
Reihe Informatik
003 / 2009

Scalability Transformations on Declarative Applications

Alexander Böhm Carl-Christian Kanne

University of Mannheim

alex|cc@db.informatik.uni-mannheim.de

Scalability Transformations on Declarative Applications

Alexander Böhm
University of Mannheim

Germany
alex@db.informatik.uni-mannheim.de

Carl-Christian Kanne
University of Zurich

Switzerland
kanne@ifi.uzh.ch

ABSTRACT
Many current distributed applications are based on the ex-
change of XML messages. Scaling such applications to the
high processing volume demanded by Internet-scale deploy-
ment typically requires costly redesign and coding.

In this paper, we investigate how a declarative specifica-
tion of such applications can simplify the task of deploying
them on a large number of host machines. In our model,
applications are represented as a graph of message queues
connected by message flow rules. The state of application
instances is encoded in the message history of the queues
and accessed using XQuery expressions. We show how to
split such an application into distributable fragments using
graph partitioning and discuss different algorithms for plac-
ing the fragments on hosts. Typically, an initial application
specification contains data dependencies that place an upper
limit on the number of fragments, and hence the number of
usable machines. We describe transformations that increase
the number of possible fragments by converting data depen-
dencies into message flow. An evaluation using the TPC-
App benchmark and a runtime system prototype confirms
the feasibility and performance benefits of this approach.

1. INTRODUCTION
To be successful, modern applications need to have very

small times between idea and realization. At the same time,
they must be able to scale to a large number of concurrently
active instances to avoid becoming the victims of their own
success. Utility computing provide access to the required
processing and storage capacities [19, 34]. However, on the
software side, creating scalable applications remains a diffi-
cult task that cannot be fully automated.

Typical architectures follow an approach where messages
are organized in queues, state is stored in DBMS, and ap-
plication code is written in imperative languages. We be-
lieve that this model can be greatly improved by changing
two aspects. Firstly, by using a declarative rule language
to describe the processing logic. Secondly, by exclusively

.

modeling state using the message history and accessing it
using declarative expressions. This programming model is
investigated in the Demaq project [7, 8] in the context of
XML messaging (e.g. Web Services). So far, we have fo-
cused on developer productivity and execution efficiency on
single hosts that participate in distributed processes.

In this paper, we turn to the parallel execution of declara-
tive application programs. In this context, the unified data
model for representing state and messages is showing great
promise, because we can simply transform state (in our case:
history) access to messaging, and vice versa. This is the core
of our approach: Instead of designing a general, distributed
run-time system, we model deployment of an application as
a source-level transformation that turns a non-distributed
application specification into a set of programs that can be
executed on the various machines of a cluster. All required
messaging becomes explicit, and the resulting programs can
be run on the local run-time systems.

The challenges of this approach are to automate as much
of this parallelization process as possible and to assist de-
velopers in making and implementing design choices when
parallelizing an application.

To deal with these challenges, we represent the message
queues and rules of an application in form of graphs that
represent message flow and message history access. Distri-
bution of the application functionality becomes a matter of
graph partitioning. Further, we present ”scalability trans-
formations” that modify the application structure by intro-
ducing messaging operations that allow for more partitions
of the graph. These transformations represent a toolbox of
methods to increase the number of hosts an application can
be run on.

In particular, we show how

• to decompose a declarative messaging application into
independent fragments that can be executed on differ-
ent host machines

• to assign application fragments to hosts based on work-
load information

• to increase the number of fragments by

– converting message history (state) access to mes-
sage flow

– replicating fragments based on partitions of the
message history

• the performance of a benchmark application (TPC-
App) can be improved by our techniques

1

The remainder of the paper is organized as follows. We
discuss our programming model in Sec. 2. Sec. 3 gives an
overview of the TPC-App benchmark that we use as a run-
ning example throughout the paper. In Sec. 4, we discuss
how the independent fragments of an application can be
automatically identified and deployed to a cluster of hosts.
Sec. 5 discusses how applications can be rewritten to yield
more fragments and thus can potentially be deployed on a
larger number of machines. We evaluate the benefits of the
proposed techniques in Sec. 6 before briefly reviewing related
work in Sec. 7. Sec. 8 concludes the paper.

2. PROGRAMMING MODEL
Our programming model describes the application logic

of a node in a distributed XML messaging application using
two fundamental components: Queues and rules.

XML message queues (Sec. 2.1) provide asynchronous com-
munication facilities and allow for reliable and persistent
message storage. Declarative rules (Sec. 2.2) operate on
these message queues and are used to implement the ap-
plication logic. The Demaq execution model (Sec. 2.3) cap-
tures the typical behavior of message-driven applications in
a few simple rules and guarantees that need to be provided
by the corresponding run-time system.

2.1 XML Message Queues
Distributed messaging applications are based on asyn-

chronous data exchange. Queue data structures offer ef-
ficient message storage and retrieval operations while pre-
serving the order of incoming data. Queues also allow to
decouple the retrieval of a message from its processing. This
is particularly useful for an application to keep interacting
with communication partners in periods of high load.

In our model, queues do not only serve as buffers for exter-
nal communication, but also to provide the persistent mem-
ory for a node. Instead of deleting messages after processing,
they are only marked as processed and remain accessible.

All state changes in our model are reflected by messages.
Consequentially, the current state of an application instance
is expressible as a declarative query against the message his-
tory. For this query to yield the correct result, messages have
to be retained as long as they are necessary to compute the
state of an instance. In Demaq, we allow application de-
velopers to directly specify a condition that must be met
by the messages that are sufficient to represent the current
application state. Access to the message history then yields
the smallest suffix which contains such a set of relevant mes-
sages.

The logical model of our message queues is based on the
XQuery Data Model (XDM) [16]. XDM is the data model of
most XML query languages including XPath 2.0, XSLT 2.0
and XQuery. For our purposes, XDM is particularly suited,
as its fundamental type is the ordered sequence, which nicely
captures message queue structures.

2.1.1 Physical Queues
Our programming model incorporates two different kinds

of queues. Gateway queues provide communication facil-
ities for the interaction with remote systems. There are
two different kinds of gateway queues, inbound and out-
bound. Messages placed into outbound gateway queues are
sent, while inbound gateway queues contain messages that
have been received from remote nodes. Various protocols are

supported, including HTTP, SMTP, SOAP, and various bi-
nary Demaq-to-Demaq protocols that avoid to fully serialize
XML for communication between hosts of a single cluster,
with a format very similar to the protocol buffers of [20].

Queues are also used as persistent storage containers. These
basic queues allow applications to define intermediate steps
in their control flow and also to simply store data.

As a result, messages received from remote communica-
tion endpoints and local state representation are handled in
a uniform manner, simplifying application development and
distribution.

2.1.2 Virtual Queues (Slicings)
To declare which portions of the message history are rel-

evant in particular contexts, the Demaq language incorpo-
rates the concept of virtual queues, called slicings.

Slicings can be seen as a kind of parameterized view [31]
that extends the concept of data independence to the ap-
plication state. They support compact rule formulation by
giving a name to frequent parameterized expressions. Fur-
ther, the explicit declaration of relevant message subsets can
be used for optimization purposes, e.g. by indexing or ma-
terializing slicings.

