
Preconditioners for

nondefinite Hermitian Toeplitz systems

R. H. Chan, D. Potts, G. Steidl

Nr. 242/1999



Preconditioners for nondefinite Hermitian Toeplitz systems 1

Raymond H. Chan
Department of Mathematics

The Chinese University of Hong Kong
Shatin

Hong Kong
rchan@math.cuhk.edu.hk

Daniel Potts
Medizinische Universität Lübeck

Institut für Mathematik
Wallstr. 40

D-23560 Lübeck
potts@math.mu-luebeck.de

Gabriele Steidl
Universität Mannheim

Fakultät für Mathematik und Informatik
D-68131 Mannheim

steidl@math.uni-mannheim.de

September 27, 1999

Abstract

.This paper is concerned with the construction of circulant preconditioners for Toeplitz
systems arising from a piecewise continuous generating function with sign changes.
If the generating function is given, we prove that for any c > 0, only O(log N) eigenvalues
of our preconditioned Toeplitz systems of size N xN are not contained in [-1- c, -1+c]U
[1-c, 1+c). The result can be modified for trigonometricpreconditioners. We also suggest
circulant preconditioners for the case that the generating function is not explicitly known
and show that only O(log N) absolute values of the eigenvalues of the preconditioned
Toeplitz systems are not contained in a positive interval on the real axis.
Using the above results, we conclude that the preconditioned minimal residual method
requires only O(N log2N) arithmetical operations to achive a solution of prescribed preci-
sion if the spectral conditionnumbersof the Toeplitz systems increase at most polynomial
in N. We present various numerical tests.

1 Introduction

Let £21r be the space of 27r-periodic Lebesgue integrable real-valued nlllctions and let C21r be
the subspace of27r-'periodic real-valued continuous functions with norm

1111100:= max II(t)1
tE[-1r,1rJ

The Fourier .coefficients of 1E £21r are given by

(k E Z)
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and the sequence {AN(j)}N=l of (N, N)-Toeplitz matrices generated by f is defined by

Since f E £27r is real-valued the matriees AN(j) are Hermitian.
We are interested in the iterative solution of Toeplitz systems

(1.1)

where .the generating function f E £27r' To be more precise, we are looking for good precondi-
tioning strategies so that Krylov space methods applied to thepreconditioned system converge
in a few number of iteration steps. Note that by the Toeplitz structure of AN each iteration
step requires only O(N log N) arithmetiealoperations by using fast Fourier transforms.
Preconditioning techiques for Toeplitz systems have been well-studied in the past 10 years.
However, most of the papers in this area are concerned with the case where the generating
function fis either positive or nonnegative, see for instance [4, 3, 18,6, 16,9] and the references
therein. In this paper, we consider f that has sign changes. The method we propose here will
also work for generating functions that are positive or nonnegative.
Up to now iterative methods for Toeplitz systems with generating functions having different
signs were only considered in [18, 20] and in connection with non-Hermitian systems in [7, 5].
In [7],we have constructed circulant preconditioners for non-Hermitian Toeplitz matriees with
known generating function of the form

f =ph,

where p is an arbitrary trigonometrie polynomial and h is a function from the Wiener class
with Ihl > O. We proved that the preconditioned matriees have singular values properly
clustered at 1. Then, if the spectral condition number of AN (j) fulfills K.2 (AN (j)) = NQ

,

the conjugate gradient method (CG) applied to the normal equation requires only O(log N)
iteration steps to produce a solution of fixed precision. However, in general not hing can be
said about the eigenvalues of the preconditioned matrix.
In this paper, we consider real-valued functions f E £27r of the form

where

f =Psh,

~ ~
Ps(t) := rr (2 - 2 cos(t - tj))Sj, s :=L Sj

j=l j=l

(1.2)

(1.3)

is a trigonometrie polynomial with afinite number of zeros tj E [-7r, 7r) (j = 1, ... , J-L) of even
order 2sj and where h E £27r is a piecewisecontinuous function with simple discontinuities at
~j (j = 1, ... , v), Le. there exist h(~j ::I: 0) and h(~j + 0) - h(~j - 0) = aj l= O. For-simplicity
let h(~j) = (h(~j - 0) + h(~j + 0))/2. Furt her, we assurne that

{lh(t)1 : t E [-7r,7r)j Ih(t)1 > O} ~ [h_, h+], (1.4)

where 0 < h_ :S h+ < 00. In particular, we are interested in the' Heavyside function h.
A similar setting was also considered in [18]. S. Serra Capizzano suggested the applica-
tion of band- Toeplitz preconditioners AN (Ps) in combination with CG applied to the normal
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equation. He proved, beyond a more general result which can not directly be used for precon-
ditioning, that at most o(N) eigenvalues of the preconditioned matrix AN(Ps)-l AN(J) have
absolute values not contained in a positive interval on the real axis.
A result with o(N) outlyers was also obtained in [19]' where the application of preconditioned
GMRES was examined.
In the following, we construct circulant preconditioners for the minimal residual method (MIN-
RES). Note that preconditioned MINRES avoids the transformation of the original system
to the normal equation but requires Hermitian positive definite preconditioners. Then, the
preconditioned matrices are again Hermitian, so that the absolute values of their eigenvalues
coincide with their singular values. If the generating function is given, we prove that for
any c > 0, only O(log N) singular values of the preconditioned matrices are not contained
in [1 - c, 1+ cl. We also construct circulant preconditioners for the case that the generating
function of the Toeplitz matrices is not explicitly known. For this, we use positive repro-
ducing kerneis with special properties previously applied by the authors in [16, 9] and show
that O(log N) singular values of die preconditioned matriees are not contained in a positive
interval on the real axis. Then, if in addition K:2(AN(J)) = Na, preconditioned MINRES
converges in at most O(log N) iteration steps. In summary, the proposed algorithm requires
only O(N log2N) arithmetical operations.

