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ABSTRACT
Applications in distributed environments must scale to an
increasing number of concurrently active application instances.
Today’s application servers spend a significant amount of re-
sources on reliably managing state for these instances, turn-
ing them into data management servers instead of process
servers.

The goal of the Demaq project is to overcome the limita-
tions of these systems using a novel programming model for
applications based on asynchronous messaging (e.g. Web
Services). A crucial aspect of our approach is the rep-
resentation of state. Messages do not only represent re-
quests and replies sent to and from an application, but re-
tained messages are also used to model the application in-
stance state. This contrasts with most of today’s applica-
tion servers where two separate data models, languages and
stores are used for requests and state.

In Demaq, a single, highly efficient, reliable message store
is used both for requests and instance state, and a single
declarative language specifies message flow and state man-
agement. This extends data independence to the whole ap-
plication stack, thereby improving both developer produc-
tivity and - as experimental results confirm - application
scalability and performance.

1. INTRODUCTION
Applications in distributed environments must scale to

an increasing number of concurrently active application in-
stances. Today’s application servers spend a significant amount
of resources on reliably managing persistent state for these
instances, turning them into data management servers in-
stead of process servers. Automatic performance optimiza-
tion is restricted by a lack of data independence, since the
languages used to control the application processes and to
specify the individual processing steps are typically not declar-
ative and depend on specific physical representation of the
application state (e.g. main-memory Java objects).

.

The Demaq project is an attempt to reconsider the pro-
gramming model for distributed applications based on XML
messaging (e.g. Web Services). Our main goals include the
following five objectives.

Efficient State Management without expensive conver-
sion operations that become necessary due to several,
incompatible data representations.

High Scalability and Concurrency to support a very high
number of concurrently active application instances
without state management becoming predominant.

Reliability to support distributed applications that cannot
tolerate loss of data, such as business processes.

Optimizability by using a declarative language that allows
automatic optimization of execution strategies and stor-
age formats to improve performance.

Programming Convenience by providing developers with
efficient means to create XML messaging applications.

To achieve these goals, the Demaq architecture and pro-
gramming model fundamentally differ from those of today’s
application servers.

A crucial aspect of the Demaq approach is to model the
complete state of running application instances exclusively
using messages - there is no other persistent representation
of state. A highly efficient, reliable message store is used
for data management, and a declarative language specifies
message flow and reliability requirements.

Our approach is motivated by the observation that the
behavior of a node in a message-driven application is deter-
mined by all the messages it has seen so far. The externally
visible behavior of the node is represented by messages it
sends to other nodes. Hence, the node’s processing logic can
be specified as a declarative query against the message his-
tory, the result being a set of new messages to send. This
way, we turn application processing into a declarative query
processing problem. In an initial sketch of our vision [10],
we focused on the general concepts and language syntax,
motivated by simple and elegant application specification
and developer productivity. In this paper, we turn towards
the performance improvements made possible by our simple
message-focused model. We look under the hood of our ex-
ecution system, reviewing the involved design choices, and
introduce techniques that allow to tune the language se-
mantics and execution model to achieve highly concurrent
execution and scalability.
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Figure 1: Multiple tiers and data representations in an application server

Our main contributions include

• We describe the syntax and semantics of a rule-based
language for declarative XML message processing, based
on queries against the message history and a flexible
execution model. In particular, we discuss how we in-
tentionally limit visibility of parts of the message his-
tory to simplify run-time processing.

• We describe the architecture and implementation of
a system that implements our programming model.
We explain how the limited visibility and append-only
modification of the message history pave the way for
highly concurrent transactional message processing with-
out locking,

• We present experimental results comparing our imple-
mentation to a commercial application server.

The remainder of the paper is organized as follows. Af-
ter reviewing related work in Sec. 2, we present the ele-
ments of our programming model in Sec. 3. We elaborate
on our declarative message processing language in Sec. 4,
and discuss the corresponding execution model in Sec. 5.
Sec. 6 describes our system implementation. Sec. 7 presents
experimental results that show significant improvements in
performance and scalability compared to a commercial ap-
plication server. Sec. 8 concludes.

2. RELATED WORK

2.1 Application Servers
Today, distributed applications are usually executed by

multi-tier application servers [2]. For XML messaging ap-
plications, these tiers typically consist of queue-based com-
munication facilities (e.g. [19, 22]), a runtime component
executing the application logic, and a database management
system that provides persistent state storage. An additional
transaction processing monitor ensures that transactional
semantics are preserved across these tiers. Figure 1 depicts
such an architecture.

Application servers allow for the convenient deployment of
applications in distributed and heterogeneous environments.

However, their use entails several problems which are dis-
cussed in literature. Significant functional overlap and re-
dundancy between the different tiers wastes resources [21,
25], and configuration and customization in typical multi-
layer, multi-vendor environments with limited native XML
support is complex and brittle [2]. Further, frequent repre-
sentation changes between data formats (XML, format of
the runtime component, relational database management
system) decrease the overall performance [18].

Apart from simple messaging applications, such as state-
less publish/subscribe or message routing, distributed ap-
plications require to keep track of their current execution
state and related context information. For example, an or-
der application might keep the items in a shopping cart as
a customer-specific application state. The runtime com-
ponents of application servers typically allow for multiple
copies - called sessions or instances - of an application to
run in parallel. Each copy materializes its current state in-
formation in a corresponding runtime context. Most pro-
gramming languages (e.g. Java, BPEL or XL [18]) allow
instances to access and modify their context using scoped
variables.

Management of instances and their corresponding con-
texts is straightforward in scenarios where only a few in-
stances exist in parallel. However, it quickly becomes prob-
lematic if the number of instances increases to the point
where the overall size of their contexts exceeds the main
memory capacity of the execution system. Consequentially,
sophisticated replacement and managing strategies are re-
quired, especially for applications which involve long-running
activities [8].

