
SONDERFORSCHUNGSBEREICH 504

Rationalitätskonzepte,
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Abstract
This note shows that capacities satisfying the axioms consquentialism, state independence and

conditional certainty equivalent consistency under updating are a generalised version of neo-

additive capacities as axiomatised in Chateauneuf, Eichberger, and Grant (2007).
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1 Introduction

A major challenge for modelling ambiguity of a decision maker in a dynamic context lies in the

well-known precarious relationship between updating capacities or multiple priors, dynamic

consistency and consequentialism. Early work by Epstein and LeBreton (1993) and Eichberger

and Kelsey (1996) showed that updating Choquet Expected Utility (CEU) preferences, which

satisfy consequentialism, in a dynamically consistent way implied additive beliefs. Even if

dynamic consistency was constrained to an event tree, ambiguous beliefs modelled by a capacity

were possible only on the final partition of events (see for example, Sarin and Wakker (1998)

and Eichberger, Grant, and Kelsey (2005a)). For ambiguity beliefs modelled with multiple

priors, Epstein and Schneider (2003) found that the set of priors had to fulfill a fairly restrictive

rectangularity condition in order to guarantee dynamically consistent preferences. In particular,

the original Ellsberg paradox cannot be explained with rectangular sets of priors.

In the light of these results, there are essentially two ways to proceed. Either we can abandon

consequentialism, and all the models that rely on it such as CEU and multiple priors, or we

can relax dynamic consistency. The former route has been explored by Hanany and Kilbanoff

(2004).

In the spirit of Gilboa and Schmeidler (1993), we consider a preference relation and the family

of its updated preferences which satisfy the three axioms Consequentialism, State Indepen-

dence, and Conditional Certainty Equivalent Consistency. For the case where the beliefs can be

described by multiple priors, as in the approach of Gilboa and Schmeidler (1989), Pires (2002)

proved that these three axioms are equivalent to the Full Bayesian Updating of all prior prob-

abilities. For the case where the preference relation can be represented by a Choquet integral

and beliefs by a capacity, as in Schmeidler (1989), Eichberger, Grant, and Kelsey (2005b) and

Horie (2007) established that Consequentialism, State Independence, and Conditional Certainty

Equivalent Consistency for Binary Gambles, are equivalent to Full Bayesian Updating of the
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capacity as suggested by Jaffray (1992) and Walley (1991).1

In this note, we characterize the family of capacities for which the three initial axioms of Pires

(2002) hold, that is, where Conditional Certainty Equivalent Consistency is not restricted to

binary acts. Interestingly, it turns out to be a class of capacities which is slightly more general

than neo-additive capacities which were axiomatized in Chateauneuf, Eichberger, and Grant

(2007). For neo-additive capacities the Choquet expected utility preferences can be calculated

as a convex combination of expected utility with respect to an additive probability distribution

and the Hurwicz criterion (Hurwicz (1951)) which itself is a convex combination of the utility

values of the best and the worst outcomes.

The Choquet integral with respect to a generalized neo-additive capacity is a linear combination

of the expected utility and the Hurwicz criterion, but the combination need not be convex.

Moreover, we can show that convex generalized neo-additive capacities are the only capacities

for which the core of the Full Bayesian update of a capacity coincides with the set of Bayesian

updates of the probabilities in the core of the original capacity. These results provides a further

justification for neo-additive capacities as a useful restriction on the Choquet expected utility

approach.

2 The model

Let Ω be a finite set of states of the world, Σ = 2Ω, the set of events in Ω. For E ∈ Σ, Ec

denotes the complement of E. Let X be a set of outcomes. An act is a function f : Ω → X,

and F denotes the set of such acts. A capacity v is a set function from Σ to R with v(∅) = 0,

v(Ω) = 1 and v(A) ≤ v(B) for all A ⊂ B, A and B in Σ.

In the main part of the paper, we will restrict attention to capacities for which the only null set

is the empty set, i.e., v(E) = 0⇔ E = ∅, and the only universal set is Ω, v(E) = 1⇔ E = Ω.