This paper is organized as follows: In Section 2, we introduce circulant preconditioners for
(1.1) under the assumption that the generating function ofthe sequence ofToeplitz matriees is
known and prove clustering results for the eigenvalues of the preconditioned matrices. Section
3 deals with the construction of preconditioners if the generating function of the Toeplitz
matricesis not explicitly known. In Section 4, we modify the results of Section 2 with respect
to trigonometrie preconditioners. The convergence of MINRES applied to our preconditioned
Toeplitz systems is considered in Section 5. Finally, we present numerieal results in Section
6.

2 Circulant preconditioners involving generating functions

First we introduce some basie notation. By RN(M) we denote arbitrary (N, N)-matriees of
rank cit most M. Let MN(g) bethe circulant (N,N)-matrix

MN(g) :=FN diag (g (2;l)) :~lFN,

where FN denotes the N-th Fourier matrix

FN := _1_ (e-21rijk/N)~-1
Vii },k=O

and where F* is the transposed complex conjugate matrix of F. For a trigonometrie polyno-
n2

mial q(t):= 2:. qkeikt, the matrices AN(q) and MN(q) arerelated by
k=-nl

AN(q) =MN(q) + RN(nl + n2)

(see [14]). For a function 9 with a finite number of zeros we define the set IN(g) by

( 21rl)IN(g):= {l =O, ... ,N -1: 9 N#O}.
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and the points XN,I(g) (l = 0, ... ,N - 1) by

{

217l" if l E IN(g) ,
XNI(g) := ~

, 217l" otherwise ,fiT

where fE {O, ... ,N -1} is the next higher index to l so that fE IN(g). For N large enough
we can simply choose f = l+ 1 mod N. By MN,g(f) we denote the circulant matrix

(2.2)

If 9 has m zeros, then we have by construction that

(2.3)

(2.5)

(2.4)

Assume now that the sequence {AN(f)}N=1 ofnonsingular Toeplitz matrices is generated by
a known piecewise continuous nmction f E L27l"of the form (1.2) - (1.4). Then we suggest
the Hermitian positive definite circulant matrix MN,j(lfl) as preconditioner for MINRES.

1 . 1
Weexamine the distribution of the eigenvalues of MN,f(lfl)-2 AN(f)M N,j(lfl)-2.

The Jollowing theorem is Lemma 10 of [22] written with respect to oUf notation.

Theorem 2.1 Let h E L27l"be a piecewise continuous function having only simple disconti-
nuities at ~j E [-?T,?T) (j = 1, ... ,v). By FN we denote the Fejer kernel

N-I ( I k I) N-l ( k)FN (t):= L 1 - N eikt = 1+ 2 L 1 - N cos kt
k=-(N-I) k=l

= {k(sin(~t)/sin(~))2 t#O,
1.J t=O

and by FN * h the cyclic convolution of FN and h. Then, for any c > 0, there exist constants° < CI::; C2 <: 00 independent of N so that the number v(c; AN) of eigenvalues of AN(h) -
MN (F N * h) with absolute value exceeding c can be estimated by

In other words, we have by Theorem 2.1 that

(2.6)

where VN is a matrix of spectral norm::; c a'nd where

Cl log N::; rank (UN) ::; c2logN.

Using Theorem 2.1, we can prove the following lemma.
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Lemma 2.2 Let f = Psh E L.21r be given by (1.2) ~ (1.4). Then, for any c > 0 and sufficiently
1 1

large N, the number of singular values of MN,j(lhl)-z AN(h)M N,f(jhl)-z which are not
contained in the interval [1 - c, 1+ c] is O(log N).

Proof. By (2.6) and since the eigenvalues of M N,j(lhl) are restricted from below by h_, it
remains to showthat for any c > 0 and sufficiently large N, except for O(log N) eigenvalues,
all eigenvalues of M N,f(lhl)-l M N(.rN * h) have absolute values in [1 - c, 1 + cl. Indeed we
will prove that there are only 0(1) outlyers.
For this we follow mainly the lines of proof of Gibb's phänomenon. Without loss of generality
we assume that h E L21r has only one jump at 6 = 0 of height Ul.

First we examine .rN * g, where 9 is given by

- { ~(71" - x)

g(x) := ~(-x - 71")

By (2.4) and since 9 has Fourier series

xE (0,71"),

xE (-71",0),

X =0.

00 1
g(x) '" L k sinkx

k=l

we obtain
{X N-l (1 1)Jn .rN(t) dt = x + 2 L k - N sinkx
o k=l

and furt her by (2.5)

=X+2(.rN*g)(X)

(.rN * g)(x) =

(2.7)

1 lx
(sin ~t ) 2 X-- -- dt--

2N 0 _sin~ 2

1 {X (sin Nt) 2 1 {X (1 1 ) ( Nt) 2
= 2N Jo _-t dt+ 2N Jo (sin~)2 - (~)2 - sinT dt- ~

= l~" (sint)2 dt + 0(N-1) _:.Jo t 2 -

and by partial integration and definitionof 9

-(sin NX)2 71"
(.rN * g)(x) - g(x) = - !:!2;.2 + si (Nx) - 2" + O(N-1) (XE (0,71")),

2

- y .
where si (y) := I Sl~t dt. We are interested in the behavior of

o

(.rN * g) (2;l) - 9 (2;l) = si (271"l)- ~ + 0(N-1) (l = 0, ... , r~l-1).
Here fx1 denotes the smallest integer 2 x. It is well known that lim si (x) = _~.Thus, if

x~oo
l =l(N) --+ 00 for N --+ 00, then, for any c > 0, there exists No = No(c) so that

i(.rN * g) (2;l) - 9 (2;l) I< ~~~c for all N 2- No.
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The same holds if we approach 0 from the left, i.e. if we consider 21r1/N for I = r=1-1, ... ,N-1.
Next we have by definition of 9 and h that