2.2 Data Stream Management Systems
Data stream management systems (DSMS) and languages

(e.g. [1, 3, 14]) are targeted at analyzing, filtering and aggre-
gating items from a stream of input events, again produc-
ing a stream of result items. Several stream management
systems rely on declarative programming languages to de-
scribe patterns of interest in an event or message stream.
In most cases, these languages extend SQL with primitives
such as window specification, pattern matching, or stream-
to-relation transformation [4].
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In contrast to application servers that provide reliable and
transactional data processing, stream management systems
aim at low latency and high data throughput. To achieve
these goals, data processing is mainly performed in main
memory (e.g. based on automata [14] or operators [1]).
Thus, in case of application failures or system crashes, no
state recovery may be performed, and data can be lost. A
DSMS may even intentionally lose data, e.g. to remain re-
sponsive in periods of high load. In this case, the system
may choose to perform load shedding [26] and drop incom-
ing events to reduce the number of messages that need to
be processed.

2.3 XML Query and Programming Languages
For an XML message processing system, choosing a native

XML query language such as XPath [7] or XQuery [9] as a
foundation for a programming language seems to be a natu-
ral choice. However, these query languages lack the capabil-
ity to express application logic that is based on the process
state - they are functional query languages with (nearly)
no side effects. There are various approaches [11, 13, 15,
18] to evolve XQuery into a general-purpose programming
language that can be used without an additional host pro-
gramming language.

3. PROGRAMMING MODEL
Our programming model describes the application logic

of a node in a distributed XML messaging application using
two fundamental components.

All application instances operate on the same physical
message queues, querying them to recover the application
state and updating them by enqueuing new messages. XML

message queues provide asynchronous communication facil-
ities and allow for reliable and persistent message storage.
Declarative rules operate on these message queues and are
used to implement the application logic. Every rule specifies
how to react to a message that arrives at a particular queue
by creating another message.
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Figure 2: Programming model

An application using this programming model consists of
an infrastructure of queues and a set of rules governing the
message flow between them (Figure 2).

3.1 XML Message Queues
Distributed messaging applications are based on asyn-

chronous data exchange. Queue data structures offer ef-
ficient message storage and retrieval operations while pre-
serving the order of incoming data. Queues also allow to de-
couple the retrieval of a message from its processing. This is
particularly useful for an application to keep interacting with
communication partners in periods of high load. Addition-
ally, in scenarios involving temporarily unavailable remote
endpoints such as mobile devices or sensor nodes, message
delivery can be delayed until the remote endpoint becomes
available again without blocking the system.

Apart from their typical functionality as intermediate mes-
sage buffers, our model uses queues as persistent message
storage containers that can be queried by application rules.
This approach is based on the observation that the state of
every application instance in an individual node is derived
from the messages sent to and received from its communica-
tion partners. Instead of materializing this state in a corre-
sponding runtime context - and maintaining this context for
every application instance - it can alternatively be retrieved
from the message flow. This approach allows any number
of application instances to be supported concurrently with-
out any management overhead, as determining the instance
state effectively becomes a query against the message his-
tory. As a consequence, messages have to be retained as
long as they are necessary to compute the state of an in-
stance.

XML is a very popular message format for distributed
applications. This includes applications based on Web Ser-
vices [2] or Ajax [20], as well as an increasing number of
data exchange formats such as RSS or ATOM, and count-
less domain-specific protocols. Consequentially, data stor-
age in our message queues is based on the XQuery Data
Model (XDM) [16]. XDM is the data model of most XML
query languages including XPath 2.0, XSLT 2.0 and XQuery.
Building on XDM allows us to reuse existing XML process-
ing systems such as stores and query processors without
type system mismatches. For our purposes, XDM is particu-
larly suited, as its fundamental type is the ordered sequence,
which nicely captures message queue structures.

3.2 Declarative Rules
In our model, the processing logic is specified as a set of

declarative rules that operate on messages and queues. Each
rule describes how to react to a single kind of event - the
insertion of a new message into a queue. Depending on the
structure and content of this message, rule execution results
in the creation of new messages. These result messages can
either become the input for another rule, or be sent to a
remote system using queue-based communication facilities.

Our rule language is built on the foundation of XQuery. It
allows developers to directly access and interact with XML
fragments stored in message queues. Thus, there is no mis-
match between the type system of the application programs
and the underlying communication format. Additionally,
the content of messages and queues can be directly accessed
within application programs without crossing system bound-
aries or requiring complex, intermediate APIs.

In contrast to today’s application servers that mainly rely
on imperative programming languages, our rule language is
declarative. Among others, this decision is motivated by
the success of declarative, SQL-based languages in stream-
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ing solutions [4, 14]. Generally, declarative languages al-
low for the fast, convenient and efficient development of ap-
plications, and often dramatically reduce the development
overhead and the required lines of code [23]. They provide
execution systems with the freedom to choose from several
execution strategies and - compared to imperative languages
- with a much greater potential for optimization.

4. LANGUAGE
Every Demaq application consists of four components which

we discuss in the following sections. These are message
queues, application rules, message properties and user-defined
message groups, called slicings. To illustrate the practical
application of each individual component, we provide several
code examples taken from a small online shopping applica-
tion. We will also use this application in the performance
evaluation (Sec. 7).

4.1 Queues
Our programming model incorporates two different kinds

of queues. Gateway queues provide communication facilities
for the interaction with remote systems. There are two dif-
ferent kinds of gateway queues, incoming and outgoing ones.
Messages that are placed into outgoing gateway queues are
sent, while incoming gateway queues contain messages that
have been received from remote nodes. Queues are also used
as persistent storage containers. These basic queues allow
applications to store messages without sending them to ex-
ternal systems.

