
Fast Visualization by Shear-Warp

using

Spline Models for Data Reconstruction

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften
der Universität Mannheim

vorgelegt von

Gregor Schlosser
aus Cosel

Mannheim, 2009

Dekan: Professor Dr. Felix Freiling, Universität Mannheim
Referent: Professor Dr. Jürgen Hesser, Universität Mannheim
Korreferent: Professor Dr. Reinhard Männer, Universität Mannheim

Tag der mündlichen Prüfung: 11.02.2009

Acknowledgements

First of all I am very thankful to Prof. Reinhard Männer the head of the Chair of
Computer Science V at the University of Mannheim and the director of the Institute
of Computational Medicine (ICM). I am especially grateful to Prof. Jürgen Hesser who
gave me the chance to work and to write my dissertation at the ICM. He introduced me
into the attractive field of computer graphics and proposed to efficiently and accurately
visualize three-dimensional medical data sets by using the high performance shear-warp
method and trivariate cubic and quadratic spline models, respectively. During my work
at the ICM I always found a sympathetic and open ear with him, he gave me advice and
support and in innervating discussions he helped me to master my apparently desperate
problems. I am also obliged because of his precious comments regarding the initial
versions of this thesis.
I am also very thankful to Dr. Frank Zeilfelder who introduced me into the difficult
field of multivariate spline theory. He made the complex theory understandable from a
practical point of view. His accuracy and carefulness made me favorably impressed. In
this context I also feel obliged to Dr. Christian Rössl for his helpful hints on implementing
the Super-Splines.
I would like to acknowledge the work of Sarah Mang and Florian Münz who exam-
ined in their thesis a hierarchical volume visualization algorithm and a curvature-based
visualization method based on the trivariate spline models, respectively.
The entrepreneurial spirit of all the members in the institute made the work within the
group multifarious, interesting, exciting, and pleasant. I would like to thank all members
for the inspiring ambience as well the patience. I also would like to apologize for my
complex nature. My special thanks go to Amel Guetat, Dennis Maier, Dmitry Maksimov,
and Lei Zheng for many enjoyable discussions and the enjoyable time off the job. Many
thanks also to Christiane Glasbrenner and Andrea Seeger for the help regarding the
administration effort. Furthermore, in this instant I appreciate to Christof Poliwoda
and Thomas Günther from Volume Graphics for supplying me with their library which
I have used during my work at the ICM. And I apologize all other people I may have
forgotten to mention in this context.
Last but not least I would like to thank my uncle, my brother and especially my wife
who encouraged me during a period of my life been difficult. Finally, I would like to
dedicate this work to my lovingly mother deceased 1994.

v

Abstract

This work concerns oneself with the rendering of huge three-dimensional data sets. The
target thereby is the development of fast algorithms by also applying recent and accurate
volume reconstruction models to obtain at most artifact-free data visualizations.

In part I a comprehensive overview on the state of the art in volume rendering is given.
Even though a discussion of the whole extent on actual techniques, methods, and algo-
rithms is beyond of the scope of this work, from each to the next chapter techniques
necessary to setup a volume rendering framework are discussed. These are, among other
topics, data reconstruction models, rendering requirements (as e.g. modeling, illumi-
nation, and shading techniques), rendering methods (e.g. ray-casting and splatting),
acceleration practices, and non-photorealistic visualization techniques (e.g. using cur-
vature and silhouette enhancement). After the overview part of this thesis every other
part includes the related work and a short introduction section into the respective sub-
ject. However, because of the comprehensive character of computer graphics this thesis
is written in a form that should be understandable for researches with a very different
scientific background and should circumvent the reader from consulting the references
too much. Therefore the aim is to keep it as self-explanatory as possible and to require
only basic knowledge in computer graphics and volume processing. The author would
like to apologize some of the readers for reiterating topics in several sections that are
already well known in the computer graphics community.

Part II is devoted to the recently developed trivariate (linear,) quadratic and cubic spline
models defined on symmetric tetrahedral partitions � directly obtained by slicing volu-
metric partitions ♦ of a three-dimensional domain. This spline models define piecewise
polynomials of total degree (one,) two and three with respect to a tetrahedron, i.e. the
local splines have the lowest possible total degree and are adequate for efficient and ac-
curate volume visualization. The spline coefficients are computed by repeated averaging
of the given local data samples, whereby appropriate smoothness properties necessary
for visualization are fulfilled automatically, i.e. the spline derivatives deliver optimal
approximation order for smooth data. The piecewise spline representation admits to
exploit Bernstein-Bézier techniques from the field of Computer Aided Geometric De-
sign. In this part, implementation details for linear, quadratic and cubic spline models
in Bernstein-Bézier form are given, their assets and drawbacks are discussed, and their
application to volume rendering in form of a ray-casting algorithm is presented. Ad-
ditionally, the counterpart linear and quadratic tensor product spline models and the
well known and often applied trilinear models specified on partitions ♦ are discussed for
comparison reasons.

The following part III depicts in a step by step manner a fast software-based rendering
algorithm, called shear-warp. This algorithm is prominent for its ability to generate

vii

projections of volume data at real time. It attains the high rendering speed by using
elaborate data structures and extensive pre-computation, but at the expense of data
redundancy and visual quality of the finally obtained rendering results. However, to cir-
cumvent these disadvantages a further development is specified, where new techniques
and sophisticated data structures allow combining the fast shear-warp with the accurate
ray-casting approach. This strategy and the new data structures not only grant a unifica-
tion of the benefits of both methods, they even easily admit for adjustments to trade-off
between rendering speed and precision. With this further development also the 3-fold
data redundancy known from the original shear-warp approach is removed, allowing the
rendering of even larger three-dimensional data sets more quickly. Additionally, real
trivariate data reconstruction models, as discussed in part II, are applied together with
the new ideas to onward the precision of the new volume rendering method, which also
lead to a one order of magnitude faster algorithm compared to traditional approaches
using similar reconstruction models.

In part IV, a hierarchy-based rendering method is developed which utilizes a wavelet
decomposition of the volume data, an octree structure to represent the sparse data set,
the splines from part II and a new shear-warp visualization algorithm similar to that pre-
sented in part III. Additionally, the main contribution in this part is another shear-warp
like algorithm for hierarchical data structures using algorithms well known in graph the-
ory. This method should show benefits compared to traditional algorithms (cf. part I)
where expansive non object-order traversals of the hierarchical data structures have to
be performed.

This thesis is concluded by the results centralized in part V. Here the different spline
models are discussed with respect to their numerical accuracy, visual quality, and compu-
tation performance. It is obvious that the lower the polynomial degree of the considered
spline model, the better the performance, but the worse the visual quality of the images
obtained by the volume rendering algorithm. However, with the often used trilinear (ten-
sor product) model satisfying visual results are possible, even though they generate small
jag-like artifacts. With the trivariate quadratic splines defined on tetrahedral partitions
� smooth, more accurate and more natural looking images can be generated. Where the
corresponding cubic model should be applied only when zooming into a volume data set,
in this case it reveals its potential of generating artifact-free visualizations of the data
when only first derivatives are considered for shading. Additionally, the performance of
the new shear-warp algorithm with the newly developed data structures is given, where
it is shown, that, this method is able to generate qualitative images using the above
splines at still interactive frame rates. Finally, the analysis of the hierarchically based
algorithm is shown in opposition to the method developed in part III. Further details
concerning the splines are given in the appendix.

viii

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Visualisierung von großen drei-dimensionalen Datensätzen.
Das Ziel dabei ist es, zum einen schnelle Algorithmen zu entwickeln, und zum anderen
auch kürzlich - wie auch neu entwickelte - präzisere Datenrekonstruktionsmodelle für
die artefaktfreie Volumenvisualisierung zu verwenden. Damit wird dem Anwender die
Möglichkeit geboten zwischen einer hoch akkuraten oder einer schnellen Darstellung der
Daten zu wählen.
Das erste Kapitel der Arbeit gibt in komprimierter Form den aktuellen Stand der Tech-
nik zum Thema Volumenvisualisierung wieder. Da eine vollständige Diskussion der
heute gebräuchlichen bzw. untersuchten Techniken und Algorithmen zu diesem Thema
die Größe dieser Arbeit sprengen würde, wird stattdessen dem Leser versucht eine Art
”Roten Faden” zu präsentieren, wo zum einen ein Volumen-Rendering System aufgebaut
wird, und zum anderen aktuelle Methoden diskutiert werden. Im speziellen werden The-
men wie z.B. Datenrekonstruktionsmodelle, Vorgaben zum Rendering (z.B. geometrische
Modelle, Belichtungs- und Schattierungstechniken), Rendering Methoden (z.B. Ray-
Casting und Splatting), Beschleunigungstechniken, und nicht-photorealistische Visu-
alisierung (z.B. unter Verwendung von Kanten- und Krümmungsverstärkung) behan-
delt. Nach dem einleitenden Kapitel widmet sich jedes weitere Kapitel einem speziellen
Thema, wobei auch dort eine kurze Einleitung in die jeweilige Thematik, wie auch der
Stand der Technik, wiedergegeben werden. Diese Herangehensweise wurde gewählt,
um auch dem Leser mit einem etwas anderen technischen Hintergrund die Arbeit ein-
fach zugänglich zu machen. Mit anderen Worten, der Text sollte so selbsterklärend wie
möglich gehalten werden, und nur Grundlagenwissen im Bereich Computer Graphik und
Volumenvisualisierung voraussetzten. Hierfür möchte ich mich bei all denjenigen Lesern
entschuldigen, für die einige der Abschnitte lediglich lästige Wiederholungen konstitu-
ieren, bzw. dass so manche angesprochene Themen bei Gruppen, die sich mit der Vol-
umenvisualisierung beschäftigen, wohlbekannt sind, und somit lediglich eine Form der
Nachbildung darstellen.
Der zweite Teil dieser Arbeit beschreibt die Implementierung der erst kürzlich entwickel-
ten trivariaten (linearen,) quadratischen, und kubischen Bernstein-Bézier Spline Modelle
definiert auf symmetrischen Tetraeder Partitionen eines drei-dimensionalen Definitions-
bereichs. Diese Art von Splines beschreiben hinsichtlich eines Tetraeders stückweise
Polynome von totalen Grad (eins,) zwei, und drei, d.h. die lokalen Splines haben klein-
stmöglichen totalen Grad und sind somit angemessen für die effiziente und die artefakt-
freie Volumenvisualisierung. Die Bernstein-Bézier Koeffizienten der Splines werden aus
den gegebenen Daten mittels entsprechender Mittelungsoperatoren berechnet, so dass
die benötigten Stetigkeitsbedingungen der Splines automatisch erfüllt werden. Weiter-
hin ist die Approximationsordnung der Splines optimal für glatte Daten und es lassen
sich Standard Bernstein-Bézier Techniken aus dem Bereich ”Computer Aided Geometric
Design” anwenden. Dieser Teil der Arbeit diskutiert insbesondere die Implementierungs-
details für diese neuartigen (linearen,) quadratischen, und kubischen Spline Modelle in

ix

Bernstein-Bézier Form, deren Vor- und Nachteile, und deren Anwendung im Rahmen
einer Volumen-Rendering Methode, namentlich Ray-Casting. Zum Vergleich werden
nicht nur die wohlbekannten linearen und quadratischen Tensor-Produkt Splines definiert
auf Einheitswürfeln im drei-dimensionalen Definitionsbereichs gegenübergestellt, son-
dern auch das oft benutzte Trilineare Standardmodel.

Im dritten Teil der Arbeit wird sowohl schritt für schritt der software-basierte, hochef-
fiziente Volumen-Rendering Algorithmus namens ”Shear-Warp” diskutiert als auch dessen
neuartige Erweiterungen, die im Rahmen dieser Arbeit entstanden sind. Bekannt ist der
Algorithmus für seine hocheffiziente Realisierbarkeit. Zum einen basierend auf einer
Zerlegung der Projektionsabbildung in eine Shear- und eine Warp-Abbildung und zum
anderen basierend auf der Lauflängenkomprimierung der Daten. Damit ist man in der
Lage interaktiv Projektionen aus Volumendaten zu erzeugen. Die Effizienz der Methode
wird also unter anderem durch die Vorverarbeitung der Volumendaten in eine visual-
isierungskonforme Form erzielt, die auch gleichzeitig in ausgearbeiteten und der Meth-
ode entsprechenden Datenstrukturen angeordnet werden. Wesentliche Nachteile der ur-
sprünglichen Technik sind deren Visualisierungsqualität und Datenredundanz. Genau
hier setzen unsere Neuentwicklungen an, die in diesem Kapitel präsentiert werden. Zum
einen wird eine Methode vorgestellt, welche die Kombination vom effizienten Shear-Warp
und dem präziseren Ray-Casting erlaubt. Man kann damit zwischen einer effizienteren
oder aber einer genaueren Visualisierung der Daten wählen. Die Projektionsqualität wird
durch den Einsatz von trivariaten quadratischen und kubischen Datenrekonstruktions-
modellen erhöht, wie sie im zweiten Kapitel diskutiert werden. Zum weiteren kann die
3-fache Datenredundanz der ursprünglichen Implementierung komplett durch den Ein-
satz unserer neuen Datenstrukturen und Algorithmen vermieden werden. Dies wiederum
erlaubt es sehr hoch aufgelöste Volumendaten in immer noch annehmbarer Zeit zu visu-
alisieren.

Im vorletzten Teil der Arbeit wird ein hierarchie-basierter Ansatz zur Volumenvisual-
isierung diskutiert und implementiert. Hierzu wird als erstes eine hierarchische Wavelet-
Transformation zur Datenreduktion durchgeführt, dann werden die reduzierten Daten
mittels einer Octree-Datenstruktur repräsentiert, und zuletzt mittels der im Kapitel II
entwickelten Splines hierarchisch kodiert und über einen neuen Shear-Warp Ansatz,
sehr ähnlich zu dem im Kapitel III besprochenen, dargestellt. Der Hauptbeitrag dieses
Kapitels ist jedoch die Diskussion einer weiteren Methode. Auch diese basiert auf der
Shear-Warp Zerlegung der Projektionsmatrix und auf hierarchisch angeordneten Volu-
mendaten. Hier könnten Algorithmen, bekannt in der Graphentheorie, zur Anwendung
kommen, um die hierarchisch kodierten Daten in einer effizienten, objektorientierten
Weise zu durchlaufen und entsprechend der Strahlengleichung zu visualisieren.

Das abschließende Kapitel diskutiert zentral und zusammenfassend die Resultate dieser
Arbeit. Zuerst werden insbesondere die verschiedenen approximativen Spline Modelle
hinsichtlich ihrer Genauigkeit, der visuellen Qualität, und Berechnungseffizienz unter-
sucht und diskutiert. Hier ist es zwar offensichtlich, dass der Polynomgrad eines Spline
Modells sowohl die Performance als auch die visuelle Qualität der Rendering Meth-
ode bestimmt, d.h. je geringer der Grad der stückweise definierten Polynome, desto
schneller ist zwar der Visualisierungsalgorithmus, aber alsgleich auch schlechter die Ap-
proximationsordnung der Splines und damit ungenauer die Visualisierung. Hier sollen
die Resultate zum einen helfen die richtige Wahl von Splines bzg. der angestrebten

x

Visualisierungsqualität zu treffen, und zum anderen auch als Referenz für mögliche
weitere Nachfolgeimplementierungen von ähnlichen Methoden dienen, wie z.B. inter-
polierenden Spline Modellen derselben Ordnung. Zusammenfassend kann man sagen,
dass das trilineare Modell (Tensor-Produkt Splines) zufrieden stellende visuelle Resul-
tate mit sehr guter Performance liefern. Beim genaueren Hinsehen sind jedoch kleine
Zacken-Artefakte in den Bildern zu erkennen, die insbesondere aufgrund des linearen
Charakters des Models entstehen und dort auftreten, wo die korrespondierenden Vol-
umendaten hochfrequente Anteile besitzen. Trivariate quadratische Splines definiert
auf Tetraederpartitionen hingegen führen zu glatteren, genaueren, und auch natürlich
aussehenden Resultaten. Auch dieses Modell erzeugt Diskontinuitäten im Bild, die aber
erst beim hineinzoomen sichtbar werden, und aufgrund der Unstetigkeit der Gradienten
dieses Spline Modells, die zwischen einzelnen Tetraedern innerhalb eines Volumenele-
ments auftreten können, entstehen. Hier spielt das gleichartige kubische Spline Modell
eine entscheidende Rolle, welches stetig differenzierbar ist, und wenn nur erste Ableitun-
gen für das ”Shading” in Betracht gezogen werden, auch bei sehr starker Vergrößerung
des Volumens artefaktfreie Visualisierungen der Daten ermöglicht. Schließlich werden
noch die Resultate der neu entwickelten Shear-Warp Methode und der neuen Datenstruk-
turen dargelegt. Insbesondere wird auch gezeigt, dass der neue Algorithmus - basierend
auf der Shear-Warp Zerlegung und der Anwendung von unseren neuartigen Splines - im-
mer noch interaktive Bildwiederholraten für Parallelprojektionen ermöglicht und sogar
eine Ordnung effizienter ist, als herkömmliche Standardimplementierungen basierend
auf der Ray-Casting Methode. Für seine Generalisierung auf Perspektivprojektionen
jedoch, konnten die ursprünglichen Probleme, wie Visuelle Qualität und Datenredun-
danz, beseitigt werden, aber auf Kosten einer sehr langsamen Implementierung. Hier
besteht allerdings noch einiges an Potential für eine effizientere Realisierung, welche
auch im Text diskutiert wird. Zum Schluss des Kapitels wird noch eine Analyse der
hierarchiebasierten Methode in Bezug auf die zuvor diskutierten Techniken gegeben.

xi

Contents

Title i

Acknowledgements v

Abstract vii

Zusammenfassung ix

Contents xvii

I Physically Based Volume Rendering 1

1 Introduction 3

2 Sampling Theory 5

3 Volume Data 9
3.1 Domain Partitions or Grid Structures . 10

3.1.1 Regular Partitions . 10
3.1.2 Irregular Partitions . 10

3.2 Reconstruction Models . 11
3.2.1 Spline Models . 11
3.2.2 Radial Basis Functions . 12

4 Rendering Requirements 13
4.1 Viewing and Modeling . 13

4.1.1 Modeling Transformations . 13
4.1.2 Projection and Viewport Transformations 15

4.2 Illumination Models . 16
4.2.1 Phong Model . 17
4.2.2 Other Models . 18

4.3 Volume Rendering Integral . 18
4.4 Mapping Functions . 20
4.5 Curvature and Silhouette Enhancement 21

xiii

Contents

4.5.1 Curvature Estimation . 23
4.5.2 Silhouette Estimation . 24

4.6 Volume Shader Models . 24
4.6.1 Maximum Intensity Projection . 25
4.6.2 X-Ray Projection . 26
4.6.3 Iso-Surface Rendering . 26
4.6.4 Full Volume Rendering . 26
4.6.5 Non-Photorealistic . 26
4.6.6 Focus and Context Techniques . 27

4.7 Segmented Data . 27

5 Rendering Methods 29
5.1 Regular Grids . 30

5.1.1 Ray-Casting . 30
5.1.2 Splatting . 31
5.1.3 Shear-Warp . 31
5.1.4 Slice-Based . 32

5.2 Irregular Grids . 32
5.2.1 Ray-Casting . 32
5.2.2 Cell-Projection . 32
5.2.3 Slice-Based . 33

5.3 Other Methods . 34
5.3.1 Hardware or Texture Based . 34
5.3.2 Domain Based . 35
5.3.3 Indirect Methods . 36

6 Acceleration Techniques 37
6.1 Early Ray Termination . 37
6.2 Space Leaping . 37

6.2.1 Run Length Encoded Data . 38
6.2.2 Distance Encoded Data . 38
6.2.3 Octree Data Structure . 39

Standard Octree . 39
Min-Max Octree . 39
Lipschitz Octree . 40
Efficient Octree Traversal . 41

6.3 Pre-Integration . 42

7 Software 45

II Spline Models For Volume Reconstruction 47

1 Introduction 49
1.1 Related Work . 49
1.2 Bernstein Polynomials and Bézier Curves 50

2 Tensor Product Bézier Splines 55

xiv Contents

Contents

2.1 Uniform Cube Partition . 55
2.2 Bézier Form . 57
2.3 Point Location and Local Coordinates . 59
2.4 Piecewise Linear Splines . 60

2.4.1 Bernstein-Bézier Coefficients . 60
2.4.2 Evaluation of Polynomial Pieces and its Derivatives 61

2.5 Piecewise Quadratic Splines . 61
2.5.1 Bernstein-Bézier Coefficients . 62
2.5.2 Evaluation of Polynomial Pieces and its Derivatives 63

2.6 Simple Ray-Casting . 64
2.6.1 Intersection Computations . 64
2.6.2 Univariate Polynomial Pieces . 65

3 Trivariate Bézier Splines 67
3.1 Uniform Tetrahedral Partition . 67
3.2 Bézier Form . 69
3.3 Point Location and Barycentric Coordinates 71
3.4 Piecewise Linear Splines . 72

3.4.1 Bernstein-Bézier Coefficients . 72
3.4.2 Evaluation of Polynomial Pieces and its Derivatives 72

3.5 Piecewise Quadratic Splines . 73
3.5.1 Bernstein-Bézier Coefficients . 73
3.5.2 Evaluation of Polynomial Pieces and its Derivatives 75

3.6 Piecewise Cubic Splines . 75
3.6.1 Bernstein-Bézier Coefficients . 76
3.6.2 Evaluation of Polynomial Pieces and its Derivatives 78

3.7 Simple Ray-Casting . 79
3.7.1 Intersection Computations . 79
3.7.2 Univariate Polynomial Pieces . 80

III Fast Shear-Warp Algorithm 83

1 Introduction 85
1.1 Related Work . 85
1.2 Overview of the Shear-Warp Algorithm 85
1.3 Basic Idea of the Shear-Warp Factorization 86
1.4 Factorization of the Transformation Matrix 87

1.4.1 Parallel Projection Case . 87
1.4.2 Perspective Projection Case . 89
1.4.3 Properties . 91

1.5 Data Structures . 91
1.5.1 Run-Length Encoded Volume . 91

The 3-Fold Redundancy . 93
The 2-Fold Redundancy . 93
Non-Redundancy . 94

1.5.2 Coherence Encoded Volume . 95

Contents xv

Contents

1.5.3 Run-Length Encoded Intermediate Image 97
1.6 Volume Reconstruction . 98
1.7 Opacity Correction . 99
1.8 Introducing Intermediate Slices . 99

2 Combination of Ray-Casting and Shear-Warp 103
2.1 Parallel Projection Case . 103

2.1.1 Basic Idea . 103
2.1.2 Column Template . 105

Type-0 Partitions . 105
Type-6 Partitions . 109

2.1.3 Algorithm and Acceleration Techniques 111
The Principle y, z Directions . 111
The Principle x Direction . 113

2.2 Perspective Projection Case . 115
2.2.1 Basic Idea . 115
2.2.2 Algorithm and Acceleration Techniques 117

The Principle y, z Directions . 117
The Principle x Direction . 118

IV Hierarchical Data Encoding and Visualization 121

1 Introduction 123
1.1 Related Work . 123
1.2 Wavelets for Volumetric Data . 123

2 Hierarchical Encoding 127
2.1 Wavelet Coding Scheme and Octree Representation 127
2.2 Piecewise Splines defined on Octree Nodes 128
2.3 Generation of Run-Length-Encoded Data Sets 129

3 Visualization 131
3.1 Run-Length-Encoded Data Sets . 131
3.2 Hierarchy . 131

V Results On Reconstruction and Visualization 135

1 Prerequisites 137

2 Results on Spline Models 139
2.1 Test Functions . 139
2.2 Different Types of Errors . 140
2.3 Numerical Tests . 141

2.3.1 Value Reconstruction . 142
2.3.2 Gradient Reconstruction . 144
2.3.3 2nd Derivative Reconstruction . 146

xvi Contents

Contents

2.4 Visual Quality . 148
2.4.1 Linear Models . 148
2.4.2 Quadratic Models . 150

2.5 Performance . 154

3 Results on Shear-Warp 159
3.1 Parallel Projection Case . 159

3.1.1 Equidistant Sampling . 159
3.1.2 Accurate Sampling . 163

3.2 Perspective Projection Case . 167

4 Results on Wavelet Hierarchy 171

Discussion 177

Summary and Outlook 183

Appendix 189

A Additional Results on Spline Models 189
A.1 Linear Splines on Ω . 189
A.2 Quadratic Splines on Ω . 192
A.3 Trilinear Model on Ω . 195
A.4 Linear Splines on Δ . 198
A.5 Quadratic Splines on Δ . 200
A.6 Cubic Splines on Δ . 204

List of Figures 209

List of Tables 212

Bibliography 213

Contents xvii

Part I

Physically Based Volume Rendering

1 Introduction

Physically based volume rendering [KvH84] [DCH88] and [Kau91] [WS01] became more
and more popular in the late eighties. The purpose was to create a two-dimensional im-
age directly from three-dimensional grids. This technique makes it possible to visualize
the whole volume instead of showing only partial views of it, i.e iso-surfaces or stream-
line extraction. There are different techniques which can be used for volume rendering.
They can be split into image-order, object-order, hybrid or domain-based methods. On
one side, object-order algorithms use a forward mapping scheme – i.e. volume data
is projected onto the screen – where space leaping is applied easily to accelerate the
rendering. On the other side, image-order algorithms use a backward mapping scheme,
i.e. rays are cast from the eye location through each pixel in the image plane into the
grid to determine the final value of the pixel. This technique allows to easily apply
early-ray termination for accelerated rendering. Hybrid algorithms often try to combine
the advantages of both methods. Finally, domain-based algorithms first transform the
volume data from the spatial domain into another domain, i.e. compression, frequency,
or wavelet domain and then project the data directly from that domain onto the screen.
Further, there are different volume rendering modes, also called shaders, e.g. x-ray ren-
dering, maximum intensity projection, iso-surface rendering and full volume rendering.
All modes can be combined with any volume rendering technique, e.g. like ray-casting
or shear-warp. The difference between the modes is, how the sampled (interpolated) val-
ues taken along a ray from the grid (volume data) are combined into the corresponding
pixel of the final image. In x-ray rendering the interpolated values (samples) are simply
composited, where in maximum intensity projection only the largest interpolated value
is written to the image pixel. In iso-surface rendering the first intersection position of
the ray and the grid has to be found, where the interpolated value from the grid has
a user-defined threshold, then shading is performed at this position and the result is
written to the image pixel. In full volume rendering, all interpolated values along a ray
taken at specified intervals are further processed to simulate light transport within a
volumetric object according to many possible models. In this way, a three-dimensional
grid (volume data) is considered as a semi-transparent media and is rendered according
to the physics of light propagation [Kaj86] [Sab88] [Kru90] [HHS93]. The desired volume
features are often extracted using transfer functions for color and opacity depending on
the data. The interpretation of such data fields is considerably difficult because of their
intrinsic complexity. Further, the manner in which the discrete pixel values are com-
puted from the three-dimensional continuous function can considerably affect the quality
of the final image generated by the volume rendering algorithm. Therefore, the process
has to be performed carefully, otherwise artifacs will be present. Fortunately, with more
or less amount of additional computation, one can substantially improve the quality of
the rendered images. The challenge in volume rendering is due to the size of the data,
the high-quality images one would like to obtain and the fact that it has to be visualized
in real-time. Various approaches have been developed in the past, where often they try

3

CHAPTER 1. INTRODUCTION

to take advantage of the underlying computer architecture, deploy efficient compression
and caching strategies or declare some oversimplified assumptions on the underlying
physical or data model, which mostly lead to low-quality images. This chapter tries to
give an overall view (cf. [MPWW00] [MHIL02] [EHKRS02] [KM05] [EHK+05]) of the
significant theory, concepts, techniques, and ideas applied to physically based volume
rendering.

Figure 1.1: Volume rendering – e.g. streamline extractions (left), iso-surface rendering (mid-
dle), and full volume rendering (right) – reveal different information about the volume data set.

Figure 1.2: Simple graphical user interface for volume rendering with a model view (top right),
a slice view (middle right), object view (bottom right), and the final image (left).

4

2 Sampling Theory

Sampling theory is the theory of taking sample values from functions defined over con-
tinuous domains, f(x) ∈ R, x ∈ R and then using those samples f(nT) ∈ R, n ∈ Z

at intervals T to reconstruct a similar continuous function as the original. This the-
ory provides an elegant mathematical framework to describe the relationship between a
continuous function and its digital representation (also denoted as signal).
First, Fourier analysis provides a well studied theory which can be used to evaluate the
quality of the match between the reconstructed and the original function. One of the
foundations of the Fourier analysis is the Fourier transform, which represents a function
in the frequency domain (functions are usually expressed in the spatial domain). Many
functions can be decomposed into a weighted sum of phase-shifted sinusoids (sometimes
called Eigenfunctions) using the Fourier transform. This representation of a function
gives insight into some of its characteristics, for example, the distribution of frequencies.
The Fourier transform (or Fourier analysis equation) of a one-dimensional function f(x)
is given by

Ff (ω) =
∫ +∞

−∞
f(x)e−iωxdx (2.1)

where e−ix = cosx + i sinx, i =
√−1 and the new function F is a function of the

frequency ω. The transform from the frequency domain back to the spatial domain is
defined by the Fourier synthesis equation (or the inverse Fourier transform) as

f(x) =
1
2π

∫ +∞

−∞
Ff (ω)eiωxdω. (2.2)

The Fourier transform operator F{f(x)} = Ff (ω) has some useful properties, like e.g.
scaling F{af(x)} = aF{f(x)}, a ∈ R, linearity F{af(x) + bg(x)} = aF{f(x)} +
bF{g(x)}, multiplication F{f1(x)f2(x)} = F{f1(x)} � F{f2(x)}, etc. . More about
the Fourier transform properties and the relation to signals can be found in every good
signal processing textbook (e.g. [FvDFH97] [Mal99] [GW02]).
However, the standard Fourier transform gives a representation of the frequency of a
function f , but this frequency information can not be localized in space x. For this
reason, a windowed Fourier transform has been introduced which cuts off only a well-
localized interval of f first and then takes the Fourier transform of the signal by

Fwinf (ω, t) =
∫ +∞

−∞
f(x)g(x− t)e−iωxdx. (2.3)

This is a standard technique for time-frequency localization where its discrete version, i.e.
by setting t = nt0, ω = mω0 with m,n ∈ Z and t0, ω0 > 0 fixed, is even more interesting
for signal analysis. However, for compactly supported window functions g with ‖g‖ = 1
and appropriate ω0, t0 the Fourier coefficients Fwinf are sufficient to reconstruct the

5

CHAPTER 2. SAMPLING THEORY

original function f . Many different window functions g have been proposed, where the
appropriate ones have mostly compact support and a reasonable smoothness, as, for
example, the Gaussian. Hence, in many applications g and its Fourier transform are
supposed to be concentrated in time and frequency.
However, it is well known that the sampling theorem [Sha49] gives a sufficient con-
dition on the support of the Fourier transform Ff (ω) to reconstruct f(x) from its
samples f(nT) exactly. Representing a discrete signal by a sum of Diracs, i.e to any
sample f(nT) a Dirac f(nT)δ(t − nT) located at x = nT is associated, a uniform
sampling of the continuous function f(x) corresponds to the weighted sum of Diracs
f̃(t) =

∑+∞
n=−∞ f(nT)δ(t−nT). Relating the Fourier transforms F and F̃ to each other

can be used to show the

Theorem 2.0.1 (Sampling Theorem). If the support of Ff (ω) is included in [−π/T,+π/T]
then

f(t) =
+∞∑

n=−∞
f(nT)hT (t− nT) (2.4)

with

hT (t) =
sin(πt/T)
πt/T

. (2.5)

The sampling theorem tells us that if the Fourier transform Ff (ω) is band limited, thus
f(x) has no high variations between consecutive sample points, we can reconstruct the
continuous function f(x) from its samples f(nT) by convolving these samples with the
sinc-function hT (x). In practice aliasing1 and approximation errors occur because the
condition is often not satisfied. This can reveal itself in many ways, i.e. jagged edges
and flickering. These errors occur because the sampling process is not able to capture
all of the information from the continuously defined function. Further, the sampling
interval T is often imposed by computation and/or storage constraints, therefore Ff (ω)
is not band limited. In this case, the reconstruction formula (2.4) does not recover
the original function f(x). There are two ways to solve this problem. First, we can
choose a high enough sampling rate (smaller intervals T) if the signal does not have an
infinite spectrum. Second, we may filter the signal before sampling to remove all high
frequencies above a threshold. Having solved this problem, another is still present, i.e.
the support of the sinc-function hT (x) is infinite that in practice the reconstruction of a
function becomes very difficult. This problem can be solved by using only reconstruction
functions h̃T (x) in Equ. (2.4) with finite support. However, the problem of using an
appropriate model for reconstructing the continuous function from its discrete sample
points is still a challenging task.

Remark (Sampling Theory). Infinite sums have been investigated the first time by John
Wallis (1616–1703) in his work ”Arithmetica Infinitorum”. Hence, today one attributes
his name to the symbol for infinity (∞). He has also published the ”Wallis’s Product”,

1 Aliasing is the phenomenon when high frequencies are masquerading as low frequencies in the re-
constructed signal, i.e. the replicated copies of the frequency spectra overlap and during the recon-
struction process high-frequency components are mixed in with low-frequency components from the
original spectrum.

6

CHAPTER 2. SAMPLING THEORY

which can be used to compute the number π approximatively and has introduced the Latin
verb ”interpolare” (to interpolate) the first time in a mathematical sense. Edmund Tay-
lor Whittaker (1873–1956) has studied the Newton-Gauss interpolation formula for an
infinite number of equidistant abscissae on both sides of a given point. He has shown that
– under certain conditions – the resulting interpolant converges to the so called ”cardinal
function”. This consists of a linear combination of shifted functions of the form sin(x)/x.
Analyzing the frequency content of this interpolant, he has observed that all constituents
of period 2ω are absent. Harry Nyquist (1889–1976) has pointed out the importance of
sampling a function at twice of its highest frequency writing about telegraph transmis-
sion theory. The son of E.T. Whittaker, John Macnaughten Whittaker (1905–1984) has
published in his textbook ”Interpolatory Function Theory” more refined statements about
the sampling theorem, or the ”Cardinal Theorem of Interpolation Theory”. Claude El-
wood Shannon (1916–2001) has presented and prove the well known sampling theorem,
referring to the works of J.M. Whittaker and H. Nyquist. He – also called the father of
information theory – was the founder of the practical digital circuit design theory. Later,
it has been found that similar theorems have been published earlier by Ogura, Kotelnikov
(Russia), Raabe (Germany), Someya (Japan), and Weston.

Figure 2.1: Biographical profiles of John Wallis (left), Harry Nyquist (middle) and Claude
Elwood Shannon (right). By courtesy of Wikipedia

7

3 Volume Data

In computer graphics, usually three-dimensional surface meshes represented by triangles
(polygons) are used to describe the shape of three-dimensional objects but not their
internal properties. The triangles of a mesh are rendered by first projecting them onto a
plane and afterwards occupy the resulting new triangles according to physical properties
at the surface of the objects. This kind of representation and rendering is often used
in modern computer games, not only because of the simplicity but also because of the
huge hardware support.

In contrast, volume meshes are able to reconstruct physical properties of an object at
any three-dimensional point, no matter where the point is located (at the surface or
inside the object), i.e. they can be used to describe internal and external properties of
solid objects (bones, tissue and skin) at the same time. Further, a volume mesh or grid
allows the modeling of fluid and gaseous objects as well, e.g. natural phenomena like
clouds, fog, fire and water.

Figure 3.1: An illustration of rectangular grids (middle left) which are similar to regular grids
(left) but the size of the cells can vary within one coordinate system or grid. In structured or
curvilinear grids (middle right), the cells are not rectangular any more, but still a regularity can
be observed, where unstructured grids (right) have a complete unregular behavior.

However, discrete volume data sets differ in the structure of the underlying sampling grid
and are often classified into structured grids, i.e. a repetition of a structuring pattern
can be observed, and unstructured grids, where no a priori organization of the mesh is
assumed. In the most general case, heterogeneous grids can be made of arbitrary cells
– also called strongly heterogeneous structures. In some other cases, there is a limited
number of cell types in a grid, for example, tetrahedral and hexahedral cells. This type
of grids are called weakly heterogeneous. Whereas homogeneous grids are made up of
cells of the same type, e.g. from simple cubic or regular tetrahedral cells. Hence, the
underlying grid structure stores discrete data values at (non-) equidistant grid positions
only and can be considered as a discrete function or data set. An appropriate data
reconstruction model for the considered grid has to be applied to extend these discrete
data samples into a continuous function.

9

CHAPTER 3. VOLUME DATA

3.1 Domain Partitions or Grid Structures

3.1.1 Regular Partitions

In practice, due to their simple structure, uniform rectilinear grids (cf. Fig. 3.1) are
widely used in various computations and are mostly encountered in indirect acquisition
processes, such as magnetic resonance imaging (MRI), computed tomography (CT) and
ultrasound (US) in medical imaging applications. However, since the output of such
sensors is a continuous waveform whose amplitude and spatial behavior are related to
the physical phenomenon being sensed, a regular scalar volume can be interpreted as a
continuous three-dimensional function f(x) ∈ R, x ∈ R

3. A two-step process, sampling
and quantization, allows us to create a digital volume (discrete data set) from the con-
tinuous sensed data. In this case, a regular discrete volume data set, f(k) ∈ Z, k ∈ N

3,
with k = nT, n ∈ N

3 and the interval T , is simply a three-dimensional array of cu-
bic elements, also called unit cubes or cells. The voxels (or discrete data values) are
located at the centers (or sometime at corners) of the corresponding unit cubes of size
[−0.5,+0.5]3. Hence, each voxel represents a constant amount of space as well as infor-
mation. The information can be, for example, the material or other physical properties
of the three-dimensional objects included in the volume. However, on one hand, there is
almost no limit how fine we should sample the continuous function. Practical limits are
established by imperfections in the optics used to focus on the sensor and the apparent
fact of too big data sets. On the other hand, sampling theory (cf. Sec. 2) tells us when
a function can be properly reconstructed from its samples. More information about
schemes for dividing cubic cells into tetrahedra in three-dimensional space are reviewed
in [CMS01], where by using test data geometric artifacts are disclosed, which arise from
the subdivision schemes.

3.1.2 Irregular Partitions

Unstructured grids are found in many applications. For sparse data acquisition in geol-
ogy e.g., one has a non-regular distribution of points that can be dense at one location
and very sparse elsewhere. In simulations like in computational fluid dynamics (CFD) or
finite element simulations (FEM) one often operates on unstructured tetrahedral grids
due to their favorable properties for the numerical solution process, i.e. for stress or
deformation computations. Using unstructured meshes allows not only more flexibility
in the size of the cells, but also in their shape and topology. In some cases, e.g. for
the calculation of the flow distribution around wings one selects cells that are aligned
around the wing (curved cells) in order to have better solution properties of the dif-
ferential equations. Volume rendering on unstructured grids requires only a few data
samples, but the algorithms are not yet as efficient as for regular grids. In this thesis,
regular grids are considered and discussed only. For references of volume rendering ap-
plied to non-regular grids, see e.g. the survey [SCBC05], where real-time rendering of
large unstructured meshes is discussed in the context of graphics processing units (cf.
also [CLP02] [CICS05]). In [RZNS04b] an algorithm for approximating huge general
volumetric data sets is discussed. The data on arbitrarily shaped volumes is represented
by cubic trivariate splines, i.e. piecewise polynomials of total degree three defined with
respect to (w.r.t.) uniform type-6 tetrahedral partitions of the volumetric domain.

10 3.1. DOMAIN PARTITIONS OR GRID STRUCTURES

CHAPTER 3. VOLUME DATA

3.2 Reconstruction Models

3.2.1 Spline Models

In practice, often regular grids of discrete data values are given. The ideal three-
dimensional sinc filter is usually replaced by either a box, tent or gaussian filter to
reconstruct a function f̃(x), which approximates or interpolates f(k) at the grid points,
and returns interpolated values otherwise, such that f̃(x) approximates the total orig-
inal function, i.e. f̃(x) ≈ f(x). However, the choice of an interpolation filter impacts
the analytic properties of the resulting continuous volume, i.e. nearest neighbor inter-
polation (box filter) is not continuous, hence it is not Lipschitz and results in sharp
discontinuities between neighboring cells and a rather blocky appearance. The well
known trilinear (tent filter) interpolation is continuous but it is not smooth across cell
boundaries, that causes problems for typical root finding algorithms, because they re-
quire first derivative continuity. That means, piecewise trilinear filtering of rectilinear
data interpolates the eight data values at the corners of a cell or a unit cube and yields
an overall C0-continuous approximation of a field. The resulting reconstruction of the
normals have discontinuities on the shared boundary faces of each pair of neighboring
cells. The resulting normal discontinuities are clearly visible in iso-surface as well as full
volume rendering. Nevertheless, with some additional effort this method represents a
good trade-off between computational cost and smoothness of the output signal. The
next possible choice of functions for volume rendering are C1-continuous piecewise tri-
quadratic [MJC01] [BMDS02] filters which utilize the 27 data values in the local 33

neighborhood of the volume grid. This kind of functions generate smooth images at
the cost of increased computation time. Hence, piecewise tricubic [LHJ99b] interpo-
lation, where 64 data values of the local 43 neighborhood are utilized, is not suitable
for the implementation of a fast rendering algorithm anymore. This is also one reason
why in [LHJ99b] the intersection of a ray and the iso-surface is simplified by rotating
and resampling the original data grid into another regular grid where the slices are
parallel to the image plane. Trivariate spline models defined on type-6 tetrahedral par-
titions are another choice for volume reconstruction. They are defined analogously to
the bivariate splines on a four-directional mesh in the two-dimensional space. However,
in [RZNS03] [RZNS04a] [NRSZ04] a new approach to reconstruct non discrete mod-
els from gridded volume samples using quadratic trivariate Super-Splines on a uniform
tetrahedral partition is discussed. A completely symmetric way using local averaging
of data samples determines the approximating quadratic Super-Splines. Appropriate
smoothness conditions are automatically satisfied. On each tetrahedron of the partition
the quasi-interpolating spline is a polynomial of total degree two, and provides sev-
eral advantages. The quadratic Super-Splines have appropriate smoothness properties
necessary for the visualization process and the derivatives of the splines yield optimal
approximation order for smooth data, while the theoretical error of the values is nearly
optimal because of the averaging. Efficient computation using Bernstein-Bézier tech-
niques (well known in CAGD [Far86] [Chu88] [HL93]) can be applied to compute and to
evaluate the trivariate spline values and their gradients. Further, the volume data can
be visualized efficiently, since along a ray the trivariate splines become univariate piece-
wise quadratic functions. Thus an exact intersection for a prescribed iso-value can be
computed in an analytic way, further the volume rendering integral can be efficiently ap-

3.2. RECONSTRUCTION MODELS 11

CHAPTER 3. VOLUME DATA

proximated. Other more detailed overviews of reconstruction filters, methods as well as
their properties applied to signal processing can be found in [MN88] [UAE93a] [UAE93b]
[ML94] [Dod97] [MMMY97b] and [LGS99] [TMG01]. Popular gradient estimation tech-
niques from, for example, volume data are discussed in [MMMY97a] [BLM97] as well
as in [NCKG00]. A method exploiting graphics hardware in order to achieve hardware
accelerated high-quality filtering with arbitrary filter kernels can be found in [HTHG01]
[HVTH02]. The evaluation of the filter convolution sum is reordered to accommodate
the way the hardware works. Recently, a third order texture filtering has been presented
[SH05]. Moreover, reconstructions with high smoothness are discussed in [MMK+98]
[LM05], a mathematical framework using NURBS was developed in [MC01], and trivari-
ate Coons patches were proposed in [HN00].

3.2.2 Radial Basis Functions

Radial Basis Functions (RBF) [CHH+03] [JWH+04] have been used to procedurally
encode irregular grids of scalar data sets, where common choices are thin-plate splines,
multi-quadrics or Gaussian functions. Mostly Gaussian functions are used, because of
local support, robustness and regular and smooth behavior outside the fitting domain.
This RBF encoding generates a complete, unified, functional representation of volume
data, independent of the underlying topology. The original grid can be completely
eliminated and during rendering only the hierarchical RBF representation is needed.
Recently, this work has been extended for encoding vectors and multi-field data sets
[WBH+05]. Efficient feature detection techniques were developed and the ability to
refine regions of interest in the data. Further, graphics hardware was used to accelerate
the reconstruction, rendering, and feature detection from this functional representation.

12 3.2. RECONSTRUCTION MODELS

4 Rendering Requirements

The purpose in volume rendering is to directly create a two-dimensional image from a
three-dimensional grid. Hence, except an accurate reconstruction model for volume data
– as discussed in the previous sections – we need routines and functions allowing the
manipulation of the geometry of objects, a possibly physically correct illumination model,
and an accurate solution to the volume rendering integral. Further, mapping functions
are used for a simple classification of data, where enhancement techniques, different
shading models, and segmented data are often applied for a better understanding of
the physical properties of objects. Some of these topics are discussed in the following
sections.

4.1 Viewing and Modeling

In volume rendering often a three-dimensional world is defined first by a world coordi-
nate system where objects with some geometrical properties are located. More specif-
ically, a three-dimensional world or scene is usually defined by a Cartesian coordinate
system. Within this coordinate system objects as, for example, lights, cameras, data
sets (i.e. volume or polygonal data sets) and/or clipping planes are placed at arbitrary
positions. For this, each object has usually an associated affine transformation which
transforms that object from its local modeling (object) system into the world system
by using homogenous coordinates. However, compared to the simpler two-dimensional
viewing process the complexity of three-dimensional viewing comes in part by the added
dimension and in another part by the fact that display devices are two-dimensional only.
The mismatch between a three-dimensional world or an object and a two-dimensional
display is resolved by introducing a projection which transforms an object onto a pro-
jection plane. Hence, the three-dimensional viewing process involves usually different
coordinate systems where the corresponding (affine) transformations (or matrices) map
coordinates from one system to another system. In this thesis we deal with the ob-
ject, world/scene, camera/eye, clip, and viewport coordinate system, where the corre-
sponding matrices Mow, Mwe, Mec, and Mcv define the transformations, respectively
(cf. Fig. 4.1, 4.2, 4.3). The above mentioned transformations are used in our volume
rendering algorithms, hence, we go into more detail and define each matrix separately.
However, general discussions and transformations for viewing in three-dimensional space
can be found in every good computer graphics book. We refer the interested reader to
[FvDFH97] [WNDS99] [HZ03] [PH04].

4.1.1 Modeling Transformations

Modeling transformations of objects can be performed by any general matrix M which
represents a valid (perspective) transformation of a coordinate system, i.e. if M is
nonsingular and thus M−1 can be computed. However, in computer graphics often only

13

CHAPTER 4. RENDERING REQUIREMENTS

Figure 4.1: Two different world to eye (camera) transformations Mwe as well as object to
world transformation Mow are illustrated (the red, green, and blue arrows indicate the x, y, and
z axis of the appropriate Euclidian coordinate system, respectively). Left: The parameters are
eye = (1, 0, 2)T, cen = (0, 0, 0)T, and upv = (0, 1, 0)T. Right: The parameters are eye =
(−1, 1, 2)T, cen = (1, 0, 0)T, and upv = (1, 0, 0)T where additionally the object is rotated around
the x axis by 45◦.

a few (affine) matrices are defined which are particularly useful for transforming objects.
In other words, the most basic transformations of objects are translations, scalings, and
rotations. In the right hand coordinate system the particular translation and scaling
matrices are defined as

MT =

⎛
⎜⎜⎝

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎞
⎟⎟⎠ and MS =

⎛
⎜⎜⎝

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎞
⎟⎟⎠ .

The inverse matrices M−1
T and M−1

S are obtained by substituting −tx,−ty, and −tz for
tx, ty, and tz and by substituting 1/sx, 1/sy, and 1/sz for sx, sy, and sz, respectively. Of
course sx, sy, and sz have to be all nonzero. The rotation matrices about the x, y, and
z axis of the current considered coordinate system are usually computed by

MRx =

⎛
⎜⎜⎝

1 0 0 0
0 b −a 0
0 a b 0
0 0 0 1

⎞
⎟⎟⎠ , MRy =

⎛
⎜⎜⎝

b 0 a 0
0 1 0 0
−a 0 b 0
0 0 0 1

⎞
⎟⎟⎠ , and MRz =

⎛
⎜⎜⎝

b −a 0 0
a b 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

with a := sinα, b := cosα, and α ∈ [0, 2π]. The rotation about an arbitrary vector
v := (x, y, z)T with u = v/‖v‖ := (x′, y′, z′)T can be defined as

MRv =
(

M3×3 0
0T 1

)
with S3×3 =

⎛
⎝ 0 −z′ y′

z′ 0 −x′
−y′ x′ 0

⎞
⎠

and M3×3 = uuT + b(I − uuT) + aS3×3, where 0 := (0, 0, 0)T is the null vector, I
the identity matrix and a, b as defined above. Note, here �T is the transpose operator.

14 4.1. VIEWING AND MODELING

CHAPTER 4. RENDERING REQUIREMENTS

However, MRv is always defined, the inverse M−1
Rv

as well as M−1
Rx

, M−1
Ry

, or M−1
Rz

can
be obtained by substituting −α for α, and if x = y = z = 0 then all rotation matrices
above become the identity matrix I. When x 	= 0 and y = z = 0, y 	= 0 and x = z = 0,
or z 	= 0 and x = y = 0 then instead of using MRv the special matrices MRx , MRy , or
MRz can be considered only. However, more complex transformations can be defined by
concatenations of the above matrices. For example, the object to world transformation
Mow usually places the corresponding object into the center of the world and is defined by
a scaling, translation, and rotation matrix, i.e. as Mow := MRvMTMS . The appropriate
coefficients ti, si with i ∈ {x, y, z} depend on the size of the object where the axis v and
rotation angle α are usually chosen by the user. Another example is the so called look-at
or modelview matrix Mwe which transforms world into camera or eye coordinates. It is
important to place the camera such that the object is located within the viewing frustum
(also called view volume) of the camera otherwise the object will be not visible. One
can apply any of the above transformations to compute Mwe or use the so called look-at
matrix, i.e. Mwe := Mlookat, where

Mlookat =

⎛
⎜⎜⎝

x1 y1 z1 0
x2 y2 z2 0
−x3 −y3 −z3 0
0 0 0 1

⎞
⎟⎟⎠ . (4.1)

This matrix is determined from the viewer’s eye position (or camera location) eye :=
(xe, ye, ze)T, the center position cen := (xc, yc, zc)T (i.e. where the viewer is looking at),
and the so called up vector upv := (xu, yu, zu)T which defines the orientation of the
viewer or camera in the three-dimensional world. Whereby the vectors vi := (xi, yi, zi)T

with vi = v′
i/‖v′

i‖ for i = 1, 2, 3 are determined from v′
3 = cen − eye, v′

2 = v3 ×
(upv/‖upv‖), and v′

1 = v2 × v3 (cf. Fig. 4.1).

4.1.2 Projection and Viewport Transformations

In three-dimensional viewing the projection matrices Mec define the so called view vol-
ume in the world. All objects in the three-dimensional world are clipped against this
view volume and are then projected onto the projection plane (see Fig. 4.2). In other
words, the objects are transformed from world to eye and from eye (camera) coordinates
to clipped coordinates where they are checked against the view volume and are after-
wards projected into the projection plane. In eye (camera) coordinates the position of the
camera (eye) is always located at the center of the world, i.e. the condition 0 = Mweeye
should be satisfied. The projection matrices are defined as (other projection types, as
e.g. the weak-perspective projection, can be found in [HZ03])

Mortho =

⎛
⎜⎜⎝

+2/(r − l) 0 0 +(r + l)/(r − l)
0 +2/(t− b) 0 +(t+ b)/(t− b)
0 0 −2/(f − n) −(f + n)/(f − n)
0 0 0 1

⎞
⎟⎟⎠ and

Mfrustum =

⎛
⎜⎜⎝

+2n/(r − l) 0 +(r + l)/(r − l) 0
0 +2n/(t− b) +(t+ b)/(t− b) 0
0 0 −(f + n)/(f − n) −2fn/(f − n)
0 0 −1 0

⎞
⎟⎟⎠

4.1. VIEWING AND MODELING 15

CHAPTER 4. RENDERING REQUIREMENTS

Figure 4.2: Two different eye (camera) to clip transformations Mec are illustrated. An
orthographic projection matrix Mec := Mortho (left) and a perspective projection matrix
Mec := Mfrustum are considered for rendering where the parameters each time are set to
n = 1, f = 3, l = −0.5, r = +0.5, b = −0.5, and t = +0.5. Note, even though for an or-
thographic projection the eye is located at the infinity, in this illustration it is shown in world
coordinates at the same position as it is defined in the perspective projection case.

and determine the so called view volume by the parameters n, f, l, r, b, and t which are
the near, f ar, left, r ight, bottom, and top clipping values. After the application of, for
example, Mec := Mortho (i.e. after transformation into clipping coordinate system) the
near, far, left, right, bottom, and top values are located at z = −1, z = +1, x = −1,
x = +1, y = −1, and y = +1, respectively. Now, after the perspective normalization,
i.e. (x/w, y/w, z/w,w/w)T, the transformed object’s coordinates can be easily clipped
against these values and transformed onto the projection plane located at z = −1. The
contents of the plane at z = −1 are transformed afterwards from the so called window
into the display or image using the viewport matrix Mcv := Mviewport with

Mviewport =

⎛
⎜⎜⎝

w/2 0 0 w/2 + x
0 h/2 0 h/2 + y
0 0 1/2 1/2
0 0 0 1

⎞
⎟⎟⎠ ,

where x, y define the lower left corner of the viewport and w, h specify the dimension of
the viewport in the final display (or image).

4.2 Illumination Models

Many illumination models originate from the visualization of three-dimensional surface
meshes (triangulations) which represent shapes of three-dimensional objects by hundreds
of polygons. These models often describe some properties of light sources and object
surfaces and how the interact with each other. However, directly illuminated objects
are represented with warmer colors which include yellow, orange and red. This type
of lighting is associated with light that comes directly from natural light sources which

16 4.2. ILLUMINATION MODELS

CHAPTER 4. RENDERING REQUIREMENTS

Figure 4.3: Same configuration as in Fig. 4.2. The final images are obtained by transforming
the contents of the projection planes (black rectangles in the above illustrations) by the viewport
matrix Mcv into the final display of size 512 × 512. The parameters for the viewport matrix are
x = y = 0 and w = h = 512. Hence, the viewport covers the whole display or final image.

tend to emit warm light, like candles or the sun. Ambient lighting is typically shown
using cooler colors like blue or purple. This is motivated by the fact that reflected light
tends to be cooler in nature, like the light received from a blue sky rather than directly
from the sun. In our algorithms, we have applied the well known Phong illumination
model which is discussed next, afterwards we give also some references of other models.

4.2.1 Phong Model

The visual result of the image depends heavily on the illumination model 1 used in
equation (4.6), i.e. the amount of light reflected to the viewpoint from a visible point on
the surface as a function of the direction and strength of the light source, the position of
the viewpoint and the orientation and properties of the surface. The Lambert’s cosine law
is a simple illumination model, where the intensity of the reflected light is proportional
to the dot product of the surface normal and the light direction. An improved model
was introduced in [Pho75], where ambient light, diffuse reflection and specular reflection
are considered. This well known Phong illumination model at a specified position t is

Figure 4.4: The Phong illumination model. Teapot data set rendered (from left to right) with
(constant) ambient, diffuse, and specular reflection, respectively. The right most image shows
the different reflections combined by appropriate coefficients.

qν(t) = kaLaνOdν + fatLpν [kdOdν(n(t)l(t)) + ksOsν(r(t)v(t))n] , (4.2)
1Don’t confuse the illumination model with the shading model.

4.2. ILLUMINATION MODELS 17

CHAPTER 4. RENDERING REQUIREMENTS

where qν(t) is the resulting intensity (or color), ka, kd, and ks are the ambient, diffuse,
and specular reflection coefficients, Laν and Lpν are the intensity of ambient light and the
point light source’s intensity, andOdν and Osν are the object’s diffuse and specular colors.
Further, fat is the light-source attenuation factor, dependant on the distance of the light
source from the current sample point. Finally, n, l, r, v and n are the surface normal,
light source direction, reflection direction of the light source, viewpoint direction, and
the specular-reflection exponent, respectively. Where ν denotes the red, green and blue
components of the color. However, this color model or its simplifications (e.g. omitting
light intensities and object colors) are often used in volume rendering applications, even
though it is a surface based model. In [Whi80] an extended model was proposed, where
reflections, refractions, and shadows arising from interactions between objects in the
scene are modeled and in [CT82] [FvDFH97] a more extended discussion of light models
can be found.

4.2.2 Other Models

A technical illustration drawn by a human provides different geometric information com-
pared to a Phong illuminated image. In [GGSC98] a non-photorealistic lighting model
is presented that attempts to narrow this gap. This lighting model uses luminance and
changes in hue to indicate surface orientation, it allows shading to occur only in mid-
tones such that edge lines and highlights remain visually prominent (cf. also [BGKG05]).
Other parametric models which are used to recover the Bidirectional Reflectance Distri-
bution Function (BRDF) of three-dimensional non Lambertian surfaces can be found in
[Geo03].

4.3 Volume Rendering Integral

The fundamental concept of many physically based rendering methods is the transport
theory of light [Bli82] [Kaj86] [Sab88] [Kru90] [HHS93] [Max95]. Thus, volume rendering
approaches in general use an emission absorption model, that leaves scattering out of
account. Further, frequency dependance (variable ν) can also be safely ignored, i.e.
qν(t) := q(t). Thus, using an emission-absorption model n · (∇I) + κ I = q, with n
parallel to r, ‖n‖ = 1 and I(0) = 0, has the following analytic solution

I(ρ) =
∫ ρ

0
q(t) e−σ(0,t)dt, (4.3)

where I is the intensity at the position ρ along a ray r(ρ) = rs ρ + rd, ρ ∈ [0, B], in
three-dimensional space (ρ = B is the location of the background), q is a scattering
function that is often identified with the Phong illumination model (cf. Sec. 4.2), and σ
is the optical depth defined as

σ(t1, t2) =
∫ t2

t1

κ(τ) dτ, (4.4)

where κ is the opacity function. In order to compute the integral equation, the interval
[0, B] is subdivided into small not necessarily equidistant subintervals [tk, tk+1], k =

18 4.3. VOLUME RENDERING INTEGRAL

CHAPTER 4. RENDERING REQUIREMENTS

0, . . . , N − 1, where t0 = 0 and tN = B, and hence

I(B) =
N−1∑
k=0

(∫ tk+1

tk

q(t) e−σ(tk,t)dt

) k−1∏
j=0

e−σ(tj ,tj+1)

=
N−1∑
k=0

Ck

k−1∏
j=0

(1 − αj), (4.5)

whereby the voxel color Ck is

Ck =
∫ tk+1

tk

q(t) e−σ(tk,t)dt, (4.6)

and the voxel opacity αk is

αk = 1 − e−σ(tk,tk+1). (4.7)

The sum in (4.5) can now be rewritten into a recursive front-to-back compositing equa-
tion

C̃k = C̃k−1 + (1 − α̃k−1) Ck,
α̃k = α̃k−1 + (1 − α̃k−1) αk, k = 1, . . . , N − 1, (4.8)

where C̃k is the pixel color, α̃k is the pixel opacity, and C̃0 = C0, α̃0 = α0. Obviously,
C̃N−1 = I(B). In order to compute a visualization of the whole voxel grid, the volume
rendering equation is applied to each ray r cast into the volume. We can consider the
volume as particles with certain mass density values, where all values in the integral
(4.3) can be derived from the interpolated volume density function f(x). The parti-
cles can contribute light to the ray in different ways, i.e emission [Sab88], transmission
and reflection. Thus, an implementation of ray-casting would traverse the volume grid
in front-to-back order, interpolate the density values and gradients at the sampling lo-
cations using the volume grid values (discrete data values), compute the color using
Equ. (4.6) and opacity using a mapping function (transfer function) and Equ. (4.7), and
finally weighting these values by the current accumulated transparency (1 − α̃k−1) and
adding them into the accumulated color C̃k and opacity α̃k buffers, to prepare for the
next sampled value along the ray. A nice property of this front-to-back composting is
that the computation of the ray can be stopped once the accumulated alpha value α̃k ap-
proaches a user-defined threshold, which means that light resulting from objects further
back is completely blocked by the accumulated opaque material in front. This results
in a standard acceleration technique called early-ray-termination (cf. Sec. 6). How-
ever, the volume rendering integral can be realized by many different means. The most
common way is described above, i.e. the application of the front-to-back compositing
equation (4.8) (also called over-operator) with different approximations or simplifications
of equations (4.6), (4.7), and (4.2). However, the utilization of a data reconstruction
model allows us often (in case of low order reconstructions, hence for low polynomial de-
grees) to define the formulas q(t), κ, and σ in an explicit manner by using the form and
values of reconstructed polynomial pieces. Then, the previously mentioned equations
(4.6), (4.7), and (4.2) are well defined as well. Even though the color (4.6) have to be

4.3. VOLUME RENDERING INTEGRAL 19

CHAPTER 4. RENDERING REQUIREMENTS

evaluated by numerical approximations, since in general there exists no closed formula
for the resulting integral because its integrand is the product of a polynomial with e−σ.
For the implementation of the approximative integrals associated with the voxel colors
different integration rules can be applied, e.g. Simpson integration rule or Gaussian
quadrature rules. Note that only quadrature rules which are accurate for exponential
functions should be used.

