
Tracking and Mitigation of

Malicious Remote Control Networks

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Thorsten Holz

aus Trier

Mannheim, 2009

Dekan: Prof. Dr. Felix Christoph Freiling, Universität Mannheim
Referent: Prof. Dr. Felix Christoph Freiling, Universität Mannheim
Korreferent: Prof. Dr. Christopher Krügel, University of California, Santa Barbara

Tag der mündlichen Prüfung: 30. April 2009

Abstract

Attacks against end-users are one of the negative side effects of today’s networks. The
goal of the attacker is to compromise the victim’s machine and obtain control over it.
This machine is then used to carry out denial-of-service attacks, to send out spam mails,
or for other nefarious purposes. From an attacker’s point of view, this kind of attack
is even more efficient if she manages to compromise a large number of machines in
parallel. In order to control all these machines, she establishes a malicious remote control
network, i.e., a mechanism that enables an attacker the control over a large number of
compromised machines for illicit activities. The most common type of these networks
observed so far are so called botnets.

Since these networks are one of the main factors behind current abuses on the Internet,
we need to find novel approaches to stop them in an automated and efficient way. In
this thesis we focus on this open problem and propose a general root cause methodology
to stop malicious remote control networks. The basic idea of our method consists of
three steps. In the first step, we use honeypots to collect information. A honeypot
is an information system resource whose value lies in unauthorized or illicit use of
that resource. This technique enables us to study current attacks on the Internet and
we can for example capture samples of autonomous spreading malware (malicious
software) in an automated way. We analyze the collected data to extract information
about the remote control mechanism in an automated fashion. For example, we utilize
an automated binary analysis tool to find the Command & Control (C&C) server that
is used to send commands to the infected machines. In the second step, we use the
extracted information to infiltrate the malicious remote control networks. This can for
example be implemented by impersonating as a bot and infiltrating the remote control
channel. Finally, in the third step we use the information collected during the infiltration
phase to mitigate the network, e.g., by shutting down the remote control channel such
that the attacker cannot send commands to the compromised machines.

In this thesis we show the practical feasibility of this method. We examine different
kinds of malicious remote control networks and discuss how we can track all of them in
an automated way. As a first example, we study botnets that use a central C&C server:
We illustrate how the three steps can be implemented in practice and present empirical
measurement results obtained on the Internet. Second, we investigate botnets that use a
peer-to-peer based communication channel. Mitigating these botnets is harder since no
central C&C server exists which could be taken offline. Nevertheless, our methodology
can also be applied to this kind of networks and we present empirical measurement
results substantiating our method. Third, we study fast-flux service networks. The idea
behind these networks is that the attacker does not directly abuse the compromised
machines, but uses them to establish a proxy network on top of these machines to
enable a robust hosting infrastructure. Our method can be applied to this novel kind
of malicious remote control networks and we present empirical results supporting this
claim. We anticipate that the methodology proposed in this thesis can also be used to
track and mitigate other kinds of malicious remote control networks.

i

Zusammenfassung

Angriffe gegen Nutzer sind einer der negativen Seiteneffekte heutiger Netze. Das Ziel
eines Angreifers ist es, die Maschine des Opfers zu kompromittieren und Kontrolle über
diese zu erlangen. Die Maschine wird dann dazu benutzt, Denial-of-Service Angriffe
durchzuführen, Spam-Nachrichten zu verschicken oder für weitere schädliche Zwecke.
Aus der Sicht eines Angreifers sind solche Angriffe noch effizienter, wenn er es schafft,
eine große Anzahl an Maschinen gleichzeitig zu kompromittieren. Um alle diese Maschi-
nen kontrollieren zu können, setzt der Angreifer ein malicious remote control network
auf, das heisst einen Mechanismus, der es dem Angreifer erlaubt, eine große Anzahl an
kompromittierten Maschinen zu kontrollieren, um diese für rechtswidrige Aktionen zu
benutzen. Die bekannteste Art dieser Netze sind sogenannte Botnetze.

Weil diese Netze einer der Hauptfaktoren derzeitiger Missbräuche im Internet sind,
benötigen wir neuartige Ansätze, um sie in einem automatisierten und effizienten
Prozess stoppen zu können. In dieser Arbeit konzentrieren wir uns auf dieses offene
Problem und stellen eine allgemeine Methodik vor, um die Grundursache hinter ma-
licious remote control networks zu stoppen. Die Grundidee unserer Methodik besteht
aus drei Schritten. Im ersten Schritt benutzen wir Honeypots. Ein Honeypot ist ein
Informationssystem, dessen Funktion darin besteht, von Angreifern auf unerlaubte oder
nicht autorisierte Weise benutzt zu werden. Diese Technik erlaubt es uns, gegenwärtige
Angriffe im Internet zu erforschen und wir können beispielsweise Kopien von Schad-
software (malware), die sich selbständig verbreitet, in einem automatisierten Prozess
sammeln. Wir analysieren die gesammelten Daten in einem automatisierten Verfahren,
um Informationen über den Fernsteuerungsmechanismus zu extrahieren. Wir benutzen
beispielsweise ein automatisiertes Programm zur Analyse von Binärdateien, um den Com-
mand & Control (C&C) Server zu finden, mit dessen Hilfe Kommandos zu den infizierten
Maschinen gesendet werden. Im zweiten Schritt benutzen wir die extrahierten Informa-
tionen, um das malicious remote control network zu infiltrieren. Dies kann beispielsweise
umgesetzt werden, indem wir das Verhalten eines Bots simulieren und uns in den
Fernsteuerungskanal einschleusen. Letztendlich benutzen wir im dritten Schritt die in
der Infiltrierungsphase gesammelten Informationen, um das Netz abzuschwächen. Dies
geschieht beispielsweise, indem der Kommunikationskanal geschlossen wird, so dass
der Angreifer keine Befehle mehr zu den kompromittierten Maschinen senden kann.

In dieser Arbeit demonstrieren wir die praktische Umsetzbarkeit der vorgeschlagenen
Methodik. Wir untersuchen verschiedene Typen von malicious remote control networks
und erörtern, wie wir alle auf automatisierte Art und Weise aufspüren können. Als
erstes Beispiel untersuchen wir Botnetze mit einem zentralen C&C-Server: Wir erläutern,
wie die vorgeschlagenen drei Schritte in der Praxis umgesetzt werden können und
präsentieren empirische Messergebnisse, die im Internet gesammelt wurden. Zweitens
erforschen wir Botnetze mit einem Peer-to-Peer-basierten Kommunikationskanal. Eine
Abschwächung dieser Botnetze ist schwieriger, da kein zentraler C&C-Server existiert,
der abgeschaltet werden könnte. Dennoch kann unsere Methodik auch auf diese Art von
Netzen angewandt werden und wir stellen empirische Messergebnisse vor, die unsere
Methode untermauern. Als dritten Fall analysieren wir fast-flux service networks. Die

iii

Idee hinter diesen Netzen ist, dass der Angreifer die kompromittierten Maschinen nicht
direkt missbraucht. Stattdessen benutzt er sie dazu, ein Proxy-Netzwerk mit Hilfe dieser
Maschinen aufzubauen, das dann eine robuste Hostinginfrastruktur ermöglicht. Unsere
Methodik kann auch auf diese neuartige Art von malicious remote control networks
angewandt werden und wir präsentieren empirische Ergebnisse, die diese Behauptung
bestätigen. Wir erwarten, daß die in dieser Arbeit vorgeschlagene Methodik auch dazu
benutzt werden kann, weitere Arten von malicious remote control networks zu verfolgen
und abzuschwächen.

iv

Acknowledgements

A thesis is the result of a longer process and often involves collaboration with many
different people. I would like to take the opportunity and acknowledge in this section
all the individuals who helped me with the work on my thesis during the past years.

First of all, I would like to express my gratitude to my advisor, Prof. Dr. Felix Freiling,
for making this thesis possible. He opened me a door to the fascinating world of
computer science and shared his insight and wisdom with me. His supervision, advice,
and guidance from the early stages of this research on helped me to complete this work.
In particular, the discussion about methodologically sound approaches were always
insightful and taught me scientific thinking.

I would also like to thank Prof. Dr. Christopher Krügel for his inspiring work and the
interesting discussions we had. Our research interests overlap to a large degree and
his many impressive publications stimulated my research interests over the years. I am
really looking forward to work closely together with him in the near future. There are
still lots of open problems and opportunities for further work in this area.

In addition, I would like to thank all members of the Laboratory for Dependable
Distributed Systems. Without the support from Maximillian Dornseif, Martin Mink,
Lucia Draque Penso Rautenbach, Zina Benenson, Michael Becher, Carsten Willems,
Christian Gorecki, Philipp Trinius, Markus Engelberth, and Jan Göbel, there would
not have been such a pleasant and prolific working atmosphere at the Lab. Especially
working together with Max and Carsten was always inspiring and led to many interesting
projects and insightful discussions. And traveling together with them was also lots of
fun! Presumably I traveled a bit more than the average PhD student, but I really enjoyed
discovering many parts of the world and getting to know different cultures.

In addition, acknowledgments are also owed to Sabine Braak and Jürgen Jaap for
their indispensable help dealing with travel funds, computer hardware, administration,
and all bureaucratic matters during my work. Furthermore, I would also like to thank all
diploma students and student workers, who helped over the years to implement some
parts of the work presented in this thesis. In particular, Ben Stock and Matthias Luft
helped a lot to build and maintain the analysis environment.

I also benefited from collaboration with many people from all over the world, which
lead to parts of the work presented in this thesis. First and foremost, I would like to
thank Niels Provos for the collaboration on the Virtual Honeypots book: although it
was sometimes exhausting, writing a book was a valuable experience. I also enjoyed
the collaboration with Moritz Steiner, Konrad Rieck, Engin Kirda, Jose Nazario, Rainer
Böhme, Pavel Laskov, David Dagon, Peter Wurzinger, Leyla Bilge, Jianwei Zhuge, and
many others. This cooperation lead to several publications, which were used as basic
material for this thesis. In addition, I had several interesting discussions with Robin
Sommer and Christian Kreibich — I am sure that a paper will follow eventually. Besides
the academic point of view, I also enjoyed the collaboration with many people from
the security industry: leaving the ivory tower and attending “hacker conferences” was
always inspiring and lead to many novel insights. In particular, the collaboration with
William and Robert was always fascinating and I was quite often deeply impressed by

v

their work. Furthermore, I would like to thank Dragos Ruiu and the whole SecWest
staff for organizing all the conferences. Many other people provided information useful
for my research, especially different mailing lists were invaluable for my progress in
different areas. Another important factor for my thesis was the collaboration with
Sunbelt Software, especially Chad Loeven and Erik Sites, who provided me with inter-
esting information and the opportunity to bring some results of this thesis to market.
Presumably I forgot several people whom I should thank — I hope you do not mind.

And there are many other people who helped me during the time of this thesis.
First and foremost, special thanks to all members of the German and French Honeynet
Project. In particular, the Nepenthes development team, Georg Wicherski, Laurent Oudot,
Frederic Raynal, Fabien Pouget, and several other people from both projects, helped me
a lot and offered me the possibility to discuss ideas and share information. This work
also benefited from the discussions with members of the Honeynet Project, especially
Lance Spitzner, David Watson, Julian Grizzard, Chris Lee, David Dittrich, Ron Dodge,
and several others. At the begin of my PhD studies I stayed for one month at Georgia
Tech, which was only possible due to the assistance of Julian and Chris.

Special thanks go to all members of the Center for Computing and Communication
at RWTH Aachen University, in particular to Jens Hektor, Thomas Bötcher, Andreas
Schreiber, and Silvia Leyer. Without their help and the infrastructure they provided,
many results of this thesis would not have been possible.

Last, but certainly not least, I would like to thank my parents Ewald and Mathilde
Holz, my brother Volker, my uncle Alfons, and my aunt Margret for their life-long love
and support. I especially owe much to my parents for their assistance through all these
years — they are the ones who made my education possible in the first place. Without
Andrea and her love and tireless support (especially her culinary skills), this work would
not have been possible. She shared with me all the emotional dynamics during the last
few years and brightened up my life.