The general case is treated in Appendix B.

Given a von Neumann-Morgenstern utility function u : X → R, the Choquet Expected Utility

1 Horie (2007) showed that the necessary conditions in Eichberger, Grant, and Kelsey (2005b) were too stong and
suggested an appropriate weakening of the Conditional Certainty Equivalence Consistency Axiom.
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(CEU) of an act f with respect to the capacity ν is given by CEU(f, ν) =
∫ 0
−∞
(v(u (f(ω)) ≥

t) − 1)dt +
∫ +∞
0

v(u (f(ω)) ≥ t)dt. Since acts are finite-valued they can be written as f =
n∑

i=1

xiAi, where Ai is the indicator function of the set Ai. Without loss of generality, suppose that

the finite outcomes xi ∈ f(Ω) are ordered such that u(xi) < u(xi+1),[Simon asks (16/12)

shouldn’t “<” be “≤”] then

CEU(f, ν) =
n∑

i=1

u(xi) · [v(Ai ∪ Ai+1 ∪ ... ∪ An)− v(Ai+1 ∪ Ai+2 ∪ ... ∪ An)]

=
n∑

i=1

u(xi) ·m(Ai),

with m(Ai) := [v(Ai ∪Ai+1..An)− v(Ai+1 ∪Ai+2..An)] .

Throughout this paper, we will consider preference relations � on F which can be represented

by a Choquet Expected Utility (CEU) functional,

f � g if and only if CEU(f, ν) ≥ CEU(g, ν).

2.1 Updating preferences

Consider a family of preference relations �E on F which represent the decision maker’s pref-

erences after it becomes known that the event E has occurred. The ex-ante unconditional pref-

erence relation on F will be denoted by � .

For preferences which are additive, that is, represented by a CEU functional with an additive

capacity ν, standard Bayesian updating satisfies the following two axioms.

Axiom C Consequentialism

For any two acts f , g ∈ F ,

if f = g on E, then f ∼E g.

Consequentialism rules out effects on future choices from outcomes which would have become

relevant in the event Ec which did not happen.

In contrast, the second axiom , dynamic consistency, requires that preferences after E occurred

remain consistent with ex-ante preferences.

Axiom DC Dynamic Consistency
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For any acts f , g ∈ F and any event E ∈ Σ,

f ≻E g if and only if fEg ≻ g.

It is well known (Ghirardato (2002)), that the two axioms, consequentialism and dynamic con-

sistency, imply a capacity ν for a CEU decision maker which is additive and updated by Bayes

rule . Hence, any updating rule which leaves room for uncertainty represented by a non-additive

capacity must relax either consequentialism or dynamic consistency.

Retaining consequentialism Pires (2002) proposes a weaker version of DC, conditional cer-

tainty equivalent consistency which restricts the act g of the classical DC axiom to be constant.

Axiom CCEC (Conditional Certainty Equivalent Consistency)

For any event E �= ∅, any outcome x ∈ X, and any act f in F ,

f ∼E x if and only if fEx ∼ x.

For multiple-prior preferences, Pires (2002) proved that consequentialism and conditional cer-

tainty equivalent consistency imply the Full Bayesian updating rule, where each probability

distribution in the set of priors is updated according to Bayes rule. .

3 Generalized neo-additive capacities

In this section we introduce a slightly generalized concept of a neo-additive capacity, which we

call Generalized Neo-additive Capacity (GNAC). CEU preferences with a neo-additive capacity,

as axiomatized in Chateauneuf, Eichberger, and Grant (2007), are a special case of a GNAC. As

a first building block we introduce a capacity which we call Hurwicz capacity, because it was

implicit in the decision rule suggested by Hurwicz (1951).

Definition 3.1 A Hurwicz capacity µα with degree of optimism α is defined by µα(∅) = 0,

µα(Ω) = 1, and µα(E) = α for all other events E ∈ Σ.