As a result, messages received from remote communica-
tion endpoints and internal state representation are handled
in a uniform manner, thus simplifying application develop-
ment.

Example: Basic Queues.
The following queue definition statements create three ba-

sic queues. These are used for persistent, local message
storage of customer master data and the items ordered by
customers (books and music).

create queue customerMasterData kind basic mode persistent ;
create queue bookCart kind basic mode persistent ;
create queue musicCart kind basic mode persistent ;

Example: Gateway Queue Definition.
The example below creates a gateway queue that receives

messages from external HTTP clients on port 2342. An ap-
plication can reply to such a request via the outgoingMes-

sages queue. Any messages placed in the outgoing queue is
automatically correlated to an input message, and sent to
the initial requester as a synchronous response. For asyn-
chronous protocols, no response queue is needed.

create queue incomingMessages kind incoming
interface ”http” port ”2342” response outgoingMessages
mode persistent ;

4.2 Message Properties
Every message in our system is an XML fragment that was

either received from an external source or generated by local
application rules. Apart from their XML payload, messages
are associated with additional metadata annotations that
are kept separate from the XML payload. These properties

are key/value pairs, with unique names as their key and a

typed, atomic value. They are determined during creation
and remain fixed over the entire lifetime of a message.

There are several ways how a property can be associated
with a message:

Explicit A property value may be explicitly set by an appli-
cation rule when enqueuing a message. Explicit prop-
erties allow developers to annotate messages with addi-
tional information without modifying their XML body.

System Several properties are set by the system, such as
creation timestamps or transport protocol information
(e.g. the original message sender).

Computed A property value may be computed from the
XML payload of a message. These properties are com-
parable to views in database systems, which provide
aliases for frequently used expressions.

Example: Property Definition.
The following two properties are used to compute the cus-

tomerID or transactionID from the content of the messages
stored in the queues created above. This is done by evaluat-
ing the corresponding path expression. The fixed modifier
indicates that these properties may not be set explicitly.

create property customerID
queue customerMasterData fixed value //customer/ID/text () ;

create property transactionID
queue bookCart , musicCart fixed value //transactionID/text () ;

4.3 Slicing the Message History
Conceptually, the state of application instances in Demaq

is encoded in the message history, and rules access the state
by posing queries against the history. Of course, process-
ing queries against all existing messages for every process-
ing step is inefficient, and the need to filter the relevant
messages for every rule may lead to repetitive code in rule
bodies. In addition, keeping the complete message history
forever requires unbounded storage capacity.

For these reasons, the Demaq language provides mecha-
nisms to declare portions of the message history that are
relevant in particular contexts, called slicings.

They can be seen as a kind of parameterized view [27] that
extends the concept of data independence to the application
state. Slicings support compact rule formulation by giving
a name to frequent parameterized expressions. Further, the
explicit declaration of relevant message subsets can be used
for optimization purposes, e.g. by indexing or materializing
slicings.

Slicings are used to simplify the implementation of recur-
ring design patterns in messaging and workflow applications,
such as ”correlation sets” in BPEL , or ”conversations” in XL
[18]. Additionally, they can be used to join control flow after
executing several tasks in parallel, or to establish synchro-
nization points and milestones [28] within an application.

4.3.1 Slicing Definition
Figure 3 illustrates different access patterns in our ex-

ample application. In the depicted example, two different
queues are used to store incoming orders by their message
type. Additionally, the application needs to access messages
on a per-customer basis, independent of their queue-based,
physical storage location.
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A slicing defines a family of slices, where each slice consists
of all the messages with the same value for a particular part
of the message (slice key). In the example (Figure 3) above,
this slice key is a unique, customer-specific identifier. To
identify the part of a message that should be used as the
slice key - and thus as the basis for the partitioning - we
rely on the property mechanism introduced in Sec. 4.2.

The use of property values as slice keys avoids additional
language primitives. It reflects the fact that the way prop-
erty values are defined nicely matches the criteria according
to which applications need to group messages in slices. Just
as in the property example above, slice keys sometimes need
to be computed from the message. In other cases, the rule
creating a message might want to specify the target slice by
explicitly setting the slice key.

A slicing is created by specifying a unique name and the
slicing property. The property definition lists a number of
queues on which the property is defined. Messages from
these queues are partitioned into slices according to their
property value. All messages that share the same value of
the slicing property become part of the same slice.

Example: Slicing Definition.
In this example, two different slicings are created. The

masterDataForCustomer slicing allows to retrieve all mes-
sages from the customerMasterdataQueue that belong to a
particular customer.

create slicing masterDataForCustomer on customerID;

By using the cartItemsForCustomer slicing, all order mes-
sages for an individual customer transaction can be retrieved.

create slicing cartItemsForCustomer on transactionID ;

4.3.2 Relevant Slice Suffix
Slicings declare partitions of the message history which

are relevant to the application. A simple, value-based par-
titioning is not enough, however, as it would still require to
retain the complete, unbounded message history. Instead,
we need some kind of mechanism to specify which messages
reflect the relevant application state and need to be accessi-
ble to rules, and which messages have become irrelevant and
may thus be dropped to save space.

To avoid unbounded buffering of message streams, win-

dows have been proposed to specify relevant sub-streams [1]
based on their position in a stream. The boundaries of such
windows are based on the window size or relative to some
landmark object in the stream, and the application devel-
oper must translate the message retention needs into window
specifications.