4.4 Mapping Functions

Another important issue in volume rendering is the application of transfer functions φ
(also called mapping functions). This allows users to interactively change the properties
of the volume data set, e.g specifying semi-transparent (or transparent) material by map-
ping appropriate volume density values f to opacity values g < 1.0 (or g = 0.0). However,
usually one or two-dimensional tables are used. Here, density values f(r(tk)) (typically
in the range [0, 255] for 8bit volume data) and gradient magnitudes ‖∇f(r(tk))‖ along
rays r at the sample positions tk are used to determine optical properties of the data
according to some mapping functions φ. Since the reconstructed densities f(r(tk)) are
usually no integer values, a simple floor operator, i.e. i = �f(r(tk))�, provides us with
the index i into transfer function to obtain the opacity values g := φ(i). This is known as
nearest neighbor interpolation. However, higher interpolation or approximation schemes
can be applied here as well, e.g. univariate or bivariate spline models for one or two-
dimensional transfer tables, respectively (cf. references in Sec. 3).
In the previous section, the volume data has been assumed as classified, i.e. in a
pre-processing step the grid data values (densities) f(k) are mapped by using transfer
function(s) φ into opacity values g(k) located on the same grid positions. The three-
dimensional opacity function g (opacity volume) can be represented by trivariate piece-
wise spline models and the volume rendering integral could be evaluated according to
the formulas (4.8), (4.6), (4.7), and (4.2). Since an evaluation of these equations is quite
expensive, approximations are often used. A zero order approximation of the integral
would be to sample the pre-classified volume g on equidistant positions ..., tk, tk+1, ...
with intervals d := tk+1 − tk along a ray r and compute the contributions, i.e. con-
sidering the opacity along the ray as κ = g|r. Hence, the opacity and color could be
computed by

αk := d g(r(tk))
Ck := d q(tk) αk. (4.9)

The absorption αk is obtained from (4.7) by using ex ≈ 1 − x and sampling the three-
dimensional opacity function g(x) along a ray. Similarly, the color Ck is computed
from (4.6) by ignoring the self-attenuation (i.e. the exponential term) at first, sampling,
and evaluating equation (4.2), i.e. q(t) := qν(t), for each color component ν. Note
that all variables of (4.2) depending on the ray sampling position t should be computed
appropriately. Here, the normal n(t) is set to the opacity gradient at the sample position
tk as n(t) := ∇g(r(tk)) := ∇g(x)|r(tk) := (∂g(x)|r/∂x1, ∂g(x)|r/∂x2, ∂g(x)|r/∂x3)T.
Finally, the simulation of self-attenuation can be realized by multiplying the color (the
scattering part q(tk)) with αk. This approach is considered as the pre-classified volume
rendering model.

20 4.4. MAPPING FUNCTIONS

CHAPTER 4. RENDERING REQUIREMENTS

However, volume data can be rendered using the well known pre-classified or post-
classified rendering model. In the first approach, densities from the grid positions are
mapped to colors and opacities prior to interpolation. Hence, in a pre-processing phase
the colors are computed at each grid point by using the illumination equation (4.2),
whereas the opacities are obtained from the density values at the grid locations using an
one-dimensional (or two-dimensional) opacity transfer table φ. Then, during rendering
the color vector and opacity values are interpolated and composited along a ray [Lev88]
[Lev90]. This model leads to blurry images under magnification [MMC99]. In the second
method the raw volume values (normal vectors and density values) are interpolated first,
the interpolated samples along the ray are used to look up the color and opacity values,
or to evaluate equation (4.2), and are finally composited into the image. The advantage
of this model is that it generates sharper images, nevertheless post-classification does not
solves all problems that come with high frequency transitions in the transfer functions.
A narrow peak in the transfer function could be missed due to sampling the values at
some sampling distance d along the ray. This makes pre-integrated transfer functions
[EKE01] very interesting (cf. also Sec. 6) where the problem is solved by pre-computing a
two-dimensional look-up table which saves the results of the volume rendering equation.
Another important class of transfer functions for scalar data are three-dimensional tables
[KKH01] based on data values, gradient magnitudes, and second directional derivatives
(cf. also [Kin98] [KD98], and [KKH01]).

Figure 4.5: Different settings of the opacity transfer function for full volume rendering. A
linear function is used for rendering which also suppresses soft tissues, i.e. low density values
are set to be fully transparent (left). The opacity function is set to make bones semi-transparent
and to suppress soft tissues as before (right).

4.5 Curvature and Silhouette Enhancement

Many applications in volume rendering rely on illumination models (cf. Sec. 4.2), where,
first-order differential structure of the volume field (the gradient) is used to compute
surface-based lighting results. Further, using second-order derivatives to compute cur-

4.5. CURVATURE AND SILHOUETTE ENHANCEMENT 21

CHAPTER 4. RENDERING REQUIREMENTS

vature information of the volume field gives additional insight into the underlying volume
field [MH92], which comes from the geometry orthogonal to the iso-surfaces. In [MBF92]
[MB95] Gaussian kernels, their first, second, and third derivatives were used to compute
surface curvature characteristics. Ridge and valley lines were used in [IFP95] [IFP96]
to simplify the representation of a surface in surgical planning. A perceptual motiva-

Figure 4.6: Volume rendering using lookup tables and curvature information computed from
our cubic type-6 spline model (cf. part II). Left image shows contours of the engine by using
λv and vTn as index into a two-dimensional lookup table with the thickness parameter τ = 2.0.
Middle and right images show curvature enhancement by using λ1 and λ2, respectively.

tion and artistic inspiration for defining a stroke texture that is locally oriented in the
direction of greatest normal curvature was given in [IFP97]. The aim is to use trans-
parency for depicting multiple surfaces in a single image. In [Int97] a set of principal
directions and principal curvatures are computed to define a natural flow over the sur-
face of an object, and they can also be used to guide the placement of lines of a stroke
texture that seeks to represent a three-dimensional shape in a perceptually intuitive
way. In [HKG00] a concept of transfer function modification for direct volume rendering
is presented, where transfer functions are defined in the domain of principal curvature
magnitudes. Recently, a visualization technique (kinetic visualization) [LSM03] has been
applied in volume rendering, that uses motion along a surface to assist in the percep-
tion of three-dimensional shape and structure of static objects. An intuitive method
[KWTM03] to enhance ridges, valleys, and silhouettes of objects have been applied for
iso-surface visualizations by computing curvature information from the volume data and
using multi-dimensional transfer functions. High-quality curvature measurements using
a combination of an implicit formulation of curvature with convolution-based filter re-
construction of the volume field has been proposed. Further, different high-order filters
are compared with reference to the quality and accuracy of its reconstructed first and
second derivatives. Finally, curvature-based transfer functions are used to extend the
expressivity of volume rendering. This is shown by three different applications, i.e. non-
photorealistic rendering, surface smoothing via anisotropic diffusion, and visualization
of iso-surface uncertainty.

22 4.5. CURVATURE AND SILHOUETTE ENHANCEMENT

CHAPTER 4. RENDERING REQUIREMENTS

4.5.1 Curvature Estimation

The curvature of a surface [MH92] [KWTM03] is defined by the relationship between
small positional changes on the surface, and the resulting changes in the surface nor-
mal. In volume data sets surfaces are implicitly represented as iso-surfaces of the recon-
structed continuous data values f(x). If in CT scans values of f increase when moving
further inside objects, then the surface normal is defined as n = −g/‖g‖ (otherwise
the normal has a different sign, i.e. n = +g/‖g‖) with the gradient g = ∇f(x) =
(∂f(x)/∂x1, ∂f(x)/∂x2, ∂f(x)/∂x3)T, where x := (x1, x2, x3) and ‖g‖ =

√
g2
1 + g2

2 + g2
3.

Curvature information is contained in

∇nT = − 1
‖g‖PH (4.10)

with P, and H ∈ R
3×3 are the symmetric projection matrix which spans the tangent

plane to the iso-surface, and the symmetric Hessian matrix, respectively. The expression
P := (I − nnT) projects onto the orthogonal complement of the span of n, i.e. the
tangent plane to the iso-surface at the current considered point location, where I, and
nnT ∈ R

3×3 are the identity matrix, and a linear operator that projects onto the one-
dimensional span of n, respectively. From vector calculus we know that the Hessian
matrix H encodes the changes of the gradient g according to infinitesimal changes of the
position x ∈ R

3. Hence, H encodes changes along the gradient g (the length) as well as
changes within the tangent plane (the direction). For curvature computations only the
changes within the tangent plane are relevant and can be isolated by multiplication of P.
The scaling factor −1/‖g‖ converts infinitesimal changes of the (un-normalized) gradient
g into infinitesimal changes of the unit-length normal n. However, it can be shown that
the restriction of H to the tangent plane P is symmetric (cf. Equ. (4.10)). Hence,
there is an orthonormal basis {v1,v2} for the tangent plane which can be extended to
an orthonormal basis in R

3, i.e. {v1,v2,n}. In this basis the derivative of the surface
normal is

∇nT =

⎛
⎝ λ1 0 σ1

0 λ2 σ2

0 0 0

⎞
⎠ . (4.11)

Here, v1 and v2 are the principal curvature directions and λ1 and λ2 are the principal
curvature magnitudes. Since changes of position along the normal direction cannot
change the length of the normal, the third row in equation (4.11) is zero. Where changes
along the curvature directions make changes to the normal by λ1,2. However, multiplying
equation (4.10) by P from the right,

G = ∇nTP = − 1
‖g‖PHP =

⎛
⎝ λ1 0 0

0 λ2 0
0 0 0

⎞
⎠ , (4.12)

has the effect of isolating λ1,2 in the basis {v1,v2,n}. This geometry tensor has a general
form in practice according to the Euclidian coordinate system, i.e. concerning to the
basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Here, a singular value decomposition of G will give
the appropriate principal curvature directions (Eigenvectors) as well as the magnitudes
(Eigenvalues). For more information see [KWTM03].

4.5. CURVATURE AND SILHOUETTE ENHANCEMENT 23

CHAPTER 4. RENDERING REQUIREMENTS

4.5.2 Silhouette Estimation

Many non-photorealistic approaches apply contour or silhouette enhancement by show-
ing the transition between front and back-facing surfaces. For polygonal surfaces the
sign of the dot product vTn between the view direction and the normal of a polygon is
used to find the orientation of a face [GG01]. Hence, if two faces with normals n1 and n2

have different visibility (one is oriented towards the user and the other not, respectively),
then the dot products become vTn1 > 0 and vTn2 < 0 which is a sign for a silhouette.
However, in volume rendering univariate functions h(vTn) ∈ R+ of the dot product and
a threshold value τ can be used to enhance silhouettes, e.g. values of h(vTn) < τ with
τ near to zero could be darkened. This proceeding leads to uncontrolled variation in the
emerging thickness of contours. That means, on one side, at flat surfaces where large
regions of surface normals are perpendicular to the view direction contours become very
thick, on the other side, at fine structures they are often too thin. A recent method
[KWTM03] regularizes the thickness of contours on iso-surfaces by using the curvature
along the viewing direction.

4.6 Volume Shader Models

Volume rendering modes or computer visualization methods are, for example, x-ray
projection (X-Ray) or maximum intensity projection (MIP). Applying these modes the
volume cells (regular or irregular) can be processed (projected) in any order, since the
volume rendering integral degenerates to a commutative function, i.e. the rays have not
to be processed in a front-to-back manner. In contrast, for iso-surface or full volume
rendering a depth ordering of the cells is required to satisfy the compositing order,
thus rays have to be processed in a front-to-back manner, since the generalized volume
rendering integral is not commutative.
However, each computer visualization method can be combined with any rending ap-
proach (cf. Sec. 5), e.g. ray-casting or shear-warp. Although a straight forward imple-
mentation of a volume rendering algorithm would apply ray-casting, the choice of the
rendering method has great influence on the speed of the final algorithm as well as the
resulting image quality. Similarly, for performance reasons or the requirements of the
image quality, one can utilize different strategies to find the values along rays for the
different modes:

• Analytical solution: Depending on the data reconstruction model, for each cube
intersected by the ray a local polynomial of an appropriate degree has to be deter-
mined. According to the mode used, one has to compute the roots (for iso-surface
visualizations), the maxima (for MIP) or the integral (for full volume rendering)
of the polynomial pieces to determine the final result. Such an analytical compu-
tation and evaluation of the local polynomials is the most accurate but also the
most expensive method.

• Sampling and interpolation: In this less expensive approach data values are sam-
pled with a distance d along a ray using a data reconstruction model. No ex-
plicit polynomial pieces are considered (determined) within cubes, thus the cost of
this approach depends only on the data reconstruction scheme and the sampling

24 4.6. VOLUME SHADER MODELS

CHAPTER 4. RENDERING REQUIREMENTS

distance d. However, the method can be greatly accelerated by using longer re-
sampling distances d along rays, which, on the other side, produces lower quality
images.

• Nearest neighbor interpolation: No real interpolation is performed at all, i.e. the
data reconstruction model generates piecewise constant polynomials. Values on the
data grid closest to the current considered samples along the ray are only considered
for estimation. Since no interpolation is applied, the data grid structure becomes
visible as aliasing or as staircase artifacts in the resulting images.

Figure 4.7: Volume rendering modes reveal different information about the volume data set, e.g.
maximum intensity projection (left), full volume rendering (middle), and iso-surface rendering
with a gradient-based color transfer function (right) where high gradient magnitudes are mapped
to red colors.

4.6.1 Maximum Intensity Projection

Maximum intensity projection (MIP) [MGK99] [CKG99] is a computer visualization
method that projects sample values into the projection plane with maximum intensity
[MHG00] [MKG00] obtained along a ray from the three-dimensional data set [PHK+03]
[ME05]. Applying a parallel (orthographic) projection method using MIP implies that
two images obtained from opposite viewpoints are symmetrical. More over, the viewer
cannot distinguish between left or right, front or back and even not if the object is
rotated clockwise or not. On the one hand, within angiography data sets usually the
data values of vascular structures are brighter than the values of the surrounding tissue,
the structure of vessels contained in these data sets can be captured easily. On the other
hand, an application of early-ray termination as acceleration technique (cf. Sec. 6) is not
possible, making the standard MIP often even more expensive than full volume rendering
or iso-surface rendering. Further, an image obtained by MIP does not contain any
shading information, thus there is no depth and occlusion information, i.e. objects with
brighter image data values appear to be in front – even though lying behind of objects
corresponding to darker image values. A common way to simplify the interpretation of
such images is to rotate (animate) the data. That means, the relative three-dimensional
positions of objects are revealed by rendering the object’s data sets from different viewing
positions or directions. However, this improves the viewer’s perception. In other words,
it is easier for the viewer to reveal the relative three-dimensional positions of objects.

4.6. VOLUME SHADER MODELS 25

CHAPTER 4. RENDERING REQUIREMENTS

4.6.2 X-Ray Projection

Volume rendering can be considered as the inverse problem of tomographic reconstruc-
tion [Mal93] where the aim is to reconstruct the unknown volume density function f(k)
by rotating an X-ray emitter/dedector pair at some angle and collecting a set of measured
projections. However, X-ray like images [Lev92] of a volume data set can be obtained
with a rendering technique that evaluates the line integral in the frequency domain.
Namely, the Fourier Projection-Slice Theorem allows to compute a two-dimensional X-
ray like image from a three-dimensional data set by using a two-dimensional slice of that
data in the frequency domain (cf. also [Max95]).

4.6.3 Iso-Surface Rendering

The goal in iso-surface rendering is to find the smallest intersection parameter t ≥ 0 of
each ray r(t) = rs + t rd going through the volume where the data has an user-defined
iso-value. This global problem is usually split into smaller local problems. However, to
find the correct intersection of a ray and a surface of the volume data using the trilinear
reconstruction model is an essential task. Many available methods are accurate but slow
or fast but for an approximate solution only. In [MKW+04] available techniques are
compared, analyzed and a new intersection algorithm is presented, which is said to be
three times faster and provides the same image quality and better numerical stability in
opposite to previous methods.

4.6.4 Full Volume Rendering

In full volume rendering (FVR), usually the volume rendering integral is solved by appro-
priate evaluation of equations (4.6), (4.7), and (4.8) as already discussed in the previous
sections. However, from the above mentioned integral one can derive an absorption only
model where the volume is assumed to consist of perfectly black particles that absorb
all the light that goes through them. In the emission only model the volume is assumed
to be of particles that emit – but do not absorb – light. Other models take scattering
and shading/shadowing into account (cf. [Max95]).

4.6.5 Non-Photorealistic

Volume illustration techniques, as, for example, presented in [TC00] [CMH+01] [LME+02]
[LM02] [MHIL02], can be considered as a subclass of non-photorealistic rendering (NPR)
[GGSC98]. The particular characteristic of illustrations [GSG+99] [ER00] is to empha-
size important features or parts of an object and to advise the information to the viewer
in the most efficient way. This characterization matches the requirements of traditional
visualization techniques as well. However, in volume rendering transfer functions are of-
ten set such that objects are semi-transparent making spatial relationship between these
objects difficult. Silhouette edge illustration (as discussed in section 4.5) can be par-
ticularly useful here (further non-photorealistic techniques can be found in [GGSC98],
[GSG+99] [NSW02], [WKME03b]. The manipulation of color based on distance can also
improve depth perception [FvDFH97]. For depth cues typically warmer hues are used
for the foreground and cooler in the background and color values tend to become lighter
and less intense with distance. In addition, non-linear fading of the alpha channel along

26 4.6. VOLUME SHADER MODELS

CHAPTER 4. RENDERING REQUIREMENTS

the view direction allows making closer material more transparent such that underlying
features are more visible, but foreground material is still slightly preserved to provide
context for the features of interest.

4.6.6 Focus and Context Techniques

Traditionally, objects within the volume data set are classified by optical properties like
color and opacity using transfer functions. Another technique is to classify or segment
the data during a pre-processing stage into different regions where each region specified
by an identification number (id) represents an object of the volume. Now different optical
properties can be assigned to each object such that some are enhanced and others not.
An importance driven approach [VKG04] additionally assigns objects another dimension,
which describes their importance. This scalar importance value encodes which objects
are the most interesting ones and have the highest priority to be clearly visible. During
rendering the model evaluates the visibility of each object according to its importance,
i.e. such that less important objects are not occluding features that are more interesting.
In other words, the less important ones are rendered more sparsely. Two approaches
have been proposed using importance values, the first is called maximum importance
projection (MImP), whereas the second average importance projection. In the former
method for each ray the object with highest importance along the ray is determined.
This object is displayed densely, whereas all the remaining objects along the ray are
displayed with the highest level of sparseness, i.e. fully transparent. This approach can
be considered as a cut-away view similar as in [SCC+04], where a cut-away technique
for CT angiography of peripheral arteries in human legs is applied. The goal is to have
a clear view on the vessels, which are partially segmented by their centerline.
A discussion of expressive visualization techniques, e.g. cut-away views, ghosted views,
and exploded views, originating from technical illustration that expose the most impor-
tant information in order to maximize the visual information of the underlying data can
be found in [VG05] (cf. also [KTH+05] [BGKG05], and [BG05]).

4.7 Segmented Data

Usually transfer functions indexed by data values (densities) are used to define a simple
segmentation of the volume and to assign different optical properties to different objects
(as discussed above). However, for several regions (or objects) in a data set which have
similar or even the same density values it is difficult or impossible to define appropriate
mapping functions, such that one can discriminate between the objects. That means,
it is often the case that a single rendering method or transfer function does not suffice
in order to distinguish multiple objects of interest according to a users specific needs.
Here another very powerful technique comes into play. This supports the perception of
individual objects contained in a single volume data set by creating an explicit object
membership identification number [UH99].
There are several ways of representing segmentation information of a volume. The sim-
plest one is to specify this information for all objects contained in a single volume in
another identification volume of the same size. However, usually only a few objects are
contained in a single volume, hence identification numbers of 8bit resolution for each

4.7. SEGMENTED DATA 27

CHAPTER 4. RENDERING REQUIREMENTS

voxel should be enough and are simply enumerated consecutively starting with one. In
other words, each voxel contains an identification number of that object it belongs to.
This number is stored at the appropriate position in the second identification volume2.
Using this membership one is able to determine the transfer function, rendering, and
compositing modes used for a given sample. A simple nearest neighbor look-up of the
identification number for a given sample is trivial, but leads to artifacts. Whereas a
filtering has to be performed carefully, since a direct interpolation of numerical identifi-
cation numbers of objects leads to incorrectly interpolated intermediate values (see e.g.
[HMBG00] [HBH03]).

2Objects (voxels) identified by separate masks can be easily combined in a pre-processing step into a
single volume that contains a single object identification number for each voxel.

28 4.7. SEGMENTED DATA

5 Rendering Methods

Volume rendering methods are algorithms applied for volume visualization. There are
several methods and they can be split into image-order, object-order, hybrid or domain-
based methods. In image-order algorithms (e.g. ray-casting) rays are cast from the eye
location through each pixel in the image plane into the volume grid to determine the
final value of the pixel (also called a backward mapping scheme). This technique (cf.

Figure 5.1: Illustration of ray-casting (left) and slicing (right). In ray-casting rays (blue ray)
cast from the eye (small blue dot) through each pixel (blue dot) in the image plane into the volume
data set (light gray cube), where at (non-)equidistant sample positions (red dots) data values are
reconstructed, shaded and composited into the final image pixel (blue dot). In slicing usually a
slice or plane (black rectangle) aligned parallel with the projection plane (light gray rectangle)
is shifted by the (non-)equidistant sampling distance through the volume. Data is reconstructed
within the convex polygon defined by at most six intersection positions (blue solid quads) of the
slice and the volume, and finally shaded and composited into the image plane.
left illustration of Fig. 5.1) allows to apply early-ray termination for accelerated volume
rendering. In object-order algorithms (e.g. splatting and cell-projection) volume data is
projected directly onto the screen (also called a forward mapping scheme). Object-order
techniques decompose the volume into a set of basis elements or basis functions which
are individually projected to the screen and create the final image. These techniques
allow easily applying space leaping for accelerated volume rendering. Hybrid methods
try to combine the advantages of image-order as well as object-order methods, whereas
domain-based techniques first transform the data from the spatial domain into another
domain (e.g. frequency or wavelet domain) and afterwards directly determine the two-
dimensional projection using the data from this domain. However, different partitioning
of the algorithms are posible, one could differentiate between direct methods (e.g. direct
iso-surface or full volume rendering) and indirect methods as, for example, marching

29

CHAPTER 5. RENDERING METHODS

cubes. The former techniques directly visualize the volume data in one pass. Whereas
the second kind of techniques previously extract some information from the volume
grid, representing this in different form (e.g. as a triangulation of an iso-surface), and
afterwards this new representation is visualized. We split the methods according to their
underlying partitions used to represent volume data, i.e. whether the algorithms operate
on regular or irregular grids.

5.1 Regular Grids

5.1.1 Ray-Casting

The term ray-casting arises from ray-tracing which describes the process of casting rays
from the viewpoint (eye location) through specified pixels on the image plane [Gla84].
In computer graphics, usually the intersection of each ray with any object in the scene is
computed and the pixel in the image plane is identified with the nearest intersection point
and the reflected energy at this point. This ray is termed the primary ray, secondary rays
are usually cast to model transparency, shadows or reflections [Lev88] [Lev90] [PH04].
However, applying ray-tracing (cf. [WMK04] [KL04] [Chr05]) with primary rays only,
leads to the same outcome as using first-order approximation projection methods, e.g.
ray-casting (cf. left illustration of Fig. 5.1). In this way ray-casting is a simulation of
light-propagation through a scene using primary rays only, where the result is represented
on the image plane. The simulation is based on the geometry of the objects, reflection,
and refraction, thus the quality of the displayed image heavily depends on the physical
models (cf. Sec. 4) used, e.g. the resolution of the scene (objects and image plane),
the illumination model, the shader model, and the transfer functions (cf. [GTGB84]
[CPC84] [Kaj86]). A brute force implementation of ray-tracing checks each ray against
each object in the scene, thus it is very computation intensive and acceleration techniques
are unavoidable, i.e. techniques which consider the coherence in a scene (cf. [Sam90]).
In volume rendering only primary rays1 are considered because of the huge computation
effort. Acceleration techniques as, for example, presented in [AW87] [SW91] [YK92]
[RUL00] as well as special hardware [HMK+95] or graphics cards [KW03] [HQK05]
[SSKE05] can be utilized to achieve interactive visualizations of the data set.
Recently, a fast software based algorithm [GBKG04a] [GBKG04b] has been developed
by applying sophisticated caching strategies and data structures. On the one side, with
such software-based algorithms one cannot obtain fast rendering times compared to
hardware-accelerated algorithms. On the other side, the rigid architecture of the graphics
processing unit (GPU) does not allow transporting the standard software-based volume
rendering methods (especially with appropriate acceleration techniques) directly onto
this hardware. Hence, recently more and more algorithms and appropriate extensions for
the graphics hardware have been developed and discussed. A GPU-based object-order
ray-casting algorithm for the rendering of large volume data sets has been published
in [HQK05]. The volume data set is decomposed into small sub-volumes, which are
further organized in a min-max octree data structure. Each leaf of that min-max octree
stores the sub-volumes also called cells. After classification of that cells using mapping
(transfer) functions, only visible cells are loaded into GPU memory. The cells are sorted

1Therefore the expression ray-casting.

30 5.1. REGULAR GRIDS

CHAPTER 5. RENDERING METHODS

into layers and all cells within the same layer are projected onto the image plane in front-
to-back order using a volumetric ray-casting algorithm. Another framework [SSKE05]
is based on a single pass volume ray-casting approach and is easily extensible in terms
of new shader functionality as well as new reconstruction models.

5.1.2 Splatting

In the original object-based method [Wes89] [Wes90], the volume is represented by an
array of overlapping, symmetric basis functions (gaussians kernels) in three-dimensional
space. These basis functions are projected onto the screen to produce a two-dimensional
image. A basic method only composites all kernels in front-to-back order onto the
screen. Although this method is very fast, one disadvantage is that it can generate
color bleeding, sparkling artifacts, and aliasing. One reason is due to the imperfect
visibility ordering of the overlapping basis functions. However, advantages of splatting
are that only unit cubes or basis functions have to be rendered (projected and ras-
terized), which are relevant in the resulting two-dimensional image. This method is
attractive for rendering sparse data sets, it can handle irregular data sets and different
grid topologies as well, i.e. body centered cubic grids [SM02]. In [Wes90] some quality
improvements of a basic method has already been proposed, by summing up the basis
functions (kernels in voxel space) within volume slices most parallel to the image plane
(also called sheet-buffer approach). Nevertheless, this method generates brightness vari-
ations (popping artifacts) in animations of data sets, i.e. by rotating a data set. In a
more recent method [MC98] [MSHC99] these disadvantages are removed by processing
the basis functions within slabs, or sheet-buffers, aligned parallel to the image plane
(also called image-aligned sheet-buffered splatting approach). The projection of the ba-
sis functions can be accelerated by the rasterization of a pre-computed two-dimensional
footprint lookup table (cf. [HCSM00] as well). Each footprint table entry stores the
analytically integrated basis function along a crossing ray. Whereas the aliasing prob-
lem was addressed in [SMM+97] [ZPvBG02], post-shaded rendering in [MMC99] and a
perspective accurate splatting method was presented in [ZRB+04]. In other papers some
performance improvements for software based splatting are given, like hierarchical splat-
ting [LH99], three-dimensional adjacency data structures [OM01], and post-convolved
[NM03] rendering. More recent methods utilize graphics hardware to accelerated splat-
ting and were compared in [XC02]. Another hardware [NM05] based splatting approach
exploits many of the new features of current graphics cards and is based on the sheet-
buffered image aligned algorithm [MC98], which was initially developed to overcome the
performance/quality concerns of the previous existing splatting algorithms.

5.1.3 Shear-Warp

The attractive original shear-warp approach [LL94] [Lac95] combines the advantages of
image and object-order algorithms. This kind of algorithms are also called hybrid or
intermediate methods. However, many extensions have been made to this method as
well as a special hardware [PHK+99] has been developed. For more information on this
technique as well as for a discussion of the state of the art see part III.

5.1. REGULAR GRIDS 31

CHAPTER 5. RENDERING METHODS

5.1.4 Slice-Based

The capability of rendering a volume on graphics hardware was already addressed in
[CN94]. A slice based volume rendering (SBVR) algorithm was presented in [Ake93]
[CCF94], which can be seen as an emulation of ray-casting, but where all rays are
sampled at once on a slice. Here, volume rendering is performed by slicing the volume
in object-aligned or image-aligned planes. These planes are rendered in front-to-back
or in back-to-front order using three-dimensional textures during rasterization and by
compositing them into the frame buffer (cf. right illustration of Fig. 5.1). A main
drawback of a hardware based SBVR algorithm is that all fragments have to be processed
from the three-dimensional texture even if they do not contribute to the final image.
This decreases the rendering speed, in particular for complex shader programs with,
for example, lighting and gradient computations. In more recent developments, the
volumetric domain is split into small sub-volumes called bricks or cells [LMK03], where
empty cells are removed and only the non-empty cells are rendered with the SBVR
algorithm. This improves the rendering performance of large data sets. In [XZC05] iso-
surfaces are visualized by a hardware accelerated algorithm with the slice-based volume
rendering approach, where the early z-culling feature of current graphics hardware is
utilized to obtain better performance.

5.2 Irregular Grids

5.2.1 Ray-Casting

A hardware-based ray-casting algorithm [WKME03a] for tetrahedral meshes is based
on the method discussed in [Gar90] [PBMH02] [RGW+03], where for each ray the ir-
regular grid is traversed by following the links between neighboring tetrahedral cells.
Pre-integrated volume rendering and early-ray termination are applied as acceleration
techniques during ray integration. Modifications and extensions are presented [Pur04]
as well. The algorithm can be subsumed as follows. First, the viewing ray is propagated
in front-to-back order from cell to cell until the mesh has been abandoned. Thus, in an
initialization phase the first intersection of the ray and the mesh is computed. Then,
until the ray has not left the mesh, the exit point for the current cell is determined,
the corresponding scalar value is interpolated, the ray integral within the cell is com-
puted and blended into the fame buffer. Finally, the adjacent (neighboring) cell is found
through the exit point.

5.2.2 Cell-Projection

Unstructured tetrahedral grids can be efficiently rendered using the projected tetrahe-
dra (PT) algorithm [ST90]. In this algorithm the volume is decomposed into tetrahedral
cells first. Scalar values are defined at each vertex of the tetrahedral cell. Inside each
tetrahedral cell the density is assumed to be a linear combination of the data at the
vertex values. Then the cells are sorted according to their visibility. Afterwards each
tetrahedron is classified according to its projected profile and this is decomposed into
triangles (cf. Fig. 5.2). Finally the color and opacity values for the triangle vertices in
the original world coordinates are computed using ray integration and the triangles are

32 5.2. IRREGULAR GRIDS

CHAPTER 5. RENDERING METHODS

rendered (e.g. using graphics hardware). In other words, this algorithm visualizes and
approximates a scalar function in three-dimensional space by rendering partially trans-
parent tetrahedra, whereby color and opacity values are linearly interpolated between
the triangle vertices (on the projected profile).

Figure 5.2: Top: Classification of non-degenerate projected tetrahedra. Bottom: The corre-
sponding decompositions (cf. [ST90]).

However, this direct volume rendering algorithm has been invented several years ago
and has bluntly accelerated the process of rendering unstructured tetrahedral grids,
but leads to rendering artifacts [MBC93] [SBM94]. A further development has been
presented [WMS98] in order to avoid some of these artifacts. This approach is restricted
to a linearly varying opacity function and interpolates color linearly as well.
A generalization [RKE00] works for color and opacity with no restrictions on the transfer
functions. These benefits are achieved by considering orthographic projections only and
employing texture mapping, i.e. a three-dimensional texture map is set up which contains
the color and opacity characterized by an intersection of a ray and a cell (tetrahedron).
Also vertex shaders on recent graphics hardware have been applied [WMFC02] to render
the tetrahedral cells directly within the graphics card. A view independent cell projection
approach has been given in [WKME03b]. This method is usful for all commutative
blend functions, which in general allow the compositing in arbitrary order (e.g. in case
of maximum intensity projection).

5.2.3 Slice-Based

In a slice-based approach [JWH+04] structured and unstructured volume data grids are
encoded by radial basis functions (RBF). These compactly supported RBFs are used
because of their limited spatial extent, explicit evaluation and smooth representation of
noisy data. This work has been extended for encoding vector and multi-field data sets
[WBH+05]. Efficient feature detection techniques have been developed and the ability
to refine regions of interest in the data. Further, graphics hardware has been applied
to accelerate the reconstruction, rendering, and feature detection process by using this
functional representation.

5.2. IRREGULAR GRIDS 33

CHAPTER 5. RENDERING METHODS

5.3 Other Methods

5.3.1 Hardware or Texture Based

Many implementation issues for direct volume visualization algorithms applied on spe-
cial purpose hardware [HMK+95] [MKS98] [PHK+99] have been solved [VHMK99], dis-
cussed and analyzed in the last years, e.g. how to efficiently implement acceleration
techniques. Special purpose hardware is, due to small consumer markets, often very ex-
pensive, new developments in hardware lead sometimes to whole re-implementations of
already available software packages, and due to missing standards and high level tools for
development, the evolution of new applications becomes occasionally a tedious process.
In this view, the inexpensiveness (due to the gamer’s market) and programmability of
recent graphics hardware make the development of volume rendering algorithms on this
hardware more interesting and important. Once algorithms usable on graphics hardware
have been developed they can be redistributed, and they profit from the higher compu-
tational power – recent graphics hardware is an order of magnitude faster than current
processors – as well as the memory bandwidth of recent graphics cards compared to
usual personal computers.
The task of visualizing a volume can be performed very fast by by means of two or
three-dimensional textures. Due to the slightly rigid pipeline architecture of graphics
processing units (GPU), it is often necessary to adapt existing as well as to develop
new algorithms [RSEB+00] [KKH01] [KPHE02]. In the case of a huge data set, i.e.
when the whole data does not fit into graphics memory, it has to be compressed or
reloaded from the main memory [LMC01] [LK02] [KE02] [SW03]. However, volume
rendering performed by graphics hardware and textures is usually done by slicing the
texture block in back-to-front order with planes oriented parallel to the view plane (cf.
right illustration in Fig. 5.1). An additional buffer, sometimes called alpha buffer, is
needed in case of front-to-back rendering to store the accumulated opacity and color
values. Whereas the most probable limitation of such texture based volume rendering
is the huge amount of fragment and pixel operations, i.e texture access, interpolation,
lighting calculation, and blending. These operations are performed no matter if voxels
are transparent and do not contribute to the corresponding image pixels or these pixels
are already opaque [RSEB+00].
A multi-pass approach is given in [KW03], where for each fragment rays are casted
through the volume until an opacity threshold is reached or a selected iso-value is hit.
However, before ray traversal, all necessary ray information (e.g. direction and start)
according to the three-dimensional texture coordinates are pre-computed and stored in
a two-dimensional texture. This is reused in upcoming passes. A similar process is
referred as Deferred Shading (cf. [EHK+05]).
A discussion of modern and future graphics hardware and their programming models is
presented [PBMH02]. In this work, a stream model for ray-tracing performed on pro-
grammable fragment processors is proposed, which takes advantage of parallel fragment
units and high bandwidth to texture memory.
Hardware based methods are comparable in speed as well as in quality to optimized
software based algorithms. Albeit it can be expected that graphics processing units will
grow faster in performance compared to central processing units, and thus in several
years graphics hardware maybe the main choice for implementing any kind of graphics

34 5.3. OTHER METHODS

CHAPTER 5. RENDERING METHODS

algorithms. However, in [OLG+05] techniques and summary are presented how general-
purpose computations can be mapped to graphics hardware. Due to the development
of new multi-core architecture concepts (see e.g. cell processor) and the significant con-
sumer markets in this area, new, cheap, and flexible parallel architectures may become
the reality. Where the development and the conversion of existing algorithms for such
new, revolutionary architectures will be almost a crucial point.

5.3.2 Domain Based

The visualization of huge data sets (i.e. more than 1GB) is still a challenging task. Here,
compressed data sets, on one side, will not occupy the main memory too much and on
the other side, the bandwidth between the main memory and the central processing unit
(CPU) will be spared. Compression methods as used in image and video processing
[Gal91] are not directly applicable for volume data sets, because they often read and
compress the entire images or slices of the video stream. In volume rendering, often only
a fraction of the data is needed, because of the standard acceleration techniques, i.e.
early-ray termination and space leaping. Therefore, a local, a random and a fast access
to voxel data is needed. Hence, there are several goals for the encoding of a volume data
set. First, a multi-resolution representation of the data for level of detail processing.
Second, the effective utilization of redundancy in each direction of the three-dimensional
volume data set. And third, a selective block, scan-line or cell compression method for
fast random access.
Many approaches often use quantization [NH93], wavelet coefficients [IP99], hierarchies
[BIPS00] [BIP01], and/or visualization-dependance [BPI01] to reduce volume data. In
[GWGS02] each level of the octree stores some wavelet coefficients (cf. [CDSY97]) which
are further compressed by run-length-Huffman or Lemple-Ziv-Welsh coding schemes for
level of detail processing of the volume data. Similar approaches can be found in [Mur93]
[Wes94] [LHJ99a] [RSEB+00] [WWH+00] [NS01]
Other approaches [Rod99] [GS01] follow a more conventional way to encode redundancy.
They apply techniques well known in video compression and consider the volume slices
as frames of a video stream.
Due to limited transmission bandwidth between the central processing unit and the
graphics hardware yet other approaches [RSEB+00] [KKH01] use a very similar encoding
of the data as discussed above. They decode first [KPHE02] or directly load chunks (cells)
of the data set into the graphics texture memory. Afterwards they utilize the hardware
for rendering and decompression for static data sets [KE02] [LK02] as well as for time
varying data sets [LMC01] [SW03].
However, the shortcomings of such methods are obvious. Firstly, the data has to be
decoded for visualization no matter if in hardware or software. Secondly, if the blocks
are too small or too big the redundancy of the data is not well exploited. Thirdly,
the image quality depends on the compression method and the allowed approximation
error. It has been shown [GS01] that higher order wavelets not only reduce the size of
compressed volumes while enlarging the peak-signal to noise ratio, but also significantly
preserve features and improve the visual impression.
A rather theoretical description of a fast volume visualization system can be found in
[SBS02]. Basically, a volumetric video system is discussed which is based on a perfor-
mance server where large time-dependent data sets can be processed.

5.3. OTHER METHODS 35

CHAPTER 5. RENDERING METHODS

5.3.3 Indirect Methods

Indirect methods first extract some information from the given volume data set, e.g.
the iso-surface, and represent the information by different means, e.g. as surface tri-
angulation. One of the well known indirect visualization techniques applied for volume
rendering is the marching cubes [LC87] method. This approach extracts surface infor-
mation represented by triangles from a discrete three-dimensional data set. The basic
principle behind the marching cubes algorithm is to subdivide a volume into a series
of small unit cubes. The algorithm goes through each unit cube and tests the corner
points (i.e. the particular 23 neighboring voxels) and replaces the cube by an appropriate
set of polygons or triangles. The total amount of triangles approximates the specified
iso-surface of the original data set. However, since one cube has 23 corners, there are
223

= 256 possible corner combinations (i.e. different states for a unit cube). But since
there are twofold cell combinations under some conditions, the number of states can
be reduced into a total of 15 combinations. This reduces the complexity of the algo-
rithm in terms of programming effort as well as runtime and makes a computation of
the polygon sets less expensive. The number of combinations can be further reduced
(to three) by adapting the marching cubes algorithm to tetrahedral meshes [SFYC43].
The main problem of the marching cubes algorithm is that it is very expensive since
all cells have to be considered. Hence, faster approaches [CMM+97] would first identify
the unit cells intersected by the surface and then investigate only these cells (e.g. by
using an octree representation of the volume) for further computations. Other problems
of the marching cubes approach are that the polygon nets can contain holes (because
of ambiguous faces) [Che95] and even with moderately sized volume data sets polygon
meshes of several million polygons are obtained. The former difficulty leads to aliasing
artifacts or wrong surfaces, but can be omitted [LLVT03]. The later issue can be solved
by an application of polygon reduction schemes [KLS96] [LHSW03], since a real-time
rendering of (several) million polygons is hard to realize even on modern graphics cards.

36 5.3. OTHER METHODS

6 Acceleration Techniques

Volume rendering is a very time consuming process. Usually, the whole three-dimensional
data set has to be processed to obtain a colored two-dimensional image of that volume.
However, if one would like to animate (i.e. rotate, zoom) the volume data set in real time,
then at least 1 − 10 frames (colored images) per second have to be rendered. Without
acceleration techniques this would be an impossible venture. There are of course many
special acceleration techniques and algorithmic optimizations for the different kind of
volume rendering algorithms (cf. Sec. 5). In the following only a few of them – the
standard techniques – will be discussed, i.e. techniques which can be applied to many
rendering algorithms without huge implementation efforts and which do not trade off
image quality for speed.

6.1 Early Ray Termination

This acceleration technique has the nice property that, using front-to-back composting,
it is possible that the computation of a ray can be stopped once the accumulated alpha
value α̃k (cf. Equ. (4.8)) approaches a user-defined threshold (cf. [Lev88] [Lev90]).
That means, light resulting from objects further away is completely blocked by the
accumulated opaque material in front. This technique can be easily applied in image-
order volume rendering algorithms, where in object-order techniques often some special
data structures have to be developed to realize this speed-up method.

6.2 Space Leaping

For the realization of this acceleration technique, there are many different and mostly
special data structures available, depending on the rendering algorithm as well as the
data used. However, physical theory shows that reflection occurs only where material
parameters change, i.e. region boundaries are identified by large gradient magnitudes,
whereas homogeneous regions in the data space have zero gradients and do not reflect
diffuse and specular light. Hence, they can be skipped during rendering, because they do
not contribute any information to the resulting image and the volume rendering process
is speed-up enormously.
It has been shown [Lac95] that in real data sets with enhanced surfaces the amount of
transparent voxels is often about 90–95%, i.e. for regions which are completely empty
an approach called empty space leaping can be performed and is very efficient since even
the calculation of absorption is not necessary. Empty space leaping [YS93] [LMK03]
can be realized by several methods. Examples are distance coding or proximity clouds
[ZKV92] [Š94] [PHK+99], recursive divide and conquer algorithms by using different (e.g.
min-max) octree representations [WG90] [WG92], the Lipschitz octree data structure
[SH94], and bounding boxes (cf. [YS93]). Further, multi-dimensional summed area

37

CHAPTER 6. ACCELERATION TECHNIQUES

tables [Cro84] [Gla90] are applied in case of min-max octree representations of the data
to compute an integral over a region (e.g. an octree node) in constant time, i.e. to
quickly find if a node is empty and can be skipped.
In homogeneous but not empty regions, where absorption and reflection can occur, co-
herence encoding can be used to compute ray-light interactions. This means, real data
sets contain, beside noise often clusters of cells or cubes that vary not only constantly,
but also linearly or quadratically in the three-dimensional spatial domain. This data co-
herence can be for example encoded using piecewise linear polynomials [FS97] [CHM01]
[Che01] as well as wavelets.
However, the space leaping technique is easily applicable to object-order rendering al-
gorithms, although many different data structures have been published to realize this
technique in image-order algorithms as well. In the next subsection, we are going to
discuss spatial data structures for run length encoding, distance and coherence encoding
to realize the space leaping technique.

6.2.1 Run Length Encoded Data

A run length data structure is used to encode piecewise constant data values, i.e. given
a count and a value, where the count indicates how often the value should be repeated
or reused. A pre-computed run-length encoding of the voxel scanlines can be applied for
accelerating the process of volume rendering. This data structure allows skipping over
transparent voxels during rendering. A run-length encoding of a scanline consists of a
series of runs represented by a run length and a data value for each run (cf. chapter
17.7.1 in [FvDFH97] and [Lac95]).

6.2.2 Distance Encoded Data

A data structure for distance encoding assigns each cube (voxel or sub-cube) a value
which encodes the distance to the next surface or the next non-transparent cube. The
distance values stored in a separate data structure are used to compute the next sampling
position along a specified ray within the volume [YS93] [HMK+95] [PHK+99], i.e. the
next sample position ri+1 along a ray r(t) is obtained by ri+1 := r(ti) := ri+ tird, where
ri is the last sampling position, ti is the distance value at this location obtained from the
distance data structure and rd is the ray direction vector with Euclidian distance ‖ rd ‖=
1. However, a pre-computation of distances for the whole volume data set requests that
the distance values stored for each voxel can be applied to any ray passing through the
volume, i.e. they must be view independent. Hence, the next possible non-transparent
cube can be computed along a ray independently of the viewing direction. For the
distance coding computation, different metrics can be used, e.g. the Euclidian metric,
simpler metrics that approximate the Euclidian metric, or the Manhattan distance.
However, the view independency can be fulfilled by applying a so called two or six pass
algorithm. The volume is scanned from front-top-left to back-bottom-right (and vice
versa) or from left to right (and vice versa) for each axis. During that passes the length
of non transparent cubes is accumulated and stored in the distance volume.

38 6.2. SPACE LEAPING

CHAPTER 6. ACCELERATION TECHNIQUES

6.2.3 Octree Data Structure

An octree data structure is used to represent volume data in a hierarchical manner (cf.
Fig. 6.1) and it can be applied for space leaping as well as coherence encoding. However,

Figure 6.1: Illustration of an octree data structure (right), where each node represents a
corresponding sub cube of the volume data set (left) and stores links to it’s eight children. The
first root node (R) represents the whole volume (e.g. the min-max values).
there are different methods on how to represent volume data by an octree. In this thesis,
only a part of them is discussed.

Standard Octree

The empty-non-empty octree represents a data set by regions of empty and non-empty
values. However, the root-node of the octree represents the whole data set, which is split
into eight sub-nodes. The eight child-nodes of the root-node represent the corresponding
eight sub regions of the data set, which are recursively subdivided into smaller regions
represented by a child’s child-nodes. If once a sub region is homogeneous (or empty)
further subdivision is stopped and the corresponding node of the octree is marked as a
leaf node.
During traversal or rendering one usually starts according to the considered ray with the
root node and parses down the branches until encountering a leaf node. Then processing
is stopped, if the leaf node represents a transparent voxel or sub-cube, otherwise the usual
(but adapted) compositing is performed. That means, if the node is not transparent but
a voxel, the contribution can be computed directly, otherwise one has to investigate
which of the eight sub-nodes are intersected by the ray and in the correct processing
order (e.g. front-to-back) each sub-node is processed.

Min-Max Octree

In order to incorporate faster mappings from discrete gray values to opacities by using
transfer functions κ a min-max octree allows a rough estimation of transparent sub-
cubes. For this an octree is created where now each node – associated with a sub region
of the data set – contains the maximum and minimum values (e.g. density values)
from the corresponding region of the data set. The min-max octree has some important
features using transfer tables for data classification. First, it can be pre-computed and
it is independent of the transfer function κ. Second, the minimum and maximum values

6.2. SPACE LEAPING 39

CHAPTER 6. ACCELERATION TECHNIQUES

define a range of values within the respective sub-cube. Third, the voxels themselves
remain in a three-dimensional array data structure making a fast random access possible.
However, for a two-dimensional opacity transfer function κa,b ∈ R indexed by discrete
values a = 0, . . . , N and b = 0, . . . ,M (e.g. discrete gray values and gradient magnitudes)
the corresponding summed area table σa,b ∈ R can be computed using

γ(a, b) =
a∑
i=0

b∑
j=0

κi,j . (6.1)

and the following algorithm – which can be rewritten in a recursive manner, i.e. previ-
ously computed results can be reused.

Algorithm 6.2.1 (Summed Area Table). The input to this algorithm is the two-dimensional
transfer function κ, whereas the two-dimensional summed area table σ is returned.

1: for a = 0 < N do
2: for b = 0 < M do
3: σa,b = γ(a, b) {Using equation (6.1).}
4: end for
5: end for

During rendering the min-max values amin, amax ∈ [0, N] and bmin, bmax ∈ [0,M] of a
sub cube stored in the octree are taken in order to find out whether the cube is empty
or not. This is achieved if all values between min and max have opacity 0 and can be
directly calculated from the summed area table by applying the following formula

amax∑
i=amin

bmax∑
j=bmin

κi,j = σamax,bmax − σamax,bmin−1 − σamin−1,bmax + σamin−1,bmin−1. (6.2)

The classification of the data using this table is done quickly. Whereas the processing of
the summed area table is time consuming, it has to be recomputed only if the opacity
transfer function is changed. The re-computation of the two-dimensional table is much
faster than a re-classification of the whole three-dimensional data set. Nevertheless,
one disadvantage of this approach is that the estimation of transparent regions is only
approximative.
Aside from the computation of transparent and non-transparent sub-cubes there are
alternatives to octrees that may be more efficient in finding transparent regions. Those
are for example k-d-trees or binary space partition trees which allow a more tighter
approximation of the transparent regions at the cost of more complex ray intersection
calculations.

Lipschitz Octree

The Lipschitz octree data structure [SH94] combines the speed enhancements of distance
coding with the threshold flexibility of min-max octrees. The discrete voxel data is rede-
fined as a continuous scalar field, over which a local Lipschitz bound can be computed.
These local Lipschitz bounds are repeatedly merged to create an octree of Lipschitz

40 6.2. SPACE LEAPING

CHAPTER 6. ACCELERATION TECHNIQUES

bounds over variously sized domains, ending at the top-level with a global Lipschitz
bound on the entire volume.
However, for trilinear interpolation an eight neighborhood of voxels has to be considered
at a time – sometimes denoted as a cell or an unit cube, where all values within this
neighborhood or cell can be reconstructed by the following formula

f(x, y, z) =
∑

i,j,k∈{0,1}
(1 − x)1−ixi(1 − y)1−jyj(1 − z)1−kzkfijk, (6.3)

where x, y, z ∈ [0, 1] and fijk, i, j, k ∈ {0, 1} are the eight voxel values at the eight
corners of the unit cube or cell. Now, the Lipschitz constant lc over the domain of the
unit cube is defined as the maximum gradient magnitude within that cell. This is bound
by the sum of the individual gradient magnitudes maxima

lc ≤
√ ∑
ξ∈{x,y,z}

max(∂v/∂ξ)2, (6.4)

where the maximum of each of these partial derivatives along the three directions x, y,
and z is subsequently bounded by one-side differences

max |∂v/∂x| ≤ max
j,k∈{0,1}

|f1jk − f0jk|
max |∂v/∂y| ≤ max

i,k∈{0,1}
|fi1k − fi0k|

max |∂v/∂z| ≤ max
i,j∈{0,1}

|fij1 − fij0|. (6.5)

The construction of a Lipschitz hierarchy (octree) of bounds is built bottom up by using
the equations above. Hence, for each cell or unit cube of the original volume the Lipschitz
bounds are computed and organized in the corresponding nodes on the base level L0 of
the octree. Then, for each (parent) node on level L1 the Lipschitz bounds are determined
as the maximum of the Lipschitz bounds of the corresponding eight child nodes using the
formulae from above. The top level LN of the octree contains a node, which represents
the whole volume.
During rendering efficient octree traversal methods – discussed in the following – can
be applied together with the Lipschitz bounds stored in that hierarchy to realize a fast
surface based rendering algorithm. For more information about the Lipschitz approach
the interested reader is referred to [SH94] and the next subsection.

Efficient Octree Traversal

In volume rendering one of the most frequent operations is the computation of the octree
nodes intersected by a straight line, i.e. ray-object intersection tests for the visualization
of hierarchical density models by ray-casting. As we saw in the last subsections an octree
node has pointers to subsets of objects or voxels that it intersects or contains. Then, by
traversing the octree it is possible to restrict the ray-object intersection tests to this set
of objects or voxels that the octree node comprises. An improvement on rendering time
is only achieved when the traversal process is much faster than the test on all objects or
if we can leap over empty regions or process efficiently homogenous regions in the volume

6.2. SPACE LEAPING 41

CHAPTER 6. ACCELERATION TECHNIQUES

data represented by an octree node. There exist several algorithms for octree traversal,
which can be classified into two groups, according to the order in which pierced voxels
are obtained:

• Bottom-up methods: Traversing starts at the first leaf node intersected by the ray
and a neighbor finding process is used to find the adjacent (next) leaf node [Gla84]
[Sam90].

• Top-down methods: Traversing starts at the root node and a (recursive) procedure
is used to traverse the descendants intersected by the ray [SW91] [RUL00]. These
methods avoid the neighbor finding process, thus saving memory and computation
time.

The first of the top-down methods is called the spatial measure for accelerated ray-
tracing (SMART) [SW91]. It applies horizontal and vertical steps, i.e. two decision
vectors HSMART and VSMART , for the navigation along a ray within the corresponding
octree nodes. It is numerically stable and is performed in integer space. However,
additional effort has to be carried out for accurate intersection computations.
The second more intuitive algorithm [RUL00] is based on a parametric representation of
the ray, thus ray-plane intersections are obtained nearly for free and its representation
allows mapping real values to ray points. The algorithm computes the parameter values
at which the ray intersects the root octree node. These values are then propagated
to the child octree nodes by incrementally computing the new values using additions
and multiplications. Due to the employment of comparisons on previously obtained
parameter values, it is possible to find the child octree nodes easily. That means, once
the first child octree node has been found, the sequence of the remaining traversed child
nodes is obtained. This is done by an automaton whose states correspond to the nodes
and whose transitions are associated with the movements by the ray, i.e. the current
child node and the exit face of the ray according to that node determine the adjacent
child node or to return to the parent node (cf. Fig. 6.2).

6.3 Pre-Integration

The evaluation of the rendering integral (cf. Sec. 4) is very time consuming for many
volume rendering applications, pre-integration [RKE00] has been published as a tech-
nique to avoid high sampling rates by splitting the volume rendering integral into several
parts. A similar technique has been first presented in [MHC90] and later pre-integration
has been introduced in the context of the volume rendering integral. This acceleration
method can be utilized in different volume rendering algorithms, i.e. ray-casting, cell
projection, and shear-warp (cf. [EKE01] [GRS+02] [GWGS02]). In this technique and
its modifications (cf. [RE02] [MG02] [SKLE03] [WKME03b]) lookup tables are pre-
computed for emitted colors and extinction coefficients based on the volume rendering
integral. This integral is simplified in a way that it depends only on two or three scalar
values (enter, exit density values and the length between enter and exit points) and the
color and opacity transfer functions (tables), which itself depend on the scalar values.
Thus, a two- or three-dimensional texture is used to store the results of this volume
rendering integral, but the look up table (texture) has to be recomputed whenever one

42 6.3. PRE-INTEGRATION

CHAPTER 6. ACCELERATION TECHNIQUES

Figure 6.2: Node selection for efficient octree traversal by ray parameters t.

of the transfer functions will get changed. Thus, an adaptive pre-integration method has
been introduced in [WKME03a]. Here the assumption is, that if the look up table has
been computed for length values smaller than or equal to l, then further computation
for length values l̃ = l + d are carried out by splitting the integral into two parts. That
means, the new entries in the look up table greater than l can be calculated by re-using
the values already computed and applying interpolations of that tabulated integrals, a
blending operation.

6.3. PRE-INTEGRATION 43

7 Software

A re-invention of the wheel should be avioded, therefore, developers often built their own
algorithms (or modifications) on top of already existing packages, i.e. they integrate their
new methods into open source or commercial software systems. We shortly summarize
some interesting and existing software packages, which can be used for exactly this
purpose. We first give some links on commercial volume rendering systems as well as
open source packages.
The the volume graphics library (VGL) is a software development environment which in-
tegrates three-dimensional surface-based as well as volume-based models into one frame-
work using the well known OpenGL polygon graphic system as well as fast software
(e.g. volume ray-tracer) and hardware accelerated volume renderers, respectively. Fur-
ther, the VGL is a C++ class graphics library which offers a sophisticated application
programming interface (API) and a powerful set of algorithms for the visualization as
well as the manipulation of three-dimensional voxel data sets. A data visualization and
analysis system (GUI), called VGStudio Max, is built on top of this library and provides
users with interactive rendering and three-dimensional image processing capabilities of
data sets up to several GBytes.
Another three-dimensional modular imaging framework is called MedicView 3D Graphic
Station and supports many common features for a typical three-dimensional medical
imaging solution (e.g. segmentation tools, two and three-dimensional measurement tools,
analysis tools, and volume and iso-surface rendering).
The MRIcro standalone program allows users to view medical images. It includes tools to
complement statistical parametric mapping (SPM) and to identify regions of interest as
well as for the analysis, efficient viewing and exporting of brain imaging data sequences.
The medical imaging toolkit (MITK) is a C++ library for medical image processing
as well as analyzing and is inspired by the success of open source softwares VTK and
ITK. It is a free software and can be used freely for research and education purpose.
Some of its features are, for example, surface reconstruction (enhanced marching cubes
algorithm) and rendering, multiple surface rendering, volume rendering with ray-casting,
texture-based volume rendering, various segmentation and registration algorithms.
The visualization toolkit 1 (VTK) is an open source, freely available software system for
three-dimensional computer graphics, image processing, and visualization. It consists
of a C++ class library, and several interpreted interface layers including Tcl/Tk, Java,
and Python. The toolkit contains a wide range of visualization algorithms, for example,
scalar, vector, tensor, texture, and volumetric methods. Further, advanced modeling
techniques such as implicit modeling, polygon reduction, mesh smoothing, cutting, con-
touring, and Delaunay triangulation are supported.
The following libraries are good candidates for study purposes as well as for further
developments of these volume rendering approaches, because all of them are available

1Note, professional support and products for VTK are provided by Kitware, Inc. .

45

CHAPTER 7. SOFTWARE

as source code packages and are not too overloaded with many other sophisticated algo-
rithms.
However, the OpenQVis project has the focus on implementing methods for interactive
high-quality volume visualization on general purpose hardware, i.e. on desktop com-
puters with state of the art graphics cards. The goal of this project is to obtain high
image quality results comparable to traditional ray-casting approaches at interactive
frame rates (cf. [RSEH05]). Other source code packages which do fit into this phi-
losophy implement GPU-based ray-casting algorithms (see Fig. 7.1) and can be used
to study new features of state of the art graphics hardware architectures (cf. [KL04]
[Chr05] [SSKE05]). The shear-warp rendering algorithm can be studied using the origi-
nal [LL94] package and the volume rendering software Volsh which is based on a parallel
implementation of the original shear-warp factorization. Note, the shear-warp algorithm
is also included in the visualization toolkit (VTK).

Figure 7.1: GPU-based ray-casting using the source from [SSKE05]. From left top to right
bottom, iso surface rendering, transparent iso surface rendering, volume iso surface rendering,
maximum intensity projection, full volume rendering, and iso surface with sphere texture map-
ping.

