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Preface

Within computer science, the term “dependability” has been introduced as a
general term to cover all critical quality aspects of computing systems. Following
standard terminology, a system is dependable if trust can justifiably be placed in
the service it delivers. In the early days of computer science, researchers thought
that program correctness was the key to dependability meaning that a program
always terminates and satisfies its postcondition if it is started in a state where
its precondition holds. Today we know that many other factors influence the well-
functioning of a computer system, for example hardware reliability, performance
properties, or usability properties.

Justifying reliance in computer systems is based on some form of evidence
about such systems. This in turn implies the existence of scientific techniques to
derive such evidence from given systems or predict such evidence of systems. In
a general sense, these techniques imply a form of measurement. The workshop
“Dependability Metrics”, which was held on November 10, 2008, at the University
of Mannheim, dealt with all aspects of measuring dependability.

The workshop was a continuation event of a research seminar which was
held October/November 2005 at Schloss Dagstuhl in Wadern/Germany. The
seminar was sponsored by the German Computer Science Society (Gesellschaft
für Informatik). The aim of this seminar was to bring together young researchers
to work on interesting new foundational aspects of computer science and lay
the setting for further development. The results of the seminar were recently
published as an edited volume“Dependability Metrics” that appeared as number
4909 in Springer’s Lecture Notes in Computer Science series. The workshop in
Mannheim was also meant to celebrate the publication of this volume.

A dozen researchers, mainly from Germany, attended the workshop that fea-
tured five presentations. This technical report documents two research papers
and three abstracts of these presentations.

The organizers wish to thank Sabine Braak and Jürgen Jaap for their help
in organizing the event in Mannheim.

April 2009 Felix C. Freiling
Irene Eusgeld
Ralf Reussner
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Industrial Control Systems (ICS): Modeling
Methods for Reliability, Security and

Vulnerabilities Assessment

Irene Eusgeld

ETH Zürich, Laboratory for Safety Analysis

Abstract ICS include supervisory control and data acquisition (SCADA)
systems, distributed control systems (DCS), and other control system
configurations such as skid-mounted Programmable Logic Controllers
(PLC) as are often found in the industrial control sector. In contrast
to traditional information processing systems logic executing in ICS has
a direct effect on the physical world. These control systems are critical
for the operation of complex infrastructures that are often highly inter-
connected and thus mutually dependent systems.

Numerous methodical approaches aim at modeling, analysis and simula-
tion of single systems’ behavior. However, modeling the interdependen-
cies between different systems and describing their complex behavior by
simulation is still an open issue. Although different modeling approaches
from classic network theory to bio-inspired methods can be found in sci-
entific literature a comprehensive method for modeling and simulation of
interdependencies among complex systems has still not been established.
An overall model is needed to provide security and reliability assessment
taking into account various kinds of threats and failures. These metrics
are essential for a vulnerability analysis. Vulnerability of a critical infras-
tructure is defined as the presence of flaws or weaknesses in its design,
implementation, operation and/or management that render it suscepti-
ble to destruction or incapacitation by a threat, in spite of its capacity to
absorb and recover (’resilience’). A significant challenge associated with
this model may be to create ’what-if’ scenarios for the analysis of in-
terdependencies. Interdependencies affect the consequences of single or
multiple failures or disruption in interconnected systems. The different
types of interdependencies can induce feedback loops which have accel-
erating or retarding effects on a systems response as observed in system
dynamics.

Threats to control systems can come from numerous sources, including
hostile governments, terrorist groups, disgruntled employees, malicious
intruders, complexities, accidents, natural disasters and malicious or ac-
cidental actions by insiders. The threats and failures can impact ICS
themselves as well as underlying (controlled) systems. In previous work
seven evaluation criteria have been defined and eight good praxis meth-
ods have been selected and are briefly described. Analysis of these tech-
niques is undertaken and their suitability for modeling and simulation of
interdependent critical infrastructures in general is hypothesized. With



5

respect to the evaluation code High Level Architecture (HLA), Agent-
based Modeling (ABM) and Hybrid system Modeling cover the largest
spectrum of characteristics.The question which of these three methods is
the most appropriate one to model ICS within interdependencies should
be discussed and clarified.



Does Input Data for Quantitative Security
Assessment of Organizations Exist?

