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Abstract

We introduce the q-paranorm, investigate some of its properties.
We further give an algorithm which constructs the best linear approx-
imations under the q-paranorm.

1 Introduction

1.1 Scenario

One of the major components of every database management system is the
query optimizer. It is responsible for finding the best query evaluation plan
possible. In order to find the best plan, the query optimizer generates many
alterantive query evaluation plans equivalent to the given query. For each
of them it calculates the costs via a cost model and returns the cheapest
plan as the solution. Thus it is obvious, that the quality of the resulting
plan is truely dependent on the accuracy of the cost estimations. The major
input to any cost model are the cardinalities of the intermediate results as
produced for example by a selection or join. These have to be estimated.
The estimation process is based on data summaries, e.g. statistics, of the
original data. In today’s DBMSs the de-facto standard data summaries are
histograms.

Typically, the buckets within a histogram are approximated by the av-
erage of the frequencies contained therein. Obviously, if the data is not
uniformely distributed within a bucket, this may result in large estimation
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errors. Thus it is not surprising, that the use of linear functions to approx-
imate the distribution within a bucket was proposed. In fact, König and
Weikum suggested to use linear regression to derive a linear approximation
[3]. However, using linear regression has several disadvantages. First, as we
will argue below, the L2 norm used by linear regression is not suitable for
the problem on hand. Second, linear regression does not give error bounds.

Therefore, we adopt a new measurement of quality, the Q-paranorm,
which allows us to derive useful multiplicative error bounds. This measure
will not be a norm in the mathematical sense, but it is a perfect fit for our ap-
plication scenario of cardinality estimation for query optimization purposes.

The next two subsections discusses several quality metrics and their bounds.
The consequence will be that the Q-paranorm is most suited for query opti-
mization.

1.2 Approximations and Measurements of Quality

Consider a given set of pairs (xi, yi) for 1 ≤ i ≤ m and an approximation
function f . Then there exist several measures for the quality of this approx-
imation. If we denote by fi := f(xi), some of the quality measures we find
in the literature are:

L1(f) :=
∑
i

|yi − fi|

L′1(f) := 1/m
∑
i

|yi − fi|

L2(f) :=

√∑
i

(yi − fi)2

L′2(f) := 1/m
∑
i

(yi − fi)2

S1(f) := max
i
|yi − fi|

SR(f) := max
i
|yi − fi

yi
|

S ′R(f) := max
i
|yi − fi

fi
|

SQ(f) := max
i

max(
yi
fi
,
fi
yi

)
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L1 is the well-known L1-norm, L2 is the L2-norm, SR is the Chebyshev norm
or L∞ norm and SQ is what we will call the Q-paranorm. The Q-paranorm
is not new. It was also used as a quality metrics in the context of distinct
sampling [4, 1].

An approximation problem is defined as follows. Given the pairs (xi, yi),
a quality measure M and a set of functions F , find the function f ∈ F
such that f minimizes M . The set of functions F could be the set of linear
functions, polynomials etc.

Clearly, some measures are equivalent in that they yield the same f as a
solution (e.g. Li and L′i), while others are not.

1.3 Example

Since the authors of the papers are database researchers mainly interested in
query optimization, the ultimate purpose of this work (for us) is to approxi-
mate buckets of a histogram by some linear combination of functions. Even
more, after the general theory, we will restrict ourselves to linear functions.
The reason is that this consumes the least space: only two parameters have
to be kept per histogram bucket. Another set of functions we are interested
in are eb+ax for parameters a and b (see Sec. 4.3).

These approximations are then used by a query optimizer to estimate
cardinalitities and calculate costs. With this goal in mind, the kind of ap-
proximation and its guarantees play a crucial role. Next, we discuss several
alternatives via a simple example.

Consider the three values

(1, 20), (2, 10), (3, 60)

and assume that they are the only values within a given histogram bucket.
Traditionally, the mean value y = 30 would be used to approximate

estimates within the bucket. The according function is f30(x) = 30 + 0x.
Therefore, the uniform distribution assumption is used.

König and Weikum use linear regression to gain a linear function flg(x) :=
β + αx, which is then used to produce estimates within a bucket [3]. Linear
regression finds the linear function flg that minimizes L2.

Obviously, every measure results in a different function. Let us take the
above example and consider as F the set of linear functions fα,β(x) = α+βx.
The following table shows the values of x, y and estimates for y for the
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functions f30, f10x, flg, fS1 , fSR
, fS′R and fSQ

. The latter minimize S1, SR,
S ′R, and SQ, resp. Additionally, we give the measures L1, L2, and S1 and SQ
for each of these approximations, as well as the α and β.

x y f30 flg fS1 fSR
fS′R fSQ

1 20 30 10 5 8 12.5 10
2 10 30 30 25 16 25.0 20
3 60 30 50 45 24 37.5 30

L′1 20 13 15 18 15 17
L′2 467 200 225 492 262.5 367
S1 30 20 15 36 22.5 30
SR 2 2 1.5 0.6 1.5 1
S ′R 1 1 3 1.5 0.6 1
SQ 3 3 4 2.5 2.5 2

β 30 -10 -15 0 0 0
α 0 20 20 8 12.5 10

The question arises, which is the best norm for cardinality estimation pur-
poses. A very nice property of a quality measure is the existance of lower
and upper bounds. Thereby we mean by a bound the following. Assume we
have an estimate fi for some real value yi. Knowing only fi, we would like
to infer an interval to which yi surely belongs. This interval can of course
only be derived if we know something more than only the fi. This something
more is what we call the error bounds. For the Chebyshev norm, it could
be the maximal deviation d of all estimates within a bucket. Then we know
that fi− d ≤ yi ≤ fi + d. We give these kinds of lower and upper bounds for
the above quality metrics.

Using this information then allows the plan generator to perform a sen-
sitivity analysis of the generated plans. Thus, error bounds are the subject
studied in the next section.

1.4 Error Bounds

Those measures, which somehow average (for example L1, L2) do not allow
us to derive error bounds. Those measures, which use max (for example S1,
SR, SQ), do allow us to derive error bounds. More specifically, for a given
estimate it is possible to derive an interval, which for sure contains the true
value. In the following we derive these error bounds for S1, SR, S ′R, and SQ.
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Observation 1 (S1) Assume f is given and c := S1(f) is known. Then

fi − c ≤ yi ≤ fi + c

−c and +c are called the determinators for the lower and upper error bound.

Proof: From c = maxi |yi−fi| is follows that |yi−fi| ≤ c. For yi ≥ fi we
thus have yi − fi ≤ c and, hence, yi ≤ fi + c and, thus, fi − c ≤ yi ≤ fi + c.
For yi ≤ fi we thus have fi − yi ≤ c and, hence, fi − c ≤ yi and, thus,
fi − c ≤ yi ≤ fi + c. �

Observation 2 (SR) Assume f is given and c := SR(f) is known. Then

1

c+ 1
fi ≤ yi ≤

1

1− c
fi

1/(1 + c) and 1/(1− c) are called the determinators for the lower and upper
error bound.

Proof: For yi ≥ fi it follows that

(yi − fi)/yi ≤ c
=⇒ yi − fi ≤ cyi
=⇒ (1− c)yi ≤ fi
=⇒ yi ≤ 1

1−cfi
=⇒ 1

1+c
fi ≤ yi ≤ 1

1−cfi

ll

For yi ≤ fi it follows that

(fi − yi)/yi ≤ c
=⇒ fi ≤ (1 + c)yi
=⇒ 1

c+1
fi ≤ yi

=⇒ 1
1+c

fi ≤ yi ≤ 1
1−cfi

ll

�

Observation 3 (S ′R) Assume f is given and c := S ′R(f) is known. Then

(1− c)fi ≤ yi ≤ (1 + c)fi

1 − c and 1 + c are called the determinators for the lower and upper error
bound.
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Proof: For yi ≥ fi it follows from |yi − fi| ≤ cfi and 0 ≤ c that

yi − fi ≤ cfi
=⇒ (1− c)fi ≤ fi ≤ yi ≤ (1 + c)fi

For yi ≤ fi it follows from |yi − fi| ≤ cfi and 0 ≤ c that

fi − yi ≤ cfi
=⇒ (1− c)fi ≤ yi ≤ fi ≤ (1 + c)fi

�

Observation 4 (SQ) Assume f is given and c := SQ(f) is known. Then

1/cfi ≤ yi ≤ cfi

1/c and c are called the determinators for the lower and upper error bound.