46

Part II

Spline Models For Volume
Reconstruction

1 Introduction

1.1 Related Work

Sampling theories, especially Fourier analysis, give us a tool at hand, which can be
used to reconstruct a continuous function from a set of discrete data samples in an
optimal way. However, as discussed in part 2 this global approach is difficult to realize in
practice. Hence, local reconstruction of functions has been of interest in signal processing
for example [MN88] [UAE93a] [UAE93b] [Dod97] and [LGS99] for image and [ML94]
[MMMY97b] [MMK+98] [TMG01] for volume reconstruction. On one hand, it is obvious
that the overhead is acceptable for local data reconstruction methods (i.e. for piecewise
polynomials). These methods are often easy to implement and very efficient as well.
On the other hand, they should produce satisfying reconstruction results compared to
the above mentioned optimal approach. A general statement here is that local methods
yield better reconstructions from a given set of discrete data values if the local support
of the filters is increased.
In this context, a piecewise constant model for reconstruction is the simplest model,
but the most inaccurate one as well, since it considers only the closest data value or an
averaging of some data values in the neighborhood. A more popular model in signal
reconstruction is the trilinear interpolation model

∑1
i,j,k=0 aijkxiyjzk, where aijk ∈ R

n,
i.e. piecewise polynomials of total degree three. This trilinear interpolation allows us
to directly obtain gradients from the model. It has the property that the gradients
vary bilinearly only. In this view it is not very convenient to use it for high quality
shading, because the gradients are not continuous over the piecewise defined region
and it usually generates stripe artifacts. That is one reason why approaches based on
this model often use central differences or the Sobel operator (see for example [GW02])
to compute gradients. However, other gradient estimation techniques can be found
for example in [MMMY97a] [BLM97] [NCKG00] [LM05]. The next natural choice are
models of type

∑m
i,j,k=0 aijkxiyjzk, where aijk ∈ R

n. If m = 2, 3 we have a triquadratic
[MJC01] or a tricubic [LHJ99b] model where the polynomial pieces are of total degree
six or nine, respectively. The advantages of higher degree models are the smoothness
properties, i.e. the appropriate polynomial pieces are C1 or C2 continuous, hence, the
gradients are directly available from the model and are continuous or even smooth. The
main disadvantages of these two models are the increasing data stencils of 33 and 43

grid points, respectively, and the high total degree of the polynomial pieces (see also
[UAE93a] [UAE93b]).
Besides these so called tensor product splines defined on rectilinear, volumetric domains
Ω, however, there are trivariate spline models defined on so-called type-6 partitions �
which are tetrahedral partitions constructed directly by slicing the rectilinear, volumet-
ric partition ♦ in an appropriate way. Trivariate linear polynomials defined on tetra-
hedral volumetric domains Δ are in the form of

∑
i+j+k≤1 aijkxiyjzk, where aijk ∈ R

n

(see [CMS01]). Similar to tensor product splines the next natural choice for trivariate

49

CHAPTER 1. INTRODUCTION

polynomials of higher degrees are quadratic [RZNS03] [RZNS04a] [NRSZ04] and cubic
polynomials [SZ05] of the form

∑
i+j+k≤m aijkxiyjzk, where aijk ∈ R

n and m = 2, 3.
The next sections are organized as follows. We first introduce some basics about Bern-
stein polynomials and Bézier curves. This material is the foundation for the following
sections, even though readers already familiar to that topic can skip that introduction.
In Sec. 2 we are going to review tensor product splines in Bézier form defined on volu-
metric (type-0) partitions ♦, some of their properties, techniques and algorithms which
are useful, elegant and necessary for volume reconstruction. Sec. 3 is devoted to the
counterpart of trivariate spline models in Bézier form defined on type-6 partitions �.
We will also discuss properties of these splines, especially in the context of quadratic
Super-Splines [RZNS03] [RZNS04a] [NRSZ04] and trivariate cubic splines [SZ05].

1.2 Bernstein Polynomials and Bézier Curves

For the parametrization of curves, surfaces and solids a special basis of the Bernstein
polynomials defined on a parameter interval [a, b] is used. Since we can transform each
interval [a, b] := {t ∈ R|a ≤ t ≤ b} into the unit interval I := [0, 1] := {λ ∈ R|0 ≤ λ ≤ 1}
by an affine transformation λ = (t− a)/(b− a) we consider the definition and properties
of these special polynomials on this unit interval.

Definition 1.2.1 (Bernstein Polynomials). The i’th Bernstein polynomial of degree n
on the interval I is defined as (cf. Fig. 1.1)

Bn
i (λ) =

n!
(n− i)!i!

(1 − λ)n−iλi, i = 0, 1, . . . , n. (1.1)

Figure 1.1: Bernstein Polynomials of degree one (left), two (middle), and three (right), where
the colors (from blue to red) indicate the ith polynomial.

There are some properties of the Bernstein polynomials which turned out to be useful for
application and proofs. However, the most important ones are symmetry, boundedness
and the maximum principle on the unit interval. Finally the recursion formula is stated
in

Theorem 1.2.1 (Bernstein Polynomial Recursion Formula). The Bernstein polynomials
satisfy the recursion

Bn
i (λ) = (1 − λ)Bn−1

i (λ) + λBn−1
i−1 (λ), λ ∈ R, i = 1, 2, . . . , n. (1.2)

50 1.2. BERNSTEIN POLYNOMIALS AND BÉZIER CURVES

CHAPTER 1. INTRODUCTION

and the explicit derivatives are specified in

Theorem 1.2.2 (Bernstein Polynomial Derivatives). The derivatives of the Bernstein
polynomials are given by

∂

∂λ
Bn
i (λ) =

⎧⎨
⎩

−nBn−1
0 (λ) if i = 0,

+n[Bn−1
i−1 (λ) −Bn−1

i (λ)] if i = 1, 2, . . . , n− 1,
+nBn−1

n−1(λ) if i = n.

(1.3)

These Bernstein polynomials define the basis functions for Bézier curves. The geometric
properties of Bézier curves were developed independently by de Casteljau and Bézier
and later it was found by Forrest that there is a connection between Bézier curves and
the original Bernstein polynomials (cf. notes below and [Far02]). However, we arrive at
the so called Bernstein-Bézier form

s|I(λ) =
n∑
i=0

biBn
i (λ), λ ∈ I (1.4)

of a polynomial curve, where bi ∈ R
d are called Bézier points and λ the local coordinate.

Together with the Bernstein polynomials the Bernstein-Bézier curve s|I(λ) is defined.
The Bézier points as well as the curve have an illustrative and geometric meaning. That
means, if the Bézier points become bi := (i/n) ∈ I and are connected according to
the natural order of their indices, then we obtain the associated Bézier grid (or net),
which defines the convex hull of the polynomial piece (cf. Fig. 1.2). However, if the
Bézier points become bi := (i/n, ai) ∈ I × R the resulting spline can be considered
as a function-valued formula and the coefficients ai ∈ R as ordinates associated with
abscissae (i/n) ∈ I, i.e (λ, s|I) defines a surface in I × R. Such Bézier splines can be
used to approximate a one-dimensional function f(t) as shown in Fig. 1.2. Bézier points
of the form bi := (i/n, ci) ∈ I × R

l can be used to describe a vector-valued function
f(t) := (fx1(t), fx2(t), . . . , fxl

(t)) ∈ R
l.

Figure 1.2: Bernstein-Bézier curve (left) using Bernstein polynomials of degree two (right).
The red dots represent some data (e.g. obtained from an explicit polynomial), whereas the blue
circles represent the Bézier points usually computed from the data points and the blue curve was
reconstructed using Equ. (1.4).

1.2. BERNSTEIN POLYNOMIALS AND BÉZIER CURVES 51

CHAPTER 1. INTRODUCTION

These curves in Bernstein-Bézier form have some interesting and useful properties as
well, which result often directly from the Bernstein polynomials. One should have in
mind the most important properties, when developing algorithms using this kind of
piecewise polynomials. First, the 1’st derivative of Equ. 1.4 can be computed by

∂

∂λ
s|I(λ) = n

n−1∑
i=0

(bi+1 − bi)Bn−1
i (λ), (1.5)

where the 2’nd derivative is written as

∂2

∂2λ
s|I(λ) = n(n− 1)

n−2∑
i=0

(bi+2 − 2bi+1 + bi)Bn−2
i (λ), (1.6)

and both equations directly follow from Equ. 1.3. Then, the convex hull property, which
is one of the most important properties, speeding up intersection computations between
diffenent curves.

Theorem 1.2.3 (Convex Hull Property). The set of all Bézier points

M :=

{
s|I(λ) =

n∑
i=0

biBn
i (λ)| λ ∈ I

}
(1.7)

is contained in the convex hull of the n+ 1 Bézier points bi ∈ R
d, i = 0, 1, . . . , n.

Smoothness properties are very important and can be used to connect piecewise poly-
nomials in Bernstein-Bézier form, i.e. to set neighboring Bézier points of two different
pieces in a way that for example one obtains a total C1-continuous curve (see Fig. 1.2).
In special we have – without loss of generality – two Bernstein-Bézier polynomials s|I and
s|J defined on two intervals I := [a, b] and J := [c, d], where hb := b− a and hd = d− c.
Then, if bn,b = b0,d and bn,b = hd

hb+hd
bn−1,b + hb

hb+hd
b1,d we obtain a C1-continuous

patch which is built up by these two piecewise polynomials. The final property which
is useful to evaluate piecewise polynomials in Bernstein-Bézier form is the de Casteljau
algorithm. This algorithm is numerically stable and directly results from the recursion
formula (1.2).

Algorithm 1.2.1 (Univariate de Casteljau). The input to this algorithm is an array of
n+ 1 Bézier points bi ∈ R

d, i = 0, 1, . . . , n (i.e. the polynomial piece is of total degree
n) and the local coordinate λ ∈ I. Here b0

i := bi are the Bézier points from Equ. (1.4)
defining the convex hull of the polynomial piece and the algorithm to compute the value
s|I(λ) is
1: for j = 1 <= n do
2: for i = 0 <= n− j do
3: {Compute second derivative.}
4: if j==n-1 then
5: ∂2

∂2λ
s|I(λ) = n(n− 1)(bj−1

i+2 − 2bj−1
i+1 + bj−1

i)
6: end if

{Compute first derivative.}
7: if j==n then

52 1.2. BERNSTEIN POLYNOMIALS AND BÉZIER CURVES

CHAPTER 1. INTRODUCTION

8: ∂
∂λs|I(λ) = n(bj−1

i+1 − bj−1
i)

9: end if
{Compute value.}

10: if j==n then
11: s|I(λ) = (1 − λ)bj−1

i + λbj−1
i+1

12: end if
{Recursion to compute new values on layer j.}

13: bji = (1 − λ)bj−1
i + λbj−1

i+1

14: end for
15: end for

As output we obtain the result s|I(λ) = bn0 , i.e. the value on the one-dimensional curve,
and the first and second partial derivatives (see also Equ. 1.5 and 1.6). Note that in
step j the old values bj−1

i and bj−1
i+1 in the array can be replaced by the newly computed

values bji . There is no need to allocate space for another temporary array.

However, the Bernstein polynomials are used to construct one-dimensional curves in
Bernstein-Bézier form. Similarly, but with little variation of the notation, the same poly-
nomials are utilized for the parametrization of surfaces and solids defined over triangular
and tetrahedral partitions. For the one-dimensional case the Bernstein polynomials can
be rewritten as follows.

Definition 1.2.2 (Bernstein Polynomials). The Bernstein polynomials of degree n on
the interval I are defined as

Bn
τ0,τ1(λ0, λ1) =

n!
τ0!τ1!

λτ00 λ
τ1
1 , |τ0 + τ1| = n, (1.8)

where Bn
τ0,τ1(λ0, λ1) = 0 if τν /∈ {0, 1, . . . , n} for some ν ∈ {0, 1}, λν ≥ 0,

∑1
ν=0 λν = 1,

and λν are called the barycentric coordinates on the interval I. Finally, if τ0 := (n− i),
τ1 := i, λ0 := (1 − λ), and λ1 := λ we arrive at Def. 1.2.1.

Therefore, given an interval I with {λν ∈ R, ν ∈ {0, 1} | 0 ≤ λν ≤ 1,
∑1

ν=0 λν = 1}
and two points p0, p1 at the interval boundaries any point on a line can be expressed
in terms of barycentric coordinates λν with respect to this non degenerate interval I as
p =

∑
ν λνpν . Now, Equ. (1.4) can be rewritten as

s|I(λ0, λ1) =
∑

|τ0+τ1|=n
bτ0,τ1B

n
τ0,τ1(λ0, λ1) (1.9)

=
∑

|τ0+τ1|=n
bτ0,τ1

n!
τ0!τ1!

λτ00 λ
τ1
1 , (1.10)

where bτ0,τ1 ∈ R
2 are called the Bézier points defined as bτ0,τ1 := ((τ0, τ1)/n, aτ0,τ1),

where aτ0,τ1 are the Bézier ordinates associated with the abscissas ((τ0, τ1)/n).
Note, the classical Horner scheme – also numerically stable – is an analogous method to
evaluate a polynomial at a given point location λ = λ0 which is written in terms of the
monomial basis. Whereas, the de Boor algorithm is a generalization of de Casteljau’s
algorithm for evaluating B-spline curves, which is fast and numerically stable as well.

1.2. BERNSTEIN POLYNOMIALS AND BÉZIER CURVES 53

CHAPTER 1. INTRODUCTION

Remark (Bernstein-Bézier Curves). Sergei Natanovich Bernstein an Ukrainian math-
ematician (1880-1968) has introduced new polynomials in a constructive proof of the
”Stone-Weierstrass” approximation theorem. These ”Bernstein” polynomials have been
used later by Paul de Casteljau (1910 - 1999) – an engineer at Citroän – for the ap-
proximation of curves. At the same time Pierre Bézier (1910-1999) came to the same
curves working for the competitor Renault. Robin Forrest realized that de Casteljau and
Bézier did the same job. Then, the noun ”Bernstein-Bézier” curve appears, and due
to the progress of computer graphics these curves become more and more popular (cf.
[Far02]).

Figure 1.3: Biographical profiles of Sergei Natanovich Bernstein (left), and Pierre Bézier
(right). By courtesy of Wikipedia

54 1.2. BERNSTEIN POLYNOMIALS AND BÉZIER CURVES

2 Tensor Product Bézier Splines

Tensor product splines in Bernstein-Bézier form are usually defined on finite rectilinear,
volumetric domains Ω ⊂ R

3.

2.1 Uniform Cube Partition

In the following we denote a uniform rectilinear, volumetric partition ♦ also as a type-0
uniform cube partition, because there are no oblique slicing planes which further sub-
divide the volumetric partition. However, a uniform partition ♦ of the cubic domain
Ω is obtained as follows. Basically, the volumetric domain R

3 is restricted to a rectan-
gular domain Ω := [0, L] × [0,M] × [0, N] ⊂ R

3. This is further split into a uniform
rectilinear, volumetric partition ♦, where every cube Q ∈ ♦ has side length of 1 (cf.
Fig. 2.1). Volume data can be considered as a set of (L + 2) × (M + 2) × (N + 2)

Figure 2.1: The illustration of a uniform cube partition, where the domain R
3 is restricted into

the cubic domain Ω, which is further split into uniform cube partition ♦. Each cube Qi,j,k ∈ ♦
has side length 1 and the corresponding spline s|Q is defined in the domain Ω (left). The currently
considered unit cube Q0 = [−0.5,+0.5]3 (blue cube) with its data value fi,j,k located at the Center
vi,j,k of that unit cube. The local neighborhood of data values fi+i0,j+j0,k+k0 with basic lablels
Front, Back, Left, Right, Down, and Top is located on the center positions vi+i0,j+j0,k+k0 (white
dots) of the corresponding unit cubes Qi+i0,j+j0,k+k0 , i0, j0, k0 ∈ {−1, 0,+1} (right).

grid points of the form vi,j,k = (2i+1
2 , 2j+1

2 , 2k+1
2) ∈ Ω with corresponding data values

fi,j,k := f(vi,j,k) ∈ R, i = −1, . . . , L, j = −1, . . . ,M, k = −1, . . . , N . Each interior grid
point vi,j,k, i.e. where i 	∈ {−1, L}, j 	∈ {−1,M}, k 	∈ {−1, N}, is located at the center
of a corresponding cube

Qi,j,k = [i, i+ 1] × [j, j + 1] × [k, k + 1]. (2.1)

55

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

For each cube some Bernstein-Bézier coefficients located on the corresponding Bézier
points on Qi,j,k – where exactly depends on the degree of the splines – are obtained
from the volume data. These Bézier points and their coefficients – usually 8, 27, or 64
on Qi,j,k – define piecewise linear, quadratic, or cubic splines in Bernstein-Bézier form,
where the polynomial pieces have total degree of 3, 6, or 9 on Qi,j,k, respectively. As
we already know from the one-dimensional case, appropriate smoothness conditions are
used to determine the Bernstein-Bézier coefficients for the corresponding Bézier points.
Both together define a continuous patch build up by several piecewise splines. The same
procedure can be applied in the volumetric domain Ω, where the smoothness conditions
have to be satisfied along each of the three directions and between all cubes Qi,j,k ∈ ♦.
Here, the coefficients for the piecewise spline representation (2.5) are determined by
repeated averaging of the data values while satisfying natural appropriate smoothness
conditions (see for example [MJC01]). Once the location of the Bézier points on the
cubes Qi,j,k and the averaging rules – which are symmetric – to compute the coefficients
are determined and because of the uniform structure of the partition ♦, each cube can
be considered separately. That means, a considered location in the domain Ω can be
used to find the position – the indices i, j, k – in the partition ♦ and thus each cube
Qi,j,k can be transformed into an unit cube Q0 = [−0.5,+0.5]3 1, which is confined by
six planes of the general form

Pν(x, y, z, d) = ax+ by + cz + d = 0, (2.2)

where the planes for ν = 6, . . . , 11 are

PQ6 (x, y, z, d) = +1x+ 0y + 0z − 1d,

PQ7 (x, y, z, d) = +0x+ 1y + 0z − 1d,

PQ8 (x, y, z, d) = +0x+ 0y + 1z − 1d,

PQ9 (x, y, z, d) = +1x+ 0y + 0z + 1d,

PQ10(x, y, z, d) = +0x+ 1y + 0z + 1d,

PQ11(x, y, z, d) = +0x+ 0y + 1z + 1d, (2.3)

with d = 0.5. Similarly the grid points vi+i0,j+j0,k+k0 with their corresponding data
values fi+i0,j+j0,k+k0 , i0, j0, k0 ∈ {−1, 0,+1}, which are in the local neighborhood of
the current considered cube Qi,j,k can be transformed into the local neighborhood of
the unit cube Q0 as well (cf. Fig. 2.1). These are used to determine the coefficients
of the polynomial piece (2.5) by some averaging formula. The following notation (also
illustrated in Fig. 2.1) is necessary to keep these formula short, and for a better geometric
understanding. The value fi,j,k at the Center vi,j,k of the cube Q0 := Qi,j,k is defined as

C := fi,j,k.

The given values in its Front, Back, Left, Right, Down, and Top neighboring boxes
(Qi−1,j,k, Qi+1,j,k, Qi,j−1,k, Qi,j+1,k, Qi,j,k−1, and Qi,j,k+1), respectively, are defined as

F := fi−1,j,k, B := fi+1,j,k,

L := fi,j−1,k, R := fi,j+1,k,

D := fi,j,k−1, T := fi,j,k+1.

1This interval [−0.5, +0.5]3 can be easily transformed by an affine transformation into the new interval
[0, 1]3 if necessary.

56 2.1. UNIFORM CUBE PARTITION

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

Similarly, the given values in the Front-Left, Front-Right, Front-Down, and Front-Top
boxes (Qi−1,j−1,k, Qi−1,j+1,k, Qi−1,j,k−1, and Qi−1,j,k+1) of Q0, respectively, are defined
as

FL := fi−1,j−1,k, FR := fi−1,j+1,k,

FD := fi−1,j,k−1, FT := fi−1,j,k+1.

Finally, applying the same scheme as above all other values located at the centers of the
remaining neighboring boxes of Q0 are defined as

BL := fi+1,j−1,k, BR := fi+1,j+1,k,

BD := fi+1,j,k−1, BT := fi+1,j,k+1,

LD := fi,j−1,k−1, LT := fi,j−1,k+1,

RD := fi,j+1,k−1, RT := fi,j+1,k+1,

and

FLD := fi−1,j−1,k−1, FLT := fi−1,j−1,k+1,

FRD := fi−1,j+1,k−1, FRT := fi−1,j+1,k+1,

BLD := fi+1,j−1,k−1, BLT := fi+1,j−1,k+1,

BRD := fi+1,j+1,k−1, BRT := fi+1,j+1,k+1.

2.2 Bézier Form

The step from piecewise curves in Bernstein-Bézier form to surfaces or volumes in the
same form is straight forward. Three parameters are necessary to describe a volume and
are now denoted as λ0, λ1, λ2 ∈ [0, 1]. The basic idea of the definition of Bernstein-Bézier
models for volumes is to start with three curves in Bernstein-Bézier form and vary them
along each parameter direction independently.
Piecewise continuous splines on uniform cube partitions which may satisfy some smooth-
ness conditions are called here type-0 splines better known as tensor product splines. The
space of these splines with respect to ♦ is defined by

Sl+m+n(♦) = {s ∈ Cπ(Ω) : s|Q ∈ Pl+m+n,∀Q ∈ ♦}, (2.4)

where Pl+m+n := span{xiyjzk : i, j, k ≥ 0, i+j+k ≤ l+m+n} denotes the X-dimensional
space of l +m + n degree polynomials, i.e. the space of trivariate polynomials of total
degree l + m + n and Cπ(Ω) is the set of π-times continuously differentiable functions
on Ω.
Piecewise tensor product splines of degree (l,m, n) are now defined on each unit cube Q
and can be written as

s|Q(λ0, λ1, λ2) =
l,m,n∑
i,j,k=0

bi,j,kBl
i(λ0)Bm

j (λ1)Bn
k (λ2), (2.5)

where λν ∈ [0, 1], ν ∈ {0, 1, 2} are local coordinates. If the Bézier points become
bi,j,k := (i/l, j/m, k/n) ∈ Q and are connected according to the natural order of their

2.2. BÉZIER FORM 57

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

indices, then we obtain the associated Bézier grid, which defines the convex hull of the
polynomial piece. In case the Bézier points become bi,j,k := (i/l, j/m, k/n, ai,j,k) ∈ Q×R

the resulting spline can be considered as a function-valued formula and the coefficients
ai,j,k ∈ R as ordinates associated with abscissae ϑl,m,ni,j,k := (i/l, j/m, k/n) ∈ Q. Now
(λ0, λ1, λ2, s|Q) defines a hyper-surface in Q × R. On one side, this definition of tensor
product splines, i.e. such a hyper-surface, can be used to describe a spatial density or
opacity field in three-dimensional domain. On the other side a vector-valued formula
where bi,j,k := (ϑl,m,ni,j,k , ci,j,k) ∈ Q × R

d can be used to describe vector-valued field, i.e.
velocity or color, in a three-dimensional domain.
However, the trivariate version of Alg. 1.2.1 to evaluate the polynomial piece p = s|Q ∈
Pl+m+n in the above formulation can be described as follows. Strictly speaking, the
univariate algorithm is applied along each direction λν by always reusing the previously
computed results. In other words, from a given tensor array of (l+1)× (m+1)× (n+1)
Bézier points new intermediate points are computed by a linear combination of the
appropriate points along the parametric line described by λ0, i.e along the l dimension
of the tensor array. This results in a matrix of (m + 1) × (n + 1) intermediate Bézier
points, where the application of the univariate algorithm with λ1 along the m dimension
of that matrix will give us new intermediate points stored in a vector of size n + 1. In
the last step the result is found by utilizing the univariate algorithm with λ2 along the
vector of intermediate Bézier points. There are different orders as well as techniques
[HL93] on how to evaluate Equ. 2.5, one is shown in the following algorithm (see also
[MD95]).

Algorithm 2.2.1 (Trivariate de Casteljau on Type-0 Partitions). The input to this
algorithm is a three-dimensional array of (l + 1) × (m + 1) × (n + 1) Bézier points
bi,j,k ∈ R

d (i.e. the polynomial piece is of total degree l+m+n) and the local coordinates
(λ0, λ1, λ2) ∈ Q. Here b0,0,0

i,j,k := bi,j,k are the Bézier points from Equ. (2.5) defining the
convex hull of the polynomial piece and the algorithm to compute the value s|Q(λ0, λ1, λ2)
is
1: {Averaging along λ0 direction.}
2: p = q = 0
3: for k = 0 <= n do
4: for j = 0 <= m do
5: for o = 1 <= l do
6: for i = 0 <= l − o do
7: bo,p,qi,j,k = (1 − λ0)b

o−1,p,q
i,j,k + λ0b

o−1,p,q
i+1,j,k

8: end for
9: end for

10: end for
11: end for

{Averaging along λ1 direction.}
12: q = 0, o = l, i = 0
13: for k = 0 <= n do
14: for p = 1 <= m do
15: for j = 0 <= m− p do
16: bo,p,qi,j,k = (1 − λ1)b

o,p−1,q
i,j,k + λ1b

o,p−1,q
i,j+1,k

17: end for

58 2.2. BÉZIER FORM

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

18: end for
19: end for

{Averaging along λ2 direction.}
20: o = l, p = m, i = j = 0
21: for q = 1 <= n do
22: for k = 0 <= n− q do
23: bo,p,qi,j,k = (1 − λ2)b

o,p,q−1
i,j,k + λ2b

o,p,q−1
i,j,k+1

24: end for
25: end for

As output we obtain the result s|I(λ0, λ1, λ2) = bl,m,n0,0,0 , and the first and second partial
derivatives (see also Equ. 2.6). For reasons of clearness the partial derivative compu-
tations are not shown here. Note, the superscripts o, p, q are used to indicate that the
new or intermediate Bézier points are stored in a new place, i.e. in a temporary tensor
array. This is of course not necessary and as in the univariate case the original values
can be overwritten.

The 1’st partial derivatives of Equ. (2.5) are given according to Equ. (1.3) as

∂

∂λ0
s|Q(λ0, λ1, λ2) = l

l−1,m,n∑
i,j,k=0

(bi+1,j,k − bi,j,k)Bl−1
i (λ0)Bm

j (λ1)Bn
k (λ2),

∂

∂λ1
s|Q(λ0, λ1, λ2) = m

l,m−1,n∑
i,j,k=0

(bi,j+1,k − bi,j,k)Bl
i(λ0)Bm−1

j (λ1)Bn
k (λ2),

∂

∂λ2
s|Q(λ0, λ1, λ2) = n

l,m,n−1∑
i,j,k=0

(bi,j,k+1 − bi,j,k)Bl
i(λ0)Bm

j (λ1)Bn−1
k (λ2). (2.6)

Once we have determined the cube Q0 which contains a point q ∈ Ω and its local
coordinates λν(q), ν = 1, 2, 3 according to Q0 are computed – this will be discussed
in the following sections. We are able to evaluate the polynomial piece (2.5) and its
derivatives at q using λν , the Bézier points bi,j,k 2 and Alg. 2.2.1. For shading of
surfaces obtained from the volume model at a point q it is necessary to compute the 1’st
partial derivatives (the gradient)

(∇s|Q)(q) =
(
∂

∂x
s|Q(q),

∂

∂y
s|Q(q),

∂

∂z
s|Q(q)

)
at the same location q. Thus, if we assume ξν , ν ∈ {0, 1, 2} to be the parametric lines
along the three directions of the three main edges of Q0 with length 1, then the partial
derivative of s|Q according to q along the line ξν is denoted by ∂

∂ξν
s|Q ∈ Pn−1 and is

given by Equ. 2.6, where ∂
∂xs|Q(q) := ∂

∂λ0
s|Q(λ0, λ1, λ2), ∂

∂ys|Q(q) := ∂
∂λ1

s|Q(λ0, λ1, λ2),
and ∂

∂zs|Q(q) := ∂
∂λ2

s|Q(λ0, λ1, λ2).

2.3 Point Location and Local Coordinates

Before we are able to evaluate the polynomial piece (2.5), i.e. compute the value and the
derivatives of the spline s|Q at a given point q ∈ Ω, we need to know the location of q

2Once the cube Q0 is found, all its Bézier points bi,j,k are known as well.

2.3. POINT LOCATION AND LOCAL COORDINATES 59

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

in the partition ♦ and its local coordinates. Hence, we have to determine a cube Q ∈ ♦
with q ∈ Q and the local coordinates of q with respect to the cube Q. The indices of
the cube Q are found by simple rounding the coordinates of q = (qx, qy, qz), i.e. we
have Q0 = Q�qx�,�qy�,�qz�, where �·� denotes the floor operator 3. The local coordinates
λν , ν ∈ {0, 1, 2} with respect to the cube Q are found using q and are associated with
λ0 := qx − �qx�, λ1 := qy − �qy�, and λ2 := qz − �qz�.

2.4 Piecewise Linear Splines

Piecewise linear splines are continuous but not continuously differentiable – here such
splines are called linear type-0 splines. The space of these splines with respect to ♦ is
defined by

S1+1+1(♦) = {s ∈ C0(Ω) : s|Q ∈ P1+1+1,∀Q ∈ ♦}, (2.7)

where P1+1+1 := span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ 3} denotes the 19-dimensional
space of cubic polynomials, i.e. the space of trivariate polynomials of total degree three.
A spline s ∈ S1+1+1 can be written in its piecewise Bernstein-Bézier form (2.5), i.e. in
that equation we set l = m = n = 1.

2.4.1 Bernstein-Bézier Coefficients

For piecewise linear splines the 8 Bernstein-Bézier coefficients for an arbitrary unit
cube Q ∈ ♦ are determined as follows. Each Bernstein-Bézier coefficient ai,j,k and
its corresponding domain point ϑ1,1,1

i,j,k located on Q define the appropriate Bézier point
bi,j,k := (ϑ1,1,1

i,j,k , ai,j,k). Further, every corner vertex vν of Q (blue circles in right draw-
ing of Fig. 2.2) corresponds to a domain point, i.e. ϑ1,1,1

1,0,1 := v0, ϑ
1,1,1
1,1,1 := v1, ϑ

1,1,1
1,0,0 :=

v2, ϑ
1,1,1
1,1,0 := v3, ϑ

1,1,1
0,0,1 := v4, ϑ

1,1,1
0,1,1 := v5, ϑ

1,1,1
0,0,0 := v6, and ϑ1,1,1

0,1,0 := v7. The appropriate
four front coefficients a1,0,1, a1,1,1, a1,0,0, and a1,1,0 are determined by

a1,0,1 =
1
8
(C + F + L+ T + LT + FL+ FT + FLT),

a1,1,1 =
1
8
(C + F +R+ T +RT + FR+ FT + FRT),

a1,0,0 =
1
8
(C + F + L+D + LD + FL+ FD + FLD),

a1,1,0 =
1
8
(C + F +R+D +RD + FR+ FD + FRD), (2.8)

where the other coefficients in the back face of the cube are computed accordingly.
However, a setting of the coefficients as discussed above leads to an overall piecewise
approximating spline function, i.e. the splines do not interpolate the original data val-
ues such as for example C,F , etc. . Nevertheless, interpolating splines can be easily
constructed by shifting the unit cube by the half of its size in each direction. This has of
course to be done for each cube of the volume in the same manner. In other words the
above coefficients located on the domain points in the front face of the unit cube could be

3That means �b� is the maximal integer ≤ b.

60 2.4. PIECEWISE LINEAR SPLINES

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

set to a1,0,1 = FL, a1,1,1 = F, a1,0,0 = FLD, and a1,1,0 = FD, where the coefficients for
the back facing domain points could be simply set as a0,0,1 = L, a0,1,1 = C, a0,0,0 = LD,
and a0,1,0 = D.

Figure 2.2: The data values (white circles in the left drawing) in the local 27 neighborhood of
a considered cube Q0 (blue cube) and appropriate averaging rules – for linear splines – give the
4 Bernstein-Bézier coefficients located on its Bézier points (blue circles in the right illustration)
of a unit cube Q. The other four coefficients located in the back face of Q0 are computed by
symmetry and are not shown here.

2.4.2 Evaluation of Polynomial Pieces and its Derivatives

For the evaluation of polynomial pieces s|Q ∈ P3 we have to consider 8 Bézier points
bi,j,k (blue circles in Fig. 2.3) on the unit cube Q. To obtain the value or the derivative
of the polynomial piece s|Q(λ0, λ1, λ2) at the Bézier point located at q (green dot in
Fig. 2.3) we proceed as follows. Each pair of the Bézier points is linearly combined in
the first direction (e.g. along the local x axis of the unit cube) using the appropriate local
coordinates λ0, 1 − λ0 according to Q (indicated as arrows in Fig. 2.3). This results in
four new Bézier points (cyan dots in Fig. 2.3). These points undergo the same procedure
along the second direction using different local coordinates (i.e. λ1, 1−λ1) which results
in only one pair of new Bézier points (yellow dots in Fig. 2.3). Now, to obtain the value of
s|Q at position q (green dot in Fig. 2.3), in the final step once more this pair is linearly
combined along the third direction using the last two local coordinates (λ2, 1 − λ2).
On the other hand, to obtain the directional derivative ∂

∂λ2
s|Q(q) ∈ P2 along the edge

of λ2 of s|Q at position q, in the final step the difference of the pair of Bézier points
(yellow dots in Fig. 2.3) is taken. Similarly, to obtain the directional derivative in the
other direction, e.g. ∂

∂λ0
s|Q(q) ∈ P2. We first apply Alg. 1.2.1 or Alg. 2.2.1 along the

directions corresponding to the local coordinates λ2, 1 − λ2 and λ1, 1 − λ1 or vice verse
and afterwards take the difference of the final pair of Bézier points along the direction
corresponding to λ0, 1 − λ0.

2.5 Piecewise Quadratic Splines

Piecewise quadratic splines do satisfy additional smoothness conditions in comparison
to the previously defined linear splines – in this thesis such splines are called quadratic

2.5. PIECEWISE QUADRATIC SPLINES 61

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

Figure 2.3: The evaluation of a polynomial piece s|Q ∈ P3 at a point q (green dot) with
the de Casteljau algorithm 2.2.1. The 8 blue circles show the Bézier points bi,j,k of Equ. 2.5.
The arrows show which of the points are combined by weighting with the local coordinates of
q w.r.t. Q. The different colors represent the local coordinates λν(q), ν ∈ {0, 1, 2}, where
λ0(q), (1− λ0(q)) are indicated by blue and green arrows, λ1(q), (1− λ1(q)) by red and magenta
arrows, and λ2(q), (1 − λ2(q)) by light and dark blue arrows, respectively.

type-0 splines. The space of these splines with respect to ♦ is defined by

S2+2+2(♦) = {s ∈ C1(Ω) : s|Q ∈ P2+2+2,∀Q ∈ ♦}, (2.9)

where P2+2+2 := span{xiyjzk : i, j, k ≥ 0, i+j+k ≤ 6} denotes the X-dimensional space
of six degree polynomials, i.e. the space of trivariate polynomials of total degree six.
A spline s ∈ S2+2+2 can be written in its piecewise Bernstein-Bézier form (cf. Equ. 2.5),
i.e. we set l = m = n = 2 in that equation.

2.5.1 Bernstein-Bézier Coefficients

For piecewise quadratic splines 27 Bernstein-Bézier coefficients for an arbitrary cube
Q ∈ ♦ have to be determined. Once more each Bernstein-Bézier coefficient ai,j,k and
its corresponding domain point ϑ2,2,2

i,j,k located on Q define the appropriate Bézier point
bi,j,k := (ϑ2,2,2

i,j,k , ai,j,k). Here also every corner vertex vν of Q (blue circles in right drawing
of Fig. 2.4) corresponds to a domain point, that means now we define the front domain
points as ϑ2,2,2

2,0,2 := v0, ϑ
2,2,2
2,2,2 := v1, ϑ

2,2,2
2,0,0 := v2, and ϑ2,2,2

2,2,0 := v3. And the back domain
points are set to ϑ2,2,2

0,0,2 := v4, ϑ
2,2,2
0,2,2 := v5, ϑ

2,2,2
0,0,0 := v6, and ϑ2,2,2

0,2,0 := v7. The appropriate
four coefficients a2,0,2, a2,2,2, a2,0,0, and a2,2,0 at the front face of Q are determined by
the same formulas as shown above in case of linear type-0 splines. However, the next
four coefficients a2,1,2, a2,2,1, a2,1,0, and a2,0,1 are determined by

a2,1,2 =
1
4
(C + F + T + FT),

a2,2,1 =
1
4
(C + F +R+ FR),

a2,1,0 =
1
4
(C + F +D + FD),

a2,0,1 =
1
4
(C + F + L+ FL). (2.10)

62 2.5. PIECEWISE QUADRATIC SPLINES

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

The corresponding domain points ϑ2,2,2
2,1,2 := (v0 + v1)/2, ϑ

2,2,2
2,2,1 := (v1 + v3)/2, ϑ

2,2,2
2,1,0 :=

(v3 + v2)/2, and ϑ2,2,2
2,0,1 := (v2 + v0)/2 are located at the midpoints (red circles in right

drawing of Fig. 2.4) of the edges connecting two adjacent vertices vν of a unit cube. The
next domain point ϑ2,2,2

2,1,1 := (v0 +v1 +v2 +v3)/4 is located at the center of a face (green
circle in right drawing of Fig. 2.4) of a unit cube, where the appropriate coefficient is
determined from

a2,1,1 =
1
2
(C + F). (2.11)

Finally, the Bernstein-Bézier coefficient a1,1,1 associated with the domain point ϑ2,2,2
1,1,1

located in the center of the cube Q (cyan circle in right drawing of Fig. 2.4) is simply
set to a1,1,1 = C, where C := fi,j,k is the data value itself located in the center of a cube
Q. The remaining 17 coefficients follow directly from symmetry, hence the formulas are
not given here, but can be easily constructed from figure 2.4.

Figure 2.4: The data values (white circles in the left drawing) in the local 27 neighborhood of
a considered cube Q0 (blue cube) and appropriate averaging rules – for quadratic splines – give
the 10 Bernstein-Bézier coefficients located on its Bézier points (blue, red, green and cyan circles
in the right illustration) of a unit cube Q. The other 17 coefficients are computed by symmetry
and are not shown here for the sake of clarity.

2.5.2 Evaluation of Polynomial Pieces and its Derivatives

For the evaluation of the polynomial pieces s|Q ∈ P6 we have to consider the 27 Bézier
points (blue, red, green and cyan circles in Fig. 2.5) on a unit cube Q. The procedure
is very similar applied for piecewise linear polynomials. First, we linearly combine all
pairs of Bézier points along the first direction using the appropriate local coordinates
(i.e. λ0, 1 − λ0). The resulting 18 new Bézier points (cyan dots in Fig. 2.5) are then
pairwise linearly combined along the second direction using local coordinates λ1, 1− λ1,
and finally the 12 new Bézier points (yellow dots in Fig. 2.5) are linearly combined
along the third direction using λ2, 1 − λ2. This results in 8 Bézier points on layer l = 1
(green dots in Fig. 2.5) to which again a very similar procedure is applied. However,
basically the Bézier points on layer l = 1 can be supplied to the algorithm used for
piecewise linear polynomials. Note, as mentioned before there are many different ways
how to implement the de Casteljau algorithm, i.e. the procedure discussed here is slightly
different compared to Alg. 2.2.1. However, the reason is that this approach allows faster

2.5. PIECEWISE QUADRATIC SPLINES 63

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

reconstructions of the data especially if partial derivatives are needed for high quality
shading computations.

Figure 2.5: Evaluation of a polynomial piece s|Q ∈ P6 at a point q with the de Casteljau
algorithm. Top row: The 27 blue, red, green and cyan circles show the Bézier points bi,j,k

of Equ. 2.5. The arrows show which of the points are combined by weighting with the local
coordinates of q w.r.t. Q. The different colors represent the local coordinates λν(q), ν ∈ {0, 1, 2},
where λ0(q), (1 − λ0(q)) are indicated by blue and green arrows, λ1(q), (1 − λ1(q)) by red and
magenta arrows, and λ2(q), (1−λ2(q)) by light and dark blue arrows, respectively. The resulting
8 new points ci,j,k on level l = 1 indicated as green dots and the local coordinates λν(q), ν ∈
{0, 1, 2} are the input values for the next iteration, i.e. basically the algorithm for piecewise linear
polynomials can be applied (cf. Fig. 2.3).

2.6 Simple Ray-Casting

2.6.1 Intersection Computations

In standard ray-casting algorithms rays

rν,μ(t) = rν,μs + t rν,μd (2.12)

are cast into the volume (object space) from each image pixel ν := 0, 1, . . . , N and
μ := 0, 1, . . . ,M , where here N ×M is the size of the image. Further, rν,μs and rν,μd ∈ R

3

are the ray start and direction in object space of the corresponding pixel ν, μ. The ray
start position is located in the projection plane, whereas the (normalized) ray direction
is obtained from the difference of the current ray start and the position of the viewer
ro located in object space as well, i.e. rν,μd := rν,μs − ro 4. Now, an arbitrary ray
casted through Ω results in two intersection points, which are called the enter point
q1 ∈ Ω and the exit point q2 ∈ Ω of a ray rν,μ(t) coming from pixel ν, μ. This is
computed by intersecting the ray with the six planes limiting Ω (cf. Fig. 2.6). If the ray
does not intersect Ω no contribution from the volume is computed nor stored into the
appropriate pixel ν, μ of that ray. Otherwise we must process all the cubes Q ∈ ♦ which
are intersected by the ray. Thus by using the entrance point q1 we determine the first
unit cube Q̃ := Q1 with q1 ∈ Q̃ and the first local coordinates (in fact the local ray start

4If the viewer position is infinitely far away from the object itself, then the ray direction remain the
same for all rays casted into object space for a fixed view transformation.

64 2.6. SIMPLE RAY-CASTING

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

according to Q̃) r̃s := λ̃ := (λ̃1, λ̃2, λ̃3) as described above. Setting the ray direction as
r̃d := rν,μd we obtain a local ray

r̃(t) = r̃s + t r̃d, (2.13)

according to Q̃ with r̃s := (r̃s,x, r̃s,y, r̃s,z) and r̃d := (r̃d,x, r̃d,y, r̃d,z). From the intersection
of this local ray r̃(t) and the general plane equation, see Equ. (2.2), the ray parameter
t can be found by

t = −d+ a r̃s,x + b r̃s,y + c r̃s,z
a r̃d,x + b r̃d,y + c r̃d,z

, (2.14)

where if a r̃d,x + b r̃d,y + c r̃d,z = 0 no intersection occurs, thus the ray is parallel
to the considered plane. Applying each of the six planes of Equ. (2.3) to the above
formula (2.14) – i.e. setting the parameters a, b, c and d appropriately – gives us six
ray parameters ti, i = 6, . . . , 11. Then using Equ. (2.13) and t̃ = mini(ti) the nearest
exit intersection r̃e of the ray and the current unit cube Q̃ is found as well as the exit
plane P Q̃i (see Fig.2.6). Once the current unit cube Q̃ is determined – thus also the
corresponding Bernstein-Bézier coefficients – as well as the local ray enter r̃s and exit
r̃e positions, and the ray direction r̃d, the evaluation of the polynomial pieces and its
derivatives along the ray can be applied.
Of course, all contributions of the unit cubes intersected by the ray rν,μ(t) should be
determined in the local way described above. Here, basically the idea of Bresenham’s line
drawing algorithm is applied (see also Siddon’s method [Sid85] [FRD06] often applied for
fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy
treatment planning). Once we have found the first unit cube Q̃ := Q1, the enter and
exit planes PQ1

j , PQ1
i intersected by a ray, we can determine easily from the exit plane

PQ1
i using a look-up table which unit cube should be considered next. Similarly, the

new local ray start in the next unit cube Q2 can be found from the exit position r̃e using
modulo computation, i.e. if we assume the exit plane in cube Q1 as PQ1

i := PQ6 , then
the enter plane in cube Q2 would be PQ2

j := PQ9 , where the new ray start position in
cube Q2 would be computed as r̃s := (r̃e,x − 1, r̃e,y, r̃e,z) using the exit position r̃e in
cube Q1 (cf. Fig. 2.6)

2.6.2 Univariate Polynomial Pieces

For real volume or iso-surface rendering the local polynomial pieces according to Q have
to be evaluated. Thus if r̃s = r̃(ts) and r̃e = r̃(te), where ts := t0 := 0 < te := t1 := t̃,
are two intersection points of r̃(t) and Q. The restriction of the polynomial piece p to
the line segment [̃rs, r̃e] is a univariate polynomial of degree 3 or 6 (cf. right images
in Fig. 2.6). The necessary equations of 3rd (N = 2) or 6th (N = 5) degree are set
up by computing the values w̃s, w̃i, and w̃e at positions r̃s, r̃i = r̃(i/(N + 1)), and r̃e,
where i = 1, . . . , N and N ∈ {2, 5}. By using the Newton interpolation form, the unique
polynomials

f(τ) = αN+1τ
N+1 + αNτ

N + . . .+ α0τ
0 (2.15)

on the appropriate interval [0, te], which interpolates the values w̃s, w̃i, and w̃e at the
points 0, (i/(N + 1)), and te can be easily found. In general one has to solve a linear

2.6. SIMPLE RAY-CASTING 65

CHAPTER 2. TENSOR PRODUCT BÉZIER SPLINES

system of equations to obtain the coefficients αj , j = 0, . . . , N + 1 of the polynomial
above. However, these coefficients can be pre-computed (i.e. expressed by explicit
equations) for low polynomial degrees.

Figure 2.6: Left: Ray-Casting a volumetric cube partition (simplified two-dimensional view).
The intersection positions (green dots) of the (blue) ray and the unit cubes (blue rectangles) define
the intersection planes (red lines), which are used to find the next local start position of the ray
segment according to the next local unit cube. Right: On each unit cube univariate polynomial
pieces of total degree 3 (top) and 6 (bottom) are defined. The green solid dots rsl and rel indicate
the intersections of the ray and the unit cube (as in left image), where wsl and wel are the
corresponding values (green rectangles) as obtained by the de Casteljau algorithm. The green
circles rsl < ri < rel, i = 1, . . . , N are intermediate positions along the ray, where values (green
rectangles) wi are obtained by the de Casteljau algorithm as well. All values are used to define
polynomials in Newton form of total degree 3 (right top image) and 6 (right bottom image).

66 2.6. SIMPLE RAY-CASTING

3 Trivariate Bézier Splines

3.1 Uniform Tetrahedral Partition

A suitable uniform tetrahedral partition � is obtained from ♦. Here, basically all unit
cubes Qi,j,k ∈ ♦ are subdivided by first drawing two diagonals into each of the six faces
of Qi,j,k. Then the center vi,j,k of the unit cube Qi,j,k is connected with the eight vertices
as well as with the intersection positions of the two diagonals drawn into the six faces
of Qi,j,k. Thus each unit cube is split into six pyramids, where each pyramid is further
subdivided into four tetrahedra of the same form. However, this procedure decomposes
each unit cube Qi,j,k into 24 uniform tetrahedra Ti,j,k,l yielding a tetrahedral partition
� ⊆ ♦ of the domain Ω, i.e. Ti,j,k,l ⊂ Qi,j,k,∀l ∈ {0, . . . , 23}. This is called a type-6
tetrahedral partition because it is alternatively described as the result of slicing each box
Qi,j,k with six different planes of the general form (2.2), where the planes for ν = 0, . . . , 5
are

PQ0 (x, y, z, d) = +1x+ 1y + 0z + 0d,

PQ1 (x, y, z, d) = +0x+ 1y + 1z + 0d,

PQ2 (x, y, z, d) = +1x+ 0y + 1z + 0d,

PQ3 (x, y, z, d) = +1x− 1y + 0z + 0d,

PQ4 (x, y, z, d) = +0x+ 1y − 1z + 0d,

PQ5 (x, y, z, d) = −1x+ 0y + 1z + 0d, (3.1)

with d = 0.0, and for each of the 24 tetrahedra T ⊆ Q some Bernstein-Bézier coefficients
located on the corresponding Bézier points are associated as well. These Bézier points
and their coefficients – usually 4(15), 10(65), or 20(175) on T (Q) – define piecewise
linear, quadratic, or cubic splines in Bernstein-Bézier form, where the polynomial pieces
have total degree 1, 2, or 3 on T , respectively. The Bézier points are located on T (Q) –
where exactly depends on the degree of the splines – and are obtained from the volume
data. Similar to tensor product splines appropriate smoothness conditions have to be
satisfied along each direction of the nine-directional mesh 1 and between all tetrahedra
T ∈ �. Once the location of the Bézier points on T and the averaging rules – which are
symmetric as well – to compute the coefficients are found and because of the uniform
structure of the partition � and ♦, each cube Q containing 24 congruent tetrahedra T
can be considered separately (cf. Fig. 3.1).
Thus, if the location in the partition ♦ (the indices i, j, k) from the current location q
in the domain Ω is found – which gives the current unit cube Q0 = Qi,j,k – and the local
coordinates of q according to Q0 are computed (see Sec. 2.3), the tetrahedral partition

1This can be considered as a trivariate generalization of the four-directional mesh well-known in the
bivariate spline theory.

67

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Figure 3.1: The limitation of the domain R
3 into the cubic domain Ω. This is split into

a uniform cubic partition ♦ and further into a uniform tetrahedral partition �. Each cube
Qi,j,k ∈ ♦ has side length 1, where each spline sT of the corresponding tetrahedron Ti,j,k,l ∈
� ⊆ ♦ � Qi,j,k with Ti,j,k,l ⊂ Qi,j,k is defined in the tetrahedral domain Δ ⊆ Ω (left). The
currently considered unit cube Q0 = [−0.5,+0.5]3 (where the local neighborhood of data values
is determined as well, cf. Fig. 2.1) can be viewed as being subdivided into six pyramides, where
each pyramid is further decomposed into four tetrahedra (right).

of such a unit cube Q0 can be considered only (cf. Fig. 3.2). In other words, each
tetrahedron Ti0 , i0 = 0, . . . , 23 can be considered as a subset of the unit cube Q0 =
[−0.5,+0.5]3, i.e Ti0 ⊂ Q0, ∀i0. This allows defining several lookup tables. The first
stores the transition from a tetrahedron Ti0 to its three (or four) neighboring tetrahedra

Ti0 → [Ti1 , Ti2 , Ti3(, Ti4)] (3.2)

with i0, i1, i2, i3, i4 ∈ {0, . . . , 23}, where i0 	= i1 	= i2 	= i3 	= i4. Here, Ti4 is the adjacent
tetrahedron of Ti0 , which is located in the neighboring unit cube Q̃0 of Q0. The second
saves the transition from a tetrahedron Ti0 to its four confining planes as defined in
equations (2.3) and (3.1)

Ti0 → [PQj1 , P
Q
j2
, PQj3 , P

Q
j4

] (3.3)

with j1, j2, j3, j4 ∈ {0, . . . , 11}, where j1 	= j2 	= j3 	= j4. Here, PQj4 is always one of the
planes from (2.3), i.e. each tetrahedron Ti0 , i0 = 0, . . . , 23 is confined by three planes
from (3.1) and one plane from (2.3), thus one face of a tetrahedron coincides with a face
of the unit cube Q0. The next table stores the transition from a tetrahedron Ti0 and its
plane PQj0 (one of its four confining planes) to the adjacent tetrahedron

[Ti0 , P
Q
j0

] → [Ti1] (3.4)

with i0, i1 ∈ {0, . . . , 23} and j0 ∈ {0, . . . , 11} , where i0 	= i1. The last table defines a
transition from a tetrahedron Ti0 to its four vertices

Ti0 → [vk0 ,vk1 ,vk2 ,vk3], (3.5)

where the vertex vk0 is located at the center of the unit cube Q0, thus by definition it
is set to vk0 := (0, 0, 0) (since the local coordinate system is placed in the center of the
unit cube). Here, the vertex vk1 is of the form (ω1, ω2, ω3), where ωα = ωβ = 0 and
ωγ = ±0.5 for some α, β, γ ∈ {1, 2, 3}, where once more α 	= β 	= γ and vk2 ,vk3 are the
vertices located on the corners of the unit cube Q0 (cf. Fig. 3.2).

68 3.1. UNIFORM TETRAHEDRAL PARTITION

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Figure 3.2: Volumetric uniform tetrahedral partition of the unit cube Q0 into 24 congruent
tetrahedra, where each tetrahedron is numbered appropriately (left). Each face of the unit cube
is flipped open (right).

3.2 Bézier Form

Piecewise continuous splines on uniform tetrahedral partitions which may satisfy some
smoothness conditions are called here type-6 splines. The space of these splines with
respect to � is defined by

Sn(�) = {s ∈ Cπ(Ω) : s|T ∈ Pn,∀T ∈ �}, (3.6)

where Pn := span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ n} denotes the X-dimensional space
of n degree polynomials, i.e. the space of trivariate polynomials of total degree n and
Cπ(Ω) is the set of π-times continuously differentiable functions on Ω.
A spline s ∈ Sn can be written in its piecewise Bernstein-Bézier form (cf. Equ. 1.10 and
[Far86]) and is now defined on each tetrahedron T = [v0,v1,v2,v3] ∈ � on the domain
Δ as

p = s|T (λ0, λ1, λ2, λ3) =
∑

|τ0+τ1+τ2+τ3|=n
bτ0,τ1,τ2,τ3B

n
τ0,τ1,τ2,τ3(λ0, λ1, λ2, λ3), (3.7)

where the sum goes over (τ0, τ1, τ2, τ3) which satisfy |τ0 + τ1 + τ2 + τ3| = n and τ0 + τ1 +
τ2 + τ3 ≥ 0. The coefficients bτ0,τ1,τ2,τ3 := (ϑnτ0,τ1,τ2,τ3 , aτ0,τ1,τ2,τ3) ∈ T × R are called the
Bézier points of s on T , where ϑnτ0,τ1,τ2,τ3 := (τ0v0 +τ1v1 +τ2v2 +τ3v3)/n in T are called
the domain points and aτ0,τ1,τ2,τ3 are the corresponding Bernstein-Bézier coefficients.
According to Def. 1.2.2 the Bernstein polynomials of degree n become now

Bn
τ0,τ1,τ2,τ3(λ0, λ1, λ2, λ3) =

n!
(τ0!τ1!τ2!τ3!)

λτ00 λ
τ1
1 λ

τ2
2 λ

τ3
3 ∈ Pn, (3.8)

where λν ∈ P1 = span{1, x, y, z}, ν = 0, 1, 2, 3 are the barycentric coordinates with
respect to T and are determined by interpolation conditions λν(vμ) = δν,μ, μ = 0, 1, 2, 3
(where δν,μ denotes Kroneckers symbol), i.e. for any point q ∈ R

3 the barycentric
coordinates λν(vμ) ∈ R according to T = [v0,v1,v2,v3] are determined as the solution
of the 4 × 4 linear system

(
q
1

) = λ0(q)(
v0

1
) + λ1(q)(

v1

1
) + λ2(q)(

v2

1
) + λ3(q)(

v3

1
), (3.9)

3.2. BÉZIER FORM 69

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

where e.g. v0 := vi,j,k is the center of Q, v1 = (vi,j,k + vi−1,j,k)/2 is the center of a
face F of Q (i.e. the intersection position of the two diagonals drawn into that face F)
and v2 = (vi,j,k + vi−1,j−1,k+1)/2,v3 = (vi,j,k + vi−1,j+1,k+1)/2 are the two vertices of
an edge of that face F . In this sense the type-6 partition is symmetric and using the
above Bernstein-Bézier form one can conveniently describe smoothness conditions across
common triangular faces of tetrahedrons T and T̃ . From practical point of view splines
satisfying some smoothness conditions have great importance, e.g. for high quality
visualizations.
The Bernstein-Bézier coefficients aτ0,τ1,τ2,τ3 in the piecewise form (3.7) of an n degree
spline sf on � of a continuous function f are directly obtained from the data values
fi,j,k at the corresponding points vi,j,k lying at the centers of the corresponding cubes
Qi,j,k. Thus, to obtain the unique coefficient aτ0,τ1,τ2,τ3 for each domain point ϑnτ0,τ1,τ2,τ3
in the tetrahedron T ⊂ Q := Qi,j,k ∈ ♦ the 27 neighboring data values fi+i0,j+j0,k+k0 :=
f(vi+i0,j+j0,k+k0) of the continuous function f at the points vi+i0,j+j0,k+k0 , i0, j0, k0 ∈
{−1, 0,+1} are averaged in an appropriate way, i.e.

aτ0,τ1,τ2,τ3 =
∑

i0,j0,k0∈{−1,0,+1}
ωi0,j0,k0fi+i0,j+j0,k+k0 , (3.10)

where ωi0,j0,k0 are non-negative weights and are independent on the current consid-
ered cube Q := Qi,j,k and tetrahedron T ⊂ Q. Now, since the scheme is completely
symmetric as well as the partition �, it is sufficient to consider only one tetrahedron
T = [v0,v1,v2,v3] and show how to set the Bernstein-Bézier coefficients aτ0,τ1,τ2,τ3 of
s|T for that particular tetrahedron T on the n+ 1 different layers

Lnτ0 = {ϑnτ0,τ1,τ2,τ3 ∈ T : τ1 + τ2 + τ3 = n− τ0}, τ0 = 0, . . . , n, (3.11)

of domain points in T . Finally, all other Bernstein-Bézier coefficients of sf associated
with domain points on the different layers in the remaining tetrahedra in Q immediately
follow from symmetry and thus, for all tetrahedra in �.
The trivariate version of Alg. 1.2.1 to evaluate the polynomial piece p = s|T ∈ Pn in the
above form can be defined as follows.

Algorithm 3.2.1 (Trivariate de Casteljau on Type-6 Partitions). For j = 1, . . . , n and
τ0 + τ1 + τ2 + τ3 = n− j compute

bjτ0+τ1+τ2+τ3 = λ0(q)bj−1
τ0+1,τ1,τ2,τ3

+ λ1(q)bj−1
τ0,τ1+1,τ2,τ3

+ (3.12)

λ2(q)bj−1
τ0,τ1,τ2+1,τ3

+ λ3(q)bj−1
τ0,τ1,τ2,τ3+1 (3.13)

and we obtain the result as s|T = bn0,0,0,0, where the b0
τ0,τ1,τ2,τ3 = bτ0,τ1,τ2,τ3 , τ0+τ1+τ2+

τ3 = n are the Bézier points from Equ.(3.7) defining the convex hull of the polynomial
piece.

This algorithm degenerates to its bivariate and univariate versions if one or two of the
barycentric coordinates of q vanish, respectively. In these cases, q lies in the interior
of a triangular face of T or on an edge of T , and the number of necessary arithmetic
operations reduces accordingly.
Once we have determined the cube Q0 which contains a point q ∈ Ω and its local
coordinates λν(q), ν = 1, 2, 3 according to Q0 are computed – this will be discussed

70 3.2. BÉZIER FORM

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

in the following sections. We are able to evaluate the polynomial piece (2.5) and its
derivatives at q using λν , the Bézier points bi,j,k 2 and Alg. 2.2.1. For shading of
surfaces obtained from the volume model at a point q it is necessary to compute the 1’st
partial derivatives (the gradient)

(∇s|Q)(q) =
(
∂

∂x
s|Q(q),

∂

∂y
s|Q(q),

∂

∂z
s|Q(q)

)
at the same location q.

3.3 Point Location and Barycentric Coordinates

Before we are able to evaluate the polynomial piece (3.7), i.e. compute the value and
the derivatives of the spline s|T at a given point q ∈ Ω, we need to know the location
of q = (qx, qy, qz) in the partition � and its barycentric coordinates according to a
tetrahedron T . Thus, first we have to find a cube Q ∈ ♦ with q ∈ Q (cf. Sec. 2.3),
a tetrahedron T ∈ � with q ∈ T , where T ⊂ Q, and the barycentric coordinates
λν(q) ∈ R, ν = 0, 1, 2, 3 according to T . As we know, the uniformity of � allows
a translation of q such that the remaining computations can be performed for (the
tetrahedral partition of) the unit cube Q0 = [−0.5,+0.5] (see Fig. 3.1).
However, to find the tetrahedron T the observation from Sec. 3.1 is used, where each
cube Q is split into 24 congruent tetrahedra by slicing it with six planes (3.1). Thus, the
orientation of q with respect to these planes is found from Pν(qx, qy, qz, d), ν = 0, . . . , 5
followed by a sign check for each of the six planes. This gives a six-bit binary code for
the orientation of q and finally the tetrahedron T ⊂ Q with q ∈ T is found by a simple
table lookup.
The barycentric coordinates λν(q) ∈ R, ν = 0, 1, 2, 3 according to T ⊂ Q are computed
from (3.9). First, the vertices of a tetrahedron T = [v0,v1,v2,v3] have to be organized.
For example, if the first vertex v0 is identified with the origin of the unit cube Q0, the
second vertex v1 with the intersection point of the two diagonals drawn into a face F
of Q, the third vertex v2 and fourth vertex v3 are identified with the two corners of
that face F . Then, this allows generating another lookup table with 24 entries of the
pre-computed solutions. Thus, the barycentric coordinates of q with respect to T are
computed by

λ0(q) = 1 + L2 + L2,

λ1(q) = 1 + L3 + L4,

λ2(q) = 1 + L0 + L4,

λ3(q) = 1 − λ0(q) − λ1(q) − λ2(q), (3.14)

where L5
ν=0 := [+qx,+qy,+qz,−qx,−qy,−qz] is an ordered list. Both tables can be deter-

mined by analyzing all of the 24 possible solutions of (3.9) and, therefore, the barycentric
coordinates of q are found without performing expensive rotation or transformation op-
erations, branching over the 24 cases and any multiplication. Note that the identification
of the vertices vi, i = 0, 1, 2, 3 of the tetrahedron T with the appropriate vertices of Q
defines the lookup table with 24 entries of the pre-computed solutions, and thus has to
be performed carefully.

2Once the cube Q0 is found, all its Bézier points bi,j,k are known as well.

3.3. POINT LOCATION AND BARYCENTRIC COORDINATES 71

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

3.4 Piecewise Linear Splines

Piecewise linear splines defined on a tetrahedral partition � are called in this thesis
linear type-6 splines. These polynomials are also continuous but not smooth over the
volume domain Ω (similar to the linear type-0 splines). The space of these splines with
respect to � is defined by

S1(�) = {s ∈ C0(Ω) : s|T ∈ P1,∀T ∈ �}, (3.15)

where P1 := span{xiyjzk : i, j, k ≥ 0, i+ j + k ≤ 1} denotes the four-dimensional space
of linear polynomials, i.e. the space of trivariate polynomials of total degree one.
A spline s ∈ S1 can be written in its piecewise Bernstein-Bézier form (3.7), i.e. in that
equation we set n = 1.