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Topic of Thesis . 3

1.3 Contributions . 4
1.3.1 General Method to Prevent Malicious Remote Control Networks 4
1.3.2 Tracking Botnets with Central C&C Server 5
1.3.3 Tracking Botnets with Peer-to-Peer-based C&C Server 5
1.3.4 Tracking Fast-Flux Service Networks 6

1.4 Thesis Outline . 6

1.5 List of Publications . 7

2 Background and Related Work 9

2.1 Introduction . 9

2.2 Honeypots and Honeynets . 10
2.2.1 High-Interaction Honeypots . 11
2.2.2 Low-Interaction Honeypots . 12
2.2.3 Physical Honeypots . 14
2.2.4 Virtual Honeypots . 14
2.2.5 Honeyclients . 15

2.3 Bots and Botnets . 16

2.4 Related Work . 17

vii

2.4.1 Honeypots and Honeynets . 18
2.4.2 Bots and Botnets . 18

2.5 Summary . 20

3 Root-Cause Methodology to Prevent Malicious Remote Control Networks 21

3.1 Introduction . 21

3.2 Methodology . 22
3.2.1 A Large Number of Machines is Necessary 22
3.2.2 A Remote Control Mechanism is Necessary 23
3.2.3 Preventing Attacks . 23
3.2.4 Discussion . 24

3.3 Summary . 25

4 Tracking Botnets with Central C&C Server 27

4.1 Introduction . 27

4.2 Motivation . 28

4.3 Technical Background . 29
4.3.1 Overview of Bots . 29
4.3.2 Examples of Bots . 31
4.3.3 Overview of Botnets . 33

4.4 Capturing Samples of Autonomous Spreading Malware 35
4.4.1 System Design of Nepenthes . 38
4.4.2 Evaluation . 42
4.4.3 Related Work . 43

4.5 Automated Malware Analysis . 45
4.5.1 Technical Background . 48
4.5.2 System Design of CWSandbox . 51
4.5.3 Related Work . 54

4.6 Automated Botnet Infiltration . 55

4.7 Botnet Tracking . 56
4.7.1 Tracking of IRC-based Botnets . 56
4.7.2 Tracking of HTTP-based Botnets . 56

4.8 Empirical Measurements . 58
4.8.1 General Observations . 58
4.8.2 Measurement Setup in University Environment 61
4.8.3 Network-based Analysis Results . 61
4.8.4 CWSandbox Analysis Results . 64
4.8.5 Antivirus Engines Detection Rates 68
4.8.6 Botspy Analysis Results . 70

4.9 Mitigation . 71

4.10 Summary . 72

viii

5 Tracking Botnets with Peer-to-Peer-based C&C Server 75

5.1 Introduction . 75

5.2 Motivation . 76

5.3 Botnet Tracking for Peer-to-Peer-based Botnets 77
5.3.1 Class of Botnets Considered . 77
5.3.2 Botnet Tracking for Peer-to-Peer Botnets 78

5.4 Technical Background . 79
5.4.1 Propagation Mechanism . 79
5.4.2 System-Level Behavior . 81
5.4.3 Network-Level Behavior . 82
5.4.4 Encrypted Communication Within Stormnet 86
5.4.5 Central Servers Within Stormnet . 87

5.5 Tracking of Storm Worm Botnet . 88
5.5.1 Exploiting the Peer-to-Peer Bootstrapping Process 88
5.5.2 Infiltration and Analysis . 89

5.6 Empirical Measurements on Storm Botnet 91
5.6.1 Size Estimations for Storm Bots in OVERNET 92
5.6.2 Size Estimation for Stormnet . 94

5.7 Mitigation of Storm Worm Botnet . 96
5.7.1 Eclipsing Content . 96
5.7.2 Polluting . 97

5.8 Summary . 97

6 Tracking Fast-Flux Service Networks 99

6.1 Introduction . 99

6.2 Motivation . 100

6.3 Technical Background . 102
6.3.1 Round-Robin DNS . 102
6.3.2 Content Distribution Networks . 103
6.3.3 Fast-Flux Service Networks . 103

6.4 Automated Identification of Fast-Flux Domains 106

6.5 Tracking Fast-Flux Service Networks . 110

6.6 Empirical Measurements on Fast-Flux Service Networks 110
6.6.1 Scam Hosting via Fast-Flux Service Networks 110
6.6.2 Long-Term Measurements . 112
6.6.3 Other Abuses of Fast-Flux Service Networks 116

6.7 Mitigation of Fast-Flux Service Networks 117

6.8 Summary . 118

7 Conclusion and Future Work 119

Bibliography 123

ix

List of Figures

1.1 Distributed Denial-of-Service attack against G-root DNS server in Febru-
ary 2007, severely affecting the reachability of this server [RIP07]. . . . 3

1.2 Overview of different communication mechanisms used in malicious
remote control networks. 5

2.1 Example of honeynet environment with two high-interaction honeypots
and a Honeywall. 12

2.2 Setup of a botnet with a central server for Command & Control. 17

4.1 Typical setup for botnet with central server for Command & Control. The
server can use IRC, HTTP, or a custom protocol. 34

4.2 Honeypot setup for tracking botnets . 36
4.3 Schematic overview of Nepenthes platform 39
4.4 Measurement results for scalability of Nepenthes in relation to number

of IP addresses assigned to the sensor. 44
4.5 Communication flow in a HTTP-based botnet: the bots periodically (1)

poll for new commands and (2) receive the commands as HTTP response
by the C&C server. 57

4.6 Distribution of attacking hosts. 62
4.7 Statistics of attacks observed with Nepenthes. 63
4.8 Chronological analysis of collected malware binaries. 64
4.9 Distribution of IRC channel:password combinations. 66
4.10 TCP ports used for IRC connections. 67
4.11 Malware variants detected by different antivirus engines. 69

5.1 Keys generated by Storm in order to find other infected peers within the
network (October 14-18, 2007). 85

5.2 Content of RSA-encrypted packets (180 bytes). 86
5.3 Decrypted packets contents. 87
5.4 Schematic overview of Stormnet, including central servers used for

command distribution. 88

xi

5.5 Number of bots and benign peers that published content in OVERNET. . . 93
5.6 Total number of bots in Stormnet. 94
5.7 Detailed overview of number of bots within Stormnet, split by geo-location. 95
5.8 Search activity in Stormnet. 95
5.9 Publish activity (distinct IP addresses and rendezvous hashes) in Stormnet. 96
5.10 The number of publications by Storm bots vs. the number of publications

by our pollution attack. 98

6.1 Example of round-robin DNS as used by myspace.com. 102
6.2 Example of DNS lookup for domain images.pcworld.com hosted via

Content Distribution Network, in this case Akamai. 103
6.3 Example of A records returned for two consecutive DNS lookups of

domain found in spam e-mail. The DNS lookups were performed 1800
seconds apart such that the TTL expired after the first request. 104

6.4 Content retrieval process for benign HTTP server. 105
6.5 Content retrieval process for content being hosted in fast-flux service

network. 106
6.6 Distribution of virtual hosts per IP address per flux-agent 113
6.7 Distribution of unique scams per IP address per flux-agent 113
6.8 IP address diversity for two characteristic fast-flux domains (upper part)

and two domains hosted via CDNs (lower part). 114
6.9 Cumulative number of distinct A records observed for 33 fast-flux domains.115
6.10 Cumulative number of distinct ASNs observed for 33 fast-flux domains. 116

xii

List of Tables

2.1 Comparison of advantages and disadvantages of high- and low-interaction
honeypots . 14

4.1 Top ten attacking hosts with country of origin. 62
4.2 Top ten outgoing TCP ports used. 65
4.3 Services and kernel drivers installed by collected malware samples. . . . 67
4.4 Injection target processes observed for collected malware samples. . . . 68
4.5 Detection rates for 2,034 malware binaries for different AV scanners. . . 68
4.6 Top ten different malware variants. 69

6.1 Reverse DNS lookup, Autonomous System Number (ASN), and country
for first set of A records returned for fast-flux domain from Figure 6.3. . 105

6.2 Top eight ASNs observed while monitoring 33 fast-flux domains over a
period of seven weeks. The table includes the name and country of the
AS, and the number of fast-flux IPs observed in this AS. 114

xiii

Chapter 1
Introduction

1.1 Motivation

The increasing professionalism in cybercrime. Today, we continue to observe a ma-
jor trend in the area of Internet security: attacks are becoming increasingly dangerous
and devastating. This is not only due to the exponential growth of the Internet popula-
tion and the increasing financial value which Internet transactions have nowadays. It is
also a sign that attackers plan and coordinate their deeds with more criminal energy
and conviction: it seems like a whole underground economy is prospering, in which
cybercrime plays a major role [MT06, FPPS07, HEF08]. As an example, we consider
the problem of unsolicited bulk email, commonly denoted as spam. This phenomenon
is a relatively old and well-known problem in this direction, but it has turned much
more dangerous lately through phishing. The term phishing (composition of password
harvesting fishing) describes scam emails that trick recipients into revealing sensitive
information by masquerading as a trustworthy brand. Furthermore, spam messages that
contain malicious attachments are another popular attack vector nowadays.

Another important witness of the increasing professionalism in Internet crime are
so called Denial-of-Service (DoS) attacks. A DoS attack is an attack on a computer
system or network that causes a loss of service to users, typically the loss of network
connectivity and services by consuming the bandwidth of the victim network or over-
loading the computational resources of the victim system [MDDR04]. Using available
tools [Dit09], it is relatively easy to mount DoS attacks against remote networks. For
the (connection-oriented) Internet protocol TCP, the most common technique is called
TCP SYN flooding [Com96, SKK+97] and consists of creating a large number of “half
open” TCP connections on the target machine, thereby exhausting kernel data structures
and making it impossible for the machine to accept new connections. For the (connec-
tionless) protocol UDP, the technique of UDP flooding consists of overrunning the target
machine with a large number of UDP packets, thus consuming the network bandwidth
and other computational resources of the victim.

1

Chapter 1 Introduction

Distributed Denial-of-Service attacks as a major threat. Like spam, it is well-known
that DoS attacks are extremely hard to prevent because of their “semantic” nature. In the
terminology of Schneier [Sch00], semantic attacks target the way we assign meaning
to content. For example, it is very hard to distinguish a DoS attack from a peak in the
popularity of a large website. Using authentication it is in principle possible to detect
and identify the single origin of a DoS attack by looking at the distribution of packets
over IP addresses. However, it is almost impossible to detect such an attack if multiple
attack hosts act in a coordinated fashion against their victim. Such attacks are called
Distributed Denial-of-Service (DDoS). DDoS attacks are one of the most dangerous threats
on the Internet today since they are not limited to web servers: virtually any service
available on the Internet can be the target of such an attack. Higher-level protocols can
be used to increase the load even more effectively by using very specific attacks, such as
running exhausting search queries on bulletin boards or mounting web spidering attacks,
i.e., starting from a given website and then recursively requesting all links on that site.

In the past, there are several examples of severe DDoS attacks, for which we only
want to present a few representative examples. In February 2000, an attacker targeted
major e-commerce companies and news-sites [Gar00]. The network traffic flooded the
available Internet connection so that no users could access these websites for several
hours. It is estimated that online shops like Amazon loose about $550,000 for every
hour that their website is not online [Pat02], and thus the financial damage due to
this kind of attacks can be high. In the recent years, the threat posed by DDoS attacks
grew and began to turn into real cybercrime. An example of this professionalism are
blackmail attempts against a betting company during the European soccer championship
in 2004 [New04]. The attacker threatened to take the website of this company offline
unless the company payed money. Similar documented cybercrime cases happened
during other major sport events and against gambling websites, in which the attackers
are said to have extorted millions of dollars [Sop06]. Furthermore, paid DDoS attacks
to take competitor’s websites down were reported in 2004 [Fed04]. Also DDoS attacks
with a suspected political background were observed: in April/May 2007, attacks against
Estonian government sites took place [Naz07] and in July/August 2008 several servers
of the Georgian Republic were attacked [Naz08]. Several DDoS attacks were observed
that target the core infrastructure of the Internet, namely the Root servers of the Domain
Name System (DNS): Figure 1.1 shows an example of an attack against the G-root server
which took place in February 2007, in which the reachability of this server was severely
affected for several hours. This shows that the attackers can use (and actually perform)
DDoS attacks to affect the Internet’s core infrastructure. This kind of attacks could – if
lasting for a longer time – affect virtually any systems connected to the Internet since
DNS is an integral part of today’s networks.

To summarize, denial-of-service attacks pose a severe threat to today’s networks,
especially when the attack is distributed across many different machines. It is thus
important to address the root cause of these attacks to find novel ways to stop them.

2

1.2 Topic of Thesis

Figure 1.1: Distributed Denial-of-Service attack against G-root DNS server in February
2007, severely affecting the reachability of this server [RIP07].

1.2 Topic of Thesis

Malicious remote control networks as a tool for DDoS and other attacks. The
main mechanism to launch DDoS attacks today are so called botnets [McC03a, Hon05],
i.e., networks of compromised machines that are remotely controlled by an attacker.
Botnets often consist of several thousand infected machines and enable an attacker to
cause serious damage. Botnets are regularly used for DDoS attacks since their combined
bandwidth overwhelms the available bandwidth of most target systems. In addition,
several thousand compromised machines can generate so many packets per second that
the target is unable to respond to so many requests and also the network infrastructure
can be affected by such attacks. Besides DDoS attacks, botnets are also commonly used
by the attackers (so called botherder or botmaster) to send spam or phishing mails, mass
identity theft, and similar illicit activities.

In more general terms, attackers use compromised machines to build up malicious
remote control networks. Throughout the rest of this thesis, we use the following
definition for this kind of networks:

A malicious remote control network is a mechanism that enables an
attacker the control over a large number of compromised machines
for illicit activities.

3

Chapter 1 Introduction

Examples of malicious remote control networks include “classical” botnets that are
controlled using different communication mechanisms like IRC or peer-to-peer protocols.
Another example are fast-flux service networks, in which the attacker does not execute
commands on the infected machines, but establishes a proxy network on top of the
compromised machines. A third example are spam botnets, i.e., networks of compromised
machines which are solely used for sending spam mails.

This thesis investigates the phenomenon of malicious remote control networks and
discusses the detection, analysis, and mitigation of these networks. It thus aims at
understanding and countering a major threat to today’s critical Internet infrastructure.

1.3 Contributions

This thesis makes the following contributions:

1.3.1 General Method to Prevent Malicious Remote Control Networks

We need efficient methods to stop malicious remote control networks due to the severity
of the problems caused by these networks (e.g., DDoS attacks, spam mails, and mass
identity theft). In this thesis, we introduce a novel and general root cause methodology
to prevent this threat. We show how different techniques from the area of honeypots
can be used to achieve this goal. A honeypot is an information system resource whose
value lies in unauthorized or illicit use of that resource [Mai03]. The basic idea of the
proposed methodology is that we can use honeypots to collect information about current
attack vectors in a fully automated way and thus learn more about malicious remote
control networks. Based on the collected information, we can then infiltrate the network
in an efficient and automated way. Finally, we can mitigate the whole network based
on the insights and the information collected during the infiltration phase, and thus
prevent the threat. Throughout this thesis, we provide evidence of the feasibility of this
approach based on real-world measurements on the Internet that result in a couple of
additional contributions.