- 0:1h(x) := h(x) - - g(x)
1r

is a continuous function. Since FN is a reproducing kernei, for any c > 0, there exists
No = No(c) so that for all I E {O, ... ,N - I}

I
- (21r1) - (21r1) I c -'(FN * h) N - h N < 2 h_ for all N 2: No (2.8)

Assurne that I = I(N) -+ 00 for N -+ 00 (I E {O, ... , f=1-1 - I}). Then we obtain by (2.7)
and (2.8) that for any € > 0 there exists N(c) = max (No, No) so that

I(FN * h) (2;1) _ h (2;1) I < i(FN * h) (2;1) _ h (2;1) I
+ :1 i(FN * g) (2;1) _ 9 (2;l) I

and consequently, since Ih e~l) I 2: h_ (l E IN(J)),

1- c < I(FN * h) (~) I < 1+ c- Ih (~I)1 -

for all N 2: N(c)

(2.9)

Let m ~ J.L + vdenote the number of zeros of f which are equal toone of the points 21rl/N
(l = 0, ... ,N - 1). Then the set

{
I(FN * h) e~I)1 : lEI (f)}

Ih e~I)1 N

contains at least N - m absolute values of eigenvalues of M N,f(lhl)-1M N(FN * h) and we
conclude by (2.9) that except for 0(1) eigenvalues and sufficiently large N, alleigenvalues of
M N,j(lhl)-1 M N(FN * h) have absolute values contained in [1- c, 1+ cl. This completes the
~~ .
Remark 2.3 In a similar way as above we can prove that for any c> 0 and N sufficiently
large, the number ofeigenvalues of AN(h) with absolute values not in the interval [h_ -c, h+]
is O(log N).
Note that the property that at most o(N) eigenvalues of AN(h) have absolute values not
contained in [h_ - c, h+] follows simply from the fact that the singular values of AN(h) are
distributedas Ihl [13, 19]. 0

Theorem 2.4 Let f = Pah E L21r be given by (1.2) - (1.4). Tben, for any c > 0 and
sufliciently large N, except for O(log N) singular values, all singular values of

are contained in [i - c, 1+ cl.
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Proof. The polynomial Ps in (1.3) can be rewritten as

Ps = PP,

where
J.L

p(t) := II(1 - e-itj eit)Sj ,

j=l

J.L

L Sj = S,
j=l

and p(t) is the complex conjugate of p(t). By straightforward computation it is easy to check
that

AN(J) AN (Ps h) = AN(php)
= AN(ph) AN(p) + R~(s)
- AN(p) AN(h) AN(P) + RN(s) AN(j5) + R~(s)

AN(p) AN(h) AN(P) + RN(2s) , (2.10)

where only the first S columns(rows) of R~T)(S) are nonzero columns (rows).
Since 111= p plhl the eigenvah.1esof M N,J(IfI)-l AN(J) coincide with the eigenvalues of

B N(J) := M N,J(lhl)-1/2 M N,J(P)-l AN(J)M N,J(p)-l M N,f(lhl)-1/2 . (2.11)

Now we obtain by (2.10), (2.1) and (2.3) that

BN(J) = M N,J(lhl)-~ M N,J(p)-l AN(p)AN(h)AN(p)M N,J(j5)-lM N,J(lhl)-~ + RN(2s)

M N,f(lhl)-~ M N,J(p)-l(M N,J(p) + RN(S + m))AN(h) .
• 1

(M N,J(j5) + RN(S + m))M N,J(p)-l M N,J(lhl)-2 +RN(2s)
1 1

M N,J(lhl)-2AN(h)M N,f(lhl)-2 + RN(4s + 2m). (2.12)

By Lemma 2.2, for any c > 0 and N sufficiently large, except for O(log N) singular values,
1 . 1

all singularvalues of M N,f(lhl)-2AN(h)M N,J(lhl)-2 are contained in [1- c, 1+ cl. Now the
assertion follows by (2.12) and Weyl's interlacing theorem [12, p. 184]. . •

3 Circulant preconditioners involving positive kerneIs

In many applications we only know the entries ak(J) of the Toeplitz matrices AN(J), but
not the generating function itself. In this case, we use even positive reproducing kernels
KN E C27r' These are trigonometrie polynomials of the form

N-l

KN(t) :=CN,O+ 2L CN,kcoskt, CN,k= ak(KN) EIR
k=l

satisfying KN 2: 0,

(3.1)

and the reproducing property

lim 111 - KN * 11100 = 0 for all 1 E C27r'
N-+oo
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--- ----------------------------------------------------------.,

Since
1 111" N-1

(KN * J)(x) = - f(t)KN(X - t) dt = L ak(f) CN,keikx ,
21l" -11" k=-(N-1)

the cyclic convölution of KN and f is determined by the first N Fourier coefficients of f. As
preconditioner which can be construeted from the entries of AN(f) without explicit knowledge
of f we suggest the cireulant matrix M N,KN*f(IKN * fl).
In order to obtain a suitable distribution of the eigenvalues of the preconditioned matrices,
we need kerneIs with a special property which is related to the order

(j:= .max Sj
)=1, ... ,/.1

of the zeros of Ps,
The generalized Jackson kernels Jm,N of degree ~ N - 1 are defined by

(
sin(nt/2)) 2m

Km N(t) = Jm N(t) := Am N . (/2), , 'SIn t (m E N), (3.2)

where n := lN~l J + 1 and where Am,N is determined by (3.1). Here ltJ denotes the largest
integer ::; t. In particular,. we have that

A rv NI-2mm,N ,

i.e. there exist positive constants Cl, C2 so that CI NI-2m ~ Am,N ~ C2 NI-2m. See [10, pp.
203 - 204]. A possibility for the eonstruetion of the Fourier coefficients of Jm,N is prescribed
in [9].
The B-spline kernels 8m,N of degree ::; N ~ 1 are defined by

N 1 '" (. (N (t + 21l"r) ) ) 2mKm,N(t) = 8m,N(t) := m M2m(0) ~ SIlle .m 2 '

where Mm denotes the centered cardinal B-spline of order m and

(3.3)

See [16, 8]. Since

.{ sint.
sinc t:= . -t-

l

t i= 0 ,

t = O.