Slicings are used to simplify the implementation of recur-
ring design patterns in messaging and workflow applications,
such as ”correlation sets” in BPEL , or ”conversations” in XL
[17]. Additionally, they can be used to join control flow after
executing several tasks in parallel, or to establish synchro-
nization points and milestones [33] within an application.

A slicing defines a family of slices, where each slice consists
of all the messages with the same value for a particular part
of the message (slice key). For each slicing, the function to
map a message to its corresponding slice key is specified in
the Demaq language using an XPath expression. The eval-
uation of the expression on the message’s root node yields
the slice key.

2.2 Declarative Rules
In our model, the application logic is specified as a set

of declarative rules that operate on messages and queues.
Each rule describes how to react to a single new message
in a queue. Depending on the structure and content of this
message, rule execution results in the creation of new mes-
sages. These result messages can either become the input for
another rule, or be sent to a remote system using a gateway
queue.

Our rule language is built on the foundation of XQuery
[5]. It allows developers to directly access and interact with
XML fragments stored in message queues. Thus, there is
no mismatch between the type system of the application
programs and the underlying communication format. Ad-
ditionally, existing tools, query processing and optimization
techniques can be adapted to our application language.

2.2.1 Rule Structure
Rules consist of rule heads and rule bodies. Rule heads

simply define the name of a rule and associate it with a
single queue or slicing. The rule body consists of a single
XQuery expression. Whenever a message gets inserted into
this queue or slicing, the rule body is evaluated with this
message as the context item.

Optionally, an error queue can be defined for each appli-
cation rule. Whenever a runtime error is encountered dur-

2

ing the execution of this rule, a corresponding notification
message is sent to the associated error queue. Thus, errors
can be handled by rules defined on the corresponding error
queue. If no error queue is defined, error notifications are
inserted into a system-provided, default error queue.

2.2.2 Rule Effect
Every application rule describes how to react to a message

by creating new messages and enqueuing them into local
or gateway queues. While XQuery allows for the creation
of arbitrary XML fragments, it does not incorporate any
primitives for performing side effects. In our model, this is
a severe restriction, as there is no possibility to modify the
content of the queues underlying our application rules.

We adopt the update method introduced by the XQuery
Update Facility [11] to perform side effects on the message
store. Every application rule is an updating expression that
produces a (possibly empty) list of messages that have to
be incorporated into the message store by enqueuing them
into corresponding queues. Demaq extends the XQuery Up-
date Facility with an additional enqueue message update
primitive.

2.2.3 Message History Access
Our model encodes application state as queries against the

message history. Hence, we need to extend XQuery to allow
access to this history. This can be done without requiring
changes to the syntax or semantics of XQuery by providing
external functions. Our language incorporates functions for
accessing the sequence of XML messages in a particular slice
(qs:slice) and to retrieve the slicekey of a message.

2.3 Execution Model
The fundamental behavior of messaging applications can

be described as a simple loop that (1) decides which mes-
sage(s) to process, (2) determines the reaction to that mes-
sage based on its content and the application state, and (3)
effects the reaction by creating new messages. In existing
systems, this loop is mostly coded by hand, optimizing for
the requirements of each application. Implementations of
the Demaq model may use any form of processing loop(s)
that obeys the following constraints:

1. Each message is processed exactly once. This means
that the evaluation of all rules defined for the message’s
queue and slicings are triggered once for every message.

2. Rules are evaluated by determining the result of the
rule body as defined by XQuery (update) semantics,
extended by the access function definitions described
in Sec. 2.2.3. The result is a sequence of pending up-
date operations in the form of messages to enqueue.

3. The overall result of rule evaluation for a message is the
concatenation of the pending actions of the individual
rules in some non-deterministic order.

4. Processing the pending actions for a message is atomic,
i.e. after a successful rule evaluation all result mes-
sages are added to the message history in one atomic
transaction, which also marks the trigger message as
processed.

5. All rule evaluations for the same trigger message see
the same snapshot of the message history, which con-

tains all messages enqueued prior to the trigger mes-
sage, but none of the messages enqueued later.

This list includes strong transactional guarantees neces-
sary to implement reliable state-dependent applications, but
still allows many alternative strategies to couple message
processing to a transactional message store. Note that the
above model does not allow for message store transactions
that span rules. However, application developers do have
some control over the amount of decoupled, asynchronous
execution: The expressive power of XQuery allows the bundling
of complex processing steps into single rules, which are ex-
ecuted in a single transaction and hence allow to constrain
the visibility of intermediate results to concurrent transac-
tions. Further, application developers can isolate intermedi-
ate messages in local queues that are not accessed by con-
flicting control paths.

3. SAMPLE APPLICATION: TPC-APP
Throughout this paper, we use the TPC-App benchmark

[32] as a running example. TPC-App is an application server
and web services benchmark proposed by the Transaction
Processing Performance Council (TPC). Its objective is to
evaluate the performance of transactional application server
systems, including complex application logic, remote mes-
saging operations and persistent data management.

3.1 Application Domain
TPC-App implements the application logic of a book dis-

tributor. It provides business partners with web service in-
terfaces, i.e. all communication is based on XML messages.
The services provided by the book distributor include brows-
ing the product catalog, adding new products, managing
master data, as well as ordering and order tracking func-
tionality. While each of these services can be accessed sepa-
rately by sending XML messages with a particular schema,
their functionality is tightly coupled as they access conjoint
data such as customer master data, product information or
order status. Apart from its own services, the application
interacts with external web services e.g. for credit card ver-
ification, product delivery, stock management, etc. Again,
all this communication is based on XML messages.

3.2 Demaq Implementation
Our implementation of TPC-App consists of about 1000

lines of Demaq code with a total of 32 application rules, 35
queues and 17 slicings. This code also includes the ”external”
service emulations required by TPC-App. Figure 1 depicts
the queues and message flow of the application1. In this
graph, message flow is represented using black solid edges.
If a rule defined on a queue accesses the message history of
another queue, this is represented using a dashed red edge.

Figure 2 shows an exemplary rule that implements TPC-
App’s ”product detail” web service together with the cor-
responding queue and slicing definition expressions. This
service allows customers to retrieve detailed product infor-
mation for a list of product identifiers. In Demaq, the entire
functionality, including message and master data access as
well as the construction of the result message can be realized
within a single application rule.

1The complete application, a workload driver and message
templates are available at http://www.demaq.net/.

3

customerRequestsBN

addressesByCity

customersByID

customersByBusinessName

changePaymentRequestsByCustomerID

customersByID

customersByID

createOrderByOrderID

addressesByCitycustomersByIDaddressesByIDcustomersByID
addressesByID

customersByID

itemByID

stocksByItemID

shippingsByOrderIDshippingsByOrderID

ordersByOrderID

stockManagementByOrderID

ordersByOrderID

shippingsByOrderID

customersByID

addressesByID

ordersByCustomerID

itemByID

shippingsByOrderIDauthorsByLastname

itemsBySubject

authorsByID

itemByID

authorsByID

incomingMessages

outgoingMessages

newCustomer

createCustomer

customerPovResponses

customers addresses

changePayment

paymentPovResponses

updatePayment

createOrder

orderPGEResponses

orderAddressHandling

costCalculation

capacityCheck

ordersitems

stocks

shipping

shippingSNEResponse

stockManagement

stockICEResponse

stockAndShippingUpdates

orderStatus

verifiedOrderStatusnewProduct

createProduct authors

checkProducts productDetailexternalCustomerPOV

externalPaymentPOV externalPGE

externalSNE externalICE

Figure 1: Application Structure (Queues), Message Flow and Data Dependencies of TPC-App

Lines 1-3 contain the queue definition expression for three
basic queues that are used for persistent data storage (items
and authors) and intermediate message flow. Two slicings
are defined on these queues in order to access the item and
author master data based on their respective identifier (lines
5-7).