In Demaq, we allow application developers to directly
specify a condition that must be met by the messages that

are sufficient to represent the current application state. Ac-
cess to the slice then yields the smallest suffix which contains
such a set of relevant messages. This very powerful seman-
tics captures existing window types (see below) and at the
same time allows for a very intuitive, direct expression of
relevance conditions from the application domain.

For example, an application rule that performs order pro-
cessing is only interested in those messages belonging to a
customer order that has not been completed yet. To filter
out unnecessary messages, a slice can be declaratively con-
strained using a require expression.

The require expression is an arbitrary XQuery expression
of type boolean. Among all the contiguous sets of candidate
messages in the slice that fulfill this condition, the most
recent set is considered the currently relevant state of the
slice. This set, and and any messages more recent than
that, are visible to the application (e.g. when using the
qs:slice function explained later). The require expression
may refer to the candidate set of relevant messages using a
special function (qs:retainedMsgs(), see below). However,
it may not refer to any other messages in the system. The
reason for this latter constraint is simple, efficient evaluation
and garbage collection.

Since the require expression may not refer to other parts of
the system state, and it always includes a complete suffix of
the message history, and the fact that we chose the most re-
cent qualifying set, guarantees a monotonous behavior of our
relevant slice state: We can divide the slice into two parts,
a relevant suffix (marked gray in Figure 4) and an irrele-
vant prefix. Our semantics guarantees that, once a message
belongs to the irrelevant prefix of a slice, it will never be-
come relevant again. In other words, the boundary between
relevant and irrelevant messages only moves toward more re-
cent messages. Thus, it can be represented and tested using
a simple message identifier or timestamp comparisons. This
allows a simple, decoupled garbage collection strategy: If a
message is no longer visible to any application rule because
it is not part of any relevant suffix, it can be safely pruned
from the message history. Consequentially, storage capacity
can be reclaimed in a separate garbage collection process
that never conflicts with rule evaluation.

irrelevant prefix ][ relevant suffix (require)

msg0 msg1 . . . msga . . . msgb . . . msgk

⇑ boundary

Figure 4: Message history in a slice of size k+1

Example: Require Expression.
In this example, only the last five messages in the slice

(accessed using the qs:retainedMsgs function) are relevant
(this corresponds to a sliding window).

create slicing lastFiveCustomerOrders on bookCart
require count(qs: retainedMsgs()) gt 5;

In the following example, the require expression is used to
filter out all completed customer transactions. Only trans-
actions that have been started and have not terminated yet
(indicated by a message containing a stop element) will be
returned.

create slicing unfinishedTA on transactionID
require qs: retainedMsgs()//start
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and not(qs : retainedMsgs()//stop );

If no suffix matching the require condition can be found,
the entire message history is returned. Thus, as in the ex-
ample below, a require condition of false() can be used to
provide an application rule with access to the complete mes-
sage history. However, this condition has to be used with
care as it requires the entire message history of the slice to
be preserved. Thus, the system might eventually run out of
storage capacity.

create slicing completeHistory on bookCart require false () ;

4.4 Application Rules
For our application rules, there is a significant overlap

with the capabilities of existing, declarative XML query lan-
guages, in particular with XQuery [9]. XQuery allows for
querying (sequences of) XML documents, document con-
struction, supports XML data types, schema validation, etc.

Building on an existing language, such as XQuery, pro-
vides significant advantages. Developers can benefit from
previous experience and reuse programming tools and devel-
opment infrastructure. Additionally, existing query process-
ing techniques can be potentially adapted to our application
language. In the following sections, we discuss how the fea-
tures required for building message-driven applications can
be integrated into XQuery.

4.4.1 Assigning Application Rules
Every application rule is assigned to a single queue or

slicing. Whenever a message gets inserted into this queue
or slicing, the rule is evaluated with this message as the
context item. In order to allow application developers to
perform this association of rules to queues and slicings, we
extend XQuery by incorporating an additional rule defini-
tion expression. Rule definition expressions can be used to
give a unique name to an XQuery expression and assign it
to a particular queue or slicing.

Optionally, an error queue can be defined for an applica-
tion rule. Whenever a runtime error is encountered during
the execution of this rule, a corresponding notification mes-
sage is sent to this queue. Thus, this error handling mecha-
nism allows other rules to handle this error. If no error queue
is defined (as in the examples below), error notifications are
inserted into a system-provided, default error queue.

Example: Application Rules.
The rule definition statement below specifies how to react

to messages that arrive at the incomingMessages gateway
queue from external sources. Whenever a message is in-
serted into this queue, the rule (named registerNewCus-

tomer) checks whether the message contains a particular
XML element (registerNewCustomer in line 2). If this el-
ement is found, the rule forwards the message to the cus-

tomerMasterData queue (line 4) and sends back a confirma-
tion to the caller (line 5). The enqueue message statement
is used to enqueue the messages into the two corresponding
queues.

If the message triggering rule execution does not contain
a registerNewCustomer element, the rule does not perform
any action, as the empty result of the else branch in line 8
indicates.

1 create rule registerNewCustomer for incomingMessages
2 i f (//registerNewCustomer )

3 then(
4 enqueue message . into customerMasterData,
5 enqueue message

6 <result>Inserted customer masterdata</result>
7 into outgoingMessages )
8 else () ;

4.4.2 Enqueuing Messages
Every application rule describes how to react to a message

by creating new messages and enqueuing them into local
or gateway queues. While XQuery allows for the creation
of arbitrary XML fragments, it does not incorporate any
primitives for performing side effects. In our model, this is
a severe restriction, as there is no possibility to modify the
content of the queues underlying our application rules.