Figure 1.2 provides an overview of the different kinds of malicious remote control
networks we study in this thesis. The communication direction describes the mechanism
that is used by an infected machine to receive commands from the attacker. On the
one hand, this mechanism can be push-based if the attacker sends the command, e.g.,
to all bots within an IRC channel. On the other hand, the infected machines can
periodically pull for new commands and send requests to the attacker. Orthogonal to the
communication direction is the communication architecture, which describes the actual
communication structure. This can be a centralized model in which the attacker uses one
central server to which infected machines connect. In contrast, the architecture can also
be implemented as a peer-to-peer system. Figure 1.2 also provides an example for each
of the four combinations of communication mechanisms. No example for a malicious
remote control network that uses a push-based, peer-to-peer communication channel

4

1.3 Contributions

Pull
mechanism

HTTP botnets (Chap. 4)
Fast-flux service

networks (Chap. 6)

Publish/subscribe-
style communication

(Chap. 5)

FloodingPush
mechanism IRC botnets (Chap. 4)

Peer-to-peer
communicationCentral communication

Communication
direction

Com.architecture

Figure 1.2: Overview of different communication mechanisms used in malicious remote
control networks.

exists in the wild and thus we focus in this thesis on the remaining three communication
classes. In the following, we explain the contributions of each aspect in more detail.

1.3.2 Tracking Botnets with Central C&C Server

It may seem unlikely that it is possible to automatically analyze and infiltrate a malicious
remote control method crafted by attackers for evil purposes. However, we provide
evidence of the feasibility of our strategy by describing how we successfully tracked and
investigated the automated attack activity of botnets on the Internet. We show how
botnets that use a central Command and Control (C&C) server can be prevented using
our methodology. Such botnets can use two different communication mechanisms to
distribute the attacker’s commands: on the one hand, botnets can implement a push
mechanism in which the attacker pushes the command to each infected machine. This
is the common setup for IRC-based botnets and we cover this type of botnets in detail
in Chapter 4. On the other hand, botnets can implement a pull mechanism like for
example HTTP-based botnets do: periodically, each bot requests a specific URL, in which
it encodes status information, from the C&C server. As a reply, the server sends to the
infected machine the command it should execute. In this thesis, we show how our
methodology can be used to prevent both kinds of botnets.

1.3.3 Tracking Botnets with Peer-to-Peer-based C&C Server

Botnets with a central server have a single point of failure: once the central server is
offline, the whole botnet is non-functional since the attacker cannot send commands
to the infected machines. From an attacker’s point of view, it is thus desirable to have
a more robust communication mechanism within the botnet. As a result, new botnet
structures emerged that use peer-to-peer-based communication protocols: each infected
machine is a peer that can relay messages and act as a client and server. Such botnets
are harder to mitigate since no central C&C server can be taken offline.

5

Chapter 1 Introduction

In this thesis, we introduce a novel mechanism to mitigate botnets that use publish/
subscribe-style communication: in such systems the network nodes do not directly
send information to each other. Instead, an information provider publishes a piece
of information i, e.g., a file, using an identifier which is derived solely from i. An
information consumer can then subscribe to certain information using a filter on such
identifiers. Such a communication mechanism is commonly used in the peer-to-peer
botnets observed up to now. We show that the methodology proposed in this thesis can
be used to prevent botnets that use publish/subscribe-style communication and present
empirical measurement results for Storm Worm, the most prominent peer-to-peer botnet
in the wild observed up to now.

1.3.4 Tracking Fast-Flux Service Networks

Besides using the infected machines for sending spam mails or performing DDoS attacks,
an attacker can also use malicious remote control networks for other purposes. An
emerging threat are so called fast-flux service networks (FFSNs). The basic idea of
such networks is that the attacker establishes a distributed proxy network on top of
compromised machines that redirects traffic through these proxies to a central site,
which hosts the actual content the attacker wants to publish. The focus of FFSNs thus
lies in constructing a robust hosting infrastructure with the help of the victim’s machines.
In contrast to “classical” botnets, FFSNs are thus a different kind of malicious remote
control network.

We show in this thesis that the proposed methodology can also be used to combat this
novel threat. We provide a detailed overview of fast-flux service networks and study their
essential properties and design principles. Based on these features, we develop a metric
to identify FFSNs in an efficient way. Furthermore, we discuss how these networks can
be prevented based on our methodology and present empirical measurement results
collected on the Internet.

1.4 Thesis Outline

This thesis is subdivided into six chapters. In Chapter 2, we provide an overview of
different concepts in the area of honeypots and botnets since these two approaches are
the basic concepts used during this thesis. Furthermore, we review related work and
discuss how the work presented in this thesis contributes to the state-of-the-art in the
areas of honeypot- and botnet-related research.

Chapter 3 introduces a general root cause methodology to prevent malicious remote
control networks. The basic idea of the approach is to first infiltrate the network, then
analyze the network from the inside, and finally use the collected information to stop
it. This discussion serves as the foundation of this thesis and we show in the following
three chapters empirical realizations of the methodology.

In Chapter 4, we first show how the methodology can be applied to botnets with
a central C&C server. The infiltration step itself is split into three phases. First, we

6

1.5 List of Publications

show how we can use honeypots to automatically and efficiently collect samples of
malicious software (malware). Second, we introduce an approach to automatically
analyze the collected binaries. Third, we show how the actual infiltration process can be
automated to a high degree by mimicking the behavior of a real bot. We exemplify how
this approach can be used for botnets that use either IRC or HTTP as communication
protocol. Empirical measurement results from a university environment confirm the
efficiency of the approach presented in this thesis.

Chapter 5 extends the botnet tracking methodology from botnets with a central server
to botnets with a peer-to-peer-based communication channel. We show how this kind of
botnets can be prevented with our approach, confirming that the proposed methodology
is general. As a case study, we focus on Storm Worm, the most prominent peer-to-
peer-based botnet observed in the wild today. We present a detailed overview of the
botnet and show empirical measurement results which confirm that our approach can
be successfully applied in practice.

Chapter 6 focusses on a different kind of malicious remote control networks, namely
fast-flux service networks. This kind of networks enables an attacker to use a large
number of infected machines to act as proxies, using the compromised machines to host
illicit content. We first provide a detailed overview of fast-flux service networks and
then study how this threat can be prevented. Again, we use empirical measurements to
substantiate the practicability of our approach.

Finally, Chapter 7 summarizes the thesis and concludes with an overview of future
research directions in this area.

1.5 List of Publications

This thesis is a monograph which contains some unpublished material, but is mainly
based on the publications listed in this section.

Chapter 2 is based on a book published together with Provos on virtual honey-
pots [PH07]. The book contains many more technical aspects and only the relevant
parts are included in this thesis. In addition, the book is a hands-on book which details
how to set up and maintain honeypots.

The basic methodology introduced in Chapter 3 is based on joint work with Freiling
and Wicherski [FHW05] on tracking botnet with a central server. A generalized version
was developed in collaboration with Steiner, Dahl, Biersack, and Freiling [HSD+08].

The techniques and results presented in Chapter 4 were published in a preliminary
form in several publications. Different techniques to utilize honeypots to capture
malware samples in an automated way were published in a paper together with Bächer,
Kötter, Freiling, and Dornseif [Hon05, BKH+06], and in joint work with Zhuge, Han,
Song, and Zou [ZHH+07]. A method for automated malware analysis was published
together with Willems and Freiling [WHF07]. Measurement results were published in
joint work with Göbel and Willems [GHW07]. Finally, a system to detect IRC-based
botnets was presented in joint work with Göbel [GH07].

7

Chapter 1 Introduction

A preliminary version of the work presented in Chapter 5 was published in a paper
together with Steiner, Dahl, Biersack, and Freiling [HSD+08]. This thesis contains new
insights and measurement results into the mechanisms behind peer-to-peer botnets.

Finally, Chapter 6 is based on joint work with Gorecki, Rieck, and Freiling [HGRF08]
and Nazario [NH08] on fast-flux service networks.

The following publications were not included in this thesis since their focus was
out of scope: together with Böhme, we studied the effects of stock spam on financial
markets and we could show that spam messages can impact the traded volume and
share price of stocks [BH06]. In joint work with Engelberth and Freiling, we studied
in a related research project an active underground economy that trades stolen digital
credentials [HEF08]. The results helps us better understand the nature and size of these
quickly emerging underground marketplaces. Together with Ikinci and Freiling, we
published a concept of a client-side honeypot, i.e., a type of honeypot that can be used
to study attacks against client systems [IHF08]. A measurement study on malicious
websites that attack web browsers was performed in collaboration with Zhuge, Song,
Guo, Han, and Zou [ZHS+08]. Finally, together with Rieck, Willems, Düssel, Laskov,
and Freiling we developed a system to classify malware samples based on their behavior
observed in a controlled environment [RHW+08].

8

Chapter 2
Background and Related Work

2.1 Introduction

Before we can get started with a technical discussion of malicious remote control
networks, some background information on honeypots is helpful since we use this
concept as a basic building block throughout this thesis. A honeypot is a closely
monitored computing resource that we want to be probed, attacked, or compromised.
In a more precise way, we use the following definition throughout this work [Mai03]:

A honeypot is an information system resource whose value lies in unautho-
rized or illicit use of that resource

We deliberately deploy systems that can be compromised by an attacker and use these
decoy systems to learn more about actual attacks. A honeynet is a network of (possibly
different kinds of) honeypots. In this chapter, we provide more details about the concept
behind honeypots and honeynets. This discussion serves as a motivation for our work
on malicious remote control networks.

Furthermore, we discuss work that is related to topics of this thesis in the second part
of this chapter. This discussion provides an overview of previous work and highlights
the contributions of this thesis. In later chapters we discuss related work in more detail
where it is appropriate.

Outline. This chapter is outlined as follows: in Section 2.2 we provide an overview of
the different concepts in the area of honeypots and honeynets. We describe the different
approaches and discuss their advantages and limitations. Section 2.3 provides a brief
overview of bots and botnets. Other work related to this thesis is discussed in Section 2.4
and we conclude this chapter with a summary in Section 2.5.

9

Chapter 2 Background and Related Work

2.2 Honeypots and Honeynets

A honeypot is a closely monitored computing resource (e.g., a personal computer or a
router) that we want to be probed, attacked, or compromised. The value of a honeypot
is weighted by the information that can be obtained from it. Monitoring the data
that enters and leaves a honeypot lets us gather information that is not available to
common network-based intrusion detection systems (NIDS). For example, we can log
the keystrokes of an interactive session even if encryption is used to protect the network
traffic. To detect malicious behavior, NIDS typically requires signatures of known attacks
and often fail to detect compromises that were unknown at the time it was deployed.
On the other hand, honeypots can detect vulnerabilities that are not yet understood. For
example, we can detect compromise by observing network traffic leaving the honeypot,
even if the mechanism of the exploit has never been seen before. Because a honeypot has
no production value, any attempt to contact it is suspicious by definition. Consequently,
forensic analysis of data collected from honeypots is less likely to lead to false positives
than data collected by NIDS. Most of the data collected with the help of a honeypot can
help us to understand attacks.

Honeypots can run any operating system and any number of services. The configured
services determine the vectors available to an adversary for compromising or probing
the system. A high-interaction honeypot provides a real system the attacker can interact
with. In contrast, a low-interaction honeypot simulates only some parts for example, the
network stack [Pro04]. A high-interaction honeypot can be compromised completely,
allowing an adversary to gain full access to the system and use it to launch further net-
work attacks. In contrast, low-interaction honeypots simulate only services that cannot
be exploited to get complete access to the honeypot. Low-interaction honeypots are
more limited, but they are useful to gather information at a higher level — for example,
to learn about network probes or worm activity. Neither of these two approaches is
superior to the other; each has unique advantages and disadvantages that we discuss in
this chapter and the rest of this thesis.

We also differentiate between physical and virtual honeypots. A physical honeypot is
a real machine on the network with its own IP address. A virtual honeypot is simulated
by another machine that responds to network traffic sent to the virtual honeypot.
When gathering information about network attacks or probes, the number of deployed
honeypots influences the amount and accuracy of the collected data. A good example is
measuring the activity of HTTP-based worms [SMS01]. We can identify these worms
only after they complete a TCP handshake and send their payload. However, most of
their connection requests will go unanswered because they contact randomly chosen
IP addresses. A honeypot can capture the worm payload by configuring it to function
as a web server or by simulating vulnerable network services. The more honeypots we
deploy, the more likely one of them is contacted by a worm.

In the following, we provide a more detailed overview of the individual types of
honeypots and described their advantages and drawbacks.

10

2.2 Honeypots and Honeynets

2.2.1 High-Interaction Honeypots

A high-interaction honeypot is a conventional computer system, such as a commercial off-
the-shelf (COTS) computer, a router, or a switch. This system has no conventional task
in the network and no regularly active users. Thus, it should neither have any unusual
processes nor generate any network traffic except regular daemons or services running
on the system. These assumptions aid in attack detection: every interaction with the
high-interaction honeypot is suspicious and could point to a possibly malicious action.
This absence of false positives is one of the key advantages of honeypots compared to
traditional intrusion detection systems (IDS). Hence, all network traffic going to and
coming from the honeypot is logged. In addition, all system activity is recorded for later
in-depth analysis.

It is also common to combine several honeypots to a network of honeypots, a honeynet.
Usually, a honeynet consists of several honeypots of different type (different platforms
and/or operating systems). This allows us to simultaneously collect data about different
types of attacks. Usually we can learn in-depth information about attacks with the help
of honeynets and therefore get qualitative results of attacker behavior, e.g., we can
obtain a copy of the tools used by the attackers.

A honeynet creates a fishbowl environment that allows attackers to interact with
the system while giving the operator the ability to capture all of their activity. This
fishbowl also controls the attacker’s actions, mitigating the risk of them damaging
any non-honeypot systems. One key element to a honeynet deployment is called the
Honeywall, a layer 2 bridging device that separates the honeynet from the rest of the
network (see Figure 2.1 for a schematic overview of a high-interaction honeynet). This
device mitigates risk through data control and captures data for analysis. Tools on the
Honeywall allow for analysis of an attacker’s activities. Any inbound or outbound traffic
to the honeypots must pass through the Honeywall. Information is captured using a
variety of methods, including passive network sniffers, IDS alerts, firewall logs, and
the kernel module known as Sebek [The03]. The attacker’s activities are controlled
at the network level, with all outbound connections filtered through both an intrusion
prevention system and a connection limiter.