3.4.1 Bernstein-Bézier Coefficients

For piecewise linear splines the 4(15) Bernstein-Bézier coefficients for an arbitrary tetra-
hedron T ∈ �(Q ∈ ♦) are determined as follows. First, according to Equ. 3.11 two
different layers L1

ν , ν = 0, 1 have to be considered. The coefficients of s|T associ-
ated with its corresponding Bézier points (shown as left blue, right blue, and green
circle in Fig. 3.3, respectively) b0,0,1,0 = (ϑ1

0,0,1,0, a0,0,1,0),b0,0,0,1 = (ϑ1
0,0,0,1, a0,0,0,1),

and b0,1,0,0 = (ϑ1
0,2,0,0, a0,1,0,0) at the domain points ϑ1

0,0,1,0 = v2, ϑ
1
0,0,0,1 = v3, and

ϑ1
0,1,0,0 = v1 in layer L1

0 are determined by

a0,0,1,0 =
1
8
(C + F + L+ T + LT + FL+ FT + FLT),

a0,0,0,1 =
1
8
(C + F +R+ T +RT + FR+ FT + FRT),

a0,1,0,0 =
1
2
(C + F). (3.16)

Then, the last Bernstein-Bézier coefficient a1,0,0,0 associated with the Bézier point b1,0,0,0 =
(ϑ1

1,0,0,0, a1,0,0,0) located at the center of the cube Qi,j,k in layer L1
1, i.e. at the domain

point ϑ1
1,0,0,0 = v0 (cyan circle in right drawing of Fig. 3.3) is simply set to

a1,0,0,0 = C, (3.17)

where C is the data value itself located in the center of a cube Qi,j,k.

3.4.2 Evaluation of Polynomial Pieces and its Derivatives

Once the cube Q0 := Qi,j,k ∈ ♦ and the tetrahedron T = [v0,v1,v2,v3] ⊂ Q0 with
the point q ∈ T are determined and the local coordinates λν(q), ν = 0, 1, 2, 3 of q
according to T are computed. The polynomial piece (3.7) and its derivatives at q can
be determined. Note that when the cube and tetrahedron T are found, all Bézier points
according to T are known as well and the polynomial piece (3.7) can be evaluated
applying Alg. 3.2.1 (see Fig. 3.4).

72 3.4. PIECEWISE LINEAR SPLINES

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Figure 3.3: The data values (white circles in the left drawing) in the local 27 neighborhood of
a considered cube Q0 (blue cube) and appropriate averaging rules – for linear splines – give the 4
Bernstein-Bézier coefficients located on its Bézier points (colored circles in the right illustration)
on two different layers L1

ν , ν = 0, 1 of a tetrahedron T (right figure). The other coefficients for
the remaining 23 tetrahedra of Q0 are computed by symmetry and are not shown here.

3.5 Piecewise Quadratic Splines

In this section we describe piecewise continuous splines which satisfy additional smooth-
ness conditions in comparison to the previously defined linear splines – such splines
are called quadratic type-6 splines, also better known as Super-Splines (see [RZNS03]
[RZNS04a]). The accurate smoothness conditions can be found in [NRSZ04]. The space
of these splines with respect to � is defined by

S2(�) = {s ∈ C1(Ω) : s|T ∈ P2,∀T ∈ �, s smooth at v,∀v of ♦}, (3.18)

where P2 := span{xiyjzk : i, j, k ≥ 0, i + j + k ≤ 2} denotes the 10-dimensional space
of quadratic polynomials, i.e. the space of trivariate polynomials of total degree two.
Note, this splines are not everywhere on Ω continuously differentiable.
Once again a spline s ∈ S2 can be written in its piecewise Bernstein-Bézier form (3.7)
with n = 2.

3.5.1 Bernstein-Bézier Coefficients

For piecewise quadratic splines the 10(65) Bernstein-Bézier coefficients for an arbitrary
tetrahedron T ∈ �(Q ∈ ♦) are determined as follows. First, according to Equ. 3.11
three different layers L2

ν , ν = 0, 1, 2 have to be considered now. The six coefficients of
s|T associated with its corresponding points in layer L2

0 of T (also located on Q) are
determined by

a0,0,2,0 =
1
8
(C + F + L+ T + LT + FL+ FT + FLT),

a0,0,0,2 =
1
8
(C + F +R+ T +RT + FR+ FT + FRT),

a0,0,1,1 =
1
4
(C + F + T + FT),

a0,1,1,0 =
1
4
(C + F) +

1
8
(L+ T + FL+ FT),

a0,1,0,1 =
1
4
(C + F) +

1
8
(R+ T + FR+ FT),

a0,2,0,0 =
1
4
(C + F) +

1
16

(D + L+R+ T + FD + FL+ FR+ FT), (3.19)

3.5. PIECEWISE QUADRATIC SPLINES 73

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Figure 3.4: The evaluation of a polynomial piece s|T ∈ P1 at a point q (green dot) with
the de Casteljau algorithm (3.2.1) using the Bézier points (colored circles) on the two dif-
ferent layers L1

ν , ν = 0, 1 of the tetrahedron T (as in right drawing of Fig. 3.3). These
four colored dots show the Bézier points b0

0,0,1,0 := b0,0,1,0 = (ϑ1
0,0,1,0, a0,0,1,0),b0

0,0,0,1 :=
b0,0,0,1 = (ϑ1

0,0,0,1, a0,0,0,1),b0
0,1,0,0 := b0,1,0,0 = (ϑ1

0,2,0,0, a0,1,0,0), and b0
1,0,0,0 := b1,0,0,0 =

(ϑ1
1,0,0,0, a1,0,0,0) at the domain points ϑ1

0,0,1,0 = v2, ϑ
1
0,0,0,1 = v3, ϑ

1
0,1,0,0 = v1, and ϑ1

1,0,0,0 = v0

and the associated coefficients aτ0,τ1,τ2,τ3 , τ0+τ1+τ2+τ3 = 1 on level � = 0. The new Bézier point
(green dot) s|T (q) = b1

0,0,0,0 and its associated coefficient on level � = 1 is determined from an
affine combination by weighting with the barycentric coordinates of q w.r.t. T = [v0,v1,v2,v3]
and is the final result. The arrows show which points are involved, where the different colors
represent the barycentric coordinates λν(q), ν = 0, 1, 2, 3. Note, the coefficients a0

τ0,τ1,τ2,τ3
of the

corresponding points (colored circles) already define the partial derivatives ∂
∂ξν

s|T ∈ P0 along the
edges of the tetrahedron T .

where the Bernstein-Bézier coefficients a0,0,2,0 and a0,0,0,2 located on the domain points
ϑ2

0,0,2,0 = v2 and ϑ2
0,0,0,2 = v3 define the Bézier points b0,0,2,0 = (ϑ2

0,0,2,0, a0,0,2,0) and
b0,0,0,2 = (ϑ2

0,0,0,2, a0,0,0,2) (show as left blue and right blue circles in Fig. 3.5), re-
spectively. Accordingly the coefficients a0,0,1,1, a0,1,1,0, a0,1,0,1 and their domain points
give us the Bézier points b0,0,1,1 = (ϑ2

0,0,1,1, a0,0,1,1),b0,1,1,0 = (ϑ2
0,1,1,0, a0,1,1,0),b0,1,0,1 =

(ϑ2
0,1,0,1, a0,1,0,1) (shown as red, left yellow, right yellow circles in Fig. 3.5), respectively.

The last coefficient a0,2,0,0 in this layer and its associated domain point ϑ2
0,2,0,0 = v1

results in the Bézier point b0,2,0,0 = (ϑ2
0,2,0,0, a0,2,0,0) and is depicted by a green circle

in Fig. 3.5. Then, the next three coefficients of s|T associated with its corresponding
points ϑ2

1,0,1,0, ϑ
2
1,0,0,1, ϑ

2
1,1,0,0 in layer L2

1 of T (located inside Q) are determined by

a1,0,1,0 =
5
16

(C) +
3
16

(F + T + L) +
1
16

(FL+ FT + LT − FLT),

a1,0,0,1 =
5
16

(C) +
3
16

(F + T +R) +
1
16

(FR+ FT +RT − FRT),

a1,1,0,0 =
20
64

(C) +
12
64

(F) +
6
64

(D + L+R+ T) +
2
64

(FD + FL+ FR+ FT) +

1
64

(LD + LT +RD +RT − FLD − FLT − FRD − FRT), (3.20)

where the Bézier points b1,0,1,0 = (ϑ2
1,0,1,0, a1,0,1,0),b1,0,0,1 = (ϑ2

1,0,0,1, a1,0,0,1), and b1,1,0,0 =
(ϑ2

1,1,0,0, a1,1,0,0) are shown as left brown, right brown, and magenta circles in Fig. 3.5.
Finally, the Bernstein-Bézier coefficient a2,0,0,0 associated with the Bézier point b2,0,0,0 =
(ϑ2

2,0,0,0, a2,0,0,0) (cyan circle in right drawing of Fig. 3.3) located at the center ϑ2
2,0,0,0 =

74 3.5. PIECEWISE QUADRATIC SPLINES

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

v0 of the cube Q in layer L2
2 of T is computed by

a2,0,0,0 =
40
128

(C) +
12
128

(B +D + F +R+ T + L) +

2
128

(BD +BL+BR+BT + FD + FL+ FR+ FT + LD + LT +RD +RT) −
1

128
(BLD +BLT +BRD +BRT + FLD + FLT + FRD + FRT). (3.21)

Figure 3.5: The data values (white circles in the left drawing) in the local 27 neighborhood
of a considered cube Q0 (blue cube) and appropriate averaging rules – for quadratic splines –
give the 10 Bernstein-Bézier coefficients located on its Bézier points (colored circles in the right
illustration) on three different layers L2

ν , ν = 0, 1, 2 of a tetrahedron T (right figure). The other
coefficients for the remaining 23 tetrahedra of Q0 are computed by symmetry and are not shown
here.

3.5.2 Evaluation of Polynomial Pieces and its Derivatives

Once the cube Q0 := Qi,j,k ∈ ♦ and the tetrahedron T = [v0,v1,v2,v3] ⊂ Q0 with the
point q ∈ T have been determined and the local coordinates λν(q), ν = 0, 1, 2, 3 of q
according to T are computed. The polynomial piece (3.7) and its derivatives at q can be
determined. Once the cube and tetrahedron T are found, all Bézier points according to
T are known as well and the polynomial piece (3.7) can be evaluated applying Alg. 3.2.1
(see Fig. 3.6).

3.6 Piecewise Cubic Splines

Piecewise cubic splines (i.e. cubic type-6 splines) defined on a tetrahedral partition � are
a further development of the previously discussed Super-Splines. For more information
on the smoothness conditions see [SZ05]. The space of these splines with respect to �
is defined by

S3(�) = {s ∈ C1(Ω) : s|T ∈ P3,∀T ∈ �}, (3.22)

where P3 := span{xiyjzk : i, j, k ≥ 0, i+ j + k ≤ 3} denotes the 19-dimensional space of
cubic polynomials, i.e. the space of trivariate polynomials of total degree three. Note,
this splines are everywhere on Ω continuously differentiable.
Again a spline s ∈ S3 can be written in its piecewise Bernstein-Bézier form (3.7) with
now n = 3.

3.6. PIECEWISE CUBIC SPLINES 75

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Figure 3.6: The evaluation of a polynomial piece s|T ∈ P2 at a point q is now performed by the
repeated application of de Casteljau algorithm (3.2.1). First, on level � = 0 the ten Bézier points
(circles in the same color as in Fig. 3.5) b0

τ0,τ1,τ2,τ3
:= bτ0,τ1,τ2,τ3 = (ϑ2

τ0,τ1,τ2,τ3
, aτ0,τ1,τ2,τ3), τ0+

τ1+τ2+τ3 = 2 on the three different layers L2
ν , ν = 0, 1, 2 of the tetrahedron T are used to obtain

the intermediate result (green dots) b1
τ0,τ1,τ2,τ3

, τ0 +τ1 +τ2 +τ3 = 1 on level � = 1 from the affine
combinations by weighting with the barycentric coordinates of q w.r.t. T = [v0,v1,v2,v3]. Here
the four Bézier points on level � = 0 associate with the vertices of the tetrahedron T (i.e. the
domain points become once more ϑ2

0,0,2,0 = v2, ϑ
2
0,0,0,2 = v3, ϑ

2
0,2,0,0 = v1, and ϑ2

2,0,0,0 = v0) are
b0

0,0,2,0 := b0,0,2,0 = (ϑ2
0,0,2,0, a0,0,2,0),b0

0,0,0,2 := b0,0,0,2 = (ϑ2
0,0,0,2, a0,0,0,2),b0

0,2,0,0 := b0,2,0,0 =
(ϑ2

0,2,0,0, a0,2,0,0), and b0
2,0,0,0 := b2,0,0,0 = (ϑ2

2,0,0,0, a2,0,0,0). Again the arrows show which points
are involved, where the different colors represent the barycentric coordinates λν(q), ν = 0, 1, 2, 3.
Note, this time the coefficients a1

τ0,τ1,τ2,τ3
of the corresponding points (green dots) define the par-

tial derivatives ∂
∂ξν

s|T ∈ P1 along the edges of the tetrahedron T . The final result s|T (q) = b2
0,0,0,0

is obtained from the repeated application of de Casteljau algorithm by using the intermediate result
(green dots) b1

τ0,τ1,τ2,τ3
as input into the scheme described in Fig. 3.4.

3.6.1 Bernstein-Bézier Coefficients

The general idea and the scheme on how to determine the Bernstein-Bézier coefficients
for an arbitrary tetrahedron T ∈ � to obtain piecewise cubic splines on the domain Δ is
very similar to that used for linear and quadratic splines. Here 20(175) Bernstein-Bézier
coefficients for an arbitrary tetrahedron T ∈ �(Q ∈ ♦) have to be determined, where
according to Equ. 3.11 four different layers L3

ν , ν = 0, 1, 2, 3 have to be considered now.
The first ten coefficients of s|T associated with its corresponding points in layer L3

0 of T
(also located on Q, depicted as a blue cube in Fig. 3.7) are determined by

a0,0,3,0 =
1
8
(C + F + L+ T + LT + FL+ FT + FLT),

a0,0,0,3 =
1
8
(C + F +R+ T +RT + FR+ FT + FRT),

a0,0,2,1 =
5
24

(C + F + T + FT) +
1
24

(L+ FL+ LT + FLT),

a0,0,1,2 =
5
24

(C + F + T + FT) +
1
24

(R+ FR+RT + FRT),

a0,1,2,0 =
5
24

(C + F) +
1
8
(L+ T + FL+ FT) +

1
24

(LT + FLT),

a0,1,0,2 =
5
24

(C + F) +
1
8
(R+ T + FR+ FT) +

1
24

(RT + FRT),

(3.23)

76 3.6. PIECEWISE CUBIC SPLINES

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

and

a0,1,1,1 =
13
48

(C + F) +
1
32

(L+R+ FL+ FR) +
7
48

(T + FT) +

1
96

(LT +RT + FLT + FRT),

a0,2,1,0 =
13
48

(C + F) +
17
192

(L+ T + FL+ FT) +
1
64

(R+D + FR+ FD) +

1
96

(LT + FLT) +
1

192
(RT + LD + FRT + FLD),

a0,2,0,1 =
13
48

(C + F) +
17
192

(R+ T + FR+ FT) +
1
64

(L+D + FL+ FD) +

1
96

(RT + FRT) +
1

192
(RD + LT + FLT + FRD),

a0,3,0,0 =
13
48

(C + F) +
5
96

(L+R+ T +D + FL+ FR+ FT + FD) +

1
192

(RT +RD + LT + LD + FRT + FRD + FLT + FLD). (3.24)

The Bernstein-Bézier coefficients a0,0,3,0 and a0,0,0,3 located on the domain points ϑ3
0,0,3,0 =

v2 and ϑ3
0,0,0,3 = v3 define the Bézier points b0,0,3,0 = (ϑ3

0,0,3,0, a0,0,3,0) and b0,0,0,3 =
(ϑ3

0,0,0,3, a0,0,0,3), respectively, and are shown as left blue and right blue dots in Fig. 3.7.
Accordingly the other Bézier points b0,0,2,1,b0,0,1,2,b0,1,2,0,b0,1,0,2,b0,1,1,1,b0,2,1,0, and
b0,2,0,1 and their coefficients are shown as left red, right red, left yellow, right yellow,
center yellow, left pink, and right pink dots in Fig. 3.7, respectively, where the last point
b0,3,0,0 = (ϑ3

0,3,0,0, a0,3,0,0) with ϑ3
0,3,0,0 = v1 is drawn as a green dot. Next, the six

Bernstein-Bézier coefficients of s|T associated with points in L3
1 of T (located inside Q)

are defined by

a1,0,2,0 =
1
4
C +

1
6
(F + L+ T) +

1
12

(LT + FL+ FT),

a1,0,0,2 =
1
4
C +

1
6
(F +R+ T) +

1
12

(RT + FR+ FT),

a1,0,1,1 =
1
3
C +

5
24

(F + T) +
1
12
FT +

1
24

(L+R) +
1
48

(LT +RT + FL+ FR),

a1,1,1,0 =
1
3
C +

5
24
F +

1
48

(D +R+ LT) +
1
8
(L+ T) +

5
96

(FL+ FT) +

1
96

(FD + LD +RT + FR),

a1,1,0,1 =
1
3
C +

5
24
F +

1
48

(D + L+RT) +
1
8
(R+ T) +

5
96

(FR+ FT) +

1
96

(FD + LT +RD + FL),

a1,2,0,0 =
1
3
C +

5
24
F +

7
96

(L+R+ T +D) +
1
32

(FL+ FR+ FT + FD) +

1
96

(RT +RD + LT + LD). (3.25)

The corresponding Bézier points b1,0,2,0,b1,0,0,2,b1,0,1,1,b1,1,1,0,b1,1,0,1, and b1,2,0,0 are
the left blue, right blue, red, left yellow, right yellow, and green circles, respectively.

3.6. PIECEWISE CUBIC SPLINES 77

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

Further, the Bernstein-Bézier coefficients of s|T associated with points in L3
2 of T (located

inside Q as well) are set to

a2,0,1,0 =
3
8
C +

7
48

(F + T + L) +
1
48

(R+D +B + LT + FL+ FT) +

1
96

(RT +BT + FR+ FD + LD +BL),

a2,0,0,1 =
3
8
C +

7
48

(F + T +R) +
1
48

(L+D +B +RT + FR+ FT) +

1
96

(LT +BT + FL+ FD +RD +BR),

a2,1,0,0 =
3
8
C +

1
12

(T +R+ L+D) +
1
64

(FT + FR+ FL+ FD) +
7
48
F +

1
48
B +

1
96

(RT + LD + LT +RD) +
1

192
(BT +BR+BL+BD), (3.26)

where the corresponding Bézier points b2,0,1,0,b2,0,0,1, and b2,1,0,0 are the left brown,
right brown, and magenta circles, respectively. Finally, the Bernstein-Bézier coefficient
of s|T associated with the point in L3

3 of T (i.e. the domain point ϑ3
3,0,0,0 = v0 is located

in the center of Q) is set to

a3,0,0,0 =
3
8
C +

1
12

(T + F + L+R+D +B) +
1
96

(LT + FL+ FT +RT +BT +BD) +

1
96

(FR+ FD + LD +RD +BR+BL) (3.27)

and is shown as the right most cyan circle in Fig. 3.7.

Figure 3.7: The data values (white circles in the left most drawing) in the local 27 neighborhood
of a considered cube Q0 (blue cube) and appropriate averaging rules – for cubic splines – give the
20 Bernstein-Bézier coefficients located on its Bézier points (colored circles and dots in the right
illustrations) on four different layers L3

ν , ν = 0, 1, 2, 3 of a tetrahedron T (right figures). The
other coefficients for the remaining 23 tetrahedra of Q0 are computed by symmetry and are not
shown here for simplicity.

3.6.2 Evaluation of Polynomial Pieces and its Derivatives

Once the cube Q0 := Qi,j,k ∈ ♦ and the tetrahedron T = [v0,v1,v2,v3] ⊂ Q0 with the
point q ∈ T have been determined and the local coordinates λν(q), ν = 0, 1, 2, 3 of q
according to T are computed. The polynomial piece (3.7) and its derivatives at q can
be determined. Note that once again the cube and tetrahedron T are found, all Bézier

78 3.6. PIECEWISE CUBIC SPLINES

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

points according to T are known as well and the polynomial piece (3.7) can be evaluated
applying Alg. 3.2.1 (see Fig. 3.8).

Figure 3.8: The evaluation of a polynomial piece s|T ∈ P3 at a point q is here performed by
the repeated application of de Casteljau algorithm (3.2.1) as well. First, on level � = 0 the twenty
Bézier points (colored dots and circles) b0

τ0,τ1,τ2,τ3
:= bτ0,τ1,τ2,τ3 = (ϑ3

τ0,τ1,τ2,τ3
, aτ0,τ1,τ2,τ3), τ0 +

τ1+τ2+τ3 = 3 on the four different layers L3
ν , ν = 0, 1, 2, 3 of the tetrahedron T are used to obtain

the intermediate result (green dots) b1
τ0,τ1,τ2,τ3

, τ0 +τ1 +τ2 +τ3 = 2 on level � = 1 from the affine
combinations by weighting with the barycentric coordinates of q w.r.t. T = [v0,v1,v2,v3]. Here
the four Bézier points on level � = 0 associated with the vertices of the tetrahedron T (i.e. the
domain points become once more ϑ3

0,0,3,0 = v2, ϑ
3
0,0,0,3 = v3, ϑ

3
0,3,0,0 = v1, and ϑ3

3,0,0,0 = v0) are
b0

0,0,3,0 := b0,0,3,0 = (ϑ3
0,0,3,0, a0,0,3,0),b0

0,0,0,3 := b0,0,0,3 = (ϑ3
0,0,0,3, a0,0,0,3),b0

0,3,0,0 := b0,3,0,0 =
(ϑ3

0,3,0,0, a0,3,0,0), and b0
3,0,0,0 := b3,0,0,0 = (ϑ3

3,0,0,0, a3,0,0,0). Again the arrows show which points
are involved, where the different colors represent the barycentric coordinates λν(q), ν = 0, 1, 2, 3.
Note, this time the coefficients a1

τ0,τ1,τ2,τ3
of the corresponding points (green dots) define the

second partial derivatives along and across the edges of the tetrahedron T . The final result
s|T (q) = b3

0,0,0,0 is obtained from the repeated application of de Casteljau algorithm by using the
intermediate result (green dots) b1

τ0,τ1,τ2,τ3
as input and follow the description in Fig. 3.6

3.7 Simple Ray-Casting

3.7.1 Intersection Computations

Basically, the configuration and computation of intersection information is very similar
to the method described in Sec. 2.6, which deals with a uniform cubic partition ♦
only. The difference here comes from the subdivision of this partition into a uniform
tetrahedral partition � ⊆ ♦ as discussed in Sec. 3.1. Thus, similarly an arbitrary ray
casted through Δ ⊆ Ω results first in two intersection points, which are called the enter
point q1 ∈ Δ and the exit point q2 ∈ Δ of a ray rν,μ(t) coming from pixel ν, μ (cf.
Equ. (2.12)). Once more, this is computed by intersecting the ray with the six planes
limiting Ω (cf. Fig. 3.9) and if the ray does not intersect Ω no contribution from the
volume is computed nor stored into the appropriate pixel ν, μ of that ray. Otherwise,
here we must process all the tetrahedra T ∈ � ⊆ ♦ which are intersected by the ray.
For this, the entrance point q1 is used to determine the first unit cube Q̃ := Q1 with
q1 ∈ Q̃ (see Sec. 2.3), the first local ray start r̃s and the first entrance plane P Q̃j according

3.7. SIMPLE RAY-CASTING 79

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

to Q̃ (cf. Sec. 2.6). The first entrance plane P T̃j := P Q̃j is also one of the four planes
confining the first tetrahedron T̃ ⊂ Q̃. Now, using the global ray direction rν,μd (as in
Equ. 2.12), we define once more a local ray (as in Equ. 2.13) according to Q̃, where
r̃s := (r̃s,x, r̃s,y, r̃s,z) is the local ray start and r̃d := (r̃d,x, r̃d,y, r̃d,z) the local (global) ray
direction. Now all tetrahedra T ⊂ Q̃ which are intersected by the local ray have to be
processed. Thus, the first tetrahedron T̃ ⊂ Q̃ has to be found by using the local ray start
r̃s (as it has been discussed in Sec. 3.3). This and the two lookup tables (cf. Sec. 3.1)
complete the information needed for further intersection computations and we proceed
as follows. According to the current tetrahedron T̃ ⊂ Q̃, the first plane P T̃j := P Q̃j of
Q̃ (which confines the tetrahedron T̃ as well as the cube Q̃) intersected by the local
ray and the first lookup table, we know which of the three remaining planes from the
set {P T0 , P T1 , P T2 , P T3 , P T4 , P T5 } confining the current tetrahedron has to be intersected to
find the next intersection position r̃e of the local ray and thus the next tetrahedron. For
this, we apply the parameters a, b, c and d of the remaining three planes into Equ. (2.14).
Hereby, using Equ. (2.13) and t̃ = mini=0,1,2(ti), the nearest exit intersection r̃e of the
local ray and the current tetrahedron T̃ ⊂ Q̃ as well as the exit plane P T̃i of T̃ is found
(see Fig.3.9). Then, until the local ray does not leave the current cube Q̃, i.e. the exit
plane P T̃i 	∈ {PQ6 , PQ7 , PQ8 , PQ9 , PQ10, P

Q
11} we determine the next tetrahedron T̂ ⊂ Q̃ by

using the current tetrahedron T̃ as well as the current exit plane P T̃i as indices into the
second lookup table. Whereas the exit intersection r̃e and the exit plane P T̃i according
to the current tetrahedron T̃ become the enter intersection r̂s and the enter plane P T̂j
according to the next tetrahedron T̂ , respectively, then we proceed in a recursive manner.
Once the current tetrahedron T̃ is determined – thus also the corresponding Bernstein-
Bézier coefficients – as well as the local ray enter r̃s and exit r̃e positions, and the ray
direction r̃d, the evaluation of the polynomial pieces and its derivatives along the ray
can be applied.
Once more, all the contributions of the different tetrahedra intersected by the global
ray rν,μ(t) should be determined in the local way described above. Here, the idea of
Bresenham’s line drawing algorithm is applied as well (cf. Fig. 3.9). Thus, once the
first unit cube Q̃ := Q1 together with the other information is found, we apply the
local process as discussed in the previous paragraph, until the exit plane of the current
considered tetrahedron T̃ becomes P T̃i ∈ {PQ6 , PQ7 , PQ8 , PQ9 , PQ10, P

Q
11}. This exit plane

confines the current tetrahedra T̃ as well as the current cube Q̃ and thus can be used
together with another lookup table to find the next cube Q̂ along the global ray. Again,
the new local ray start in the next unit cube Q̂ := Q2 can be easily found from last exit
position r̃e using modulo computation (see Sec. 2.6). Whereas the first tetrahedron in
the next cube Q̂ is found by using the last considered tetrahedron T̃ ⊂ Q̃, the exit plane
P T̃i and the second lookup table.

3.7.2 Univariate Polynomial Pieces

Here, local polynomial pieces according to T have to be evaluated for real volume or iso-
surface rendering. Thus, if r̃s = r̃(ts) and r̃e = r̃(te), where ts := t0 := 0 < te := t1 := t̃,
are two intersection points of r̃(t) and T . Then, the restriction of the polynomial piece p
to the line segment [̃rs, r̃e] is a univariate polynomial of degree 1, 2 or 3 (cf. right images

80 3.7. SIMPLE RAY-CASTING

CHAPTER 3. TRIVARIATE BÉZIER SPLINES

in Fig. 2.6). The necessary equations of 1st (N = 0), 2nd (N = 1) or 3rd (N = 2) degree
are set up by computing the values w̃s, w̃i, and w̃e at positions r̃s, r̃i = r̃(i/(N + 1)),
and r̃e, where i = 1, . . . , N and N ∈ {0, 1, 2} (cf. Sec. 2).

Figure 3.9: Left: Ray-Casting a uniform tetrahedral partition (simplified two-dimensional
view). The intersection positions (green dots) of the ray (blue ray) and the tetrahedra (blue
triangles) define the intersection planes (red lines), which are used to find the next local start
position of the ray segment according to the next tetrahedron or local unit cube. Right: On each
tetrahedron univariate polynomial pieces of total degree 1 (top) and 2 (bottom) are defined. The
green solid dots rsl and rel indicate the intersections of the ray and the tetrahedron (as in left
image), where wsl and wel are the corresponding values (green rectangles) as obtained by the de
Casteljau algorithm. The green circles rsl < ri < rel, i = 1, . . . , N are intermediate position
along the ray, where values (green rectangles) wi are obtained by the de Casteljau algorithm as
well. All values are used to defined polynomials in Newton form of total degree 1 (right top image)
and 2 (right bottom image).

3.7. SIMPLE RAY-CASTING 81

Part III

Fast Shear-Warp Algorithm

1 Introduction

1.1 Related Work

In this section we summarize the state of the art based on the shear-warp algorithm,
where the original method [Lac95] is still considered as one of the fastest software based
volume rendering implementations. We also briefly recall the basic ideas making such an
efficient implementation possible, and finally in the following sections we further develop
this method into our new implementation. However, the original shear-warp method
[LL94] [Lac95] belongs to the so called intermediate algorithms. It efficiently utilizes
both acceleration techniques, i.e. space leaping and early-ray termination (see part I).
It has been shown that this algorithm is very efficient due to its ability to optimally
use the cache architecture found in modern computers. In [SNL01] a perspective shear-
warp algorithm in a virtual environment based on the specifications in [Lac95] has been
developed. Later, this algorithm has been parallelized [SL02]. Artifacts arising in the
original implementation led to modifications and essential further developments of the
shear-warp approach. In [SM02] a sophisticated improvement using intermediate slices
was introduced to reduce the overall sampling distance, which is often considered as a
major source for artifacts visible on the screen. A similar approach using Hermite curves
was given in [SHM04]. Recently, [SKLE03] included pre-integrated volume rendering in
the shear-warp algorithm for parallel projection to further reduce potential problems
connected with the classification step in the rendering. Our approach presented below is
orthogonal to pre-integrated volume rendering, since it uses linear univariate models of
the opacity and color function defined within a cubic cell, whereas we consider trivariate
piecewise polynomials on tetrahedral and cubic partitions. Therefore, we can easily
extend this method using pre-integrated rendering as well. In addition, the three-fold
overhead for coding the volume data has been solved by reducing the coding to two
[SM02] and one coded volume(s) [SHM04], respectively.

1.2 Overview of the Shear-Warp Algorithm

Let us first summarize the original method, which uses three run-length encoded data
sets1 one for each main viewing direction. This is done by classification based on the
density values, i.e. mapping the scalar values (density) to opacities and colors and
encoding these values using appropriate data structures into run-length encoded data
sets. Each run-length encoded data item (voxel) consists of two entities, i.e. an opacity
value and a shading index representing the local gradient. Next, just before rendering
the total transformation matrix T is factorized into a shear S and a warp W matrix.
The major viewing axis is determined from T and the appropriate run-length-encoding

1A data reduction which encodes runs of voxels with opacities smaller than a user-defined threshold by
the length of the run.

85

CHAPTER 1. INTRODUCTION

is chosen. Then, the sheared volume slices are scaled, re-sampled and projected in front-
to-back order into the intermediate image, aligned with the volume slice most parallel
to the final image plane. The grid spacing in this intermediate image equals that of
the volume being rendered – only for the parallel projection case. Rays perpendicular
to the intermediate image are cast from the pixels of the intermediate image plane into
the sheared volume. During rendering two adjacent run-length encoded scan-lines are
traversed simultaneously. Space-leaping, i.e. skipping transparent (low opacity) data
values (voxels), is realized efficiently because of the run-length encoded scan-lines of the
volume. Each time a non-transparent data (a voxel) is detected in one of the two voxel
runs the corresponding pixel in the scan-line of the intermediate image is updated. If
this pixel is already opaque, i.e. the value of the accumulated opacity in this pixel is
above a user-defined threshold, then all adjacent opaque pixels are skipped as well, and
the dynamic run-length encoded data structure of the intermediate image is updated.
Otherwise, if this pixel is not opaque the shading indices of the run-length encoded data
are used to compute the colors by using a shading lookup table. The colors as well as
the opacities are bi-linearly interpolated and the resulting new color and opacity are
then composite with the corresponding intermediate image pixel colors and opacities.
Finally, after rendering all slices, the two-dimensional transformation is applied to the
intermediate image by using the warp matrix.

1.3 Basic Idea of the Shear-Warp Factorization

The basic idea of the shear-warp algorithm relates the to standard ray-casting algorithm.
Here, basically rays

rν,μ(t) = rν,μs + t rν,μd (1.1)

are cast into the volume from each image pixel ν := 0, 1, . . . , N and μ := 0, 1, . . . ,M ,
where N ×M is the size of the image (or size the viewport) and rν,μs , rν,μd ∈ R

3 are the
ray start and direction in image space, respectively. These rays can be determined and
manipulated by a projection matrix, which transforms points from object space into the
image space by

xi = Mv Mp Ml Mt xo,

xi = M xo, (1.2)

where Mt,Ml,Mp, and Mv ∈ R
4×4 are the object to world (transform), world to eye or

camera (look-at), eye or camera to clip (projection) and clip to image (v iew-port) trans-
forms (matrices), respectively. The homogeneous coordinates (point locations) in object
and image space are denoted as xo,xi ∈ R

4 and M is called the total transformation
matrix. The idea now is to decompose this matrix as

M = Mwarp Mshear Mperm, (1.3)

where Mperm,Mshear, and Mwarp ∈ R
4×4 are the permutation, shear, and warp matrices,

respectively. This results – as can be seen in Fig. 1.1 and 1.2 – in rays which are
perpendicular to one face of the volume and the so called intermediate image. In other
words, in intermediate image space all rays going through the intermediate image pixels

86 1.3. BASIC IDEA OF THE SHEAR-WARP FACTORIZATION

CHAPTER 1. INTRODUCTION

are perpendicular to that image. In this sense, all slices of the volume can be sheared,
scaled, re-sampled and projected into the intermediate image according to this shear
matrix where according to the permutation matrix or the main viewing direction the
respective data set to be projected is chosen. Note, to satisfy the compositing order
which results from the volume rendering integral the slices are processed in a front-to-
back manner. Finally, the intermediate image is transformed by the warp matrix into the
final image, which is a two-dimensional transformation only and can be efficiently realized
by graphics hardware. However, in the next section we will recall the decomposition of
the total transformation matrix M into its parts Mwarp,Mshear, and Mperm in a more
detailed way.

1.4 Factorization of the Transformation Matrix

1.4.1 Parallel Projection Case

In this case the projection matrix Mp of Equ. (1.2) is assumed to be a parallel projection
matrix Mp := Mortho, i.e. the viewer (or viewpoint) is infinitely far away from the object
and the rays become parallel (cf. Fig. 1.1). Now, the total transformation M ∈ R

4×4

becomes an affine viewing transformation matrix which transforms points from object
space to image space with no perspective scale. The goal is to factor this matrix according
to Equ. (1.3).
The shear matrix transforms standard object space coordinates into sheared object space
coordinates and by definition the standard object space coordinate system is sheared
until the viewing direction becomes perpendicular to the slices of the volume. However,
in image space the viewing direction vector is defined as vi := (0, 0, 1, 0)T and by applying
the linear system of equations (cf. Equ. 1.2) we obtain⎛

⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 m44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vo,x
vo,y
vo,z
0

⎞
⎟⎟⎠ . (1.4)

Note that alternatively we could use the viewing direction in camera or eye space, i.e.
(0, 0,−1, 0)T, and the appropriate transformations to compute vo. However, the view-
ing direction vector vo := (vo,x, vo,y, vo,z, 0) in object space can be easily found using
Cramer’s rule or the inverse M−1. Now, the principal viewing axis is defined as the
object-space axis which is most parallel to the viewing direction vo. Hence, to avoid
special cases a permutation matrix has to be defined as well, which relates to the prin-
cipal viewing axis. This transforms object space coordinates into standard object space
coordinates by xso = Mpermxo. The application of the inverse of this permutation
matrix to the transformation matrix M gives a new permuted transformation matrix
M′ = MM−1

perm. This transforms standard object coordinates into image coordinates,
i.e. xi = M′xso. In standard object coordinates the z axis is always the principle viewing
axis. Thus, using M′ and vso = Mpermvo the necessary shear factors in x, y directions
in standard object space are

sx = −vso,x/vso,z, (1.5)
sy = −vso,y/vso,z (1.6)

1.4. FACTORIZATION OF THE TRANSFORMATION MATRIX 87

CHAPTER 1. INTRODUCTION

and according to Equ. (1.3) we obtain

M′ =

⎛
⎜⎜⎝

m′
11 m′

12 (m′
13 − sxm

′
11 − sym

′
12) m′

14

m′
21 m′

22 (m′
23 − sxm

′
21 − sym

′
22) m′

24

m′
31 m′

32 (m′
33 − sxm

′
31 − sym

′
32) m′

34

0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸

⎛
⎜⎜⎝

1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
(1.7)

= M′
warp M′

shear, (1.8)

where the shear matrix M′
shear projects each slice of the volume onto the slice located

at z = 0. The projected and composited slices define the intermediate image, where the
current coordinate system is not convenient because the origin is not located at a corner
of the intermediate image. For this, the coordinate system of the intermediate image can
be defined by projecting the eight corners of the volume into the slice located at z = 0 by
using the above shear transformation M′

shear. Then, the minimal x, y coordinates of the

Figure 1.1: Left: Ray-Casting using a parallel projection matrix. Right: Shear-Warp fac-
torization. After decomposition the rays are perpendicular to the volume slices (lines in black
color) and the intermediate image (line in cyan color), which coincides with the first slice of the
volume. All volume slices are sheared, re-sampled and projected into the intermediate image by
using the shear matrix. Finally, this image is transformed using the warp matrix into the final
image (line in red color).

projected volume are repositioned to the lower-left corner (the origin) of the intermediate
image, which gives the translation offsets tx, ty. The shear and translation information
defines the intermediate image coordinate system, thus the new shear matrix Mshear

can be defined and be used to project and composite each slice of the volume into the
intermediate image. The compositing order is another important issue. Thus, a front-
to-back traversal of the volume slices has to be satisfied, but this can correspond to
looping through the slices in increasing order or in decreasing order depending on the
viewing direction. This stacking order of the slices is found by examining the component
of the viewing direction vector corresponding to the principal viewing axis, i.e. vso,z. If
vso,z ≥ 0, then the slice at z = 0 is the front slice, otherwise the slice located at z = zmax
(where zmax is the size of the volume in depth direction in the standard coordinate

88 1.4. FACTORIZATION OF THE TRANSFORMATION MATRIX

CHAPTER 1. INTRODUCTION

system). Finally, the shear matrix equals,

Mshear =

⎛
⎜⎜⎝

1 0 sx tx
0 1 sy ty
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (1.9)

and transforms standard object coordinates to intermediate image coordinates, where
the warp matrix can be computed from

Mwarp =

⎛
⎜⎜⎝

m′
11 m′

12 (m′
13 − sxm

′
11 − sym

′
12) m′

14

m′
21 m′

22 (m′
23 − sxm

′
21 − sym

′
22) m′

24

m′
31 m′

32 (m′
33 − sxm

′
31 − sym

′
32) m′

34

0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 −tx
0 1 0 −ty
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠(1.10)

and transforms intermediate image coordinates to the final image coordinates. Thus, the
shear-warp factorization of an arbitrary affine viewing transformation matrix M includes
a permutation Mperm, a shear Mshear, and a warp Mwarp matrix and can be written as
M = MwarpMshearMperm (cf. Equ. 1.3).

1.4.2 Perspective Projection Case

Similar to the parallel projection case the matrix Mp of Equ. (1.2) is now assumed to be a
perspective projection matrix Mp := Mfrustum, i.e. the viewer (or viewpoint) is located
at a finite distance from the object (cf. Fig. 1.2). Now, the total transformation ma-
trix M ∈ R

4×4 becomes a perspective viewing transformation matrix which transforms
points from object space to image space using a perspective scale of the homogenous
coordinates. Note that this transformation matrix needs not to be singular. The goal is
once more to factor this matrix according to Equ. (1.3). However, the first step is to find
the eye location in object space eo according to Equ. (1.2), where the the eye position
in image space is defined to be ei := (0, 0,−1, 0). Hence, once more the eye position can
be found by solving the linear system of equations⎛

⎜⎜⎝
0
0
−1
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

eo,x
eo,y
eo,z
eo,w

⎞
⎟⎟⎠ . (1.11)

In the second step we need to find the principal viewing direction. Basically, it is the
same procedure as in the parallel projection case, i.e. the principal viewing axis is defined
as the object-space axis which is most parallel to the object-space viewing direction. But,
since now we do not have a unique viewing direction, several procedures are possible.
The first possibility is to define eight vectors, i.e. from the eye position eo to each corner
of the volume po,i, where i = 0, . . . , 7 (note, in this case i is an index). Then, for each
vector po,i−eo the same procedure is used as for an affine case to find the corresponding
principal viewing axis, i.e. the largest component of this vector determines the axis.
If for all vectors we get the same principal viewing axis, then, we are fine and one
permutation matrix can be chosen to avoid spacial cases. Otherwise, the volume has
to be split into at most eight sub-volumes which are rendered from different principal

1.4. FACTORIZATION OF THE TRANSFORMATION MATRIX 89

CHAPTER 1. INTRODUCTION

viewing directions (axes), i.e. the factorization is proceeded for each of the required
principal viewing directions. Another possibility is to apply the same procedure used for
the affine case to find the principle viewing axis. In this simpler but faster case we avoid
the splitting of the volume into several parts at the cost of reduced rendering quality if
the eye gets too close to the object. However, once the permutation matrix is chosen –
based on the principal viewing axis – the transformation from standard object space to
image space can be computed as M′ = MM−1

permM−1
trans, where Mtrans is a translation

matrix, that translates the origin of the volume to avoid divisions by zero. Thus, again
using M′ and eso = MtransMpermeo the necessary shear factors in x, y directions are

sx = −eso,x/eso,z, (1.12)
sy = −eso,y/eso,z (1.13)

whereby now we obtain a perspective scaling transformations

sz = −eso,w/eso,z (1.14)

as well. According to Equ. (1.3) we obtain

M′ = M′
warpM

′
shear (1.15)

= M′
warp

⎛
⎜⎜⎝

1 0 sx 0
0 1 sy 0
0 0 1 0
0 0 sz 1

⎞
⎟⎟⎠ , (1.16)

The shear matrix M′
shear derived above guarantees that the volume slice located in the

z = 0 plane has a scale factor of one. Depending on the stacking order of the volume

Figure 1.2: Left: Ray-Casting using a perspective projection matrix. Right: Shear-Warp
factorization. After decomposition rays are perpendicular to the volume slices (lines in black
color) and the intermediate image (line in cyan color), which coincides with the first slice of
the volume. All volume slices are sheared, scaled, re-sampled and projected into the intermediate
image by using the shear matrix. Finally, this image is transformed using the warp matrix into
the final image (line in red color).

slices – as in the affine case – that slice is not necessarily the front volume slice. Thus,

90 1.4. FACTORIZATION OF THE TRANSFORMATION MATRIX

CHAPTER 1. INTRODUCTION

another uniform scale has to be defined so that the front-most volume slice is scaled by
a factor of one. Then, a translation is chosen to position the origin of the projected
volume cube at the bottom-left corner of the intermediate image. Hence, the final shear
transformation equals

Mshear =

⎛
⎜⎜⎝

f 0 fsx + txsz tx
0 f fsy + tysz ty
0 0 1 0
0 0 sz 1

⎞
⎟⎟⎠ (1.17)

and transforms standard object coordinates to intermediate image coordinates, where

f =
{

1 if slice k = 0 is in front
1 − zmaxsz otherwise

(1.18)

and zmax := N − 1 with N the size (dimension) of the volume data set (as before) along
the z direction (in standard object space). Here, once more, tx, ty are the translation
factors which translates the deformed space (the lower left corner) into the intermediate
image space (origin). The warp matrix is given again by

Mwarp = M′M−1
shear (1.19)

which transforms intermediate image coordinates to the final coordinates. Hence, the
shear-warp factorization of an arbitrary perspective viewing transformation matrix M
includes a permutation matrix Mperm, a shift of the origin matrix Mtrans (only if the
eye point eo in object space lies in the z = 0 slice of the volume), a three-dimensional
shear, perspective scale, and a translation matrix Mshear, and a perspective warp matrix
Mwarp and can be written as M = MwarpMshearMtransMperm.

1.4.3 Properties

The projection from the object space to the intermediate image space has several well
known geometric properties that simplify the rendering algorithm. First, scan-lines in the
intermediate image are parallel to scan-lines in the volume slices. Second, each volume
slice is scaled by the same factor, whereas in parallel projection case this factor can be
chosen arbitrarily2. Third, in the parallel projection case the interpolation weights for
the voxels within a slice are the same, whereas in the perspective projection case they
have to be computed on the fly (cf. Fig. 1.3).

1.5 Data Structures

1.5.1 Run-Length Encoded Volume

First, let us review some data structures used for run-length encoding of the raw data set
and process itself. This is important for further discussion and for our new extensions
done to overcome the data redundancy.

2In fact, a unity scale factor is chosen so that for a given voxel scan-line there is a one-to-one mapping
to the intermediate-image pixels.

1.5. DATA STRUCTURES 91

CHAPTER 1. INTRODUCTION

Figure 1.3: Left: The interpolation weights are the same for each voxel within a slice in the
parallel projection case. Right: The interpolation weights have to be recomputed for each voxel
within a slice in the perspective projection case. In both cases the black dots are the original data
values located on a volume slice, whereas the blue dots are the interpolated values located on a
volume slice as well, but at positions where the rays intersect the corresponding slice.

The run-length encoded volume is constructed in a preprocessing step. For this, the
volume is traversed in object order and a user-specified opacity function is used to
classify each voxel, i.e. using an opacity transfer function each raw data value (density)
– usually stored in 8 bit – is classified, giving the opacity. Then, using also a user-
specified threshold each classified voxel (i.e. the voxel’s opacity) is used to determine
the transparency, i.e. whether to save this voxel in the run data structure3 or not. Thus,
for all non-transparent voxels the lengths of the runs and the data itself is stored, whereas
for the transparent voxels only the lengths of the runs are stored. The local gradients are
computed by using central differences, Sobel operator, or higher order approximations
from the classified data (opacities) or the original raw data values (densities). Applying
a quantization method to the gradients gives an index. This index and the opacity (or
density) are stored in the data array of the run-length encoded data set (as one needs).
The gradient itself is saved in another lookup table at the index position for later use
(i.e. for shading during rendering by using Phong illumination model). Note, in the
original method a different table is used, where at the gradient’s index position the
result of the shading using the local gradient is stored. This accelerates the algorithm
enormously. However, one has to make notes in the run-length array of the run-length
encoded data set, i.e. how many values are encoded and/or skipped. Only together with
this information one is able to represent the raw data set as a run-length encoded set.
For the representation of the volume as a run-length encoded volume a data structure
of three arrays is necessary. The first array contains the non-transparent data after
classification4, whereas the second one encloses the run-length data, i.e. how many
(non-)empty data values are already processed and stored. Further, another array is
necessary which combines the data and the run-length array of the encoded data set,
and this one stores pointers into the first two arrays and is used to find the beginning of
each slice or scan-line of a slice of the original volume (cf. Fig. 1.4). We can say that this
array accounts for the synchronization of the other two arrays. In the original method

3A run is a sequence of contiguous voxels that are all transparent or all non-transparent.
4Classified data below a user-defined threshold is not stored in the data array.

92 1.5. DATA STRUCTURES

CHAPTER 1. INTRODUCTION

this is a simple one-dimensional array (cf. left drawing in Fig. 1.5), where each entry
contains a pointer to the run-length data (i.e. the number of (non-)empty data within
a slice) and a pointer to the data values itself (i.e. the opacities and indices, which are
used for the gradient- or color lookup tables). Each entry in this one-dimensional array
is associated with the beginning of a slice in the run-length encoded volume (cf. black
marked array in left drawing of Fig. 1.5).

Figure 1.4: Left: An array of pointers, where each entry PL
i and PD

i is a pointer used to find the
beginning of a slice or a scan-line with run lengths L and data D values, respectively. Right: The
run length array (L�

j) contains alternating entries of transparent (LT
j) and non-transparent (LN

j)
run lengths. Each array starts with a transparent run and ends with a non-transparent run. The
corresponding data array (DN

j) contains only data values (as for example the opacity, density, and
color values) of the non-transparent runs (LN

j). Note that all arrays are continuous in memory,
i.e. the run-length entries are stored as L�

1, L
�
2, . . . , L

�
k and the data values as DN

1 , D
N
2 , . . . , D

N
k

and only the pointers PL
i and PD

i are set appropriately.

The 3-Fold Redundancy

The original shear-warp approach [Lac95] comes with a 3-fold redundancy of run-length
encoded data sets. That means, three run-length encoded data sets are pre-computed,
one for each principle viewing direction x, y and z, respectively. During rendering one
of those data sets – dependent on the principle viewing direction (cf. Sec. 1.4) – is
chosen to be projected it onto intermediate image, where the run-length encoded slices
are processed in front-to-back manner. In the following sections, we are going to describe
how to remove two of the three data sets without sacrificing the efficiency of the original
method significantly.

The 2-Fold Redundancy

From the left drawing in Fig. 1.5 one can observe that the two individual run-length
encoded data sets, i.e. used for the principal z and y viewing directions are basically
identical. The main difference is the order in which they are used, i.e. the order how the
original data set is traversed dependent on the principle viewing direction. With this
observation two operations have to be realized. First, the run-length encoded data set
used for the principle z viewing direction is still maintained5. Then, a two-dimensional
array is used to store pointers into each scan-line of a slice of the run-length encoded
volume data set. Previously, a one-dimensional pointer array to the run-length encoded
slices has been used only. This modification allows reusing the run-length encoded Z

5Any one of the three data sets could be retained as well.

1.5. DATA STRUCTURES 93

CHAPTER 1. INTRODUCTION

data set for both the z and y principle viewing direction. Next, the permutation matrix
(cf. Sec. 1.4) has to be adapted accordingly, i.e. when viewing along the principle y
direction. The advantage is that the run-length encoded Y data set has neither to be
computed nor to be encoded, i.e. a total of O(K/3) of all non empty data values K
stored in the run-length encoded data structure can be saved as well as the pointer
and run-length data structures. Whereby the size of the whole run-length encoded data
structure is increased now by using a two-dimensional array of size N ×M with pointers
into scan-lines of volume slices. The original method uses a one-dimensional array of
size N with pointer into the slices itself only6.
However, this small modification allows still for efficient space leaping and early-ray
termination, both remaining unchanged from the original algorithm. Even the scan-
lines used during rendering are usually sufficiently long, which means that the cache is
filled often, and, therefore, degradation in performance by cache misses is unlikely.

Figure 1.5: Left: Three run-length encoded (RLE) data sets (original, cf. [Lac95]). The RLE
Z, Y , and X data sets are marked in red, blue, and green colors and are used for the z, y, and
x principle viewing directions marked in the same colors, respectively. The slices of the RLE
Z data set are highlighted as red, where a one-dimensional array (drawn as black colored array
rightmost in this left figure) is used to store pointers to the run-length data and the data itself of
each slice of this run-length encoded data set. This encoding is done for each of the three data
sets separately. Right: Two run-length encoded (RLE) data sets (cf. [SM02] [SHM04]). The
RLE Z and X data sets are marked in red and green colors and are used for the z, y, and x
principle viewing directions marked in the same colors, respectively. Once more the slices of the
RLE Z data set are highlighted as red, where now an two-dimensional array (drawn as black
colored array rightmost in the right figure) is used to store pointers to the run-length data and
the data itself of each scan-line of a slice. This encoding is done for each of the two data sets
separately. Note, the run-length encoded Y data set (marked in blue color) has neither to be
computed nor to be encoded.

Non-Redundancy

The second run-length-encoded volume, i.e. that used for the principal x viewing direc-
tion, can not be removed without sacrificing the efficiency of the shear-warp method.
However, the basic idea to eliminate the second run-length encoded data set is to use
new data structures and a combination of ray-casting and shear-warp. Before we go into
more details in Sec. 2, let us outline the problem. By simply removing the run-length
encoded X data set (shown in green color in Fig. 1.5) one has to care about the con-
sequences. That means, considering the main z and y viewing directions the scan-lines

6Here N and M are the dimensions of the raw data volume in z and y directions, respectively.

94 1.5. DATA STRUCTURES

CHAPTER 1. INTRODUCTION

of the Z data set are still processed in a parallel manner according to the intermediate
image scan-lines. In contrary to this, if the principle viewing direction becomes the x
direction we have to process the volume scan-lines in a perpendicular way to the inter-
mediate image, i.e. we process the Z data set still in storage order (object order) but the
intermediate image scan-lines are now processed in an oblique manner. For this we have
to develop new data structures, which allow us to project the scan-lines oriented perpen-
dicular to the intermediate image in an appropriate way. Moreover, the two standard
acceleration techniques (space-leaping and early-ray-termination) should be applicable
and efficient (cf. Fig. 1.6) as well.

Figure 1.6: Left: The same configuration as in right drawing of Fig. 1.5, where here the
RLE X data set has been removed. Right: Using the run-length-encoded (RLE) Z data set
only (cf. [SHM04] [SHZ+05]), still a two-dimensional array of pointers into run-length encoded
scan-lines is used (see left figure). Removing the RLE X data set one has to process the the scan-
lines of the RLE Z data set, which are perpendicular to the intermediate image during rendering.
Thus, the intermediate image scan-lines are processed in an oblique fashion. In other words, here
the intermediate image is aligned with the y, z plane of the coordinate system and the appropriate
volume face. The volume scan-lines are encoded along the x-direction of the coordinate system.
The grid constant, i.e. the spacing between the data values in the volume (voxels) and the
intermediate image (pixels) is equal. In the center of the right image a column consisting of
four run-length encoded scan-lines of the Z data set is emphasized. Here empty data values (i.e.
where opacity is smaller than a threshold) are marked as black circles, whereas non empty data
values are drawn as solid black dots. Now each such column in the run-length encoded Z data set
has to be processed, and the contributions are projected onto the appropriate intermediate pixels,
where solid cyan dots denote opaque pixels and cyan circles (semi-)transparent pixels.

1.5.2 Coherence Encoded Volume

Run-length data structures can be applied to describe empty space or better chunks of
equal data values (i.e. coherence) along a direction. This, for example, can be the case
within a volume scan-line. Here, an empty or a constant run of data values is encoded
by a number (the sum of equal data values) and the data value itself, no matter of the
underlying data type (i.e. whether we deal with opacity, density or color values). Hence,
this data structure encodes piecewise constant functions very well, i.e. homogeneity
within the local neighborhood [FS97] (where emptiness is a special case). However,
higher degree polynomials can be applied here as well to encode linear (cf. [CHM01]
[Che01]), quadratic or cubic functions within the data along one direction. In other
words, an arbitrary one-dimensional function is subdivided into several (not necessarily)
equidistant intervals, where each interval is represented by a linear, quadratic or cubic

1.5. DATA STRUCTURES 95

CHAPTER 1. INTRODUCTION

function. Note that one has to carefully put the piecewise linear, quadratic or cubic
functions together, i.e. by considering appropriate smoothness conditions across the
intervales of the whole function space.
However, the algorithm to compute the coherence encoding of a volume scanline (a one-
dimensional function) or better the breakpoints is applied to our shear-warp method and
can be described as follows.
The linearization of an arbitrary function7 (or curve) f(x) ∈ R can be performed by an
error-based criterion [Che01]

err(c1, c0) =
1

ie − is + 1

ie−1∑
i=is+1

|f(xi) − g(xi)| (1.20)

with g(x) = c1x+ c0 the piecewise linear function. Here c1 = (fie − fis)/(xie − xis) and
c0 = (fiexis − fisxie)/(xis − xie) are the parameters of a linear function g(x) defined by
the current considered two boundary positions xis and xie and their values fis := f(xis)
and fie := f(xie) with interval h := xi+1 − xi taken from the original function f(x).
The number of sample points including the boundary values is ie − is + 1. Note, in
this coherence encoding approach the goal is not to directly approximate an arbitrary
continuous function or curve, but only some sample values obtained possibly from such a
function. The approximation of a continuous function f using this error-based criterion
depends on the sampling interval h and the strategy would be a little bit different, i.e.
smaller the interval, better the approximation and thus smaller the error between the
original function and the linearization. However, in real world data sets or applications
we often deal with discrete data samples only, mostly we even do not know the continuous
function the samples are taken from and only assume for example a linear, quadratic, etc.
reconstruction model for the data. Hence, linear coherence encoding here means that
an array of discrete data samples is split into several nonequal sized sub-arrays, where
all the samples in such a sub-array can be represented by a linear function defined by
the boundary samples of the corresponding sub-array. That means, only the boundary
samples have to be stored, all other values in between can be reconstructed(cf. Fig. 1.7).
In other words, some breakpoints are determined in the array of discrete data samples,
which further are used to define piecewise linear functions, such that all intermediate data
samples can be reconstructed (or approximated when assuming a small error threshold
value) by these piecewise functions and thus have not to be stored by using an appropriate
data structure.
A straight forward generalization to quadratic coherence encoding using piecewise quadratic
functions would be to replace the linear function by a quadratic function of the form
g(x) = c2x

2 + c1x+ c0. Hence, the parameters c2, c1 and c0 of g(x) would be computed
from the two boundary points as well, i.e. located at positions xis and xie , and their val-
ues fis := f(xis) and fie := f(xie). The third point needed to determine all parameters
of g(x) in this case would be any point between the boundary samples, i.e. for example
at position xii with ii := �(is+ ie)/2�10 and fii := f(xii). Note that now it is not enough
to store the boundary values only. We need to save the value at the intermediate position

7Here, for example x is the spacial position along a scan-line in the volume with f(x) the opacity or
density value at this location x.

10Here, �b� is the maximal integer ≤ b, i.e. the floor operator.

96 1.5. DATA STRUCTURES

CHAPTER 1. INTRODUCTION

Figure 1.7: In linear coherence encoding of (red dots) data value taken at discrete position
from the (red) original continuous curve some (blue circles) breakpoints are computed. These
breakpoints define (blue) piecewise linear functions which can be used to reconstruct data in
between and thus possibly to save some (red dots) data samples. The encoding of data samples
with ε = 0 (left figure) and ε = 1 (right figure) are depicted, where eight and four breakpoints
are needed, and two and six samples (values) are saved, respectively. In both figures the error9

between the sample values of the original function, the function itself and the piecewise linear
representation is depicted. However, in the left image the related error becomes 0 comparing with
the sample points and 0.25 comparing with the original function, respectively. Whereas in the
right figure it is 1.08 comparing with the sample points (i.e. 0.92 between breakpoints with indices
is = 0 and ie = 3 and 0.17 between breakpoints with indices is = 4 and ie = 9) and 0.72 compared
to the original function.

xii as well to be able to reconstruct the other intermediate data values later. Alterna-
tively the parameters of the piecewise function representing this interval could be stored.
Note that appropriate smoothness conditions between the piecewise quadratic functions
should be introduced, such that the overall encoding will be continuously differentiable.

1.5.3 Run-Length Encoded Intermediate Image

The intermediate image is represented by a run-length encoded data structure as well.
This encodes runs of opaque and non-opaque pixels. Nevertheless, the requirements
here are different compared to the run-length encoded volume data structure, which can
be pre-computed. The intermediate image data structure has to be modified during
rendering, thus a dynamic generation of opaque pixel runs, a merging of adjacent runs,
and a fast method to find the end of a run is necessary here. All this allows a fast
implementation of early-ray termination, i.e. voxel computations in adjacent slices can
be skipped if the corresponding pixels are already opaque.
The intermediate image data structure is a two-dimensional array of pixels, where each
pixel contains a color, an opacity, and a relative offset. The size of this two-dimensional
array is determined from the shear-warp factorization. The offset stores the number of
pixels to skip to reach the end of the current opaque pixel run, whereas an offset equals
to zero means that this pixel is non-opaque (cf. Fig. 1.8).
The intermediate image data structure is used as follows. Just after the shear-warp
factorization it is initialized, i.e. all pixel opacities are made transparent and all offsets
are set to zero. Then, during rendering but before any computations are done, it is

1.5. DATA STRUCTURES 97

CHAPTER 1. INTRODUCTION

Figure 1.8: The black circles are identified with non-opaque intermediate image pixels where
the corresponding offsets are set to zero. Analogously, the black dots are identified with opaque
pixels and the offsets are updated by means to point to the first non-opaque pixel in the same
intermediate image scan-line.

checked, whether the current pixel’s offset is non-zero. If it is the case, then the end
of the opaque pixel run is found, thus some pixels as well as voxels can be skipped
and the corresponding computation operations are omitted. Otherwise, voxel data is
interpolated and composited into the corresponding intermediate image pixel. When
after compositing the new pixel’s opacity exceeds the maximum opacity threshold, then
the pixel’s offset is set to one11 and possibly some adjacent opaque pixel runs are merged
with the new one. In other words the dynamic run-length encoding of the intermediate
image scan-lines is updated.