The XQuery Update Facility [12] aims at eliminating this
limitation by allowing for the declarative specification of up-
dates on instances of the XQuery data model. For this pur-
pose, the Update Facility extends XQuery with new primi-
tives that represent pending update operations. Expressions
which return such pending updates are called updating ex-

pressions and can be combined by using existing XQuery
constructs such as FLWOR or path expressions. Updating
expressions produce a list of pending update primitives that
are applied after the entire expression has been evaluated,
thus resulting in a snapshot semantics for expression evalu-
ation.

We adopt the extensions proposed by the XQuery Update
Facility to perform side effects on the messages store. Every
application rule is an updating expression that produces a
(possibly empty) list of messages that have to be incorpo-
rated into the message store by enqueuing them to corre-
sponding queues. In order to allow application programs to
both specify the XML fragment to be enqueued as well as
their target queue, we extend the XQuery Update Facility
with an additional enqueue message update primitive.

4.4.3 Message Access
While XQuery incorporates powerful features to query (se-

quences of) XML documents, it does not provide operations
for accessing the content of structures such as queues, prop-
erties and slices. These read-only access operations can be
easily provided by the runtime system in the form of exter-
nal functions, particularly without requiring changes to the
syntax or semantics of XQuery. In application rules, they
are used to access the sequence of XML messages stored in
a queue or slice using their unique identifier as a key. Our
language incorporates the following functions:

• qs:queue can be used to retrieve all messages stored in
a particular queue of the system. It takes a single pa-
rameter referencing the name of the queue that should
be accessed (e.g. qs:queue("bookCart") can be used
to access all messages stored in the bookCart queue).

• The qs:slice function allows to retrieve all messages
belonging to a slice. Its two parameters are the name
of the slicing and the slice key (e.g. qs:slice(2342,

"cartItemsForCustomer") can be used to access all
messages in the cartItemsForCustomer slicing with a
slice key of 2342).

• The qs:slicekey function can be used to retrieve the
slice key for a message with respect to a given slicing.
It’s two parameters are the slicing name and a message
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(e.g. qs:slicekey("cartItemsForCustomer",.) can
be used to access the slice key of the context item with
respect to the cartItemsForCustomer slicing).

• qs:property allows developers to access the value of a
property with a given name of a particular message
(e.g. qs:property("customerID",.) can be used to
retrieve the content of the customerID property of the
context item).

• The parameterless qs:message function can be used to
access the message triggering the execution of a rule.

Example: Slicing Access within Rules.
The example below illustrates how system-provided access

functions can be used in application rules. Here, whenever a
checkout message is received for a particular customer trans-
action, the qs:slice function is used to retrieve the last
version of the master data for a particular customer (line
7), as well as all items ordered in the context of the current
customer transaction (line 9).

This data is used to compile a delivery confirmation con-
taining all ordered items as well as the last known delivery
address for this customer, and to send the confirmation to
the customer using a gateway queue.

1 create rule handleCheckout for incomingMessages
2 let $request := //checkout
3 return

4 i f ($request) then

5 let $transactionID := $request/transactionID/text()
6 let $customerID := $request/customerID/text()
7 let $customerMasterData := qs : slice ($customerID,
8 ”masterDataForCustomer”)[ position()=last () ]
9 let $customerOrders :=

10 qs: slice ($transactionID , ”cartItemsForCustomer”)
11 let $result :=
12 <result>
13 <orderedItems>{$customerOrders//item}</orderedItems>
14 <delivery>{$customerMasterData//address}</delivery>
15 </result>
16 return enqueue message $result into outgoingMessages
17 else () ;

5. EXECUTION MODEL
The Demaq language provides simple, yet expressive prim-

itives to describe desired reactions to messages in terms of
the message history. The use of a declarative language for
rule bodies allows data independence and efficient execution
using a query optimizer.

Our objective is to create an elegant way to completely
specify stateful messaging applications, and not only to mon-
itor or analyze message streams - we not only want to read
state, but to modify it. Hence, a crucial aspect of the Demaq
design is to define how state can be managed in a reliable
way and - at the same time - allow for an efficient and scal-
able application execution.

The design issues in this context revolve around the trans-
actional coupling of rule execution to the message store. It
turns out that modeling both requests and state information
as messages yields novel opportunities to improve execution
performance. A major reason for this is the append-only
strategy for the message history: We never perform in-place
updates. As a consequence, there is much less need to syn-
chronize concurrent execution threads, and there are fewer
ways how a concurrent modification of the system state can
cause conflicts.

The Demaq execution model captures the typical behav-
ior of message-driven applications in a few simple rules and
guarantees which are observed by the Demaq run-time sys-
tem. Our model is natural because it mirrors the typical
architecture of existing messaging applications - a simple
processing loop. It precisely determines Demaq rule seman-
tics, and at the same time leaves enough freedom for an ac-
tual implementation to optimize run-time performance, as
we will see in Sec. 6.

5.1 Core Processing Loop
The fundamental behavior of messaging applications can

be described as a simple loop that (1) decides which mes-
sage(s) to process, (2) determines the reaction to that mes-
sage based on the message contents and application state,
and (3) effects the reaction by creating new messages. In ex-
isting systems, this loop is mostly coded by hand, optimizing
for the requirements of each application. Actual implemen-
tations of the Demaq model may use any form of processing
loop(s) that obeys the following constraints:

1. Each message is processed exactly once. This means
that the evaluation of all rules defined for the message’s
queue and slicings are triggered once for every message.

2. Rules are evaluated by determining the result of the
rule body as defined by XQuery (update) semantics,
extended by the built-in function definitions described
in Sec. 4.4.3. The result is a sequence of pending up-
date operations in the form of messages to enqueue.

3. The overall result of rule evaluation for a message is the
concatenation of the pending actions of the individual
rules in some non-deterministic order.