Proof: For yi ≥ fi it follows that

c ≥ yi/fi ≥ 1 ≥ fi/yi
=⇒ 1/cfi ≤ fi ≤ yi ≤ cfi

For yi ≤ fi it follows that

c ≥ fi/yi ≥ 1 ≥ yi/fi
=⇒ 1/cfi ≤ yi ≤ fi ≤ cfi

�
For our introductory example, the determinators for the lower and upper

error bound are given in the following table:

S1 SR S ′R SQ
low high low high low high low high
-15 15 0.625 2.5 0.4 1.6 0.5 2.0

Observe that S1 and SQ are the only symmetric error bounds. As cardinality
estimates are multiplied with other numbers to derive costs of an operator,
a symmetric error bound is nice to have, or, to quote Charikar et al.[4]:

“We do not favor the use of relative error as it is fairly misleading
in comparing an overestimate with an underestimate.”
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Further, minimizing absolute errors as under S1 is less useful under this
scenario than optimizing relative errors. If the bucket has frequencies in
the interval of [10, 100], an error bound of 10 corresponds to a relative error
between 10% and 100%.

Or remember our introductory example. For the optimal approximation
under the Chebyshev norm this then gives the maximal absolute deviation
of -15 and 15 for all of our three points. Thus, from f1 = 5 we can derive
that y1 ∈ [−10, 20], from f2 = 25 it follows that y2 ∈ [10, 40] and for f3 = 45
we infer that y3 ∈ [30, 60]. Obviously, from a query optimizers point of view
the deviation for y1 is much worse than that for y3. In many cost model
for operators, the input cardinality determines the costs linearly. That is,
if the input is twice as big, the cost for the selection are twice as high. If
one of the input relations of a join is half as big, the costs for the join or
its memory consumption typically half. What really counts for cardinality
estimation is the relative deviation as measured by the Q-paranorm. Another
strong argument for the Q-paranorm is error propagation. As Ioannidis and
Christodoulakis pointed out, errors propagate multiplicatively through joins
[2]. Assume we want to join three relations R1, R2, and R3 and that the
cardinality estimates of Ri are each a factor of 2 off. Then, the cardinality
estimation of R1 on R2 on R3 will be a factor of 8 off. Hence, minimizing the
multiplicative error also minimizes the propagated error.

1.5 Contribution

Our contributions are theoretical results for the Q-paranorm and an algo-
rithm that is capable to construct optimal approximations under SQ.

2 The Convex Paranorm || · ||Q and its Basic

Properties

2.1 Q-paranorm in R

Definition 1 (Q-paranorm in R) Define for x ∈ R

||x||Q =

{
∞ if x ≤ 0
max(x, 1/x) else

|| · ||Q is called Q-paranorm.
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Definition 2 (norm) Let S be a linear space. Then a function ||x|| : S → R
is called a norm if and only if it has the following three properties:

1. ||x|| > 0 unless x = 0

2. ||λx|| = |λ| ||x||

3. ||x+ y|| ≤ ||x||+ ||y||

Observation 5 || · ||Q is not a norm since 1) and 2) do not hold. However,
3 does hold.

Proof:
ad 1) obvious.
ad 2) consider λ = 1/2, x = 1/4: 8 = 1/(1/2 ∗ 1/4) = ||λx||Q > λ||x||Q =
1/2 ∗ 4 = 2.
ad 3): We consider the following cases:

• x = 0 ∨ y = 0
√

• x ≥ 1, y ≥ 1 (=⇒ x+ y ≥ 1)
x+ y ≤ x+ y

√

• x < 1, y < 1

– x+ y < 1
1

x+y
≤ 1

x
+ 1

y

√

– x+ y ≥ 1
x+ y ≤ 1

x
+ 1

y

√

• x < 1, y ≥ 1 (=⇒ x+ y ≥ 1)
x+ y ≤ 1

x
+ y
√

• x ≥ 1, y < 1: by symmetry

�
Since the second condition does not hold, let us consider the different

cases explicitly:

case 1 x < 1, y < 1: ||xy||Q = ||x||Q||y||Q = 1/x||y||Q = 1/y||x||Q

case 2 x ≥ 1, y ≥ 1: ||xy||Q = ||x||Q||y||Q = xy = x||y||Q = y||x||Q
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case 3a x ≥ 1, y < 1, xy ≤ 1: ||xy||Q = 1/x||y||Q = 1/y||x||Q

case 3b x ≥ 1, y < 1, xy > 1: ||xy||Q = xy = y||x||Q

Definition 3 (paranorm) Let S be a linear space. Then a function ||x|| :
S → R is called a paranorm if and only if the following two properties hold:

1. ||x|| ≥ 0

2. ||x+ y|| ≤ ||x||+ ||y||

The following lemma is an immediate consequence of the definition of
paranorm and the above considerations:

Lemma 1 || · ||Q is a paranorm.

As the convexity of a function plays an important role in approximation
theory, we repeat its definition.

Definition 4 A function f is convex if and only if for all x, y and 0 ≤ λ ≤ 1:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1)

Observation 6 For 0 < y < x < z and 0 < z < x < y we have ||x/z||Q <
||y/z||Q.

Proof: 0 < y < x < z: First note that this implies x/z < 1 and y/z < 1.
Then

=⇒ y/z < x/z
=⇒ z/x < z/y
=⇒ ||x/z||Q < ||y/z||Q

0 < z < x < y: First note that this implies x/z > 1 and y/z > 1. Then

=⇒ x/z < y/z
=⇒ ||x/z||Q < ||y/z||Q

�

Lemma 2 || · ||Q on R is convex.
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proof case 1: λx+ (1− λ)y ≥ 1 (=⇒ x ≥ 1 ∨ y ≥ 1)
case 1.1: x ≥ 1 ∧ y ≥ 1 (=⇒ ||x||Q = x, ||y||Q = y)
max(·) = λx+ (1− λ)y ≤ λx+ (1− λ)y

√

case 1.2: x ≥ 1 ∧ y < 1 (=⇒ ||x||Q = x, ||y||Q = 1/y)
max(·) = λx(1− λ)y ≤ λx+ (1− λ)1/y

√

case 1.3: x < 1 ∧ y ≥ 1: by symmetry.
case 2: λx+ (1− λ)y < 1 (=⇒ x < 1 ∨ y < 1)
First note that x+ 1/x has minimum 2 at x = 1.
case 2.1: x < 1, y < 1 (=⇒ ||x||Q = 1/x, ||y||Q = 1/y)

1 ≤ 1− 2λ+ 2λ2 + λ(1− λ)(x/y + y/x)

≤ λ2 +
(1− λ)x

y
+
λ(1− λ)y

x
+ (1− λ)2

≤ (λx+ (1− λ)y)(λ
1

x
+ (1− λ)

1

y
)

case 2.2: x < 1, y ≥ 1 (=⇒ ||x||Q = 1/x, ||y||Q = y)
From 1/x > 1, y ≥ 1 is follows:

1 ≤ λ2 + y[λ(1− λ)(1/x+ x) + (1− λ)2y]

≤ λ2 + y[λ(1− λ)1/x+ λ(1− λ)x+ (1− λ)2y]

≤ λ2 + λ(1− λ)y/x+ λ(1− λ)xy + (1− λ)2y2

≤ λx(λ1/x+ (1− λ)y) + (1− λ)y(λ1/x+ (1− λ)y)

case 2.3: x ≥ 1, y < 1: by symmetry.
�

2.2 Q-paranorm in Rn

Definition 5 (Q-paranorm in Rn) For x ∈ Rn, xi 6= 0, define ||x||Q =
maxi ||x||Q

Lemma 3 || · ||Q on Rn is a paranorm.

Lemma 4 || · ||Q on Rn is convex.
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3 The Problem and its Solution

This section is organized as follows. After presenting some preliminaries, we
formally define the problem. Next, we show the existence of a solution and
characterize it. Then, we show the uniqueness of the solution for problems
fulfilling a certain property. Finally, we show how to derive the solution
constructively.

3.1 Preliminaries

We need some preliminaries (see Chapter 1 of [5]). But first note that in this
paper all (non-transposed) vectors are column vectors.

Definition 6 (convex hull) Let D ⊂ Rn. Then we define the convex hull
of D as

conv(D) = {d|d =
∑
i

λidi, di ∈ D,
∑
i

λi = 1, λi ≥ 0}

where the only restriction for the sums is that they have to be finite.

Theorem 1 (Caratheodory’s theorem, cmp. Theorem 1.4 of [5]) Let
D ⊂ Rn. Then any h ∈ conv(D) can be expressed as a linear combination of
(n+ 1) or fewer points.

Theorem 2 (Theorem 1.5 of [5]) Let D be a closed, convex subset of Rn.
Then D does not contain the origin if and only if there exists z ∈ Rn such
that

dT z > 0

for all d ∈ D.