Bm,N(t) ,~ 1+ M2~(O) % M2m (n;:) cos kt

the Fourier eoefficients of 8m,N are given by values of eentered cardinal B-splines. Note that
J1,N = 81,N is just the Fejer kernel F N.
The above kerneIs have the following important property:

Theorem 3.1 Let f = Psh E £211" be given by (1.2) - (1.4). Assume tbat for all tj (j E
{I, ... ,f.l}) witb tj = ~k for some k E {I, ... ,LI} and sgnh(~k + 0) i= sgn h(~k - 0) tbere
exists a neigbborbood [tj - Cj, tj + Cj] (Cj > 0) oftj so tbat f is a monotone function in tbis
neigbborbood and moreover f(tj - t)= - f(tj + t) (0 ::; t ::;Cj)' Let KN = Km,N be given by
(3.2) or (3.3), wbere .

m~(j+l.
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Then there exist 0< a ~ ß < 00 SO that for N -+ 00, except for 0(1) points, all points ofthe
set {27rl/N : l E [NU)} fulfill

1 I(KN * J)e;y) I 1-<-----<-.ß - Ife~I)1 - a
(3.4)

Proof. 1. First we consider the upper bound. Since Ps and KN are nonnegative, we obtain

71"

I(KN * f)(x) I ~ ~ J Ih(t)1 Ps(t) KN(X - t) dt27r
-71"

71"

< h+ 2~ J Ps(t)KN(x - t) dt = h+ (KN * Ps)(x) .
-71"

In [16, 9]' we proved that m ~ (Y + 1 implies that for an x E [N(Ps) 2 [NU), there exists a
constant 0 < C < 00 so that

(KN * Ps)(x) < c.
Ps(x) -

Thus, since Ih(x)1 ~ h_ for (x E [NU)), we obtain

_I (_K_N_*_f_)_(x_)I < _h+ _(K_N_*_P_s)_(x_)< _h+ C

If(x)1 - h_ Ps(x) - h_

2. Next we deal with the lower bound.
2.1. Let x E [NU) be not in the neighborhood of tj (j = 1, ... ,j.L), i.e. there exist bj > 0
independent of N so that Ix - tjl .~ bj > 0 (j = 1, ... ,j.L). Then If(x)1 ~ C > 0 for an
x EINU). Further, sinceKN is a reproducing kernel and by using the same arguments as in
the proof of Lemma 2.2 if x is in the neighborhood of some ~k (k = 1, ... , v), we obtain that,
for any e > 0 there exists N(e), so that except for at most a constant number of points, an
considered points x E [NU) satisfy

I(KN * J)(x) - f(x)1 ~ Ce (N ~ N(e))

and thus
I(KN * J)(x)1 ce

If(x)1 ~ 1- 1f(x)1 ~ 1 - e.

2.2. It remains to consider the points x = x(N) E [NU) with lim x(N) = tj (j = 1, ... ,j.L).
. N~oo .
For simplicity we assurne that

Ps(t) = (2 - 2 cost)S = (2sin(t/2))2S,

i.e. Ps has only a zero of order 28 at tl = O. Let x = x(N) E [NU) with

lim x(N) = O.
N~oo
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For any fixed 0 < b < 1r we obtain

b -b 11"

(KN * f)(x) = 2~ (J f(t)KN(x - t) dt + J f(t)KN(x - t) dt + J f(t)KN(x - t) dt)
-b -11" b

b 1I"+x 1I"-X

= 2~ (J f(t)KN(x - t) dt + J f(x - t)KN(t) dt + J f(x+ t)KN(t) dt)
-b b+x b-x

and since f is bounded

b

1 J ..(KN * J)(x) - 21r f(t)KN(x - t) dt '"
-b

By definition of KN we see that for any fixed 0 < b:S 1r

1I"+x 1I"-X(J + j)KN(t)dt.
b+x b-x

11"J KN(t) dt :S const N-2m+l ,

b

so that we get for small x (e.g. x< b/2)

b

(KN * J)(x) = 2~ J f(t)KN(x - t) dt + O(N-2m+l).
-b

(3.5)

(3.6)

2.2.1. Assume that h has no jump at tl = 0 with sign change. Then there exists c.> 0 so
thath(t) :2: h_ or h(t) :S -h_ for t E [-c, C:]. We restrict our attention to the case h :2: h_.
Since 0 < h_ Ps(t) :S f(t) :S h+ Ps(t) (t E [-c, c]) and Ps is monotone increasing on (0,1r), we
obtain for x(N) E (0, c) n IN(J) and N sufficiently laige that

£ £

J f(t) J f(t)
f(x(N)) KN(t - x(N))dt :2:. f(x(N)) KN(t - x(N)) dt

-£ i(N)
£

h_ J Ps(t) (
> h+ . Ps(x(N)) KN t - x(N)) dt

x(N)

£-x(N)
h_ J Ps(t)

> h+ . Ps(x(N)) KN(t) dt :2: c
o

(3.7)

with a positive constant c independent oi.N. On the other hand, we have by definition of
Ps and since by assumption s :S m - 1 that f(x(N)) :2: h_ cN-2s :2: h_ cN-2m+2. Then we
obtainby (3.6) with b = c and (3.7) that for N large enough

(KN * J)(x(N))
f(x(N)) :2: const

with a positive constant const independent of N.
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The proof for x(N) E (-c, 0) n IN(J) follows the same lines.