The create rule expression (line 9) declares a new rule
with name handleProductDetail that is executed every time
a message is enqueued in the productDetail queue. The
product identifiers the customer is interested in are extracted
from the customer’s message using a path expression (line
13). For each identifier, the corresponding item master data
is retrieved using a qs:slice function call (line 14). An-
other slice function call is used to retrieve the author of
each individual item. XQuery element constructors are used
to assemble the result message (lines 19 to 25). Finally,
the result message is enqueued into the outgoingMessages

gateway queue (line 26), from where it is delivered to the
requesting customer.

1 create queue productDetail kind basic mode persistent ;
2 create queue items kind basic mode persistent ;
3 create queue authors kind basic mode persistent ;
4
5 create slicing itemByID queue items value /item/id ;
6 create slicing authorsByID
7 queue authors value /author/authorID;
8
9 create rule handleProductDetail for productDetail

10 let $request as node() := /ProductDetail
11 let $result as node() :=
12 <ProductDetailResponse><ProductDetailResult>{
13 for $itemID in $request/ITEM ID/text()
14 let $item as node():=qs : s l ice ($itemID,”itemByID”)/item
15 let $authorID := $item/authorID/text()
16 let $author as node() :=
17 qs : s l ice ($authorID, ”authorsByID”)/author
18 return (
19 <ITEM ID>{$itemID}</ITEM ID>,
20 <ITEM TITLE>{$item/t i t l e/text()}</ITEM TITLE>,
21 <AUTHORFNAME>{$author/firstname/text()}</AUTHORFNAME>,
22 <AUTHORLNAME>{$author/lastname/text()}</AUTHORLNAME>,
23 (: skipping additional element constructors :)
24 <ITEMCOST>{$item/cost/text()}</ITEMCOST>)
25 }</ProductDetailResult></ProductDetailResponse>
26 return enqueue message $result into outgoingMessages;

Figure 2: TPC-App ”Product Detail” Web Service

The rule shows up in Fig. 1 as three edges starting from
productDetail. One message flow edge to outgoingMes-

sages, and two red history access edges to authors and
items.

4. DISTRIBUTION TRANSFORMATIONS
As discussed before, our goal is to increase the perform-

ance and scalability of declarative applications by distribut-
ing them to clusters of hosts based on commodity hardware.

We use a transformative approach to distribute Demaq
applications. By transformative, we mean that we do not
create a ”distributed” Demaq run-time system, but instead
rewrite individual Demaq applications into a set of host pro-
grams, one for each host. There are two reasons for this.
Firstly, the Demaq language is designed to describe appli-
cations that take part in distributed systems, so it is quite
simple to add code to a Demaq program that deals with the
distribution. Secondly, guaranteeing a ”single system view”
for a distributed runtime system requires design choices for
issues related to distribution [35] that are best solved in an
application-specific way. Our approach using a distribution-
aware language before and after the transformation allows to
fine-tune the application, for example to address consistency
issues.

We will now describe the mechanisms for distribution of
declarative Demaq applications in more detail. In a first
step, we perform a functional decomposition of the applica-
tion into fragments that allow for local rule processing on
each host without changing application semantics. We then
describe how to map these fragments to hosts. Given a frag-
mentation with a corresponding allocation of hosts, we can
easily create the required subprograms for each host in a
final step.

4.1 Application Fragmentation
There is a natural decomposition of a queue-based messag-

ing application into parts that can be processed by separate
hosts. We can simply assign each queue to a host that is
responsible for processing that queue’s messages. However,
since our model allows message history access, we need to
be careful to distribute queues on hosts in a way that al-
lows to locally process rules. Without local rule processing,
we would incur communication costs not only for sending
messages, but also for remote history access.

We call a subset of an application’s queues a fragment of
the application. A fragment is independent iff processing
its rules only requires access to the message histories of the

4

queues in this fragment. Different independent fragments
may be placed on different hosts without changing the ap-
plication’s semantics. A fragmentation of an application is
a set of disjoint, independent fragments whose union equals
the set of all queues of the application. A maximal fragmen-

tation is the largest such set of independent fragments.
Our objective is to find a maximal fragmentation of an

application, in order to have as many choices as possible to
create a balanced distribution of queues to hosts.

The declarative application specification of rules simpli-
fies to determine a maximal fragmentation. We use the rule
bodies to construct a data dependency graph with the ap-
plication’s queues as nodes. There is an edge from queue
q1 to queue q2 iff a rule defined on q1 accesses the message
history of q2 (by means of a qs:slice() call).

An example for such a dependency graph is shown in Fig. 1
for our TPC-App implementation. That figure contains the
data dependency graph if only the dashed, red edges are
considered. The solid black edges represent messages sent
between queues, which does not induce a data dependency
between the queues.

An edge between two queues means that they cannot be
part of different independent fragments. Hence, each con-
nected component represents one independent fragment of
the application that cannot be fragmented further. Creat-
ing a maximal fragmentation is simply a matter of finding
all connected components of the data dependency graph.

4.2 Host Allocation
After the independent fragments have been identified us-

ing the dependency graph, the next step is to assign these
fragments to the available machines.

4.2.1 Problem Statement
We want to find a map from the application’s fragments

to a set of host machines H . This should be done in a way
that equally distributes the rule evaluation workload among
hosts and - at the same time - minimizes network commu-
nication by co-locating frequently communicating fragments
if possible.

Our fragmented application can be represented as a frag-

ment graph G(V, E, w, c), with the vertexes representing frag-
ments. The edges represent communication between frag-
ments, such that there is an edge between v1 and v2 iff rule
evaluation on a queue from v1 may cause a message to be
enqueued at a queue of v2. We assume a weight function
c that assigns a rule evaluation cost to each vertex. The
graph edges are weighted with network traffic using a net-
work cost function w that reflects message count and size in
a single cost measure based on the latency and bandwidth
of the connections.

A k-cut of the graph consists of k disjoint sets of vertexes,
such that their union is the complete graph. The value of
a cut is the sum of the weights of those edges that connect
vertexes in different sets. In our case, we want to find a
minimum balanced |H |-cut, i.e. a cut for which the sum of
node weights in each set is equal (or as equal as possible
given a set of weights), and the value of the cut is minimal.
Unfortunately, this optimization problem is NP-hard even
for |H | = 2 (MINIMUM BALANCED CUT), and we have
to consider heuristics.

We will first describe our method to determine the weights

for a given application program and then discuss various
heuristics to solve the problem.

4.2.2 Estimated Application Workload
Cost estimation of XQuery evaluation is difficult and highly

dependent on the actual data/messages. Hence, we do not
attempt to accurately estimate costs by looking only at the
application specification and a workload description. In-
stead, we rely on statistics collected while running the ap-
plication with a sample workload on a single host. This
profile information is used to guide the partitioning process
and to derive a solution that fits the expected workload [10,
14, 23]. The relevant profile information we collect includes
the total size and number of messages exchanged between
the queues of the application and the rule execution effort
(elapsed time) for each individual queue.