1.6 Volume Reconstruction

For the transformation of a slice into sheared object space (or intermediate image space)
it is necessary to reconstruct values at the intersection positions of the rays coming from
the intermediate image and the slices by using the stored data values on the volume
grid (or slice). However, since the run-length array accounts for transparent voxels,
space-leaping within the scan-lines can be applied easily before any interpolation is
done. The original implementation uses a bilinear interpolation filter. Thus, there are
two possibilities on how to produce the required interpolated voxel scan-line. First,
the backward projection method, where two input scan-lines are traversed and decoded
simultaneously. Here each voxel scan-line has to be considered twice, once for each
interpolated voxel scan-line to which it contributes. Second, the forward projection
method, where each input voxel scan-line is considered only once and it’s contributions
are distributed into the two interpolated voxel scan-lines. Thus, these partial results
have to be stored in a temporary buffer until using the next adjacent input voxel scan-
line the final results can be computed. The second method in not very convenient,
because the temporary buffer need to be run-length encoded to conceive the benefits of
the other coherence data structures. However, during rendering transparent regions are
skipped using the run-length array of the encoded data set, whereas the dynamically
run-length encoded intermediate image scan-lines allows skipping over occluded voxels.
Thus, only voxels which are non-transparent and non-occluded are processed. In the
perspective projection case a reconstruction and a low-pass filter is used, because of the
divergent rays. However, the implementation differs from the parallel projections case.
First, the filter footprint may cover more than two voxel scan-lines. Thus, several input
voxel scan-lines have to be considered to generate one interpolated scan-line. Second,
11That means a new opaque pixel run is created which contains only the current pixel.

98 1.6. VOLUME RECONSTRUCTION

CHAPTER 1. INTRODUCTION

since the slices are scaled not only by unity, the image and volume scan-lines can not
be traversed at the same rate. Third, the reconstruction weights have to be recomputed
for each sample point.

1.7 Opacity Correction

The volume rendering integral is the physical basis on how to compute color and opacity
along a viewing ray from the given volume data, the look-up tables used and how to
accumulate the result in the final image. Here, the spacing between two sample points
along a viewing ray is considered as constant. Using the shear-warp factorization this
spacing is constant in sheared object space, but varies in image space depending on
the current view transformation. Thus, colors and opacities computed in object space
have to be corrected to account for the different spacings in image and object space.
Otherwise, images obtained from an oblique view onto the volume would be about 30%
more transparent than images obtained from a perpendicular view. Thus, the opacity
αd computed using an opacity transfer function φ, is given by

αd = 1 − exp(−φd), (1.21)

where d is the width of the voxel and the initial sample spacing. Then for some other
sample spacing d′ the corrected opacity can be computed by

αd′ = 1 − (1 − αd)d
′/d. (1.22)

The corrected opacity is a function of the initial opacity and the spacing ratio d′/d. In
the parallel projection case this function is the same for every voxel, because of the unit
viewing rays. In the perspective projection case the opacity correction is more difficult
because of the divergent rays not every voxel requires the same correction. However, the
spacing ratio can be computed for each intermediate image pixel just after the viewing
transformation has been changed. During rendering the ratios stored at the intermediate
images pixel positions can be applied to computed the opacity correction for the sampled
values along the corresponding rays.

1.8 Introducing Intermediate Slices

The well known problem arising in the original implementation of the shear-warp al-
gorithm is the sampling distance, which depends on the viewing direction and varies
between 1 (for a perpendicular view) and

√
3 (for an oblique view onto the volume).

This becomes visible as stripe artifacts, which occur in the resulting images. A partial
solution for that is to use intermediate slices (cf. Fig. 1.9 and [SM02]). This reduces the
artifacts compared to the original implementation, but they are still visible, if using high
frequent opacity transfer functions. A way to get rid of this is to perform over-sampling,
i.e. introducing as many intermediate slices as necessary to satisfy the sampling theorem
(see part I).
However, the advantage of using intermediate slices is it’s simplicity and the fact, that
we do not have to run-length encode any intermediate slices, i.e. they are interpolated

1.7. OPACITY CORRECTION 99

CHAPTER 1. INTRODUCTION

Figure 1.9: Left: Shear-Warp factorization for the parallel case using intermediate slices.
Right: Shear-Warp factorization for the perspective case using intermediate slices.

and rendered on the fly using the existing run-length encoded slices. The formula to re-
construct values f by bilinear interpolation within the intermediate slices can be written
as (see Fig.1.10)

f = (s1ũ+ s2u)ṽ + (s3ũ+ s4u)v (1.23)

where u, v, ũ = 1 − u, ṽ = 1 − v are the interpolation weights of the intermediate slice
located at position k + w, w ∈ [0, 1], i.e. between slice k and k + 1 and si, i = 1, 2, 3, 4
are the values on that intermediate slice. These values are reconstructed on the fly by
si = giw̃+ gi+4w, thus we obtain the result by using the trilinear interpolation formula
the result (see Fig. 1.10)

f = ((g1w̃ + g5w)ũ+ (g2w̃ + g6w)u) ṽ (1.24)
+ ((g3w̃ + g7w)ũ+ (g4w̃ + g8w)u) v, (1.25)
= (g1ũṽ + g2uṽ + g3ũv + g4uv)w̃ (1.26)
+ (g5ũṽ + g6uṽ + g7ũv + g8uv)w, (1.27)
= f1w̃ + f2w, (1.28)

where w = 0.5, w̃ = 1 − w, gi, i = 1, . . . , 4 are the four values located on slice k and
gi+4, i = 1, . . . , 4 are the values located on slice k+ 1. The variables g can be identified
with colors, gradients, opacities or densities obtained from the run-length encoded data
set.
Another technique to suppress artifacts [SHM04] is a numerical continuation of the
discrete data set. A Hermite polynomial is placed in between sample points in the two
adjacent volume slices. It is determined by constraints on two sample points v1 :=
(u1, v1, w1), v2 := (u2, v2, w2) and their gradient vectors f1, f2 at these sample points

f(t) = (2t3 − 3t2 + 1)v1 + (−2t3 + 3t2)v2

+ (t3 − 2t2 + t)f1 + (t3 − t2)f2, (1.29)

where the parameter t ∈ [0, 1] specifies an intermediate point and the tangent slope at
the curve can be found by df(t)/dt.

100 1.8. INTRODUCING INTERMEDIATE SLICES

CHAPTER 1. INTRODUCTION

Figure 1.10: Left: Compute the interpolation weights u, v on the intermediate slice located at
position k + w (red rectangle) to reconstruct value f . Middle: Reconstruct values f1, f2 located
at slices k (blue rectangle) and k + 1 (green rectangle), respectively, by using the previously
computed weights u, v and the appropriate data values gi, i = 1, . . . , 8. Right: Reconstruct value
f located on the intermediate slice from values f1, f2 using the weight w. Thus, the data values
si, i = 1, . . . , 4 have not to be encoded nor reconstructed.

The intermediate slice located at position k+w can be composite into the intermediate
image in several ways. First, as a 2-step process. In the first pass running through slice k
once more by considering two run-length encoded volume scan-lines at a time, where now
the values are weighted by a factor of w̃ and the interpolation weights u, v, ũ, ṽ are set
appropriately for slice k+w. In the second pass going through slice k+1, with identical
interpolation weights but using the weighting factor w. Once the contributions of both
slices are added together, the result can be composite with the current intermediate
image in the usual way. Second, by simultaneously compositing slice k and constructing
the partial results as in the first pass above, and do the same for slice k+1 and the second
pass above. However, the speedup may be small by the fact that run traversal would be
sub-optimal, since the pixels just occluded by slice k would still be considered for slice
k+w and k+ 1. In both cases a temporary buffer of the size of the intermediate image
is necessary to summarize the partial results and composite them afterwards. Another
possibility is to consider four run-length encoded volume scan-lines at a time when
rendering slice k + w. This processing is sub-optimal as well, because of space-leaping.
Since only the minimum number of voxels of four instead of two volume scan-lines could
be skipped. However, since real volume data sets are varying smoothly a degradation in
rendering speed is unlikely, whereas a temporary buffer for partial results is not necessary
here.

1.8. INTRODUCING INTERMEDIATE SLICES 101

2 Combination of Ray-Casting and
Shear-Warp

In this section some new data structures will be presented which allow us to combine
ray-casting and the shear-warp algorithm. Due to these data structures one is able to
remove the threefold redundancy of run-length encoded data sets (see Sec. 1.5) and apply
different reconstruction models (cf. Sec. 2 and 3) for data reconstruction, which further
allows solving the volume rendering integral in a more accurate way. Nevertheless, the
algorithm is still performed in object order and utilizes the efficient standard acceleration
techniques as well, i.e. fast space-leaping and early-ray termination. That means, the
well known advantages of the original shear-warp algorithm are preserved, whereby the
quality of the resulting images is dramatically improved by using a ray-casting like
approach and smooth reconstruction models, compared to existing methods based on
the shear-warp factorization.
First, we give the basic idea of our approach for the parallel projection case and show
step by step more details. Afterward the somewhat more difficult case of perspective
projection will be discussed.

2.1 Parallel Projection Case

2.1.1 Basic Idea

The basic idea of our new approach is visualized in the right picture of Fig. 2.1, whereas
in the left drawing the original shear-warp algorithm (cf. Sec.1) is depicted. First, as
we have discussed, in the original method rays are considered to be perpendicular to
the sheared slices and the intermediate image. At the intersections positions of the rays
and the sheared slices values are bi-linearly reconstructed using the data from the lo-
cal neighborhood. Note that the coefficients used for bi-linear reconstruction has to be
computed once per slice only, which are then applied to the local neighborhood of four
data values within a slice to reconstruct a value between them. Thus, after shearing a
slice, i.e. computing the position (projection) of that slice in the intermediate image and
after determining the interpolation weights, space-leaping within the considered voxel
scan-lines of a slice synchronously with early-ray termination by using the correspond-
ing scan-lines of the intermediate image is applied. The bi-linearly interpolated values
are composited in front-to-back manner into the appropriate pixels of the intermediate
image. Although this approach is quite fast it discriminates the quality of the resulting
images. However, by applying the more time-consuming intermediate slices approach
as discussed in Sec. 1 it is possible to generate high-quality images. On the other hand
some questions remain open. How many intermediate slices have to be chosen to obtain
high-quality visual results? Does this depend on the underlying data? Since this ap-
proach applies a trilinear model (namely the intermediate slices) for the reconstruction

103

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

Figure 2.1: Simplified two-dimensional view of the new shear-warp factorization for ortho-
graphic projections. The red lines denote the final image, whereas the cyan lines denote the
intermediate image. The black grid is associated with the volume and the cross points (black
dots) are the data values. Left: The original shear-warp algorithm. Rays are considered perpen-
dicular to the slices and the intermediate image. At the intersections positions of the rays and the
slices (blue dots) values are bi-linearly interpolated (reconstructed). Right: In the new shear-warp
technique rays may vary up to 45◦ according to the main viewing axis. The intersections posi-
tions of the rays and the grid planes (blue dots) are pre-computed, the values at these positions
and anywhere else along a ray can be reconstructed by using several reconstruction models for
the data. Since a parallel projection matrix is used all intersection position of the rays and the
grid may be represented by shifting the column template (yellow highlighted), which stores the
pre-computed positions.

of the volume data, other questions arise immediately. Is that model accurate enough?
Does it represent the data appropriately? What about different reconstruction models,
i.e. can we use piecewise quadratic or cubic spline models as well? Can they be easily
introduced into the shear-warp method? What about a more accurate approximation
of the volume rendering integral? Then, another goal is to remove the threefold redun-
dancy of run-length encoded data sets used in the shear-warp approach, because more
and more data sets obtained from imaging systems like CT, MRI, etc. grow to several
gigabytes. This can be achieved only by developing some new data structures as well.
On that score in our new shear-warp approach (cf. left drawing in Fig. 2.1) we follow a
somewhat different technique. Instead of shearing the slices we let the rays vary up to
45◦ according to the main viewing direction1, both is determined from the model matrix
M of Equ. (1.2). If the angle between the current ray direction and the current main
viewing direction exceeds 45◦ then the shear-warp factorization automatically accounts
for this and selects another main viewing axis, such that the current ray direction will
always stay below this threshold value. Thus, only the processing order of the data set
is different. First of all, the intersection positions (blue dots in Fig. 2.1) of the rays and
the local grid planes are pre-computed and we further allow different data reconstruction
models to obtain data values between the grid points (i.e. piecewise linear-, quadratic-,
and cubic models defined on type-0 and type-6 partitions of the volume). This setting

1A main viewing direction is always the direction parallel to one of the three main viewing axis.

104 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

permits us to easily reconstruct values at these intersection positions and anywhere else
along the rays (but of course not only on the rays). Then, on each interval (i.e. between
two consecutive intersection positions) along different rays rν,μ2 we approximate the
volume rendering integral, compute the iso-surface or the maximum intensity projection
and composite the result in front-to-back order into the appropriate pixels ν, μ of the
intermediate image. We can observe from the right drawing of Fig. 2.1, that only one
such called column template is necessary to represent the intersection positions of all rays
with the local grid planes. During rendering this template is shifted through the volume
grid to quickly find the intersection positions and the other information necessary for
visualization of the volume data.

2.1.2 Column Template

Type-0 Partitions

The column template allows combining ray-casting with the shear-warp algorithm. Let
us now have a look at the details on how to create such a template. The data structure
developed in this section is only applicable for parallel rays, i.e. if the projection matrix
in equation (1.2) becomes a parallel projection matrix (P := Pparallel). However, in this
case it suffices to store only a single such data structure for the whole volume, thus it
can be reused for the other columns in the volume by shifting it with the grid constant.
The information stored in this template is dependent on the main viewing direction,
further we apply this information during rendering in different sequence (which depends
on the viewing direction as well) and the memory consumption is negligible (i.e. the
data structure takes less than 200 kilobytes of memory for volumes of size N3). Further,
this new data structure describes a bijective mapping between object space (voxels) and
intermediate image space (pixels) (see also [YK92]). For further discussion of the details
we assume, without restriction of the general case, that the main viewing axis becomes
the x axis.
In section 2 we have been confronted with the unit cube limited by six planes (2.3).
Similarly, a concatenation of several such unit cubes results in an unit column, which is
defined by six planes as well. Thus, a unit column of a rectangular domain Ω (volume)
can be bounded by the planes

PC6 (x, y, z, d) = PQ6 (x, y, z, d) −D, (2.1)

PC7 (x, y, z, d) = PQ7 (x, y, z, d), (2.2)

PC8 (x, y, z, d) = PQ8 (x, y, z, d), (2.3)

PC9 (x, y, z, d) = PQ9 (x, y, z, d), (2.4)

PC10(x, y, z, d) = PQ10(x, y, z, d), (2.5)

PC11(x, y, z, d) = PQ11(x, y, z, d), (2.6)

where D := L− 2d with L the size of the rectangular domain (i.e. the volume data set)
in x direction and d = 0.5. Thus, a column template represents all information affecting
such an unit column, and can be split into a more local description by considering only

2Here the rays in object space rν,μ are identified with the corresponding intermediate image pixels ν, μ
and not as in ray-casting with the pixels of the final image.

2.1. PARALLEL PROJECTION CASE 105

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

a cube template that is associated with an unit cube Q as defined in Sec. 2 (cf. Fig. 2.2).
From a local point of view the cube template contains all necessary information – except
the data values (or spline coefficients), which are stored in the run-length encoded volume
– to reconstruct data along the rays rν,μ(t) = rν,μs + t rd coming from intermediate image
pixels ν, μ and intersecting the current considered unit cube. Now, each cube template of

Figure 2.2: A column template usable with type-0 partitions of the volumetric domain and
affine projection matrices only. Left: The column template as in Fig. 2.1 with yellow highlighted
unit cubes Qi, i = 1, 2, 3. The bottom and top red lines denote the planes PQ2

9 and PQ2
6 ,

respectively, where the other planes follow directly from Equ. (2.3). The local coordinate system
of the unit column C is located at the center of the first unit cube Q1, where the local systems of
the cubes Qi are placed at their center positions as well. Right: The three-dimensional analog.
The intersection positions of the ray segments with the different planes of the unit cubes are
marked as solid blue dots.

the column template stores the following information. First, the number of ray segments
passing through that unit cube, i.e. there are at most three ray segments (in the parallel
projection case). This results from the shear-warp factorization and the affine viewing
transformation matrix. The at most three ray segments passing through such a unit
cube are associated with three different intermediate image pixels by using relative offset
values. Second, a number (an identifier) for the first ray segment passing through the
current considered cube, i.e. each ray segment passing through the unit column has a
unique identifier and all ray segments are sorted according to the x coordinates of it’s
intersection positions with the unit column (the sorting comes for free using a parallel
projection matrix). Finally, for each ray segment, the intersection positions with the
unit cube are stored, i.e. with the planes (2.3) affected by a ray segment as well as the
plane numbers itself.
The generation of this template is straight forward and is done in an recursive way using
modulo like operations for the intersection computation of a ray and the unit column. For
this, we first need a local ray start and direction according to the unit column to compute
all the intersections with the different planes. Just before rendering, we determine the
current ray direction rd in object space according to the main viewing direction (or axis)
determined from the shear-warp factorization, i.e. for the current total transformation
matrix T. The ray direction remains the same for all of the different rays coming from
the different intermediate image pixels ν, μ (because of an orthographic transformation).
The ray start rν,μs in object space depends on the position of the intermediate image

106 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

pixel ν, μ. Since the intermediate image and the slice located at position x = 0 coincide,
the ray start can be easily computed using the shear-warp factorization. This object
space ray start position is used to determine the column, thus further a unit column
can be considered only. Then, the global ray start position rν,μs has to be transformed
into the local coordinate system of the unit column (both procedures are very similar to
those to find a unit cube and the local coordinates in the volumetric cubic partition ♦,
which has been described in Sec. 2). This local ray start position rCs according to a unit
column C remains constant independent of the intermediate image pixel ν, μ. Since both
parameters (ray start and direction) needed for the generation of this column template
are constant, only one such data structure have to be setup. During rendering for each
intermediate image pixel ν, μ the column has to be determined only (i.e. the data – or
spline coefficients), whereas the information from the column template associated with
the unit column can be reused.
Once we have the local ray start rCs and direction according to the unit column C
we proceed as follows – note, this procedure has to be applied once per view only. We
consider the first unit cube Q1 in the unit column, then, by definition (and by assumption
that the main viewing axis is the x axis), the first local ray start is located in the entry
plane PQ1

9 of Q1 as well as in the plane PC9 of C, i.e. rQ1
s := rCs (similar to Fig. 2.6

where no restrictions are made regarding the projection and main viewing axis). This
defines the first intersection position of the first ray segment R1 with the current unit
cube Q1 as well as an intersection with the unit column C. This information is stored
in the current cube template associated with Q1. Next, dependent on the ray direction
(and the main viewing axis, which is fixed here) we know which three of the remaining
five planes PQ6 , P

Q
7 , P

Q
8 , P

Q
10, and PQ11 have to be intersected3 with ray segment R1 to

find the next (closest) intersection position with Q1 (this has been discussed in Sec. 2.6
as well). Considering the example of Fig. 2.2 the next intersected plane by the ray
segment R1 is PQ1

6 . This intersection plane as well as the exit position rQ1
e are stored

in the current cube template. Further, we save relative offsets associated with the ray
segments going through a unit cube. These are used to determine the intermediate
image pixel position during rendering where the ray segment’s contribution has to be
stored. In other words, the offsets of the first ray segment R1 are always zero, because
its (ray) start position is located in the intermediate image thus at the global position
x = 0 (according to the unit column at rCs = (xCe , y

C
e , z

C
e) = (−0.5, yCe , z

C
e)). Now,

when the ray segment R1 leaves the current considered unit cube Q1 (as in Fig. 2.2),
the next cube template associated with its corresponding unit cube Q2 has to be taken
into consideration. If this unit cube is not part of the unit column C, processing is
stopped, otherwise we proceed as follows. Since R1 leaves Q1 in plane PQ1

6 the exit
position is of type rQ1

e = (xQ1
e , yQ1

e , zQ1
e) = (+0.5, yQ1

e , zQ1
e) and is used to determine

the entry location of R1 in the next unit cube Q2 as rQ2
s = rQ1

e + (−1, 0, 0). According
to the exit plane PQ1

6 of R1 in Q1 the entry plane of R1 in Q2 becomes PQ2
9 now.

According to our example from Fig. 2.2 we have the same situation in the unit cube
Q2. Therefore we proceed here as discussed above. At the outset, the situation in Q3 is
once more the same, i.e. as before the local (ray) start position of R1 according to Q3

becomes rQ3
s = (−0.5, yQ3

e , zQ3
e) with the corresponding entry plane PQ3

9 . We compute
again the intersections of R1 and the remaining planes and find this time the nearest

3This can be pre-computed since the ray direction is constant for each pixel per view.

2.1. PARALLEL PROJECTION CASE 107

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

exit intersection, for example rQ3
e = (xQ3

e ,+0.5, zQ3
e) (or rQ3

e = (xQ3
e , yQ3

e ,+0.5)) with
the appropriate exit plane PQ3

7 (or PQ3
8). Since R1 does not leave the current considered

unit cube in plane P6, a new ray segment R2 has to be considered now. The consequence
is that there are two ray segments (R1 and R2) going through this cube Q3. The relative
offsets of these ray segments used to determine the corresponding intermediate image
pixels during rendering are still zero for R1, whereas for second ray segment R2 these
offsets become, for example, (1, 0) (or (0, 1)). After that, again modulo like operations
are applied. Thus, proceeding in that way the entry position of R2 oriented towards Q3

becomes rQ3
s = rQ3

e +(0,−1, 0) (or rQ3
s = rQ3

e +(0, 0,−1)) with entry plane PQ3
10 (or PQ3

11).
Finally, the last time the intersection of R2 with Q3 is computed, i.e. the ray segment’s
exit intersection rQ3

e = (+0.5, yQ3
e , zQ3

e) with the plane PQ3
6 is determined. The next

unit cube Q4 to consider is not part of the unit column C, thus the pre-computation is
stopped here.

The column template can be generated by the following algorithm.

Algorithm 2.1.1 (Generate Column Template Type-0). The input to this algorithm
are the ray start rCs , the ray direction rd, and the first intersected plane PCi according
to a unit column C as well as the maximal size of the volume data set, i.e. D :=
max(L,M,N).
1: {Check ray start, direction and first intersection plane.}
2: check();
3: {Initialize entry, exit plane flags and the entry intersection information.}
4: initialize();
5: j = k = 1;
6: while k ≤ D do
7: {Compute adjacent intersection information, i.e. the exit intersection of the cur-

rent ray segment Rj according to the current unit cube Qk.}
8: f = next intersection();
9: if f == plane exit then

10: {Ray segment Rj exits the unit cube Qk. Save exit intersection information for
this cube Qk and prepare entry intersection information for next cube Qk+1.}

11: save intersection();
12: prepare next cube();
13: k = k + 1;
14: else
15: {Ray segment Rj does not exit the unit cube Qk. Save exit intersection infor-

mation for this cube Qk and prepare entry intersection information for next ray
segment Rj+1 in this cube Qk.}

16: save intersection();
17: prepare next rseg();
18: j = j + 1;
19: end if
20: end while

108 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

Type-6 Partitions

The column template for this partition type is quite similar to that specified in the
last section (i.e. the differences are due to the partition). Thus, similarly to Sec. 3 we
have to consider the tetrahedral partition of the unit column C as well as the unit cube
Q. More precisely, the differences are: First, additional six plane equations (3.1) have
to be taken into account for the intermediate intersection computations, which results
totally in more intersection positions defined by the ray segments and the different
cubes (see Fig. 2.3). However, for this the data structure itself has not to be changed,
the pre-computation is done in the recursive manner by using the modulo like operations
as above, and thus the treatment of the cubes remains the same. Hence, considering
the first unit cube Q1 as well as the ray segment R1 in Fig. 2.3 a straight forward
implementation could be as follows. Given the enter plane and the entry intersection
position (at t0 := 0) of R1 according to Q1, one could first compute the next, nearest
exit intersection (e.g. at t1 = d) by using R1, the six planes (2.3) and equation (2.14)
as already discussed above. Then the other six planes (3.1) could be used together
with R1 and Equ. (2.14) as well to find another six intermediate intersections (e.g. at
si, i = 1, . . . , 6 marked as dark green dots in Fig. 2.3). The next step would be to discard
all si with si < t0 or si > t1 since they are not in the currently considered interval. The
remaining intermediate intersections have to be sorted according their parameter si – of
course only if i > 1 – to satisfy the order of the subintervals (i.e. the compositing order
or iso-surface computations during rendering). Finally, the positions corresponding to

Figure 2.3: A column template usable with type-6 partitions of the volumetric domain and
affine projection matrices only. The same configuration as in Fig. 2.2. For the intermediate
intersection computations another six different plane equations (a part of those are marked as
green lines) have to be considered (cf. Equ. (3.1)). Thus, in this column template additionally
the positions (dark green dots) and the corresponding planes have to be stored as well.

the remaining si as well as the appropriate (intersected) planes have to be stored in the
column template. However, this implementation is not very elegant. First, we have to
compute for each ray segment going through a unit cube the intersections with all nine
(or eleven, ignoring the dependency of the ray direction) planes no matter if this segment
intersects only two of them (excluding the entry intersection or plane). Second, we have
introduced a sorting step. Hence, our implementation here to determine the intermediate

2.1. PARALLEL PROJECTION CASE 109

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

positions is a bit different, but the same as the method presented in Sec. 3.7. The main
difference here is that we apply modulo like computations as used for the generation of
the type-0 column template (discussed in the previous section).
Hence, we do not discuss the procedure again, instead we give a similar algorithm com-
pared to Alg. 2.1.1, which now generates the column template for type-6 tetrahedral
partitions.

Algorithm 2.1.2 (Generate Column Template Type-6). The input to this algorithm
are the ray start rCs , the ray direction rd, and the first intersected plane PCi according
to a unit column C as well as the maximal size of the volume data set, i.e. D :=
max(L,M,N).
1: {Check ray start, direction and first intersection plane.}
2: check();
3: {Initialize entry, exit plane flags and the entry intersection information.}
4: initialize();
5: j = k = 1;
6: while k ≤ D do
7: {Find first tetrahedron T1 in current cube Qk.}
8: find first tetrahedron();
9: l = 1;

10: {Compute adjacent intersection information, i.e. the exit intersection of the cur-
rent ray segment Rj according to the current unit cube Qk and the current tetra-
hedron Tl.}

11: f = next intersection();
12: while f == plane internal do
13: {Save intersection information and find next tetrahedron Tl+1 using current exit

plane P Tl
� , the current tetrahedron Tl, and the appropriate lookup table from

Sec. 3.1, finally compute modulo intersection information according to the next
tetrahedron Tl+1.}

14: save intersection();
15: find next tetrahedron();
16: l = l + 1;
17: compute modulo informations();
18: {Compute adjacent intersection information, i.e. the exit intersection of the

current ray segment Rj according to the current unit cube Qk and the current
tetrahedron Tl.}

19: f = next intersection();
20: end while
21: assert(l ≤ 7);
22: if f == plane exit then
23: {Ray segment Rj exits the unit cube Qk. Save exit intersection information for

this cube Qk and prepare entry intersection information for next cube Qk+1.}
24: save intersection();
25: prepare next cube();
26: k = k + 1;
27: else
28: {Ray segment Rj does not exit the unit cube Qk. Save exit intersection infor-

110 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

mation for this cube Qk and prepare entry intersection information for next ray
segment Rj+1 in this cube Qk.}

29: save intersection();
30: prepare next rseg();
31: j = j + 1;
32: end if
33: end while

2.1.3 Algorithm and Acceleration Techniques

The computation as well as the usage of the column template is dependent on the
principle viewing directions. Thus, we not only have to process the data set (visit the
voxels) mainly in three different ways (in general their are four cases for each face of the
data set, i.e. in total we have 24 different processing orders of the original data set here,
because this processing dependents on the sign of the ray direction itself as well), we also
have to adapt the generation of the template (i.e. the planes intersected with the different
ray segments – see previous section – have to be permuted according to the permutation
matrix in Sec. 1 and the signs of the principle viewing directions). This template is
then applied during rendering in two different manners as well. This comes from the
fact, that we use one run-length encoded data set for all viewing directions only (see
Sec. 1.5). Hence, the acceleration techniques have also to be adapted to some extent.
However, space leaping remains more or less unchanged, no matter of the principle
viewing direction. Whereas, early-ray termination has to be applied in the right way,
i.e. in accordance to the usage of the column template (or adequately to the principle
viewing directions). This is discussed next.

The Principle y, z Directions

For both main viewing directions we apply the run-length encoded Z data set only. How-
ever, the run-length encoded data scan-lines as well as the dynamically run-length en-
coded intermediate image scan-lines are in both cases parallel to each other (cf. Sec. 1.5,
Fig. 1.5, and Fig. 1.6). The stacking order of the slices (the sign of the principle viewing
direction), i.e. whether we are looking down the positive or the negative direction of the
corresponding axis, determines the processing order of the pointer array (cf. Fig. 1.4,
Fig. 1.5, and Fig. 1.6), i.e. which scan-lines or slices are processed first. Whereas from
the global ray direction (each ray corresponding to an intermediate image pixel has the
same direction) we determine the order on how to go through the intermediate image,
i.e. from top-left to bottom-right, from top-right to bottom-left or vice versa, and how to
visit the data values in the run-length encoded voxel scan-lines, i.e. from left to right or
vice versa, respectively. This is necessary to satisfy the compositing order. The rendering
algorithm can be described as follows. Just before rendering – as in original method – we
determine the main axis (in this case we consider the y or z-axis only) and the stacking
order of the slices. Then the global (constant) ray direction and the local (constant) ray
start according to the unit column are determined from the shear-warp factorization.
The column template is pre-computed considering the permutation matrix respectively
the appropriate plane equations. During rendering all slices are processed scan-line by
scan-line in a front to back manner from left to right, top to down or vice versa to satisfy

2.1. PARALLEL PROJECTION CASE 111

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

compositing order (see above). This is dependent on the global (constant) ray direction.
Then, for all unit cubes4 of the first slice we use the pre-computed information from
the first cube template of the column template, for all unit cubes of the second slice
the information from the second cube template of column is used and so on, i.e. the
pre-computed intersection and projection information are reused from the template and
remain the same during the processing of a slice (in the original method the re-sampling
weights for the different voxels within a slice are the same). However, space leaping of
the unit cubes comes for free by using the run-length encoded data structure, i.e. we
skip the appropriate data values (or spline coefficients) within scan-lines of a slice. In
other words, we simply skip the processing of all cubes within a scan-line of a slice,
where the ray segments going through the considered unit cubes do not contribute to
the appropriate intermediate image pixels because the corresponding data values (taken
from the run-length encoded data set) are empty. For early-ray termination we apply
dynamic run-length encoding of the intermediate image scan-lines, where at most three,
two or only one scan-line(s) have to be considered at a time. This results from at most
three ray segments going through a unit cube, which affect at most three intermediate
image pixel in two different scan-lines (cf. Fig. 2.4).

Figure 2.4: Left: The projection of a (black dotted) voxel scan-line onto at most three (marked
as cyan squares) intermediate image scan-lines. The pre-computed (solid black) unit column can
be considered perpendicular to the voxel scan-line, where the information of the unit cubes cor-
responds to the appropriate slices. Right: The same projection, where at most three dynamically
run-length encoded intermediate image scan-lines have to be considered for early-ray termination.
Each transparent (cyan circle) or opaque (cyan dot) intermediate image pixel is located at the
center of the unit square. The intermediate image domain is subdivided by unit squares into a
uniform planar partition.

The general rendering algorithm for these principle viewing directions can be written as
follows.

Algorithm 2.1.3 (Render Orthographic Y,Z Axis). The input to the shear-warp al-
gorithm are the run-length encoded data set, the viewing specification, and the image
buffers where to store the result.
1: {Compute factorization, initialize variables and intermediate image,}
2: initialization();

4The data values are located in the center or at the corners of the unit cubes, dependent on the
reconstruction method used. But they are stored in the run-length encoded data set.

112 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

3: {Generate column template using Alg. 2.1.1 or 2.1.2}
4: column template generate();
5: {For each slice of the volume in front-to-back manner.}
6: for k = 0 < kmax do
7: {Read the appropriate and necessary intersection information from column tem-

plate.}
8: cinfo = column template read cube info(k);
9: {For each scan-line(s) of slice k in appropriate order.}

10: for i = 0 < imax do
11: {Get the appropriate voxel and image scan-line(s).}
12: get scanlines(i, k)
13: {Until not the end of scan-line(s).}
14: while j < jmax do
15: {Space leaping of empty voxels and the corresponding pixels (in a parallel

fashion).}
16: j = space leaping(j);
17: {Early-ray termination, skipping of opaque pixels (in a parallel fashion) and

the the corresponding voxels in the voxel scan-lines.}
18: j = early ray termination(j);
19: {Compute the run of non-empty and non-occluded voxels.}
20: j1 = get run(j);
21: {Compositing of the run into the appropriate intermediate image pixels of the

non-empty and non-occluded voxels by first reading data from the run-length
encoded volume (e.g. spline coefficients) and reusing the information from
the column template.}

22: for jh = j < j1 do
23: dinfo = get data(i, jh, k);
24: pinfo = get pixel(i, jh, k, cinfo);
25: compositing(pinfo, dinfo, cinfo);
26: end for
27: end while
28: end for
29: end for
30: warp intermediate image();

The Principle x Direction

For this principle viewing direction we also relate to the run-length encoded Z data
set. Hence, the run-length encoded data scan-lines and the dynamically run-length
encoded intermediate image scan-lines are not parallel anymore to each other (cf. Sec. 1.5
and Fig. 1.6). However, now the sign of the principle viewing direction (the stacking
order of the slices), i.e. whether we are looking down the positive or the negative
direction of the axis, determines the processing order of the run-length encoded voxel
scan-lines, i.e. whether they have to be processed from the front to the back or vice
versa, respectively5. Whereas, now the global ray direction gives us the order how to

5This is different compared to the other two principle viewing axes.

2.1. PARALLEL PROJECTION CASE 113

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

go through the intermediate image, i.e. from top-left to bottom-right, from top-right to
bottom-left or vice versa6, and in which order the pointers from the pointer array (cf.
Fig. 1.4 and Fig. 1.6) have to be used7. This is necessary to satisfy the compositing order.
The rendering algorithm can be described as follows. Before rendering – as in the last
section – we determine the main axis (in this case we consider the x-axis only), the sign
of this main viewing direction or axis, the global (constant) ray direction and the local
(constant) ray start according to the unit column from the shear-warp factorization.
This allows processing the volume data as well as running through the intermediate
image in an appropriate manner. The column template is pre-computed without having
to consider the permutation, thus we can apply the method from Sec. 2.1.2 directly.
During rendering we process the pointers in the pointer array, i.e the run-length encoded
voxel scan-lines, as well as the intermediate image from top-left to bottom-right, top-
right to bottom-left, or vice versa dependent on the global ray direction. Since now
all voxel scan-lines are processed perpendicularly to the intermediate image and all the
ray segments going through a unit column (which is reused for each voxel scan-line
by shifting it’s intersection and projection information) project onto an oblique line
in the intermediate image, early-ray termination have to be adapted accordingly (see
Fig. 2.5). The consequence is that the dynamically run-length encoded scan-lines of the
intermediate image are now encoded in an oblique fashion, whereas space leaping has
not to be changed.

Figure 2.5: Left: The projection of a (solid black) voxel scan-line onto at most four (marked
as cyan squares) intermediate image scan-lines. The pre-computed (solid black) unit column
can be considered perpendicular to the intermediate image and parallel to the voxel scan-line,
where the information of the unit cubes corresponds to the appropriate voxel data. Right: The
same projection, where at most four oblique dynamically run-length encoded intermediate image
scan-lines have to be considered for early-ray termination.

The general rendering algorithm for these principle viewing directions can be written as
follows.

Algorithm 2.1.4 (Render Orthographic X Axis). The input to the shear-warp algorithm
are as before the run-length encoded data set, the viewing specification, and the image
buffers where to store the result.

6Similar to the other principle viewing axes.
7This is different compared to the other two principle viewing axes as well.

114 2.1. PARALLEL PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

1: {Compute factorization, initialize variables and intermediate image,}
2: initialization();
3: {Generate column template using Alg. 2.1.1 or 2.1.2}
4: column template generate();
5: {For each pixel of the intermediate image in appropriate order.}
6: for i = 0 < imax do
7: for j = 0 < jmax do
8: {Get the appropriate voxel scan-line(s).}
9: get scanlines(i, j)

10: {Until not the end of scan-line(s).}
11: while k < kmax do
12: {Space leaping of empty voxels and the corresponding pixels (in an oblique

fashion).}
13: k = space leaping(k);
14: {Early-ray termination, skipping of opaque pixels (in an oblique fashion) and

the the corresponding voxels in the voxel scan-line(s).}
15: k = early ray termination oblique(k);
16: {Compute the run of non-empty and non-occluded voxels.}
17: k1 = get run(k);
18: {Compositing of the run into the appropriate intermediate image pixels of the

non-empty and non-occluded voxels by first reading data from the run-length
encoded volume (e.g. spline coefficients) and the information from the column
template.}

19: for kh = k < k1 do
20: dinfo = get data(i, j, kh);
21: cinfo = column template read cube info(kh);
22: pinfo = get pixel(i, j, kh, cinfo);
23: compositing(pinfo, dinfo, cinfo);
24: end for
25: end while
26: end for
27: end for
28: warp intermediate image();

2.2 Perspective Projection Case

2.2.1 Basic Idea

In this case we also alternate the original perspective projection shear-warp method.
Slices are sheared as well as scaled such that the rays coming from the intermediate
image plane can be considered to be perpendicular to that plane (cf. left picture of
Fig. 2.6). In our new method once more we do not modify the slices but vary the
rays according to the main viewing direction, i.e. rays still have their source in the
intermediate image plane (not in the image plane) but are not perpendicular to that
anymore. The angle between a ray and the main viewing direction is not limited to 45◦

anymore, also it varies from ray to ray (i.e. it is not constant per view as before). This

2.2. PERSPECTIVE PROJECTION CASE 115

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

is due to the perspective factorization (cf. Sec. 1.4), i.e. when the location of the eye is
close to the object or better close to the projection plane, the rays are going to diverge
more, thus many rays constitute a higher angle with the main viewing direction and the
variance of that angle increases as well. Hence, on one side there could arise some volume
cubes, which are intersected by more than three rays, thus the appropriate cube template
would contain more than three ray segments as well. We have to consider this in our
column template (the data structure). On the other side, there are unit cubes of the
volume which are not intersected by any ray at all, i.e. some cube templates in a column
could be empty, which has to be noted as well. Next, if the location of the eye is far away
from the object or the projection plane, then the different rays become more and more
parallel to each other, i.e. the angle between a ray and the main viewing direction stays
more likely within the 45◦ limit as well as its variance will decrease. When the variance
of the angle is close to zero, we can consider the parallel projection case. However, that
is why we can not directly pre-compute all the intersections of the different rays arising
from the intermediate image plane with all unit columns of a volume, i.e. coherence
between the different rays is unlikely. Nevertheless, the column template (see Sec. 2.1.2)
– the data structure itself – can be reused in a way that the changes to the rendering
procedures afterwards are minimized. In the following the differences according to the
parallel projection case are discussed only.

Figure 2.6: A simplified two-dimensional view of the new shear-warp factorization for a per-
spective projection. As before the red lines denote the final image, whereas the cyan lines denote
the intermediate image. The black grid is associated with the volume and the cross points (black
dots) are the data values. Left: The original shear-warp algorithm. Rays are considered perpen-
dicular to the sheared and now also scaled slices and the intermediate image. At the intersection
positions of the rays and the slices (blue dots) values are bi-linearly interpolated (reconstructed).
Right: In the new shear-warp technique rays may vary according to the main viewing axis. The
intersections positions of the rays and the grid planes (blue dots) are pre-computed, the values at
these positions and anywhere else along a ray can be reconstructed by using several reconstruc-
tion models for the data. Since a perspective projection matrix is used here the column template
(yellow highlighted) has to be recomputed for each column of the volume.

116 2.2. PERSPECTIVE PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

2.2.2 Algorithm and Acceleration Techniques

The generation and the application of the column or cube template is dependent on the
main viewing direction (or axis) as before. The processing order of the original data set
and the intermediate image have to be taken into account as well, both depend now on
the so called divergence point (cyan circle in right picture of Fig. 2.6). The location of
this point could be any position in the intermediate image plane8, but is not necessarily
inside the intermediate image domain.
However, the point is computed by first transforming the eye position into object space.
Then, a line or ray (dotted blue ray in right picture of Fig. 2.6), defined by this object
space eye position and the normal according to the intermediate image plane, is used
to intersect the intermediate plane and thus to find the divergence point. Hence, the
ray direction corresponding to the divergence point is perpendicular to the intermediate
image plane as well and the four adjacent but discrete intermediate image pixel positions
define the start pixels in the intermediate image plane. That means, all the pixels (as
well as the corresponding columns of the volume) are processed from these start pixels
to outer pixels of the intermediate image. In other words, after the divergence point is
found, the intermediate image is subdivided into at most four sub-regions, where each
sub-region is processed independently9. The number of sub-regions, which can be four,
two or one, is depended on the position of the clipped divergence point, i.e. whether it is
located inside the image domain, on an edge or a corner of the image, respectively. If it
is outside of the image domain clipping is applied to find the start pixels, which then are
always located on an edge or a corner of the intermediate image. The processing of the
image is started from that start pixels or pixels near to the divergence point, i.e. where
the corresponding ray directions form a smaller angle to the normal of the intermediate
image, and is proceeded to the far pixels, i.e. where the corresponding ray directions
form a bigger angle to that normal. This is necessary to satisfy the compositing order,
i.e. ray intervals (along rays or ray segments) which are nearer to the eye location have
to be precessed and rendered first.
However, it is not possible to reuse the intersection information stored in this column
or cube template for neighboring columns or cubes within the volume, since there is
no such coherence as for the orthographic projection between neighboring rays. Hence,
the intersection information is recomputed for each column or cube, whereas the data
structure itself is reused to minimize changes to the rendering procedure or algorithm.
Note that the permutation matrix as well as the signs of the principle viewing direction
have to be considered here as well to account for correct intersection computations. The
run-length encoded Z data set is considered for reconstruction only, no matter which
principle axis will be considered.

The Principle y, z Directions

The encoded data scan-lines as well as the intermediate image scan-lines are in both
cases parallel to each other (cf. Sec. 1.5, Fig. 1.5, and Fig. 1.6), as previously. The
stacking order of the slices (the sign of the principle viewing direction) determines the

8The intermediate image plane coincides with a face of the volume as well as with the first slice of the
volume.

9The sub-regions can be processed in parallel.

2.2. PERSPECTIVE PROJECTION CASE 117

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

processing order of the pointer array (cf. Fig. 1.4, Fig. 1.5, and Fig. 1.6), i.e. which
scan-lines or slices are processed first to account for correct compositing. Space leaping
and early-ray termination is very similar to the parallel projection case. However, one
difference is in the rate of traversal of the image and volume scan-lines (or columns).
This results from the non-affine (perspective) projection matrix and involves a scaling
factor. The algorithm is as follows. Just before rendering we determine – as before – the
main axis and the stacking order of the slices. Then the divergence point is computed
and the processing of the volume cubes as well as the intermediate image pixels starts
at this point, i.e. at the nearby pixels, as discussed above. Space leaping is maintained,
whereas early-ray termination is very similar to the parallel projection case, where we
once more apply the dynamically encoded intermediate image scan-lines. However, since
we do not have a pre-computed cube template, we don’t know if and how many rays
will intersect the considered volume cube, we simply project all eight vertices of that
cube into the intermediate image and determine the convex hull. All intermediate image
pixels inside this convex hull are taken into account to determine the skipping offset for
early-ray termination. We skip only the minimum number of pixels possible (if more
than one pixel scan-line have to be considered) and synchronize between the image and
volume scan-lines because of the afore mentioned scaling factor. Once we have found
a non empty volume cube where early-ray termination will not apply as well, the eight
corner vertices are projected onto the intermediate image as well. Now, all intermediate
image pixels as well as the corresponding ray information are determined located in
the convex hull of these eight projected vertices. Then, we compute the intersection
information of those rays corresponding to the appropriate pixels with the considered
volume cube and store this information in our cube template. This together with the
values (i.e. the spline coefficients) from the run-length encoded data set are used to
evaluate the appropriate splines (i.e. to reconstruct the data along the rays) as well as
the volume rendering integral (or the iso-surface).

The Principle x Direction

For this principle viewing direction – as in parallel projection case – we also relate to
the run-length encoded Z data set. Hence, the volume scan-lines and the intermediate
image scan-lines once more are not parallel to each other (cf. Sec. 1.5 and Fig. 1.6). The
processing order of the data set as well as the intermediate image is dependent on the
same parameters as discussed in the previous sections. However, a pre-computation of
intersection information, which is stored in the column template and afterwards reused
during rendering, is not possible as well – as for the other two directions. Nevertheless,
we reuse the data structure for the reasons described above. Basically, two approaches
are discussed here. The first one is very similar to the algorithm discussed in the previous
section, whereas the second is a propagation scheme.
We are always interested to process the data in object order to take advantage of the
underlying computer architecture, i.e. to maximize cache performance. Hence, the
first algorithm starts at the divergence point as before, but processes each column of the
volume which are now considered perpendicularly to the intermediate image. In contrast
to the method for the y and z directions, we project the whole column of a volume
into the intermediate image space to determine the convex hull and the intermediate
image pixel affected by this projected column. Then, we determine the corresponding

118 2.2. PERSPECTIVE PROJECTION CASE

CHAPTER 2. COMBINATION OF RAY-CASTING AND SHEAR-WARP

rays and compute the intersection information with that column, but only for rays
with corresponding non opaque intermediate image pixels. The information is further
transformed into the unit column and saved into the column template, which is used
during rendering as in the parallel projection case.
The other approach is to propagate the necessary intersection information from column
to column, where once an intermediate image pixel has become opaque the appropriate
ray is terminated and the corresponding intersection information is not propagated to
adjacent columns. Thus, we process each of the at most four sub-regions of the inter-
mediate image independently. We start in a sub-region with that intermediate image
pixel as well as the corresponding volume column near to the divergence point as well.
Here, we do not project the column into the intermediate plane, since for the first col-
umn and the corresponding pixel we also know the first ray parameters, which directly
allows us to compute the intersection information with the first volume column. We
know that no other rays arising from the nearby discrete intermediate image pixels exist
which also intersect the same current considered column. However, considering adjacent
pixels or volume columns in a way discussed above, i.e. such that the compositing or-
der is satisfied, the dynamically run-length encoded intermediate image scan-lines used
during early-ray termination have to be encoded in an oblique fashion, where all scan-
lines together look like a star structure on the intermediate image. In the orthographic
projection case the scan-lines are encoded in an oblique fashion as well, but since the
ray direction is constant for each ray coming from the appropriate intermediate image
pixel, adjacent image scan-lines are encoded in a parallel way to each other. Hence,
altogether they look like a rib structure. However, previously computed intersection
information of previous rays with previous columns have to be maintained, i.e. saved so
that it remains available for the current considered columns. This allows paring down
intersection computations as well as the projection of the columns onto the intermediate
image domain. Another advantage is that there is no need to transform the intersec-
tions of a volume column into the unit column, since they are already in this local space.
Hence, the generation of the column template is initiated, which is later applied as in the
parallel projection case. One drawback of the propagation method is the order on how
the information is feed forward, i.e. previously computed intersections (ray segments)
propagated to adjacent columns may not stay sorted according to their deep coordinates
(in this case the deep coordinates are considered along the x-axis). Thus, before we
generate the column template a sorting of all ray segments going through a unit column
has to be performed.

2.2. PERSPECTIVE PROJECTION CASE 119

Part IV

Hierarchical Data Encoding and
Visualization

1 Introduction

1.1 Related Work

Volume visualization algorithms projecting wavelet transformed data sets into two-
dimensional planes are often ranked to the domain based rendering methods. However,
a comprehensive state of the art discussion of several approaches can be found in the
introductory part I. In the following we suggest a new method based on wavelet de-
composition of the volume data, a representation of the sparse data set by an octree
structure and splines and a new shear-warp like visualization algorithm.

1.2 Wavelets for Volumetric Data

Wavelet theory provides an elegant multiresolution hierarchy framework based on mul-
tiresolution signal analysis which decomposes a function into a smooth approximation
of the original function and a set of detailed information at different resolutions. The
generalized wavelet series expansion, the discrete, and the continuous wavelet transform
are tools used to compute this multiresolution hierarchy of a signal or a function and are
closely related to the Fourier series expansion, the discrete, and the continuous Fourier
transform. In practice the fast (inverse) wavelet transform implements an efficient al-
gorithm to compute the discrete wavelet transform of a signal, which is very similar to
the fast (inverse) Fourier transform as well as a two-band analysis (synthesis) subband
(de)coding scheme [Mal99] [GW02].
However, before applying the discrete wavelet transform one needs to define appropri-
ate basis1 functions. There exist two families of functions, called the scaling functions
{φj,k(t)}(j,k) and the wavelet functions {ψj,k(t)}(j,k). Both functions sets should be
square integrable and should constitute the basis of Vj (which caries the low-frequency
approximation) and Wj (which caries the detail approximation), respectively, of an ar-
bitrary function f ∈ L2(R). The projection of a function f onto the other subspaces
Vj ,Wj is considered as L2(R) → Vj ,Wj . With an appropriate inner product defined on
each vector space a multiresolution analysis framework can be defined. In this sense Wj

can be defined to be the orthogonal complement of Vj . Since then the approximations
of f at scales 2j and 2j+1 are equivalent to the orthogonal projections Vj and Vj+1 with
Vj ⊆ Vj+1, one obtains the next finer approximation of f by Vj+1 = Vj ⊕Wj

2. In this
view orthogonal wavelets carry the details necessary to increase the resolution of a signal
approximation. Therefore, each basis function φ should be orthogonal to each basis ψ
under the chosen inner product, the basis functions φ, ψ of Vj ,Wj should form a basis

1A basis consists of a minimum set of vectors or functions from which all other vectors or functions in
the vector or functions space can be generated by linear combinations.

2Here, ⊕ is the union of spaces.

123

CHAPTER 1. INTRODUCTION

for Vj+1, and each basis ψ, ψ̂ of Wj ,Wi should be orthogonal to each other (if the last
condition is not true the resulting wavelets are sometimes called pre-wavelets).
Wavelet bases often utilize their ability to efficiently approximate special classes of func-
tions with only several non-zero wavelet coefficients. Application of these wavelet bases
are for example data compression, noise removal or edge enhancement. The design of
a wavelet ψ has therefor to be optimized to the considered task or function as well as
to generate a maximum number of wavelet coefficients that are close to zero. However,
this depends highly on the regularity of a function f , the number of vanishing moments
of the wavelet ψ, the size of its support and regularity.
Daubechies wavelets are the optimal choice, because they have minimum support for a
considered number of vanishing moments ([Dau88] [Dau92]). Other wavelets, as for ex-
ample the Haar wavelets, the Mexican Hat, Shannon, Meyer, or Battle-Lemarié wavelets,
often make a tradeoff between number of vanishing moments and the size of the support.
For a very regular function f with only a few singularities a wavelet with many vanishing
moments should be preferred to generate a large number of small coefficients. Functions
with many singularities are better represented by wavelets with less support at the cost
of fewer vanishing moments.
Further, a method to verify the correctness of the analysis and synthesis algorithms is to
first compute the forward and backward transform of a signal and afterwards to compare
the results with the original function. For a perfect analysis and synthesis of a signal
the applied filters have to satisfy some conditions, e.g. the analysis and synthesis filters
should be time-reversed versions of each other (cf. [Vet86] [VK95]).
However, unlike cos and sin waves used by the Fourier transform, wavelets have local
decay in both spatial domain and frequency domain, hence they are well localized.
One similarity between the windowed Fourier and the wavelet transform is that both
representations taking inner products of f with a family of functions gω,t = g(x− t)e−iωx
and ψu,s = ψ((t−u)/s)/s, respectively. Using discrete multirate filter bank algorithms a
fast orthogonal wavelet transform that needs only O(N) operations for a signal of size N
can be implemented. In higher dimensions the wavelet bases of L2(Rd) are constructed
by tensor products of separable one-dimensional wavelet functions (cf. [Mal99]). Hence,
we have

φ(x, y, z) = φ(x)φ(y)φ(z) (1.1)
ψ1(x, y, z) = ψ(x)φ(y)φ(z) (1.2)

... (1.3)
ψ8(x, y, z) = ψ(x)ψ(y)ψ(z). (1.4)

These eight wavelet functions measure functional variations along the different directions,
i.e. intensity or density variations.
However, for given separable three-dimensional scaling and wavelet functions

φj,l,n,m(x, y, z) = 2j/2φ(2jx− l, 2jy −m, 2jz − n) (1.5)

ψj,l,n,m(x, y, z) = 2j/2ψk(2jx− l, 2jy −m, 2jz − n), k ∈ {1, . . . , 8} (1.6)
(1.7)

124 1.2. WAVELETS FOR VOLUMETRIC DATA

CHAPTER 1. INTRODUCTION

the extension of the one-dimensional discrete wavelet transform can be defined as

W φ
f (j0, l,m, n) =

1√
LMN

L−1∑
x=0

M−1∑
y=0

N−1∑
z=0

f(x, y, z)φj0,l,m,n(x, y, z) (1.8)

Wψk

f (j, l,m, n) =
1√

LMN

L−1∑
x=0

M−1∑
y=0

N−1∑
z=0

f(x, y, z)ψkj,l,m,n(x, y, z) (1.9)

for k = 1, . . . , 7. As in the one-dimensional case we start with an arbitrary scale j0. The
coefficients W φ

f (j0, l,m, n) and Wψk

f (j, l,m, n) define the approximation of the three-
dimensional function f(x, y, z) at this starting scale j0 and the detail at higher scales
j ≥ j0. Usually, j0 = 0 and L = M = N = 2J such that j = 0, 1, . . . , J − 1 and l,m, n =
0, 1, . . . , 2J − 1. Hence, at the finest scale J usually W φ

f (J, l,m, n) is identified with
the discrete volume grid samples f(x, y, z). The three-dimensional wavelet transform
can be implemented by using digital analysis filters and by down sampling the resulting
data. Even more easily, once the one-dimensional transform has been implemented, it
can be applied along the different directions of the volume data set separately, i.e. first
we compute the one-dimensional transform along the x direction of the volume data
set, by reusing the result another one-dimensional transform along the y direction is
performed, and finally this result is taken as input to the last call of the one-dimensional
wavelet transform along the z direction. This is possible if separable filters are used
and results in eight different frequency bands, one approximation band represented by
the scale coefficients W φ

f (j0, l,m, n) and seven sets of detail coefficients represented by

Wψk

f (j, l,m, n) for k = 1, . . . , 7. The inverse wavelet transform reconstructs the function
f(x, y, z) from its wavelet coefficient representation by

f(x, y, z) =
1√

LMN

∑
l

∑
n

∑
m

W φ
f (j0, l,m, n)φj0,l,m,n(x, y, z) (1.10)

+
1√

LMN

8∑
k=1

∞∑
j=j0

∑
l

∑
n

∑
m

Wψk

f (j, l,m, n)ψkj,l,m,n(x, y, z) (1.11)

and as could be expected, the reconstruction algorithm is similar to the one-dimensional
case as well, i.e. at each scale j we have eight sub-volumes representing the eight sub-
bands. Each sub-volume is up-sampled by a factor of 2 – zero values are inserted at the
new positions – and convolved with the inverse (synthesis) filters.
One should note that in case of finite functions f the boundary of the corresponding
discrete signal cj(n) has to be treated differently from the interior part samples. That
means, the convolution of a signal close to its boundary with the low and high pass filters
requires to know the values beyond the boundary of the signal. With that boundary
problems is usually dealt by appropriately designing boundary wavelets, by zero padding
of the signal, by symmetrization of the signal (mirroring), or by periodization of the
signal.

1.2. WAVELETS FOR VOLUMETRIC DATA 125

2 Hierarchical Encoding

In the following, we describe implementation details of our hierarchical volume rendering
approach. At first, we discuss aspects, which are different from the standard approach
to generate the images. Next, we focus on details on pre-computing the run-length
encoding for the spline representation of the hierarchical data in use and on how a qube
template is defined that both serves for speeding up intersection computations and allows
for minimizing memory accesses by visiting each voxel only once.

2.1 Wavelet Coding Scheme and Octree Representation

In order to be able to include the spline model (see part II) and the numerical integration
along a ray (see part I) a new data structure used during run-length encoding of the
shear-warp type renderer of part III is required: Quadratic or cubic type-0 or type-6
splines represent the opacity function within a cube Q̃. More specifically, they represent
the opacity function for each partition of Q̃, which may be a 24-tetrahedral partition
� for Q̃ at the finest level as described in Sect. 3 or variations thereof (for details, see
Fig. 2.1).
However, the new hierarchical encoding operates on scalar data on a Cartesian grid of
dyadic size. For coding purposes, we perform the following operations in a preprocess-
ing context. The classified volume is transformed into the wavelet space, whereby we
implement the Haar and a linear wavelet type according to [SS96] [CDSB03] although
for discussing the results we restrict ourselves to Haar wavelets since they have shown
better performance for the type of data given. Each node of an octree data structure
stores an average value of the considered sub cube which we denote as average data, i.e.
W φ
f [j, k]. High frequency components (detail data or Wψ

f [j, k]) are computed at each
level in order to be able to prune some octree nodes. These are classified as transparent,
homogeneous or heterogeneous depending on the average and detail data of the decom-
posed volume. If all detail data of an octree node are below a user-defined threshold
and all child nodes of the current octree node are homogeneous then the current node
of the octree becomes homogeneous as well. In the same way we identify transparent
nodes. All nodes in the octree, whose parent node is either transparent or homogeneous,
are pruned. For each leaf of the octree (which can be on any level j) the determining
Bernstein-Bézier coefficients (see Sec. 2 and 3) are computed from a 2j sub sampling of
the original grid.
Further, computing the contribution of the voxel to the final image requires determining
the intersection of all rays with these partitions. These intersection points (entrance and
exit points of each partition belonging to a voxel) are stored in a pre-computed template
called qube or column template (see Sec. 2) in order to speed up computing. It should
be emphasized here, that by considering several rays passing through the cube Q̃ allows
reducing memory accesses by up to a factor of 8. Visiting each voxel only once has

127

CHAPTER 2. HIERARCHICAL ENCODING

been the characteristic of splatting so far but now can be used for shear-warp by this
technique as well.

Figure 2.1: Top left: One slice where the different leafs are subdivided by six slicing planes
defining the tetrahedral partition of that leafs. Further, each leaf can be transparent, homogeneous
or heterogeneous and stores an address to its quadratic or cubic spline coefficients. Top right:
One octree leaf of size 4 and its subdivision by the slicing planes. This leaf is representative
for 43 voxel cubes. For each voxel cube (addressed by local position coordinates inside the leaf)
there is a 6 bit flag, which stores the plane numbers going through this cube. Bottom: Scanline
created from octree, where the blue and green areas are transparent and non-transparent runs.
For each non transparent run each voxel stores the address of the spline coefficients (4 bytes),
the octree leaf size and the local coordinates of the voxel cube respective the leaf (3 bytes) and a
flag indicating the planes to consider at current voxel cube (1 byte).

2.2 Piecewise Splines defined on Octree Nodes

Usually our splines are defined on each unit cube Q̃ of a volumetric partition ♦ (or on
each tetrahedron of �) which normally corresponds to the finest level of an octree. How-
ever, in our hierarchical encoding we basically compute for each homogeneous leaf node
of the octree the Bernstein-Bézier coefficients from a 2j sub sampling of the original grid.
However, the considered quadratic or cubic splines are in general smooth between neigh-
boring cubes (or tetrahedrons) on a single layer. This is usually not the case when two
adjacent layers of an octree have to be taken into account for reconstruction or rendering.
In other words, considering two different sized neighboring cubes or leaf nodes from the
two adjacent octree layers, i.e. which have a face in common, the corresponding poly-

128 2.2. PIECEWISE SPLINES DEFINED ON OCTREE NODES

CHAPTER 2. HIERARCHICAL ENCODING

nomial pieces (splines) also defined on two adjacent scales do not necessarily define an
overall smooth function. Hence, this approach is not the most accurate one, because the
resulting non smooth data transitions between the nodes may become visible depending
on the compression rations used for the data (see results in part V) and the considered
data sets itself. However, this approach allows us to generate the necessary run-length-
encoded data sets from the octree structure and the spline hierarchy to be visualized
with the shear-warp algorithm. There are only a few modifications which have to be
done to the shear-warp method discussed in part III (see also Fig. 2.1). Nevertheless, a
hierarchical encoding of volume data using for example an octree data structure where
splines from different scales are able to reconstruct an overall smooth function which
has to be examined in future. In general this is possible by considering and encoding
the differences between the splines on two adjacent scales and additionally considering
a narrow band of cubes at scale j around an octree node at scale j − 1.