3.2 Problem

Let a and b be two vectors in Rn with bi 6= 0. Then, we define a/b = a
b

=
(a1/b1, . . . , an/bn)T .

Problem 1 Let b ∈ Rm be a vector with bi > 0 and A an m × n matrix.
Denote by αi the vector formed from the i-th row of A. The problem is defined
as follows:
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Find a ∈ Rn to minimize ||Aa/b||Q
under the constraint that αTi a > 0 for all 1 ≤ i ≤ m. �

For the rest of this section, we assume that n, m, b, and A (αi) are
given such that the conditions of Problem 1 are satisfied. Additionally, we
define a quotient vector q(a) = (αT1 a/b1, . . . , α

T
ma/bm)T and the residual vector

r(a) = b − Aa. The components of q(a) (r(a)) are denoted by qi(a) (ri(a)).
If a is understood from context, we may omit it.

3.3 Existence of Solution

The problem states that we have to find an approximation for b in the sub-
space M defined by Aa for a ∈ Rn with αTi a > 0. A necessary condition
for the existence of a solution is that M is compact, which is obviously not
the case here. However, we can construct a compact subspace. Let c be an
upper bound for mina||Aa/b||Q. Then, it suffices to find an approximation
in the compact subspace {Aa| ||Aa/b||Q ≤ c}.

For norms the existence of a solution on compact spaces is guaranteed.
As || · ||Q is not a norm, we need to prove the existence of a solution to
Problem 1.

The first theorem is the analog of Theorem 1.1 of [5] but instead of re-
quiring a norm, we use our paranorm || · ||Q.

Theorem 3 Let M be a compact subset of Rn and for each x ∈M and each
1 ≤ i ≤ n xi > 0. Then, for each point g ∈ Rn, gi > 0, exists a point a ∈M
such that ||a/g||Q = mina∈M ||a/g||Q.

Proof: Let δ = inf{||x/g||Q|x ∈M}. By the definition of infimum, there
exists a sequence (xi), xi ∈M , such that

||xi/g||Q → δ

for i→∞. Since M is compact, there exists a subsequence of (xi) converging
to x∗ ∈M . Now

||x∗/g||Q = ||xi − (xi − x∗)
g

||Q

= ||xi
g
− xi − x∗

g
||Q

≤ ||xi/g||Q + ||xi − x∗/g||Q
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and, for i → ∞ it follows that ||x∗/g||Q ≤ δ. Since x∗ ∈ M , we also have
||x∗/g||Q ≥ δ and thus ||x∗/g||Q = δ, which shows the claim. �

3.4 Convexity-based Approach to Uniqueness of the
Solution

This section mainly shows that a simple often persued approach to uniqueness
does not work for our paranorm. It is intended for readers who wonder why
things are as complicated as they appear.

Definition 7 (closed q-sphere) For a ∈ Rn, the set

{x| ||x/b||Q ≤ r}

is called a close q-sphere with radius r and center b.

Let b = 10 and r = 2, then the q-sphere with radius r and center b is

[−20,−5] ∪ [5, 20] ∪ {0}

Definition 8 (q-convex set) A subset M of Rn is convex if x, y ∈M , and
(x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0) implies that λx + (1 − λ)y ∈ M for all
0 ≤ λ ≤ 1.

Lemma 5 Closed q-spheres are q-convex.

Proof: Denote by S ⊂ Rn a sphere with radius r and center b ∈ Rn. Let
x, y ∈ S and λ with 0 ≤ λ ≤ 1. Then

||λx1 + (1− λ)x2

b
||Q = ||λx1

b
+

(1− λ)x2

b
||Q

≤ λ||x1/b||Q + (1− λ)||x2/b||Q
≤ r

where we used the convexity of || · ||Q. �

Definition 9 (strictly q-convex paranormed linear space) Let S be a
linear space. A convex function f : S → R is strictly q-convex if and only
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if for all points x, y ∈ S, x 6= y, (x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0), on the
boarder of a sphere with center b and radius y the following holds:

f(λx+ (1− λ)y − b) < r alternative

f((λx+ (1− λ)y)/b) < r

for all 0 < λ < 1. If in a paranormed linear space the paranorm is strictly
q-convex, then we have a strictly q-convex paranormed linear space.

Theorem 4 In a strictly q-convex paranormed linear space S a finite dimen-
sional subspace M contains a unique best positive and a unique best negative
approximation to any point g ∈ S, gi ≥ 0 or gi ≤ 0.

Lemma 6 R with || · ||Q is a strictly q-convex paranormed linear space.

Proof: Let x, y ∈ R, x 6= y be two points on a sphere with center b and
radius a. Then ||x/b||Q = ||y/b||Q x 6= y implies that �

Observation 7 Rn with || · ||Q is not a strictly convex paranormed linear
space for n > 1.

From this, it follows that we cannot use the approach of Theorem 4 to
show the uniqueness of a solution to Problem 1.

3.5 Characterization of the Solution

Let us denote by Ī(a) ⊆ {1, . . . ,m} the set of indices i corresponding to
those components of q(a) with ||qi(a)||Q = ||q(a)||Q. Obviously, Ī(a) is not
empty. Define

θi(a) = sign(ri(a))

Let θ(a) be the vector formed from the θi(a) for 1, . . . ,m. If a is clear from
context, we omit it.

For the example of section 1.3, we have

A =

 1 1
1 2
1 3


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and b = (20, 10, 60)T . The function fSQ
results from solution a = (0, 10)T .

We get

r(a) =

 20
10
60

−
 1 1

1 2
1 3

( 0
10

)
=

 10
−10

30


and

q(a) =

 1 1
1 2
1 3

( 0
10

)
/

 20
10
60

 =

 0.5
2
0.5


Thus, θ(a) = (+1,−1,+1)T and Ī(a) = {1, 2, 3}.

Let us do some very simple calculations to get used to the notation. For
positive numbers and a given vector a, we have

||qi||Q = ||α
T
i a

bi
||Q

= (
αTi a

bi
)−θi

= q−θi
i

and thus ||qi||−θi
Q = qi. Using this, we can easily derive that

qi = ||qi||−θi
Q

bi =
αTi a

qi
= ||qi||θi

Qα
T
i a

bi = ||q||θi
Qα

T
i a for i ∈ Ī

αTi a = ||qi||−θi
Q bi

ri(a) = b− αTi a = bi − ||qi(a)||−θi(a)
Q bi = (1− ||qi(a)||−θi(a)

Q ) bi

ri(a) = (1− ||q(a)||−θi(a)
Q ) bi for i ∈ Ī

|ri| and ||qi||Q are not directly related for two different vectors. But some
relationships hold as the following two observations show:

Observation 8 Let a and c be two vectors in Rn with

||qi(a)||Q ≤ ||qi(c)||Q.

Then
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a If θi(a) ≤ 0, θi(c) ≤ 0 then |ri(a)| ≤ |ri(c)|

b If θi(a) ≥ 0, θi(c) ≥ 0 then |ri(a)| ≤ |ri(c)|

c If θi(a) > 0, θi(c) ≤ 0 then |ri(a)| ≤ |ri(c)|

d If θi(a) < 0, θi(c) ≥ 0 then |ri(a)| ≥ |ri(c)|

where equality only holds if ||qi(a)||Q = ||qi(c)||Q.

Proof: Assume ||qi(a)||Q ≤ ||qi(c)||Q (*) and consider the following 4 cases:

a
αT

i a

bi
≥ 1,

αT
i c

bi
≥ 1

=⇒ αTi a ≥ bi, α
T
i c ≥ bi (**)

(∗) =⇒ αT
i a

bi
<

αT
i c

bi

=⇒ αTi a < αTi c
(∗∗) =⇒ bi − αTi a > bi − αTi c (both sides negative!)
=⇒ |bi − αTi a| < |bi − αTi c|
=⇒ |ri(a)| < |ri(c)|

b
αT

i a

bi
≤ 1,

αT
i c

bi
≤ 1

=⇒ αTi a ≤ bi, α
T
i c ≤ bi (**)

(∗) =⇒ bi
αT

i a
≤ bi

αT
i c

=⇒ αTi c ≤ αTi a
=⇒ bi + αTi c ≤ bi + αTi a
=⇒ bi − αTi a ≤ bi − αTi c (both sides positive!)
=⇒ |ri(a)| ≤ |ri(c)|

c
αT

i a

bi
< 1,

αT
i c

bi
≥ 1: In this case, we have θi(a) = +1 and θi(c) = −1 or

θi(c) = 0. The latter implies also |ri(c)| = 0 and thus |ri(a)| = 0.
Hence, consider θi(c) = −1.