2.2.2. Finally, we assume that h has a jump at tl = 0 with sgnh(O + 0) t= sgnh(O - 0).
Without loss of generality let h(O + 0) > O. Then, by assumption on f, there exists Cl > 0 so
that h(t) = -h( -t) for t E [0,cl]. Thus,

cl cl

/ f(t)KN(x - t) dt =/ f(t)(KN(t - x) - KN(t + x)) dt.
-cl Ö

We consider points of the form

(3.8)

271"m
Y = Yk(N):= .-kN, (k E N)

with lim Yk(N) = 0, where , := mn/N in case of Jacksonkernels and, := 1 in case of
N-+oo

B-spline kernels. Then we have for t E [0,cl] that

. . (( sin(nt/2) ) 2m (sin(nt/2)) 2m)
Jm,N(t - y) - Jm,N(t + y) = Am,N sin((t _ y)/2) - sin((t+ y)/2) . (3.9)

and consequently for sufficiently small Cl and Y; since sin is odd and monotone increasing on
(0,71"/2) that

Jm,N(t - y) - Jm,N(t + y) > 0 for all t E (0, cd.

Further, by definition of the B-spline kernels

ßm,N(t - y) - ßni,N(t + y) = ß~,N(t - y) - ß~,N(t + y) + O(N-2m+l),

where ß~,N(t):= ~ M2:(0) (sinc (~~))2m and similarly as in (3.9) we see that

o .0'ßm,N(t - y) - ßm,N(t + y) > 0 für all tE (0, cd.

By assumption h does not change the sign in (O,cd. Then we obtain by (3.8), monotonicity
of Ps in (0,71") and m ~ s + 1 that

cl cl

/ :f~~KN(y-t)dt~~: J KR,(t-y)-KR,(t+y)dt + O(N-l), (3.10)
-cl Y

where KR, E {Jm,N, ß~,N}' Set w = w(N):=2'!1";. Then Yk = Yk(N) = w k and there exist
r =r(N) E N (r > k) so that Cl = wr + £1, where 0:::; £1 = £l(N) < w. Now it follows

wr

/ KR,(t -YÜ - KR,(t +Yk) dt
Yk

r-k-l Yk+w(l+l)

L / KR,(t - Yk) - KR,(t + Yk) dt
l=O Yk+wl

2k-l w(l+l) r+k-l w(l+l)

= L / KR,(t) dt L / KR,(t) dt
l=O wl l=r-k wl

> J K'k(t) dt 7" K'k(t) dt
o Cl+Yk-W

11



and further by (3.5) and since lim Yk = 0,
N-+oo

101 WJ KJv(t - Yk) - KJv(t + Yk) dt 2:: J KJv(t) dt + O(N-2m+l).
~ 0

Straight forward computation yields

27rm/(N-y) 7l"J KJv(t) dt > const J (Si: u) 2m du > const.

o 0

Hence we get for N large enough that

101J KJv(t - Yk) - KJv(t + Yk) dt > const
Yk

and by (3.10) that

with positive constants const independent of N.
Now we consider x(N) E [NU) with Yk(N) ::; x(N) < Yk+l(N).
Let z(N) := x(N) - Yk(N) > O. Then

(3.11)

101.J f(t) KN(t - x(N)) dt
-eI

el-z(N)J f(t + z(N)) KN(t - Yk(N)) dt
-el-z(N)
el-z(N)J f(t + z(N)) KN(t -Yk(N)) dt

+ 71

f(t + z(N)) KN(t - Yk(N)) dt
-el-z(N)

and since f is by assumption monotone increasing on [-Cl, Cl]

EiJ f(t) KN(t - x(N))dt >
el-z(N)J f(t) KN(t - Yk(N)) dt +

-el+z(N)J f(t) KN(t - x(N)) dt

101

= J f(t) KN(t - Yk(N)) dt +
-eI

-el+z(N)I f(t) KN(t - x(N)) dt

] f(t) KN(t - Yk(N)) dt
el-z(N)

12



and by (3.5) and since f is bounded

el el ,J f(t)KN(t-x(N))dt 2: J f(t)KN(t-Yk(N))dt + O(N-2m+1). (3.12)
-eI -eI

By assumption x(N) = (Yk(N)(O < ( < 2). Thus

elJ f(t) KN(t - x(N)) dt
-eI

f(x(N))

el
J f(t) KN(t - Yk(N)) dt
-eI

> const f(Yk(N))

and since f(Yk(N) 2: const N-2s and m 2: s + 1 we obtain by (3.12), (?11) that for N large
enough

elJ f(t) KN(t - x(N)) dt / f(x(N)) 2: const
-eI

with a nonnegative constant const independent of N. Finally, we use (3.6) with b = Cl and
again m 2: s + 1 to finish the prao£. •

To show our main result we also need the following lemma.

Lemma 3.2 Let A E CN,N be a Hermitian positive definite matrix having N -nI eigenvalues
in [a_, a+], where 0 < a_ :::;a+ < 00. Let B E CN,N be a Hermitian matrix with N - n2

singular values in [L, b+], where 0 < L :::;b+ < 00. Then at least N - 4nI - n2 eigenvalues
oEAB are contained in [-a+b+, -a_L] u [a_L, a+b+].