[Simon asks (16/12) for µα to be a capacity, don’t we require α ∈ 0, 1?]

A generalized neo-additive capacity (GNAC) can now be defined.
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Definition 3.2 For a finitely additive measure probability measure π on (Ω,Σ) and a pair of

numbers (δ, α), with δ ≤ 1, a generalized neo-additive capacity v is defined as

v(E|π, δ, α) = δ · µα(E) + (1− δ) · π(E)

for all E ∈ Σ.

A neo-additive capacity is the special case of a GNAC which satisfies the additional constraints

δ ≥ 0 and 0 ≤ α ≤ 1.

The Choquet expected value of an act f with respect to the GNAC v(E|π, δ, α) is given by:

CEU(f) = (1−δ)Eπ(u◦f)+δ(α ·max{x : x ∈ u◦f(Ω)}+(1−α) ·min{x : x ∈ u◦f(Ω)})

We will prove now that the only CEU preferences satisfying the Axiom CCEC are generalized

neo-additive capacities. Hence, for decision makers with CEU preferences which update their

beliefs according to the Full Bayesian updating rule, the stronger Axiom CCEC implies that

capacities must be GNAC. Indeed, for CEU preferences with Full Bayesian updating, Axiom

CCE almost characterizes neo-additive capacities.

Proposition 3.1 CEU preferences satisfy Axiom CCEC if and only if the capacity v is a GNAC.

The following remark indicates the way in which a small generalization of this result is possible.

Remark 3.1 Two remarks are in order.

(i) It is worth noting that our proof uses only one way of Axiom CCEC, namely f ∼E x ⇒

fEx ∼ x.

(ii) In the statement of Axiom CCEC, we can replace the constant act x by slightly more general

acts:

Alternative Axiom: Suppose argmin
ω∈Ω

f(ω) ∩ argmin
ω∈Ω

g(ω) �= ∅ ⊂ A and argmax
ω∈Ω

f(ω) ∩
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argmax
ω∈Ω

g(ω) �= ∅ ⊂ A, then for any h ∈ F such that

max

{
min
ω∈Ω

f(ω),min
ω∈Ω

g(ω)

}
≤ min

ω∈Ω
h(ω), max

ω∈Ωc
h(ω) ≤ min

{
max
ω∈Ω

f(ω),max
ω∈Ω

g(ω)

}
.

f ∼A g if and only if fAh ∼ gAh.

This alternative axiom is stronger than CCEC but, for CEU preferences, it is equivalent to

CCEC. Hence, for CEU preferences, Axiom CCEC implies GNAC which in turn implies the

alternative axiom.

Let us check that GNAC satisfy this axiom: let argmin
ω∈Ω

f(ω)∩argmin
ω∈Ω

g(ω) = Em andmax
ω∈Ω

f(ω)∩

argmax
ω∈Ω

g(ω) = EM. Let p = (1 − δ)π + αδdEm + (1 − α)δdEM , where dE denotes the

Dirac measure of the set E. As max

{
min
ω∈Ω

f(ω),min
ω∈Ω

g(ω)

}
≤ min

ω∈Ω
h(ω), max

ω∈Ωc
h(ω) ≤

min

{
max
ω∈Ω

f(ω),max
ω∈Ω

g(ω)

}
then

∫
fAhdv =

∫
fAhdp and

∫
gAhdv =

∫
gAhdp. As Em and

EM are included in A, then
∫

fdvA =
∫

fdpA and
∫

gdvA =
∫

gdpA. Therefore CCEC comes

from that the same measure is used at every stage.

4 Convex GNAC

Axiom CCEC is satisfied for Multiple Priors (MP) preferences if all prior probability distribu-

tions are updated according to the Bayesian rule (Pires (2002)). It is well known that CEU and

MP preferences coincide if and only if the capacity of a Choquet expected-utility maximizer

is convex. As Horie (2007) has shown, however, Axiom CCEC is no longer satisfied for CEU

with Full Bayesian updating. In order to see why, we need some new notation.