Advantages and Disadvantages. With the help of a high-interaction honeypot, we
can collect in-depth information about the procedures of an attacker. We can observe
the “reconnaissance phase” — that is, how she searches for targets and with which
techniques she tries to find out more about a given system. Afterward, we can watch
how she attacks this system and which exploits she uses to compromise a machine. And
finally, we can also follow her tracks on the honeypot itself: it is possible to monitor
which tools she uses to escalate her privileges, how she communicates with other people,
or the steps she takes to cover her tracks. Altogether, we learn more about the activities
of an attacker — her tools, tactics, and motives. This methodology has proven to be
successful in the past. For example, we were able to learn more about the typical
procedures of phishing attacks and similar identity theft technique since we observed
several of these attacks with the help of high-interaction honeypots [The05]. In addition,

11

Chapter 2 Background and Related Work

Internet

High-Interaction
Honeypots

Honeywall

Figure 2.1: Example of honeynet environment with two high-interaction honeypots and
a Honeywall.

honeypots have proven to be an efficient tool in learning more about Internet crime like
credit card fraud [McC03a] or botnets [McC03b]. Several typical attacks we observed
in the past are described in a book [PH07].

High-interaction honeypots — both virtual and physical — also bear some risks. In
contrast to a low-interaction honeypot, the attacker can get full access to a conventional
computer system and begin malicious actions. For example, she could try to attack
other hosts on the Internet starting from the honeypot, or she could send spam from
one of the compromised machines. This is the price we pay for gathering in-depth
information about her procedures. However, there are ways to safeguard the high-
interaction honeypots and mitigate this risk. The typical setup of a honeynet includes
the Honeywall which filters known attack traffic and thus mitigates some of the risk.
However, the Honeywall also does not offer complete protection since it cannot detect
all kinds of attacks [The05].

One disadvantage of virtual honeypots is that the attacker can detect the monitoring
system installed in a high-interaction honeypot [DHK04, HR05]. It might happen that
an advanced attacker compromises a honeypot, detects the monitoring environment
Sebek, and then leaves the suspected honeypot again. Moreover, she could change her
tactics in other ways to try to fool the investigator. Therefore high-interaction honeypots
could lead to less information about attackers.

Another drawback of high-interaction honeypots is the higher maintenance cost:
we need to carefully monitor all honeypots and closely observe what is happening.
Analyzing a compromise also takes some time. In our experience, analyzing a complete
incident can take hours or even several days and one hour of attacker activity typically
requires 10-20 hours of analysis [PH07].

2.2.2 Low-Interaction Honeypots

In contrast, low-interaction honeypots emulate services, network stacks, or other aspects
of a real machine. They allow an attacker a limited interaction with the target system

12

2.2 Honeypots and Honeynets

and allow the operator to learn mainly quantitative information about attacks. For
example, an emulated HTTP server could just respond to a request for one particular file
and only implement a subset of the whole HTTP specification. The level of interaction
should be “just enough” to trick an attacker or an automated tool, such as a worm that
is looking for a specific file to compromise the server. Low-interaction honeypots can
also be combined into a network, forming a low-interaction honeynet. The advantage
of low-interaction honeypots is their simplicity and easy maintenance. Usually such
a system can be deployed and it then collects data with low maintenance cost. The
collected data could be information about propagating network worms [BKH+06] or
scans caused by spammers for open network relays [Pro04]. Moreover, installation is
generally easier for this kind of honeypot.

Low-interaction honeypots can primarily be used to gather statistical data and to
collect high-level information about attack patterns [Hol06]. Furthermore, they can be
used as a kind of intrusion detection system where they provide an early warning, i.e.,
a kind of burglar alarm, about new attacks [Pro04, GHH06], or they can be deployed
to lure attackers away from production machines [Pro04, Sym, Sof]. In addition, low-
interaction honeypots can be used to detect worms, distract adversaries, or to learn about
ongoing network attacks. In Chapter 4, we introduce different types of low-interaction
honeypots that can be used to collect information about malware that propagates in an
autonomous manner.

An attacker cannot fully compromise the system since she interacts just with an
emulation. Low-interaction honeypots construct a controlled environment and thus the
risk involved is limited: the attacker should not be able to completely compromise the
system, and thus the operator does not have to fear that she abuses the honeypots.

Advantages and Disadvantages. When an adversary exploits a high-interaction hon-
eypot, she gains capabilities to install new software and modify the operating system.
This is not the case with a low-interaction honeypot: a low-interaction honeypot provides
only very limited access to the operating system. By design, it is not meant to represent a
fully featured operating system and usually cannot be completely exploited. As a result,
a low-interaction honeypot is not well suited for capturing zero-day exploits, i.e., attacks
that exploit an unknown vulnerability or at least a vulnerability for which no patch is
available. Instead, a low-interaction honeypot can be used to detect known exploits and
measure how often a given network gets attacked. The term low-interaction implies that
an adversary interacts only with an emulated environment that tries to deceive her to
some degree, but does not constitute a fully fledged system. A low-interaction honeypot
often simulates a limited number of network services and implements just enough of
the Internet protocols, usually TCP and IP, to allow interaction with the adversary and
make her believe she is connecting to a real system.

The advantages of low-interaction honeypots are manifold. They are easy to set up
and maintain. They do not require significant computing resources, and they cannot be
compromised by adversaries. The risk of running low-interaction honeypots is much
smaller than running honeypots that adversaries can break into and control.

13

Chapter 2 Background and Related Work

On the other hand, that is also one of the main disadvantages of the low-interaction
honeypots. They only present the illusion of a machine, which may be pretty sophisti-
cated, but it still does not provide an attacker with a real environment she can interact
with. In general, it is often easy to fingerprint a low-interaction honeypot and detect its
presence. An attacker could therefore scan the network for low-interaction honeypots in
advance and not attack these machines.

Comparison of Both Approaches. Table 2.1 provides a summarized overview of high-
and low-interaction honeypots, contrasting the important advantages and disadvantages
of each approach.

High-Interaction Honeypots Low-Interaction Honeypots

Modus
operandi

Real services, operating sys-
tems, or applications

Emulation of TCP/IP stack,
vulnerabilities, . . .

Involved risk Higher risk Lower risk
Maintenance Hard to deploy and maintain Easy to deploy and maintain
Captured
data

Capture extensive amount of
information

Capture quantitative informa-
tion about attacks

Table 2.1: Comparison of advantages and disadvantages of high- and low-interaction
honeypots

2.2.3 Physical Honeypots

Another possible distinction in the area of honeypots differentiates between physical
and virtual honeypots. Physical honeypot means that the honeypot is running on a
physical machine. Physical often implies high-interaction, thus allowing the system to
be compromised completely. They are typically expensive to install and maintain. For
large address spaces, it is impractical or impossible to deploy a physical honeypot for
each IP address. In that case, the preferred approach is to use virtual honeypots.

2.2.4 Virtual Honeypots

The main advantages of virtual honeypots are scalability and ease of maintenance. We
can deploy thousands of honeypots on just one physical machine. They are inexpensive
to deploy and accessible to almost everyone.

Compared to physical honeypots, this approach is more lightweight. Instead of
deploying a physical computer system that acts as a honeypot, we can also deploy
one physical computer that hosts several virtual machines that act as honeypots. This
leads to easier maintenance and lower physical requirements. Usually VMware [VMw],
User-Mode Linux (UML) [UML], or other virtualization tools are used to set up such
virtual honeypots. These tools allow us to run multiple operating systems and their

14

2.2 Honeypots and Honeynets

applications concurrently on a single physical machine, making it much easier to collect
data. Moreover, other types of virtual honeypots are introduced in Chapter 4, in which
we focus on malicious remote control networks with a central server.

To start implementing the high-interaction methodology, a user can simply use a
physical machine and set up a honeypot on it. However, choosing an approach that
uses virtual high-interaction honeypots is also possible: instead of deploying a physical
computer system that acts as a honeypot, the user can deploy one physical computer
that hosts several virtual machines that act as honeypots. This has some interesting
properties. First, the deployment is not very difficult. There are some solutions that
offer an already pre-configured honeypot that just needs to be customized to the local
environment and can then be executed. Second, it is the easy maintenance. If an attacker
compromises a honeypot, the operator can watch her and follow her movements. After
a certain amount of time, the operator can restore the honeypot to the original state
within minutes and start from the beginning. Third, using a virtual machine to set up a
honeypot poses less risk because an intruder is less likely to compromise or corrupt the
actual machine on which the system is running.

One disadvantage of virtual honeypots is that the attacker can differentiate between
a virtual machine and a real one [HR05]. It might happen that an advanced attacker
compromises a virtual honeypot, detects the virtual environment, and then leaves the
honeypot again without performing any attacks. This is similar to the drawbacks of
high-interaction honeypots introduced above.

2.2.5 Honeyclients

Honeyclients, which are sometimes also denominated as client-side honeypots, are the
opposite to the “classical” server honeypot solutions. The main idea is to emulate
the behavior of humans and then closely observe whether or not the honeypot is
attacked [WBJ+06]. For example, a honeyclient can actively surf websites to search for
malicious web servers that exploit the visitor’s web browser (so called drive-by download
attacks [PMRM08]) and thus gather information of how attackers exploit client systems.
Another example are honeyclients that automatically process e-mails by clicking on
attachments or following links from the e-mail and then closely observe if the honeypot
is attacked. The current focus in the area of honeyclients is commonly based on the
analysis of web client exploitation, since this attack vector is often used by attackers in
order to compromise a client.

Honeyclients also have another advantage: one major culprit of server honeypots is
their waiting for an attack — they are similar to a burglar alarm, waiting for an incident
to happen. It is possible that a ready to be attacked honeypot will not be attacked for
weeks or even months, or it is also possible that the honeypot is attacked occasionally
by many attackers at the same time. In general, it is thus not predictable how frequently
attacks will occur on a honeypot and therefore the analyses get more complicated. In
comparison, honeyclients initialize the analysis phase by visiting websites and thus
control the maximum number of possible attacks. Furthermore, the operator of a

15

Chapter 2 Background and Related Work

honeyclient can run several clients in parallel and scale how much information is
processed by them.

Honeyclients can also be classified as high-interaction or low-interaction honeyclients.
High-interaction honeyclients are usually real, automated web browsers on real operat-
ing systems which interact with websites like real humans would do. They log as much
data as possible during the attack and usually allow a fixed time period for an attack.
Since they provide detailed information about the attack, high-interaction honeyclients
are in general rather slow and not able to scan broad parts of the web. Low-interaction
honeyclients, on the other hand, are often emulated web browsers, usually web crawlers,
which do have no or only limited abilities for attackers to interact with. Low-interaction
honeyclients often make use of static signature or heuristics-based malware and attack
detection tools and thus lack the detection of zero-day exploits and unimplemented
attack types. These honeyclients are not suited for an in-depth investigation of an
attacker’s actions after a successful compromise because the system is only simulated
and any other action than the initial exploitation is likely to be missed, too. In spite of
these drawbacks, low-interaction honeyclients are often easy to deploy and operate and
usually have a high performance: they can be used for analyzing a large number of URLs
compared to the high-interaction variant. Furthermore, the containment of attacks can
be implemented in a straightforward way because the compromised system is not real
and thus unusable for the attacker, which simplifies the deployment of a low-interaction
honeyclient and minimizes the risk involved.

2.3 Bots and Botnets

In this section, we present a brief overview of bots and botnets to provide a first glance
at the malicious remote networks we cover in this thesis. Chapter 4 and Chapter 5
provides a more detailed and extensive overview of different aspects of botnets.

The term bot is derived from the word robot and refers to a program which can, to
some degree, act in an autonomous manner. A computer system that can be remotely
controlled by an attacker is called a bot or zombie. Bots started off as little helper
tools, especially in the IRC community, to keep control of a private channel or as a
quiz robot, randomly posting questions. In the context of malware, bots are harmful
programs, designed to do damage to other hosts on the network [Hol05]. Moreover,
bots can be grouped to form so called botnets, consisting of several hundreds up to
thousands of hosts, whose combined power can be utilized by the owner of the botnet to
perform powerful attacks. One of these powerful attacks are Distributed Denial of Service
(DDoS) attacks, which overwhelm the victim with a large number of service requests.
DDoS attacks are described in more detail in the work by Mirkovic and Reiher [MR04].
Other abuses of bots can be identity theft, sending of spam emails and similar nefarious
purposes (see Chapter 4 and Chapter 5 for details).

To control a large group of bots, a Command and Control (C&C) server is utilized,
which all zombie machines connect to and receive instructions from. Figure 2.2 provides
a schematic overview of a botnet. A common method of an attacker to communicate

16

2.4 Related Work

C&C server
infected
machine

infected
machine

infected
machine

attacker

command

command

command

command

Figure 2.2: Setup of a botnet with a central server for Command & Control.

with the botnet is to use the IRC protocol as communication channel. In this case, the
infected machines automatically join a specific channel on a public or private IRC server
to receive further instructions. This could for example be the command to perform
an attack against a specified victim or to scan certain network ranges for hosts with
known vulnerabilities. It is not even necessary for a bot to join a channel, there are also
bots which use private messages to receive instructions from the botnet owner. Thus,
a connection to the C&C server suffices. Besides IRC, other protocols are used more
and more by bots. For example, HTTP is nowadays a common communication channel.
In this case, the bot periodically polls the C&C server and interprets the responses as
commands. Several bots also use peer-to-peer based protocols to avoid a central C&C
server and this form of communication could become more prevalent in the future. We
focus on these botnets in Chapter 5.

Since bots are able to autonomously propagate further across the network and feature
keylogging and backdoor functionalities as well, they can be seen as a combination of
worms, rootkits and Trojan horses. A more detailed technical description of botnets
and their attack features is provided in a paper we published under the name of the
Honeynet Project [Hon05].

2.4 Related Work

We now discuss the related work in the areas of honeypots/honeynets and bots/botnets.
This discussion provides an overview of work related to the methodology presented
in this thesis. In later sections, we discuss related work in more detail where it is
appropriate. Our work also touches on the areas of network- and host-based security,
but since this is not the focus of this thesis, we refrain from a detailed discussion of
related work in that area here.