Steffen Weiß

University of Erlangen, Germany

Abstract Diverse approaches have been developed for security assess-
ment of organizations. Probably the biggest difference is whether ap-
proaches are qualitative or quantitative. Even if results must be inter-
preted and thus help for management is limited, most approaches are
qualitative because qualitative assessment is easier to perform. Quan-
titative assessment is more difficult to perform especially as adequate
input data are currently not available in the required amount. Studying
this problem in depth, it has been discovered that a central problem is
providing input data that can be used for many organizations, so called
general data. Having in mind a model for quantitative assessment of or-
ganization‘s security which was developed during previous work, it has
been investigated whether such general data exists. During the talk, ex-
amples from real-world organizations will be given which show that this
type of data exists in reality.



Adaptive Capacity Management for the
Resource-Efficient Operation of

Component-Based Software Systems?

André van Hoorn

Graduate School TrustSoft
University of Oldenburg

D-26111 Oldenburg, Germany

Abstract Overprovisioning capacity management for application ser-
vice provision causes underutilized computing resources during low or
medium workload periods. This paper gives an overview of our work in
progress aiming for improving the resource efficiency in operating large
component-based software systems that are exposed to highly varying
workloads. Based on continuously updated architectural runtime models
of the application and its deployment environment, the number of al-
located computing resources as well as the deployment of the software
components are automatically adapted with respect to current demands
and specified performance requirements.

1 Introduction

Today’s enterprise applications are complex, business-critical software systems.
An important extra-functional characteristic of these systems is performance,
consisting of timing behavior and resource utilization [6]. Especially requirements
on timing behavior metrics such as throughput or end-to-end response time are
part of the so-called Service Level Agreements (SLAs) the provider and the client
of a service agreed on. The SLAs constitute a contractual specification regarding
the Quality of Service (QoS) that must be satisfied by the application service
provider.

Particularly interactive software systems which are accessible through the
Internet are exposed to highly varying and bursty workloads, e.g., in terms of
the number of concurrent users or the usage profiles [1, 5, 9]. The timing behav-
ior of such systems is significantly influenced by the workload conditions due
to resource contention caused by concurrent demands. Over the last years, ca-
pacity management for application service provision was performed in a rather
static and overprovisioning way, i.e., deploying software components to a fixed
infrastructure of application and database servers which satisfy the needs for an-
ticipated peak workload conditions. Future infrastructure demands are satisfied

? This work is supported by the German Research Foundation (DFG), grant GRK
1076/1.
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in a spirit of “kill-it-with-iron”: adding additional resources to the infrastructure
or replacing existing resources by more powerful ones. The shortcoming of this
approach is that during medium or low workload periods, the allocated resources
may be heavily underutilized causing unnecessarily high operating costs due to
power consumption or infrastructure leases.

We are working on an automatic approach for adaptive runtime capacity
management, overviewed in Section 2, which allows component-based software
systems [10] to be operated more efficiently. Efficiency shall be improved by
allocating only as much computing resources at a time as required for satisfying
the specified SLAs. We consider a set of architecture-level adaptation operations
based on which the software system is reconfigured at runtime in a more fine-
grained way than for example classic load-balancing or virtualization approaches
do.

2 Overview of the Approach

Section 2.1 describes the adaptation operations based on which the software
system is reconfigured at runtime. Continuously updated architectural models
are used to evaluate the performance of the architecture and that of possible
adaptation alternatives. The required information to be captured in the models
is outlined in Section 2.2. Section 2.3 gives an overview of the analysis activities.

2.1 Adaptation Operations

We consider the following three architecture-level adaptation operations:

(1) Node Allocation & Deallocation. A server node is allocated or deallo-
cated, respectively. In case of an allocation, this includes the installation of an
execution environment, e.g., a JBoss runtime environment for Java EE com-
ponents, but it does not involve any (un)deployment operation of software
components. Intuitively, the goal of the allocation is providing additional
computing resources and the goal of the deallocation is saving operating
costs caused by power consumption or usage fees.

(2) Software Component Migration. A software component is undeployed
from one execution context and deployed into another. The goals of this
fine-grained application-level operation are both to avoid the allocation of
additional server nodes or respectively to allow the deallocation of already
allocated nodes by executing adaptation operation (1).

