log N) iteration steps and with O(N log? N) arithmetical operations. The
same holds for preconditioned CG applied to the normal equation.

6 Numerical results

In this section, we test our circulant and trigonometric preconditioners in connection with
different iterative methods on a SGI O2 work station. As transform length we use N = 2", as
right-hand side & of (1 1) the vector consisting of N entries “1” and as start vector the zero

- vector.’

We begin with a comparison of MINRES apphed to
MN,f(Ifl,O) YAn(f)z = Mnyg(f1,0)7 b, (6.1)

where O € {Fy, C¥, S} and CGNE (Craig’s method) (cf. {17, p. 239]) applied to

(M £(1£1,0)"% An(F) Mus(If1,0)73) (M ;(£1,0)} @) = M (1,0} b. (62)

For both algorithms we have used MATLAB implementations of B. Fischer. See also {11]. In
~ particular, his implementation of preconditioned MINRES avoids the splitting (6.2).

In order to make the following computatlons with MINRES and CGNE comparable, we have
stopped both computations'if .

lib — Anaz®)||y /|]b]]2 < 1077

Example 1. We begm with Hermitian Toephtz matrices Ay (f) arising from the generating
function

f1(@) = ha(z) 22 with hy(z) = (a® + 1) sgn (z) (2 € [-m,m)).

Table 1 presents the number of iterations for circulant preconditioners. The first row of the
table contains the exponent n of the transform length N = 2". According to Theorem 2.4
and Theorem 5.2, the preconditioners M n(|f|, Fn) lead to very good results. As expected,
the preconditioners My kp « f(|K N * f |, F'v) with the Fejér kernels Ky = Fp are not sulta.ble
for (1.1) (cf. also [16]), while the preconditioners with Ky = B2y do their job.

Further, CGNE needs half the number of iterations but twice the number of matrix-vector
multiplications per iteration than MINRES. See also Section 5.




method ; MN,f 4 5 6 7 8 9 10

MINRES | Iy 23 71 277 * * * ¥
MINRES My ¢(1fl, Fn) I 17 17 19 21 23 2
MINRES | My ryf((Fx*f,Fn) || 19 31 35 41 43 47 51
'MINRES | My, yor(IBonv * fI,Fn) |19 23 23 25 25 27 29
CGNE | Iy 11 37 164 * * * *
CGNE My (||, Fn) '8 8 9 9 9 10 10

Table 1: f(t) = hy(t) 2 hi(t)=(t2+1)sgn (¢) (€ [-m, 7))

Example 2. Next, we consider the symmetric Toeplitz matrices Ay (f) arising from the
generating function

f2(z) = ha(z) (cos(z + 2) +1) (cos(z —2) +1)
with v |
ho(z) =sgn(z — 7+ 2)sgn(z + 7 — 2).

. Tables 2 presents the number of iterations. for trigonometric preconditioners. The results
are similar to those of Example 1, except that CGNE requires nearly the same number of
iterations as MINRES.

method . My

4 5. 6 7 8 9 10
MINRES | Iy 0 17 45 142 401 * *
MINRES My 4(1f),CH) 8 9 10 11 14 13 16
MINRES My 4(1f], S5) 9 10 11 12 14 13 16

MINRES | My ryef((Fn+ f],CH) |10 15 20 26 30 39 53

MINRES | My sy f(|Fv*f,8%) |10 15 19 25 30 39 53

MINRES | Mg, yas(Bew * f,CH) || 9 15 17 16 20 18 18

MINRES | Myg, vef([Ban*FI,SE) || 9 14 16 18 19 18 18
72,Nf ¥

CGNE Iy 10 29 99 413 * x
CGNE My £(f2,CH) 709 11 11 17 16 17
CGNE My (1% SY) 7 7 10 10 12 14 15

Table 2: fo(t) = ha(t) (cos(z +2) + 1) (cos(z — 2) +1) (¢ € [-m,7))

At the end of this section, we want to emphazise the influence of different stopping rules on the
numerical solution of the system. A discussion of stopping criteria for iterative methods can be

)
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also found in {2, pp. 51 — 57]. We deal with Toeplitz systems (1.1), where An(f) = A12s(f1),
z is a random vector with entries in [—1,1] and b := Ay (f)z. Beyond the above consxdered
MINRES and CGNE with O = Fy, we also examine the CG method applied to

(M (1F) AN (Mus(1F) T An(H))z = (M (1f) 71 AN () MN,f(|f|)_1(b |
6.3

and the preconditioned CG method (PCG) with preconditioner M y f(| f|?) applied to

AN(HAN(flz = Ay (f)b. (6.4)

For each of the above four algorithms, the following four figures compare

i) logio |16 — An(f)x®) [l2/]16]2 (solid curve with points),

ii) logyo llc - Byy®[la/llcl. (solid curve),

iii) logyq [|#®)||2/1#@}l2 (dashed curve)

iv) logyo lle —2®)|l,  (solid curve with squares)

after a fixed number of iterations. Here i) is the residual with respect to the original problem.

Except.of PCG, ii) shows the residual with respect to the preconditioned systems, i.e. by
(6.1) - (6.4),

i ZéN;Cl?lﬁfﬂ;zljlefl)% ®, in the case of MINRES
P Ml A OM e in the case of CONE
Bﬁ - El\l\/{;z:;ﬂ;:g:iz’{;{)))ﬂifﬂszjv(lf/‘(li)flz lt%f?z— o), inthecase of CG
o iﬁgg f’N;{k)) Y  inthe case of PCG

Finally, the values in iii) coincide with the values in ii) up to roundoff errors, i.e.

#4) x ¢~ Byy®

_ The values #*) can be computed durmg the algorithm without additional effort and were

sometimes applied in stopping rules.
Note that the standard. MATLAB 5 1mplementat10n of PCG uses i) as stoppmg criterion.

Indeed, in all algorithms, the dashed line and the solid line are the same during the first
iteration steps, but distinguish after a larger number of iterations.

Further, the solid line with points i) doesn’t further decrease after certain iterations. We

cannot solve Ajzs(fi)z = b with a relative original residual smaller than 107° by using
MINRES or CGNE and smaller than 10~% by using PCG and 10~° by using CG applied to
(6.3). -
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Figure 1: Residual norms versus the number of iterations for the matrix A123( f1) for MINRES
applied to (6.1)(left) and for for CGNE applied to (6.2)(right)

-

Figure 2: Residual norms versus the number of iterations for the matrix A;,5(f;) for PCG-
method applied to (6.4)(left) and for CG-method applied to (6.3)(right)

A " L L .+ L " 1 : L L s . " ¢ A
o 5 10 15 20 25 0 a5 40 45 S0 o 5 10 15 20 25 - 30 35 40 45 50
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