17

Chapter 2 Background and Related Work

2.4.1 Honeypots and Honeynets

The area of honeypot-related research has received a lot of attention in the recent years
with many new concepts and tools being developed [BCJ+05, MSVS04, JX04, LD08,
PSB06, Pro04, VBBC04, VMC+05, YBP04]. All relevant concepts were already discussed
in Section 2.2 and thus we focus on a few important systems here. Low-interaction
honeypots related to our work are discussed in more detail in Section 4.4.

The most common setup for high-interaction honeynets are so called GenIII hon-
eynets [BV05]. In such a setup, several high-interaction honeypots are equipped with
the monitoring software Sebek [The03] which permanently collects information about
the system state. All logged information is sent to the Honeywall, that collects this
information in a database. Furthermore, the Honeywall is responsible for Data Control,
i.e., control suspicious traffic entering or leaving the honeynet, and Data Analysis, i.e., it
provides an analysis frontend for the operator. We use GenIII honeynets throughout this
thesis for either capturing or analyzing malicious software.

Honeyd is a honeypot framework developed by Provos to instrument thousands of
Internet addresses with virtual honeypots and corresponding network services [Pro04].
Each IP address can be individually configured to simulate a specific configuration. Due
to the scalability of the tool, it is applicable to very large honeynet setups. Honeyd
inspired the work presented in this thesis. We discuss the relationship between Honeyd
and the low-interaction honeypots that emulate vulnerable network services in more
detail in Section 4.4.

The HoneyMonkey project is a web browser (Internet Explorer) based high-interaction
honeyclient developed by Wang et al. [WBJ+06]. The architecture consists of a chain
of virtual machines with different flavors of the Windows Operating system in various
patch levels. Starting with a fully unpatched system, the Monkey Controller initiates a
so called “monkey” program which browses previously scheduled web sites. The monkey
opens the web site and waits for a predefined time. After the time-out, the virtual
machine is checked for signs of a successful intrusion. If an attack is detected, the web
site is revisited with the next machine having a higher patch-level in the pipeline. This
analysis process is repeated as long as the machines are successfully compromised by
visiting a particular web site. If finally the last, fully patched system in the chain is also
exploited, then the system has found a zero-day vulnerability.

The MITRE honeyclient project is an open-source, web browser based high-interaction
honeyclient developed by Wang et al. [Wan09]. Another similar tool is Capture-HPC
developed by Seifert and Steenson [SS09]. Both tool are high-interaction honeyclients
and follow the same basic mechanisms as HoneyMonkey. For our work in this thesis, we
use honeyclients to detect malicious websites and collect samples of malicious software
that propagates using this attack vector.

2.4.2 Bots and Botnets

In the last few years, the botnet phenomenon got the general attention of the security
research community. We published one of the first systematic studies of botnets under

18

2.4 Related Work

the name of the Honeynet Project [Hon05]. This work provides a detailed overview of
the technical aspects of bots and botnets and served as one of the foundations of this
thesis. Cooke et al. [CJM05] outlined the origins and structure of botnets and present
some results based on a distributed network sensor and honeypots. However, they do
not give detailed results that characterize the extent of the botnet problem. Rajab et
al. [RZMT06] used DNS data and monitoring of C&C control activity to get a better
understanding of botnets. Their study was based on data collected by monitoring 192
botnets during a period of more than three months. They use low-interaction honeypots
that emulate vulnerabilities in network services as we describe in Section 4.4. Dagon et
al. [DZL06] studied the diurnal patterns in botnets and proposed using DNS sinkholing
to study botnets. Botnets that use peer-to-peer based protocols in the wild were first
described in a methodical way by Grizzard et al. [GSN+07].

Canavan [Can05] and Barford and Yegneswaran [BY07] presented an alternative
perspective on IRC-based botnets based on in-depth analysis of the source code from
several bot families. We also analyzed the source code of several bot families such as
SdBot and Agobot, which can be freely downloaded from the Internet, to understand
some of the effects we monitored in the wild.

A lot of systems were presented to detect botnets and we just provide an overview
of the most important systems and techniques proposed in the literature. Gu in-
troduced many different tools like BotHunter [GPY+07], BotSniffer [GZL08], and
BotMiner [GPZL08] that detect different aspects of botnet behavior and the communi-
cation channel used by bots. The results of this work are summarized in his PhD the-
sis [Gu08]. A similar approach to BotMiner was presented by Reiter and Yen [YR08]. All
these tools try to find either horizontal or vertical correlations in network communication.
A horizontal correlation implies that several host behave similar at the network level:
this indicates infected machines under a common control infrastructure which respond
to a given command. The second approach, namely vertical correlation, tries to detect
individual machines that behave like infected machines, for example by detecting typical
network signatures of botnet communication. In this thesis, we do not focus on botnet
detection, but present a methodology to stop this kind of malicious remote control
networks in a general way.

A transport layer-based botnet detection approach was introduced by Karasaridis
et al. [KRH07]. They use passive analysis based on flow data to characterize botnets
and were able to detect several hundred controllers over a period of seven months.
However, such a flow-based approach cannot provide insight into the botnet and the
control structure itself. With the method proposed in this thesis, we can observe the
commands issued by an attacker, the executables used, and similar effects of a botnet.

Botnets commonly use the same IRC channel for bots. This observation is used
by Binkley and Singh to detect suspicious IRC servers [BS06, Bin06]. They combine
TCP-based anomaly detection with IRC-based protocol analysis and are able to detect
botnets efficiently. The system collects statistics over a complete day and aggregates the
collected information. Chen presented a system that tries to detect botnet traffic at edge
network routers and gateways [Che06]. In addition, this work includes preliminary
statistics like mean packet length of IRC packets and the distribution of IRC messages

19

Chapter 2 Background and Related Work

like JOIN or PING/PONG, but it does not give statistics about the success rate of the
approach. Strayer et al. use a similar approach to examine flow characteristics such as
bandwidth, duration, and packet timing [SWLL06].

2.5 Summary

In this chapter, we introduced the concept of honeypots. These systems are conventional
computer systems like an ordinary PC system or a router, deployed to be probed,
attacked, and compromised. Honeypots are equipped with additional software that
constantly collects information about all kinds of system activity. This data greatly aids
in post-incident computer and network forensics. In the rest of this thesis, we use the
concept of honeypots as a basic block for our methodology.

We also discussed botnets, networks of compromised machines under the control of
an attacker. Due to their sheer size and the harm then can cause, botnets are nowadays
one of the most severe threats on the Internet. Botnets are an example of malicious
remote control networks and we introduce in the next chapter a general root cause
methodology to prevent them.

20

Chapter 3
Root-Cause Methodology to Prevent
Malicious Remote Control Networks

3.1 Introduction

In this chapter, we introduce a general root cause methodology to prevent malicious
remote control networks. This methodology uses honeypot-based techniques and is
a novel application of honeynets. The basic idea of the approach is to first infiltrate
the network, then analyze the network from the inside, and finally use the collected
information to stop it. The presented methodology is one of the first preventive tech-
niques that aims at DDoS attack avoidance, i.e., ensuring that DDoS attacks are stopped
before they are even launched. We present an effective approach to DDoS prevention
that neither implies a resource arms race nor needs any additional (authentication)
infrastructure. Furthermore, this methodology can be used to stop many other threats
caused by networks of compromised machines, e.g., spamming and identity theft. In the
next three chapters, we exemplify this approach and show how we can use honeynets
to prevent different kinds of attacks caused by botnets and similar malicious remote
control networks.

Contributions. The contributions of this chapter are two-fold:

• We analyze the basic principles behind malicious remote control networks and
provide key insights about their structure and configuration.

• Based on these insights, we introduce a general root cause methodology to prevent
malicious remote control networks. This is achieved by capturing a sample related
to the network, analyzing it, infiltrating the network with an agent, and then
observing the network in detail. All these steps are automated to a high degree.
Based on the collected information, the network can then be mitigated.

21

Chapter 3 Root-Cause Methodology to Prevent Malicious Remote Control Networks

Outline. This chapter is outlined as follows: in the first part, we analyze the basic
principles behind malicious remote control networks and substantiate our findings. In
the second part, we propose a root cause methodology to prevent DDoS attacks. This
methodology is rather general and allows us to prevent many different kinds of malicious
remote control networks. In the next three chapters, we then exemplify the method
with the help of several concrete implementations.

3.2 Methodology

In this section we introduce a general methodology to prevent DDoS attacks. This
methodology can then be generalized to stop other kinds of threats that are based on
malicious remote control networks as we show in later chapters. Our methodology is
based on the following line of reasoning:

1. To mount a successful DDoS attack, a large number of compromised machines is
necessary.

2. To coordinate a large number of machines, the attacker needs a remote control
mechanism.

3. If the remote control mechanism is disabled, the DoS attack is prevented.

We will substantiate this line of reasoning in the following paragraphs.

3.2.1 A Large Number of Machines is Necessary

Why does an attacker need a large number of machines to mount a successful DDoS
attack? If an attacker controls only one or a few machines, a DDoS attack is successful
only if the total resources of the attacker (e.g., available bandwidth or possibility
to generate many packets per second) are greater than the resources of the victim.
Otherwise the victim is able to cope with the attack. Hence, if this requirement is met,
the attacker can efficiently overwhelm the services offered by the victim or cause the
loss of network connectivity.

Moreover, if only a small number of attacking machines are involved in an attack, these
machines can be identified and counteractive measures can be applied, e.g., shutting
down the attacking machines or blocking their traffic. To obfuscate the real address
of the attacking machines, the technique of IP spoofing, i.e., sending IP packets with
a counterfeited sender address, is often used. Furthermore, this technique is used to
disguise the actual number of attacking machines by seemingly increasing it. However,
IP spoofing does not help an attacker to conduct a DDoS attack from an efficiency point
of view: it does not increase the available resources, but it even reduces them due
to computing efforts for counterfeiting the IP addresses. In addition, several ways to
detect and counteract spoofed sender address exist, e.g., ingress filtering [Fer00], packet
marking [SP01], or ICMP traceback [SWKA00, Bel01]. The IP address distribution of
a large number of machines in different networks makes ingress filter construction,

22

3.2 Methodology

maintenance, and deployment much more difficult. Additionally, incident response is
hampered by a high number of separate organizations involved.

Therefore control over a large number of machines is necessary (and desirable from
an attacker’s point of view) for a successful DDoS attack.

3.2.2 A Remote Control Mechanism is Necessary

The success of a DDoS attack depends on the volume of the malicious traffic as well as
the time this traffic is directed against the victim. Therefore, it is vital that the actions of
the many hosts which participate in the attack are well-coordinated regarding the type
of traffic, the victim’s identity, as well as the time of attack.

A cautious attacker may encode all this information directly into the malware which
is used to compromise the zombies that form the DDoS network. While this makes
her harder to track down, the attacker loses a lot of flexibility since she needs to plan
her deeds well in advance. Additionally, this approach makes the DDoS attack also
less effective since it is possible to analyze the malware and then reliably predict when
and where an attack will take place. Therefore it is desirable for an attacker to have a
channel through which this information can be transferred to the zombies on demand,
i.e., a remote control mechanism.

A remote control mechanism has several additional advantages:

1. The most effective attacks come by surprise regarding the time, the type, and the
target of attack. A remote control mechanism allows an attacker to react swiftly
to a given situation, e.g., to mount a counterattack or to substantiate blackmail
threats.

2. Like any software, malware is usually far from perfect. A remote control mecha-
nism can be used as an automated update facility, e.g., to upgrade malware with
new functionality or to install a new version of the malware once antivirus engines
start to detect the malware.

In short, a DDoS attack mechanism is more effective if an attacker has some type of
remote control over a large number of machines. Then she can issue commands to
exhaust the victim’s resources at many systems, thus successfully attacking the victim.

3.2.3 Preventing Attacks

Our methodology to mitigate DDoS attacks aims at manipulating the root cause of the
attacks, i.e., influencing the remote control network. Our approach is based on three
distinct steps:

1. Infiltrating the remote control network.

2. Analyzing the network in detail from the inside.

3. Shutting down the remote control network.

23

Chapter 3 Root-Cause Methodology to Prevent Malicious Remote Control Networks

In the first step, we have to find a way to smuggle an agent into the control network.
In this context, the term agent describes a general procedure to mask as a valid member
of the control network. This agent must thus be customized to the type of network we
want to plant it in. The level of adaptation to a real member of the network depends
on the target we want to infiltrate. For instance, to infiltrate a botnet we would try to
simulate a valid bot, maybe even emulating some bot commands. We could also run a
copy of the actual bot in a controlled environment and closely monitor what the bot is
doing, thereby passively infiltrating the remote control network.

Once we are able to sneak an agent into the remote control network, it enables us
to perform the second step, i.e., to observe the network in detail. So we can start to
monitor all activity and analyze all information we have collected. For example, after
having achieved to smuggle an agent into a botnet, we start to monitor all commands
issued by the attacker and we can also observe other victims joining and leaving the
botnet command channel.

In the last step, we use the collected information to shut down the remote control
network. Once this is done, we have deprived the attacker’s control over the other
machines and thus efficiently stopped the threat of a DDoS attack with this network.
Again, the particular way in which the network is shut down depends on the type of
network. For example, to shut down an IRC-based botnet that uses a central server to
distribute the attacker’s commands, we could use the following approach: since the C&C
server is the only way for an attacker to issue commands to all bots, a viable approach
to shut down the network is to disconnect the C&C server from the Internet. This would
stop the flow of commands from the attacker to the bots, effectively stopping the whole
botnet. For botnets that use peer-to-peer protocols for communication, the shutdown
is harder as we exemplify in Chapter 5. And we can also indirectly stop the malicious
remote control network by interfering with essential communication mechanisms like
DNS as we show in Chapter 6.