,Proof. 1. Assume first that ni = 0, i.e. A has only eigenvalues in [a_, a+I- Let Aj(B) denote
the j-th eigenvalue of the matrix B. We consider the eigenvalues of B - tA -1 with respect
to t E R. By Weyl's interlacing theorem (see [12, p. 184]) we obtain for t 2:0 that

(3.13)

(3.14)

and for.t < 0 that

t (-1) tAj(B) - -' :::;Aj B - tA :::;Aj(B) - -.
a+ a_

Let Aj(B) E [-b+, -LI- Then we obtain by (3.13) and (3.14) that Aj (B - tA-I) < 0 for all
t > -a_L. On the other hand, we see by (3.13) and (3.14) that Aj (B - tA -1) > 0 for all
t< -a+b+. Thus, since Aj (B - tA-I) = Aj(t) is a continuous function in t ER, there exists
tj E [-a+b+,-a_L] such that Aj (B -tjA-I) =0. This implies that tj E [-a+b+,-a_L]
is an eigenvalue of AB. Ccinsequently, every Aj (B) E [-b+, -b_] corresponds to an eigenvalue
tj E [-a+b+, -a_L] of AB. (Eigenvalues are called with multiplicities.)
The examination of Aj(B) E [a_L, a+b+] follows the same lines.
In summary, N - n2 eigenvalues orAB are contained in [-a+b+, -a_b_] U [a_L, a+b+].
2. Let ni eigenvalues of A be outside [a_, a+]. Then, since A is positive definite, the matrix
can be splitted as

(3.15)
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where A 1/2 is Hermitian with an eigenvalues in [a~2, a~2] and R(nd is a Hermitian matrix
of rank n1' The eigenvalues of AB coincide with the eigenvalues of A1/2 BA1/2. Hence it
remains to show that at most 4n1 + n2 singular values of A 1/2B A 1/2 are not contained in
[a_L, a+b+]. By (3.15) we have

A1/2 BA1/2

(A1
/
2 BA1

/
2f

A1
/
2BA1

/
2 + R(2n1),

= (A1
/
2BA1

/
2f +R(4n1)' (3.16)

By 1. an but n2 singular values of A1
/
2BÄ1

/
2 are contained in [a_L,a+b+]. Then (3.16)

and Weyl's interlacing theorem yield the assertion. •

. Theorem 3.3 Let f = Psh E £27r be given by (1.2) - (1.4). Assume that for all tj (j E
{1, ... , f1.}) with tj = ~k for some k E {1, ... , v} and sgn h(~k + 0) i- sgn h(~k - O)there
exists a neighborhood [tj - Cj, tj + Cj] (Cj > 0) oftj so that f is a monotone function in this
neighborhood and moreover f(tj - t) = - f(tj + t) (O :::; t :::;Cj)' Let KN = Km,N be given by
(3.2) or (3.3), where

m~a+l.

By a,ß we denote the constants from Theorem 3.1.
Then, for any C > 0 and sufIiciently large N, except for O(log N) singular values, all singular

1 1
values ofMN(IKN * fl)-2 AN(J)M N(IKN * fl)-2 are contained in [a - c, ß + c].
Proof. Let BN(J) be defined by (2.11). Then we obtain by (2.12) that

1 1
MN,KN*f(IKN * fl)-2 AN(J) MN,KN*f(IKN * fl)-2 (3.17)

1 1
MN,KN*f(IKN * fl)-2 MN,f(P) MN,f(lhl) 2 BN(J) .

1 1

MN,f(lhl) 2MN,f(P) MN,KN*f(IKN * fl)-2
1.. 1 1 . 1

MN,KN*f(lKN * fl)-2M N,f(P) MN,f(lhIF MN,f(lhl)-2 AN(h)M N,f(lhl)-2
1 1

MN,f(lhl) 2 MN,f(P) MN,KN*f(IKN * fl)-2 + R(4s + 2m). (3.18)

1 1
The distribution of the eigenvalues of M N,f(lhl)-2 AN(h)M N,f(lhl)-2 is known by Lemma
2.2. It remains tb examine the eigenvalues of the Hermitian positive definite matrix

These eigenvalues coincide with the reciprocal eigenvalues of M N,f(lfl)-l M N,KN*f(IKN* fl).
By definition ofMN,g and since KN is a reproducing kernel, except for 0(1) eigenvalues, an
'. eigenvalues of M N,f(lfl)-l M N,KN*f(IKN * fl) are given by I(KN * J)(27rl/N)I/lf(27rl/N)1
(l E IN(J)). Thus, by Theorem 3.1, for N --+ 00 only 0(1) eigenvalues of
M N,f(lfl) M N,KN*f(IKN * fl)-l are not contained in [a, ß]. Consequently, by (3.18), Lemma
2.2, Lemma 3.2 and Weyl's interlacing theorem at most O(log N) singular values of

. 1 1 .
M N,KN*f(IKN * fl)-2 AN(J)M N,KN*f(IKN * fl)-2 are not contained in [a - c, ß + c]. •
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4 Trigonometrie preconditioners

In addition to Seetion 2, we suppose that the Toeplitz matriees AN E]RN,N are symmetrie,
i.e. the generating function f E [,2rr is even. This suggests theapplieation of so-ealled
trigonometrie preeonditioners. Note that in the symmetrie ease the multiplieation of a veetor
with AN ean be realized using fast trigonometrie transforms instead of fast Fourier transforms
(see [14]). In this way eomplex arithmetie ean be eompletely avoided in the iterative solution
of (1.1). This is one of the reasons to look for preeonditioners whieh ean be diagonalized by
trigonometrie matriees eorresponding to fast trigonometrie transforms instead of the Fourier
matrix FN'
In praetiee, four diserete sine transforms (DST I - IV) and four diserete eosine transforms
(DCT I - IV) were used (see [21]). Any ofthese eight trigonometrie transforms ean be realized
with O(N log N) arithmetiealoperations. Likewise, we ean define preeonditioners with respeet
to any of these transforms.
In this paper, we restriet our attention to the so-ealled diserete eosine transform of type
II (DCT-II) and diserete sine transform of type II (DST-II), whieh are determined by the
following transform matriees:

DCT-II eINI ._ (N2) 1/2 ( N j(2k + 1)11')N-1 ]RNN
Ej eos 2N . E "

),k=O

SI! '_ (2) 1/2 (N. . (j + 1)(2k + 1)11')N-1 mN N
DST-II . N'- N Ej+! sm 2N . E ~ ' ,

),k=O

where Er := 2-1/2(k = 0, N) and Er := 1 (k = 1, ... , N -1). We propose the preeonditioners

and where fE {O,... ,N -I} is the next higher index to l sueh that if(XN,dl >0. See [15]'
Then we ean prove in a eompletely similar way as in Seetion 2 that for any c > Oand
suffieiently large N exeept for o (logN) singular values, all singular values of

MN,J(lfl, 0)-% AN(J)MN,j(lfl, 0)-% (0 E {sfJ, efJ})

are eontained in [1 - c, 1 + cJ.

5 Convergence of preconditioned MINRES

In order to preseribe the eonvergenee behavior of preeonditioned MINRES with our preeon-
ditioners of the previous seetions, we have to estimate the smaller outlyers for inereasing
N.

Lemma 5.1 Let f E [,2rr be defined by (1.2)-(1.4). Assume that /'i,2(AN(J)) = O(No.)
(a > 0). Then the smallest absolute values of the eigenvalues of M N,j(lfl)-1 AN(J) and
M N,KN*j(IKN * /1)-1 AN(J) behave for N --+ 00 as O(N-o.). .
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Proof. Since

IIA (1)-1 M (111)11< 11MN,f(IIl)lb (A (1))
N N,f 2 - IIAN(J)112 /'b2 N ,

IIA (1)-:-1 M (IK 11)11 <11M N,KN*f(IKN * 11)112 (A (1))
N N,KN*f N * 2 - IIAN(J)112 /'b2 N

and both IIMN,f(III)1I2 and IIMN,KN*f(IKN * 11)112are restricted from above, it remains to
show that there exists a constant c > 0 independent of N so that

The above inequality follows immediately from the fact that the singuiarvalues of AN(J) are
distributed as Ifl (see [13, 19]). •

We want to combine our knowiedge of the distribution of the eigenvalues of our preconditioned
matrices with resuits concerning the convergence of MINRES.

Theorem 5.2 Let A E CN,N be a Hermitian matrix with P and q isolated large and small
singular values, respectively:

o < 0"1 ::; 0"2 ::; , . . ::; 0"q < a::; 0"q+1 ::; ... 0"N _p ::; b

< O"N-p+1::; O"N-'p+2 ::; ... ::; O"N (0 < a ::; b < 00).

Let v(k) := 0 if k - P - q == Omod2 and v(k) := 1 otherwise. Then MINRES requires for the
solution ofAx = b

(
2 q. ( b) ) ( 1+ (a) )k::; 2 In;+ ~In 1+O"k +pIn2 / In1_(%) +p+q+v(k)

iteration steps to achieve precision T, i.e. Ilr«k)>'112 < T where r(k) '= b - A x(k) and x(k) isIlr 0112 - .
the k-th iterate.

The theorem can be proved by using the same technique as in [1, pp. 569 - 573]. NameIy,
based on the known estimate

where rrgdenotes the space of polynomials of degree ::; k with Pk(O) = 1and Aj are the
eigenvalues of A, we choose Pk as product ofthe linear polynomials passing through the P + q
outlyers and the modified Chebyshev polynomials

( a2 x
2
) (a

2
)TL(k-p-q)/2J . 1+ 2 b2 = a2 / TL(k-p-q)/2J 1+ 2 b2- a2 .

The above summand P In 2 can be furt her reduced if we use polynomials of higher degree for
the larger outlyers.
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Note that a similar estimate can be given for the CG method applied to the normal equation
A* Ax = A*b. Here we need

iteration steps to archive precision Ile:
k;"A < T, where eCk) := x* - x(k). Note that the latter

lIe 0 IIA -
method requires two matrix-vector multiplications in each iteration step.

By Theorem 2.4, Theorem 3.3 and Lemma 5.1 our preconditionedMINRES with bothpre-
conditioners M N,f(lfl) and M N,KN*f(IKN * fl) pro duces a solution of (1.1) of prescribed
precision in O(log N) iteration steps and with O(N log2N) arithmetical operations. The
same holds for preconditioned CG applied to the normal equation.

6 Numerical results

In this section, we test our circulant and trigonometrie preconditioners in connection with
different iterative methods on a SGI 02 work station. As transform length we use N = 2n, as
right-hand side b of (1.1) the vector consisting of N entries "I" and as start vector the zero
vector.
We begin with a comparison of MINRES applied to

(6.1)

where 0 E {FN, c}.f, s}.f} and CGNE (Craig's method) (cf. [17, p. 239]) applied tö

For both algorithms we have used MATLAB implementations of B. Fischer. See also [11]. In
particular, his implementation of preconditioned MINRES avoids the splitting (6.2).
In order to make the following computations with MINRES and CGNE comparable, we have
stopped both computations if

Example 1. We begin with Hermitian Toeplitz matrices AN (j) arising from the generating
ftinction .

h(x) '= h1(x) x2 with h1(x) = (x2 + 1) sgn (x) (x E [-7f,7f}).