4.2.3 Partitioning Heuristics
We evaluate three different heuristics to find good host

allocations for the fragments. While there are many more
strategies (such as Genetic Algorithms or Simulated Anneal-
ing), the focus of this paper is not on an evaluation of par-
titioning heuristics, and we leave a detailed investigation as
future work.

First-Fit Bin Packing Heuristic.
Our first heuristic ignores network communication, as-

suming that XQuery rule evaluation is the dominant factor
when processing Demaq programs. We allocate a given set
of fragments to a given maximum number of hosts by solving
instances of the BIN PACKING problem with the available
hosts as the bins the application fragments are assigned to.

Instead of trying to find a solution with a minimum num-
ber of fixed sized bins, our objective is to find a minimal
bin size that allows to allocate all fragments using less than
a maximum number of available hosts. We approach this
problem by performing a binary search on the bin size and
solving the bin packing instance at each binary search step.
Since bin packing itself is NP-hard, we use the first-fit heuris-
tic to approximate the optimal fragment distribution. First-
fit is simple to implement, efficient and produces relatively
good solutions [25].

Bond Energy Algorithm.
The Bond Energy Algorithm (BEA) [26] is used in the

context of vertical fragmentation of a relational schema into
sets of related attributes [27, 28] based on access similarity.
This is similar to our problem of host allocation, where an
application is partitioned into sets of related fragments based
on access similarity as measured by network traffic between
fragments.

As input to the algorithm, we use the weighted adjacency
matrix A of the fragment graph. We do not distinguish be-
tween incoming and outgoing traffic, and construct a sym-
metric matrix with aij = w((vi, vj)) + w((vj , vi)). The al-
gorithm then permutes the rows and columns of the matrix,
trying to maximize the similarity of neighboring entries. The
result is a reordered matrix in block diagonal form where
structurally similar rows/columns are ”clumped” together.

BEA yields a one-dimensional ordering the fragments where
strongly related fragments are close together. We still need
to divide this ordering into partitions that are balanced and
minimize the communication overhead. In a next step, we

5

use the partitioning technique proposed by Navathe et. al.
[27], which bisects the block diagonal matrix into two sub-
partitions. The BEA and binary partitioning steps are re-
cursively applied to these sub-partitions until a given num-
ber of target hosts is reached. In each partitioning step, we
choose the best cut using an objective function that balances
partitions by minimizing the maximum CPU load assigned
to a single host and the total aggregated network communi-
cation.

Spectral Bisection.
In many application areas, spectral graph partitioning is

used to solve optimization problems related to graph cuts.
One such area is load balancing in parallel computing [22],
which inspires us to also employ a spectral algorithm for our
host allocation problem. We only sketch the core idea of the
method here, and refer to [22] for details. The algorithm
uses a weighted Laplacian matrix as representation for the
fragment graph, which is essentially the same matrix as used
by the BEA above, but with additional diagonal elements
that equal the sum of all network traffic entering or leaving
a fragment. Spectral graph partitioning now computes the
eigenvectors of this matrix. The first nontrivial eigenvector
represents a partitioning of the graph vertexes that can be
used as a heuristic for a minimal balanced cut. Sorting the
graph vertexes by their corresponding components in that
eigenvector again yields an ordering of our fragments that
reflects their structural relationships, much as the permuted
matrix of the BEA does. After computing the ordering,
we again apply a recursive partitioning scheme similar to
Navathe et. al. [27] to derive the fragment allocations.

4.3 Deployment
After the fragments have been mapped to the available

hosts, the final step in the distribution process is to trans-
form the initial application into a set of host programs. Each
individual host program contains the application code of the
corresponding fragments. This includes queue and slicing
definitions as well as application rules.

In order to allow for host-to-host message exchange, ad-
ditional gateway queues have to be created. This includes
incoming gateway queues to receive messages that need to
be processed by local fragments from other machines, as well
as outgoing gateway queues that allow to send messages
to remote fragments. Additionally, local application rules
that enqueue messages into queues belonging to a remote
fragment have to be rewritten to use the outgoing gateway
queues instead.

5. SCALABILITY TRANSFORMATIONS
The previous sections discuss the distribution of ”vanilla”

applications as originally written by the developer. In prac-
tice, the message history accesses of such applications often
limit the amount of parallelism and distribution that can
be achieved automatically. The method of choice to reduce
these dependencies is to manually redesign and modify the
application to replicate some of the data and control infor-
mation and ship it between nodes.

In our approach, we describe scalability-improving trans-
formations systematically as source-level rewrites, in a for-
mal and succinct manner that simplifies their application,

and at the same time allows local decisions on where to ap-
ply them that do not affect other parts of the application.

We present full source code only for a few rewrites and
discuss only the structure of the remaining transformations
to save space. In a final section, we discuss how to control
application of the rewrites.

5.1 Breaking History Access Chains
Whenever a rule r defined on a queue q accesses the his-

tory of another queue s, our approach requires q and s to
be in the same fragment. This prohibits the mapping of q

and s to different hosts. This transitively applies to other
queues if they access the history of q, and may cause un-
related queues to share a fragment without necessity. The
left side of Fig. 3 shows such a situation, with rules on p

accessing q and rules on q accessing s. As a result, p must
be in the same fragment as s.

q

s

q'

s

q

p p

Figure 3: Broken History Access Chain

We can decouple p from s simply by copying the current
message from q to a new queue q′ and processing the rule r

on that queue instead. This converts history access to mes-
sage flow, and allows to put p and s into different partitions.
The history of q is still intact and must reside in the same
fragment as p, but processing of r can be done in a separate
fragment. The desired outcome is shown on the right side
of Fig. 3.

5.1.1 Simple Version
The actual source-level rewrite to perform depends on the

rule body r. If r does not access the history of q, the rewrite
is very simple. Before the rewrite, the code looks like this:

create rule r for q
body

This code is replaced with

create rule r ’ for q
enqueue message . into q ’ ;

create queue q’ . . .

create rule r ’ ’ for q’
body

The result is as described above. Note that we do not need
to keep q′’s history, as only the current message is necessary,
whereas we still keep q’s history for rules defined on p. This
reduced amount of required history can be specified using
the retention mechanisms explained in Sec. 2.1.

5.1.2 Transforming History Accesses
If there is a message history access to q in r, the situation

is slightly more complex. For ease of exposition, assume
that this self-history access of q is through a single slicing t

(the method below can be easily extended to more than one
slicing). In this case, we can ”annotate” the context message

6

with the required history slices of t before sending it to q′.
In the rule body evaluated on q′, we replace all accesses to
slices of t with accesses to the ”enriched” context message.

Applied to our ”before” code from above, the correspond-
ing rewritten code is

create rule r ’ for q
let $t:=<slicing name=”t”>

{ for $k in slicekeysfrombody
return <s l ice value=”{$k}”>

{qs : s l ice ($k,”t”)}
</slice> }

</slicing>

return enqueue message <pkg> <origmsg> { . } </origmsg>
{ $t }

</pkg> into q ’ ;

create queue q’ . . .

create rule r ’ ’ for q’
body’

where body’ is rule r’s body in which all accesses to the
current message have been replaced with /pkg/origmsg, and
all calls of the form qs:slice($k,"t") have been replaced
with expressions that access the slices encoded in the en-
riched message, such as
/pkg/slicing[@name eq ’t’]/slice[@value eq $k]/*.
The expression slicekeysfrombody is obtained by trans-

forming body into an XQuery expression that returns a se-
quence of all the slicekeys required in the evaluation of body.
Using the rewrite function [[·]]s

D
as defined below, we have

slicekeysfrombody:=[[body]]t∅.
As above, the history of q′ does not need to be retained,

only the currently unprocessed messages have to be stored.
In the TPC-App example, this rewrite allows us to cut the

history access edges from the verifiedOrderStatus queue
to the orders and shipping queues. Consequentially, the
order and shipping related functionality (the ten queues in
the lower right corner of Figure 1) becomes an independent
fragment.