4. Processing the pending actions for a message is atomic,
i.e. after a successful rule evaluation all result mes-
sages are added to the message history in one atomic
transaction, which also marks the trigger message as
processed.

5. All rule evaluations for the same trigger message see
the same snapshot of the message history, which con-
tains all messages enqueued prior to the trigger mes-
sage, but none of the messages enqueued later.

This list includes strong transactional guarantees neces-
sary to implement reliable state-dependent applications, but
still allows many alternative strategies to couple message
processing to a transactional message store. We discuss the
implications below.

5.2 Transactional Coupling
The main model discussed above explains the desired trans-

actional properties our application engine must guarantee
when accessing and modifying the message history. To bet-
ter understand the design decisions for our engine, we review
some of them in terms of the classification by Paton and Diaz
[24] for active databases:

single message transition granularity Every message is
subject to a separate processing iteration, which sim-
plifies rule semantics. The focus of XQuery rule body
evaluation is always a single message, matching the
XQuery concept of a single context item.
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detached event-condition coupling mode and iterative

cycle policy The messages may be processed in a
separate transaction from their creation. This is de-
manded by our asynchronous environment and allows
many unprocessed messages to reside in the system at
any time, increasing parallelization opportunities and
scheduling flexibility.

deferred condition-action coupling mode As long as ev-
ery message is eventually processed, we allow some de-
lay between processing the message and adding the re-
sult messages. Again, this improves concurrency and
scalability.

all parallel rule scheduling strategy All rules for a sin-
gle message see the same state of the message history.
This is motivated by the interpretation of each rule
as an isolated statement of fact about the system be-
havior – if a certain situation arises, a certain action
will eventually happen, no matter what other rules are
defined for the same situation. This strategy also al-
lows to factorize common subexpressions across several
rules.

Note that the above model does not allow for message
store transactions that span rules. However, application de-
velopers do have some control over the amount of decoupled,
asynchronous execution: The expressive power of XQuery
allows the bundling of complex processing steps into sin-
gle rules, which are executed in a single transaction and
hence allow to constrain the visibility of intermediate results
to concurrent transactions. Further, application developers
can isolate intermediate messages in local queues that are
not accessed by conflicting control paths.

Another implication of our execution model is highly sim-
plified concurrency control, which we discuss in a separate
section below.

5.3 Enqueue-Time Snapshot Isolation
To achieve a maximum of concurrency, our message store

uses a variant of snapshot isolation [6] that is made possible
by our unified message-based view of state and requests. In
general, snapshot isolation freezes the system state visible
to a transaction by creating a private version of the state.
This avoids locking and improves concurrency, but requires
the retention of old state versions and conflict resolution
policies.

In our programming model, guaranteeing snapshot isola-
tion is very cheap, because management of old state versions
is trivial: there are no in-place updates - we can access old
versions of the system state just by ignoring newer messages.
We simplify this by using as begin-of-transaction (snapshot)
time for our rule evaluation the enqueue-time of the trigger
message. Hence, rule evaluation can only see all messages
enqueued prior to the trigger message. Concurrent rule eval-
uation transactions do not need to lock parts of the history,
because updates by definition do not affect their visible part
of the message history. We only need to synchronize the
message writing transactions to guarantee atomic insertion
of result messages. Note that deadlock handling is simple,
as the complete set of updates is known before the first up-
date needs to be performed. This strategy tremendously
improves the concurrency and scalability of our application
engine, because very few short-term locks are required for
synchronization.

5.4 Message Scheduling
Message scheduling in Demaq decides on the order in

which messages are processed. This processing order is only
deterministic for messages in the same slice, which are pro-
cessed in their enqueued order. The rationale for this deci-
sions is that slices are logical primitives close to the applica-
tion domain (e.g. messages for a single customers) where
out-of-order processing would confuse developers. In all
other cases, we allow the run-time system to schedule pro-
cessing in any order. This can be used to improve locality
of access, or to control quality of service.

5.5 Error Handling
There are many sources of errors that may prohibit a suc-

cessful application execution. Examples include, but are not
limited to dynamic XQuery errors, communication failures,
and resource exhaustion. In case of errors, rule evaluation
is aborted, and none of the resulting messages is inserted.
Further, every error is reflected by a corresponding error
message conforming to a standardized XML error schema,
which is enqueued to designated error queues specified in the
program. This allows developers to react to error conditions
using rules that provide a contingency plan.

6. SYSTEM
In this section, we outline the architecture and implemen-

tation of the Demaq system that implements our program-
ming model (Figure 5).

When deploying a Demaq application, the rule compiler
is used to transform the application specification into exe-
cution plans for the runtime system. The runtime system
consists of three major components. A transactional XML
queue store provides efficient and reliable message storage.
Remote messaging and transport protocol aspects are han-
dled by the communication system. The rule execution en-
gine executes the plans generated by the rule compiler.

6.1 Rule Execution Engine
The rule execution engine implements our execution model

described in Sec. 5. At application startup, this includes
setting up the message store, the initialization of the com-
munication system, and the creation of main-memory data
structures and processing threads. At runtime, governed by
the execution model defined in Sec. 5, it decides when and in
which order messages from the queue store should be pro-
cessed, how to incorporate updates, and when to send or
receive messages from the communication system.

System Startup.
For new applications, physical message queues and cor-

responding index structures are created. A rule compiler
optimizes application rules and transforms them into query
execution plans which are also written to the message store.

Starting from such a persistent representation of an ap-
plication, the actual startup of a node is as follows. First,
the transactional message store is started, performing any
necessary recovery on the queue and index structures. The
rule execution engine then reconstructs the contents of its
main-memory schedulers from the persistent state of the
message store by querying for unprocessed messages. Next,
the communications subsystem is initialized, and the gate-
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Figure 5: Demaq system architecture

way queues are connected to the network. Finally, message
processing is started.