Let v be a convex capacity and C(v) = {m ∈ ∆(Ω)| m ≥ v} its core. Furthermore, let

PE = {
p

p(E)
| p ∈ C(v)} be the set of Bayesian updates of the probabilities in the core C(v). As

Horie (2007) points out, PE ⊆ C(vE). This follows since p ∈ C(vE) and A ⊂ E imply

p(A)

p(E)
− vE(A) =

p(A)

p(E)
−

v(A)

v(A) + v(Ac ∩E)

=
p(A)(v(A)+v(E\A))−v(A)p(E)

p(E)(v(A) + v(E\A))

=
p(A)v(E\A)−v(A)p(E\A)

p(E)(v(A) + v(E\A))
.

As p ∈ C(v), we have p(A) ≥ v(A) and p(E\A) ≤ v(E\A). Hence,
p(A)
p(E)

≤ vE(A) and
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PE ⊆ C(vE). Horie (2007) shows by example that PE � C(vE).

For a convex capacity with PE = C(vE) for all E ∈ Σ, we can apply Pires’ result in order to

see that CCEC holds. Our next proposition shows that C(vE) ⊆ PE if and only if v is a convex

GNAC, when |Ω| > 3.

Proposition 4.1 If |Ω| > 3 , C(vE) = PE if and only if v is a convex GNAC.

We conclude this section with a couple of remarks.

Remark 4.1 The following remarks are in order:

(i)Convex neo-additive capacities are ǫ-contaminations. If the state space Ω is finite, then there

exist convex GNAC which are not ǫ-contaminations. For example, n = 4 and π(E) = |E|
|Ω|

,

then v = 6
5
π − 1

5
is convex, but not an ε−contamination. With a non-atomic state space Ω,

however, monotonicity implies that the only GNAC are ǫ-contaminations. With neo- additive

capacities, the only way to be pessimistic consists in overweighting the minimum of an act and to

undervalue all other outcomes. For a GNAC, however, there is the possibility of underweighting

the maximum and overweighting all other outcomes.

(ii)Proposition 4.1 provides a necessary and sufficient condition for capacities to guarantee

C(vE) = PE. An alternative condition can be found in Theorem 2 of Jaffray (1992). Theorem

4.1, however, holds for convex capacities whereas Jaffray’s Theorem 2 is true only for belief

functions.

(iii) If |Ω| = 3 holds, then C(vE) = PE is true for every convex capacity.

(iv) Note that it follows from Proposition 3.1 that the only case in which C(vE) = PE holds for

convex capacities is when Axiom CCEC is true.

5 Conclusion

In this note, we show that a decision maker with CEU preferences satisfying Consequentialism,

State Independence, and Conditional Certainty Equivalent Consistency will hold beliefs which

are almost neo-additive. Such preferences can be represented by as a linear combination of
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the expected utility with respect to some additive probability distribution and the maximum

and minimum utility over outcomes. Moreover, if beliefs are represented by a convex capacity

then the core of the Full Bayesian updated capacities equals the set of Bayesian updates of the

probabilities in the core of the prior capacity. These observations clarify some open questions

on Fully Bayesian updating of capacities and multiple priors and provide additional arguments

for considering neo-additive capacities in a dynamic context.

Appendix A. Proofs

Proof of Proposition 3.1:

Step 1: Let f =
n∑

j=1

xjAj where Aj is the indicator function of the set Aj and u(xj) < u(xj+1),

then
∫

fdv =
∫

fdm with m measure such that for all j v(Aj ...An) = m(Aj...An).

Lemma A.1 v satisfies CCEC then for any Ai with i �= 1, n we have
∫

fdvAci =
1

m(Aci )

∫
fdmAci

,

where
∫

fdvAci is the Choquet integral of f when Ac
i has occurred and

∫
fdmAci

is integral of

f calculated according to m updated by Bayes rule.