5.1.3 Determining Slice Keys at Run-Time
The rewrite rule to embed slice contents into an enriched

message discussed above must be able to determine the slice
keys required to evaluate the rule body for a specific input
message. If these slice keys are not constants but depend on
the input message, they need to be computed at run-time.
We define a function [[·]]s

D
which transforms an XQuery body

expression into an XQuery expression that may be used to
compute the list of required slice keys for slicing s at run-
time.

To define our function, we assume a normalized form of
XQuery expressions called XQuery Core [15], where every
FLWOR expression only contains a single for or let fol-
lowed by a return, and where clauses are replaced by if

then else conditionals. Further, we assume that every sim-
ple expression is decomposed into single operations with only
variables as arguments. Operators, updating primitives and
XML constructors are treated like function calls. For exam-
ple, $x + 1 is normalized to

let $one:= 1 return (let $r := $x + $one return $r)

When applied to such a normalized expression, our func-
tion descends down the syntax tree, recursively applying it-
self to the subexpressions. The noteworthy exceptions to
recursive propagation are shown in Fig. 4. We never want
to return actual results of operations, hence rewrite variable

references to empty sequences wherever they are not used
as function arguments (1). We return any used slice keys
for slicing s, but do not use results of slice access, and drop
the corresponding variable definitions (2). We remember the
dropped variable in D in the recursive call. This removes
all code from the expression that depends on slice contents.
For regular function calls or slice calls on other slices than
s, we progress recursively unless one of the arguments does
not exist, in which case we also drop the result variable (3).
Finally, if a conditional depends on a dropped variable, we
try to determine the slice keys in both branches (4).

Note that we cannot determine slice keys if the referenced
slice key depends on another access to the same slicing. In
this case, we return an error in (2), and cannot apply our
rewrite2.

As an example, rewriting the rule body

for $i in //productID
return count(qs : s l ice ($i ,”productsByID”))

for slicing productsByID yields the rewritten expression

for $i in //productID
return $i

as desired.

5.2 Replication of Fragments
So far, we have discussed functional fragmentation of the

application, where different functional aspects of the appli-
cation run on different hosts. Obviously, there is an upper
limit to the number of fragments, as we cannot have more
fragments than queues. For typical applications, this is a
severe limitation if we want to scale beyond a few dozen
machines. In these cases, it is desirable to partition the
data, and to run the same part of the application for each
of the data partitions in parallel.

It turns out that by applying another program transfor-
mation, we can use our fragmentation algorithm in unmod-
ified form to also distribute the same fragment to multiple
machines. This program transformation is relatively simple:
We replicate those parts of the application structure that are
supposed to run in parallel. This makes the parallelization
opportunities explicit, and we can run our fragmentation
algorithms on the resulting program.

The challenge with this approach is to identify applica-
tion fragments that can be replicated without changing se-
mantics. We will now describe a conservative criterion for
parellizability that is very simple to implement. We also
define relaxing program transformations that create more
parallelizable fragments in a given application.

5.2.1 Fragment Locality
Our approach assumes that we have a function g that

maps each message m to a group g(m) ∈ G from a suffi-
ciently large set of groups G (we will discuss the choice of
g and G below). Let us denote with Mr(m) the set of mes-
sages from the history accessed for the evaluation of a single
rule r on a single message m. We say a rule r is local with
respect to g, iff for all possible messages m, the messages
in Mr(m) belong to the same partition, i.e. we can find a
group gm ∈ G such that g(m′) = gm for m′ ∈ Mr(m). We
say a fragment f of an application is local for g iff all the
rules defined on queues and slicings of f are local for g.

2Actually, we can apply a more sophisticated rewrite in that
case, which we omit here due to space constraints.

7

(1) [[$x]]sD := ()

(2)

»»

let $x := qs:slice($k, s)
return expr

––s

D

:=



($k, [[expr]]sD∪{$x}) if $k 6∈ D

see text if $k ∈ D

(3)

»»

let $x := func-or-op($v1, . . . , $vn)
return expr

––s

D

:=

8

>

<

>

:

let $x := func-or-op($v1, . . . , $vn)
return [[expr]]sD

if no $vi ∈ D

[[expr]]sD∪{$x} if any $vi ∈ D

(4)
ˆ̂

if $x then expr1else expr2

˜̃s

D
:=



if $x then [[expr1]]
s
D else [[expr2]]

s
D if $x 6∈ D

([[expr1]]
s
D , [[expr2]]

s
D) if $x ∈ D

Figure 4: Rewrite Rules for Determining Required Slice Keys in Rule Bodies

Locality is a useful property because we can deploy mul-
tiple copies of a local fragment, each processing a different
partition of the message history, up to one copy for each
group in G.

Locality is not decidable for arbitrary rule bodies and ar-
bitrary functions g, due to the expressive power of XQuery.
However, a locality check that catches many practical cases
of locality is straightforward to implement. A trivial case is a
rule without any message history accesses: It is always local.
Another simple case is the use of slice keys as partitioning
function g. If a rule accesses only messages from a single
slice, then it is local (because by definition, all messages in
the same slice have the same slice key).

We omit a detailed discussion of more advanced tech-
niques to detect locality due to a lack of space. Note that
even the simple cases explained above cover many practi-
cal cases. Particularly, this can be ensured by first running
the fragmentation algorithm of Sec. 4, which reduces a frag-
ment’s data dependencies to a minimum.

5.2.2 Replication of Local Fragments
Our method to execute several instances of a local frag-

ment f in parallel makes the fragment’s locality ”explicit”
by replacing f by one copy of f for each message group in
G. The copies of f have the same rules and slicings defined
as f , and the rules are changed only slightly: Every enqueue
operation on f ’s queues (from any rule in the application)
must be replaced by a proper ”dispatch”code that calculates
the message’s gm value, and sends the message to the proper
copy of f .

An example of its application is visualized in Fig. 5. Be-
fore the transformation, there are three fragments, of which
f2 is local. In the transformed program, there are many
copies of f2, of which three are shown. Message flow from
the untransformed program is unchanged, but applies to all
copies of f2 (we have omitted some message flow edges for
clarity). However, the data dependencies are local in each
copy.

The explicit representation of parallelizable application
fragments allows our host allocation methods from Sec. 4.2
to be used on the resulting program. Note that, given proper
workload information, the allocation can take nonuniform
workloads into account. For example, several copies of a
fragment that are less often used may share a host (possi-
bly with other, unrelated fragments), whereas heavily used
copies of the same fragment get assigned a host of their own.
It may even be desirable to apply further rewrites to only
the heavily used copy to distribute it over several hosts.

f2'''

3q3

3q4

f2''

2q4

f3

f2

f1
q3

q4

q2

q1

q5

f3

f1

q2

q1

q5

2q3

f2'

1q3

1q4

...