(3) Component-level Load-(un)balancing. This application-level operation
consists of the duplication of a software component and its deployment into
another execution context (as well as the reverse direction). Future requests
to the component are distributed between the available component instances.
The goals of this application-level operation are the same as the goals of
operation (2).
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A middleware layer is responsible for executing the adaptation operations in
a way that is transparent to the software system to be adapted. Operation (1) is
the most expensive operation in terms of the time required for executing it. In
lab experiments, we measured that software component redeployments similar
to the adaptation operations (2) and (3) can be executed within milliseconds [4].

2.2 Architectural Models

Relevant static and dynamic aspects of the software architecture are captured
in architectural models of the software system. During runtime, these models
are updated through measurements, reflect the architectural changes caused by
executed adaptation operations, and are used for the continuous analysis (Sec-
tion 2.3). The following list gives an overview of the information to be captured
in the models:

• Components (interfaces and internal performance-relevant behavior)
• Assembly (connection of the components through their interfaces)
• Deployment environment (resources and their performance characteristics)
• Component deployment (mapping of components to execution contexts)
• SLAs and internal performance requirements (component interfaces)
• Adaptation

- Components to which the adaptation operations are applicable
- Conditions or rules when to perform an adaptation (analysis)

The performance-relevant modeling of the software architecture will be based
on the state of the art in modeling for software performance prediction by
annotating architecture models with performance aspects which can be trans-
formed into solvable performance analysis models like queueing networks [2]. Ex-
amples for architecture-level software performance modeling notations are the
UML SPT/MARTE profiles [7,8] or the Palladio Component Model [3] for per-
formance prediction of component-based software systems.

2.3 Runtime Analysis

The continuous runtime analysis constitutes the core part of the approach. We
identified four main analysis activities to be executed. All these activities rely on
the runtime model of the software architecture which needs to be continuously
updated through measurements.

(1) Performance evaluation. In this activity, the performance of the current
system configuration is evaluated. This includes whether or not performance
requirements (especially the SLAs) are satisfied and to what degree the re-
sources are utilized.

(2) Workload analysis and estimation. The result of this activity is an es-
timation of the near-future workload derived from trends in past workload
measurements.
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(3) Performance prediction. In this activity, the performance of the current
system configuration is predicted based on the performance evaluation and
the workload estimation in activities (1) and (2). Performance analysis mod-
els derived from the architectural models are used for prediction.

(4) Adaptation analysis. The effect of possible adaptations on the perfor-
mance is evaluated using similar techniques as they were used during the
performance prediction activity. The result is a selection of adaptation op-
erations to be executed.

3 Conclusions and Future Work

This paper provided on overview of our work in progress on an approach aimed
for improving the resource efficiency in operating large component-based soft-
ware systems which are exposed to highly varying workloads. Based on continu-
ous analyses, the configuration of the software system in terms of the allocated
computing resources and the deployment of components to execution contexts,
is adapted using three architecture-level adaptation operations.

Since the work is still in an early phase, a lot of future work remains: (1) the
adaptation operations will be formally specified and implemented as a proof-of-
concept; (2) a suitable notation for the architectural models needs to be iden-
tified; and particularly, (3) the required runtime analyses must be developed in
detail. We plan to perform an evaluation by simulation in the first place before
setting up a case study with a realistic application in the lab.
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A Copula-based Approach for Dependability
Analyses of Fault-tolerant Systems With