(∗) =⇒ αT
i a

bi
< bi

αT
i a
<

αT
i c

bi

For x ≥ 1, y ≥ 1, x < y we have 1
x
> 1

y
and thus 2 < y + 1

y
< y + 1

x

from which follows that

2 < y + 1
x

=⇒ 1− 1
x

< y − 1
=⇒ |1− 1

x
| < |1− y| (∗ ∗ ∗)
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From this we can infer that

|ri(a)| = |(1− ||qi(a)||−θi(a)
Q | |bi|

= |(1− ||qi(a)||−1
Q | |bi|

< |(1− ||qi(c)||+1
Q | |bi|

= |(1− ||qi(c)||−θi(c)
Q | |bi|

= |ri(c)|

d
αT

i a

bi
> 1,

αT
i c

bi
≤ 1: In this case, we have θi(a) = −1 and θi(c) = +1 or

θi(c) = 0. The latter case implies |ri(c)| = 0 and thus |ri(a)| = 0.
Hence, consider θi(c) = +1. Using (***) we can infer that

|ri(a)| = |(1− ||qi(a)||−θi(a)
Q | |bi|

= |(1− ||qi(a)||+1
Q | |bi|

> |(1− ||qi(c)||−1
Q | |bi|

= |(1− ||qi(c)||−θi(c)
Q | |bi|

= |ri(c)|

�
Let us give an example for the last case. Define

b =

(
5
10

)
, A =

(
1 1
1 2

)
, a =

(
0
10

)
, c =

(
2
0

)
Then

Aa =

(
10
20

)
, Ac =

(
2
2

)
, r(a) = b−Aa =

(
−5
−10

)
, r(c) = b−Ac =

(
3
8

)
and

q(a) =

(
2
2

)
, q(c) =

(
2/5
1/5

)
Thus

||q2(a)||Q = 2 < 5 = ||q2(c)||Q
|r2(a)| = 10 > 8 = |r2(c)|

Let us now look at the opposite direction.
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Observation 9 Let a and c be two vectors in Rn with

|ri(a)| ≤ |ri(c)|

Then

a If θi(a) ≥ 0, θi(c) ≥ 0 then ||α
T
i a

bi
||Q ≤ ||α

T
i c

bi
||Q

b If θi(a) ≤ 0, θi(c) ≤ 0 then ||α
T
i a

bi
||Q ≤ ||α

T
i c

bi
||Q

c If θi(a) > 0, θi(c) ≤ 0 then nothing can be said.

d If θi(a) < 0, θi(c) ≥ 0 then ||α
T
i c

bi
||Q ≤ ||α

T
i a

bi
||Q

where equality only holds if |ri(a)| = |ri(c)|

Proof: Assume |ri(a)| ≤ |ri(c)| and consider the following 4 cases:

a ri(a) ≥ 0, ri(c) ≥ 0 (=⇒ bi ≥ αTi a, bi ≥ αTi c)

|ri(a)| ≤ |ri(c)|
=⇒ ri(a) ≤ ri(c)
=⇒ bi − αTi a ≤ bi − αTi c
=⇒ −αTi a ≤ −αTi c
=⇒ αTi c ≤ αTi a

=⇒ αT
i c

bi
≤ αT

i a

bi

=⇒ bi
αT

i a
≤ bi

αT
i b

=⇒ ||α
T
i a

bi
||Q ≤ ||α

T
i c

bi
||Q

b ri(a) ≤ 0, ri(c) ≤ 0 (=⇒ bi ≤ αTi a, bi ≤ αTi c)

|ri(a)| ≤ |ri(c)|
=⇒ −ri(a) ≤ −ri(c)
=⇒ −bi + αTi a ≤ −bi + αTi c
=⇒ αTi a ≤ αTi c

=⇒ αT
i a

bi
≤ αT

i c

bi

=⇒ ||α
T
i a

bi
||Q ≤ ||α

T
i c

bi
||Q

c ri(a) > 0, ri(c) ≤ 0 (=⇒ bi ≥ αTi a, bi < αTi c)
In this case nothing can be said (see example below).
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d ri(a) < 0, ri(c) ≥ 0 (=⇒ bi ≤ αTi a, bi ≥ αTi c)

bi − |ri(a)| ≥ bi − |ri(c)|
=⇒ bi − |ri(c)| ≤ bi − |ri(a)|
=⇒ bi − (bi − αTi c) ≤ bi − (−bi + (αTi a))
=⇒ αTi c ≤ 2bi + αTi a

=⇒ ||α
T
i c

bi
||Q ≤ ||α

T
i a

bi
||Q

The last step follows from the fact that for x ≥ 1 we have that 2 ≤
x + 1/x. This immediately follows from the fact that the function
f(x) = x+ 1/x is strongly monotonically increasing and f(1) = 2.

Let us give an example for case c: Let bi = 10. From αTi a = 9 and
αTi c = 15, it follows that ri(a) = 1 and ri(c) = −5 and

||α
T
i a

bi
||Q =

10

9
<

15

10
= ||α

T
i c

bi
||Q

On the other hand, if αTi a = 6 and and αTi c = 15, it follows that ri(a) = 4
and ri(c) = −5 and

||α
T
i a

bi
||Q =

10

6
>

15

10
= ||α

T
i c

bi
||Q

Next is the central theorem. It is very important in that it will be used
in almost every of the following proofs.

Theorem 5 The vector a ∈ Rn solves Problem 1 if and only if there exists
I ⊆ Ī(a), |I| ≤ n+ 1 and λ ∈ Rm, λ 6= ~0 such that the following holds:

1. λi = 0 for all i 6∈ I

2. ATλ = ~0

3. λiθi ≥ 0 for all i ∈ I

Note that we can always make I smaller such that (3) can be replaced by
λiθi > 0 for all i ∈ I. Further note that (2) is equivalent to

∑
i∈I λiαi = ~0.

(Remember that αi is the i-th row of A.)
Proof: “⇐=”: Suppose the conditions are true but a is not a solution.

Then there exists a vector c ∈ Rn such that

||q(a+ c)||Q < ||q(a)||Q
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In particular, this implies for all i ∈ Ī:

||α
T
i a

bi
+
αTi c

bi
||Q < ||

αTi a

bi
||Q

If αTi a/bi > 1 then it follows that αTi c < 0 and thus θiα
T
i c > 0.

If αTi a/bi < 1 and
αTi a

bi
+
αTi c

bi
< 1

it follows that
bi
αTi a

<
bi
αTi a

+
bi
αTi c

and, thus, αTi c > 0 [since αTi a > 0] and, hence, θiα
T
i c > 0.

If αTi a/bi > 1 and
αTi a

bi
+
αTi c

bi
> 1

it follows that
bi
αTi a

<
αTi a

bi
+
αTi c

bi

and, thus, αTi c > 0 [since bi/αia > 1 and αia/bi < 1] and, hence, θiα
T
i c > 0.

Summarizing, we always have

θiα
T
i c > 0.

The conditions of the theorem give us∑
i∈I λiα

T
i = ~0

=⇒
∑

i∈I λiθiθiα
T
i c = ~0

=⇒
∑

i∈I(λiθi)(θiα
T
i c) = ~0

Since λiθi ≥ 0 and θiα
T
i c > 0, we have constructed a contradiction to the

fact that λ is non-trivial.
“=⇒”: Let a be a solution to Problem 1. Let D be the convex hull of
{θiαi|i ∈ Ī(a)}. Assume ~0 6∈ D. Then, according to Theorem 2, there exists
a c ∈ Rn such that

θiα
T
i c > 0

for all i ∈ Ī(a). ∀i ∈ Ī(a) and ∀γ we have

||qi(a+ γc)||Q = ||αia
bi

+
γαic

bi
||Q

20



Case 1: i 6∈ Ī(a): Define

∆ = ||qa||Q − max
i 6∈Ī(a)

||qi(a)||Q

Clearly, ∆ > 0. Thus

||qi(a+ γc)||Q ≤ ||qi(a)||Q + ||θiγα
T
i c

bi
||Q

≤ ||q(a)||Q

provided that we chose γ such that || θiγα
T
i c

bi
||Q < ∆.

Case 2.1: For i ∈ Ī(a) in case αia/bi < 1, which implies θi = 1, we have

||qi(a+ γc)||Q = ||α
T
i a

bi
+
γαTi c

bi
||Q

< ||α
T
i a

bi
||Q

= ||qi(a)||Q
= ||q(a)||Q

provided that we chose γ such that 0 <
γαT

i c

bi
< 1− αT

i a

bi
.