Figure 5: Local Fragment Replication

5.2.3 Message History Partitioning Functions
The application of the transformation described above

hinges on the ability to find a partitioning function g for
the message history. A straightforward choice for this func-
tion are the slice key definitions supplied in the application
specification. They group related messages in the applica-
tion domain, making it desirable to keep each such group on
a single host.

For example, in the TPC-App benchmark, the stock mas-
ter data can be replicated to several machines based on the
stocksByItemID slicing which provides access to stock mas-
ter data based on the item identifier. For dispatching mes-
sages enqueued into the stocks queue to the right replica,
the itemID slicekey is computed in advance and is used to
route the message to the right replica.

It is not always a good idea to directly use slice keys for
partitioning, however. The domain of the slice keys may
be unbounded (e.g. for customer numbers). Even if it is
known at compile-time, a very large number of fragment
copies may cause problems for the host allocation algorithms
from Sec. 4.2. For this reason, we use only the least signif-
icant bits of the slice keys for partitioning. The number of
bits used depends on the slice key frequency distribution.
The details are beyond the scope of this paper, but the idea
is to have the most heavily used slice key partition require
less processing resources than the most processing intensive,
non-replicated fragment in the remainder of the application.

We can also model round-robin distribution using this
method. If there is no history access in the fragment, it is
local and we can arbitrarily dispatch messages to the repli-
cated copies. By introducing a slicing that partitions by
the least significant bits of a message sequence number, we

8

can achieve a uniform distribution of messages to fragment
copies.

5.3 Transforming Non-Local Fragments
Replicating local fragments as explained above is very

effective at scaling declarative applications. However, the
technique is directly applicable only to applications in which
local fragments cover a significant fraction of the total pro-
cessing effort. Below, we discuss program transformations
that convert non-local fragments to local ones, thus allowing
to increase the parallelizable portion of an application.

5.3.1 Replication of Slicings
A fragment is typically not local if it contains accesses to

two different slicings that are defined on the same queue, but
with different slice keys. For example, the items in the TPC-
App application are accessed by using both the itemsByID

slicing, which allows to retrieve item master data based on
the unique item identifier and the itemsBySubject slicing,
which retrieves items based on their subject.

q

s

q'

s

q

p p

Figure 6: Queue Replication to Decouple Slicings

A simple method to parallelize such application patterns
is the replication of message histories. This can be captured
as a simple source-level transformation if the two different
slicings are accessed in different rules. Given a queue q,
on which two slicings are defined which cause a fragment
to be non-local, we can introduce an additional queue q′

that contains the same messages as q. This replication of
messages can simply be achieved adding a rule to q that
sends a copy of every message to q′. Further, we change
the definition of one of the original two slicings to refer to
q′ instead of q. The structure of this rewrite is visualized
in Fig. 6. Again, we convert a data dependency edge into a
message flow edge, transforming a single non-local fragment
into two (possibly) local fragments.

5.3.2 Data Shipping Transformations
The transformations discussed so far may fail to decom-

pose an application into sufficiently small components for
adequate parallel processing. As a last resort, the applica-
tion developer may have no choice but to remotely access
data that belongs to another fragment.

Due to space constraints, we address only one specific ap-
plication pattern where explicit data shipping may help. As-
sume that we access multiple slices of one slicing in a single
rule. Typically, we cannot guarantee that the slices belong
to a single partition of the message history and, hence, the
fragment containing this rule is non-local. To remove this
multiple data dependency, we can add additional queues to
provide access to remote slice content using new, local rules,
as follows.

We replace the original rule r with a new ”fork” rule. This
rule computes the slice keys required by r for the input mes-
sage, using an expression obtained from r as explained in
Sec. 5.1.3. It sends one request message for each slice key

to a helper queue and also forwards the input message to
a new ”merge” queue. On the helper queue, a single new
rule extracts the slice key from the input message, accesses
the corresponding slice, and packages the result into a reply
message, which is sent to the ”merge” queue. The merge
queue contains a rule that checks whether the original input
message and replies for all slice keys have been received. If
so, it evaluates r with the original qs:slice() calls replaced
with accesses to the reply messages, similar to the rewrite in
Sec. 5.1.2. In this rewritten version of the original program,
there are only local rules, as only single slice calls are used
in each rule.

The TPC-App benchmark contains a web service that al-
lows to retrieve item information for a user-defined set of
itemIDs. The corresponding Demaq rule uses the items-

ByID slicing to retrieve detailed information for each of the
user-supplied identifiers. Using the above steps, the applica-
tion code can be rewritten in order to avoid the correspond-
ing fragment to be non-local and thus potentially become a
scalability bottleneck.

As in the example above, we can model data shipping pro-
tocols as source-level transformations instead of hardcoding
a specific data shipping protocol into the run-time system
(by providing a remote procedure call-based version of the
qs:slice() function). This way, we can more easily control
which parts of an application may use data shipping, and
also combine the technique with other rewrites in a single
transformation process.

5.4 Rewrite Control
Our scalability transformations are concise representations

of techniques that application developers can employ to sys-
tematically increase the parallelizable portion of an applica-
tion. They are easy to understand, because they only affect
small parts of an application, and are expressed in the same
language as the original application program. This allows
the developer to look at the rewritten programs, to under-
stand consequences of rewrites at the source level, and to
fine-tune them.

We do not discuss how to control the application of our
rewrites in this paper. Of course, it would be desirable to
fully automate the rewrite process. This is possible only to
a limited extent, as application distribution involves addi-
tional latency, concurrency issues and sources of errors [35].
Not all techniques used by developers to improve scalabil-
ity leave application semantics unchanged, and this includes
our rewrites. For example, when ordering at an online store,
some items are shown as being in stock. Some time af-
ter ordering them, the store reports them as unavailable
in an email message, because - for scalability reasons - the
store does not have a single consistent database for all its
aspects. Instead, asynchronous messages and application-
specific protocols are used, and certain inconsistencies are
tolerated and repaired after they have been detected.

Our rewrites reflect this. For example, when replicating
a queue in Sec. 5.3.1, the replicated queue may lag behind
the the original queue and will not always be in sync instan-
taneously. The big advantage of our approach is that we
can decide to locally give up consistency for small portions
of the application. Instead of using a scalable, but inconsis-
tent method for the whole application, we can decide for each
rewrite step whether to tolerate the consequences in terms
of lost consistency or extra messaging cost. We can also use

9

more elaborate rewrites that include an implementation of
some consistency protocol in the rewritten program.

Our programming model and ”library” of rewrites allows
to formally describe techniques for improving scalability in
a representation close to the application’s source code. Cur-
rently, we are investigating several alternatives for integrat-
ing the rewrites into a toolchain. One possibility is to an-
notate the source code with hints about the applicability of
rewrites, partitioning functions, or local consistency require-
ments. This can either be done inline or using a separate
”scalability descriptor”.

Another approach is assisted manual rewriting. For this
purpose, we are extending our graphical Demaq editor [8]
with a ”scalability assistant”. Running the distribution trans-
formations within the editor then allows to graphically dis-
play fragmentation and bottlenecks, and suggest applicable
rewrites.