Rule Body Plans.
For each queue, the execution engine keeps a single ex-

ecution plan for the rule bodies of all rules that must be
evaluated for a new message in that queue and the associ-
ated slicings. These plans are partly executed within the
execution engine, and partly pushed towards the query ex-
ecution engine of the underlying storage engine. The plans
also merge the pending results of all rules into a single pend-
ing action list.

Concurrent Message Processing.
The rule execution engine maintains a pool of concurrent

processing threads, which repeatedly perform the following
processing cycle (visualized in Figure 5).

Each iteration of the cycle consists of selecting the next
message to process, rule execution and, finally, the incor-
poration of the results into the corresponding queues. Cur-
rently, all these operations are performed in the context of
one atomic transaction against the message store. As the
message store uses snapshot isolation for concurrency con-
trol, several processing threads can simultaneously operate
on the same queues and slicings without blocking and in-
terfering with each other. Processing a message consists of
running the execution plan associated with the queue (see
above). This evaluation results in a list of pending actions,
mostly consisting of new messages to create. These unpro-
cessed messages are stored in their target queues, ending the
cycle.

Slicing Management.
Our implementation uses secondary B-Tree index struc-

tures to materialize slices. For each slicing, a seperate index
is created. Using this index, the runtime system can effi-
ciently access the messages for a slice key without expensive
queue scans.

In addition to an index access based on the slice key, the
query sub-plans for slice access include filtering operators ac-
cording to the require expression. A significant performance
improvement can be achieved by remembering the current

boundary of the relevant suffix for each slice key – due to
the monotony explained in Sec. 4.3.2 we only need to ex-
amine candidate sets that are more recent than the current
boundary.

Message Garbage Collection.
To recover storage capacity, the runtime system includes

a message garbage collector that may operate as a back-
ground process. The garbage collector checks for each mes-
sage whether it is required by at least one slicing according
to it’s require expression. If the message is no longer re-
quired by any slice and has been processed, it can be safely
deleted from the message store without altering the runtime
behavior of the system. In this way, the garbage collector
regularly prunes the message history and reclaims storage
capacity without interfering with concurrent rule execution.

6.2 Rule Compiler
The purpose of the rule compiler is to transform appli-

cations into execution plans for the runtime system. After
verifying the syntactical and semantical correctness of an
application, it is normalized. Normalization e.g. involves
removing syntactic sugar such as rules defined on slicings
(which can be substituted with equivalent rules defined on
queues). In a next step, the compiler tries to optimize the
application by applying rewriting heuristics.

Optimization opportunities exist on several levels of an
application.

Rule-set rewriting We can change the overall structure of
an application by modifying its set of rules. For exam-
ple, the compiler merges all rules defined on the same
queue into a single, combined rule. This simplifies fac-
torizing common subexpressions across rules and saves
the runtime system from invoking the rule execution
component multiple times for a single message.

Rule-body rewriting We can rewrite the body of indi-
vidual rules, e.g. by inlining access to fixed, computed
properties, or merging computation of the require ex-
pression with rule-body evaluation.

XQuery optimization A significant part of our program-
ming language consists of the XQuery Update Facil-
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ity, and many optimization techniques developed for
XQuery can also be applied to our application rules.
To profit from these techniques without reimplement-
ing all of them, the compiler can split rule bodies into
two parts, one processed by the Demaq rule execution
engine, and one processed by the message store. In
case of XQuery-enabled message stores (as is the case
in our current implementation), the store-processed
part is simply rewritten into an XQuery expression
without Demaq-specific constructs, which can then be
optimized by the store’s XQuery compiler.

Physical optimization Other platform-specific rewrites may
be performed to speed up application processing. For
example, in our runtime system, there is a special op-
eration which works similar to a link in Unix file sys-
tems. This operation avoids a full copy of the mes-
sage when messages are forwarded unchanged from
one queue to another. The query compiler can replace
enqueue message with this operation (called enqueue

link) where possible.

Finally, after the normalization and optimization rewrites
have been applied, the application is transformed into an in-
termediate XML representation. It includes the remaining
queue, property and slicing definitions that were not opti-
mized away by the rule compiler, as well as execution plans
representing the application logic for the remaining rules.
This intermediate XML encoding is used to initialize the
individual components of the runtime system that will be
discussed in the next sections.

6.3 Transactional XML Queue Store
Our message store is built on the foundation of native

XML base management system. Our current implementa-
tion alternatively uses Natix [17], a research prototype of a
native XML data store, or IBM DB/2 Version 9.

Natix organizes XML document repositories as collections,
which are unordered sets of XML documents. As our pro-
gramming model requires queue-based message storage, we
had to extend the existing, collection-based data handling
and recovery facilities to support a queue-based manage-
ment model. These extensions allow us to use the efficient
XML storage facilities as well as the sophisticated recovery
and schema management features of Natix for our message
queues. Most importantly, we use the XQuery interface of
the system to efficiently evaluate rule bodies on the message
queues. Natix supports creating persistent B-Tree indexes,
which we use to implement slicings (see Sec. 6.1), and our
specialized version of Snapshot Isolation (see Sec. 5.3).

As an alternative to Natix, our runtime system may op-
tionally use IBM DB/2 as the underlying database manage-
ment system. In this case, as DB/2 does not incorporate
native queue support, auxiliary tables are used to simulate
queue-based storage (we are currently investigating how to
best represent our queue semantics in a relational system).

6.4 Communication System
The communication system provides all remote commu-

nication facilities. It implements both asynchronous and
synchronous transfer protocols (such as HTTP and SMTP),
and thus allows applications to interact with various types
of external communication endpoints.