Case 2.2: For i ∈ Ī(a) in case αia/bi ≥ 1, which implies θi = −1, we have

||qi(a+ γc)||Q = ||α
T
i a

bi
+
γαTi c

bi
||Q

< ||qi(a)||Q
= ||q(a)||Q

provided that we chose γ such that
θiγα

T
i c

bi
<

αT
i a

bi
− 1.

Chosing γ small enough such that it satisfies the conditions for all i, we
have constructed a contradiction. Thus, ~0 ∈ D. By the definition of convex
hull, it follows that there exist I ⊆ Ī and γi with γi > 0,

∑
i∈I γi = 1 and∑

i∈Ī

γiθiαi = ~0

Define

λi =

{
0 i 6∈ I
γiθi i ∈ I
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Then I and λi satisfy the conditions 1-3 of the theorem.
The restriction |I| ≤ n + 1 has not been discussed here, but will follow

from the the following lemma. �
Let us illustrate the theorem by our example of section 1.3. For

A =

 1 1
1 2
1 3



we solve ATλ = ~0: (
1 1 1
1 2 3

) λ1

λ2

λ3

 = ~0

This results in the (underspecified) system of linear equations

λ1 + λ2 + λ3 = 0

λ1 + 2λ2 + 3λ3 = 0

Hence, we need λ2 + 2λ3 = 0 and thus λ2 = −2λ3. Choosing λ3 = 1 gives us
λ = (1,−2, 1)T .

We continue to find bounds on the size of I.

Lemma 7 If
∑

i∈I λiαi = ~0 and |I| > n+ 1, we can find a non-empty subset
I ′ of I with at most n+ 1 elements and new λ′i with the same sign as the λi
such that

∑
i∈I′ λ

′
iαi = ~0.

Proof: Since there are more than n + 1 elements in I, the vectors αi,
i ∈ J , are linearly dependent for any true subset J of I with at least n + 1
elements. Thus, there exist γi such that∑

i∈J

γiαi = ~0

and, hence, for all δ

δ
∑
i∈J

γiαi = ~0

Define γi = 0 for i ∈ I \ J , which is non-empty. Then

δ
∑
i∈I

γiαi = ~0
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Hence, ∑
i∈I

λiαi − δ
∑
i∈I

γiαi = ~0∑
i∈I

(λi − δγi)αi = ~0

Turn |δ| away from zero until the first λk equals δγk. Denote by K the set
of indices such that λk equals δγk. Then∑

i∈I\K

(λi − δγi)αi = ~0

and we can compose a new vector λ′ from λ′i = λi−δγi for i ∈ I\K and λ′i = 0
else. Further, signλ′ = signλ for i ∈ I\K and λ′ is non-trivial by construction.
If I \K has more than n+ 1 elements, we repeat the construction. �

An immediate consequence of the theorem and the proof of the lemma is
the following:

Corollary 1 Let a solve 1. Then a solves the problem in Rn+1 obtained by
restricting the components of r to a particular n+1. Further, if A has rank
t, then we can restrict the problem to a particular t+1 components.

In the next subsection, we will show that under a certain condition the so-
lution to our problem is unique. The next lemma and the following corollary
are a first step towards this direction. Without any additional conditions,
we show in a first step that any solution agrees on the θi, i.e., the signs of
the residuals. Then, we show that for any two solutions, their residual and
quotient vectors are the same.

Lemma 8 Let a be a solution to Problem 1. Let c be any other solution to
Problem 1. Then θi(a) = θi(c) for all i ∈ Ī(a).

Proof:
Assume there exists i ∈ Ī(a) such that θi(a) 6= θi(c). For the following

cases we construct a contradiction.
Case 1: If for some i ∈ Ī(a) we have θi(a) = 0 then we must have that for all
i ∈ Ī(a) θi(a) = 0. Thus for all ı ∈ Ī(a) θi(c) = 0 must hold since c is also a
solution.
Case 2: θi(a) < 0, θi(c) ≥ 0:
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From the fact that a and c are solutions and the definition of Ī(a), we
can conclude that ||qi(a)||Q ≥ ||qi(c)||Q. Thus

||qi(a)||Q ≥ ||qi(c)||Q
⇐⇒ bi−ri(a)

bi
≥ bi

bi−ri(c)
⇐⇒ (bi − ri(a))(bi − ri(c)) ≥ b2

i

However, Observation 8 d gives us |ri(a)| > |ri(c)| and thus

|ri(a)| > |ri(c)|
⇐⇒ (bi − ri(a)) < (bi + ri(c))
⇐⇒ (bi − ri(a))(bi − ri(c)) < b2

i − ri(d)2

⇐⇒ (bi − ri(a))(bi − ri(c)) < b2
i

We constructed the required contradiction.
Case 3: θi(a) > 0, θi(c) ≤ 0:

From the fact that a and c are solutions and the definition of Ī(a), we
can conclude that ||qi(a)||Q ≥ ||qi(c)||Q. Thus

||qi(a)||Q ≥ ||qi(c)||Q
⇐⇒ bi

bi−ri(a)
≥ bi−ri(c)

bi

⇐⇒ (bi − ri(a))(bi − ri(c)) ≤ b2
i

However, Observation 8 c gives us |ri(a)| < |ri(c)| and thus

(bi − ri(a))(bi − ri(c)) = b2
i − ri(a)bi − ri(c)bi + ri(a)ri(d)

> b2
i + ri(c)bi − ri(c)bi + ri(a)ri(d)

= b2
i ri(a)ri(d)

> b2
i

We constructed the required contradiction.
�

With the help of this lemma, we can proof the following corollary to
theorem 5.

Corollary 2 Let a be a solution to Problem 1. Further chose I ⊆ Ī(a)
according to Theorem 5. Let d be any other solution of 1. Then ri(a) = ri(d)
and qi(a) = qi(d) for all i ∈ I.
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Proof: We have∑
i∈I

|λi| |1− (||q(a)||Q)−θi(a)| |bi| =
∑
i∈I

|λi| |1− (||qi(a)||Q)−θi(a)| |bi|

=
∑
i∈I

|λiri(a)|

=
∑
i∈I

λiri(a)

= |
∑
i∈I

λiri(a)|

= |
∑
i∈I

λi(bi − αTi a)|

= |
∑
i∈I

λibi|

= |
∑
i∈I

λi(bi − αTi d)|

= |
∑
i∈I

λiri(d)|

≤
∑
i∈I

|λi| |ri(d)|

≤
∑
i∈I

|λi| |1− (||qi(d)||Q)−θi(d)| |bi|

≤
∑
i∈I

|λi| |1− (||q(a)||Q)−θi(d)| |bi| (∗)

To see (*) note that for all x < y, x ≥ 1, y ≥ 1 we have 1
x
> 1

y
and thus

|1− x| = x− 1 < y − 1 = |1− y|

|1− 1

x
| = 1− 1

x
< 1− 1

y
= |1− 1

y
|

From Lemma 8 we can infer that θi(a) = θi(d). Thus, equality holds
through and the result follows.

�
The next logical question is how big is Ī(a). It is answered by the next

theorem.
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Theorem 6 If A has rank t then there exists a solution a of Problem 1 with
|Ī(a)| ≥ t+ 1.

Proof: Let a be any solution with |Ī(a)| < t + 1. Since the corresponding
rows of A are linearly dependent (due to Theorem 5), there exists a non-
trivial vector c ∈ Rn such that for all i ∈ Ī(a)

αTi c = 0 (2)

Thus we have

||qi(a+ γc)||Q = ||q(a)||Q for i ∈ Ī(a)

||qi(a+ γc)||Q = ||α
T
i a− γαic

bi
||Q for i 6∈ Ī(a)

Rank A = t implies that for some c satisfying 2 there exists a j 6∈ Ī(a) with

αTi c = δ 6= 0

Thus, we can increase |γ| away from zero until the first index not in Ī(a) is
such that

||qi(a+ γc)||Q = ||α
T
i a− γαic

bi
||Q

= ||q(a)||Q

Thus |Ī(a+ γc)| > |Ī(a)|. We can repeat the process and the claim follows.
�

An immediate consequence is the following corollary.

Corollary 3 The submatrix of A consisting of the rows of A corresponding
to Ī(a) must have rank t for some solution a.

This shows that we essentially have to consider subsets of t + 1 rows of A
to find some Ī(a). This subset is then called an extremal subset . It can be
characterized as follows.

Theorem 7 Let A have rank t and let J ⊆ {1, . . . ,m} with |J | = t + 1.
Then

min
a
{max
i∈J
||qi(a)||Q} ≤ mina||q(a)||Q

Equality holds if and only if J is an extremal subset, i.e. corresponds to a
solution of Theorem 5.
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Proof: Let q be q = mina||q(a)||Q and d be any solution to Problem 1.
Then, for all i ∈ {1, . . . ,m} we have

||qi(d)||Q ≤ q

and hence
max
i∈J
||qi(d)||Q ≤ q.