6. EVALUATION
In this section, we verify the feasibility of our approach.

We do not attempt a comprehensive benchmark of various
approaches here, but take a first step by discussing how to
apply our transformation-based method to the TPC-App
benchmark. The application is of reasonable size that qual-
ifies it as a realistic example, and the application domain is
one that certainly requires scalability.

For this purpose, we implemented an application rewriting
framework based on the rule rewrites and allocation heuris-
tics discussed in the previous sections. It uses workload esti-
mations collected by the profiling component of the Demaq
runtime system to transform a given application into a set
of resulting application that can be deployed on the target
hosts without manual code modifications.

Test Setup. Our testbed consists of four hosts, each of
them equipped with an Intel Pentium 4 CPU at 2.80GHz
and 2 GB RAM, running Ubuntu Linux 8.10. The hosts are
connected by a 100MBit switched Ethernet. The Demaq
runtime system was deployed on each host and used for ap-
plication execution. We refer the interested reader to [7, 8,
6] for a comprehensive description of the system components
and its performance.

We investigate the web service interactions per second
that can be achieved when running an example workload
conforming to TPC-App’s web service interaction mix for
setups with different numbers of machines and partitioning
heuristics. We compare the results to the service interac-
tions per seconds that are achieved when running the same
workload on a single host. Figure 7 depicts the speedup that
can be achieved depending on the number of involved hosts
and whether scalability rewrites (Sec. 5) have been used.

Distribution Effect. The baseline for our experiments
is the number of web service interactions per second that
can be achieved when running the application on a single
host. By deploying the application to two hosts allows us to
increase the performance by a factor of 1.71. For more than
two hosts, a maximum speedup factor of 1.77 is achieved
using the bin-packing heuristic. Although there are 12 in-
dependent fragments in the original specification, the distri-
bution of rule evaluation effort is so skewed that more hosts
have no performance benefits.

Rewrite Effect. By applying the message replication
technique discussed in Sec. 5.1 to the TPC-App implemen-
tation, we can increase the number of independent fragments

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2 hosts 4 hosts 2 hosts (rewritten) 4 hosts (rewritten)

S
er

vi
ce

 In
te

ra
ct

io
n

S
pe

ed
up

Bin-Packing First-Fit
Bond Energy Algorithm

Spectral Bisection

Figure 7: TPC-App Speedup Factor Relative to
Single-Host Execution

and thus allow for a more fine-grained deployment. Running
the rewritten application on a single host slightly decreases
the number of service interactions that can be achieved by a
factor of 0.99. This is not surprising as the rewritten appli-
cation performs slice data shipping (see Sec. 5.1.2) instead
of using more efficient index-based local disk access.

For a setup with two hosts, we achieve a performance
speedup factor of 1.85 using Bin Packing or even 1.98 for
spectral bisection.When deploying application fragments on
four hosts, scalability rewrites become essential to benefit
from the additional machines. For the rewritten application,
the performance can be increased by a factor of 2.71 using
the communication-unaware bin packing heuristic. Using
spectral bisection and BEA allows to improve performance
by a factor of 3.87 and 3.96, respectively. Using the scal-
ability rewrites and these communication-aware heuristics
allows to benefit from all machines in our testbed.

Choice of Host Allocation Heuristic. The effect of
the host allocation heuristic appears to depend on the num-
ber of fragments available. In the non-rewritten application,
the network-agnostic method is faster. The more fragments
are available, the more important the impact of communi-
cation becomes, and the two communication-aware methods
dominate, although they both perform similarly.

Further rewriting TPC-App. For the performance
experiments in the last section, we used the message repli-
cation technique (Sec. 5.1) to partition the TPC-App ap-
plication into 14 independent fragments. Using this basic
source-level rewrite thus allowed us to significantly increase
the application performance compared to the non-rewritten
version when deploying the application to four hosts.

As our testbed was limited to four hosts, no additional
rewrites were necessary to increase the number of fragments
in order to deploy the application to a greater number of
machines. However, in a setting where more machines are
available, the other rewrites discussed in Sec. 5 can be used
to increase the number of fragments significantly.

In our TPC-App example application, all product-related
operations (the ”product detail”web service discussed in Sec.
3.2 and the service for creating new products) belong to
the same application fragment, as they require access to the
item master data using corresponding slicings. To further

10

increase application scalability, this fragment can be rewrit-
ten in order to be deployed on multiple machines. In a first
step, the two different slicings that are used to access the
item master data (by itemID and subject) can be separated
using the rewrite of Sec. 5.3.1. Next, the multiple slice func-
tion calls used by the product detail web service (line 6 in
Figure 2) can be rewritten (Sec. 5.3.2), allowing to deploy
the item master data management on an arbitrary number
of machines. Similarly, other fragments can be decomposed,
thus significantly improving the scalability.

7. RELATED WORK
Our techniques for automatic application fragmentation

and distribution, as well as the Demaq programming model
and runtime system embrace and intersect with work from a
multitude of domains and research areas. We briefly review
the most closely related work in the following sections.

Application Servers. Today, distributed applications
are usually executed by multi-tier application servers [2].
For XML messaging applications, these tiers typically con-
sist of queue-based communication facilities (e.g. [18, 24]),
a runtime component executing the application logic, and a
database management system that provides persistent state
storage. An additional transaction processing monitor en-
sures that transactional semantics are preserved across these
tiers.

Application servers allow for the convenient deployment of
applications in distributed and heterogeneous environments.
However, their use entails several problems which are dis-
cussed in the literature. Significant functional overlap and
redundancy between the different tiers wastes resources [21,
29], and configuration and customization in typical multi-
layer, multi-vendor environments with limited native XML
support is complex and brittle [2]. Further, frequent repre-
sentation changes between data formats (XML, format of
the runtime component, relational database management
system) decrease the overall performance [17].

Data Stream Management Systems. Data stream
management systems (DSMS) and languages (e.g. [1, 3, 13])
are targeted at analyzing, filtering and aggregating items
from a stream of input events, again producing a stream
of result items. Several stream management systems rely
on declarative programming languages to describe patterns
of interest in an event or message stream. In most cases,
these languages extend SQL with primitives such as win-
dow specification, pattern matching, or stream-to-relation
transformation [4].

In contrast to application servers that provide reliable and
transactional data processing, stream management systems
aim at low latency and high data throughput. To achieve
these goals, data processing is mainly performed in main
memory (e.g. based on automata [13] or operators [1]).
Thus, in case of application failures or system crashes, no
state recovery may be performed, and data can be lost.

XML Query and Programming Languages. For an
XML message processing system such as Demaq, choosing a
native XML query language such as XQuery [5] as a founda-
tion for a programming language is a natural choice. How-
ever, these query languages lack the capability to express
application logic that is based on the process state - they
are functional query languages with (nearly) no side effects.
There are various approaches [9, 12, 17] to evolve XQuery

into a general-purpose programming language that can be
used without an additional host programming language.

Application Analysis and Partitioning. There are
several approaches that aim at automatic application parti-
tioning for imperative programming languages such as Java
[10, 14, 30] or Microsoft’s Component Object Model (COM)
[23]. Guided by profiling information collected from run-
ning the application to be partitioned, the proposed tech-
niques try to decompose the application into independent
parts that can be deployed on different machines.