Interdependent Basic Events

Max Walter1, Sebastian Esch2, and Philipp Limbourg2

1 Lehrstuhl für Rechnertechnik und Rechnerorganisation, Technische Universität
München, Germany

2 Universität Duisburg-Essen, Germany

Abstract Traditional combinational techniques for the dependability
evaluation of fault-tolerant systems rely on the assumption that there
are no dependencies in the failure and repair behavior of the components
the system consists of.
In practice, however, the components of a system are usually not inde-
pendent. Prominent examples for inter-component dependencies include
failures with a common cause (e.g. due to spatial closeness or a shared
design), failure propagation, limited repair resources, failures induced by
repair, and overload due to failure.
We have developed a novel approach, based on copulas, for dealing with
arbitrary inter-component dependencies. The system is modeled by a
traditional reliability block diagram (RBD) describing the redundancy
structure of the system. There are no limitations regarding the structure
of this diagram. In particular, non-series-parallel diagrams are supported
and components can be attributed to more than one of the RBD’s edges.
In addition to the RBD, an undirected dependency graph is used to
identify pairwise dependent components. An edge from component A to
component B with label c in this graph means that the components A
and B are correlated with factor c. c is a real number between -1 and
1. A value of zero means that A and B are independent (such edges
are usually omitted). Positive values indicate dependent components. A
value of 1 indicates a strong dependency: A is failed if and only if B is
failed. Anti-dependencies can be modeled by using negative values. For
instance, a value of -1 indicates a strong anti-dependency: A is failed if
and only if B is not failed.
For evaluation, the model is first divided into independent sub-models
by a BDD-like approach. The Boolean terms of the reduced sub-models
are then converted in such a way that only conjunction terms of positive
literals remain. These conjunction terms can be numerically evaluated by
calculating the respective Gaussian copula using the coefficients defined
by the dependency graph.
The method was implemented in the tool COBAREA (COpula-BAsed
REliability and Availability modeling environment) and two examples
were created to illustrate the proposed approach.



FOBIC: A Platform-Independent Performance
Metric

based on Dynamic Java Bytecode Counts

Michael Kuperberg

Chair for Software Design and Quality, University of Karlsruhe, Germany
mkuper@ipd.uka.de

Abstract For bytecode-based applications, runtime instruction counts
can be used as a dynamic performance metric. However, in practice, the
definition of the metric varies and the tools to measure it are either
incomplete or require expensive JVM instrumentation for instruction-
level counting. Also, the assumptions underlying the metric definition
are not discussed. While it is clear that different instruction types have
different execution durations so they must be counted separately, existing
approaches often do not identify method invocations, or do not consider
the parameters of bytecode instructions and method invocations, despite
their substantial impact on the performance. Also, the impact of just-in-
time compilation and other runtime virtual machine optimisations on this
metric are an open question. In this report, we give a precise definition of
a platform-independent performance metric, which is based on runtime
counting of executed bytecode instructions and method invocations. We
discuss the computation of the metric with the ByCounter tool, which
instruments only the application bytecode and not the JVM, and which
can be used without modifications on any JVM.

1 Introduction

The runtime behaviour of applications has functional aspects such as correct-
ness, but also extra-functional aspects, such as performance. Classic performance
metrics are response time of a method or a service, utilisation of a resource, or
throughput of a system [6], but they are platform-specific as they are measured
on a concrete platform (i.e. hardware, operating system etc.). These performance
metrics can be expressed with parametrisation over the usage profile [7], i.e. over
the parameters of the considered method, the workload and the number of users
for a system, etc.

For performance prediction, platform-independent performance metrics are
preferred, as they allow to disentangle the influence of the execution platform
from the influence of the application itself. That is, platform-independent per-
formance metrics should be parameterised over the execution platform. The ex-
pected benefit is that fewer measurements are needed: for u usage profiles on p
platforms, instead of u · p measurements (each usage profile on each platform),
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just u + p measurements are needed: a platform-independent metric value for
each of the u profiles, and p measurements to compute the parametrisation of
the platform.

The conventional wisdom in defining platform-independent performance met-
rics is to look at the building blocks of the considered application, and not at
the externally observed execution metrics based on time or related to time. Dur-
ing execution, these building blocks use platform resources (e.g. CPU, memory,
caches, network connections, hard disks, locks, semaphores, etc.). This usage is
subject to resource scheduling and contention, which add waiting times to the
actual processing times. In particular, it is not sufficient to count the CPU cycles
spent executing the application service, as it is neither the only nor the major
factor contributing to the performance of the service.

However, the detailed consideration of platform resources is too complex and
requires very detailed knowledge and modeling of the underlying mechanisms,
especially scheduling. To take the scheduling effects into account, simulations
must be performed, which require substantial time and effort. Therefore, ab-
stractions that simplify the analysis of building blocks’ performance have been
developed [9]. In this report, we do not consider how the building blocks are
mapped to (platform-specific) resource usage, but focus on the obtainment of
the metric values w.r.t. building blocks.

The building blocks can be chosen from different software development phases:
they can be source code elements, elements of the executable as created by the
compiler (e.g. bytecode instructions), or the elements of the executable form as
they are indeed executed by the execution platform (e.g. machine code created
by just-in-time compilers immediately before the execution or during it).