The first part of the claim follows from Cor. 1. If J is an extremal subset,
equality holds as then ||qi(d)||Q = q for all i ∈ J , since J ⊆ Ī(a). The other
direction also follows from Cor. 1. �

3.6 Uniqueness of Solution

Looking at theorem 5 and corollary 2 it becomes clear that what remains to
be shown is that

ri(a) = ri(d)

or
qi(a) = qi(d)

or, equivalently,
αTi (a− d) = 0

implies a = d. This is ensured if A satisfies the Haar condition defined next.

Definition 10 Let A be an m× n Matrix with m ≥ n. A satisfies the Haar
condition if every n× n submatrix of A is non-singular.

This means that n arbitrary rows of A are linearily independent. Obviously,
this is sufficient for what we have to show.

Theorem 8 If A satisfies the Haar condition, the solution to Problem 1 is
unique.

Proof: Let a be a solution to Problem 1. Then, by Theorem 5, there exists
I ⊆ Ī(a) and a non-trivial vector λ ∈ Rm such that∑

i∈I

λiαi = ~0.
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If A satisfies the Haar condition, I must contain at least n+ 1 elements. Let
d be any other solution. Then Corollary 2 gives us

αTi (a− d) = 0

for all i ∈ I, which is a contradiction to the Haar condition except if a = d
which had to be shown.

�
Our goal is to optimally (under the Q-paranorm) approximate histogram

bucket with entries (xi, yi) for 1 ≤ i ≤ m by polynomials. The vector b is
formed by the frequencies yi. If we want to approximate the bucket by a
polynomial of degree k, A becomes the m× (k + 1) Matrix

A =


1 x1

1 x2
1 . . . xk1

1 x1
2 x2

2 . . . xk2
. . . . . . . . . . . . . . .
1 x1

m x2
m . . . xkm


which clearly satisfies the Haar condition.

Although polynomials seem sufficient, our theoretical results allow for
more general approximations using any set of continous functions that forms
a Chebyshev set (see below).

The following theorem and its proof provide a first good hint for the
general outline of the algorithm to come.

Theorem 9 Let A satisfy the Haar condition and let J ⊂ {1, . . . ,m} with
|J | = n+ 1. Then, unless J is extremal, it is possible to exchange one index
of J to form a new subset J∗ such that

q = minamaxi∈J ||qi(a)||Q < minamaxi∈J∗||qi(a)||Q = q∗

Proof: If J is extremal, no such exchange is possible, since J identifies an
optimal solution.

Let aJ be such that aJ minimizes maxi∈J ||qi(a)||Q. If J is not extremal
then there exists a j̄ ∈ {1, . . . ,m} \ J such that

||qj̄||Q > q

If several such j̄ exist, chose arbitrarily.
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Let j ∈ J be arbitrary and define J∗ = J \j∪{j̄}. Let aJ∗ be the solution
to minamaxi∈J∗ ||qi(a)||Q. Since A satisfies the Haar condition, both, aJ and
aJ∗ are unique. We observe that

||qj̄(aJ∗)||Q ≤ ||qj̄(aJ)||Q

due to the construction of J∗.
Since

||qj̄(aJ∗)||Q = ||qj̄(aJ)||Q
implies that J is an extremal subset, we must have

||qj̄(aJ∗)||Q < ||qj̄(aJ)||Q.

But then aJ 6= aJ∗ and thus

minamaxi∈J ||qi(aJ)||Q < minamaxi∈J∗ ||qi(aJ∗)||Q

�

3.7 Determining the Solution

In principle it would be possible to try all subsets I of {x1, . . . , xm} with |I| =
n + 1. This is however a very inefficient procedure. If we know something
more about the θi of Theorem 5 then it will be possible to derive a much
more efficient algorithm. The following definition specifies our needs.

Definition 11 Let a be a vector in Rn. We say that r(a) alternates s times,
if there exists points xi1 , . . . , xis ∈ {x1, . . . , xm} such that

rik(a) = −rik+1
(a)

for 1 ≤ k < s. The set {i1 , . . . , xis} is called an alternating set for a.

The goal is to show that for every solution there exists an alternating set
with n+ 1 points and that every a with an alternating set of size n+ 1 is a
solution for this set. Knowing this, we can easily justify the algorithm given
in the next section.

In order to proof our goal, we need the notion of Chebyshev set.
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Definition 12 Let X be a closed interval of R. A set of continous function
Φ1(x), . . . ,Φn(x), Φi : X → R, is called a Chebyshev set, if every non-trivial
linear combination of these functions has at most n− 1 zeros in X.

Obviously, the set of polynomials Φi(x) = xi−1, 1 ≤ i ≤ n forms a Chebyshev
set.

From now on, we assume that our xi are ordered, that is x1 < . . . < xm.
Further, we define X = [x1, xm]. We also assume that the matrix A of
Problem 1 is defined as

A =

 Φ1(x1) . . . Φn(x1)
. . . . . . . . .

Φ1(xm) . . . Φn(xm)


where the Φi are contineous functions from X to R. We further assume that
they form a Chebyshev set.

The following Lemma is well-known (see [5] page 55). For convenience
we also repeat the proof from there.

Lemma 9 Let X = [x1, xm] and let Φi(x), 1 ≤ i ≤ n form a Chebyshev set
on X. Let zi ∈ R be such that x1 ≤ z1 < z2 < . . . < zn+1 ≤ xm. Define
Ai(z1, . . . , zi, zi+1, . . . , zn+1) as

Ai =


Φ1(z1) . . . Φn(z1)
. . . . . . . . .

Φ1(zi−1) . . . Φn(zi−1)
Φ1(zi+1) . . . Φn(zi+1)
. . . . . . . . .

Φ1(zn+1) . . . Φn(zn+1)


and the determinant ∆i = |Ai(z1, . . . , zi, zi+1, zn+1)|. Then sign(∆i) = sign(∆i+1)
for all 1 ≤ i ≤ n+ 1.

Proof: The Chebyshev set assumption implies that ∆i 6= 0 for all 1 ≤ i ≤
n+ 1. Suppose there exist j, k ∈ {1, . . . , n1} such that ∆j < 0 < ∆k where

∆j = |Aj(zj,1, . . . , zj,n)|
∆k = |Aj(zk,1, . . . , zk,n)|

with zj,i < zj,i+1 and zk,i < zk,i+1 for all 1 ≤ i < n.
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Since the Φi are continous functions, there must exist γ ∈]0, 1[ such that

∆(γzj,1 + (1− γ)zk,1, . . . , γzj,n + (1− γ)zk,n) = 0

It follows that for some o, p

γzj,o + (1− γ)zk,o = γzj,p + (1− γ)zk,p

and, hence,
γ(zj,o − γzj,p) = (1− γ)(zk,p − zk,o)

which contradicts the ordering assumption. �

Theorem 10 A vector a ∈ Rn solves Problem 1 if there exists an alternating
set with n+ 1 points for a.

Proof: Let A fulfill the Haar condition and let a be the solution. Then
Theorem 5 gives us I ⊆ Ī(a), |I| = n+ 1, and λ ∈ Rn+1 with

1. ATλ = ~0

2. λiθi > 0 for all i ∈ I

3. λi = 0 for i 6∈ I

Let x1, . . . , xn+1 be the elements of I. We now need to define several vectors
and matrices:

ci = (Φ1(xi), . . . ,Φn(xi))
T

λk = (λ1, . . . , λk−1, λk+1, . . . , λn+1)T

Bk = (c1, . . . , ck−1, ck+1, . . . , cn+1)

1. from above implies that for all k

Bkλk = −λkck

For j 6= k, define Bj←k depending on j < k or j > k:

Bj←k = (c1, . . . , cj−1, λkck, cj+1 . . . , ck−1, . . . , ck+1, . . . , cn+1)T

Bj←k = (c1, . . . , ck−1, . . . , ck+1, . . . , cj−1, λkck, cj+1, . . . , cn+1)T
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Further note that we need exactly |j − k| + 1 column exchanges to go from
Bj←k to Bj. Cramer’s rule gives us for all j 6= k:

λj = (−1)λk
detBj←k

detBk

= (−1)|j−k|λk
detBj

detBk

Since Lemma 9 implies that detBj

detBk > 0 the claim follows.
�

As we can see from the proof, the only property that is really necessary
is that the determinants of the Ai in Lemma 9 have the same sign. Thus, we
can generalize our results beyond Chebyshev sets to any set of functions with
this property. This allows us to use non-continous functions which might be
useful in some situations.