3.2.4 Discussion

The methodology described above can be applied to different kinds of malicious remote
control networks and is thus very general. The practical challenge of the methodology is
to automate the infiltration and analysis process as much as possible. If it is possible
to “catch” a copy of the malware in a controlled way, we can set up an automated
system that “collects” malware. In this thesis, we show how the idea behind honeypots
can be used to construct such a system. In all cases, the malware needs to establish a
communication channel between itself and the attacker to receive commands. We can
exploit this fact to extract a lot of information out of the communication channel in
an automated fashion. For example, if contact to the attacker is set up by establishing
a regular network connection, the network address of the attacker’s computer can
be automatically determined. By implementing more general behavior-based analysis
techniques, we can extract even more information from a given malware sample that
can then be used for the infiltration and analysis process.

24

3.3 Summary

To many readers, the methodology may sound like coming directly from a James Bond
novel and it is legitimate to ask for evidence of its feasibility. In the following chapters
we give exactly this evidence. We show that this method can be realized on the Internet
by describing how we infiltrated and tracked different kinds of malicious remote control
networks. We focus on different kinds of networks:

1. IRC-based botnets: these are the typical botnets seen in the wild nowadays. They
use IRC for command and control and we show an efficient mechanism to learn
more about this threat in Chapter 4.

2. HTTP-based botnets: this kind of botnets uses HTTP for command and control.
In contrast to IRC-based botnets, the individual bots periodically query the C&C
server for new commands and thus this communication model implements a
polling mechanism. We study these networks also in Chapter 4.

3. Peer-to-Peer-based botnets: instead of using a central server for command and con-
trol, these botnets use peer-to-peer protocols for communication. It is nevertheless
possible to track these networks, but shutting them down is harder as we illustrate
in Chapter 5.

4. Fast-flux service networks: the attackers use the compromised machines to estab-
lish a proxy network on top of these machines to implement a robust hosting
infrastructure. The same basic idea can also be used to study this threat as we
demonstrate in Chapter 6.

With the help of these four examples, we substantiate our approach and show in the
following, that a high degree of automation is possible and practical. In addition, our
approach does not need any secrecy for the involved procedures, we can publish all
details. If the communication flow of the remote control network changes, we need to
slightly adjust our algorithms, but the general approach stays the same.

3.3 Summary

DDoS attacks have become increasingly dangerous in recent years and we are observing
a growing professionalism in the type of Internet crime surrounding DDoS. In this
chapter we have introduced a technique for DDoS attack prevention that neither implies
a resource arms race nor needs any additional infrastructure. In contrast to previous
work in this area our approach is preventive instead of reactive. Our technique attacks a
root cause of DDoS attacks: in order to be effective, an attacker has to control a large
number of machines and thus needs a remote control network. Our methodology aims
at shutting down this control network by infiltrating it and analyzing it in detail. Besides
DDoS attacks, our approach can also be used to prevent other illicit uses of malicious
remote control networks like spamming or mass identity theft since we stop the control
mechanisms behind of all these threats. In the next three chapters, we show the practical
feasibility of the proposed methodology.

25

Chapter 3 Root-Cause Methodology to Prevent Malicious Remote Control Networks

26

Chapter 4
Tracking Botnets with Central C&C
Server

4.1 Introduction

In this chapter we exemplify a technical realization of the methodology we introduced
in the previous chapter. We present an approach to track and observe botnets that is
able to prevent DDoS attacks. Since we stop the whole botnet operation, also additional
threats like sending of spam mails, click fraud, or similar abuses of botnets are stopped.
In this chapter, we focus on malicious remote control networks with a central Command
& Control (C&C) server, botnets with other communication structures are covered in the
following chapters.

As already stated previously, tracking botnets is a multi-step procedure: first we need
to gather some data about an existing botnet. This can for instance be obtained with the
help of honeypots and via an analysis of captured malware. We show in this chapter
how both steps can be automated to a high degree. With the help of this information it
is possible to smuggle an agent into the network as we show afterwards.

Contributions. The contributions of this chapter are threefold:

1. We show how the method of tracking malicious remote control networks as
introduced in Chapter 3 can be used to track botnets with a central C&C server.
We argue that the method is applicable to analyze and mitigate any botnet using a
central control structure.

2. We demonstrate the applicability by performing a case study of IRC- and HTTP-
based botnets, thereby showing how different kinds of botnets can be tracked with
our methodology.

3. We present empirical measurement results obtained by applying the methodology
in real-world settings on the Internet.

27

Chapter 4 Tracking Botnets with Central C&C Server

Outline. This chapter is outlined as follows: in Section 4.2 we motivate our work on
preventing botnets since these networks are the root cause behind DDoS and other
attacks and our method is one of the first preventive methods to stop this threat.
Section 4.3 provides a detailed overview of bots and botnets with a central C&C server,
including technical details behind these networks. We explain how samples of these
bots can be collected in an automated way (Section 4.4), how these samples can be
automatically analyzed (Section 4.5), and how we can infiltrate them (Section 4.6). A
realization of the methodology proposed in Chapter 3 to track botnets with an IRC C&C
server is presented in Section 4.7.1. The same methodology also applies to HTTP-based
botnets as we show in Section 4.7.2. Empirical measurement results are presented
in Section 4.8 and we briefly discuss mitigation strategies in Section 4.9. Finally, we
conclude in Section 4.10 with a summary.

4.2 Motivation

As discussed in previous chapters, the root cause behind DDoS attacks nowadays are
botnets, i.e., networks of compromised machines under the control of an attacker.
Defensive measures against DDoS attacks can be classified as either preventive or
reactive [MR04]. Currently, reactive techniques dominate the arena of DDoS defense
methods (the work by Mirkovic et al. [MDDR04] gives an excellent survey over academic
and commercial systems). The idea of reactive approaches is to detect the attack by using
some form of (distributed) anomaly detection on the network traffic and then react to the
attack by reducing the malicious network flows to manageable levels [MRRK03]. The
drawback of these approaches is that they need an increasingly complex and powerful
sensing and analysis infrastructure to be effective: the approach is best if large portions
of network traffic can be observed for analysis, preferably in real-time.

Preventive methods either eliminate the possibility of a DDoS attack altogether
or they help victims to survive an attack better by increasing the resources of the
victim in relation to those of the attacker, e.g., by introducing some form of strong
authentication before any network interaction can take place (see for example work
by Meadows [Mea98]). Although being effective in theory, these survival methods
always boil down to an arms race between attacker and victim where the party with
more resources wins. In practice, it seems as if the arms race is always won by the
attacker, since it is usually easier for her to increase her resources (by compromising
more machines) than for the victim, which needs to invest money in equipment and
network bandwidth.

Preventive techniques that aim at DDoS attack avoidance (i.e., ensuring that DDoS
attacks are stopped before they are even launched) have received close to no atten-
tion so far. One reason for this might be the popular folklore that the only effective
prevention technique for DDoS means to fix all vulnerabilities in all Internet hosts that
can be misused for an attack (see for example Section 5 of the article by Mirkovic and
Reiher [MR04]). In this thesis we show that this folklore is wrong by presenting an
effective approach to DDoS prevention that neither implies a resource arms race nor

28

4.3 Technical Background

needs any additional (authentication) infrastructure. The approach is based on the
observation that coordinated automated activity by many hosts is at the core of DDoS
attacks. Hence the attacker needs a mechanism to remotely control a large number of
machines. To prevent DDoS attacks, our approach attempts to identify, infiltrate and
analyze this remote control mechanism and to stop it in an automated and controlled
fashion. We have outlined this methodology already in detail in the previous chapter.
Since we attack the problem of DDoS at the root of its emergence, we consider our
approach to be a root cause method to DDoS defense. Furthermore, our approach also
helps to mitigate other malicious activities caused by these remote control mechanisms
like sending of spam mails or click fraud.

It may seem unlikely that it is possible to automatically analyze and infiltrate a mali-
cious remote control method crafted by attackers for evil purposes. However, we provide
evidence of the feasibility of our strategy by describing how we successfully tracked and
investigated the automated attack activity of botnets on the Internet. The idea of our
methods is to “collect” malware using honeypots, i.e., network resources (computers,
routers, switches, etc.) deployed to be probed, attacked, and compromised (see Sec-
tion 2.2 for details). Based on this idea, we can implement a system to automatically
collect samples of autonomous spreading malware. From the automated analysis we
derive the important information necessary to observe and combat malicious actions of
the botnet maintainers. In a sense, our approach can be characterized as turning the
methods of the attackers against themselves.

4.3 Technical Background

During the last few years, we have seen a shift in how systems are being attacked. After
a successful compromise, a bot (often also referred to as zombie or drone) is commonly
installed on the victim’s system. This program provides a remote control mechanism
to command this machine. Via this remote control mechanism, the attacker can issue
arbitrary commands and thus has complete control over the victim’s computer system. In
Chapter 2, we provide more details about the mechanism behind these so called botnets.
With the help of a botnet, attackers can control several hundred or even thousands of
bots at the same time, thus enhancing the effectiveness of their attack. In this section
we discuss concepts behind bots and botnets and introduce in detail the underlying
methods and tools used by the attackers.

4.3.1 Overview of Bots

Historically, the first bots were programs used in Internet Relay Chat (IRC, defined in
RFC 2810) networks. IRC was developed in the late 1980s and allows users to talk to
each other in so-called IRC channels in real time. Bots offered services to other users,
for example, simple games or message services. But malicious behavior evolved soon
and resulted in the so-called IRC wars, one of the first documented DDoS attacks.

29

Chapter 4 Tracking Botnets with Central C&C Server

Nowadays, the term bot describes a remote control program loaded on a computer,
usually after a successful invasion, that is often used for nefarious purposes. During
the last few years, bots like Agobot, SDBot, RBot, and many others, were often used in
attacks against computer systems. Moreover, several bots can be combined into a botnet,
a network of compromised machines that can be remotely controlled by the attacker.
Botnets in particular pose a severe threat to the Internet community, since they enable
an attacker to control a large number of machines.

Three attributes characterize a bot: a remote control facility, the implementation of
several commands, and a spreading mechanism to propagate it further:

• A remote control lets an attacker manipulate infected machines. Bots currently
implement several different approaches for this mechanism:

– Typically, the controller of the bots uses a central IRC-based C&C server. All
bots join a specific channel on this server and interpret all the messages
they receive there as commands. This structure is usually secured with the
help of passwords to connect to the server, join a specific channel, or issue
commands. Several bots also use SSL-encrypted communication.

– In other situations, such as when some bots avoid IRC and use covert commu-
nication channels, the controller uses, for example, communication channels
via HTTP or DNS instead of the IRC protocol. They can, for example, encode
commands to the bots inside HTTP requests or within DNS TXT records.
Another possibility is to hide commands in images (steganography).

– Some bots use peer-to-peer communication mechanisms to avoid a central
C&C server because it is a single point of failure. Chapter 5 discusses these
botnets in greater detail.

• Typically, two types of commands are implemented over the remote control
network: DDoS attacks and updates. DDoS attacks include SYN and UDP flooding
or more clever ones such as spidering attacks — those that start from a given URL
and follows all links in a recursive way — against websites. Update commands
instruct the bot to download a file from the Internet and execute it. This lets
the attacker issue arbitrary commands on the victim’s machine and dynamically
enhance the bot’s features. Other commands include functions for sending spam,
stealing sensitive information from the victim (such as passwords or cookies), or
using the victim’s computer for other nefarious purposes.

The remote control facility and the commands that can be executed from it
differentiate a bot from a worm, a program that propagates itself by attacking
other systems and copying itself to them.

• But like a worm, most bots also include a mechanism to spread further, usually
by automatically scanning whole network ranges and propagating themselves via
vulnerabilities. These vulnerabilities usually appear in the Windows operating
system, the most common being DCOM [Mic03], LSASS [Mic04], or one of the
newer Microsoft security bulletins.

30

4.3 Technical Background

Attackers also integrate recently published exploits into their bots to react quickly
to new trends. Propagation via network shares and weak passwords on other
machines is another common technique: the bot uses a list of passwords and
usernames to log on to remote shares and then drops its copy. Propagation as an e-
mail attachment, similar to e-mail worms, can also be used as a propagation vector.
Some bots propagate by using peer-to-peer filesharing protocols [SJB06, KAG06].
Using interesting filenames, the bot drops copies of itself into these program’s
shared folders. It generates the filename by randomly choosing from sets of strings
and hopes that an innocent user downloads and executes this file.

An additional characteristic applies to most bots we have captured in the wild: most of
them have at least one executable packer, a small program that compresses/encrypts the
actual binary. Typically, the attacker uses tools such as UPX [OMR08], ASPack [Sta08]
or PECompact [Tec08] to pack the executable. The packing hampers analysis and makes
reverse engineering of the malware binary harder.

4.3.2 Examples of Bots

We now take a closer look at some specific bot variants to provide an overview of what
type of bots can be found in the wild.

Agobot and Variants. One of the best-known families of bots includes Agobot/ Gaobot,
its variants Phatbot and Forbot, and several others. Most antivirus vendors have hun-
dreds of signatures for this family of bots. The source code for Agobot was published
at various websites in April 2004, resulting in many new variants being created over
time. The original version of Agobot was written by a young German, who was arrested
and charged under the computer sabotage law in May 2004 [Uni07, Tho08]. The actual
development team behind the bot consisted of more people. The bot is written in
C++ with cross-platform capabilities and shows a very high abstract design.

For remote control, this family of bots typically uses a central IRC server for Command
and Control. Some variants also use peer-to-peer communication via the decentralized
WASTE network [Tea08], thus avoiding a central server. In the variant we have analyzed,
eight DoS-related functions were implemented and six different update mechanisms.
Moreover, at least ten mechanisms to spread further exist. This malware is also capable
of terminating processes that belong to antivirus and monitoring applications. In
addition, some variants modify the hosts file, which contains the host name to IP address
mappings. The malware appends a list of website addresses – for example, of antivirus
vendors – and redirects them to the loopback address. This prevents the infected user
from accessing the specified location.