Table 1 presents the number of iterations for circulant preconditioners. The first row of the
table contains the exponent n of the transform length N = 2n. According to Theorem 2.4
and Theorem 5,2, the preconditioners MN(lfl,FN) lead to very good results. As expected,
the preconditioners MN,KN*f(!KN * fl, FN)with the Fejer kerneis KN = FN are not suitable
for (1.1) (cf. also [16]), while the preconditioners with KN = B2,N do their job.
Further, CGNE needs half the number of iterations but twiee the number of matrix-vector
multiplications per iteration thari. MINRES. See also Section 5.
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7 89 10 I6~ 4 5MN,f

MINRES IN 23 71 277 * * * *
MINRES MN,f(lfl,FN) 15 17 17 19 21 23 23

MINRES MN,FN*f(IFN * fl, FN) 19 31 35 41 43 47 51

MINRES MN,82,N*f(IB2,N * fl, FN) 19 23 23 25 25 27 29

CGNE IN 11 37 164 * * * *
CGNE MN,f(lfl, FN) 8 8 9 9 9 10 10

I. methodl

Table 1: f(t) = hdt) t2 h1(t) =(t2 + 1) sgn (t) (t E [-7f,7f))

Exaniple 2. Next, we eonsider the symmetrie Toeplitz matriees AN(J) arising from. the
generating function

h(x) = h2(x) (eos(x + 2) + 1) (eos(x - 2) + 1)
with

h2(x) = sgn(x - 7f+ 2) sgn(x + 7f - 2) .

Tables 2 presents the number of iterations for trigonometrie preeonditioners. The results
are similar to those of Example 1, exeept that CGNE requires nearly the same number of
iterations as MINRES.

9 10 I87~ 4 5 6

MINRES IN 9 17 45 142 401 * *
MINRES MN,f(lfl, CJJ) 8 9 10 11 14 13 16

MINRES MN,f(lfl, SJJ) 9 10 11 12 14 13 16

MINRES MN,FN*f(IFN * fl, CJJ) 10 15 20 26 30 39 53

MINRES MN,FN*f(IFN * fl, SJJ) 10 15 19 25 30 39 53

MINRES MN,82,N*f(IB2,N * fl, CJJ) 9 15 17 16 20 18 18

MINRES M N,82,N*f(IB2,N * fl, SJJ) 9 14 16 18 19 18 18

CGNE IN 10 29 99 413 * * *
CGNE MN,f(lfI2,CJJ) 7 9 11 11 17 16 17

CGNE MN,f(1f12, SJJ) 7 7 10 10 12 14 15

I method I

Table 2: h(t) = h2(t) (eos(x +2) + 1) (eos(x - 2) + 1) (t E [-7f,7f))

At the end of this seetion, we want to emphazise the infiuenee of different stopping rules on the
numerical solution of the system. A diseussion of stopping eriteria for iterative methods ean be

18



also found in [2, pp. 51 - 57]. We deal with Toeplitz systems (l.I), where AN(J) = A128(J1),
x is a random vector with entries in [-1,1] and b := AN(J)x. Beyond the above considered
MINRES and CGNE with 0 = FN, we also examine the CG method applied to

(MN,J(lfl)-l AN(J))* (MN,j(lfl)-l AN(J))x = (MN,J(lfl)-l AN(J))* M N,J(lfl)-l b
(6.3)

and the preconditioned CG method (PCG) with preconditioner MN,f(lfI2) applied to

(6.4)

in the case of CG

in the case of PCG

in the case of CGNE

in the case of MINRES

For each of the above four algorithms, the following four figures compare
i) 10glOIlb - AN(J)x(k) 112/llb112 (solid curve with points),
ii) 10glOIIc - BNy(k)1I2/llcI12 (solid curve),
iii) 10glOIlf(k)1I2/lIf(0)112 (dashed curve)
IV) 10glOIlx - x(k)112 (solid curve with squares)
after a fixed number of iterations. Here i) is the residual with respect to the original problem.
Except .of PCG, ii) shows the residual with respect to the preconditioned systems, i.e. by
(6.1) - (6.4),

1 1
B N .- MN,f(lfl)-"2 AN(J)M N,f(lfl)-"2
c .- MN,j(lfl)-~ b, y(k) := MN,f(lfl)~x(k),

1 1
BN .- MN,j(lfl)-"2AN(J)MN,J(IJI)-"2
c .- MN,j(lfl)-~ b, y(k) := MN,f(lfl)~x(k),

BN .- (MN,j(lfl)-l AN,j(J))*(M N,j(lfl)-l AN(J))
c .- (MN,l(lfl)-l AN(J))* MN,f(lfl)-l b, y(k) ._ x(k),

BN AN(J)* AN(J)
c = AN(J)* b, y(k) := x(k).

Finally, the values in iii) coincide with the values in ii) up to roundoff errors., i.e.

f(k) ~ c - BNy(k).

The values f(k) can be computed during the algorithm without additional effort and were
sometimes applied in stopping rules.
Note that the standard MATLAB 5 implementation of PCG uses i) as stopping criterion.

Indeed, in all algorithms, the dashed line and the solid line are the same during the first
iteration steps, but distinguish after a larger number of iterations.
Further, the solid line with points i) doesn't furt her decrease after certain iterations. We
cannot solve A128(JIlx = b with a relative original residual smaller than 10-10 by using
MINRES or CGNE and smaller than 10-6 by using PCG and 10-5 by using CG applied to
(6.3) ..
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Figure 1:' Residual norms versus the number of iterations for the matrix A128(!I) for MINRES
applied to (6.1)(left) and for for CGNE applied to (6.2)(right)
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