The other direction of Theorem 10 is not valid as for every set I with
|I| = n + 1 there exists a unique alternate solution. However, we have the
following theorem.

Theorem 11 Let I be a subset of {1, . . . ,m} with |I| = n + 1 and a ∈ Rn

such that I is an alternating set for a. Then a is optimal for I, i.e.

max
i∈I
||qi(a)||Q = min

c
max
i∈I
||qi(c)||Q.

Proof: Assume there exists an optimal solution for c ∈ Rn for I and

max
i∈I
||qi(a)||Q > max

i∈I
||qi(c)||Q.

Theorem 10 implies that I is an alternating set for c. Consider the following
two cases.

In case 1, θi(ri(a)) = θi(ri(c)) for all i ∈ I. Then, we have that

n∑
j=1

(aj − cj)Φj(xi) = αTi (aj − cj)

= αTi aj − αTi cj
= (bi − αTi c)− (bi − αTi a)

= ri(c)− ri(a)

32



alternates in sign as i goes through I. As the Φi are continous, there must
exist n points z1, . . . , zn in X such that

n∑
j=1

(aj − cj)Φj(zi) = 0

for all 1 ≤ i ≤ n which contradicts the Chebyshev set assumption.
In case 2, θi(ri(a)) = −θi(ri(c)) for all i ∈ I. We can construct a solution

d = a+b
2

with
max
i∈I
||qi(d)||Q < max

i∈I
||qi(c)||Q

which is a contradiction to the optimality of c.
�

4 Approximation by Linear Functions: n = 2

4.1 Q-paranorm

The above theorems assure us the uniqueness and existence of a solution.
Moreover, for every subset I of indices with |I| = n + 1, there exists an
alternating set. This allows us to derive a solution for a particular I =
{x1, x2, x3} by solving the following system of three equations:

1

λ
(α + βx1) = y1

λ(α + βx2) = y2

1

λ
(α + βx3) = y3

3 =⇒ α = λy3 − βx3 (∗)
1, (∗) =⇒ λy3 − βx3 + βx1 = λy1

=⇒ (y3 − y1)λ = (x3 − x1)β
=⇒ λ = x3−x1

y3−y1 β (∗∗)
=⇒ λ = q13β (∗∗)
2, (∗), (∗∗) =⇒ q13β(q13y3β − βx3 + βx2) = y2

=⇒ β2(q13y3 − x3 + x2) = y2q
−1
13

=⇒ β =
√
g−1y2q

−1
13
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where

q13 :=
x3 − x1

y3 − y1

g := q13y3 − x3 + x2

Caution is necessary, if β = 0. Then:

β = 0

α = λy1

λ =
√
y2/y1

4.2 From Chebyshev to Q

The following approach often gives very good approximations. Let (xi, yi) be
the data set we want to approximate. Instead of approximating this directly,
we approximate (xi, ln yi) with the Chebyshev norm. The approximation
function then is eb+ax and the norm minimized on the orignal data is the
Q-paranorm

4.3 From Q to Chebyshev

We can also perform the dual of the previous subsection. Let (xi, yi) be the
data we want to approximate by a function of the form ln(b + ax) while
minimizing the Chebyshev norm. We can do so by approximating (xi, e

yi)
by a linear function while minimizing the Q-norm.

5 Algorithm

The algorithm we discuss can be used for any of the (para-) norms mentioned
in the introduction. For each of them, a specific system of (linear) equations
has to be solved as we did for the Q-paranorm. Generating the solutions is
a subroutine of the following algorithm and the only part that is dependent
on the (para-) norm used. The appendix gives the equations and solutions
thereof for the norms mentioned in the introduction.
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5.1 Exchange Rule

For given i1, i2, i3 with xi1 < xi2 < xi3 and derived α, β, λ, we try to find
new indices j1, j2, j3 by exchanging one of the ij with k such that λ will be
increased. (The λ is dependable on the (para-) norm used.) Assume the
deviation of the (current) estimate f̂ is maximized at some k. Then, we will
exchange one of the i1, i2, i3 by k according to the following exchange rule.
Define f̂i = α+βxi. Depending on the position of xk in the sequence i1, i2, i3
and the sign of the residual we determine the ij to be exchanged with k:

• xk < xi1
if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = k, j2 = i1, j3 = i2

• xi1 < xk < xi2
if (sign(yk − f̂k) == sign(yi1 − f̂i1))
then j1 = k, j2 = i2, j3 = i3
else j1 = i1, j2 = k, j3 = i2

• xi2 < xk < xi3
if (sign(yk − f̂k) == sign(yi2 − f̂i2))
then j1 = i1, j2 = k, j3 = i2
else j1 = i1, j2 = i2, j3 = k

• xk > xi3
if (sign(yk − f̂k) == sign(yi3 − f̂i3))
then j1 = i1, j2 = i2, j3 = k
else j1 = i2, j2 = i3, j3 = k

5.2 Algorithm

1. Choose arbitrary i1, i2, i3 with xi1 < xi2 < xi3 .
(In our implementation we used equi-distant ij.)

2. Calculate the solution for the system of equations corresponding to the
(para-) norm used.
This gives us an approximation function f̂(x) = α + βx and λ.

3. Find an xk for which the deviation of f̂ from the given data is maxi-
mized. Call this maximal deviation maximum λmax.
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4. If λmax − λ > ε for some small ε
then apply the exchange rule using xk and λmax and go to step 2.
(The ε is mainly needed for rounding problems with floating point
numbers. If they were non-existant, one could choose λmax 6= λ as the
criterion.)

5. Return α, β, λ.

6 Practical Tips to Improve the Accuracy

6.1 Intervals

The approach we presented optimizes the maximum error for single-point
queries. In order to see the problems occurring with real data when esti-
mating frequency counts for ranges, let us take a look at an example. Fig 1
contains the number of authors for a given number of citations as extracted
from the citesee top 10.000 cited computer science authors. The figure only
shows the number of authors cited between 256 and 512 times.

Remember that the Q-paranorm is a number always larger than 1 and
we cannot see from the Q-paranorm whether we have an underestimate or
an overestimate. We thus define the Q-error for visualization purposes as
follows:

θi(||qi||Q − 1)

Let us now turn to range queries. For a given interval length, we can calculate
the minimum, average, and maximum Q-error over all possible ranges of this
length. The upper part of Fig. 2 visualizes the result. We observe that
the minimum and maximum Q-error converge to the average quite fast. We
further observe that the average is above 0. This means, that on the average
the estimation underestimates. This could also be guessed from looking at
Fig. 1. The idea to improve the accuracy for range queries is quite simple:
Multiple the result by the average error. Therefore, we approximate the
average error by a linear function. For an interval length ≥ 5, we apply the
correction. We can then calculate the Q-error of the corrected estimate. This
is given at the bottom of Fig. 2. We see that the convergence is quicker and
that the average Q-error is 0 for ranges containing at least 5 points.

Another possibility one could think of is to smooth the original histogram
with a kernel. For example, we could replace the frequency at each point by
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Figure 1: Original Data and Approximations
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Figure 2: Q-error for a given interval length
The picture shows the minimum, average and maximum Q-error for the orig-
inal approximation (top) and the corrected approximation (bottom).
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the avg frequency of the point itself and four of its neighbors. This smoothed
histogram could then be approximated the way we did and it could be hoped
that the resulting approximation is better then the original one. This is
indeed true, however, the approach is inferior to the one sketched above.

6.2 Single Point

Another possible improvement is to eliminate outliers from being estimated
by the approximation. How do we detect the outliers to be removed? This is
easy since the algorithm directly constructs three indices where the deviation
from the approximation is maximized. Hence, one of these three points
should be a good candidate for the outlier. Which one to chose? This is,
again, easy. As we saw in the previous section, the average estimation error is
typically not zero but greater (as above) or smaller. If we overestimate more
often than underestimate, this means that the underestimates are the true
outliers, and vice versa. In the above example, the optimal approximation
under the Q-paranorm on the average underestimates the true values. Hence,
we chose the index as an outlier whose estimation results is an overestimate.
The following table shows the Q-paranorm depending on how many outliers
have iteratively been removed according to the above rule.
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Outliers removed Q-Norm
0 2.16058
1 2.04246
2 1.95729
3 1.79868
4 1.78647
5 1.72189
6 1.71228
7 1.69124
8 1.67364
9 1.66759

10 1.65571
11 1.64367
12 1.64220
13 1.61936
14 1.60921
15 1.58685
16 1.55443
17 1.55354
18 1.55094
19 1.53623
20 1.52118
21 1.51304
22 1.50971
23 1.50405
24 1.50389
25 1.49071

Note that the above rule is important. Picking any outlier among the three
points that maximize the Q-paranorm is no good idea. For example, if we ac-
cidentally implement the opposite of the above procedure, after 10 iterations
we would still have a Q-paranorm of 2.07862.