Source code is not well-suitable for platform-independent metrics as different
compilers produce very different executable code, and this can render the metric’s
values incomparable for programs compiled with different compilers. Additional
factors that complicate working with source code (for object-oriented languages)
are operator overloading and polymorpism: obtaining performance metrics from
source code would thus require knowledge and reasoning capabilities that equal
those of a real compiler.

Therefore, the executable form of an application is preferred as the basis
for platform-independent performance metrics. For applications that are com-
piled to machine code, machine code instructions can be considered as building
blocks. This means that the “platform-independent” metric only applies to plat-
forms that can execute a given machine code format. To overcome the limited
portability of machine code, virtual machines have been invented, which form a
layer between the application and the operating system.

A virtual machine can execute applications that have been compiled to an
intermediate executable code, for example the Java bytecode which can be exe-
cuted by the Java Virtual Machine (JVM). Different (source code) languages can
be compiled to a given bytecode language: for example, Groovy [5] and Scala [14]
compile to Java bytecode. In the remainder of this report, we focus on the Java
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bytecode, but our ideas and notes generally apply to other bytecode languages,
e.g. to the CIL (Common Intermediate Language) of the .NET platform.

The report is structured as follows: in Section 2, we define a dynamic platform-
independet performance metric, called FOBIC (Family Of Bytecode Instruc-
tion Counts). In Section 3, we describe how to compute FOBIC using the By-
Counter tool. Section 4 presents a small overview of the impact of Just-In-Time
compilation on FOBIC. Related work is presented in Section 5. Finally, we list
our assumptions and limitations in Section 6 and conclude the report in Section
7.

2 FOBIC: a Dynamic Performance Metric for Java
Bytecode

The Java bytecode is a stack-based language, and it contains both low-level “el-
ementary” instructions (e.g. IADD for additing two primitive integer values) and
high-level constructs, such as method invocations. To invoke Java methods from
Java bytecode, four instructions are used including those of the Java API: IN-
VOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC and INVOKEVIRTUAL (hereafter
called INVOKE*). The signature of the invoked method appears as the parame-
ter of the INVOKE* instruction, while the parameters of the invoked method are
prepared on the stack before method invocation. Invoked methods have a large
quantitative contribution to the performance of Java bytecode, i.e. the parame-
ters of the INVOKE* instructions play a crucial role.

Not only different methods, but also different bytecode instruction types
have different execution durations, so they also must be counted separately and
individually. Through this, bytecode instruction counting leads to a family of
metrics (FOM), not to a single metric, because each instruction count has its own
unit (which corresponds to the instruction’s name/opcode), and each method has
its own count (i.e. a metric) as well. As each Java application can define its own
methods and its own packages, the size of the FOM is not bounded, and the
FOM can be expanded.

Some researchers have suggested basic blocks as bytecode-oriented metrics [11]
. Basic blocks are opcode sequences that are not interrupted by control flow state-
ments. Basic blocks can be of different length, and their number is significantly
higher than the number of single bytecode instructions (there are potentially
2554+2553+2552+255 > 4 · 109 basic blocks up to and including those with
length 4). In this report, we only consider basic blocks of length 1, i.e. individual
bytecode instructions and individual method invocations.

We define our metric as an expandable family of metrics, called
FOBIC (Family Of Bytecode Instruction Counts), which also contains
method invocation counts despite its name. Each bytecode instruction
type (opcode) has an own metric in FOBIC, and each method signa-
ture has its own metric in FOBIC as well.

To make instances of FOBIC comparable, their elements must be comparable.
In particular, two elements (metrics) with the same metric name, one would
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expect the names to refer to the same method (or instruction). But the package-
oriented namespaces in Java are globally non-unique, which means that two
(fully-qualified) method signatures from two different origins may be equal, but
refer to different physical method implementations. In such a case, it is impossible
to distinguish between them in the FOBIS instances, and it is the obligation of
the user to make sure the elements of compared FOBIC instances refer to the
same entities.

2.1 Treatment of Calling Trees and Decomposing Method
Implementations

Invoked methods include both calls to the Java API, and calls to methods de-
fined in non-API classes. Furthermore, native methods (i.e. methods defined and
implemented outside of Java, e.g. in a shared native library) are supported by
the JVM. If an invoked method is part of the Java API, its implementation
can be different across operating systems, as it may call platform-specific native
methods (e.g. for file system access). Hence, decomposing a method into the el-
ements of its implementation would destroy the platform-independent property
of FOBIC.