2.3 Generation of Run-Length-Encoded Data Sets

Once the octree data structure is created (see previous subsection), the run-length en-
coding for two main viewing directions has to be pre-computed. The third run-length
encoding can be avoided using pointers to each scan line of the two other run-length
encodings1 and changing the processing order of the scan lines during rendering (see
[SM02] [SHM04] and part III). However, to create a run-length encoded scan line, we
start at the root node of the octree and visit only those leafs that are intersected by the
current scan line. Whenever a transparent leaf is found the length of the voxel run within
this leaf is written into the run-length structure. In the case of a homogeneous leaf for
each voxel along the scan line within the current homogeneous leaf we store a pointer to
the spline coefficients of the respective homogeneous leaf of the octree. Further, we store
the size of the leaf and the local position of each voxel in the current octree leaf. Finally,
we compute partitions for the cube Q̃ associated with the voxel. If the leaf belongs to the
finest level of the octree we select the usual 24-tetrahedral partition. Otherwise, in each
voxel a flag indicates which of the six slicing planes defining the tetrahedral partition of
the homogeneous octree leaf subdivides Q̃ and the respective partitions are stored (see
Fig. 2.1 for a 2D-explanation). Note, considering the usual volumetric partition ♦ the
slicing planes which further subdivide the partition into � have not to be stored.

1A reduction to one run-length encoding is possible as well [SHM04] to further reduce the amount of
data.

2.3. GENERATION OF RUN-LENGTH-ENCODED DATA SETS 129

3 Visualization

3.1 Run-Length-Encoded Data Sets

For the visualization of the run-length encoded data sets obtained from the hierarchy
we process the slices as before, i.e. space-leaping is performed in the same way as in the
original algorithm mentioned in part III.
However, before determining the contribution of a slice to the intermediate image, all
ray intersections with every partition (associated with a voxel on the slice) are computed
(see Fig. 2.1). The intersection points of rays with the partitions define ray segments
that are the subdivisions of the volume rendering integral mentioned in Equ. (4.8). All
intersection points are stored in the so-called qube template. Since we consider parallel
projection and since the shear-warp implementation assumes rays starting from a grid
having the same grid constant as the volume, the qube template is identical for each
voxel in the same slice and therefore has to be computed only once per slice.
Further, in order to minimize accesses to the main memory, we improved and further
modified the processing scheme of the shear-warp algorithm. Instead of operating on
two voxel scanlines and one pixel scanline, we consider one voxel and therefore two
pixel scanlines (see also Sec. 2). However, by this rearrangement, only one access to
voxel data is necessary per frame. Hereby, we directly compute all contributions of a
cube Q̃ (belonging to a voxel) to the intermediate image (which are 4 pixels lying in
both considered pixel scanlines) and thus achieve a significant speedup (independent
from the choice of the non-discrete model representing the data). As a consequence,
for early-ray-termination two pixel scanlines are considered in parallel. Whenever a
non-transparent voxel and a non-opaque pixel (in at least one of both scanlines) is
found, compositing is carried out for each ray segment intersecting the partitions of the
voxel. For computing the contribution for each ray segment we use the Bernstein-Bézier
coefficients of the splines stored in the memory and further determine the opacity and
gradient values derived from the quadratic or the cubic splines. These values serve for
computing the numerical approximation of the volume rendering integral (see part I).
The numerical approximation allows controlling the visual quality and the numerical
error for the rendering integral of (4.3). This is a technique still not found in typical
implementations of volume rendering.

3.2 Hierarchy

In the section above we have discussed how to render the run-length encoded scanlines
(or the rle volume) pre-computed from the octree hierarchy. We know that this algorithm
has linear complexity (O(N)) in the number of non-transparent and non-occluded voxels
N contained in the data set, as our previous algorithm described in part III. However, an
approach which directly renders the octree nodes during its traversal (with complexity

131

CHAPTER 3. VISUALIZATION

O(N logN)) gains redress only if the nodes of the octree data structure are going to
change after each rendering (i.e. when the state of some nodes is changed due to, for
example, a new opacity classification function). Even then the approach can only be
satisfied when the (pre-) computation and the rendering of all the rle scanlines requires
more time than the traversal of the octree and the rendering of its non-empty nodes.
However, we can constitute two main stages where the pre-processing and rendering time
of the above algorithm is spent. First, we have to traverse the octree, i.e. all non-empty
nodes, and set up the rle volume during this traversal. Second, we have to render that
rle volume. A direct rendering of the hierarchy has only one stage. That means, we
have to visit all non-empty nodes in the hierarchy and directly visualize that nodes.
Now, if all the stages in the first approach need together more time than the step in
the hierarchical method, then this algorithm discussed in this section is eligible. A final
answer, however, can only be given after an implementation of that hierarchical approach
and a comparison to the method above. Nevertheless, it seems that with a careful design
of some new data structures and methods required for that hierarchical algorithm (e.g.
for early-ray termination) one could achieve better performance compared to the previous
method. In other words, the (pre-) computation of the rle volume from the hierarchical
data structure is rather time consuming (see part V). This is because we can only
investigate the empty space in the hierarchical data during the computation of the rle
volume. Rendering is performed in a subsequent step, thus the acceleration technique
early-ray termination can not already be applied in the former stage. And hence a rle
volume of the whole hierarchy has to be calculated first. Afterwards the rendering of the
rle volume is performed quite quickly (see also part V). Hence, if the data classification
function is going to change very frequently, at that given times one has to recompute
at first the whole rle volume and at second render it. In that view the complexity of
both algorithms is O(N logN) due to the traversal of the hierarchical data structure.
However, in a direct rendering of the data, i.e. performed during the traversal of the
hierarchy, one could investigate the empty space as well as early-ray termination at the
same time. Thus, one can not only omit the generation of the data structures used for
the rle volume, one also can skip non-empty nodes due to the possible application of
early-ray termination 1.
In the following we outline the new hierarchical rendering algorithm. To simplify matter
we restrict the discussion to quadtrees (see Fig. 3.1). The presented algorithm, however,
can be extended to octrees in a straight forward manner. In the right illustration of
Fig. 3.1 we show four different cases how a quadtree is traversed depending on the sign
of main viewing axis and the viewing or ray direction (blue arrows) to satisfy compositing
order of the nodes, i.e. such that the volume rendering integral can be solved correctly.
In fact eight (2 ∗ 4) or twenty four (4 ∗ 6) different cases have to be considered for a
quadtree or an octree representation of the data, respectively. However, the numbers
shown in the appropriate nodes indicate the order of traversal of the corresponding
nodes. That means, when the main viewing axis becomes the positive y-axis and the
x and y components of ray direction rd (blue arrow) have positive signs, a recursive
depth first traversal of the quadtree starts always at the bottom-left child node of the
current considered parent node and then visits the bottom-right, top-left, and top-right
nodes, respectively. This traversal results in the numbering of the nodes shown in the

1This, of course, depends on the data and the classification function.

132 3.2. HIERARCHY

CHAPTER 3. VISUALIZATION

Figure 3.1: Left: Look-up tables (black values) for a correct access of the child nodes (black
quads) according to the different considered main viewing axes and ray directions (blue rays) to
satisfy compositing order of the data. The bottom-left figure shows the quadtree data structure
with the default numbering of the child nodes. Right: The traversal order of the quadtree nodes
according to the look-up table values at the left.

bottom-left sub-image of the right illustration of Fig. 3.1. When, for example, the main
viewing axis becomes the negative y-axis and the x and y components of ray direction
rd have positive and negative signs, respectively. The recursive depth first traversal of
the quadtree starts at the top-left child node and then visits the top-right, bottom-left,
and bottom-right nodes (in that order) which results in the numbering of the nodes
shown in the top-left sub-image of the right illustration of Fig. 3.1. The two other
cases are also visualized, i.e. for the positive main y-axis and negative x and positive y
components of the ray direction (bottom-right sub-image) as well as the negative main
y-axis and negative x and y components of the ray (top-right sub-image), respectively.
Note, once the main viewing axis is determined, for example, as the positive y-axis. The
y component of the ray direction can not have a negative sign any more. In other words,
the main axis and its sign are computed from the ray direction.

A straight forward implementation of a rendering algorithm which traverses and visual-
izes the nodes depending on the viewing direction would require to store eight reorganized
copies of the same quadtree to satisfy the compositing order of the nodes. Hence, the
traversal of the different quadtrees remains always the same (i.e. fixed) and one has to
switch between the different quadtree data structures depending on the case (i.e. ray
direction). However, we propose to use eight look-up tables which store the order the
children have to be visited for the considered case and one quadtree data structure only.
In fact seven tables are enough, since one transition would be an identity mapping which
can be omitted (have not to be stored). This dramatically reduces the data consumption
and makes the algorithm more convenient. In the sub-images of the left illustration of
Fig. 3.1 we show the look-up tables corresponding to the four different cases shown on

3.2. HIERARCHY 133

CHAPTER 3. VISUALIZATION

the right illustration. More precisely, the lower-left sub-image in the left illustration
shows the default quadtree data structure (i.e. its organization in main memory) and
the default traversal order of the child nodes as well as the corresponding sub-cubes of
the data for the first case (i.e. when the main viewing direction becomes the y-axis with
positive x and y components of the ray direction). In this case we do not need to store
any look-up table, since the child nodes can be visited in the order they are stored in
main memory (identity mapping). For the other three cases the numbers in brackets
give the indices into the look-up table where the neighbouring numbers are stored at
the corresponding positions in that table and are used as indices into the array of child
nodes in the default quadtree data structure to visit the nodes in correct compositing
order (as shown in the right illustration of Fig. 3.1). This basic approach can be easily
generalized to include the other cases and to octrees not shown here.
Once the look-up based traversal of the octree is defined and satisfies the compositing
order of the nodes, we can visualize the nodes or better the corresponding sub-cubes of
the data set. This rendering step is very similar to our original algorithm in part III.
The main distinction is that often different sized sub-cubes (sub data sets) have to be
visualized which project onto sub-regions of the intermediate image and the sub-cubes
contain only non-transparent voxels. Therefore, space leaping is performed during the
traversal of the octree where early-ray termination takes place during the visualization
step, i.e. when a non-empty sub-cube is rendered. However, the algorithm starts with
the root node and recursively visits all non-empty octree nodes (only once per rendered
image) in the order discussed above. Once a homogenous node in the octree is found
we also know the size and position of the corresponding sub-cube in the volume data
set. From its size and position we determine the region of projection (region of interest)
of that sub-cube in the intermediate image. Similarly, using the position and the size
we are able to find the necessary intersections, ray segments, etc. passing through
the considered voxel of that sub-volume from our column template. This gives us the
required information at hand for rendering the data represented by a sub-cube. Note,
we can render the original data, i.e. for each voxel in the sub-volume we have to consider
different data (or spline coefficients). Or we can render the averaged data represented
by the considered octree node. This reduces the reload or the re-computation of the
spline coefficients. However, as mentioned above, the rendering or compositing process
is except some small changes the same as in our original algorithm from part III. The
differences are: First, we do not perform space leaping, since the data in the sub-volume
is always non-transparent. Second, before compositing a voxel2 early-ray termination is
applied. Then, for example, if we have to skip some pixels (and of course the appropriate
voxels as well), we also have to check if the next pixel to consider is still in the region
of interest. That means, if the next pixel is still in region on the intermediate image
of the projected sub-cube. Similarly, we could check if the next voxel is still in the
currently considered sub-volume. If this is the case, we proceed with the compositing,
otherwise adjacent (sub-volume) scanlines and the corresponding image scanlines have
to be considered until the whole sub-cube is processed.

2We consider the same number of voxel and image scanlines as in our original algorithm.

134 3.2. HIERARCHY

Part V

Results On Reconstruction and
Visualization

1 Prerequisites

We have implemented the algorithms in C++ using a 3.0 GHz PentiumIV PC with 1
GB RAM or a 2.0 GHz PentiumIV M Laptop with 2 GB RAM and VGL1 as underlying
library. Different 8 bit data sets on a Cartesian grid are chosen for our experiments or
illustrations:

• Engine (CT), courtesy: General Electric. CT scan of two cylinders of an engine
block, (256 × 256 × 128 voxels).

• Teapot (artificial CT), courtesy: Terarecon Inc., MERL, Brigham and Women’s
Hospital. CT scan of the SIGGRAPH 1989 teapot with a small version of the AVS
lobster inside, (256 × 256 × 178 voxels).

• Head (MRI), courtesy: Brain Development Lab, University of Oregon. A T1
weighted MRI of the head of Mark Dow. Recorded at the Martinez, CA, VA
Hospital on a Picker 1.5T system, (187 × 236 × 253 voxels).

• Bonsai (CT), courtesy: Stefan Röttger, VIS, University of Stuttgart, Germany.
CT scan of a bonsai tree, (256 × 256 × 256 voxels)

• Foot (X-Ray), courtesy: Philips Research, Hamburg, Germany. Rotational C-
arm x-ray scan of a human foot with tissue and bone present in the data set,
(256 × 256 × 256 voxels).

• Skull (CT), courtesy: Siemens Medical Solutions, Forchheim, Germany. Rotational
C-arm x-ray scan of phantom of a human skull, (256 × 256 × 256 voxels).

However, many example data sets can be downloaded from the web page of Graphisch–
Interaktive Systeme (GRIS, see also the VolVis organization and the Visualization Lab
of the Computer Science Department at Stony Brook University) and the page of the
Robert and Beverly Lewis Center for NeuroImaging. Another page of GRIS provides
several more recent data sets in raw format. Additional medical data sets with 8bit as
well as 16bit voxel resolution are provided on the web page of the University of Erlangen
where the data is represented on regular grids mainly coming from CT or MRI scanners.
The data is stored in the special file format (PVM) which contains information about
the grid size, bit depth, and the cell spacing of a data set. The Visible Human Project
creates a complete, anatomically detailed, three-dimensional representation of a male
and a female cadaver body. The acquisition was done by CT, MR and cryosection
images where the male body was sectioned at one millimeter intervals and the female
body at one-third of a millimeter intervals (see also National Library of Medicine).

1Volume Graphics GmbH

137

2 Results on Spline Models

In this section we discuss the visual and numerical results of our spline models presented
in part II. Therefore, in the first step we consider different test functions often used in
visualization papers [ML94] [RZNS03] [NRSZ04] [RZNS04a] to show the reconstruction
quality of the data approximation models. In the second step we rewrite some error
norms which turned out to be useful to measure the deviation between the original
synthetic data values (function values) and the reconstructed spline values. By using
the synthetic functions and the error norms we present the numerical results of our
splines in the third step. Since we consider six different data approximation schemes,
many tables and figures with results would confuse the reader and unnecessarily enlarge
the section, therefore, we refer the interested reader to the appendix for more detail. Here
we only give the most important outcomes concerning the cubic type-6 spline model. In
the fourth and the final pace the visual quality and the performance of the splines is
shown, respectively.

2.1 Test Functions

The quality of reconstruction models is often verified concerning some appropriate but
difficult tests. However, the Bernstein-Bézier coefficients for the different splines are
calculated from the given data samples, which itself are obtained from smooth test
functions (synthetic data). Once the coefficients are determined, the splines are evaluated
at some prescribed positions. The reconstructed values are compared to the original
values obtained from the test functions itself at the same positions by using appropriate
error norms (see next section).
The first test function is called the Marschner-Lobb [ML94] test function fML : [−1,+1]3 →
R, which is frequently used as a test in volume visualization [MMMY97b] [MMMY97a]
[MMK+98] [MPWW00] [TMG01] [MJC01] [SM02] [BMDS02] [KWTM03] [LM05] [KM05]
and is defined as

fML(v) =
1 − sin(πvz/2) + α(1 + cos(2πβ cos(π

√
v2
x + v2

y/2)))

2(1 + α)
, (2.1)

where v = (vx, vy, vz) ∈ [−1,+1]3, α = 1/4 and β = 6. There are two major aspects
why this function is often used to test a data reconstruction model. First, this function
is designed by means that it becomes more and more oscillating from its center to its
outer parts, i.e. it contains low as well as high frequencies. Second, usually only very few
samples are examined from this function for data as well as derivatives approximation
by a model. That means, a data set sampled at the Nyquist rate allows theoretically
a reconstruction of that function using the optimal sinc filter. However, the question
one usually would like to answer is, how well non optimal filters or models, namely our
splines, perform in such cases.

139

CHAPTER 2. RESULTS ON SPLINE MODELS

The second test function is called the Sqrt test function fSq : [−0.5,+0.5]3 → R. This
spherical function is defined as

fSq(v) =
√
v2
x + v2

y + v2
z , (2.2)

where v = (vx, vy, vz) ∈ [−0.5,+0.5]3. This function was used to shows smoothness
behavior of the Super-Splines [RZNS04a], hence, for comparison reasons it is a good
choice for our cubic type-6 spline model as well.

2.2 Different Types of Errors

The approximation quality or order of the reconstruction models is shown by measuring
the error between the reconstructed values and the original values obtained from the
splines and the test functions, respectively. Hence, in the following we consider different
kinds of errors (cf. [KLS96] [NRSZ04]).
Our first error measure is the the maximal error at the grid data points, i.e.

errξdata := max{|(fξ − sξ)(h(2i+ 1, 2j + 1, 2k + 1)/2)| : i, j, k = 0, . . . , n− 1}. (2.3)

The second measure is the maximal error in the uniform norm, i.e.

errξmax := max{|(fξ − sξ)(v)| : v = (vx, vy, vz) ∈ Ω}, (2.4)

and is computed as follows. In each cube Q ∈ ♦ we take 240 uniformly distributed
points and measure the error at these points, i.e. the set of all points chosen in this
way from Ω is denoted as χ, where the total number of points is given as |χ|. Then, at
the points from χ the error errξmax is found as the maximal error. The third and fourth
measure is the average error given by

errξmean :=
1
|χ|

∑
v∈χ

|(fξ − sξ)(v)|, (2.5)

and the root mean square error defined as

errξrms :=
√

1
|χ|

∑
v∈χ

((fξ − sξ)(v))2, (2.6)

respectively. Here, ξ ∈ {ML,Sq} is used to differentiate between the functions.
For the visual tests as shown in the figures of the next two sections we use a slight
different approach. First, we use an 8bit look-up table LUT which transforms error
values to colors (cf. Fig. 2.1). Here, we define some threshold values a, b, c, and the

Figure 2.1: Look-up table of colors for appropriate error values. Index values in the ranges of
[0, 85], [85, 170], and [170, 255] are encoded from yellow to green, from green to blue, and from
blue to red, respectively.

140 2.2. DIFFERENT TYPES OF ERRORS

CHAPTER 2. RESULTS ON SPLINE MODELS

interval [0, a, b, c] with corresponding index threshold values of 85, 170, 255, respectively,
to be able to compute a linear map between the error and index values. Then, all error
values > c are shown as red and error values in the ranges [0, a], [a, b], and [b, c] are
encoded from yellow to green, from green to blue, and from blue to red, respectively.
Second, we appropriately redefine the error functions errξ and we scale the computed
errors appropriately as well, such that, our look-up table can be considered as a function
LUT : [0, 255] → c with c := (r, g, b) ∈ [0, 255]3. The exact scaling factors and threshold
values are given in each figure.
Now, for the color-coded errors of the iso-values we proceed as follows. We use a user-
specified iso-value δ (the precise values are given in each figure as well) and apply our
shear-warp approach to compute the position v in the three-dimensional domain Ω where
the iso-value δ is intersected by a ray. For this computation we apply the considered
spline model. Once we have found the position v in Ω with sξ(v) = δ, we compute
the iso-value at the same position using the original function fξ(v). The redefined error
between the two iso-values is errξ = |x − y| with x := sξ(v) and y := fξ(v). This error
value is scaled and the linear map between the error and the index of the look-up table
is defined, such that the table LUT can be applied.
The color-encoded errors of the gradients are obtained similarly. We perform the iso-
surface computations as before, but here we use the error formula errξ1 = (g1,xg2,x +
g1,yg2,y + g1,zg2,z)/(‖g1‖‖g2‖), where g1 = (g1,x, g1,y, g1,z) and g2 = (g2,x, g2,y, g2,z)
are the gradients obtained at the same positions v at a user-defined iso-value δ, i.e.
when sξ(v) = δ. The first gradient g1 is computed by using the considered spline
model which represents the original test function1 and the second gradient g2 is di-
rectly determined from the original test function fξ(v) at the same position v. In
this way we measure the error of the gradients or the quality of the spline model.
Here, we define the norm as ‖g‖ =

√
g2
x + g2

y + g2
z . The final error value is then ob-

tained from errξ = (180◦ arccos(errξ1)/π), hence the error errξ(errξ1) is in the interval
[180◦(−1), 90◦(0), 0◦(+1)], where values > 90◦(< 0) are clipped to 90◦(0) (radiants).
Here we define the linear map from [0◦, 90◦] to [0, 255], hence, we also apply an index
of 8bit to find the corresponding color code in the color look-up table. Once more the
exact threshold values a, b, c are given in each figure.
Similarly, we proceed for the color-encoded errors of the mean curvatures. After the
position of an iso-value is found, we compute the mean curvatures as discussed in part I
using the considered spline model, the original function, and the error function errξ =
|x− y| (where now x and y represent the mean curvatures). The previously shown look-
up table is used again with appropriate threshold values a, b, and c which are given at
the figure captions and of course the errors of the curvature values have to be scaled in
a careful way as well.

2.3 Numerical Tests

In the following we show some numerical results – partly raised by images – of the
spline models discussed in part II and [RZNS03] [SZ05]. Hence, some parts maybe

1The original function is sampled first and afterwards the parameters (coefficients) for the considered
spline model are determined.

2.3. NUMERICAL TESTS 141

CHAPTER 2. RESULTS ON SPLINE MODELS

quite similar to the results already presented in the above papers and in [NRSZ04]
[RZNS04a] [SHZ+05]. Further, since an overall comparison of the different models we
have implemented would heavily increase in size this results part, we shifted some tables,
figures, and discussions to the appendix (cf. App. A). Here we give a summary of the
numerical results with a focus on the cubic type-6 spline model.
However, the implementation of splines requires at first a verification step which shows
the correctness of the implemented data reconstruction models. Hence, a first simple test
is to use only the polynomials from the space Pn := span{xiyjzk : i, j, k ≥ 0, i+j+k ≤ n}
of trivariate polynomials as test functions, which can be reproduced by the considered
splines. Once this is done, we can proceed with the other numerical tests by using
the test functions and error types mentioned above to illustrate the efficiency and the
approximation quality of the reconstruction models (cf. also App. A).

2.3.1 Value Reconstruction

Figure 2.2 depicts a comparison of the trilinear and quadratic type-0 models as well
as the quadratic and cubic type-6 spline models based on value reconstruction of the
Marschner-Lobb benchmark. That means, the figure shows the errors between the spline
values and the original function values located at the same domain positions on the user
defined iso-surface.

h trilinear type-0 quadratic type-0 quadratic type-6 cubic type-6
1/16 0.0740 0.0765 0.0774 0.0770
1/32 0.0643 0.0529 0.0548 0.0538
1/64 0.0312 0.0201 0.0204 0.0202
1/128 0.0095 0.0057 0.0057 0.0057
1/256 0.0025 0.0014 0.0014 0.0014

Table 2.1: Approximation errors (root mean square) for the data values of the Marschner-Lobb
test function fML using trivariate piecewise trilinear and quadratic type-0 as well as quadratic
and cubic type-6 splines for reconstruction, respectively.

However, the linear type-0 splines in Bernstein-Bézier form defined on Ω have two main
difficulties. First, they generate jags in the final images when general function reconstruc-
tion is considered (e.g. the Marschner-Lobb function). Second, the gradients obtained
from that model are not smooth across neighboring unit cubes or cells. To overcome the
disadvantages one often considers the trilinear model in volume visualization algorithms.
However, the first difficulty remains even for the trilinear model, because in general it
can only reproduce piecewise linear functions. Therefore, even the values of general func-
tions (e.g. the Marschner-Lobb test) can be reconstructed for increasing volume data
sizes quite well (cf. Tab. 2.1 and App. A) compared to the more sophisticated models,
these trilinear splines generate jags in the final images (as can be see in the top left
image in Fig. 2.2) when more general function reconstruction is considered. The second
difficulty of the linear type-0 splines can be omitted by considering different gradient
estimation techniques in the trilinear model, which is discussed below.
Piecewise quadratic type-0 splines in Bernstein-Bézier form defined on a volumetric do-
main Ω lead to better reconstruction results (cf. Tab. 2.1) compared to the previous

142 2.3. NUMERICAL TESTS

CHAPTER 2. RESULTS ON SPLINE MODELS

Figure 2.2: The value reconstruction of the Marschner-Lobb test function at points v, where
the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using type-0 piecewise trilinear
(top left) and quadratic (top right) splines and type-6 quadratic (bottom left) and cubic (bottom
right) models, respectively. The images show the error |(fML − sML)(v)| between the values
obtained from the Marschner-Lobb test function fML(v) and values reconstructed by the different
piecewise spline models sML(v). Here, the error threshold values are a = 0.025, b = 0.05, and
c = 0.075. The grid spacing is h = 1/32. The bottom most image shows the lookup table (cf.
2.1).

trilinear model. The main advantages of that quadratic model (and also the models
below) are: First, it can reproduce higher degree polynomials, so that for non-linear
functions no jags occur in the final images (cf. top right image in Fig. 2.2). Second, the
gradients can be directly computed from that model and are smooth (see below). Third,
noisy data (e.g. arising from MRI) is smoothed automatically, because of the approxi-
mating behavior of that splines. However, this can sometimes also be a disadvantage.
For example, interpolating a piecewise linear function is not possible.
The main goal for the type-6 models is to develop approximating splines which satisfy
smoothness properties needed for volume visualization. However, both approaches can
be seen as a compromise between fast visualization and accurate approximation of the
data. In the bottom left and right images of figure 2.2 one can observe that the quadratic
as well as the cubic type-6 spline models are superior compared to the trilinear model
(top left image). They do not produce any jags and the errors of the data values remain
low as for the quadratic type-0 splines (cf. also Tab. 2.1). Nevertheless, the Super-Splines
have more difficulties to reconstruct the iso-surface of the Marschner-Lobb test function
because of the low total degree of its piecewise polynomials. That means, because only
few samples are taken from the test function, the high frequencies at the outer parts of

2.3. NUMERICAL TESTS 143

CHAPTER 2. RESULTS ON SPLINE MODELS

the benchmark are not visualized as good as in the reconstruction by cubic type-6 or
quadratic type-0 splines. These splines tend to oscillate more because of their higher
total degree polynomials used for reconstruction which in this case reflect the hight
frequencies at the outer parts of the benchmark in a more natural way.

2.3.2 Gradient Reconstruction

Figure 2.3 depicts a comparison of the trilinear and quadratic type-0 models as well as
the quadratic and cubic type-6 spline based on gradient reconstruction of the Marschner-
Lobb benchmark. In this case, the figure shows the errors between the spline derivatives
and the original function derivatives located at the same domain positions on the user
defined iso-surface.

Figure 2.3: The gradient reconstruction of the Marschner-Lobb test function at points v,
where the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using type-0 piecewise
trilinear (top left) and quadratic (top right) splines and type-6 quadratic (bottom left) and cubic
(bottom right) models, respectively. The images show the error |∇(fML − sML)(v)| between the
gradients obtained from the Marschner-Lobb test function fML(v) and gradients reconstructed by
the different piecewise spline models sML(v). Here, the angle (measured in degrees) between the
two gradients defines the error, i.e. the angle thresholds are 0◦, a = 10◦, b = 20◦, and c = 30◦.
The grid spacing is h = 1/32. The bottom most image shows the lookup table (cf. 2.1).

As already discussed above, linear type-0 splines are not the preferred choice for volume
visualization. An additional reason for this is, because the gradients computed from that
model are not smooth and, hence, not a good choice for evaluating a lightning model
(e.g. Phong lightning). The piecewise constant behavior of the gradients would result in
low quality images. However, this is the main consideration why the piecewise trilinear

144 2.3. NUMERICAL TESTS

CHAPTER 2. RESULTS ON SPLINE MODELS

h trilinear type-0 quadratic type-0 quadratic type-6 cubic type-6
1/16 2.2893 2.4504 2.4905 2.4757
1/32 2.4044 2.0222 2.1083 2.0595
1/64 1.4338 0.8054 0.8250 0.8141
1/128 0.4754 0.2301 0.2336 0.2318
1/256 0.2534 0.0596 0.0604 0.0600

Table 2.2: Approximation errors (root mean square) for the gradients along the x direction of
the Marschner-Lobb test function fML using trivariate piecewise trilinear and quadratic type-0
as well as quadratic and cubic type-6 splines for reconstruction, respectively.

model (not really in Bernstein-Bézier form) is often applied for reconstruction. However,
in this model a different gradient estimation technique is applied. That means, the 1st
derivatives do not directly result from that spline model, instead they are computed at
any location of the volume domain Ω by linear interpolation of preestimated gradients
defined at prescribed positions (e.g. grid points) of the volume. The trilinear model is a
compromise between the linear and the quadratic type-0 spline models. It allows on one
side faster reconstructions of the data compared to the above quadratic tensor product
splines in Bernstein-Bézier form. On the other side, a pre-computation of gradients for
each grid point location of the volume data set by using central differences or the Sobel
operator and a following linear interpolation of that grid point gradients allows the user
to reconstruct derivatives anywhere on the volumetric domain Ω in a more accurate
way compared to the simple linear type-0 splines. This, however, requires an additional
gradient volume data set which needs at least three times as much memory as the data
itself.
In contrary, the quadratic C1 type-0 splines (tensor product splines) do not need any
additional gradient data sets to be pre-computed, nor any other models for gradient
estimation. The first as well as the second derivatives can be directly obtained from
that model. However, the computational complexity of that splines increases, but they
also generates more satisfying results (compare the trilinear and the quadratic splines
from the top left and right images of Fig. 2.3, respectively, and Tab. 2.2).
Quadratic and cubic type-6 splines behave very similar to the tensor product model.
The main goal for the quadratic type-6 splines was to develop approximating splines
with the lowest possible polynomial degree which additionally satisfy smoothness prop-
erties needed for volume visualization. In general appropriate smoothness conditions
have to be satisfied to obtain, for example, a C1 quadratic spline model on Δ. For
this quadratic type-6 spline model some of the C1 smoothness conditions are replaced
by other useful conditions, i.e. averages of smoothness conditions, to obtain a compact
representation of that splines. In case of the cubic type-6 model non of the C1 smooth-
ness conditions have been removed, which results in an overall cubic C1 spline model
on Δ. However, the quadratic splines are smooth nearly everywhere on the volumetric
partition ♦. Further, regarding the approximation properties, the splines s yield nearly
optimal approximation order, while their derivatives yield optimal approximation order
of smooth functions f which is a non-standard mathematical phenomenon (see part II
and [RZNS03] [NRSZ04]). However, one could expect that the numerical accuracy or
the visual quality of the quadratic type-6 model compared to the quadratic type-0 or

2.3. NUMERICAL TESTS 145

CHAPTER 2. RESULTS ON SPLINE MODELS

cubic type-6 splines will diminish a lot. This is not the case as can be observed in
table 2.2, which shows the decrease of the approximation error of the spline models
to the Marschner-Lobb test function for decreasing grid spacing h. In figure 2.3 one
corresponding iso-surface is shown, where the approximation error of the spline deriva-
tives according to the original function derivatives is color coded. The not overall C1

consistency of the quadratic type-6 splines will be revealed in the next section.

2.3.3 2nd Derivative Reconstruction

Figure 2.4 depicts a comparison of that models based on 2nd derivative reconstruction
of the Marschner-Lobb benchmark. However, it is clear that C1 models are not able to
reconstruct the second derivatives of a general function in a smooth way. Nevertheless,
in some cases (e.g. for fast curvature visualization of volume data sets) even piecewise
constant 2nd derivatives or curvatures could produce satisfying results (cf. part I). The
numerical results are given in table 2.3.

Figure 2.4: Reconstruction of Hesse matrices of the Marschner-Lobb test function at points
v, where the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using type-0 piecewise
trilinear (top left) and quadratic (top right) splines and type-6 quadratic (bottom left) and cubic
(bottom right) models, respectively. The images (with h = 1/64) show the error between the
Hesse matrices obtained from the Marschner-Lobb test function fML(v) and Hesse matrices
reconstructed by the piecewise quadratic spline model sML(v). Here, the mean curvature computed
from the Hesse matrices of the original function and this represented by the spline model is used
to define the error. The error thresholds are 0.0, a = 0.0025, b = 0.005, and c = 0.0075. Once
more the bottom most image shows the lookup table (cf. 2.1) used for error encoding.

146 2.3. NUMERICAL TESTS

CHAPTER 2. RESULTS ON SPLINE MODELS

h trilinear type-0 quadratic type-0 quadratic type-6 cubic type-6
1/16 94.89 109.6 109.9 109.5
1/32 107.5 97.43 99.67 97.52
1/64 69.77 53.68 53.27 51.28
1/128 30.64 26.91 26.39 24.91
1/256 13.46 13.46 13.15 12.32

Table 2.3: Approximation errors (root mean square) for the 2nd derivatives along the x direc-
tion of the Marschner-Lobb test function fML using trivariate piecewise trilinear and quadratic
type-0 as well as quadratic and cubic type-6 splines for reconstruction, respectively.

2.3. NUMERICAL TESTS 147

CHAPTER 2. RESULTS ON SPLINE MODELS

2.4 Visual Quality

In the previous section we gave numerical results based on the different trivariate spline
models. These results allowed us to study the approximation order of the splines. The
corresponding images taken at a user-defined iso-surface of the Marschner-Lobb test
function gave us further a first impression of the visual quality one could achieve with
the appropriate model. In this section we compare the visual quality of the different
piecewise polynomials based on the synthetic spherical test function fSq(v), because
the visual quality is more critical in real world volume rendering applications than any
numerical tests, and this spherical benchmark allows us to enhance some interesting
properties of the considered spline models. We also show how the spline models perform
on real world data sets. Therefore we consult the Bonsai data set of 2563 samples.

2.4.1 Linear Models

The next two figures (i.e. Fig. 2.5 and Fig. 2.6) give results obtained by using different
linear spline models. However, it is well known that these spline models are not the

Figure 2.5: The top and bottom rows show images rendered from 83 and 163 volume data
sets, respectively, sampled from the spherical test function fSq. All images show the color-coded
errors of the gradients obtained from the original spherical function fSq(v) and from the different
spline models sSq(v) at the user-defined iso-value sSq(v) = 60.0/255.0. The reconstruction
models are (from left to right) the linear tensor product spline model, the trilinear model (two-
side differences) on Ω, and the the linear spline model on Δ. The threshold values are 0.0◦, a =
0.85◦, b = 1.7◦, and c = 2.55◦. Hence, the red color denotes angles (errors err) between the two
gradients which are bigger than 2.55◦.

appropriate choice for volume visualization, because the models generate piecewise con-
stant gradients. This leads mostly to images where the volume grid structure is heavily
visible. Gradients reconstructed by one of these methods are only at few positions on the
sphere suitably accurate. At all other location on the sphere the errors, i.e. the differ-
ence between the exact and reconstructed gradients, are rather inaccurate. The trilinear
model is considered as the standard method for the reconstruction of volume data and is

148 2.4. VISUAL QUALITY

CHAPTER 2. RESULTS ON SPLINE MODELS

often applied in visualization approaches. We can say that this trilinear model combines
different techniques to overcome the difficulties of the simple linear models. First, one
usually chooses, for example, the linear tensor product spline model to perform the re-
construction of some values. Then, at each volume grid point a gradient is pre-computed
by using central-differences, the Sobel operator or other schemes from the data values at
nearby grid points. Once this is done, two models are constructed. The data model is
determined from the data samples itself located on the volume grid points by appropri-
ately setting the parameters of the chosen spline model by using the local neighborhood
(see part II). Then, instead of computing the gradients directly from that data model by
applying Bernstein-Bézier techniques (see also part II), i.e. the de Casteljau algorithm,
one usually defines a different gradient model. For that model the same linear tensor
product splines are used. But now the parameters are determined from the x, y and
z components of the pre-computed gradient samples and the local neighborhood. This
is done separately for each component of the gradient. A very similar model could be
defined using linear type-6 splines. However, it is clear that both models are able to

Figure 2.6: Left: Iso-surface (s(v) = 40.0/255.0) of Bonsai data set using linear type-6 splines.
Right: A zoom into the black marked area (cf. left image) using linear type-6 (top-left) and type-
0 (top-right) spline models and the trilinear model with one-side (bottom-right) and two-side
(bottom-left) differences.

generate more accurate gradients due to, for example, the central-difference technique
used for derivative estimations, which in fact is derived from a second degree polynomial
model.
A real world example (cf. Fig. 2.6) makes it more evident that linear splines are a bad
choice for volume visualization. Even the grid structure of the volume data set becomes
not so apparent in the rendered images when the eye location is far away from the object,
the visualization appears a little bit rough or coarse. Once a zoom into the object is
performed, i.e. the eye position is transformed near to the place of interest in world
space, the regular volumetric partitions � and ♦ become clearly visible. In this sense
the trilinear model generates more satisfying results.

2.4. VISUAL QUALITY 149

CHAPTER 2. RESULTS ON SPLINE MODELS

2.4.2 Quadratic Models

Higher order splines, as discussed next, have the advantage that smooth gradients are
directly available from the considered data model. That means, once all the parame-
ters of the appropriate splines are computed from data samples of the volume grid by
considering the local neighborhood, the data values as well as smooth gradients can be
reconstructed anywhere in the volumetric domains Δ or Ω. There is no need to define
two separate models for data and derivatives, respectively. The visual performance of
the trilinear model (using the Sobel operator for gradient estimation), the quadratic
tensor product splines, the quadratic, and cubic type-6 splines is shown in Fig. 2.7, 2.8,
and 2.9. In the first figure we used the spherical function again and show the quality

Figure 2.7: The top and bottom rows show images rendered from 83 and 163 volume data
sets, respectively, sampled from the spherical test function fSq. All images show the color-coded
errors of the gradients obtained from the original spherical function fSq(v) and from the different
spline models sSq(v) at the user-defined iso-value sSq(v) = 60.0/255.0. The reconstruction
models are (from left to right) the trilinear interpolation model (Sobel operator), the quadratic
spline model on Ω, and the quadratic and cubic spline models on Δ. The threshold values are
0.0◦, a = 0.85◦, b = 1.7◦, and c = 2.55◦. Hence, the red color denotes angles (errors err) between
the two gradients which are bigger than 2.55◦.

of the trilinear model (with Sobel operator) and higher order spline models. In the top
left most image of Fig. 2.7 where we use a data set of 83 samples obtained from the
spherical test function the projection or visualization of the sphere data set do not look
like a circle as should be the case. Instead we clearly see an approximation of a circle by
11 line segments connecting the 12 corners. If the number of data samples increases, as
in the bottom row in the considered figure, the approximation becomes more accurate.
This example shows the limitations of the trilinear model. For high zoom-in factors into
data sets (see also Fig. 2.9) or for difficult test functions where only a few data samples
are considered for reconstruction, the trilinear model generates such angular structures
at the boundaries of the object’s surface as, for example, the sphere or the leaves of
the Bonsai data set. Quadratic or cubic spline models on type-0 or type-6 partitions do
not have the difficulty, they generate smooth boundaries because of the higher degree

150 2.4. VISUAL QUALITY

CHAPTER 2. RESULTS ON SPLINE MODELS

Figure 2.8: The top and bottom rows show images rendered from 83 and 163 volume data sets,
respectively, sampled from the spherical test function fSq. All images show the color-coded errors
of the mean curvatures obtained from the original spherical function fSq(v) and from the different
spline models sSq(v) at the user-defined iso-value sSq(v) = 60.0/255.0. The reconstruction
models are (from left to right) the trilinear interpolation model (Sobel operator), the quadratic
spline model on Ω, and the quadratic and cubic spline models on Δ. The error thresholds are
0, a = 0.0002125, b = 0.000425, and c = 0.0006375.

polynomials used for reconstruction.
Meanwhile, the gradients are another main issue for volume visualization. They are
used as input for the considered illumination model and have to be chosen carefully.
We have seen in case of linear splines what happens when the first derivatives are not
continuous. In case of using the trilinear model with the Sobel operator, the gradients
can be reconstructed quite well. It is clear because this operator results from a quadratic
model. Therefore, at the neighborhood in the volume grid the pre-computed gradients
behave like a piecewise linear function, in other words, they are continuous over the
whole domain. Even more, the gradients are further smoothed across their orthogonal
directions by a discrete gaussian kernel. However, the gradients obtained by trilinear
interpolation of the Sobel operator do not perform as well as the gradients directly
computed from the quadratic model on type-0 partitions or the cubic model on type-6
partitions. This can be observed in Fig. 2.7. One can see from the image corresponding
to the trilinear model, that it contains more blue coded areas compared to the images
corresponding to the type-0 quadratic and type-6 cubic models, respectively. Further, we
have already discussed in part II that the quadratic type-6 spline model has some minor
drawbacks. The gradients are continuous across faces of the unit cubes Q in ♦ (i.e. over
the planes defined in Equ. 2.3), but are not always across the faces of the tetrahedra
T in � (i.e. over the planes defined in Equ. 3.1). For smooth functions the gradients
are continuous across all the planes defining the tetrahedral partition. However, this
property of that quadratic type-6 splines reveals in a non continuous variations of colors
used to encode the error of gradients as can be seen in Fig. 2.7 (on the top row the
second image from the right side). At some location on the sphere, where the colors

2.4. VISUAL QUALITY 151

CHAPTER 2. RESULTS ON SPLINE MODELS

become red, the errors are moderately high.
In a practical example, that means in Fig. 2.9 the iso-surface of the leaves of the Bonsai
tree looks a little bit wavy or jagged, which comes from the discontinuous gradients as
well. This phenomenon can not be observed on the other images, what means, that
the corresponding data reconstruction models perform quite well here (even the trilinear
model with the Sobel operator). A comparison of the quadratic type-6 model with
the trilinear model shows that the boundary of the iso-surface of the different leafs is
more smooth due to the piecewise quadratic polynomials used for data reconstruction (a
similar observation has been done above for the sphere test data set with 83 samples).
Hence, from this point of view the quadratic type-6 model is very similar to the quadratic
type-0 and cubic type-6 splines. However, the difference between all the models becomes
most visible for high frequency areas (as e.g. the leaves of the Bonsai tree) where a
small number of data samples is used for feature representation only. No matter of the
applied reconstruction model, the underlying grid structures or partitions � or ♦ of the
corresponding domains Δ or Ω, respectively, are always clearly visible in the final images
in Fig. 2.7 and Fig. 2.8.
Finally, the visual results of the second derivatives are given in Fig. 2.8. Here we have
displayed the errors of the mean curvatures computed from the Hesse matrices and
the first derivatives obtained from the considered model and the corresponding original
function. However, it is clear that C1 reconstruction models can not represent second
derivatives of arbitrary functions in a smooth fashion. Hence, usually they can not be
applied in non-photorealistic volume rendering as, for example, curvature or silhouette
enhancements. Nevertheless, for increasing data sizes the errors of the mean curvature
become even smaller (see bottom row in Fig. 2.8 and the numerical results). That means,
we can apply these models in real world volume rendering applications, where we often
deal with data sets of size more than 2563 samples, to approximately display regions
of high curvature or the silhouettes of an object (examples are given in part I). Note,
the look-up table used to determine the corresponding color for a computed mean (or
gaussian) curvature(s) should contain smooth transitions only.

152 2.4. VISUAL QUALITY

CHAPTER 2. RESULTS ON SPLINE MODELS

Figure 2.9: Iso-surface (s(v) = 40.0/255.0) of Bonsai data set using (from top-left to bottom-
right) type-0 trilinear (with Sobel operator), type-0 quadratic, type-6 quadratic, and type-6 cubic
spline models, respectively.

2.4. VISUAL QUALITY 153

CHAPTER 2. RESULTS ON SPLINE MODELS

2.5 Performance

In the following we discuss the performance of the spline models. These Bernstein-Bézier
methods can be considered as two-step techniques. That means, in the first stage the
Bernstein-Bézier coefficients are computed to completely determine the considered spline
model. In the second stage the coefficients are usually used to reconstruct data values
and derivatives at arbitrary positions in the volumetric domain. These Bernstein-Bézier
methods can also be implemented as one-step techniques. Instead of determining the
coefficients first, the values and derivatives are directly computed from the local data
neighborhood. Hence, for the measurement of the performance of the different spline
models we consider a unit cube Q and two different tests.
More specifically, in the first test we measure the average time on how fast we can
determine the coefficients for a unit cube using the appropriate averaging formula of
the different splines. This allows us to estimate lower bounds of the time necessary
during the preprocessing stage, e.g. the time needed to pre-compute all Bernstein-Bézier
coefficients for a considered data set. For this test we consider again data sets of 163,
323, 643 and 1283 samples taken from the Marschner-Lobb test function and we compute
the coefficients for all the unit cubes. For each cube we measure the computation time
of the coefficients and determine from that the average time as well the variance for one
unit cube. In the second stage of the first test we use the same data sets and about
240 randomly distributed positions according to a unit cube (see also the numerical
tests). We reconstruct values as well as derivatives at these positions and determine in a
similar way the average time and variance for the reconstruction of a data value and its
derivatives at one position only (cf. Tab. 2.4 and Tab. 2.5). This allows us to give lower
bounds for the time necessary during the reconstruction or visualization stage, e.g. the
time needed to render an image from an arbitrary viewing position.

Model BBC Values Gradients Hesse matrices
type-0 linear 3.661[±0.486] 0.052[±0.002] 0.092[±0.001] 0.144[±0.003]

type-0 quadratic 4.217[±0.421] 20.03[±0.169] 20.05[±0.173] 20.06[±0.191]
type-0 trilinear 4.246[±0.389] 0.052[±0.002] 0.103[±0.002] 0.202[±0.003]
type-6 linear 3.671[±0.491] 0.075[±0.001] 0.098[±0.002] 0.119[±0.003]

type-6 quadratic 3.715[±0.446] 0.098[±0.004] 0.122[±0.003] 0.258[±0.007]
type-6 cubic 4.509[±0.315] 0.156[±0.005] 0.174[±0.004] 0.309[±0.008]

Table 2.4: For each model the performance in microseconds (μs) is given. In the first column
denoted as BBC the times needed to pre-compute all Bernstein-Bézier coefficients for a unit cube
are given. In the adjacent columns denoted as Values, Gradients, and Hesse matrices the times
needed to reconstruct the value, the gradient, and the Hesse matrix at a specified location are
shown.

In our second test we measure the copy time, i.e. the time needed to copy a 27-
neighborhood of the volume grid into a local buffer. Then, we use the values stored
in the local buffer to determine the on-the-fly reconstruction time, i.e. we directly eval-
uate the model (determine the values, gradients, and the Hesse matrices) at a specified
location (cf. Tab. 2.6 and Tab. 2.7). Here, we do not pre-compute any Bernstein-Bézier
coefficients, hence it is a good test to estimate the time necessary for on-line recon-

154 2.5. PERFORMANCE

CHAPTER 2. RESULTS ON SPLINE MODELS

Model BBC Values Gradients Hesse matrices
type-0 linear 44+, 8∗ 7+, 14∗ 18+, 30∗ 39+, 54∗

type-0 quadratic 108+, 54∗ 270+, 1053∗, 324/ 270+, 1053∗, 324/ 270+, 1053∗, 324/
type-0 trilinear 68+, 32∗ 7+, 14∗ 28+, 56∗ 70+, 92∗
type-6 linear 38+, 14∗ 3+, 4∗ 12+, 16∗ 12+, 16∗

type-6 quadratic 154+, 66∗ 15+, 20∗ 24+, 32∗ 77+, 104∗
type-6 cubic 776+, 342∗ 45+, 60∗ 54+, 72∗ 107+, 144∗

Table 2.5: For each model the arithmetic operations (the number of additions +, multiplications
∗, and exponentials /) are given. In the first column denoted as BBC the arithmetic operations
needed to pre-compute all Bernstein-Bézier coefficients for a unit cube are given. In the adjacent
columns denoted as Values, Gradients, and Hesse matrices the arithmetic operations needed to
reconstruct the value, the gradient, and the Hesse matrix at a specified location are shown.

struction and visualization as well as to compare with two-step techniques. It is clear
that such one-step techniques perform unnecessary and repeated computations for lo-
cal data reconstruction, i.e. when we consider several locations within the same unit
cube or tetrahedron. This can be thought as, repeatedly computing only the necessary
Bernstein-Bézier coefficients within the unit cube or better the tetrahedron for the re-
construction of values at a specified location. This has to be performed for several times
of course. The two-step techniques pre-compute all necessary coefficients for a cube or
tetrahedron first, and then reuse them for the reconstruction of the data at several speci-
fied locations. Hence, some arithmetic operations can be saved using the later technique.

Model Copy Values Gradients Hesse matrices
type-6 linear 3.647[±0.486] 0.103[±0.002] 0.122[±0.002] 0.143[±0.003]

type-6 quadratic 3.651[±0.484] 0.226[±0.002] 0.243[±0.003] 0.386[±0.005]
type-6 cubic 3.656[±0.480] 0.434[±0.005] 0.450[±0.005] 0.567[±0.007]

Table 2.6: For each type-6 model the performance in microseconds (μs) is given. In the first
column denoted as Copy the time needed to copy the 27-neighborhood associated with a unit cube
are given. In the adjacent columns denoted as Values, Gradients, and Hesse matrices the time
needed to reconstruct the value, the gradient, and the Hesse matrix at a specified location are
shown.

Before we are going to discuss our performance results of the different spline models given
in four different tables, let us make some notes first. Since our focus lies on type-6 splines,
we have only applied the first performance test for type-0 splines, i.e. we have measured
the pre-computation and the reconstruction time only. The number of operations and
the time shown in the last columns of each table denoted as Hesse matrices include
the amount of operations and time needed to reconstruct the values, first and second
derivatives, where the columns denoted as Gradients include the amount of operations
and time needed to reconstruct the values and the first derivatives and so on. For the
trilinear method we have applied central differences to compute the gradients (or the
Bernstein-Bézier coefficients). The number of operations (or the performance) needed

2.5. PERFORMANCE 155

CHAPTER 2. RESULTS ON SPLINE MODELS

Model Copy Values Gradients Hesse matrices
type-6 linear 27-N 18+, 7∗ 27+, 19∗ 27+, 19∗

type-6 quadratic 27-N 108+, 44∗ 117+, 56∗ 170+, 128∗
type-6 cubic 27-N 270+, 135∗ 279+, 147∗ 332+, 219∗

Table 2.7: For each type-6 model the on-the-fly arithmetic operations (the number of additions
+ and multiplications ∗) are given. In the first column denoted as Copy the 27-neighborhood
of data values corresponding to a unit cube is copied into a local buffer only. In the adjacent
columns denoted as Values, Gradients, and Hesse matrices the arithmetic operations needed to
reconstruct the value, the gradient, and the Hesse matrix at a specified location are shown.

for gradient estimation using the Sobel operator is be about 452+, 464∗ (5.236[±0.582]).
Whereas the number of operations during the reconstruction phase remains constant
no matter of the gradient-estimation operator used. For a better comparison of the
different models we determine the eight coefficients of the linear type-0 splines by means
that they become approximating splines (see part II), i.e. by using a 27-neighborhood in
the volume grid. For example, to compute one Bernstein-Bézier coefficient located at a
corner of the unit cube 7 additions and 1 multiplication are needed. Hence, in total, i.e.
to compute all eight coefficients, 56 additions and 8 multiplications would be necessary.
A simple optimization of the number of arithmetic operations results in 44 additions and
8 multiplications. This kind of optimizations we have performed for each model except
the type-0 quadratic splines, hence this quadratic spline model is not well optimized yet
and lead to a bad performance. The trilinear model is basically the same as the type-0
linear splines. That means, instead of using 8 Bernstein-Bézier coefficients for a unit
cube only, 32 coefficients are generated (8 data coefficients for the data model and 24
gradient coefficients for the gradient model, i.e. 8 for each component x, y, and z of the
gradient). For linear, quadratic, and cubic type-6 splines we pre-compute 15, 65, 175
coefficients for a unit cube for the first test, respectively, and later evaluate the spline
models at several locations within the cube using the pre-computed Bernstein-Bézier
coefficients. For the second test we directly evaluate the appropriate spline model from
the given data values of a 27-neighborhood in the volume grid.
However, from the second columns (denoted as BBC and Copy) of Tab. 2.4 and Tab. 2.6
we can observe that most of the time is spent for copying the data of a 27 neighborhood
of the volume grid into a local buffer. The time needed to pre-compute the necessary
Bernstein-Bézier coefficients for a unit cube is quite small for all spline models. Only the
cubic type-6 splines need approximately the same time for their arithmetic operations
(i.e. to compute all coefficients for a unit cube) as the time necessary to copy the 27-
neighborhood into a local buffer. In the third, fourth, and fifth column of the above tables
we can further observe that once the coefficients are pre-computed for a unit cube the
reconstruction time of data values, gradients and Hesse matrices can be approximately
halved for type-6 splines. This becomes immediately clear looking at Tab. 2.5 and
Tab. 2.7, where we give the number of corresponding arithmetic operations. It can be
observed that each model needs about twice as many multiplications when the Bernstein-
Bézier coefficients are not pre-computed. So the doubled reconstruction time is not
surprising. We can not pre-compute the coefficients for the whole data set because we
would have to store too much data. However, considering one cube only, a small array

156 2.5. PERFORMANCE

CHAPTER 2. RESULTS ON SPLINE MODELS

of size 15, 65, or 175 floating point cells have to be used to be able to pre-compute and
store the necessary Bernstein-Bézier coefficients using the two-step technique. In case
of the one-step technique always a buffer of size 27 floating point cells is required. The
question now is, if that one-step technique is applicable and efficient? We can say, no,
since the sum of pre-computation time (shown in the column denoted as BBC) and the
corresponding reconstruction time (shown in the columns denoted as Values, Gradients,
and Hesse matrices) of Tab. 2.4 is mostly smaller than the sum of copy time (shown in
the column denoted as Copy) and the corresponding reconstruction time of Tab. 2.6.
Finally, Tab. 2.4 allows us to estimate the pre-processing time for the pre-computation
of all coefficients for the whole data set, i.e. when one likes to do this. However, in
volume rendering often only about 10% of all cubes of the original data are classified by
opacity tables to be visualized. Hence, the pre-processing of a N3 volume would take
about 0.10N3x microseconds (μs), where x represents the appropriate time values from
the above table needed to compute the coefficients for one cube only. More specifically,
if N = 256 then the linear, quadratic, and cubic type-6 splines would need at least
about 6.14, 6.22, and 7.56 seconds according to the above performance test to generate
a pre-classified data set with pre-computed Bernstein-Bézier coefficients. Neglecting the
overhead for organizing the coefficients in an appropriate way and classification of the
data itself. The time to generate an image, of e.g. an iso-surface of a volume, can
be estimated as well. For this, a final image (or viewport) of size M × N pixels with
associated rays is considered, where about 50% of all rays will intersect the iso-surface
of the function only. Further, linear, quadratic and cubic type-6 spline models are used
which require to reconstruct 2, 3 and 4 data values inside a considered tetrahedron
to further generate local piecewise polynomials of total degree one, two, and three,
respectively. These polynomials can be used in root-finding algorithms to compute the
iso-surface. However, the lower bound for the rendering time of an image containing the
iso-surface of a function would be about 0.5(2MNx+1MNy), 0.5(3MNx+1MNy), and
0.5(4MNx + 1MNy) for linear, quadratic, and cubic splines, respectively. Once more,
x and y represent the appropriate time values needed for one data value or gradient
reconstruction from the above table. Hence, the lower time bound for rendering a 512×
512 image of the iso-surface of a volume is about 32.50, 54.53, and 104.60 milliseconds
for linear, quadratic and cubic splines, respectively. This results in a maximum of 30,
18, and 9 frames per second. Note that since we do not know in advance if there
occurs an iso-surface intersection of a ray and the data, we often have to perform these
computations until one iso-surface is found. Then, the early-ray termination flag can be
set, such that all adjacent tetrahedra visited by the considered ray can be skipped and
hence, the iso-surface computations as well. Also note that the estimation of the frame
rates does not include the time needed for the root-finding process itself, it contains only
the reconstruction time of necessary values and gradients by the considered model, which
are further used in the root-finding algorithm and for the Phong illumination algorithm.
From this point of view it is very difficult to achieve the above estimated frame rates.
However, we have applied the shear-warp approach for volume visualization and we will
see in the following sections how near we will come to that theoretical frame rates.

2.5. PERFORMANCE 157

3 Results on Shear-Warp

In this section we give the results on our new shear-warp algorithm. We first consider the
parallel projection case and compare our new method with the original algorithm [LL94]
[Lac95] as well as the well known shear-warp deluxe approach using intermediate slices
[SM02] for rendering. Therefore we have re-implemented both algorithms. Then, we
show results of our new method by using different spline models for data reconstruction.
Finally, the perspective case is considered and the efficiency of the new data structures
used to realize a similar approach as for the parallel projection case is discussed.