That lemma means that, for those Ai with i �= 1, n, i.e.. the ones for which the values are not

the extreme ones, the Choquet integral of f is calculated according to the same measures wether

it is updated or not. Namely we have
∫

fdv =
∫

fdm, let
∫

fdvAci =
∫

fdp, we are going to

prove m
m(Aci )

= p.

Proof. Let y be the certainty equivalent of f conditional on Ac
i , f ∼Ac

i
y. If u(y) ≤ u(xi−1),

we define g on Ac
i as g = z on An and g = f else. By choosing u(z) > u(xi) we get g such

that g ∼Aci x with u(xi−1) < u(x) < u(xi+1). By continuity, this is possible. If u(xi+1) ≤ u(y)

we define another g, such that g ∼Aci x with u(xi−1) < u(x) < u(xi+1), by decreasing x1. f

and g are comonotonic because g is different of f only on the lowest value of f becoming lower

or the highest value becoming higher, therefore
∫

gdvAci =
∫

gdp . Now, we make use of CCEC

and get gAcix ∼ x. As u(xi−1) < u(x) < u(xi+1), f and gAcix are comonotonic so their Choquet

integrals are computed according to the same measure, namely
∫

gAcixdv =
∫

gAcixdm . Now
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we get
∫

gAcixdv = u(x).
∫
Aci

gdm+m(Ai)u(x) = u(x) so

u(x) =
1

m(Ac
i)

∫

Aci

gdm =

∫

Aci

gdvAci =

∫

Aci

gdp.

Let π = m
m(Aci )

− p, we have
∫
Aci

gdπ = 0. Let us prove π = 0. For each Aj, j �= i we define gj

as follows: gj = g on Ac
j and gj = xǫj on Ac

j . We have gj ∼Aci x′j . By continuity of u, we can

select xǫj close to xj and get u(xi−1) < u(x′j) < u(xi+1) {rem here j �= i ± 1}. gj and g are

comonotonic therefore g
jAci

x is calculated with the same measure m and also gj updated when

Ai has occurred with the same p. So with the same reasoning as above we get
∫
Aci

gjdπ = 0.

The gj are independent vectors so π = 0. Therefore, we obtain the result announced.

Step 2. We have
∫

fdvAci =
1

m(Aci )

∫
Aci

fdm. That is true for each measure m such that
∫

fdv =
∫

fdm whatever the ranking of Ai provided it is not extreme. So for two such measures m

and m′ (let us say that for m, u(xi) is between u(xj) and u(xj+1) and for m′, u(xi) is between

u(xj′) and u(xj′+1)), we have:

1

m(Ac
i)

∫

Aci

fdm =
1

m′(Ac
i)

∫

Aci

fdm′

that equality is true for all g such that g =
n∑

j=1,j �=i

xjAj and g comonotonic with f. So m(Ac
i) =

m′(Ac
i). We have m(Ac

i) = 1−m(Ai) = 1− v(Ai∪Aj+1...An)+ v(Aj+1...An), and m′(Ac
i) =

1−m′(Ai) = 1− v(Ai ∪Aj′+1...An) + v(Aj′+1...An)

v(Ai ∪ Aj+1...An)− v(Aj+1...An) = v(Ai ∪Aj′+1...An)− v(Aj′+1...An)

This is true for any f, let Ai = E as Ai i �= 1, n, let F = Aj+1...An let G = Aj′+1...An the

first hand of the equality holds if v(Ai ∪ Aj+1...An) − v(Aj+1...An) �= 1, i.e. v(F ) �= 0 and

v(F ∪E) �= 1 (which insures us that vAci exists), the second hand of the equality is available for

every G such that v(G) �= 0 and v(G ∪ E) �= 1 (which insures us that m(Ac
i) �= 0). So we get:

v(F ∪E)− v(F ) = v(G ∪ E)− v(G)

Step 3. Now we make use of Proposition 3.1 of Chateauneuf, Eichberger, and Grant (2007).

This proposition states four properties which are equivalent to being a neo-additive capacity.
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From the proof of that proposition, it turns out that, without other null sets than the empty set,

a GNAC is a capacity which fulfills condition (a). So we can conclude that the capacity v is a

GNAC.