Thus, to avoid platform-dependent counts, invocations of API and all other
methods must initially be counted atomically, i.e. as they appear in application’s
bytecode, without decomposing them into the elements of their implementation.
This results in a “flat” view which does not decompose the invoked method into
the elements of its implementation. This “flat” view summarises the execution
of the analysed bytecode in a platform-independent way. If needed, instruction
counts for the invoked methods can be obtained using the same approach, too.
Using this additional information, counts for the entire (expanded) calling tree
of the analysed method can be computed, and such stepwise approach promotes
reuse of counting results.

2.2 Parameters

For bytecode-based performance prediction, parameters of invoked methods, but
also parameters of non-INVOKE* bytecode instructions can be significant, because
they influence the execution speed of the instruction [8]. The latter parameters
and their locations are described in the JVM specification [13]; for example, the
MULTIANEWARRAY instruction is followed by the array element type and the array
dimensionality directly in the bytecode, while the sizes of the individual array
dimensions have to be prepared on the stack.

Hence, in order to describe the runtime behaviour of programs as precisely
as possible, each metric in the family of metrics must be able to account for
the parameters of the instruction/method it counts. This leads to to need to
normalise the parameter values: e.g. for the newarray instruction, the type of
the array and its size must be considered for conversion to a multiple of the norm
(unit) of the metric. For a newarray of type double and size 10, we can specify
that it is equal to 2 · 10 = 20 newarray calls with type int and size 1 (as a
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double occupies two bytes and int just one). But even this simple normalisation
is not error-prone: on 64-bit systems, a single int may occupy 64 bits (i.e. 2 bytes
- as much as a double). Also, the JVM usually allocates a minimum array size
which may be larger than the given parameter: allocating an array with 5 ints
may in reality lead to allocation of 10 slots in the array.

Thus, in general, the normalisation is non-linear. There are other challenges
as well: bytecode instructions or methods can have parameters of arbitrary object
types, and it is not obvious how the object types can be normalised to match
the metric unit. It remains to be studied how precise the normalisation must be
to fulfill a given precision of the bytecode-based performance prediction.

In the next section, we provide a short overview of ByCounter [10], our
approach to obtain Java bytecode frequencies that form the FOBIC metric.
ByCounter accounts for method invocations, parameters of methods and in-
structions.

3 Computing the FOBIC Metric

As we have pointed out in [10], to obtain all these runtime counts, static analysis
(i.e. without executing the application) could be used, but it would have to be
augmented to evaluate runtime effects of control flow constructs like loops or
branches. Even if control flow consideration is attempted with advanced tech-
niques such as symbolic execution, additional effort is required for handling infi-
nite symbolic execution trees [12, pp. 27-31]. Hence, it is often faster and easier
to use dynamic (i.e. runtime) analysis for counting executed instructions and
invoked methods.

However, dynamic counting of executed Java bytecode instructions is not
offered by Java profilers or conventional Java Virtual Machines (JVMs). The
traceInstructions method in Java platform API class java.lang.Runtime
that should enable/disable the tracing of bytecode instructions did not work for
none of the platforms or JVM vendors and versions that we have studied (which
included Windows and Linux machines running Sun and Bea JVMs in versions
1.6, 1.5 and 1.4). Same was true for the method traceMethodCalls in the same
class. Even if would have worked, additional effort would be needed to aggregate
the traced instructions/method into counts.

As discussed in [8], existing program behaviour analysis frameworks for Java
applications (such as JRAF [2]) do not differentiate between bytecode instruction
types, do not identify method invocations performed from bytecode, or do not
work at the level of bytecode instructions at all. These frameworks frequently
rely on the instrumentation of the JVM, however, such instrumentation requires
substantial effort and must be reimplemented for different JVMs.

A portable approach for lightweight portable runtime counting of Java byte-
code instructions and method invocations is called ByCounter [10] and it works
by instrumenting the application bytecode instead of instrumenting the JVM.
Through this, ByCounter can be used with any JVM, and the instrumented
application can be executed by any JVM, making the ByCounter approach
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truly portable. Furthermore, ByCounter does not alter existing method signa-
tures in instrumented classes nor does it require wrappers, so the instrumentation
does not lead to any structural changes in the existing application.