3.1 Parallel Projection Case

3.1.1 Equidistant Sampling

The quality of the original shear-warp approach heavily depends on the viewing direction
(see part III). For an oblique view onto the volume staircasing effects are clearly visible
(see Fig. 3.1) due to the increased sampling distance in object space. As discussed in

Figure 3.1: Left: An oblique view onto the Engine volume data set, where staircasing artifacts
are clearly visible due to the increased sampling distance. Right: The intensity profile correspond-
ing to the horizontal red line in the left image. Here, the staircasing artifacts appear as jagged
structures, visible in the left area in this profile.

part III as well, a partial solution to the problem of the varying sampling distance is to
introduce intermediate slices. This reduces the maximal sampling distance to

√
3/(N+1)

withN the number of intermediate slices and allows us to stay within the Nyquist limit of
0.5 (for rectilinear, volumetric domains with unit cube size of 13). However, this approach

159

CHAPTER 3. RESULTS ON SHEAR-WARP

Figure 3.2: Left: An oblique view onto the Engine volume data set (the same configuration as
in Fig. 3.1), where staircasing artifacts are still visible even using intermediate slices. Right: The
intensity profile corresponding to the horizontal red line in the left image. Here, the staircasing
artifacts appear as jagged structures, visible in the left area in this profile. The jagged structures
are less suspicious than in Fig. 3.1.

generates less suspicious staircasing artifacts. In general arbitrary many intermediate
slices can be rendered to decrease the sampling distance and to improve the quality of
the resulting image. Note that the opacity has to be corrected according to the varying
sampling distance as well. However, once we have decided to render one intermediate
slice, e.g. at the object space location t = 0.5 between two original (encoded) slices
located at position t = 0.0 and t = 1.0, respectively, the Nyquist limit can be satisfied.
The number of intermediate slices depends on the underlying data reconstruction model
used. That means, for the trilinear model which generates piecewise polynomials of
total degree 3 for oblique views onto the volume, one should in principle apply two
intermediate slices for a correct reconstruction of the data (even not considering the
volume rendering integral correctly). Hence, one intermediate slice is not enough.
In our new approach we solve the problem discussed above in a different way. Instead
of using intermediate slices, we have developed a new data structure called column tem-
plate. This (see part III) has two main advantages. The first benefit is that an equidistant
spacing of the sampling points in object space can be defined, so that we do not need
to correct the opacity during rendering as in the approach discussed above. Then, since
a parallel projection is considered here, a coherency of the rays in object space can be
observed. Thus, we can pre-compute all sampling positions within the volume domain
along all the different rays and store the sampling locations in our template. The second
main profit is that, using this data structure two of the three run-length encoded volume
data sets have never to be used during rendering and thus, have not to be encoded nor
stored anymore.
However, a cell or cube template which is a part of the column template and represents
a unit cube needs exactly 208 Bytes to store the necessary information for rendering
(i.e. the position of the sampling points located inside a unit cube and their projection

160 3.1. PARALLEL PROJECTION CASE

CHAPTER 3. RESULTS ON SHEAR-WARP

Figure 3.3: Left: An oblique view onto the Engine volume data set (the same configuration
as in Fig. 3.1 and Fig. 3.2), where staircasing artifacts are still visible even using trilinear
interpolation and correct sampling (i.e. the sampling distance is fixed to 1/2 and does not depend
on the viewing direction anymore). Right: The intensity profile corresponding to the horizontal
red line in the left image. Here, the staircasing artifacts appear as jagged structures as well,
visible in the left area in this profile. The jagged structures are less suspicious than in Fig. 3.1
and Fig. 3.2.

information). Hence, for a volume with a maximal size of K unit cubes along any of its
three main axes the size of the whole template becomes exactly 208K bytes huge. More
specifically, for a data set of size (L ×M ×N) = (256 × 128 × 64) voxels the template
needs a maximum of 208K = 208max(L,M,N) = 52 kilobytes of memory for the pre-
computed information. This data structure fits easily into the second level cache, so that
a loss of performance of our new shear-warp approach due to this template is unlikely. We

Size Time
64 77.07[±35.25]
128 85.68[±11.02]
256 165.52[±19.64]
512 333.51[±45.28]
1024 652.18[±77.24]

Table 3.1: Pre-processing times in microseconds (μs) of the different sized column templates
for equidistant sampling.

have verified this by considering 1000 randomly generated local ray start positions and
directions according to different sized unit columns. In other words, for each random ray
a column template representing a unit column of pre-defined size has been recomputed
and the time for this process has been measured. In this way we have obtained 1000
measurements from which we have calculated the average time (and variance) for the
generation of one column template only. We have done this test for different sized

3.1. PARALLEL PROJECTION CASE 161

CHAPTER 3. RESULTS ON SHEAR-WARP

templates. In Tab. 3.1 we show the results. However, it is obvious that if the size of the
template is doubled, the time to create the template grows by approximately the same
factor. The average time to compute the information of one unit cube represented by
a cube template is approximately 0.6 microseconds. Hence, the pre-computation of the
column template in our new shear-warp approach does not affect the speed of the total
rendering algorithm.
In the following (see Tab. 3.2) we give the performance of our shear-warp approach
compared to the original method and the shear-warp deluxe algorithm which uses in-
termediate slices (all methods are our own implementations). We render the data sets
from 100 randomly generated viewing directions and determine the average time for one
frame or the number of frames per second the considered method can achieve. The per-

Data Set Size SWO SWI SWN
Engine 2562 × 128 24.0 16.5 5.1
Teapot 2562 × 178 20.5 14.6 4.0
Bonsai 2563 19.5 14.3 3.9

Table 3.2: Average frame rates of the different rendering methods in frames per second. SWO:
Shear-Warp without intermediate slices. SWI: Shear-Warp with intermediate slices. SWN: Our
new rendering method with trilinear interpolation using the column template. In each method
we have applied a linear opacity transfer function.

formance loss of the shear-warp deluxe algorithm by a factor of approximately one and a
half can be explained by the increased number of intermediate slices which are rendered
(a factor of two according to the number of slices used in the original method). Another
reason is that we consider four run-length encoded volume scan-lines to generate one
intermediate scan-line on-the-fly which is not stored but directly rendered to the appro-
priate intermediate image scan-line. This leads to suboptimal space leaping considering
the original method. Of course, we could use only two volume scan-lines at a time as in
the original approach. This would result in another intermediate image buffer which had
to be used to store intermediate results which would be further composited into original
intermediate image (see part III and the original paper [SM02]). However, that is the
reason why we decided to apply the former approach using four volume scan-lines. Our
new algorithm is about a factor of five slower than the original method. The reasons are
very similar as before. First, we always consider four volume scan-lines during render-
ing (not only for the rendering of the intermediate slices) to generate one intermediate
image scan-line. Second, we always apply the real trilinear data reconstruction model
(in the deluxe approach we switch between a bilinear reconstruction within the original
encoded slices and a trilinear reconstruction within the intermediate slices). Third, in
two cases, i.e. for two of the three main viewing directions, two intermediate image
scan-lines are considered at a time for correct early-ray termination and compositing.
This is suboptimal according to the original as well as the deluxe method where only one
scan-line has to be taken into account. In case of the third viewing direction we also have
to apply early-ray termination in an oblique fashion within at most three dynamically
encoded (oblique) intermediate image scan-lines (cf. discussion part III). Fourth, the
number of sampling points to reconstruct the data and to evaluate the line integral (i.e.
the volume rendering integral) along the different viewing rays varies according to the

162 3.1. PARALLEL PROJECTION CASE

CHAPTER 3. RESULTS ON SHEAR-WARP

viewing direction. In other words, if the ray direction is parallel to one main viewing
axis of the volume we need as many sampling points as the original method. Otherwise
the number of samples varies with the ray direction by a factor in the interval [1,

√
3].

However, the original method has a varying sampling distance where the number of
samples is constant, in our new method the distance is fixed and the number of samples
varies therefore. As mentioned before, we do not have to correct the opacity because of
the fixed sampling distance.

3.1.2 Accurate Sampling

In the previous section we have discussed the results of our new shear-warp approach
based on using a parallel projection matrix and an equidistant sampling of the data
along different rays. For this we have applied a pre-computed column template which
represents the information of all equidistant samples taken along all rays going through
the object. The main drawback of such an equidistant sampling is that no matter of the
data reconstruction model the sampling distance remains constant. Of course, one could
decrease the distance between two samples to increase the accuracy and thus the visual
result of the final image. But the question is, how can we do this in an optimal way?
The answer in the context of our new shear-warp approach is a further development of
the column template. That means, instead of storing the equidistant sampling positions
along the rays we pre-compute and store the intersection positions of the rays with the
different planes of the rectangular ♦ or tetrahedral partitions �. The spacing between
the intersection positions is then not necessarily equidistant. However, this allows us to
correctly define and to compute univariate piecewise polynomials along the rays with
respect of the unit cubes or the tetrahedra using the appropriate data reconstruction
models. In other words, considering for example the trilinear model which generates
univariate polynomials of total degree 3 along a ray according to a unit cube, we need
to take at least two samples in the interior of an unit cube to be able to define a third
degree polynomial and to correctly evaluate the iso-surface problem or the full volume
rendering equation. Having the intersections of all rays with the unit cubes (represented
in our template) this can be done easily and quickly. With the further development of
the column template where we store the intersection positions of the rays and the unit
cubes or the tetrahedra, we are able to implement fast as well as more accurate volume
rendering methods, because only as many sample positions are generated and stored as
are necessary for a considered data reconstruction model and volume partition.
However, as before a cube template which is a part of the column template and represents
a unit cube (or all tetrahedra within a cell) needs exactly 516 Bytes to store the necessary
information for rendering (i.e. the intersection positions of the rays and the unit cubes
or tetrahedra and their projection information). Hence, considering our example from
above about twice as much memory is needed now, i.e. 512max(L,M,N) = 128 kilobytes
of memory for the pre-computed information is necessary. Note that the size of the
column data structure can be further reduced if parallel projections are considered only.
At this time we use the same data structure for perspective rendering as well. That
means, its dimensions are taken such that we can deal with both projection types.
Nevertheless, even this data structure fits easily into the second level cache. We have
applied the same tests as above, i.e. by considering 1000 randomly generated local ray
start positions and directions according to different sized unit columns. In Tab. 3.3 we

3.1. PARALLEL PROJECTION CASE 163

CHAPTER 3. RESULTS ON SHEAR-WARP

Size Time (♦) Time (�)
64 56.82[±24.45] 193.35[±86.39]
128 64.93[±8.33] 240.03[±46.00]
256 125.13[±15.06] 437.34[±48.65]
512 246.72[±30.08] 872.83[±97.84]
1024 494.34[±62.94] 1741.78[±193.60]

Table 3.3: Pre-processing times in microseconds (μs) of the different sized column templates
using accurate sampling for rectangular partitions ♦ (left) and for tetrahedral partitions � (right).

show the results. As before, it is obvious that if the size of the template is doubled, the
time to create the template grows by approximately the same factor. The average time
to compute the information of one unit cube represented by a cube template considering
the rectangular ♦ or tetrahedral partitions � is approximately 0.5 or 1.7 microseconds,
respectively. However, due to the additional six intermediate planes which are used
to split the rectangular partition into the tetrahedral partition we have an increase
of computation time for a cube or column template by a factor of approximately 3.5.
However, it is not surprising that the pre-computation time does not affect the speed
of the total rendering algorithm as before. But one may be astound that it takes more
time to generate the column data structure for equidistant sampling (discussed above)
than for the accurate sampling where intersection computations have to be carried out.
The reason is simple, we have derived the algorithm for equidistant sampling from that
method discussed here, hence there is a post processing required in case of equidistant
sampling and thus the computation of the information for one cell takes about 0.1
microseconds more.
Next, we give the performance (see Tab. 3.4 and Tab. 3.6) of our new shear-warp imple-
mentation using this template allowing an accurate sampling of the volume data. The
mentioned tables show the results obtained for two of the three main viewing directions
considered in the shear-warp method where the volume scan-lines are processed in a
parallel manner to the intermediate image scan-lines. In Tab. 3.5 and Tab. 3.7 we give
the rendering times obtained for the 3rd main viewing direction, i.e. when the volume
scan-lines have to be processed in a perpendicular manner according to the intermediate
image. In this case the dynamically encoded image scan-lines pass obliquely through the
intermediate image. This processing order results from the projected volume scan-lines
which go off obliquely through the image. For the reconstruction of the data we apply
our spline models as discussed in part II. It is clear from the results that we obtained for
the splines (see Sec. 2) which models perform best in terms of time or reconstruction.
Nevertheless, we didn’t give the rendering performance of our shear-warp implementa-
tion using this accurate sampling with conjunction to our spline models up to now. For
this we proceed as above. We render the different data sets from 1000 randomly gen-
erated viewing directions and measure the average time for the rendering of one frame.
This can be recomputed to the number of frames per second our algorithm is able to
achieve considering a specified data model. We decide to apply iso-surface rendering for
this test because of two reasons. First, iso-surface rendering can be considered as full
volume rendering with a threshold opacity transfer function. Second, the conditions of
an iso-surface test are often easier to reproduce than the conditions of a full volume ren-

164 3.1. PARALLEL PROJECTION CASE

CHAPTER 3. RESULTS ON SHEAR-WARP

dering test. Even we have decided to render surfaces of objects this performance test can
be compared to the results given before (i.e. to these obtained for the shear-warp deluxe
approach and our method using trilinear interpolation at equidistant spaced sampling
points along rays, in both methods a linear opacity transfer function is applied).

Data Set Size SW L SW Q SW T
Engine 2562 × 128 7.29 1.07 7.18
Teapot 2562 × 178 5.77 1.07 5.78
Bonsai 2563 3.46 0.65 3.33

Table 3.4: The iso-surface rendering performance (in frames per second) of our new shear-
warp approach along the first two main viewing directions by considering accurate sampling for
linear, quadratic, and trilinear spline models on ♦ (from left to right). The iso-values for the
different data sets (Engine, Teapot, and Bonsai) are 80, 50, and 40, respectively.

Data Set Size SW L SW Q SW T
Engine 2562 × 128 4.95 1.02 4.90
Teapot 2562 × 178 4.26 1.00 4.26
Bonsai 2563 2.73 0.61 2.65

Table 3.5: The iso-surface rendering performance (in frames per second) of our new shear-
warp approach along the 3rd main viewing direction by considering accurate sampling for linear,
quadratic, and trilinear spline models on ♦ (from left to right). The iso-values for the different
data sets (Engine, Teapot, and Bonsai) are 80, 50, and 40, respectively.

Data Set Size SW L SW Q SW C
Engine 2562 × 128 6.36 (4.29) 4.00 (1.93) 1.83 (0.85)
Teapot 2562 × 178 5.05 (3.20) 3.13 (1.34) 1.27 (0.58)
Bonsai 2563 3.04 (1.80) 1.75 (0.71) 0.66 (0.30)

Table 3.6: The iso-surface rendering performance (in frames per second) of our new shear-
warp approach along the first two main viewing directions by considering accurate sampling for
linear, quadratic, and cubic splines on � (from left to right). The iso-values for the different
data sets (Engine, Teapot, and Bonsai) are 80, 50, and 40, respectively.

However, for this test we also decide not to pre-compute any spline coefficients. We
simply organize the volume data in a linear fashion according to the linearly run-length
encoded data sets in the shear-warp approach. The pre-processing of the data takes
about 9.8, 13.8, and 19.8 seconds for Engine, Teapot, and the Bonsai, respectively.
During rendering the local neighborhood corresponding to a unit cube is read from the
linearly organized data array or directly accessed from the volume grid (then the pre-
processing time can be omitted, but the read operation will take a little more time),
copied into a local buffer, and the necessary coefficients for the considered spline model
are computed on-the-fly. There are two possible solutions as mentioned in Sec. 2. First,
for linear, quadratic, and cubic splines on � we determine the 15, 65, and 175 coefficients

3.1. PARALLEL PROJECTION CASE 165

CHAPTER 3. RESULTS ON SHEAR-WARP

Data Set Size SW L SW Q SW C
Engine 2562 × 128 4.15 (2.82) 2.43 (1.18) 0.96 (0.45)
Teapot 2562 × 178 3.62 (2.25) 2.08 (0.94) 0.81 (0.38)
Bonsai 2563 2.35 (1.36) 1.28 (0.59) 0.40 (0.17)

Table 3.7: The iso-surface rendering performance (in frames per second) of our new shear-
warp approach along the 3rd main viewing direction by considering accurate sampling for linear,
quadratic, and cubic splines on � (from left to right). The iso-values for the different data sets
(Engine, Teapot, and Bonsai) are 80, 50, and 40, respectively.

within a unit cube from the 33 local neighborhood of data values, respectively, and later
on evaluate the considered spline model (i.e. determine the values and derivatives) for
all ray segments going through that considered unit cube. Second, we do not expand the
local neighborhood as before into all coefficients which are necessary for the considered
unit cube. Instead we use the data from the appropriate local neighborhood to compute
only the coefficients needed for the current considered tetrahedron, i.e. we compute
only 4, 10, and 20 coefficients and use them directly for the evaluation of the values
and derivatives along the considered ray segment. A similar test is done in Sec. 2 and
it has turned out that the performance gain due to the pre-computed coefficients for
a considered unit cube is about a factor of two. A similar result is obtained in this
test as well (see the rendering times given in brackets in the above tables). Hence,
in the following we consider only the former test. From tables 3.4, 3.6, 3.5, and 3.7
one can observe rendering time speed-offs of 1.7 and 2.4 between choosing a linear or a
quadratic and a quadratic or a cubic type-6 spline model, respectively. Similar factors
can be observed in Sec. 2. There is almost no speed difference between renderings
obtained with the linear type-0 splines and the trilinear model. The computation of
derivatives for the trilinear model is delegated to the preprocessing stage (with almost
the same preprocessing times as mentioned above), hence during rendering we have to
approximate (or interpolate) the data and the derivatives only. Where in the linear type-
0 model we approximate (or interpolate) the data and compute the gradients using the
de Casteljau algorithm. Hence, both methods need a similar number of operations (cf.
Tab. 2.5). The quadratic type-0 spline model is about a factor of 5.0 slower than both the
linear and trilinear model. The visualization of an arbitrary data set from the 3rd main
viewing direction (i.e. when the volume scan-lines are considered perpendicularly to
the intermediate image) results in a performance reduction of the algorithm as well. No
matter which splines are used, the ratios here go from about 1.3 to 1.7. However, since all
parts of the algorithm are the same for all viewing directions except the implementation
of early-ray termination, we obtain a 25 − 40% slower algorithm for the 3rd viewing
direction where oblique (dynamically run-length encoded) intermediate image scan-lines
have to be considered. Without early-ray termination the factor would be about 2.5.
Finally, we have computed in Sec. 2 upper bounds on the number of frames one could
achieve with an algorithm using our spline models, i.e. with some assumptions 30, 18, or
9 frames per second could be theoretically obtained for an iso-surface rendering algorithm
using our linear, quadratic, or cubic splines, respectively. However, we have measured
frame rates of at most 7, 5, and 2 for the respective spline models. That means, a factor
of about 4 is spent for the root computations of polynomials (e.g. using Cardano’s

166 3.1. PARALLEL PROJECTION CASE

CHAPTER 3. RESULTS ON SHEAR-WARP

formula) and our shear-warp algorithm (i.e. for implementation of space leaping, early-
ray termination, convex hull tests to omit root computations, compositing, and the final
warp operation).

3.2 Perspective Projection Case

For the perspective projection case we do not differentiate between the equidistant and
accurate sampling. We first give the performance results of our implementation of the
original method discussed in [Lac95] and [SNL01]. And the results obtained for the
accurate sampling approach where the memory consumption of some additional data
structures is given and the performance of our algorithm is presented.

Data Set Size SWO SWI SWN
Engine 2562 × 128 10.8 7.73 -
Teapot 2562 × 178 9.69 6.65 -
Bonsai 2563 9.06 6.39 -

Table 3.8: Average frame rates of the perspective rendering method in frames per second. SWO:
Shear-Warp without intermediate slices. SWI: Shear-Warp with intermediate slices. SWN: Our
new rendering method with trilinear interpolation. In each method we have applied a linear
opacity transfer function.

The original perspective shear-warp approach is quite efficient. As reported in the above
mentioned papers this algorithm needs approximately twice as much time as that one
considering parallel rays to render a volume data set. In our implementation we have
observed a similar behavior (cf. Tab. 3.8). On the one side this cut-off in performance
is due to the overhead one has to investigate for synchronization between the run-length
encoded volume and image scan-lines. They are both processed in a parallel manner
to each other as before due to an appropriate factorization of the total viewing trans-
formation, but additionally the volume slices have to be scaled now, hence the volume
scan-lines have to be processed by an averaging filter as well as an interpolation filter to
generate the result for the intermediate image. In other words, since there is a scaling
between volume slices and the intermediate image, mostly more than four adjacent data
values (therefore more than two volume scan-lines at once as well) have to be considered
to compute the result for one image pixel. That means, now we often have to deal with
a footprint of N ×M ≥ 2 × 2 voxels (within the slices), which have to be filtered first
and interpolated afterward to obtain the correct result for the corresponding interme-
diate image pixel. On the other side opacity correction becomes more complex for the
perspective rendering algorithm. In the parallel projection method the spacing between
two sampling positions (considered in intermediate image space) remains constant along
any ray. Hence, one pre-computed opacity correction table have to be generated and
applied during rendering. For the perspective shear-warp the spacing (the ratio) is con-
stant along one ray only which originates from the corresponding intermediate image
pixel. Hence, for each pixel a different ratio have to be pre-computed first and applied
appropriately during rendering. In a brute force method this would result in as many
per-computed opacity correction tables as there are pixels in the intermediate image.

3.2. PERSPECTIVE PROJECTION CASE 167

CHAPTER 3. RESULTS ON SHEAR-WARP

First, this is not practicable. Second, since the changes of the rations corresponding to
adjacent rays are small, only a few tables are sufficient to interpolate other values not
represented by that tables. However, this is essentially another interpolation step which
has to be performed during rendering. The same is true applying the intermediate slice
approach to the perspective shear-warp algorithm and a similar rendering performance
cut-off is observed as in the parallel projection case (compare Tab. 3.8 and Tab. 3.2).

Figure 3.4: Full volume rendering of the Foot (left), Skull (middle), and Head (MRI, right)
data sets by our shear-warp approach using new data structures which allow accurate sampling.
The top and bottom rows show images obtained with an orthographic and perspective camera,
respectively. The opacity transfer table is set to a piecewise linear function where low valued
densities (indicating noise) are mapped to zero.

For our new perspective shear-warp approach we have also developed some data struc-
tures which allow an accurate sampling of the volume data along rays by using the
previously discussed reconstruction models. These data structures are also necessary to
be able to apply only one run-length encoded data set during rendering (as for the par-
allel case). However, the implementation of the perspective approach in not as coherent
as for the simpler parallel shear-warp method. That means, for the first two main view-
ing directions we relate to the original algorithm which considers filtering and bilinear
interpolation within slices (as discussed above). For the spacial case of the 3rd viewing
direction we consult our new approach. Our new data structure used for ray propagation
consists of two scan-lines of size equal to the width W of the intermediate image which
itself depends on the width L and depth N of the volume data set with size L×M ×N
and the ray direction (or the angel α ∈ [0◦, 45◦] measured between the ray direction and
the main viewing axis, α represents one pole coordinate). The width of the intermediate

168 3.2. PERSPECTIVE PROJECTION CASE

CHAPTER 3. RESULTS ON SHEAR-WARP

Data Set Size SW L (L) SW Q (Q) SW C (T)
Engine 2562 × 128 0.13 (0.13) 0.13 (0.09) 0.10 (0.13)
Teapot 2562 × 178 0.11 (0.11) 0.10 (0.09) 0.09 (0.11)
Bonsai 2563 0.07 (0.07) 0.07 (0.06) 0.06 (0.07)

Table 3.9: The iso-surface rendering performance (in frames per second) of our new perspective
shear-warp approach along the all main viewing directions by considering accurate sampling for
linear (linear), quadratic (quadratic), and cubic (trilinear) splines on � (♦) (from left to right).
The iso-values for the different data sets (Engine, Teapot, and Bonsai) are 80, 50, and 40,
respectively.

image1 (hence of our data structure) is W = L + N tan(α) and becomes maximal if
α = 45◦, i.e. W = L + N . Each cell of this data structure represents a corresponding
unit column of the volume. Basically, each cell contains a pointer into an ordered list of
ray segments going through a corresponding column of the volume. For each ray segment
we store the enter and exit planes according to the unit column which are intersected
by the corresponding ray, the appropriate intermediate image pixel coordinates the ray
segment contributes to, the ray segments start position and direction according to the
column and a parameter which can be used to calculate the ray segments exit position
(located on the exit plane). Hence, to store the information of one ray segment within
a column we need exactly 36 Bytes. The number of segments within a unit column is
variable, this can be implemented by an array data structure which allocates as much
memory as required for all ray segment within a considered column. This has to be done
dynamically during rendering, hence we have decided to fix the size of that array to a
maximum of 512 ray segments which can be stored for a unit column. This is enough for
usual perspective projections, makes the algorithm faster since there is no dynamic mem-
ory allocation procedure during rendering, but requires more space than often needed.
The total memory necessary for that data structure of size of two intermediate image
scan-lines which are needed to correctly propagate the ray information and represent
information within unit columns of the volume is about 2 ∗ (W + 1) ∗ 512 ∗ 36 bytes, i.e.
for a volume of size 2563 about 18 megabytes are required. Additionally, we recompute
the ray information from the above data structure into the column template so that
the changes to parallel rendering algorithm can be minimized. However, as shown in
Tab. 3.9 this data structure – even empty space skipping and early-ray termination can
be realized – is not the right choice to implement a perspective projection within the
shear-warp algorithm. No matter which of our reconstruction models we use for the
visualization of a data set in our experiment, the rendering time takes about 7 − 10
seconds, i.e. the most limiting factor in our algorithm is the application of our data
structure. The perspective shear-warp method is about one order of magnitude slower
than the parallel approach. However, a further development of our method is necessary.
A possible way is discussed in part III.

1The height is H = M + N tan(β) with β ∈ [0◦, 45◦] where β is another pole coordinate.

3.2. PERSPECTIVE PROJECTION CASE 169

4 Results on Wavelet Hierarchy

Our new interactive volume rendering approach based on hierarchically organized data
aims at achieving high-quality results efficiently. Therefore, it is compared to a recent,
fast shear-warp type implementation that was developed in order to reduce artifacts
as well [SM02] (see above). We omit a comparison with ray-casting and splatting as
alternatives since their implementation is substantially different to shear-warp and would
therefore raise questions of fair comparison which is not the focus of this document.
Nevertheless, for these volume rendering methods quadratic Super-Splines may show
advantageous properties as well. Motivated by the opacity functions in use, we refer to
our implementation of the algorithm in [SM02] [SHM04] as TL (tril inear) and denote our
approach by QSS (quadratic super-splines). Two different classifications are selected
as prototypes for translucent (linear opacity transfer function) and surface-enhanced
images (where the threshold function provides results similar to iso-surface rendering
and therefore being a prototype for comparison with [RZNS03] [RZNS04a]).

Figure 4.1: CT scan of the SIGGRAPH 1989 Teapot. Data courtesy: Terarecon Inc, MERL,
Brigham and Women’s Hospital. Fast visualization of shear-warp by using wavelet encoded data.
The close-up views are taken from marked areas. Zooming close to the local regions of interest
the improved visual quality becomes increasingly evident. Left: Standard model (trilinear interpo-
lation). Center: Approximation by quadratic Super-Splines. Right: Approximation by quadratic
Super-Splines with decimated data (14.8% of the given data). The quadratic Super-Splines have
the potential to reduce noise and leads to almost artifact-free visualizations.
We measured the error between original data and the spline approximation by the peak-
signal-to-noise ratio as shown in Fig. 4.4 (PSNRrms = 20log10(255/RMSE), where
RMSE is the root-mean-square error as defined in [GW02]). It shows that the overhead
of spline coding can be well compensated by the hierarchical representation without
affecting the resulting image quality significantly. Due to the current construction this
approach is, however, not as efficient as the method in [BIP01].
In our experiments, TL requires 1.2, 1.2, and 3.6 seconds to encode the engine, Teapot,
and Head data set, respectively, while QSS needs 2.7, 2.6 and 8.7 seconds for the same
data sets. Hence, we observe that QSS only requires about twice the time, although
the pre-computed spline-coding of QSS increases by a factor of about 10.5. Visual
comparisons showing the reduction of artifacts and the improved visual quality of QSS
are given in Fig. 4.2 and 4.1, where we use the full (pre-classified) Engine and Teapot1

data set, respectively. However, using the wavelet decompositions followed by data
reduction of the size can be cut by up to a factor of 5 relative to the pre-classified

1In Fig. 4.1 we use a data decimation based on 78% of the pre-classified data.

171

CHAPTER 4. RESULTS ON WAVELET HIERARCHY

Figure 4.2: Volume rendering results for the original Engine data set original shear-warp (left),
applying TL (middle), and QSS (right), with no decimation. Top: overview, bottom: close-up
views. Both, the original shear-warp and TL show typical stripe artifacts on the planar side of
the machine part which disappear almost for the QSS model.

volume without significant losses in image quality (see Fig. 4.3). The preprocessing for
encoding the data hierarchy requires 22.3, 20.5, and 27.1 seconds for the engine, Teapot,
and Head data set, respectively.
For comparing the rendering time measured in milliseconds and to obtain a robust
statistics, all data sets are rendered from 100 random viewing directions. Although the
frame-rate of TL outperforms QSS by a factor of 24 in case of the linear classification
function and a factor of 5 in the case of the threshold function (see Tab. 4.1 and previous
sections) one should mention that the QSS implementation (a) still yields interactive
rates at up to 2 frames/s, (b) suppresses noise in the image more efficient, (c) leads to
almost artifact-free and natural visualizations, and (d) outperforms the frame rate of
the simple iso-surface renderer [RZNS03] [RZNS04a] by nearly one order of magnitude.
With increasing performance of computers in the near future, we can therefore expect

Data Set TL [ms] QSS [ms] TL [ms] QSS [ms]
Engine 132 ± 3 2396 ± 315 92 ± 2 469 ± 87
Teapot 152 ± 5 5699 ± 957 94 ± 2 419 ± 42
Head 378 ± 13 5887 ± 804 130 ± 4 693 ± 101

Table 4.1: Comparison of average rendering times and their deviation measured in milliseconds
(ms) using a linear (left) and threshold (right) opacity transfer function. TL is an implementation
of [SM02] [SHM04] and QSS is our new approach.

172

CHAPTER 4. RESULTS ON WAVELET HIERARCHY

Figure 4.3: Volume rendering of the Head by using QSS for different tolerated errors. From
the left to the right the accepted error of the data is 0, 6.5, and 13.6, where the number of
non-transparent voxels is about 1.1 · 106, 0.4 · 106 and 0.2 · 106.

Figure 4.4: Left: Peak-signal-to-noise ratio (PSNR) as a function of the compression factor
between original data set and the hierarchically spline coded data. Middle and right: Volume
rendering by using QSS of the Engine and the Teapot based on a compressed data set using about
32% and 46%, respectively, of the pre-classified data.

this renderer type being a good candidate for displaying delicate data sets in medicine
and quality control, where artifact-free results are at premium, although even for current
systems the performance and the memory demands are already acceptable for given data
sets which are not too large. More sophisticated types of data hierarchies are currently
under investigation, in particular usage of averaged samples obtained from the quadratic
Super-Splines on finer hierarchy levels might yield essential improvements.

173

Discussion

The work presented herein dealt with the fast visualization of three-dimensional scalar
data sets by using a software-based rendering algorithm, named shear-warp. This ap-
proach generates projections from classified run-length encoded scalar-valued data sets
which are, on the other hand, pre-computed from the original volume according to some
user-specified classification functions. The rendering effectiveness of this algorithm is
very high and is due to several facts. First, the two main acceleration techniques, namely
early-ray termination and empty-space skipping, are profitably realized by a (dynamic)
run-length encoding of the image pixels and volume voxels into scanlines, respectively.
Both types of scanlines are processed in a parallel manner to each other possible due to
the factorization of the overall transformation matrix into a shear and a warp compo-
nent and a three-fold data redundancy. Second, after encoding one of the three volume
data sets is processed in scanline by scanline manner according to the main viewing axis.
This leads to an optimal cache performance considering today’s personal computes. And
third, information necessary for rendering is pre-computed and discretized extensively
(e.g. interpolation weights and data gradients) such that the required calculations dur-
ing the visualization step are kept to a minimum. In this work several extensions were
realized and discussed.

The first main contribution in that thesis is the reduction of the required run-length en-
coded data sets to a minimum by strict change of the processing order of one run-length
encoded volume depending on the view direction, i.e. only one data set is encoded and
used for visualization instead of three. This has several advantages. Obvious benefits
are that the memory and pre-processing requirements to generate the encoded data are
reduced by a factor of 3 where the overhead for new data structures necessary for storing
and processing the remaining run-length data set in a correct way can be neglected for
the parallel projection case2. This issue becomes very significant considering the huge
sizes of nowadays real CT or MRI data sets. For example, an unclassified CT data set
obtained from a small animal imaging device is about 4GBytes. In that view a three-fold
data redundancy (even after classification) is most inconvenient, when not all of the three
run-length encoded data sets would fit into main memory at once which is on the other
hand a demand for fast rendering3. Another advantage is that there are no visualization
artifacts in the final image arising due to a switch between two different data sets ac-
cording to a change of the main viewing axis. However, as supposed the data reduction
comes not for free. The rendering speed of the new algorithm using a parallel projection
matrix is diminished by factor 5 because of several reasons. First, four instead of two
volume scanlines are processed at once for trilinear instead of bilinear reconstruction
of the volume data, respectively, which also leads to a suboptimal empty-space skip-

2Note, the data is still processed in object-order, i.e. in a scanline by scanline manner.
3Note, one could still consider loading scanlines from harddisk on demand if the only one run-length

encoded data set will still not fit into main memory.

177

ping process of the algorithm. Second, for reasons of correctly compositing data along
ray segments within the four volume scanlines into the image, up to three dynamically
encoded oblique image scanlines are processed at once which also affects the early-ray
termination process of the algorithm4. And third, to stay within the Nyquist limit (i.e.
for more precise data reconstruction) the number of sampling positions along a ray is
increased by factor

√
3 (considering regular grids). However, the algorithm presented

herein has the right proportion regarding accuracy, speed and data requirements. Never-
theless, one could further optimize the algorithm for accuracy or speed by still using only
one encoded data set. An optimization for speed would guide a step back to the original
method5. Further, the perspective shear-warp has been investigated too, where similar
results have been shown as already discussed above for the parallel method, i.e. the re-
duction of run-length encoded data sets to one volume only, application of intermediate
slices or trivariate spline models to obtain better visual quality, as well as performance
issues with regard to the original method. Anyhow, the main issues with respect to the
perspective rendering algorithm are as follows. The chosen new data structures are not
the best possible for realizing a ray propagation scheme to implement early-ray termina-
tion and to omit the data redundancy of the original shear-warp method. That means,
especially the template data structure, which has a thickness of two volume slices and
stores the required projection and sampling information for rendering, has a size of sev-
eral megabytes. This, of course, does not fit into the cache memory and is one reason
why the algorithm is not as promising as for the parallel case. Instead, as proposed,
another scheme could be investigated, which does not require any template data struc-
tures, but directly projects the not empty parts of the volume columns into the image in
a correct sequence (to satisfy compositing order) to examine the appropriate non opaque
pixels and thus also the rays which are not terminated. Afterwards only along these rays
data could be reconstructed and the volume rendering integral evaluated. This scheme
seems to be more promising. Since, first, there is no need for any additional templates
and thus no extra memory space is required. And, second, the number of samples taken
along rays is reduced to a minimum (i.e. samples along ray segments corresponding to
non opaque pixels going through non empty data columns). Nevertheless, the scheme as
such may introduce other computational cost, hence, finally only after investigation one
can judge if that proposed technique would speed up the perspective shear-warp method.

The second main contribution of this work is the improvement of accuracy of the above
discussed rendering method. First, a Hermite-Spline technique has been developed that
allows interpolating the gray value change between slices in a more accurate way than
typical ad hoc solutions like intermediate slices, where the computation performance of
both techniques have been shown to be comparable. Second, a further development of
the algorithm also allows applying real trivariate data reconstruction models which lead
to a more accurate solution of the volume rendering integral and thus further increase the
visual result of the final image. For the solution of the volume rendering integral differ-
ent integration rules have been considered, i.e. the Newton-Cotes formula and Gaussian

4In the new algorithm the volume and image scanlines are only processed in a parallel manner to each
other considering two of the three main viewing axes, for one main axis the image scanlines have to
be processed in an oblique fashion

5That means, by applying bilinear reconstruction within the volume slices and still using the new data
structures presented in this thesis with one run-length encoded data set only.

178

quadrature, where it turned out that the a special case of the Newton-Cotes formula,
namely the Simpson integration rule, is best regarding accuracy and speed for most of
the considered splines. However, for volume reconstruction the well known linear and
quadratic tensor product splines in Bernstein-Bezier form (of total degree three and six,
respectively) as well as the often utilized trilinear interpolation model has been realized.
These models were mainly implemented for comparison reasons. Further, a new type of
(linear,) quadratic, and cubic Bernstein-Bezier splines defined on tetrahedral partitions
has been developed. These approximating piecewise polynomials have lowest possible to-
tal degree - i.e. (one,) two, and three, respectively - and deliver appropriate smoothness
properties necessary for the visualization process. That means, the derivatives of the
splines yield optimal approximation order for smooth data, while the theoretical error of
the values is nearly optimal because of the averaging. The smoothness properties of the
splines have been confirmed from some known test functions by evaluating the trivariate
spline values and their gradients using efficient Bernstein-Bezier techniques well known
in Computer Aided Geometric Design. The main outcome in this regard is twofold. As
expected, the choice of a data model is a trade-off between accuracy and speed and thus
depends on the task at hand. Piecewise linear splines are very fast to evaluate but are
not suitable for volume visualization when first derivatives of the data are taken into
account (e.g. for the lightning model). The next higher trilinear model6 produces sat-
isfying visual results even though it generates small jag-like artifacts which are mostly
visible when zooming into the data or when difficult data with many high frequency
components is considered for visualization. The corresponding quadratic tensor product
model is currently not optimized for speed. Nevertheless, on one hand, because of its
high total polynomial degree, it is more computation intensive for iso-surface and full
volume rendering than the counterpart tetrahedral quadratic splines, also called Super
Splines, but on the other hand it is also more accurate because of its smooth gradients.
Further, it is less accurate as the counterpart tetrahedral cubic splines because of the
required numerical root finding algorithms for evaluation of the six degree polynomials
in iso-surface rendering and the higher degree integration rules necessary for full volume
rendering. In this respect, with the trivariate quadratic and cubic splines defined on
tetrahedral partitions one is not only able to apply simple explicit formulas, e.g. Car-
dano’s formula, for the root calculations of quadratic and cubic polynomials and to apply
more simple quadrature formulas, e.g. Simpson rule, for the evaluation of the volume
rendering integral. Both spline models have been shown to generate smooth, accurate
and natural looking images. However, the Super Splines are better with respect to the
visual quality and are comparable in speed to the trilinear model7, but they need twice as
much memory for pre-computation of the Bernstein-Bezier coefficients compared to the
number of coefficients required for the trilinear model. Additionally, the Super Splines
are only smooth across the faces of the unit cubes of the volume partition, but in general
not across the faces of the tetrahedra within a unit cube. This reveals in stripe artifacs
when zooming into high frequency components of a volume data set. Thus, in such cases,
the corresponding cubic model is necessary where it uncovers its capability to generate
artifact-free visualizations of the data when considering first derivatives for shading only.

6The trilinear model consists in fact of two separate models, one for data and the other for gradient
reconstruction, where both are interpolated trilinearly.

7This model also delivers piecewise linear gradients but from an inconsistent model

179

In this matter also the quadratic tensor product model can be gathered, where when
optimized for speed it should show also similar timing results as the tetrahedral cubic
model. As before, the main disadvantage of the cubic splines defined on tetrahedral
partitions is the number of Bernstein-Bezier coefficients required for their evaluation.
Hence, with the concern of fast volume rendering using the above Shear-Warp approach
one has to pre-compute the coefficients of the splines and carefully organize them into
a linear data structure according to the run-length encoded volume. This transfers in
a one order of magnitude faster algorithm compared to the current available software-
based approaches using these kind of reconstruction models with pre-computed spline
coefficients. However, the number of Bernstein-Bezier coefficients required for evalua-
tion of the splines does blow up the volume size considerably, i.e. by factor 20-175, thus
only volumes of usual size (e.g. 5123) can be handled by that method, especially for
full volume rendering. A straight forward improvement by pre-computing only a part
of the required Bernstein-Bezier coefficients has been shown to decrease the number of
coefficients by a factor of 3 with an increase of computation cost during rendering by
approximately 0.5. Another modification of the given full volume rendering approach
could be to compute and to store the coefficients on the fly for visible voxels only which
would slow down the visualization of the first image from a considered viewing direc-
tion. A further attempt could be to evaluate the splines using directly the data samples,
i.e. without any computation of Bernstein-Bezier coefficients. This, as has been shown,
would result in an at least by a factor of 2 to 3 slower Shear-Warp rendering algorithm.

The final main part dealt with the reduction of volume data particularly with regard
to the number of pre-computed Bernstein-Bezier coefficients. Therefore an octree data
structure has been setup guided by constant, linear, and quadratic wavelet decompo-
sitions followed by volume data reduction. This hierarchy was represented by appro-
priately defined Super Splines within the considered scale-space. From that hierarchy
run-length encoded data were pre-computed for the Shear-Warp rendering algorithm.
However, it turned out that the data size and thus the number of coefficients can be cut
by up to a factor of 5 relative to the pre-classified volume without significant losses in
image quality. The pre-processing for encoding the data hierarchy requires on the other
hand up to one order of magnitude more time than a direct computation of run-length
encoded data from the volume. However, a question is, as if it is legal to apply accurate
spline models with data reduction schemes afflicted with truncation and approximation
errors. A general answer can not be given here, but at one hand more sophisticated
types of data hierarchies may be investigated, in particular the usage of averaged sam-
ples obtained directly from e.g. the quadratic Super-Splines on finer hierarchy levels
which might yield essential improvements. On the other hand, data reduction schemes
could be further developed for increasing the data compression ratio. In particular with
regard to the shear-warp approach another shear-warp like algorithm for hierarchical
data structures using a deep first search algorithm (well known in graph theory) has
been discussed. This object-order method promises a faster visualization algorithm in
connection with hierarchical data structures, as e.g. octrees, than traditional algorithms
where expansive non object-order traversals of hierarchical data structures have to be
performed. In addition, only the required spline coefficients of the visible and non-empty
nodes or voxels could be computed for fast and accurate visualization. For that a visible

180

and non-empty narrow band within the classified volume is proposed, which also stores
only a minimum set of required coefficients for volume rendering.

181

Summary and Outlook

This thesis has given a substantial insight into state of the art in volume rendering, and
additionally, in the introductory chapters, techniques necessary to setup such a rendering
framework were discussed. Thereby it has turned out that most software-based as well as
hardware-based algorithms utilizing special techniques and data structures to fulfill the
contradictory requirements of obtaining, first, high-quality visual rendering results and,
second, interactive frame rates. However, it is obvious that there is no golden standard
algorithm which performs best in each situation. Hence, the appliance and design of a
specific rendering method depends on the task at hand, e.g. whether a real-time or a
high-quality and accurate system is needed, if structured or highly irregular grids are
going to be rendered, or if special purpose hardware is available for accelerated rendering
or software-based solutions should be preferred only.

Under the above considerations the fast software-based rendering algorithm called shear-
warp has been investigated and a further development has been presented in this thesis,
where new techniques and data structures allow combining the fast shear-warp with the
accurate ray-casting approach.
The first aspect considered thereby was the reduction of the three-fold data redundancy
of the shear-warp approach while increasing the image quality by a correct sampling
approach. Hereby, a Hermite-Spline technique has been developed that allows inter-
polating the gray value change between slices in a more accurate way than typical ad
hoc solutions like intermediate slice techniques. Next, it was observed that the three-
fold data redundancy can be reduced by a strict change of the processing order of one
run-length encoded volume depending on the view direction. For removing redundancy
completely, new data structures had to be developed. The main contribution in this
view was the assembling of the so called column data structure, where all necessary
information pre-computed for rendering can be stored (as e.g. sampling positions within
the volume voxels along rays, projection offsets into the appropriate image pixels, etc.).
Since uniform rays have been considered at first, only one such column data structure was
required for representing the information for the whole encoded volume, where the space
consumption of that template is negligible. It has been shown, that due to this tem-
plate, a combination of shear-warp and ray-casting is not only possible but also results
in a method which deduces the benefits of both techniques, that means, object-order
traversal of the data with fast empty space skipping as well as fast early-ray termination
can be simultaneously applied. Additionally, the data structures in use easily admit
for adjustments to trade-off between rendering speed and precision of the algorithm.
In addition, real trivariate data reconstruction models have been applied which allow a
more accurate solution of the volume rendering integral and thus further increase the
precision of the new volume rendering method. Therefore, the column template had to
be extended in a straight forward way, that means, now the exact intersection locations
of rays with volume voxels had to be pre-computed and stored in that data structure.

183

A further aspect considered in this work was the development of new data structures
designed for the perspective shear-warp approach with the same targets as discussed
above. Therefore a scheme was developed, which propagates the divergent rays from
a so called divergence point through the whole volume in the correct order such that
the volume integral can be computed in the proper way. For that a matrix of column
templates has been designed which stores the propagation information (also e.g. sam-
pling positions and projection offsets) of all rays going through the current considered
volume columns used during rendering. Two such matrices are required for a clean prop-
agation of the information. Nevertheless, using this data structure allows overcoming
the data redundancy known from the original method. Additionally, it allows applying
fast space-skipping because still possible object-order traversal of the volume, and also
early-ray termination for accelerated volume rendering, since propagation information
of not terminated rays is stored temporary in that data structure only. The trivariate
reconstruction models as discussed can also be used since the propagated information
can be both, equidistant sampling positions along rays as well as the intersection lo-
cations with the volume voxels. However, this data structure of matrix-type increases
the data emergence, which also results in moderate rendering speed. Therefore, possi-
ble model-specific options have been discussed for a further improvement of that method.

This work also presented trivariate (linear,) quadratic and cubic spline models defined
on symmetric tetrahedral partitions � as well as the counterpart linear and quadratic
tensor product spline models specified on rectilinear volumetric partitions ♦ of a three-
dimensional domain. These former spline models define piecewise polynomials of total
degree (one,) two and three with respect to a tetrahedron, i.e. the local splines have the
lowest possible total degree. They are still adequate for efficient and accurate volume
visualization because their gradients are continuous and also deliver optimal approxi-
mation order for smooth data. The later splines define piecewise polynomials of total
degree three and six, respectively, but only the quadratic splines yield satisfying visual
quality. However, with the often used trilinear model one gets satisfying visual results,
even though they generate small jag-like artifacts. Where the trivariate quadratic splines
defined on tetrahedral partitions � are able to generate smooth, more accurate and more
natural looking images. The corresponding cubic model is only necessary when zooming
into a volume data set. In this case it uncovers its capability to generate artifact-free
visualizations of the data when considering 1st derivatives for shading only. All of these
models have been applied in conjunction with the previously discussed rendering ap-
proach which also leading to a one order of magnitude faster algorithm compared to
traditional approaches using similar reconstruction models.

Finally, a hierarchy-based rendering method has been developed in this work. In a pre-
computation step a wavelet decomposition of the volume data for data reduction was
utilized, an octree data structure for its representation was applied, and trivariate splines
for data reconstruction were claimed. In the visualization step a new shear-warp algo-
rithm has been presented, which uses run-length encoded scanlines directly generated
form the hierarchical data representation. However, there is still space for improving
the method. Additionally, it came into notice that even after data reduction still a huge
number of spline coefficients have to be pre-computed for all the non-empty octree nodes

184

yet to allow fast volume visualization. During rendering, though, many pixels become
opaque and, thus, because of early-ray termination the respective voxels with the corre-
sponding coefficients will not be used8 at all.

Hence, an outlook has been given. Another shear-warp like algorithm for hierarchical
data structures using a deep first search algorithm (well known in graph theory) has
been discussed. This object-order method promises a faster visualization algorithm in
connection with hierarchical data structures, as e.g. octrees, than traditional algorithms
where expansive non object-order traversals of hierarchical data structures have to be
performed. In addition, only the required spline coefficients of the visible and non-empty
nodes or voxels need to be computed for fast and accurate visualization. For that a vis-
ible and non-empty narrow band within the classified volume is proposed, which also
stores only a minimum set of required coefficients for volume rendering.

Moreover, other possible further development or research could include higher order
trivariate polynomials for data reconstruction in conjunction with the shear-warp method.
This would allow computing elaborate second-order differential structures of the volume
field (e.g. curvature information) usable for more accurate non-photorealistic rendering,
as e.g for silhouette enhancement or to display ridges and valleys within an iso-surface
of a data set, in still quite fast visualizations.

A possible follow up shear-warp framework could also include on-the-fly data processing
techniques as, for example, data smoothing, edge enhancement of volume data, or (an-
)isotropic diffusion filtering. This data processing could be performed during rendering
for non-empty and visible data voxels only (i.e. within a narrow band of the volume
data). In that way one would obtain the same final visual result as by, first, filtering
the whole data set in a pre-processing step (which is very time consuming) and, second,
visualizing it afterwards.

Finally, one could also include other lightning models based on first and second deriva-
tives of the volume data. Clipping planes and volumes could be applied to reveal more
information of data form its interior while still preserving context in the finally rendered
image. Similarly, classified data sets could be used to visualize objects with variant
properties within a volume with different materials or transfer functions. And, distance
or area measures could be integrated and displayed while interactively changing the
viewing position to allow the user a better analysis of the data in use.

8This depends of course on the choice of the classification functions.

185

Appendix

A Additional Results on Spline Models

In this appendix section we show additional tables and figures with numerical results that
have been already discussed in most instances in part V. The interested reader may use
the information below for comparison issues, therefore the numerical results are given in
tables instead of in diagrams. However, the sub-sections are divided by the considered
spline models, where the table columns and rows have the following meanings. The
first column in each of the following tables contains the grid spacing constant h = 1/N
with N the number of data samples considered in each of the three directions x, y and
z of the data set. The remaining columns contain different types of errors as defined
above. In other words, the second column in each table depicts the (approximate) root
mean square error errξrms, the third column shows the (approximate) mean average error
errξmean, in the fourth column the maximal error errξmax of the spline in the uniform
norm on Ω is presented, and in the last column we give the maximal error errξdata of the
function values at the grid points. The former error is computed approximately on each
unit cube Q of the domain Ω by choosing a fixed (high) number of uniformly distributed
points in each unit cube of ♦. All numerical tests have been computed in double floating
point precision.

A.1 Linear Splines on Ω

Piecewise linear splines in Bernstein-Bézier defined on Ω are not very suitable for volume
visualization. Even the values of the Marschner-Lobb test function can be reconstructed
for increasing volume data sizes quit well (cf. Tab. A.1), the derivatives are not contin-
uous across faces belonging to two adjacent unit cubes in the volume domain Ω. The
derivatives of this model can be thought as varying bi-linearly within the considered
unit cube only. This leads to stripe artifacts which become visible in the resulting im-
ages. Hence, the underlying partition type (grid structure) becomes visible as well (cf.
Fig. A.1). The second derivatives of the Marschner-Lobb test function along the x, y
and z direction, namely D2

xML,D2
yML, and D2

zML, can not be reconstructed using this
linear tensor product splines and are not shown here.

h errML
rms errML

mean errML
max errML

data

1/16 0.0740 0.0643 0.1764 0.1058
1/32 0.0643 0.0561 0.1225 0.1009
1/64 0.0312 0.0265 0.0629 0.0629
1/128 0.0095 0.0079 0.0197 0.0197
1/256 0.0025 0.0020 0.0052 0.0052

Table A.1: Approximation errors for data values of the Marschner-Lobb test function fML

using trivariate piecewise linear splines sML on Ω for reconstruction.

189

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

Figure A.1: Reconstruction of values of the Marschner-Lobb test function at points v, where
the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using trivariate piecewise linear
splines. The images (from left to right with h = 1/32, h = 1/64, and h = 1/128) show the error
|(fML − sML)(v)| between the values obtained from the Marschner-Lobb test function fML(v)
and values reconstructed by the piecewise linear spline model sML(v). Here, the error threshold
values are a = 0.025, b = 0.05, and c = 0.075.

Figure A.2: Reconstruction of gradients of the Marschner-Lobb test function at points v, where
the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using trivariate piecewise linear
splines. The images (from left to right with h = 1/32, h = 1/64, and h = 1/128) show the error
between the gradients obtained from the Marschner-Lobb test function fML(v) and gradients
reconstructed by the piecewise linear spline model sML(v). Here, the angle (measured in degrees)
between the two gradients defines the error, i.e. the angle thresholds are 0◦, a = 10◦, b = 20◦,
and c = 30◦.

190 A.1. LINEAR SPLINES ON Ω

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.4764 1.9702 6.2338 5.1192
1/32 2.4448 1.9008 6.4878 6.4818
1/64 1.3579 1.0229 4.6767 2.8051
1/128 0.5982 0.4232 2.6196 0.7998
1/256 0.2787 0.1841 1.3410 0.2066

Table A.2: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise linear splines on Ω for reconstruction. The
errors show similar behavior for the y and z directions.

h err
D1

xD
1
yML

rms err
D1

xD
1
yML

mean err
D1

xD
1
yML

max err
D1

xD
1
yML

data

1/16 73.14 55.30 179.7 168.0
1/32 73.39 55.21 180.4 165.5
1/64 42.63 31.00 169.4 78.46
1/128 19.98 13.75 102.1 23.47
1/256 9.641 6.325 54.00 6.125

Table A.3: Approximation errors for 2nd derivatives along the xy direction of the Marschner-
Lobb test function fML using trivariate piecewise linear splines on Ω for reconstruction. Note,
second derivatives along xz and yz directions lead to almost no error due to the considered
function and reconstruction model.

A.1. LINEAR SPLINES ON Ω 191

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

A.2 Quadratic Splines on Ω

As already discussed above in the results and one could expect, piecewise quadratic
splines in Bernstein-Bézier form defined on a volumetric domain Ω lead to better re-
construction results (see Tab. A.4) compared to the previous linear model. The more
important issue here is that of course the first derivatives are continuous across faces
belonging to two adjacent unit cubes in the volumetric domain Ω. Hence, applying this
model for volume visualization has the advantage of generating high quality smooth
images (see Fig. A.3).

Figure A.3: Reconstruction of values of the Marschner-Lobb test function. The same configu-
ration as in Fig. A.1 using trivariate piecewise quadratic splines.

h errML
rms errML

mean errML
max errML

data

1/16 0.0765 0.0636 0.1794 0.0719
1/32 0.0529 0.0451 0.1223 0.0710
1/64 0.0201 0.0170 0.0392 0.0333
1/128 0.0057 0.0048 0.0104 0.0099
1/256 0.0014 0.0012 0.0026 0.0026

Table A.4: Approximation errors for data values of the Marschner-Lobb test function fML

using trivariate piecewise quadratic splines on Ω for reconstruction.

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.4504 1.9169 6.2106 5.0753
1/32 2.0222 1.5181 6.4923 6.4855
1/64 0.8054 0.5953 2.7928 2.7930
1/128 0.2301 0.1696 0.7945 0.7942
1/256 0.0596 0.0439 0.2064 0.2064

Table A.5: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Ω for reconstruction. Note,
the errors have a similar behavior along the y and z directions.

192 A.2. QUADRATIC SPLINES ON Ω

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

Figure A.4: Reconstruction of gradients of the Marschner-Lobb test function. The same
configuration as in Fig. A.2 using trivariate piecewise quadratic splines.

h err
D1

xD
1
yML

rms err
D1

xD
1
yML

mean err
D1

xD
1
yML

max err
D1

xD
1
yML

data

1/16 73.03 54.77 179.0 168.0
1/32 62.12 45.31 167.7 165.5
1/64 25.63 18.41 78.43 78.46
1/128 7.357 5.265 23.47 23.47
1/256 1.905 1.364 6.124 6.125

Table A.6: Approximation errors for 2nd derivatives along the xy direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Ω for reconstruction.
Again the there is almost no error considering the xz and yz directional derivatives (due to the
considered function and reconstruction model).

Figure A.5: Reconstruction of Hesse matrices of the Marschner-Lobb test function at points v,
where the iso value becomes 127.5/255.0 (i.e. where sML(v) = 0.5) by using trivariate piecewise
quadratic splines. The images (from left to right with h = 1/32, h = 1/64, and h = 1/128) show
the error between the Hesse matrices obtained from the Marschner-Lobb test function fML(v) and
Hesse matrices reconstructed by the piecewise quadratic spline model sML(v). Here, the mean
curvature computed from the Hesse matrices of the original function and this represented by the
spline model is used to define the error. The error thresholds are 0.0, a = 0.0025, b = 0.005, and
c = 0.0075. Note, the second derivatives are piecewise constant only, this is very well visualized
by the piecewise constant colors used to encode the errors.

A.2. QUADRATIC SPLINES ON Ω 193

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

h errD
2
xML

rms errD
2
xML

mean errD
2
xML

max errD
2
xML

data

1/16 109.6 77.43 342.1 291.1
1/32 97.43 66.52 368.3 247.3
1/64 53.68 34.30 279.8 86.49
1/128 26.91 16.03 153.9 23.74
1/256 13.46 7.697 80.01 6.120

Table A.7: Approximation errors for 2nd derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Ω for reconstruction. The
errors for the 2nd derivatives along the y and z direction are very similar to the errors shown
here.

194 A.2. QUADRATIC SPLINES ON Ω

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

A.3 Trilinear Model on Ω

The piecewise trilinear model (not in Bernstein-Bézier form, i.e. here we deal with the
well known trilinear model often used in volume reconstruction and visualization) de-
fined on Ω show a very similar behavior as the piecewise linear splines above. However,
the trilinear model is a compromise between the linear and the quadratic spline models
above. It allows at the one side faster reconstructions of the data compared to the above
quadratic tensor product spline model in Bernstein-Bézier form. On the other side, a
pre-computation of gradients for each grid point location of the volume data set by using
central differences or the Sobel operator and a following linear interpolation of that grid
point gradients allows us to reconstruct more accurate derivatives anywhere on the vol-
umetric domain Ω compared to the pure linear tensor product splines. (compare figures
A.6,A.1 and A.7,A.2). However, table A.8 shows the errors between the values obtained
from the original function and the reconstructed values using this trilinear model. That
errors are the same as already obtained for the linear spline model in Bernstein-Bézier
form above. The errors (errD

1
xML

�) between the first derivatives obtained from the

Figure A.6: Reconstruction of values of the Marschner-Lobb test function. The same configu-
ration as in Fig. A.1 using piecewise trilinear model.

h errML
rms errML

mean errML
max errML

data

1/16 0.0765 0.0610 0.1985 0.1503
1/32 0.0474 0.0378 0.1200 0.1200
1/64 0.0152 0.0120 0.0385 0.0385
1/128 0.0041 0.0032 0.0103 0.0103
1/256 0.0022 0.0019 0.0049 0.0051

Table A.8: Approximation errors for data values of the Marschner-Lobb test function fML

using piecewise trilinear model on Ω for reconstruction.

Marschner-Lobb test function and the trilinear model (reconstructed values) along the
x direction show a similar behavior as the errors along y and z direction (cf. Tab. A.9).
The approximation of the gradients along the z direction is as before more accurate
than along the other two direction. Further, visual results encoding the error between
the original and reconstructed derivatives are shown in Fig. A.7, where the same color

A.3. TRILINEAR MODEL ON Ω 195

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

encoding is used as before. One can clearly observe in this figure that due to the smooth
derivatives (which are in fact obtained from another model) the grid structure is less
visible compared to the linear tensor product spline in Fig. A.2. Specifically, the colors
vary smoothly across the whole image similar as for the quadratic spline model. The
main difference is that the gradients obtained from the quadratic spline model approxi-
mate the real gradients more accurately and hence, in Fig. A.4, there are less red colored
areas than in Fig. A.7. This becomes especially visible in the center images of these two
figures. The trilinear model even allows us to reconstruct second derivatives such as

Figure A.7: Reconstruction of gradients of the Marschner-Lobb test function. The same
configuration as in Fig. A.2 using piecewise trilinear model.

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.2893 1.8151 5.3808 5.1454
1/32 2.4044 1.8733 6.4396 5.4683
1/64 1.4338 1.0993 3.9583 3.9505
1/128 0.4754 0.3628 1.3212 1.3211
1/256 0.2534 0.1634 0.9832 0.2656

Table A.9: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise trilinear model on Ω for reconstruction. The
errors for 1st derivatives along the y and z direction are again similar to the errors shown here.

for example D1
xD

1
zML, D1

yD
1
zML, or even D2

x, D
2
y, and D2

z . This is possible because of
the pre-computed first derivatives at each grid point location which can be further used
to compute higher order derivatives on the fly by applying the de Casteljau algorithm.
Hence, in figure A.8 we show the errors between the original second derivatives computed
directly from the Marschner-Lobb function and the reconstructed second derivatives us-
ing the pre-computed first derivatives. Note that the results here are quit similar to that
ones obtained for the second derivatives of the quadratic tensor spline model (compare
figures A.8 and A.5). Once more tables A.10 and A.11 show the errors for the second
derivatives which are comparable with the errors obtained for the quadratic model in
tables A.6 and A.7.

196 A.3. TRILINEAR MODEL ON Ω

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

Figure A.8: Reconstruction of Hesse matrices of the Marschner-Lobb test function. The same
configuration as in Fig. A.5 using piecewise trilinear model.

h err
D1

xD
1
yML

rms err
D1

xD
1
yML

mean err
D1

xD
1
yML

max err
D1

xD
1
yML

data

1/16 65.56 48.22 177.0 163.3
1/32 72.26 53.76 175.9 170.3
1/64 47.51 34.77 134.4 112.9
1/128 19.12 13.75 66.32 39.03
1/256 8.943 4.667 31.43 14.43

Table A.10: Approximation errors for 2nd derivatives along the xy direction of the Marschner-
Lobb test function fML using piecewise trilinear model on Ω for reconstruction.

h errD
2
xML

rms errD
2
xML

mean errD
2
xML

max errD
2
xML

data

1/16 94.89 67.36 286.1 214.9
1/32 107.5 75.23 348.4 343.1
1/64 69.77 48.07 276.5 182.4
1/128 30.64 20.12 153.5 57.45
1/256 13.46 8.697 81.41 15.12

Table A.11: Approximation errors for 2nd derivatives along the x direction of the Marschner-
Lobb test function fML using piecewise trilinear model on Ω for reconstruction.

A.3. TRILINEAR MODEL ON Ω 197

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

A.4 Linear Splines on Δ

Piecewise linear splines in Bernstein-Bézier defined on the tetrahedral domain Δ have
a very similar behavior for volume visualization as the linear tensor product splines
discussed above (do not confuse with trilinear tensor product model). According to
the resulting images in figure A.9 and the error values in table A.12 they are able to
approximate the synthetic Marschner-Lobb test function quit well for increasing data
sizes. Hence, they are suitable for simple scaling of data sets similar as the above
linear splines defined on the volumetric domain Ω. However, even the first derivatives

Figure A.9: Reconstruction of values of the Marschner-Lobb test function. The same configu-
ration as in Fig. A.1 using trivariate piecewise linear splines.

h errML
rms errML

mean errML
max errML

data

1/16 0.0762 0.0619 0.1906 0.0000
1/32 0.0505 0.0415 0.1224 0.0000
1/64 0.0182 0.0148 0.0551 0.0000
1/128 0.0051 0.0041 0.0170 0.0000
1/256 0.0013 0.0010 0.0044 0.0000

Table A.12: Approximation errors for data values of the Marschner-Lobb test function fML

using trivariate piecewise linear splines on Δ for reconstruction.

(gradients) reconstructed by that model approximate the real function’s gradients for
decreasing grid spacing quite well (see Tab. A.13), even thought they are piecewise
constant and visibility of the tetrahedral structure here is even more inconvenient than
the visibility of the cubic structure (compare Fig. A.9 and A.10 with Fig. A.1 and A.2).
It is obvious that second derivatives can not be reconstructed by this model. In contrast
to the linear tensor product splines even the mixed terms, i.e. D1

xD
1
yML, D1

xD
1
zML and

D1
yD

1
zML, can not be obtained directly from that model without additional effort.