Upon startup, the program attempts to run a speed test for Internet connectivity.
By accessing several servers and sending data to them, this bot tries to estimate the
available bandwidth of the victim. This activity of the bot allows us to estimate the
actual number of hosts compromised by this particular bot. This works by taking a look
at log files – for example, Agobot uses www.belwue.de as one of the domains for this

31

Chapter 4 Tracking Botnets with Central C&C Server

speed test. So the administrators of this domain can make an educated guess about
the actual number of infected machines by looking at how often this speed test was
performed. In May 2004, about 300,000 unique IP addresses could be identified in this
way per day [Fis05]. A detailed analysis of this bot was published by Stewart [Gro04b].

SDBot and Variants. SDBot and its variants RBot, UrBot, UrXBot, Spybot, are at the
time of writing one of the most active bots in the wild. The whole family of SDBots is
written in C and literally thousands of different versions exist, since the source code is
publicly available. It offers similar features as Agobot, although the command set is not
as large nor the implementation as sophisticated.

For remote control, this bot typically only offers the usage of a central IRC server.
But there are also variants that used HTTP to command the bots. Again, the typical
commands for remote control are implemented. More than ten DDoS attacks and four
update functions were implemented in the bots we have analyzed. Moreover, this bot
incorporates many different techniques to propagate further. Similar to Agobot and its
variants, the whole family of SDBots includes more than ten different possibilities to
spread further, including exploit to compromise remote systems and propagation with
other mechanisms.

The evolution of bots through time can be observed by means of this family of bots.
Each new version integrates some new features, and each new variant results in some
major enhancements. New vulnerabilities are integrated in a couple of days after public
announcement, and once one version has new spreading capabilities, all others integrate
it very fast. In addition, small modifications exist that implement specific features (e.g.,
encryption of passwords within the malware binary) that can be integrated in other
variants in a short amount of time.

Zotob/Mytob. Strictly speaking, Zotob is just a variant of Rbot. It gained much media
attention, since it affected machines from companies such as CNN, ABC, and the New
York Times. Zotob was one of the first bots to include the exploit for the Microsoft
security bulletin MS05-039 [Mic05], released on August 9, 2005. Only four days after
the security bulletin, Zotob began spreading and compromised unpatched machines. It
spread quickly and during a live show, reporters from CNN reported that their computers
were affected by a new worm. But the fame for the botmasters was short-lived: 12 days
after the first release, on August 25, the Moroccan police arrested, at the request of the
FBI, two suspected botmasters [Fed06]. At the same time, another young man from
Turkey was arrested as another suspect in this case.

Storm Worm. Starting with Nugache [Naz06], we have seen more and more bots
that use peer-to-peer-based protocols for botnet command and control. One prominent
example is Storm Worm, for which a detailed analysis is available by Stewart [Ste07].
This particular piece of malware uses a variation of the eDonkey protocol to exchange
command and update messages between the bots. Storm Worm was mainly used
to send spam mails and to attack a number of antispam websites via DDoS attacks.

32

4.3 Technical Background

Since this botnet does not have a central server used for C&C, it is rather hard to
track it, and shutting it down is even harder. In the next chapter, we show how the
methodology introduced in Chapter 3 can be used to track botnets with a peer-to-peer-
based communication channel and we exemplify this technique with a case study on
Storm Worm, the most prevalent botnet observed so far.

Bobax. An interesting approach in the area of bots is Bobax. It uses HTTP requests as
communication channel and thus implements a stealthier remote control than IRC-based
C&C. In addition, it implements mechanisms to spread further and to download and
execute arbitrary files. In contrast to other bots, the primary purpose of Bobax is sending
spam. With the help of Bobax, an automated spamming network can be setup very
easily. A detailed analysis of Bobax was published by Stewart [Gro04a].

Other Interesting Bots. Presumably one of the most widespread bots is Toxbot. It is a
variant of Codbot, a widespread family of bots. Common estimations of the botnet size
achieved by Toxbot reach from a couple of hundred thousand compromised machines to
more than one million. Giving an exact number is presumably not possible, but it seems
like Toxbot was able to compromise a large number of hosts [Sco07].

Another special bot is called aIRCBot. It is very small – only 2560 bytes. It is not a
typical bot because it only implements a rudimentary remote control mechanism. The
bot only understands raw IRC commands. In addition, functions to spread further are
completely missing. But due to its small size, it can nevertheless be used by attackers.

Q8Bot and kaiten are very small bots, consisting of only a few hundred lines of
source code. Both have one additional noteworthiness: they are written for Unix/Linux
systems. These programs implement all common features of a bot: dynamic updating
via HTTP-downloads, various DDoS-attacks (e.g., SYN-flooding and UDP-flooding), a
remote control mechanism, and many more. In the version we have analyzed, spreaders
are missing, but presumably versions of these bots exist that also include mechanisms to
propagate further.

There are many different version of very simple bots based on the programming
language Perl. These bots contain, in most cases, only a few hundred lines of source
code and offer only a rudimentary set of commands (most often only DDoS attack
capabilities). This type of bots is often used in attacks against Unix-based systems with
remote file inclusion (RFI) vulnerabilities, i.e., a specific class of attacks in which the
attacker can include a remote file in a web application and thus compromise a system.

4.3.3 Overview of Botnets

General Characteristics. After having introduced different characteristics of bots,
we now focus on how attackers use the individual bots to form botnets. Usually, the
controller of the botnet, the so called botmaster, compromises a series of systems using
various tools and then installs a bot to enable remote control of the victim computer.
As communication protocol for this remote command channel, attackers commonly use

33

Chapter 4 Tracking Botnets with Central C&C Server

C&C server
infected
machine

infected
machine

infected
machine

attacker

.advscan dcom135

Figure 4.1: Typical setup for botnet with central server for Command & Control. The
server can use IRC, HTTP, or a custom protocol.

IRC or HTTP, but also other — sometimes even proprietary — communication protocols
can be used to send commands to the infected machines.

A typical setup of a botnet is shown in Figure 4.1. A central server is used for C&C: the
attacker sends the command to the C&C server, which disseminates the command to the
bots. For IRC-based botnets, the procedure works as follows: the bots connect to the IRC
server at a predefined port and join a specific channel. The attacker can issue commands
in this channel, and these commands are sent via the C&C server to the individual
bots, which then execute these commands. In such a setup, the communication channel
is thus a push mechanisms. In contrast, HTTP-based botnets use a pull mechanism:
periodically, each bot requests a specific URL, which encodes status information, from
the C&C server. This can, for example, look like the following request:

GET /cgi-bin/get.cgi?port=5239&ID=866592496&OS=WindowsXP&
conn=LAN&time=10:04:19

The infected machines tries to reach a web server running at a certain IP address. A CGI
script is used as communication endpoint. Within the parameters of the script, the bot
encodes several information like the port on which a backdoor is opened or information
about the current connection type. As a reply, the server sends to the infected machine
the command it should execute.

In the following, we first focus on IRC-based botnets and later on cover botnets that
use HTTP for Command and Control.

Botnet Propagation. Most bots can automatically scan whole network ranges and
propagate themselves using vulnerabilities and weak passwords on other machines.

34

4.4 Capturing Samples of Autonomous Spreading Malware

After successful invasion, a bot uses TFTP, FTP, HTTP, CSend (a custom protocol used
by some bots to send files to other users), or another custom protocol to transfer itself
to the compromised host. The binary is started and tries to connect to the hard-coded
master IRC server on a predefined port, often using a server password to protect the
botnet infrastructure. This server acts as the C&C server to manage the botnet. Often a
dynamic DNS name is provided rather than a hard-coded IP address, so the server can
be relocated by the attacker. Using a specially crafted nickname, the bot tries to join the
master’s channel, often using a channel password, too. In this channel, the bot can be
remotely controlled by the attacker.

Commands can be sent to the bot in two different ways: via sending an ordinary
command directly to the bot or via setting a special topic in the command channel that
all bots interpret. For example, the topic

.advscan dcom135 25 5 0 -c -s

tells the bots to spread further with the help of a known vulnerability (the Windows
DCOM vulnerability [Mic03]) on TCP port 135. The bots start 25 concurrent threads
that scan with a delay of 5 seconds for an unlimited amount of time (parameter 0). The
scans target machines within the same Class C network of the bot (parameter -c) and
the bots are silent (parameter -s), i.e., they do not send any report about their activity
to the botmaster. As another example, the topic

.update http://<server>/BaxTer.exe 1

instructs the bots to download a binary from the Internet via HTTP to the local filesystem
and execute it (parameter 1). Finally, as a third example, the command

.ddos.ack 85.131.xxx.xxx 22 500

orders the bots to attack a specific IP address with a DDoS attack. All bots send packets
to the specified IP address on TCP port 22 for 500 seconds.

If the topic does not contain any instructions for the bot, then it does nothing but idle
in the channel, awaiting commands. That is fundamental for most current bots: they do
not spread if they are not told to spread in their master’s channel.

To remotely control the bots, the controller of a botnet has to authenticate himself
before issuing commands. This authentication is done with the help of a classical
authentication scheme: at first, the controller has to log in with her username. Afterward,
she has to authenticate with the correct password to approve her authenticity. The
whole authentication process is usually only allowed from a predefined domain, thus
only authorized people can start this process. Once an attacker is authenticated, she has
complete control over the bots and can execute arbitrary commands.

4.4 Capturing Samples of Autonomous Spreading Malware

The main tool to collect malware in an automated fashion today are so-called honeypots.
We have introduced honeypots in detail in Section 2.2 and for the sake of completeness

35

Chapter 4 Tracking Botnets with Central C&C Server

Internet

High-Interaction
Honeypot

Honeywall

Figure 4.2: Honeypot setup for tracking botnets

we briefly summarize the main technical concepts of honeypots we use for botnet
tracking. A honeypot is an information system resource whose value lies in unauthorized
or illicit use of that resource [Mai03]. A honeynet is a network of honeypots. The idea
behind this methodology is to lure in attackers such as automated malware and then
study them in detail. The literature distinguishes two general types of honeypots:
High-interaction honeypots offer the attacker a real system to interact with, while low-
interaction honeypots only emulate network services or the network stack of an operating
system.

Using a so called GenIII Honeynet [BV05] containing a high-interaction based Windows
honeypot, we can already study botnets. We deploy a typical GenIII Honeynet with
some small modifications as depicted in Figure 4.2. The high-interaction honeypot runs
an unpatched version of Windows 2000 or Windows XP and is thus very vulnerable to
attacks. It is located within the internal network of the university, but no filtering of the
network traffic takes place. On average, the expected lifespan of the honeypot is less
than ten minutes according to our empirical results. After this small amount of time, the
honeypot is often successfully exploited by automated malware.

After a bot has exploited a vulnerability in our honeypot, it contacts the C&C server
to obtain commands. Since we can observe the in- and outgoing network traffic to the
honeypot, we can also detect and analyze this communication of the bot with the C&C
server. Based on this analysis, we can derive information about the network location
of the C&C server, the network port used for communication, and other information
such as the protocol used. By analyzing the hard disk of the honeypot, we can also
extract a sample of the bot, enabling a way to collect samples of autonomous spreading
malware. An even more efficient approach to collect samples of autonomous spreading
malware with high-interaction honeypots that uses the same technique as outlined above
is HoneyBow [ZHH+07].

The approach described above works in practice, but has several drawbacks:

• A honeypot will crash regularly if the bot fails to exploit the offered service, e.g.,
due to a wrong offset within the exploit.

• The honeypot has to be closely monitored in order to detect system changes.
Furthermore, these changes have to be analyzed carefully to detect malware.

36

4.4 Capturing Samples of Autonomous Spreading Malware

• The approach does not scale well; observing a large number of IP addresses is
difficult and resource-intensive.

To overcome these limitations, we employ the idea behind low-interaction honeypots
to collect autonomous spreading malware in an automated way. The main idea behind
this approach is that such malware scans the network for vulnerable system and we
just need to pretend to be vulnerable. It is sufficient to emulate vulnerable network
services to trick the malware into thinking that our honeypot is actually vulnerable. The
infected machine then attacks the honeypot and we emulate the whole infection process,
including analyzing the shellcode and downloading a copy of the malware. At the end,
we have thus collected a sample of the malware and our honeypot is not infected since
we merely emulated the infection process.

Instead of providing or emulating a complex network service, the honeypot only
emulates the parts of a service that are vulnerable to remote attacks. This helps for
scalability and reliability as we explain in the following paragraphs. Currently, there
are two main concepts in this area: honeyd scripts simply emulate the necessary parts
of a service to fool automated tools or very low-skilled attackers [Pro04]. This allows
a large-scale deployment with thousands of low-interaction honeypots in parallel. But
this approach has some limits: with honeyd it is not possible to emulate more complex
protocols, e.g., a full emulation of FTP data channels is not possible. In contrast to this,
high-interaction GenIII honeypots use a real system and thus do not have to emulate
a service. The drawbacks of this approach have been described above. Deploying
several thousand of these high-interaction honeypots is not possible due to limitations in
maintenance and hardware requirements. Virtual approaches like Potemkin [VMC+05]
look very promising, but are unfortunately not publicly available.

The gap between these approaches can be filled with the help of a special kind of low-
interaction honeypots that emulate vulnerabilities in network services. This approach
allows to deploy several thousands of honeypots in parallel with only moderate require-
ments in hardware and maintenance. With such a setup, we can collect information
about malicious network traffic caused by autonomous spreading malware like bots in
an efficient and scalable way.

Several tools implement the ideas presented above. Nepenthes was the first imple-
mentation for which a detailed description exists [BKH+06]. Göbel implemented Amun,
which basically has the same scope and general designs as Nepenthes, with some en-
hancements in the area of emulating vulnerable network services [Göb08]. Within the
scope of a diploma thesis, Trinius implemented a Windows version of the approach
called Omnivora that enables collection of autonomous spreading malware on a machine
running Microsoft Windows [Tri07]. In the following, we describe the design of such a
low-interaction honeypot in more technical detail and use Nepenthes as the running
example. The technical details for the two other implementations vary slightly, but the
overall design is the same.