To make performance characterisation through bytecode counts more precise,
ByCounter provides basic parameter recording (e.g. for the array-creating in-
structions), and it also offers extension hooks for the recording mechanism. By-
Counter does not perform normalisation, but the recorded parameters allow
to perform the normalisation offline, i.e. after the execution of the instrumented
method. To do so, ByCounter users can write their normalisation algorithms
which operate on the recorded data.

As it is not always technically possible or rational to perform persistent para-
meter recording by simply saving the parameter value(s). For example, Object-
typed parameters may not be serialisable. In such a case, a characterisation of
the parameter object instance should be recorded: for a (custom) data structure,
its size could be a suitable characterisation; with the toString() method as the
“fallback” characterisation. To allow users to provide their own characterisations
for Java classes of their choice, ByCounter offers suitable extension hooks.

In [10], ByCounter was evaluated on two different Java virtual machines
using applications that are subsets of three Java benchmarks. For these appli-
cations, the evaluation showed that despite accounting of single bytecode in-
structions, the ByCounter overhead during the counting phase at runtime is
reasonably low (between ca. 1% and 85% in all cases except one outlier; no para-
meter recording was performed), while instrumenting the bytecode requires less
than 0.3 seconds in all studied cases.

The case study also revealed that “dead code” (i.e. reachable code that can
be skipped because it has no side effects, as confirmed by purity analysis) needs
special attention w.r.t. bytecode instruction counts. Uninstrumented“dead code”
is skipped by those virtual machines that detect its effectlessness, while By-
Counter-driven instrumentation forces the JVM to execute the counting facil-
ities inserted by ByCounter. Hence, ByCounter counts metrics for bytecode
sections that would be skipped otherwise. To prevent this, a bytecode “cleaner”
should be run on bytecode to remove “dead code”, or ByCounter could be
combined with a purity analysis tool to instrument only non-dead code.

One significant open question is the role of other runtime optimisations
performed by the Java Virtual Machine, particularly Just-In-Time compilation
(JIT) of bytecode into machine code. Our discussion of JIT in the next section
treats detection and control (both explicit and implicit) of timepoint and range
of JIT compilation.

4 Impact of Just-In-Time Compilation on FOBIC

JIT can compile bytecode into machine code, but the timepoint and range of
JIT compilation are decided by the JVM. In particular, JIT is usually applied
to “hot” methods, i.e. only to methods that execute frequently and consume a
substantial ratio of the execution time. The detection of “hot” methods takes
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some time, and is transparent to the executed application. The JIT compilation
is carried out in parallel to program execution.

The JIT is important to bytecode-based performance metrics because JIT
often speeds up the execution of a method by up to an order of magnitude. Our
experience shows that if the duration of a JIT-compiled method is divided by the
number of bytecode instructions in the method’s original bytecode implementa-
tion, the average JIT analogon of an instruction executes in less than a CPU
cycle for some methods (of course, these methods have been carefully checked
to contain no “dead code”).

For explicit control of JIT compilation, the Sun JVM provides a command-
line flag (-Xint) to advise the JVM to run in interpreted mode, where the JIT
is not performed1. A non-Sun JVM may not provide this or other means to
explicitly control the JIT.

Furthermore, it is not clear when JIT is run and to which method it applies.
Collecting such information requires a special JVM, or applying manual changes
to the JVM source code. However, specifically for the Sun HotSport JVM, there
exist options that provide more control over and insight into the JIT compiler.
The list of option is well-hidden in the -XX parameters of the Sun JVM which
are not listed in command line help, and which are not documented in the official
distributed docs - they are found online at the Sun HotSpot JVM webpages2, but
Eugene Kuleshov3 provides a longer list. One can find options such as LogCom-
pilation, PrintCompilation, CITime, UseCompiler etc., but the logged results
are hard to access (e.g. when they are printed to the command line), and are not
well-suited for collecting metrics. It remains to be studied whether JMX agents
can be written to extract such information, or whether redirecting “standard
output” can be used as a workaround.

For implicit control of JIT compilation, the programmers can write addi-
tional code to perform a “warmup” of the methods that should be subject to
JIT compilation. However, the number of calls needed to “warm up” the method
depends on the JVM, and it is questionnable whether the warmup phase is re-
alistic.