198 A.4. LINEAR SPLINES ON Δ

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

Figure A.10: Reconstruction of gradients of the Marschner-Lobb test function. The same
configuration as in Fig. A.2 using piecewise linear splines.

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.3994 1.8737 6.4491 5.3061
1/32 2.0634 1.5477 6.9157 7.1542
1/64 1.1628 0.8286 4.8474 4.8411
1/128 0.5874 0.3923 2.9033 2.6373
1/256 0.2937 0.1882 1.5221 1.3434

Table A.13: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise linear splines on Δ for reconstruction.

A.4. LINEAR SPLINES ON Δ 199

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

A.5 Quadratic Splines on Δ

The next natural choice for a data reconstruction model defined on a tetrahedral do-
main Δ are piecewise quadratic splines in Bernstein-Bézier. However, the main goal
for this approach was to develop a reconstruction model which results in approximat-
ing, quadratic splines s defined on Δ and additionally satisfies smoothness properties
needed for volume visualization. The basic idea was to give up some C1 smoothness
conditions which would lead to an overall C1 quadratic spline on Δ (see cubic splines
in the following section) and introduce other useful conditions, i.e. averages of smooth-
ness conditions. The coefficients of the splines can be computed efficiently applying a
local data stencil of size 33 and some averaging rules which are chosen carefully such
that many smoothness conditions are automatically satisfied. However, this approach
can be seen as a compromise between fast visualization and accurate approximation of
the data by using trivariate, quadratic splines. It can be proofed that the splines s
are smooth not only at the vertices of the volumetric partition ♦. Further, regarding
the approximation properties, the splines s yield nearly optimal approximation order,
while its derivatives yield optimal approximation order of smooth functions f which is
a non-standard mathematical phenomenon (see part II and [RZNS03] [NRSZ04]). The
accuracy is given in Tab. A.14, which shows the decrease of the approximation error
of the quadratic spline to the Marschner-Lobb test function for decreasing grid spacing
h. In Fig. A.11 again one corresponding iso-surface is shown, where the approximation
error of the splines according to the original function is color coded as before. However,

Figure A.11: Reconstruction of values of the Marschner-Lobb test function. The same config-
uration as in Fig. A.1 using trivariate piecewise quadratic splines.

a comparison with previous methods [UAE93a] [UAE93b] [ML94] ([PSL+98]) [MJC01]
and [BMDS02] shows that this model has the same theoretical approximation order for
the error of the reconstructed values. Further, the piecewise polynomials defined by this
model have a lower total degree (i.e. two) compared to for example linear or quadratic
tensor product splines (which has total degree three or six, respectively). This is the case
because the polynomials here are considered on the tetrahedral partition, i.e. according
to a tetrahedron. However, for a fair comparison one should mention, that in fact only
polynomials according to a unit cube as considered for tensor product splines [MJC01]
[BMDS02] should be investigated. That means, once several tetrahedra have to be taken
into account in a unit cube, as is mostly the case in volume visualization algorithms,

200 A.5. QUADRATIC SPLINES ON Δ

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

h errML
rms errML

mean errML
max errML

data

1/16 0.0774 0.0647 0.1803 0.0925
1/32 0.0548 0.0467 0.1222 0.0918
1/64 0.0204 0.0173 0.0392 0.0365
1/128 0.0057 0.0048 0.0104 0.0102
1/256 0.0014 0.0012 0.0026 0.0026

Table A.14: Approximation errors for data values of the Marschner-Lobb test function fML

using trivariate piecewise quadratic splines on Δ for reconstruction.

one would obtain polynomials of higher total degree (according to a unit cube). Hence,
considering for example iso-surface rendering where one has to solve for the roots of
arbitrary polynomials. That quadratic tensor product splines need more computational
power to solve for the roots of the corresponding six degree polynomials defined on a unit
cube in a numerical accurate and stable way. Where this model spends more time for
searching the appropriate tetrahedra in a unit cube which possible contain the iso value
we are looking for and less computational power is needed to solve the second degree
polynomial pieces defined according to a tetrahedron. However, the results for the data

Figure A.12: Reconstruction of gradients of the Marschner-Lobb test function. The same
configuration as in Fig. A.2 using trivariate piecewise quadratic splines.

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.4905 1.9642 6.1650 5.0314
1/32 2.1083 1.5953 6.5002 6.4892
1/64 0.8250 0.6121 2.7994 2.7827
1/128 0.2336 0.1726 0.7954 0.7899
1/256 0.0604 0.0446 0.2063 0.2062

Table A.15: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Δ for reconstruction.

approximation error of this quadratic splines, the quadratic tensor product splines, and
even higher order piecewise polynomial are up to a constant value very similar, as can

A.5. QUADRATIC SPLINES ON Δ 201

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

be see in tables A.14 and A.4. Further, the derivatives of this splines yield an optimal
approximation order for smooth functions f , but it is not always clear if the methods
mentioned above provide a similar error bound for the derivatives. The visual result of
the approximation quality of the gradients obtained from the Marschner-Lobb function
and this quadratic splines defined on a tetrahedral partition � is given in figure A.12.
The corresponding table A.15 depicts the numerical values. As before some results on
the quality of the second derivatives obtained from that model are presented as well.
It is clear that C1 splines do not allow a reconstruction of smooth second derivatives
except for quadratic functions defined over the whole domain Ω. For arbitrary functions
as for example the Marschner-Lobb benchmark this model generates piecewise constant
second derivatives. Hence, the color coded error measured between the original deriva-
tives computed directly from the test function and the derivatives obtained from that
model leads to piecewise constant colors as shown in figure A.13. Note that this figure
does not show the error of the derivatives directly. Instead the error of the mean curva-
tures, which are computed using the local Hesse matrices on the considered iso-surface.
In Tab. A.16 and Tab. A.17 the errors of the derivatives D1

xD
1
yML and D2

xML along
directions xy and x are given, respectively.

Figure A.13: Reconstruction of Hesse matrices of the Marschner-Lobb test function. The
same configuration as in Fig. A.5 using trivariate piecewise quadratic splines.

h err
D1

xD
1
yML

rms err
D1

xD
1
yML

mean err
D1

xD
1
yML

max err
D1

xD
1
yML

data

1/16 73.81 55.54 179.4 169.7
1/32 65.09 47.66 169.4 170.8
1/64 31.54 22.63 112.9 114.4
1/128 14.19 9.759 60.57 61.09
1/256 6.794 4.500 30.72 30.96

Table A.16: Approximation errors for 2nd derivatives along the xy direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Δ for reconstruction.

202 A.5. QUADRATIC SPLINES ON Δ

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

h errD
2
xML

rms errD
2
xML

mean errD
2
xML

max errD
2
xML

data

1/16 109.9 78.23 345.3 292.2
1/32 99.67 69.60 374.0 249.5
1/64 53.27 36.32 295.1 108.5
1/128 26.39 17.20 163.0 59.85
1/256 13.15 8.317 84.18 30.77

Table A.17: Approximation errors for 2nd derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise quadratic splines on Δ for reconstruction.

A.5. QUADRATIC SPLINES ON Δ 203

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

A.6 Cubic Splines on Δ

A further development of the above quadratic spline model (also called super splines)
is an approximating scheme based on cubic C1 splines define on type-6 tetrahedral
partitions � as well. However, the piecewise polynomials are directly determined by
setting their Bernstein-Bézier coefficients to appropriate combinations of the data values.
The exact repeated averaging schemes are discussed in part II. A more detailed discussion
especially from the mathematical point of view can be found in [SZ05]. However, each
polynomial piece of the approximating spline is immediately available from local portions
of the data and there is no need to use prescribed derivatives at any point of the domain.
It can be shown that the locality of the method and the uniform boundedness of the
operator result in an error bound. Further, that the approach can be well applied for
data approximation and the reconstruction of trivariate functions (cf. the numerical
test in Tab. A.18 and a visual improvement in Fig. A.14). As before the results in table
A.18 confirm that the quasi-interpolating splines yield approximation order two, since
in each row the error decreases by about the factor of four while the grid spacing h
goes down to h/2. It is well-known in spline theory, that spline operators possess the

Figure A.14: Reconstruction of values of the Marschner-Lobb test function. The same config-
uration as in Fig. A.1 using trivariate piecewise quadratic splines.

h errML
rms errML

mean errML
max errML

data

1/16 0.0770 0.0642 0.1803 0.0787
1/32 0.0538 0.0458 0.1222 0.0780
1/64 0.0202 0.0171 0.0392 0.0343
1/128 0.0057 0.0048 0.0104 0.0100
1/256 0.0014 0.0012 0.0026 0.0026

Table A.18: Approximation errors for data values of the Marschner-Lobb test function fML

using trivariate piecewise cubic splines on Δ for reconstruction.

advantageous property to simultaneously approximate derivatives of a smooth function,
even if only the values of this function are used. However, for smooth functions the first
derivatives of the quasi-interpolating cubic spline provide the same order of accuracy as
the spline itself, which is a non-standard phenomenon considering general spline theory.

204 A.6. CUBIC SPLINES ON Δ

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

The derivatives of the quasi-interpolating splines yield nearly optimal approximation
order, similar to the quadratic splines. However, one of the main differences between the
quadratic and cubic splines on type-6 partitions � is that obviously the cubic splines can
reproduce polynomial functions of the 19-dimensional space of cubic polynomials without
any error, namely all functions f with f ∈ P3. However, a more important property of
the cubic splines is that they are C1 everywhere on Δ ⊆ Ω, where the quadratic splines
are only almost everywhere C1. The errors errD

1
xML

rms for the first derivative D1
xML

of the Marschner-Lobb function ML are given in table A.19. The results in that table
indicate that the corresponding errors behave in the same way as the errors of the values.
Therefore, the error of the first derivative D1

x is nearly optimal. Once more figure A.15
depicts the error between two gradients, i.e. the original and the reconstructed. The
original gradient is obtained directly from the test function and the second gradient is
reconstructed by the splines at the user-defined iso surface.

Figure A.15: Reconstruction of gradients of the Marschner-Lobb test function. The same
configuration as in Fig. A.2 using trivariate piecewise cubic splines.

h errD
1
xML

rms errD
1
xML

mean errD
1
xML

max errD
1
xML

data

1/16 2.4757 1.9469 6.1787 5.0533
1/32 2.0595 1.5546 6.4952 6.4874
1/64 0.8141 0.6045 2.7943 2.7879
1/128 0.2318 0.1716 0.7945 0.7921
1/256 0.0600 0.0444 0.2064 0.2063

Table A.19: Approximation errors for 1st derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise cubic splines on Δ for reconstruction.

A.6. CUBIC SPLINES ON Δ 205

APPENDIX A. ADDITIONAL RESULTS ON SPLINE MODELS

Figure A.16: Reconstruction of Hesse matrices of the Marschner-Lobb test function. The
same configuration as in Fig. A.5 using trivariate piecewise cubic splines.

h err
D1

xD
1
yML

rms err
D1

xD
1
yML

mean err
D1

xD
1
yML

max err
D1

xD
1
yML

data

1/16 73.05 54.87 179.2 168.8
1/32 62.58 45.82 170.3 167.2
1/64 26.89 19.51 87.35 88.86
1/128 9.465 6.793 35.80 36.31
1/256 3.782 2.613 16.00 16.33

Table A.20: Approximation errors for 2nd derivatives along the xy direction of the Marschner-
Lobb test function fML using trivariate piecewise cubic splines on Δ for reconstruction.

h errD
2
xML

rms errD
2
xML

mean errD
2
xML

max errD
2
xML

data

1/16 109.5 77.68 344.4 291.1
1/32 97.52 66.94 367.0 246.9
1/64 51.28 33.28 283.6 87.96
1/128 24.91 15.04 156.1 30.81
1/256 12.32 7.101 79.92 15.53

Table A.21: Approximation errors for 2nd derivatives along the x direction of the Marschner-
Lobb test function fML using trivariate piecewise cubic splines on Δ for reconstruction.

206 A.6. CUBIC SPLINES ON Δ

List of Figures

1.1 Volume rendering example. 4
1.2 Simple graphical user interface for volume rendering. 4

2.1 Biographical profiles of Wallis, Nyquist and Shannon. 7

3.1 Illustration of structured grids. 9

4.1 Lookat transformations. 14
4.2 Projection transformations. 16
4.3 Viewport transformations. 17
4.4 Phong illumination model illustration. 17
4.5 Transfer functions in volume rendering. 21
4.6 Volume rendering using curvature information. 22
4.7 Illustration of volume rendering shader models. 25

5.1 Illustration of ray-casting and slicing. 29
5.2 Cases for the projected tetrahedra visualization technique. 33

6.1 Illustration of an octree data structure. 39
6.2 Node selection for efficient octree traversal. 43

7.1 GPU-based ray-casting. 46

1.1 Bernstein Polynomials of degree one, two, and three. 50
1.2 Bernstein-Bézier curve using Bernstein polynomials of second degree. . . . 51
1.3 Biographical profiles of Bernstein, de Casteljau and Bézier. 54

2.1 Volumetric uniform cube partition. 55
2.2 Bernstein-Bézier coefficients for piecewise linear splines. 61
2.3 Evaluation of a polynomial piece s|Q using the de Casteljau algorithm. . . 62
2.4 Bernstein-Bézier coefficients for piecewise quadratic splines. 63
2.5 Evaluation of a polynomial piece s|Q using the de Casteljau algorithm. . . 64
2.6 Ray-Casting a volumetric cube partition and univariate polynomial pieces. 66

3.1 Volumetric uniform tetrahedral partition. 68
3.2 Volumetric uniform tetrahedral partition of the unit cube. 69
3.3 Bernstein-Bézier coefficients for piecewise linear type-6 splines. 73
3.4 Evaluation of a polynomial piece s|T ∈ P1 using the de Casteljau algorithm. 74
3.5 Bernstein-Bézier coefficients for piecewise quadratic type-6 splines. 75
3.6 Evaluation of a polynomial piece s|T ∈ P2 using the de Casteljau algorithm. 76
3.7 Bernstein-Bézier coefficients for piecewise cubic type-6 splines. 78

207

List of Figures

3.8 Evaluation of a polynomial piece s|T ∈ P3 using the de Casteljau algorithm. 79
3.9 Ray-Casting a uniform tetrahedral partition and univariate polynomial

pieces. 81

1.1 The basic shear-warp idea for parallel case. 88
1.2 The basic shear-warp idea for perspective case. 90
1.3 Interpolation weights for voxels within a slice for the parallel and perspec-

tive shear-warp case. 92
1.4 Data structure for the run length encoded volume. 93
1.5 Two run-length encoded data sets. 94
1.6 One run-length encoded data set. 95
1.7 Linear coherence encoding of discrete data samples. 97
1.8 Data structure for the dynamically run-length encoded image. 98
1.9 The basic shear-warp idea using intermediate slices. 100
1.10 Data reconstruction using intermediate slices. 101

2.1 Simplified two-dimensional view of the new shear-warp factorization for
orthographic projections. 104

2.2 A column template usable with type-0 partitions and affine projection
matrices. 106

2.3 A column template usable with type-6 partitions and affine projection
matrices. 109

2.4 The projection of a voxel scan-line onto intermediate image scan-lines for
y and z viewing directions. 112

2.5 The projection of a voxel scan-line onto intermediate image scan-lines for
x viewing direction. 114

2.6 Simplified two-dimensional view of the new shear-warp factorization for
a perspective projection. 116

2.1 Hierarchical data structure used in our new rendering algorithm. 128

3.1 A shear-warp algorithm for hierarchically organized data. 133

2.1 Look-up table of colors for appropriate error values. 140
2.2 Reconstruction of values of the Marschner-Lobb test function using trivari-

ate piecewise splines. 143
2.3 Reconstruction of 1st derivatives of the Marschner-Lobb test function

using trivariate piecewise splines. 144
2.4 Reconstruction of 2nd derivatives of the Marschner-Lobb test function

using trivariate piecewise splines. 146
2.5 Gradient error-encoding of the spherical test function using different piece-

wise linear polynomials. 148
2.6 Iso-surface of the Bonsai data set using different linear models. 149
2.7 Gradient error-encoding of the spherical test function using different piece-

wise quadratic and cubic polynomials. 150
2.8 Curvature error-encoding of the spherical test function using different

piecewise quadratic and cubic polynomials. 151
2.9 Iso-surface of the Bonsai data set using different higher order spline models.153

208 List of Figures

List of Figures

3.1 Quality of the original shear-warp approach. 159
3.2 Quality of the shear-warp approach using intermediate slices. 160
3.3 Quality of our new shear-warp approach using trilinear interpolation. . . . 161
3.4 Full volume rendering by our new shear-warp approach with accurate

sampling. 168

4.1 Fast visualization of Teapot data set using shear-warp and wavelet en-
coded data. 171

4.2 Comparison of volume rendering results for the original Engine data set. . 172
4.3 Results of hierarchical volume rendering using quadratic Super-Splines . . 173
4.4 Peak-signal-to-noise ratio of hierarchical volume rendering 173

A.1 Reconstruction of values of the Marschner-Lobb test function using trivari-
ate piecewise linear splines. 190

A.2 Reconstruction of gradients of the Marschner-Lobb test function using
trivariate piecewise linear splines. 190

A.3 Reconstruction of values of the Marschner-Lobb test function using trivari-
ate piecewise quadratic splines. 192

A.4 Reconstruction of gradients of the Marschner-Lobb test function using
trivariate piecewise quadratic splines. 193

A.5 Reconstruction of Hesse matrices of the Marschner-Lobb test function
using trivariate piecewise quadratic splines. 193

A.6 Reconstruction of values of the Marschner-Lobb test function using piece-
wise trilinear model. 195

A.7 Reconstruction of gradients of the Marschner-Lobb test function using
piecewise trilinear model. 196

A.8 Reconstruction of Hesse matrices of the Marschner-Lobb test function
using piecewise trilinear model. 197

A.9 Reconstruction of values of the Marschner-Lobb test function using trivari-
ate piecewise linear splines. 198

A.10 Reconstruction of gradients of the Marschner-Lobb test function using
trivariate piecewise linear splines. 199

A.11 Reconstruction of values of the Marschner-Lobb test function using trivari-
ate piecewise quadratic splines. 200

A.12 Reconstruction of gradients of the Marschner-Lobb test function using
trivariate piecewise quadratic splines. 201

A.13 Reconstruction of Hesse matrices of the Marschner-Lobb test function
using trivariate piecewise quadratic splines. 202

A.14 Reconstruction of values of the Marschner-Lobb test function using trivari-
ate piecewise cubic splines. 204

A.15 Reconstruction of gradients of the Marschner-Lobb test function using
trivariate piecewise cubic splines. 205

A.16 Reconstruction of Hesse matrices of the Marschner-Lobb test function
using trivariate piecewise cubic splines. 206

List of Figures 209

List of Tables

2.1 Data approximation errors of the Marschner-Lobb test function using dif-
ferent splines. 142

2.2 Gradient approximation errors of the Marschner-Lobb test function using
different splines. 145

2.3 Second derivative approximation errors of the Marschner-Lobb test func-
tion using different splines. 147

2.4 Pre-computation and reconstruction times for each model. 154
2.5 Arithmetic operations for each model. 155
2.6 Pre-computation and reconstruction times for each model. 155
2.7 Arithmetic operations for each model. 156

3.1 Pre-processing times of the column template for equidistant sampling. . . 161
3.2 Performance of our shear-warp algorithm for equidistant sampling. 162
3.3 Pre-processing times of the column template for accurate sampling. 164
3.4 Performance of our shear-warp algorithm for accurate sampling on ♦. . . 165
3.5 Performance of our shear-warp algorithm for accurate sampling on ♦. . . 165
3.6 Performance of our shear-warp algorithm for accurate sampling on �. . . 165
3.7 Performance of our shear-warp algorithm for accurate sampling on �. . . 166
3.8 Performance of our shear-warp algorithm for equidistant sampling. 167
3.9 Performance of our perspective shear-warp algorithm for accurate sam-

pling on ♦ and �. 169

4.1 Comparison of average rendering times for trilinear and qss model 172

A.1 Approximation errors for values of the Marschner-Lobb test function using
trivariate piecewise linear splines. 189

A.2 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise linear splines. 191

A.3 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise linear splines. 191

A.4 Approximation errors of values of the Marschner-Lobb test function using
trivariate piecewise quadratic splines. 192

A.5 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 192

A.6 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 193

A.7 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 194

A.8 Approximation errors of values of the Marschner-Lobb test function using
piecewise trilinear model. 195

211

List of Tables

A.9 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using piecewise trilinear model. 196

A.10 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using piecewise trilinear model. 197

A.11 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using piecewise trilinear model. 197

A.12 Approximation errors of values of the Marschner-Lobb test function using
trivariate piecewise linear splines. 198

A.13 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise linear splines. 199

A.14 Approximation errors of values of the Marschner-Lobb test function using
trivariate piecewise quadratic splines. 201

A.15 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 201

A.16 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 202

A.17 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise quadratic splines. 203

A.18 Approximation errors of values of the Marschner-Lobb test function using
trivariate piecewise cubic splines. 204

A.19 Approximation errors for 1st derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise cubic splines. 205

A.20 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise cubic splines. 206

A.21 Approximation errors for 2nd derivatives of the Marschner-Lobb test func-
tion using trivariate piecewise cubic splines. 206

212 List of Tables

Bibliography

[Ake93] K. Akeley. Realityengine graphics. In Computer Graphics, pages 109–116,
1993.

[AW87] J. Amanatides and A. Woo. A fast voxel traversal algorithm for ray tracing.
In Eurographics’87, pages 3–10. Elsevier Science Publishers, 1987.

[Bew04] J. Bewersdorff. Algebra für Einsteiger: Von der Gleichungsauflösung zur
Galois-Theorie. 2 edition, 2004.

[BG05] S. Bruckner and M. E. Gröller. Volumeshop: An interactive system for
direct volume illustration. In Proceedings of IEEE Visualization 2005,
pages 671–678, 2005.

[BGKG05] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller. Illustrative
context-preserving volume rendering. In Proceedings of EuroVis 2005,
pages 69–76, 2005.

[BIP01] C. Bajaj, I. Ihm, and S. Park. 3d rgb image compression for interactive
applications. In ACM Transactions on Graphics, volume 20, pages 10–38.
ACM Press, 2001.

[BIPS00] C. Bajaj, I. Ihm, S. Park, and D. Song. Compression-based ray casting of
very large volume data in distributed environments. In High Performance
Computing in Asia-Pacific Region, pages 720–725, 2000.

[Bli82] J.F. Blinn. Light reflection functions for simulation of clouds and dusty
surfaces. In Conference on Computer Graphics and Interactive Techniques,
pages 21–29, 1982.

[BLM97] M.J. Bentum, B.B.A. Lichtenbelt, and T. Malzbender. Frequency anal-
ysis of gradient estimators in volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 2(3):242–254, 1997.

[BMDS02] L. Barthe, B. Mora, N. Dodgson, and M. Sabin. Triquadratic reconstruc-
tion for interactive modelling of potential fields. In Shape Modeling Inter-
national, pages 145–153, 2002.

[BPI01] C. Bajaj, S. Park, and I. Ihm. Visualization-specific compression of large
volume data. In Pacific Conference on Computer Graphics and Applica-
tions, pages 212–220, 2001.

[BSMM97] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Mühlig. Taschen-
buch der Mathematik. Harri Deutsch, 3 edition, 1997.

213

Bibliography

[CCF94] B. Cabral, N. Cam, and J. Foran. Accelerated volume rendering and to-
mographic reconstruction using texture mapping hardware. In Symposium
on Volume Visualization, pages 91–98, 1994.

[CDSB03] R. Claypoole, G.M. Davis, W. Sweldens, and R. Baraniuk. Nonlinear
wavelet transforms for image coding via lifting. In IEEE Transactions on
Image Processing, pages 1449–1459, 2003.

[CDSY97] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Lossless image
compression using integer to integer wavelet transforms. In International
Conference on Image Processing (ICIP), Vol. I, pages 596–599, 1997.

[Che95] E.V. Chernyaev. Marching cubes 33: Construction of topologically correct
isosurfaces. Technical report, CERN Report, 1995.

[Che01] H. Chen. Fast Volume Rendering and Deformation Algorithms. PhD
thesis, University Mannheim, 2001.

[CHH+03] C.S. Co, B. Heckel, H. Hagen, B. Hamann, and K.I. Joy. Hierarchical
clustering for unstructured volumetric scalar fields. In IEEE Visualization,
pages 43–51, 2003.

[CHM01] H. Chen, J. Hesser, and R. Männer. Fast free-form volume deformation
using inverse-ray-deformation. In VIIP, pages 163–168, 2001.

[Chr05] M. Christen. Ray tracing on gpu. Master’s thesis, Diploma Thesis, Uni-
versity of Applied Sciences Basel, 2005.

[Chu88] C. Chui. Multivariate Splines. SIAM, 1988.

[CICS05] S.P. Callahan, M. Ikits, J.L.D. Comba, and C.T. Silva. Hardware-assisted
visibility sorting for unstructured volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 11(3):285–295, 2005.

[CKG99] B. Csébfalvi, A. König, and E. Gröller. Fast maximum intensity projection
using binary shear-warp factorization. In WSCG ’99, pages 47–54, 1999.

[CLP02] G. Caumon, B. Lévy, and J-C. Paul. Combinatorial data structures for
volume rendering unstructured grids. Submitted: IEEE Transactions on
Visualization and Computer Graphics, 2002.

[CMH+01] B. Csébfalvi, L. Mroz, H. Hauser, A. König, and E. Gröller. Fast visualiza-
tion of object contours by non-photorealistic volume rendering. Comput.
Graph. Forum, 20(3), 2001.

[CMM+97] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno. Speed-
ing up isosurface extraction using interval trees. IEEE Transactions on
Visualization and Computer Graphics, 3(2):158–170, 1997.

[CMS01] H. Carr, T. Möller, and J. Snoeyink. Simplicial subdivisions and sampling
artifacts. In IEEE Visualization, volume 37, pages 99–106, 2001.

214 Bibliography

Bibliography

[CN94] T.J. Cullip and U. Neumann. Accelerating volume reconstruction with
3d texture hardware. Technical report, University of North Carolina at
Chapel Hill, 1994.

[CPC84] R.L. Cook, T. Porter, and L. Carpenter. Distributed ray tracing. In
Conference on Computer Graphics and Interactive Techniques, pages 137–
145, 1984.

[Cro84] F.C. Crow. Summed-area tables for texture mapping. In Computer Graph-
ics and Interactive Techniques, pages 207–212, 1984.

[CT82] R.L. Cook and K.E. Torrance. A reflectance model for computer graphics.
ACM Transactions on Graphics, 1(1):7–24, 1982.

[Dau88] I. Daubechies. Orthogonal bases of compactly supported wavelets. Com-
munications on Pure and Applied Mathematics, pages 909–996, 1988.

[Dau92] I. Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[DCH88] R.A. Derbin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer
Graphics, 22(4):65–74, 1988.

[Dod97] N.A. Dodgson. Quadratic interpolation for image resampling. IEEE Trans-
actions on Image Processing, 6(9):1322–1326, September 1997.

[EHK+05] K. Engel, M. Hadwiger, J.M. Kniss, A.E. Lefohn, C. Rezk-Salama, and
D. Weiskopf. Course optnotes 28: Real-time volume graphics. IEEE Vi-
sualization, 2005.

[EHKRS02] K. Engel, M. Hadwiger, J. Kniss, and C. Rezk-Salama. High-quality vol-
ume graphics on consumer pc hardware. Course OPTnotes for Course 42
at SIGGRAPH 2002, 2002.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated vol-
ume rendering using hardware-accelerated pixel shading. In ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 9–16,
2001.

[ER00] D. Ebert and P. Rheingans. Volume illustration: Non-photorealistic ren-
dering of volume models. In Proceedings Visualization 2000, pages 195–
202, 2000.

[Far86] G. Farin. Triangular bernstein-bézier patches. Computer Aided Geometric
Design, 3:83–127, 1986.

[Far02] G. Farin. History of Curves and Surfaces in CAGD, chapter 1, pages 1–22.
Handbook of CAGD, Elsevier, 2002.

[FRD06] C. Fox, H.E. Romeijn, and J.F. Dempsey. Fast voxel and polygon ray-
tracing algorithms in intensity modulated radiation therapy treatment
planning. Med. Phys., 33(5):1364–1371, 2006.

Bibliography 215

Bibliography

[FS97] J. Freund and K. Sloan. Accelerated volume rendering using homoge-
neous region encoding. In VIS ’97: Proceedings of the 8th conference on
Visualization ’97, pages 191–197, 1997.

[FvDFH97] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics:
Principles And Practice, 2nd Edition In C. Addison-Wesley, 2 edition,
1997.

[Gal91] D. Le Gall. Mpeg: a video compression standard for multimedia applica-
tions. Communications of the ACM, 34(4):46–58, 1991.

[Gar90] M.P. Garrity. Raytracing irregular volume data. In Symposium on Volume
Visualization, pages 35–40, 1990.

[GBKG04a] S. Grimm, S. Bruckner, A. Kanitsar, and M. E. Gröller. Memory efficient
acceleration structures and techniques for cpu-based volume raycasting
of large data. In Proceedings IEEE/SIGGRAPH Symposium on Volume
Visualization and Graphics, pages 1–8, 2004.

[GBKG04b] S. Grimm, S. Bruckner, A. Kanitsar, and M.E. Gröller. A refined data ad-
dressing and processing scheme to accelerate volume raycasting. Computer
& Graphics, 28(5):719–729, 2004.

[Geo03] A.S. Georghiades. Recovering 3-d shape and reflectance from a small
number of photographs. Eurographics Symposium on Rendering 2003,
2003.

[GG98] B. Gooch and A. Gooch. Computer Vision. Springer, 1998.

[GG01] B. Gooch and A. Gooch. Non-Photorealistic Rendering. AK Peters, Ltd.,
2001.

[GGSC98] A. Gooch, B. Gooch, P. Shirley, and E. Cohen. A non-photorealistic
lighting model for automatic technical illustration. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer graphics and in-
teractive techniques, pages 447–452, 1998.

[Gla84] A.S. Glassner. Space subdivision for fast ray tracing. In IEEE Computer
Graphics and Applications, volume 4, pages 15–22, 1984.

[Gla90] A.S. Glassner. Multidimensional sum tables. Graphics Gems, pages 376–
381, 1990.

[GRS+02] S. Guthe, S. Roettger, A. Schieber, W. Straßer, and T. Ertl. High-
quality unstructured volume rendering on the pc platform. In ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages
119–125, 2002.

[GS01] S. Guthe and W. Straßer. Real-time decompression and visualization of
animated volume data. In IEEE Visualization, pages 349–356, 2001.

216 Bibliography

Bibliography

[GSG+99] B. Gooch, P.-P.J. Sloan, A. Gooch, P. Shirley, and R. Riesenfeld. Interac-
tive technical illustration. In SI3D ’99: Proceedings of the 1999 symposium
on Interactive 3D graphics, pages 31–38, 1999.

[GTGB84] C.M. Goral, K.E. Torrance, D.P. Greenberg, and B. Battaile. Modeling the
interaction of light between diffuse surfaces. In Conference on Computer
Graphics and Interactive Techniques, pages 213–222, 1984.

[GW02] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Prentice-Hall,
Inc., 2 edition, 2002.

[GWGS02] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive rendering of
large volume data sets. In IEEE Visualization, pages 53–60, 2002.

[HBH03] M. Hadwiger, C. Berger, and H. Hauser. High-quality two-level volume
rendering of segmented data sets on consumer graphics hardware. In VIS
’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), 2003.

[HCSM00] J. Huang, R. Crawfis, N. Shareef, and K. Mueller. Fastsplats: optimized
splatting on rectilinear grids. In IEEE Visualization, pages 219–226, 2000.

[HHS93] H.C. Hege, T. Höllerer, and D. Stalling. Volume rendering - mathematical
models and algorithmic aspects. Technical report, Konrad-Zuse-Zentrum
für Informationstechnik, 1993.

[HKG00] J. Hladu̇vka, A. König, and M.E. Gröller. Curvature-based transfer func-
tions for direct volume rendering. In Spring Conference on Computer
Graphics, volume 16, pages 58–65, 2000.

[HL93] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric
Design. A K Peters, Ltd., 1993.

[HMBG00] H. Hauser, L. Mroz, G.-I. Bischi, and E. Gröller. Two-level volume ren-
dering – fusing mip and dvr. In Proceedings of IEEE Visualization 2000,
pages 211–218, 2000.

[HMK+95] J. Hesser, R. Männer, G. Knittel, W. Straßer, H.-P. Pfister, and A. Kauf-
man. Three architectures for volume rendering. Computer Graphics Fo-
rum, 14(3):111–122, 1995.

[HN00] D. Holliday and G. Nielson. Progressive volume models for rectilinear data
using tetrahedral coons volumes. Data Visualization, pages 83–92, 2000.

[HQK05] W. Hong, F. Qiu, and A. Kaufman. Gpu-based object-order ray-casting
for large datasets. In Volume Graphics, pages 177–185, 2005.

[HTHG01] M. Hadwiger, T. Theul, H. Hauser, and E. Gröller. Hardware-accelerated
hiqh-quality filtering on pc graphics hardware. In Proceedings of Vision,
Modeling, and Visualization 2001, 2001.

Bibliography 217

Bibliography

[HVTH02] M. Hadwiger, I. Viola, T. Theußl, and H. Hauser. Fast and flexible high-
quality texture filtering with tiled high-resolution filters. In Proceedings of
Vision, Modeling, and Visualization 2002, 2002.

[HZ03] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vi-
sion. Cambridge University Press, 2 edition, 2003.

[IFP95] V. Interrante, H. Fuchs, and S. Pizer. Enhancing transparent skin surfaces
with ridge and valley lines. In VIS ’95: Proceedings of the 6th conference
on Visualization ’95, page 52, 1995.

[IFP96] V. Interrante, H. Fuchs, and S. Pizer. Illustrating transparent surfaces with
curvature-directed strokes. In VIS ’96: Proceedings of the 7th conference
on Visualization ’96, pages 211–ff, 1996.

[IFP97] V. Interrante, H. Fuchs, and S.M. Pizer. Conveying the 3d shape of
smoothly curving transparent surfaces via texture. IEEE Transactions
on Visualization and Computer Graphics, 3(2):98–117, 1997.

[Int97] V. Interrante. Illustrating surface shape in volume data via principal
direction-driven 3d line integral convolution. In Conference on Computer
Graphics and Interactive Techniques, pages 109–116, 1997.

[IP99] I. Ihm and S. Park. Wavelet-based 3d compression scheme for interactive
visualization of very large volume data. In Computer Graphics Forum,
volume 18, pages 3–15, 1999.

[JWH+04] Y. Jang, M. Weiler, M. Hopf, J. Huang, D.S. Ebert, K.P. Gaither, and
T. Ertl. Interactively visualizing procedurally encoded scalar fields. In
Symposium on Visualization, pages 35–44, 2004.

[Kaj86] J.T. Kajiya. The rendering equation. International Conference on Com-
puter Graphics and Interactive Techniques, 20(4):143–150, 1986.

[Kat01] F. Katscher. Die kubischen Gleichungen bei Nicolo Tartaglia. Verlag der
österreichischen Akademie der Wissenschaften – Austrian Academy of Sci-
ences Press, 2001.

[Kau91] A.E. Kaufman. 3d volume visualization. Advances in Computer Graphics
VI, Images: Synthesis, Analysis, and Interaction, pages 175–203, 1991.

[KD98] G. Kindlmann and J.W. Durkin. Semi-automatic generation of transfer
functions for direct volume rendering. In Proceedings of IEEE Volume
Visualization ’98, pages 79–86, 1998.

[KE02] M. Kraus and T. Ertl. Adaptive texture maps. In ACM SIG-
GRAPH/EUROGRAPHICS Conference on Graphics Hardware, pages 7–
15, 2002.

[Kin98] G. Kindlmann. Semi-Automatic Generation of Transfer Functions for
Direct Volume Rendering. PhD thesis, Cornell University, 1998.

218 Bibliography

Bibliography

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen. Interactive volume rendering us-
ing multi-dimensional transfer functions and direct manipulation widgets.
In Proceedings of IEEE Visualization 2001, pages 255–262, 2001.

[KL04] F. Karlsson and C.J. Ljungstedt. Ray tracing fully implemented on pro-
grammable graphics hardware. Master’s thesis, Diploma Thesis, Chalmers
Technical University, 2004.

[KLS96] R. Klein, G. Liebich, and W. Strasser. Mesh reduction with error control.
In VIS ’96: Proceedings of the 7th conference on Visualization ’96, pages
311–318, 1996.

[KM05] A. Kaufman and K. Mueller. Overview of Volume Rendering, chapter
Chapter for The Visualization Handbook. Academic Press, 2005.

[KPHE02] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interactive translucent
volume rendering and procedural modeling. In IEEE Visualization, pages
109–116, 2002.

[Kru90] W. Krueger. The application of transport theory to visualization of 3d
scalar data fields. IEEE Visualization, Proceedings of the 1st conference
on Visualization ’90, pages 273–280, 1990.

[KTH+05] A. Krüger, C. Tietjen, J. Hintze, B. Preim, I. Hertel, and G. Strauss.
Interactive visualization for neck dissection planning. In Proceedings of
EuroVis 2005, pages 295–302, 2005.

[KvH84] J.T. Kajiya and B.P. von Herzen. Ray tracing volume densities. Inter-
national Conference on Computer Graphics and Interactive Techniques,
18:165–174, 1984.

[KW03] J. Krüger and R. Westermann. Acceleration techniques for gpu-based
volume rendering. In IEEE Visualization, pages 38–44, 2003.

[KWTM03] G.L. Kindlmann, R.T. Whitaker, T. Tasdizen, and T. Möller. Curvature-
based transfer functions for direct volume rendering: Methods and appli-
cations. In IEEE Visualization, pages 513–520, 2003.

[Lac95] P. Lacroute. Fast Volume Rendering Using a Shear-Warp Factorization
of the Viewing Transformation. PhD thesis, Stanford University, 1995.

[LC87] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In Proc. SIGGRAPH, Computer Graphics,
21(4):163–169, 1987.

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Computer Graphics
and Applications, 8(3):29–37, 1988.

[Lev90] M. Levoy. Efficient ray tracing of volume data. ACM Transactions on
Graphics, 9(3):245–261, 1990.

Bibliography 219

Bibliography

[Lev92] M. Levoy. Volume rendering using the fourier projection-slice theorem. In
Graphics interface ’92, pages 61–69, 1992.

[LGS99] T.M. Lehmann, C. Gönner, and K. Spitzer. Survey: Interpolation methods
in medical image processing. IEEE Transactions on Medical Imaging,
18(11):1049–1075, November 1999.

[LH99] D. Laur and P. Hanrahan. Hierarchical splatting: a progressive refinement
algorithm for volume rendering. SIGGRAPH Computer and Graphics,
25(4):285–288, 1999.

[LHJ99a] E. LaMar, B. Hamann, and K.I. Joy. Multiresolution techniques for inter-
active texture-based volume visualization. In IEEE Visualization, pages
355–361, 1999.

[LHJ99b] E.C. LaMar, B. Hamann, and K.I. Joy. High-quality rendering of smooth
isosurfaces. Journal of Visualization and Computer Animation, 10:79–90,
1999.

[LHSW03] F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. Smooth geometry
images. In Eurographics Symposium on Geometry Processing 2003, pages
138–145, 2003.

[LK02] W. Li and A. Kaufman. Accelerating volume rendering with texture hulls.
In IEEE Symposium on Volume Visualization and Graphics, pages 115–
122, 2002.

[LL94] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In SIGGRAPH Computer
Graphics and Interactive Techniques, pages 451–458, 1994.

[LLVT03] T. Lewiner, H. Lopes, A.W. Vieira, and G. Tavares. Efficient implemen-
tation of marching cubes’ cases with topological guarantees. Journal of
Graphics Tools, 8(2):1–15, 2003.

[LM02] E.B. Lum and K.-L. Ma. Hardware-accelerated parallel non-photorealistic
volume rendering. In International Symposium on Non-photorealistic An-
imation and Rendering, pages 67–ff, 2002.

[LM05] S. Li and K. Mueller. Spline-based gradient filters for high-quality refrac-
tion computations in discrete datasets. In Eurographics / IEEE VGTC
Symposium on Visualization, pages 217–222, 2005.

[LMC01] E.B. Lum, K.L. Ma, and J. Clyne. Texture hardware assisted rendering of
time-varying volume data. In IEEE Visualization, pages 263–270, 2001.

[LME+02] A. Lu, C.J. Morris, D.S. Ebert, P. Rheingans, and C. Hansen. Non-
photorealistic volume rendering using stippling techniques. In VIS ’02:
Proceedings of the conference on Visualization ’02, pages 211–218, 2002.

220 Bibliography

Bibliography

[LMK03] W. Li, K. Mueller, and A. Kaufman. Empty space skipping and occlusion
clipping for texture-based volume rendering. In IEEE Visualization, pages
42–50, 2003.

[LSM03] E.B. Lum, A. Stompel, and K.-L. Ma. Using motion to illustrate static
3d shape- kinetic visualization. IEEE Transactions on Visualization and
Computer Graphics, 9(2):115–126, 2003.

[Mal89] S.G. Mallat. Multiresolution approximations and wavelet orthogonal bases
of l2(r). Trans. Amer. Math. Soc., 315(1):69–87, 1989.

[Mal93] T. Malzbender. Fourier volume rendering. ACM Trans. Graph., 12(3):233–
250, 1993.

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing, volume Second Edition.
Elsevier, 1999.

[Max95] N. Max. Optical models for direct volume rendering. IEEE Transactions
on Visualization and Computer Graphics, pages 99–108, 1995.

[MB95] O. Monga and S. Benayoun. Using partial derivatives of 3d images to
extract typical surface features. Comput. Vis. Image Underst., 61(2):171–
189, 1995.

[MBC93] N. Max, B. Becker, and R. Crawfis. Flow volumes for interactive vector
field visualization. In IEEE Visualization, pages 19–24, 1993.

[MBF92] O. Monga, S. Benayoun, and O. Faugeras. From partial derivatives of 3D
volumic images to ridge lines. In IEEE Conference on Vision and Pattern
Recognition (CVPR), 1992.

[MC98] K. Mueller and R. Crawfis. Eliminating popping artifacts in sheet buffer-
based splatting. In IEEE Visualization, pages 239–245, 1998.

[MC01] W. Martin and E. Cohen. Representation and extraction of volumetric
attributes using trivariate splines: a mathematical framework. Solid Mod-
elling and Applications, pages 234–240, 2001.

[MD95] S. Mann and T. DeRose. Computing values and derivatives of bézier and b-
spline tensor products. In Computer Aided Geometric Design, volume 12,
pages 107–110, 1995.

[ME05] B. Mora and D.S. Ebert. Low-complexity maximum intensity projection.
ACM Trans. Graph., 24(4):1392–1416, 2005.

[MG02] M. Meissner and S. Guthe. Interactive lighting models and pre-integration
for volume rendering on pc graphics accelerators. In Graphics Interface,
pages x–x, 2002.

[MGK99] L. Mroz, E. Gröller, and A. König. Real-time maximum intensity pro-
jection. In Data Visualization ’99, pages 135–144. Springer-Verlag Wien,
1999.

Bibliography 221

Bibliography

[MH92] D. Mitchell and P. Hanrahan. Illumination from curved reflectors. In
SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer
graphics and interactive techniques, pages 283–291, 1992.

[MHC90] N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for
efficient visualization of 3d scalar functions. In Workshop on Volume Vi-
sualization, pages 27–33, 1990.

[MHG00] L. Mroz, H. Hauser, and E. Gröller. Interactive high-quality maximum
intensity projection. In EUROGRAPHICS ’2000, pages 341–350, 2000.

[MHIL02] K.-L. Ma, A. Hertzmann, V. Interrante, and E.B. Lum. Siggraph 2002
course 23: Recent advances in non-photorealistic rendering for art and
visualization. In Course OPTnotes SIGGRAPH 2002, 2002.

[MJC01] B. Mora, J.-P. Jessel, and R. Caubet. Visualization of isosurfaces with
parametric cubes. In Eurographics, pages 377–384, 2001.

[MKG00] L. Mroz, A. König, and E. Gröller. Maximum intensity projection at warp
speed. Computers and Graphics, 24(3):343–352, 2000.

[MKS98] M. Meiner, U. Kanus, and W. Straßer. Vizard ii: A pcicard for real-
time volume rendering. In Siggraph/Eurographics Workshop on Graphics
Hardware, pages 61–67, 1998.

[MKW+04] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek. Fast and
accurate ray-voxel intersection techniques for iso-surface ray tracing. In
Vision, Modelling, and Visualization 2003 (VMV), 2004.

[ML94] S.R. Marschner and R.J. Lobb. An evaluation of reconstruction filters for
volume rendering. In IEEE Visualization, pages 100–107, 1994.

[MMC99] K. Mueller, T. Möller, and R. Crawfis. Splatting without the blur. In
IEEE Visualization, pages 363–370, 1999.

[MMK+98] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel. Design of
accurate and smooth filters for function and derivative reconstruction. In
IEEE Symposium on Volume Visualization, pages 143–151, 1998.

[MMMY97a] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. A comparison of
normal estimation schemes. In IEEE Visualization, pages 19–27, 1997.

[MMMY97b] T. Möller, R. Machiraju, K. Mueller, and R. Yagel. Evaluation and design
of filters using a taylor series expansion. IEEE Transactions on Visualiza-
tion and Computer Graphics, 3(2):184–199, 1997.

[MN88] D.P. Mitchell and A.N. Netravali. Reconstruction filters in computer-
graphics. In Conference on Computer Graphics and Interactive Tech-
niques, pages 221–228, 1988.

222 Bibliography

Bibliography

[MPWW00] M. Meiner, H. Pfister, R. Westermann, and C.M. Wittenbrink. Volume vi-
sualization and volume rendering techniques. Eurographics Tutorial, 2000,
2000.

[MSHC99] K. Mueller, N. Shareef, J. Huang, and R. Crawfis. High-quality splatting
on rectilinear grids with efficient culling of occluded voxels. IEEE Trans-
actions on Visualization and Computer Graphics, 5(2):116–134, 1999.

[Mur93] S. Muraki. Volume data and wavelet transforms. IEEE Computer and
Graphics Applications, 13(4):50–56, 1993.

[NCKG00] L. Neumann, B. Csébfalvi, A. König, and E. Gröller. Gradient estimation
in volume data using 4D linear regression. In Computer Graphics Forum
(Eurographics 2000), volume 19(3), pages 351–358, 2000.

[NH93] P. Ning and L. Hesselink. Fast volume rendering of compressed data. In
IEEE Visualization, pages 11–18, 1993.

[NM03] N. Neophytou and K. Mueller. Post-convolved splatting. In Symposium
on Data Visualisation, pages 223–230, 2003.

[NM05] N. Neophytou and K. Mueller. Gpu accelerated image aligned splatting.
In Workshop on Volume Graphics, pages 247–254, 2005.

[NRSZ04] G. Nürnberger, C. Rössl, H.P. Seidel, and F. Zeilfelder. Quasi-interpolation
by quadratic piecewise polynomials in three variables. In Computer Aided
Geometric Design, volume 22, pages 221–249, 2004.

[NS01] K.G. Nguyen and D. Saupe. Rapid high quality compression of volume
data for visualization. Compututer Graphics Forum, 20(3), 2001.

[NSW02] Z. Nagy, J. Schneider, and R. Westermann. Interactive volume illustration.
In In Proceedings of Vision, Modeling and Visualization Workshop ’02,
2002.

[OLG+05] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E.
Lefohn, and T.J. Purcell. A survey of general-purpose computation on
graphics hardware. In Eurographics 2005, State of the Art Reports, pages
21–51, 2005.

[OM01] J. Orchard and T. Möller. Accelerated splatting using a 3d adjacency data
structure. In GRIN’01: No description on Graphics interface 2001, pages
191–200, 2001.

[PBMH02] T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan. Ray tracing
on programmable graphics hardware. ACM Transactions on Graphics,
21(3):703–712, 2002.

[PH04] M. Pharr and G. Humphrey. Physically Based Rendering: from theory to
implementation. Morgan Kaufmann, 1 edition, 2004.

Bibliography 223

Bibliography

[PHK+99] H.-P. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The vol-
umepro real-time ray-casting system. In Annual Conference on Computer
Graphics and Interactive Techniques, pages 251–260, 1999.

[PHK+03] V. Pekar, D. Hempel, G. Kiefer, M. Busch, and J. Weese. Efficient vi-
sualization of large medical image datasets on standard pc hardware. In
VISSYM ’03: Proceedings of the symposium on Data visualisation 2003,
pages 135–140, 2003.

[Pho75] B.T. Phong. Illumination for computer generated pictures. Communica-
tions of the ACM, 18(6):311–317, 1975.

[PSL+98] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
ray tracing for isosurface rendering. In IEEE Visualization, pages 233–238,
1998.

[PTVF99] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numeri-
cal Recipes in C – The Art of Scientific Computing. Cambridge University
Press, 2 edition, 1999.

[Pur04] T.J. Purcell. Ray Tracing on a Stream Processor. PhD thesis, Stanford
University, 2004.

[RE02] S. Roettger and T. Ertl. A two-step approach for interactive pre-integrated
volume rendering of unstructured grids. In IEEE Symposium on Volume
Visualization and Graphics, pages 23–28, 2002.

[RGW+03] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Strasser. Smart
hardware-accelerated volume rendering. In Symposium on Data Visuali-
sation, pages 231–238, 2003.

[RKE00] S. Roettger, M. Kraus, and T. Ertl. Hardware-accelerated volume and
isosurface rendering based on cell-projection. In IEEE Visualization, pages
109–116, 2000.

[Rod99] F.F. Rodler. Wavelet based 3d compression with fast random access for
very large volume data. In Pacific Conference on Computer Graphics and
Applications, pages 108–116, 1999.

[RSEB+00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive
volume on standard pc graphics hardware using multi-textures and multi-
stage rasterization. In ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics Hardware, pages 109–118, 2000.

[RSEH05] C. Rezk-Salama, K. Engel, and F.V. Higuera. The openqvis project. .,
2005.

[RUL00] J. Revelles, C. Urena, and M. Lastra. An efficient parametric algorithm
for octree traversal. In International Conference on Computer Graphics
and Visualization, 2000.

224 Bibliography

Bibliography

[RZNS03] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Visualization of
volume data with quadratic super splines. In IEEE Visualization, pages
52–60, 2003.

[RZNS04a] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Reconstruction
of volume data with quadratic super splines. IEEE Transactions on Visu-
alization and Computer Graphics, 10(4):397–409, 2004.

[RZNS04b] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel. Spline approxi-
mation of general volumetric data. In SM ’04: Proceedings of the ninth
ACM symposium on Solid modeling and applications, pages 71–82, 2004.

[Sab88] P. Sabella. A rendering algorithm for visualizing 3d scalar fields. In Proc.
SIGGRAPH, Computer Graphics, 22(4):51–58, 1988.

[Sam90] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison-Wesley, 2 edition, 1990.

[SBM94] C.M. Stein, B.G. Becker, and N.L. Max. Sorting and hardware assisted
rendering for volume visualization. In Symposium on Volume Visualiza-
tion, pages 83–89, 1994.

[SBS02] B.-S. Sohn, C. Bajaj, and V. Siddavanahalli. Feature based volumetric
video compression for interactive playback. In IEEE Symposium on Vol-
ume Visualization and Graphics, pages 89–96, 2002.

[SCBC05] C.T. Silva, J.L.D. Comba, F.F. Bernardon, and S.P. Callahan. A survey of
gpu-based volume rendering of unstructured grids. Revista de Informtica
Terica e Aplicada, 12(2):9–29, 2005.

[SCC+04] M. Straka, M. Cervenanský, A. La Cruz, A. Köchl, M. Srámek, M. E.
Gröller, and D. Fleischmann. The vesselglyph: Focus and context visu-
alization in ct-angiography. In IEEE Visualization 2004, pages 392–385,
2004.

[SFYC43] R. Shekhar, E. Fayyad, R. Yagel, and J.F. Cornhill. Octree-based dec-
imation of marching cubes surfaces. In IEEE Visualization, page 1996,
335–343.

[SH94] B.T. Stander and J.C. Hart. A lipschitz method for accelerated volume
rendering. Proceedings of the 1994 Symposium on Volume Visualization,
8(2):107–114, 1994.

[SH05] C. Sigg and M. Hadwiger. Fast third-order texture filtering. In In GPU
Gems 2, Matt Pharr (ed.), pages 313–329. Addison-Wesley, 2005.

[Sha49] C.E. Shannon. Communications in the presence of noise. In Proc. of the
IRE, volume 37, pages 10–21, January 1949.

[SHM04] G. Schlosser, J. Hesser, and R. Männer. Volume rendering on one rle
compressed data set by a new combination of ray-casting and shear-warp.

Bibliography 225

Bibliography

In SIGGRAPH ’04: Computer Graphics and Interactive Techniques, page
Full Conference DVD ROM, 2004.

[SHZ+05] G. Schlosser, J. Hesser, F. Zeilfelder, C. Rössl, R. Männer, G. Nürnberger,
and H.-P. Seidel. Fast visualization by shear-warp on quadratic super-
spline models using wavelet data decompositions. In IEEE Visualization,
pages 351–358, 2005.

[Sid85] L. Siddon. Fast calculation of the exact radiological path for a threedi-
mensional ct array. Med. Phys., pages 252–258, 1985.

[SKLE03] J.P. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating pre-integration
into the shear-warp algorithm. In Eurographics/IEEE TVCG Workshop
on Volume Graphics, pages 109–118, 2003.

[SL02] J.P. Schulze and U. Lang. The parallelization of the perspective shear-
warp volume rendering algorithm. In Fourth Eurographics Workshop on
Parallel Graphics and Visualization, pages 61–69, 2002.

[SM02] J. Sweeney and K. Mueller. Shear-warp deluxe: the shear-warp algorithm
revisited. In Symposium on Data Visualisation, pages 95–103, 2002.

[SMM+97] J.E. Swan, K. Mueller, T. Möller, N. Shareef, R. Crawfis, and R. Yagel.
An anti-aliasing technique for splatting. In IEEE Visualization, pages
197–205, 1997.

[SNL01] J.P. Schulze, R. Niemeier, and U. Lang. The perspective shear-warp al-
gorithm in a virtual environment. In IEEE Visualization, pages 207–214,
2001.

[SS96] P. Schröder and W. Sweldens. Building your own wavelets at home. in:
Wavelets in computer graphics. Siggraph, Course OPTnotes, 1996.

[SSKE05] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl. A simple and flexible
volume rendering framework for graphics-hardware-based raycasting. In
Volume Graphics, pages 187–195, 2005.

[ST90] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. In Symposium on Volume Visualization, volume 24,
pages 63–70, 1990.

[SW91] J. Spackman and P. Willis. The smart navigation of a ray through an
oct-tree. Computer and Graphics, 15(2):185–194, 1991.

[SW03] J. Schneider and R. Westermann. Compression domain volume rendering.
In IEEE Visualization, pages 39–47, 2003.

[SZ05] T. Sorokina and F. Zeilfelder. Local quasi-interpolation by cubic c1 splines
on type-6 tetrahedral partitions. IMA Journal of Numerical Analysis,
pages 1–28, 2005.

226 Bibliography

Bibliography

[TC00] S.M.F. Treavett and M. Chen. Pen-and-ink rendering in volume visual-
isation. In VIS ’00: Proceedings of the conference on Visualization ’00,
pages 203–210, 2000.

[TMG01] T. Theußl, T. Möller, and M.E. Gröller. Optimal regular volume sampling.
In IEEE Visualization, pages 91–98, 2001.

[UAE93a] M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part I—
Theory. IEEE Transactions on Signal Processing, 41(2):821–833, February
1993.

[UAE93b] M. Unser, A. Aldroubi, and M. Eden. B-Spline signal processing: Part II—
Efficient design and applications. IEEE Transactions on Signal Processing,
41(2):834–848, February 1993.

[UH99] J. K. Udupa and G. T. Herman. 3D Imaging in Medicine, volume 2 edition.
CRC Press, 1999.

[Vet86] M. Vetterli. Filter banks allowing perfect reconstruction. Signal Process-
ing, 10(3):219–244, 1986.

[VG05] I. Viola and M. E. Gröller. Smart visibility in visualization. In Proceedings
of EG Workshop on Computational Aesthetics Computational Aesthetics
in Graphics, Visualization and Imaging, pages 209–216, 2005.

[VHMK99] B. Vettermann, J. Hesser, R. Männer, and A. Kugel. Implementation of
algorithmically optimized volume rendering on fpga-hardware. In Proc.
Late Breaking Hot Topics, IEEE Visualization ’99., pages ff–ff, 1999.

[VK95] M. Vetterli and J. Kovacevic. Wavelets and Suband Coding. Prentice Hall,
1995.

[VKG04] I. Viola, A. Kanitsar, and M.E. Gröller. Importance-driven volume ren-
dering. In Proceedings of IEEE Visualization’04, pages 139–145, 2004.

[Š94] M. Šrámek. Fast surface rendering from raster data by voxel traversal
using chessboard distance. In VIS ’94: Proceedings of the conference on
Visualization ’94, pages 188–195, 1994.

[WBH+05] M. Weiler, R.P. Botchen, J. Huang, Y. Jang, S. Stegmeier, K.P. Gaither,
D.S. Ebert, and T. Ertl. Hardware-assisted feature analysis and visu-
alization of procedurally encoded multifield volumetric data. In IEEE
Computer Graphics and Applications, to appear, 2005.

[Wes89] L. Westover. Interactive volume rendering. In VVS ’89: Proceedings of
the 1989 Chapel Hill workshop on Volume visualization, pages 9–16, 1989.

[Wes90] L. Westover. Footprint evaluation for volume rendering. In Computer
Graphics and Interactive Techniques, pages 367–376, 1990.

[Wes94] R. Westermann. A multiresolution framework for volume rendering. In
Symposium on Volume Visualization, pages 51–58, 1994.

Bibliography 227

Bibliography

[Wes95] R. Westermann. Compression domain rendering of time-resolved volume
data. In IEEE Visualization, pages 168–174, 1995.

[WG90] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
In Symposium on Volume Visualization, pages 57–62, 1990.

[WG92] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, 1992.

[Whi80] T. Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, 1980.

[WKME03a] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In IEEE Visualization, pages 44–52, 2003.

[WKME03b] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based view-
independent cell projection. IEEE Transactions on Visualization and
Computer Graphics, 9(2):163–175, 2003.

[WMFC02] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno. Tetrahedral projection
using vertex shaders. In IEEE Symposium on Volume Visualization and
Graphics, pages 7–12, 2002.

[WMK04] A. Wood, B. McCane, and S.A. King. Ray tracing arbitrary objects on
the gpu. In Proceedings of Image and Vision Computing New Zealand
(IVCNZ 2004), pages 21–23, 2004.

[WMS98] P.L. Williams, N.L. Max, and C.M. Stein. A high accuracy volume ren-
derer for unstructured data. IEEE Transactions on Visualization and
Computer Graphics, 4(1):37–54, 1998.

[WNDS99] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming
Guide: The official guide to learning OpenGL, Version 1.2. Addison-
Wesley, 3 edition, 1999.

[WS01] I. Wald and P. Slusallek. State of the art in interactive ray tracing. EU-
ROGRAPHICS, State of the Art Reports, pages 21–42, 2001.

[WWH+00] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl.
Level-of-detail volume rendering via 3d textures. In IEEE Symposium on
Volume Visualization, pages 7–13, 2000.

[XC02] D. Xue and R. Crawfis. Efficient splatting using modern graphics hard-
ware. Graphics Tools, 8(3):1–21, 2002.

[XZC05] D. Xue, C. Zhang, and R. Crawfis. isbvr: Isosurface-aided hardware accel-
eration techniques for slice-based volume rendering. In Volume Graphics,
pages 207–215, 2005.

[YK92] R. Yagel and A. Kaufman. Template-based volume viewing. In Computer
Graphics Forum (EUROGRAPHICS ’92 Proceedings), volume 11, pages
153–167, 1992.

228 Bibliography

Bibliography

[YS93] R. Yagel and Z. Shi. Accelerating volume animation by space-leaping. In
IEEE Visualization, pages 62–69, 1993.

[ZKV92] K.J. Zuiderveld, A.H. Koning, and M.A. Viergever. Acceleration of ray-
casting using 3-d distance transforms. In Proc. SPIE, Visualization in
Biomedical Computing ’92, volume 1808, pages 324–335, 1992.

[ZPvBG02] M. Zwicker, H.P. Pfister, J. van Baar, and M. Gross. Ewa splatting.
IEEE Transactions on Visualization and Computer Graphics, 8(3):223–
238, 2002.

[ZRB+04] M. Zwicker, J. Räsänen, M. Botsch, C. Dachsbacher, and M. Pauly. Per-
spective accurate splatting. In Graphics Interface, pages 247–254, 2004.

Bibliography 229