The design goal of the communication system is to sim-
plify messaging operations for application programs. In the
best case, remote communication becomes as simple as en-
queuing a message into a local queue. This becomes pos-
sible as the communication system hides protocol-specific
operations from developers and the other components of the
runtime system wherever possible.

6.5 Visual Editor
To further increase developer productivity and allow for

the convenient specification of Demaq applications, we have
created a visual editor (Figure 6). The editor allows to
quickly set up the queues of an application using a sim-
ple drag-and-drop mechanism. Rules governing the message
flow can be“drawn“ between the queues, while the rule body
is written using a syntax-aware editor with online syntax
validation. Additionally, users may easily define and assign
message schemas using an integrated XML Schema editor.

Figure 6: Visual Editor

7. EXPERIMENTS
In this chapter, we provide a brief experimental evalua-

tion of our programming model. For this purpose, we use
the Demaq runtime system introduced in the last section to
execute an exemplary online shopping application. Several
parts of this application are shown in the examples of Sec. 4.
1

We also implemented an application with equivalent func-
tionality as a BPEL process and executed it on a com-
mercial, enterprise-class application server with a relational
database back-end. Unfortunately, licensing restrictions do
not allow to disclose additional details about the system,
let alone vendor name and software version. However, we
believe that the results help to evaluate the performance of
our implementation in the light of one of the most advanced
application servers available today.

1The complete Demaq application specification, the tem-
plates used for generating test requests as well as
the equivalent BPEL application code is available at
http://www.demaq.net/.
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7.1 Setup
All measurements were performed on a server equipped

with an AMD Athlon 64 X2 Processor 4600, 2 GB of main
memory, running Opensuse Linux 10.3. This system was
used to run the BPEL application server and our native
runtime system. An additional client computer was used to
send messages via HTTP.

The Demaq runtime system consists of about 30,000 lines
of C++ code. For reliable and persistent message handling,
it integrates Natix version 2.2 with our queue extensions.
The rule execution component is based on an open-source
XQuery processor.

In order to get an impression of the runtime to expect
during the following measurements, we first performed an
exemplary run of our online shopping application, consist-
ing of 24 messaging operations: The client connects to the
server, adds both 10 books and music items (each reflected
by a message of 2.5 KB) to the shopping carts, requests
the total value of both music and book items, and finally
performs a checkout operation. This run was repeated 100
times to reduce the effects of statistical outliers.

The application server required an average of 6.25 seconds
in order to run the scenario. Using our native implementa-
tion, the same run took 2.18 seconds, which confirms that
native XML data handling and avoiding a multi-tiered ar-
chitecture can help to improve application runtime.

7.2 Performance Impact of Context Size
In order to investigate the impact of context size on the

runtime performance, we subsequently add 10000 books (each
2.5 KB in size) to the shopping cart of a single application in-
stance. While a single customer buying thousands of books
is rather unlikely for our online shopping example, handling
thousands of messages in a single application context is no
uncommon scenario in other application domains [5].
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Figure 7: Performance impact of context size

Figure 7 visualizes the round-trip-time (in seconds) for
each request adding another book to the shopping cart.
With growing instance size, the response times of the ap-
plication server deteriorate. This effect might be caused by
performing an in-place update on the corresponding data
structure of the runtime context and writing it back to the
database back-end. In our runtime system, every additional

book can be appended to a queue of the system, thus leaving
the response time virtually unaffected and below one second.

7.3 Parallel Application Instances
In this experiment, we investigate the impact of multiple

concurrent, active instances, each of them storing 100 book
orders (250 KB) and 10 music orders (25 KB). We analyze
how the response time of the systems change with an in-
creasing number of parallel instances. For this purpose, our
client sequentially requests the server to calculate the over-
all price of the music order items for each instance. In order
to reduce the effects of statistical outliers, all measurements
were repeated 100 times.

Figure 8 depicts the average response time (in seconds) for
answering a client request. An increasing number of active
instances has a considerable impact on the response times of
the application server performing expensive instance man-
agement operations. For our runtime system, there are no
instances that need to be managed. Instead, all messages
that belong to a particular context are retrieved by querying
the message store. Thus, an increasing number of parallel
instances does not interfere with the response time.
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Figure 8: Impact of number of active instances

8. CONCLUSION AND FUTURE WORK
We propose a new programming model for distributed

applications based on XML messaging. In our system, a
declarative language that directly operates on messages and
queues can be used to describe the processing logic in terms
of message-driven rules, and application state is modeled
exclusively using the message history. By treating applica-
tion instance management as as a data management prob-
lem best addressed by a data management server, we get
a fresh perspective on how to optimize the architecture of
application servers. We extend the concept of data indepen-
dence to the whole application stack, and introduce a mes-
sage history-specific flavor of views, called slicings. Our rule
compiler can then create optimized execution plans which
correlate incoming requests with the relevant parts of the
state by means of efficient access paths (such as indexes or
materialized views). A result is improved scalability of our
execution engine to large numbers of concurrent application
instances: In particular, we can avoid loading and saving
the complete application state from a database for every
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processing step, which tends to take up a large fraction of
conventional application servers’ processing resources.

A brief performance evaluation of our runtime system con-
firms the potential of the proposed approach. It also illus-
trates the practical benefits of treating process instances as
data in terms of scalability and performance.

Among others, an important direction of our future work
is to further increase application scalability. In particular,
we want to investigate how applications using our model can
be automatically distributed to run on a network of process-
ing nodes. This potentially includes vertical partitioning,
where distinct parts of an application are run on different
nodes, or horizontal partitioning, where data belonging to
the same instance is processed by a particular instance.
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