Generally, all these approaches suffer from particulari-
ties of the underlying imperative programming languages.
This includes dealing with Java system classes that con-
tain platform-specific, native code and thus cannot be dis-
tributed, a coarse-grained partitioning as COM components
or Java objects cannot be automatically decomposed to yield
better load distribution as well as the necessity for complex
runtime system modifications or even remote method invo-
cation (RMI) overhead.

8. CONCLUSION
We have investigated the parallelization opportunities of

a novel programming model for distributed XML messag-
ing applications. The model is based on message queues
as many existing approaches, but uses declarative rules to
specify the application logic, and retains the message his-
tory to represent state. Given the task of executing such
applications on a large scale, we need to deploy them across
multiple hosts. A natural graph-based representation of the
application programs for this model allows to use simple al-
gorithms to partition them into independent fragments and
allocate them to hosts.

Our programming language and execution model already
incorporate powerful communication primitives, such that
a distributed run-time system for our language would have
to duplicate some functionality. Instead, we have taken a
transformation-based approach, where the deployment of a
program causes the single initial application to be rewritten
into programs for the different hosts, with the required inter-
host communication made explicit.

The application logic may contain dependencies that pro-
hibit distribution of functionality across many hosts. For
cases like this, we have shown how the unified data model for
state and messages allows us to formulate various techniques
for improving scalability using relatively simple source-level
rewrites. They are much less difficult to apply than the
redesign and manual recoding required by traditional meth-
ods. We have also shown how to represent data partitioning
as a source-level rewrite technique, such that functional and
data-based decomposition can be treated uniformly.

An evaluation using the TPC-App application server bench-
mark and the Demaq runtime system confirmed the practi-
cal feasibility and performance benefits of the proposed ap-
proach.

Acknowledgments. We thank Simone Seeger for her help-
ful comments on the manuscript and Christian Tilgner who
maintained the testbed for running the experiments. We
also thank Balthasar Biedermann, Vassil Hristov, Dennis
Knochenwefel, Martin Krämer, Andreas Kremer and Erich
Marth for their contributions to the Demaq system.

Part of this work was supported by the German Research
Foundation (DFG) under grant MO 507/12-1.

11

9. REFERENCES

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture
for data stream management. VLDB J.,
12(2):120–139, 2003.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.
Web Services: Concepts, Architectures and

Applictions. Springer-Verlag, 2004.

[3] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito,
I. Nishizawa, J. Rosenstein, and J. Widom. Stream:
The stanford stream data manager. In SIGMOD

Conference, page 665, 2003.

[4] A. Arasu, S. Babu, and J. Widom. The CQL
continuous query language: semantic foundations and
query execution. VLDB J., 15(2):121–142, 2006.

[5] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML query language. Technical report, W3C, January
2007.

[6] A. Böhm and C.-C. Kanne. Processes are data: A
programming model for distributed applications.
Technical report, University of Mannheim, 2009.

[7] A. Böhm, C.-C. Kanne, and G. Moerkotte. Demaq: A
foundation for declarative XML message processing.
In CIDR, pages 33–43, 2007.

[8] A. Böhm, E. Marth, and C.-C. Kanne. The Demaq
system: declarative development of distributed
applications. In SIGMOD Conference, pages
1311–1314, 2008.

[9] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing
reactive services to XML repositories using active
rules. Computer Networks, 39(5):645–660, 2002.

[10] B. J. Bradel and T. S. Abdelrahman. Automatic
trace-based parallelization of Java programs. In ICPP,
page 26. IEEE Computer Society, 2007.

[11] D. Chamberlin, D. Florescu, J. Melton, J. Robie, and
J. Siméon. XQuery Update Facility 1.0. Technical
report, W3C, August 2008.

[12] D. D. Chamberlin, M. J. Carey, D. Florescu,
D. Kossmann, and J. Robie. Programming with
XQuery. In XIME-P, 2006.

[13] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A general
purpose event monitoring system. In CIDR, pages
412–422, 2007.

[14] R. Diaconescu, L. Wang, Z. Mouri, and M. Chu. A
compiler and runtime infrastructure for automatic
program distribution. In IPDPS. IEEE Computer
Society, 2005.

[15] D. Draper, P. Fankhauser, M. F. Fernández,
A. Malhotra, K. Rose, M. Rys, J. Siméon, and
P. Wadler. XQuery 1.0 and XPath 2.0 formal
semantics. Technical report, W3C, January 2007.

[16] M. F. Fernández, A. Malhotra, J. Marsh, M. Nagy,
and N. Walsh. XQuery 1.0 and XPath 2.0 data model
(XDM). Technical report, W3C, January 2007.

[17] D. Florescu, A. Grünhagen, and D. Kossmann. XL: a
platform for Web Services. In CIDR, 2003.

[18] C. B. Foch. Oracle streams advanced queuing user’s
guide and reference, 10g release 2 (10.2), 2005.

[19] Google. Google app engine.
http://code.google.com/appengine/.

[20] Google. Google protocol buffers.
http://code.google.com/apis/protocolbuffers.

[21] J. Gray. Thesis: Queues are databases. In Proceedings

7th High Performance Transaction Processing

Workshop. Asilomar CA., 1995.

[22] B. Hendrickson and R. Leland. An improved spectral
graph partitioning algorithm for mapping parallel
computations. SIAM Journal on Scientific Computing,
Jan 1995.

[23] G. Hunt and M. Scott. The Coign automatic
distributed partitioning system. Technical Report
96.05, Microsoft Research, Microsoft Corporation,
February 1999.

[24] IBM. WebSphere MQ, 2007. http://www-306.ibm.
com/software/integration/wmq/index.html.

[25] D. Johnson, A. Demers, J. Ullman, and M. Garey.
Worst-case performance bounds for simple
one-dimensional packing algorithms. SIAM Journal on

Computing, Jan 1974.

[26] W. McCormick, P. Schweitzer, and T. White. Problem
decomposition and data reorganization by a clustering
technique. Operations Research, 20(5):993–1009,
October 1972.

[27] S. B. Navathe, S. Ceri, G. Wiederhold, and J. Dou.
Vertical partitioning algorithms for database design.
ACM Transactions on Database Systems,
9(4):680–710, 1984.

[28] M. T. Özsu and P. Valduriez. Principles of Distributed

Database Systems. Prentice Hall International, Inc.,
1999.

[29] M. Stonebraker. Too much middleware. SIGMOD

Record, 31(1):97–106, 2002.

[30] E. Tilevich and Y. Smaragdakis. J-Orchestra:
Automatic Java application partitioning. In
B. Magnusson, editor, ECOOP, volume 2374 of
Lecture Notes in Computer Science, pages 178–204.
Springer, 2002.

[31] M. Toyama. Parameterized view definition and
recursive relations. In ICDE, pages 707–712. IEEE
Computer Society, 1986.

[32] Transaction Processing Performance Council (TPC).
TPC BENCHMARK App (Application Server)
Specification Version 1.3. Technical report, February
2008.

[33] W. M. P. van der Aalst, A. H. M. ter Hofstede,
B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed and Parallel Databases, 14(1):5–51, 2003.

[34] W. Vogels. Web services at amazon.com. In IEEE

SCC. IEEE Computer Society, 2006.

[35] J. Waldo, G. Wyant, A. Wollrath, and S. C. Kendall.
A note on distributed computing. In J. Vitek and
C. F. Tschudin, editors, Mobile Object Systems,
volume 1222 of Lecture Notes in Computer Science,
pages 49–64. Springer, 1996.

12