Another trick is to keep the list of points where over- or underestimation
occurs. If it is possible due to a dense domain, to keep them as a bitmap,
which is then compressed, this might be affordable (in terms of memory) and
pay off (in terms of gained accuracy).

Last but not least, it is possible to split the bucket to improve the estima-
tion quality. In our case, the optimal split occurs at 401 and the maximum
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Q-Norm within the two intervals are

Interval Q-Norm
[256,401] 1.66141
[402,512] 1.82574

Hence, the overall Q-Norm becomes 1.8. Note that storing only 3 outliers
is necessary in order to beat this refinement. If we assume that we need 3
bytes to store each outlier, we need 9 bytes to do so. The additional storage
requirement for storing the refinement amounts to 10 bytes. Two bytes for
the additional boarder and two times 4 bytes for the additional α and β.

A Approximation by Linear Functions: n = 2

A.1 Chebyshev-Norm: || · ||∞
Let r = (r1, . . . , rm)T be a vector in Rm. Then, the Chebyshev norm is
defined as

||r||C = max
1≤i≤m

|ri|

The problem considered in this section is

find a ∈ Rn to minimize ||r(a)||C

where
r(a) = b− Aa

with A a given m× n matrix and b a given vector in Rm.
The solution to this general problem as well as algorithms are described

in the book by Watson [5].
In case of a simple linear function used to approximate a set of points

subject to minimizing the Chebyshev norm, this amounts to find α, β which
minimize 

f1

f2

f3

. . .

−


1 x1

1 x2

1 x3

. . .

( α
β

)
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With b = (f1, . . . , fm)T ,

A =


1 x1

1 x2

1 x3

. . .


This corresponds to minimizing b− Aa.

For simple linear functions, the maximum difference is attained at three
points:

Theorem 12 Let A satisfy the Haar condition. Then, there exist i1, i2, i3
in {1, . . . ,m} such that

(−1)n(yij − fij ) = max
i
|yi − fi|

for all 1 ≤ j ≤ 3 and 1 ≤ i ≤ m.

This gives a hint on how to find α, β. We introduce an additional variable
λ for (−1)n mina maxj=1,2,3 |yij − fij |. Now, we can solve the system of three
equations

−1(yi1 − (α + βxi1)) = λ

+1(yi2 − (α + βxi2)) = λ

−1(yi3 − (α + βxi3)) = λ

which can be rewritten to

α + βxi1 − λ = yi1
α + βxi2 + λ = yi2
α + βxi3 − λ = yi3

or  1 xi1 −1
1 xi2 +1
1 xi3 −1

 α
β
λ

 =

 yi1
yi2
yi3


With 1 xi1 −1 yi1

1 xi2 +1 yi2
1 xi3 −1 yi3

 
 1 xi1 −1 yi1

0 xi2 − xi1 +2 yi2 − yi1
0 xi3 − xi1 0 yi3 − yi1

 
 1 xi1 −1 yi1

0 1 2
xi2
−xi1

yi2
−yi1

xi2
−xi1

0 1 0
yi3
−yi1

xi3
−xi1


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 1 xi1 −1 yi1
0 1 2

xi2
−xi1

yi2
−yi1

xi2
−xi1

0 0 −2
xi2
−xi1

yi3
−yi1

xi3
−xi1
− yi2

−yi1

xi2
−xi1

 
 1 xi1 −1 yi1

0 1 2
xi2
−xi1

yi2
−yi1

xi2
−xi1

0 0 1
yi2
−yi1

2
− (yi3

−yi1
)(xi2

−xi1
)

2(xi3
−xi1

)


we get

λ =
yi2 − yi1

2
− (yi3 − yi1)(xi2 − xi1)

2(xi3 − xi1)

β =
yi2 − yi1
xi2 − yi1

− 2λ

xi2 − xi1
α = yi1 + λ− xi1β

A.2 Relative Differences

A.2.1 Relative Difference: SR

maxi|
yi − fi
yi
|

Gleichungssystem:

β + x1α = (1 + λ)y1

β + x2α = (1− λ)y2

β + x3α = (1 + λ)y3

1 =⇒ β = (1 + λ)y1 − x1α (∗)
3, (∗) =⇒ (1 + λ)y1 − x1α + x3α = (1 + λ)y3

=⇒ (1 + λ)(y1 − y3) = (x1 − x3)α
=⇒ α = (1 + λ) y1−y3

x1−x3

=⇒ α = (1 + λ)q13

2, (∗), (∗∗) =⇒ (1 + λ)y1 − x1α + x2α = (1− λ)y2

=⇒ (1 + λ)y1 + (x2 − x1)(1 + λ)q13 = (1− λ)y2

=⇒ (1 + λ)(y1 + (x2 − x1)q13) = (1− λ)y2

=⇒ (1 + λ)g = (1− λ)y2

=⇒ g + gλ = y2 − y2λ
=⇒ λ = y2−g

y2+g
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where

q13 =
y1 − y3

x1 − x3

g = y1 + q13(x2 − x1)

A.2.2 Relative Difference: S ′R

maxi|
yi − fi
fi
|

Gleichungssystem:

(1 + λ)(β + x1α) = y1

(1− λ)(β + x2α) = y2

(1 + λ)(β + x3α) = y3

1 =⇒ β = y1
1+λ
− x1α (∗)

3, (∗) =⇒ (1 + λ)(β + x3α) = y3

=⇒ (1 + λ)[ y1
1+λ

+ α(x3 − x1)] = y3

=⇒ y1 + (1 + λ)α(x3 − x1) = y3

=⇒ (1 + λ)α(x3 − x1) = y3 − y1

=⇒ (1 + λ)α = y3−y1
x3−x1

=⇒ α = 1
1+λ

q13 (∗∗)
2, (∗), (∗∗) =⇒ (1− λ)( y1

1+λ
− x1

1
1+λ

q13 + 1
1+λ

q13x2) = y2

=⇒ (1− λ)(y1 − x1q13 + q13x2) = (1 + λ)y2

=⇒ (1− λ)g = (1 + λ)y2

=⇒ g − λg = y2 + λy2

=⇒ λ = g−y2
g+y2

(∗ ∗ ∗)

where

q13 =
y3 − y1

x3 − x1

g = y1 + q13(x2 − x1)
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B Proof of the Original Corollary 2 of [5]

Corollary 4 (Cor. 2 of [5]) Let a solve (2.1) and let I ⊆ Ī(a) be such
that λi 6= 0 for all i ∈ I and

∑
i∈I λiαi = ~0 according to the theorem. Then

ri(d) = ri(a) for all solutions d of (2.1).

Proof: Let h = ||r(a)||, and let d be any other solution to (2.1). If h = 0
the result is trivial, so assume that h > 0. Then by the theorem (2):∑

i∈I

λiαi = ~0

and λiθi > 0 for all i ∈ I. Thus:

h
∑
i∈I

|λi| =
∑
i∈I

θiλi θiri(a)

=
∑
i∈I

λiri(a)

= |
∑
i∈I

λiri(a)|

= |
∑
i∈I

λi(bi − αTi a)|

= |
∑
i∈I

λibi|

= |
∑
i∈I

λi(bi − αTi d)|

= |
∑
i∈I

λiri(d)|

≤
∑
i∈I

|λi| |ri(d)|

≤ h
∑
i∈I

|λi|

and equality holds through. Since no |ri(d)| can be larger than h [d is solu-
tion!] if follows from ∑

i∈I

|λi| |ri(d)| = h
∑
i∈I

|λi|
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and the definition of h and I that |ri(d)| = h = |ri(a)|.
It remains to be shown that θi(a) = θi(d). From

|
∑
i∈I

λiri(d)| =
∑
i∈I

|λi| |ri(d)|

it follows that

(a) (∀i ∈ I sign(λiri(d)) = −1)

∨
(b) (∀i ∈ I sign(λiri(d)) = +1)

Assume (a) holds. (a) implies for all i ∈ I that θi(a) = −θi(d) and ri(a) =
−ri(d). Summing both sides of

r(a) = b− Aa
−r(a) = b− Ad

gives

~0 = 2b− A(a− d)

= b− 1/2(A(a− d)

= b− A(1/2(a− d))

which contradicts the optimality of a. Thus (b) must hold and the result
follows. �
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