Proof of Proposition 4.1:

Let us suppose C(vE) = PE. C(vE) is the core of a convex capacity. It is known, see e.g.

Delbaen (1974), that for any maximal chain (a chain is an ordered set of sets) C1 ⊂ ..Ci.. ⊂ E

we have got µ ∈ C(vE) such that ∀i µ(Ci) = vE(Ci). µ ∈ PE so for all i there exists p ∈ C(v)

such that,

p(Ci)

p(E)
= vE(Ci) =

v(Ci)

v(Ci) + v(E\Ci)

Which means from computations made above that p(Ci)v(E\Ci) − v(Ci)p(E\Ci) = 0. As

p(Ci) ≥ v(Ci) and p(E\Ci) ≤ v(E\Ci), we get p(Ci) = v(Ci) and p(E\Ci) = v(E\Ci).

From (1) we deduce that for all i,

p(E) = v(Ci) + v(E\Ci) = 1 + v(Ci)− v(Ci ∪ Ec)

so for A and B non void strictly included in E and ordered by inclusion we have,

v(Ec ∪A)− v(A) = v(Ec ∪ B)− v(B)

We can prove it remains true if A and B are not ordered by inclusion. if A ∩ B �= ∅, we have,

v(Ec ∪A)− v(A) = v(Ec ∪ (A ∩B))− v(A ∩B) = v(Ec ∪ B)− v(B)

if A ∪B � E we do the same with A ∪ B :

v(Ec ∪A)− v(A) = v(Ec ∪ (A ∪B))− v(A ∪B) = v(Ec ∪ B)− v(B)

The remaining case is A ∪ B = E and A ∩ B = ∅, if |E| > 2, we pick a non void set included

in A or B, say Á, and get,

v(Ec ∪A)− v(A) = v(Ec ∪ Á)− v(Á) = v(Ec ∪ (Á∪B))− v(Á∪B) = v(Ec ∪B)− v(B)

if |E| = 2, as |Ω| > 3 we can write Ec = F ∪G and get,

(i) : v(F ∪G ∪ A))− v(G ∪ A) = v(F ∪G ∪ B)− v(G ∪ B)
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(ii) : v(G ∪A)− v(A) = v(G ∪ B)− v(B)

(i)− (ii) : v(Ec ∪A))− v(A) = v(Ec ∪B)− v(B)

So we get the property (a) which insures that v is a GNAC.

Conversely, let us suppose that v is a GNAC, we just need to prove that any extreme point

µ of C(vE) belongs to PE. There exits a maximal chain C1 ⊂ ..Ci..Ck ⊂ E such that ∀i,

µ(Ci) = vE(Ci). We are going to construct p ∈ C(v) such that for all i,

p(Ci)

p(E)
= vE(Ci) =

v(Ci)

v(Ci) + v(E\Ci)

On P(E), the set of parts of E, v/E, v restricted to E is a convex capacity, so we can find in its

core a probability p such that p(Ci) = v(Ci) and p(E) = v(Ck)+ v(E\Ck), (compare Delbaen

(1974)). By the Hahn Banach Theorem, we can extend p to Σ with p in the core of v. As v

satisfies property (a) we have

p(E) = v(Ci) + v(E\Ci) = 1 + v(Ci)− v(Ci ∪ Ec).

Hence,

p(Ci ∪Ec) = p(E) + p(Ci) = v(Ci ∪ Ec).

Thus, p satisfies property (a) and we have C(vE) = PE.

Appendix B. Null sets

In this appendix we show that, with the appropriate modifications, one can extend the results

of this paper to the case of general null and universal sets which was treated in Chateauneuf,

Eichberger, and Grant (2007).