For detection of JIT compilatio, the command-line options described above
are currently the only explicit option known to the author. To detect JIT com-
pilation implicitly, one could try to measure the duration of each invocation of
each candidate method duration, and conclude that the method has been JIT-
compiled once its duration has (significantly) fallen. However, this approach is
questionable due to resolution and invocation cost of timer methods, and due
to the overhead it introduces (be it manually inserted measurements or profiler-
based assessments).

Summarising the facts listed in this section, we can see that (a lot of) ad-
ditional work must be done to reflect the impact of JIT compilation onto our

1 The -X options can be listed by typing java -X on the command line; they are
non-standard and can be changed by the JVM vendor in future versions

2 http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp
3 http://www.md.pp.ru/ eu/jdk6options.html
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bytecode metrics. To the best of our knowledge, there exists no approach capable
of predicting the exact scope, duration, outcome and impact of JIT compilation.
In our own work, we have addressed the quantitative performance impact of JIT
empirically [9].

5 Related Work

Bytecode instruction counts can be considered as a dynamic bytecode metric.
In [3], a collection of other metrics for Java bytecode is presented, but that
collection does not include execution counts for individual bytecode instructions
and method invocations. Herder and Dujmovic [4] have performed frequency
analysis of Java bytecodes but disregard method invocations and parameters.
O’Donoghue et al. [15] have performed frequency analysis on bytecode bigrams.

Radhakrishnan et al. [16] analysed a suite of Java benchmarks (SPEC JVM98)
from a bytecode perspective to analyze bytecode locality, instruction mix and
dynamic method sizes. Stephenson et al. [17] use bytecode sequences to optimise
virtual machines.

A detailed study of work related to obtaining dynamic instruction counts can
be found in [8].

6 Assumptions and Limitations

We assume that it is possible to pass the final class bytecode that will be exe-
cuted to ByCounter for instrumentation. For applications where bytecode is
generated on the fly and not by the Java compiler (for example in Java EE ap-
plication servers), additional provisions must be taken. We also assume that the
bytecode to instrument conforms to the JVM specification, even if it has been
protected using obfuscation.

The obtained instruction counts depend on the input parameters that have
been provided to the instrumented method, for example due to control flow con-
structs that depend on these parameters. Currently, this dependency cannot be
expressed by ByCounter because neither control flow constructs are recognised
by it, nor states of variables/fields during method execution are inspected.

7 Conclusions

This report discussed the details of defining and obtaining a platform-independent
performance metric, based on runtime counts of executed bytecode instrucions
and method invocations. The metric is called FOBIC, which stands for Family Of
Bytecode Instruction Counts, although FOBIC also includes individual counts of
method invocations. The report discussed the importance of method invocations
from bytecode, the role of instruction parameters and method parameters, and
the effects observed for “dead code”, i.e. reachable code that may be skipped by
the virtual machine because it has no observable effects.
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This report also describes how to compute the metric using ByCounter,
an approach that transparently instruments the application bytecode and not
the JVM, thus simplifying the entire counting process and making the ap-
proach portable accross JVMs. The instrumentation added by ByCounter is
lightweight, leading to low runtime costs of counting. To minimise disruptions,
ByCounter instrumentation preserves the signatures of all methods and con-
structors, and it also preserves the application architecture. For reporting of
counting results, ByCounter offers two alternatives: either using structured
log files or using a result collector framework (the latter can aggregate counting
results accross methods and classes).

Currently, the metric computed by ByCounter is being integrated into
Palladio [1], which is an approach to predict the performance of component-based
software architectures. For bytecode-based performance prediction [9], the metric
computed by ByCounter has been combined with platform-specific instruction
timings (i.e. execution durations) to predict platform-specific response time.

This report has shown that bytecode instruction counting leads to a family
of metrics, not a single metric, because each instruction type and each method
signature need an individual count. The unit of a family member is then the
instruction name (called opcode in Java bytecode), and the method signature,
respectively. Further research is needed to normalise the calls of the instruction
with different parameters to a fixed-parameter “unit” of the corresponding met-
ric; normalisation is also needed for method invocations and method parameters.

While we have described the effect of Just-In-Time compilation on the com-
putation of bytecode-based metrics and the problems in controlling and detecting
Just-In-Time compilation, significant amount of work remains to be done to ac-
count for Just-In-Time compilation in ByCounter and in the FOBIC metric
we have defined.
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