For any capacity v, there exists a partition of Ω into the set of null eventsN , the set of universal

events U , the set of essential events E . Those sets have the following properties: ∅ ∈ N ; if

A ∈ N then B ∈ N , for every B ⊂ A; A ∈ N and B ∈ N then A ∪ B ∈ N , U = {E ∈ Σ;

Ec ∈ N}. The definitions of section 2 are modified on the following way:
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Definition B.1 (Chateauneuf, Eichberger, and Grant (2007)).The Hurwicz capacity exactly

congruent with N and α degree of optimism is defined to be

µNα = 0 if E ∈ N ; µNα = 1 if E ∈ Ω\N and µNα = α else.

Definition B.2 For a given set of null events N , a finitely additive measure probability mea-

sure π on (Ω,Σ) that is null onN and a pair of number (δ, α), with δ, α ∈ [0, 1], a neo-additive

capacity v is defined as

v(E/N , π, δ, α) = δ · µNα (E) + (1− δ) · π(E)

for all E ∈ Σ.

Definition B.3 For a given set of null events N , a finitely additive measure probability mea-

sure π on (Ω,Σ) that is null onN and a pair of number (δ, α), with δ ≤ 1, a GNAC v is defined

as

v(E/N , π, δ, α) = δ · µNα (E) + (1− δ) · π(E)

for all E ∈ Σ.

The Choquet expected value of a simple function f with respect to the neo-additive capacity

v(E/N , π, δ, α) is given by:
∫

fdv = (1− δ)Eπ(f) + δ(α ·max{x : f−1(x) /∈ N}+ (1− α) ·min{y : f−1(y) /∈ N})

For general null sets, Proposition 3.1 remains valid.

Proposition B.1 CEU preferences satisfy Axiom CCEC if and only if the capacity v is a GNAC.

Proof. With null sets, a GNAC must fulfill not only condition (a), already mentioned, but also

condition (d) of Proposition 3.1 of Chateauneuf, Eichberger, and Grant (2007).

A capacity v is a generalized neo-additive capacity if and only if

(a) for any three events (E, F, G) ∈ E × E × E such that E ∩F = ∅ = E ∩G, E ∪F /∈ U and
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E ∪G /∈ U ,

v(E ∪ F )− v(F ) = v(E ∪G)− v(G), (B-1)

(d) for any E ∈ E and any F ∈ N such that E ∩ F = ∅, v(E ∪ F ) = v(E).

It remains to prove that (d) is also satisfied. Note first that Equation B-1 is satisfied for all sets

E, F and G such that (F ) �= 0, v(F ∪ E) �= 1, v(G) �= 0 and v(G ∪ E) �= 1. Let N be a

null set and E an essential event we want to prove that v(N ∪E) = v(E). By removing all the

null sets of N c, we get a set U such that U ⊂ N c, v(U) = 1, ∀A ⊂ U, v(A) = 0 ⇔ A = ∅.

We can apply Proposition 3.1 on U because there is no other null set than the void set on U

and we get v/U is a GNAC, let us say v/U(E) = v(E/π, δ, α). There exists two essential sets

A2 and A3 such that A2 ∪ A3 = U \ E. Now we consider the algebra A whose atoms are

E ∪N = A1 , A2 and A3, let us call v′ the restriction of v to this algebra. On this algebra there

is no other null set than the void one end do we can apply Proposition 3.1 so for E ∈ A we

have v′(E) = v(E/π′, δ′, α′). Now, we have v′(A2) = π′(A2) + α′δ′, v′(A3) = π′(A3) + α′δ′,

v′(A2 ∪ A3) = π′(A2 ∪ A3) + α′δ′ so α′δ′ = v′(A2 ∪ A3) − v′(A2) − v′(A3). As the sets

A2 and A3 belong to U, we have αδ = v(A2 ∪ A3) − v(A2) − v(A3) and, as for E ∈ A,

v′(E) = v(E), we have α′δ′ = αδ and π(A2) = π′(A2) and π(A3) = π′(A3). As v(U) = 1 and

v(A1 ∪A2 ∪A3) = 1 we have π(E) = 1− π(A2)− π(A3) and π′(A1) = 1− π′(A2)− π′(A3),

therefore we have v(E) = v(E ∪N).
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