37

Chapter 4 Tracking Botnets with Central C&C Server

4.4.1 System Design of Nepenthes

Nepenthes is based upon a flexible and modularized design. The core — the actual
daemon — handles the network interface and coordinates the actions of the other
modules. The actual work is carried out by several modules, which register themselves
in the Nepenthes core. Currently, there are several different types of modules:

• Vulnerability modules emulate the vulnerable parts of network services.

• Shellcode parsing modules analyze the payload received by one of the vulnerability
modules. These modules analyze the received shellcode, an assembly language
program, and extract information about the propagating malware from it.

• Download modules use the information extracted by the shellcode parsing modules
to download the malware from a remote location.

• Submission modules take care of the downloaded malware, e.g., by saving the
binary to a hard disk, storing it in a database, or sending it to antivirus vendors.

• Logging modules log information about the emulation process and help in getting
an overview of patterns in the collected data.

In addition, several further components are important for the functionality and
efficiency of the Nepenthes platform: shell emulation, a virtual filesystem for each
emulated shell, sniffing modules to learn more about new activity on specified ports, and
asynchronous DNS resolution.

Detailed Overview

The schematic interaction between the different components is depicted in Figure 4.3
and we introduce the different building blocks in the next paragraphs.

Vulnerability modules are the main building block of the Nepenthes platform. They
enable an effective mechanism to collect malware. The main idea behind these modules
is the following observation: in order to get infected by autonomous spreading malware,
it is sufficient to only emulate the necessary parts of a vulnerable service. Thus instead
of emulating the whole service, we only need to emulate the relevant parts and thus
are able to efficiently implement this emulation. Moreover, this concepts leads to a
scalable architecture and the possibility of large-scale deployment due to only moderate
requirements on processing resources and memory. Often the emulation can be very
simple: we just need to provide some minimal information at certain offsets in the
network flow during the exploitation process. This is enough to fool the autonomous
spreading malware and make it believe that it can actually exploit our honeypot. This is
an example of the deception techniques used in honeypot-based research. With the help
of vulnerability modules we trigger an incoming exploitation attempt and eventually we
receive the actual payload, which is then passed to the next type of modules.

38

4.4 Capturing Samples of Autonomous Spreading Malware

vuln-
ms06070

nepenthes core

TCP
port
445

TCP
port
135

TCP
port
80

TCP
port...

exploit payload URI binary

vuln-lsass

vuln-
arcserve

vuln-dcom

vuln-...

shellcode-
generic

shellemu-
winnt

shellcode-
signatures

download-
http

download-
tftp

download-
csend

download-
link

download-
...

submit-file

submit-
norman

submit-...

submit-
postgres

submit-
http

} } } }

dnsresolve-
adns log-surfnetlog-

download

module-
peiros

module-
portwatch

Figure 4.3: Schematic overview of Nepenthes platform

Shellcode parsing modules analyze the received payload and extract automatically rele-
vant information about the exploitation attempt. These modules work in the following
way: first, they try to decode the shellcode. Most of the shellcodes are encrypted with an
XOR encoder. An XOR decoder is a common way to encrypt the actual shellcode in order
to evade intrusion detection systems and avoid string processing functions. Afterwards
the modules decode the code itself according to the computed key and then apply some
pattern detection, e.g., CreateProcess() or generic URL detection patterns. The
results are further analyzed (e.g., to extract credentials) and if enough information can
be reconstructed to download the malware from the remote location, this information is
passed to the next kind of modules.

Download modules have the task of downloading files from the remote location.
Currently, there are seven different download modules. The protocols TFTP, HTTP, FTP
and csend/creceive (a bot-specific submission method) are supported. Since some kinds
of autonomous spreading malware use custom protocols for propagation, there are
also download modules to handle these custom protocols. Fetching files from a remote
location implies that the system running the low-interaction honeypot contacts other
machines on the Internet. From an ethical point of view, this could be a problem since
systems not under our control are contacted. A normal computer system that is infected
by autonomous spreading malware would react in the same way, therefore we have no
concerns downloading the malware from the remote location. However, it is possible to
turn off the download modules. Then the system collects information about exploitation
attempts and can still be useful as some kind of warning system.

In the last step, submission modules handle successfully downloaded files. Differ-
ent modules allow a flexible handling of the downloaded binary, amongst others the
following mechanisms are implemented:

• A module that stores the file in a configurable location on the filesystem.

39

Chapter 4 Tracking Botnets with Central C&C Server

• A module that submits the file to a central database to enable distributed sensors
with central logging interface.

• A module that submits the file to a sandbox for automated analysis (see Section 4.5
for details).

Certain malware does not spread by downloading shellcodes, but by providing a shell
to the attacker (so called connect-back shellcode). Therefore it is sometimes required to
spawn and emulate a Windows shell such that the exploit is successful. Nepenthes offers
shell emulation by emulating a rudimentary Windows shell to enable a shell interaction
for the attacker. Several commands can be interpreted and batch file execution is
supported. Such a limited simulation has proven to be sufficient to trick automated
attacks. Based on the collected information from the shell session, it is then possible to
also download the corresponding malware.

A common technique to infect a host via a shell is to write commands for downloading
and executing malware into a temporary batch file and then execute it. Therefore, a
virtual filesystem is implemented to enable this type of attacks. This helps in scalability
since files are only created on demand, similar to the copy-on-write mechanism in
operating systems: when the incoming attack tries to create a file, this file is created on
demand and subsequently, the attacking process can modify and access it. All this is done
virtually, to enable a higher efficiency. Every shell session has its own virtual filesystem,
so that concurrent infection sessions using similar exploits do not interfere with each
other. The temporary file is analyzed after the attacking process has finished and based
on this information, the malware is downloaded from the Internet automatically. This
mechanism is similar to cages in Symantec’s ManTrap honeypot solution [Sym06].

Capturing New Exploits

An important factor of a honeypot-based system is also the ability to detect and respond
to zero-day attacks, i.e., attacks that exploit an unknown vulnerability or at least a
vulnerability for which no patch is available. The Nepenthes platform also has the
capability to respond to this kind of threat. The two basic blocks for this ability are the
portwatch and bridging modules. These modules can track network traffic at network
ports and help in the analysis of new exploits. By capturing the traffic with the help
of the portwatch module, we can at least learn more about any new threat, since we
have already a full network capture of the first few packets. In addition, Nepenthes can
be extended to really handle zero-day attacks. If a new exploit targets the Nepenthes
platform, it will trigger the first steps of a vulnerability module. At some point, the new
exploit will diverge from the emulation. This divergence can be detected, and then we
perform a switch (hot swap) to either a real honeypot or some kind of specialized system
for dynamic taint analysis (e.g., Argos [PSB06]). This second system is an example of
the system for which Nepenthes is emulating vulnerabilities and with which it shares
the internal state. This approach is similar to shadow honeypots [ASA+05].

An actual implementation of capturing novel attacks with Nepenthes was implemented
by Leita as part of his PhD thesis [Lei08]. It is based on the idea of integrating Nepenthes

40

4.4 Capturing Samples of Autonomous Spreading Malware

with ScriptGen and Argos. ScriptGen is a tool able to create simple emulators for any
network protocol using a given network traffic sample of interaction. This means
that ScriptGen observes the communication of two systems and can then generate an
emulator of the protocol. No assumptions are made about the nature of the protocol,
thus it can be applied to a very wide range of different protocols without any a priori
knowledge of their protocol structure. More information about ScriptGen is available
in a paper by Leita et al. [LMD05]. Argos is a high-interaction honeypot that uses the
technique of dynamic taint analysis [NS05] to detect attacks that influence the control
flow of a system. By focussing on the effect of an exploit and not the malicious code
that is executed after the exploit was successful, Argos can detect unknown attacks
without any signatures. The basic idea behind the whole system is to use finite state
machines to handle known attacks and only use the other components for unknown
attacks. This is achieved by coupling the capability of Argos to detect zero-day attacks
with Nepenthes’ capability to efficiently detect shellcode. Both systems are linked with
the help of ScriptGen: this tool allows us to learn the behavior of a network protocol
given some samples of real network communication provided by Argos. A similar system
to handle zero-day attacks could presumably also be built with the honeypot solutions
proposed by Cui [Cui06].

Limitations

We also identified several limitations of the low-interaction honeypots that emulate
vulnerabilities in network services, which we present in this section. First, this kind of
honeypots is only capable of collecting malware that is spreading autonomously — that
is, that propagates further by scanning for vulnerable systems and then exploits them. We
can thus not collect rootkits or Trojan horses with this tool, since these kinds of malware
normally have no ability to propagate on their own. This is a limitation that this solution
has in common with most other honeypot-based approaches. A website that contains a
browser exploit that is only triggered when the website is accessed will not be detected
with ordinary honeypots due to their passive nature. The way out of this dilemma
is to use client-side honeypots like HoneyMonkeys [WBJ+06], HoneyClient [Wan09],
or Capture-HPC [SS09] to detect these kinds of attacks. The modular architecture of
Nepenthes would enable this kind of vulnerability modules, but this is not the aim of
the Nepenthes platform. The empirical results show that Nepenthes is able to collect
many different types of bots, even without this kind of modules.

Malware that propagates by using a hitlist to find vulnerable systems that can be
attacked [SMPW04] is hard to detect with low-interaction honeypots as presented in this
section. This is a limitation that Nepenthes, Amun and Omnivora have in common with
all current honeypot-based systems and also other approaches in the area of vulnerability
assessment. Here, the solution to the problem would be to become part of the hitlist. If,
for example, the malware generates its hitlist by querying a search engine for vulnerable
systems, the trick would be to smuggle a honeypot system in the index of the search
engine. Currently, it is unclear how such an advertisement could be implemented within
the low-interaction honeypots. But there are other types of honeypots that can be used

41

Chapter 4 Tracking Botnets with Central C&C Server

to detect hitlist-based malware, such as honeypot solution that use search engines to
become part of the hitlist (e.g., Google Hack Honeypot [Rya08] or HIHAT [Müt07]) .

It is possible to remotely detect the presence of the low-interaction honeypots: since
such a honeypot instance normally emulates a large number of vulnerabilities and thus
opens many TCP ports, an attacker could become suspicious during the reconnaissance
phase. Current automated malware does not check the plausibility of the target, but
future malware could do so. To mitigate this problem, the stealthiness can be improved
by using only the vulnerability modules that belong to a certain configuration of a
real system, for example, only vulnerability modules that emulate vulnerabilities for
Windows 2000 Service Pack 1. The tradeoff lies in reduced expressiveness and leads
to fewer samples collected. A similar problem with stealthiness appears if the results
obtained by running such a honeypot are published unmodified. To mitigate such a risk,
we refer to the solution outlined in a paper by Shinoda et al. [SII05].

4.4.2 Evaluation

Vulnerability Modules

Vulnerability modules are one of the most important components of the whole honeypot
approach, since they take care of the emulation process. For Nepenthes, there are more
than 20 vulnerability modules in total. They cover well-known, but old vulnerabilities
such as the one related to buffer overflows in the Windows RPC interface (DCOM
vulnerability [Mic03] or Lsasrv.dll RPC buffer overflow [Mic04]). Furthermore, also
recent vulnerabilities such as a vulnerability in the Server service (MS08-067 [Mic08])
are emulated. Besides these vulnerabilities in the Windows OS, also vulnerabilities in
third-party applications are emulated by Nepenthes. Other honeypot solutions with the
same goal such as Amun or Omnivora also emulate different kinds of vulnerabilities and
the expressiveness of the different solutions is comparable.

This selection of emulated vulnerabilities has proven to be sufficient to handle most
of the autonomous spreading malware we have observed in the wild. As we show in the
remainder of this chapter, these modules allows us to learn more about the propagating
malware. However, if a certain packet flow cannot be handled by any vulnerability
module, all collected information is stored on hard disk to facilitate later analysis. This
allows us to detect changes in attack patterns, highlights new trends, and helps us
develop new modules. In the case of a zero day attack this can enable a fast analysis
because the first stages of the attack have already been captured.

Scalability

In this section, we evaluate the scalability of the Nepenthes platform. With the help of
several metrics, we determine how effective this approach is and how many honeypot
systems can be emulated on a single physical machine. We focus on Nepenthes since
this honeypot solution scales best. Both Amun and Omnivora do not scale as good as
Nepenthes, mainly due to the following reasons. First, Amun is implemented in Python,

42

4.4 Capturing Samples of Autonomous Spreading Malware

a scripting language. As a result, the implementation is slower, but it can nevertheless
reach about 50% of the scalability of Nepenthes. Second, Omnivora is implemented for
Windows systems and thus has some intrinsic limitations regarding the scalability of the
implementation [Tri07].

As noted in the paper about Potemkin [VMC+05], a “key factor to determine the
scalability of a honeypot is the number of honeypots required to handle the traffic from
a particular IP address range”. To cover a /16 network, a naive approach would be to
install over 64,000 ordinary honeypots to cover the whole network range. This would,
of course, be a waste of resources, since only a limited number of IP addresses receive
network traffic at any given point in time. Honeyd can simulate a whole /16 network
on just a single computer [Pro04] and Nepenthes scales comparably well.

To evaluate the scalability of Nepenthes, we have used the following setup. The
testbed is a commercial off-the-shelf (COTS) system with a 2.4GHz Pentium III, 2 GB
of physical memory, and 100 MB Ethernet NIC running Debian Linux 3.0 and version
2.6.12 of the Linux kernel. This system runs Nepenthes 0.2 in default configuration.
This means that all 21 vulnerability modules are used, resulting in a total of 29 TCP
sockets on which Nepenthes emulates vulnerable services.

We tested the implementation with different quantities of emulated systems, ranging
from only 256 honeypots up to 32,000 emulated honeypots. For each configuration, we
measured the number of established TCP connections, the system load, and the memory
consumption of Nepenthes for one hour. We repeated this measurement several times in
different order to cancel out statistical unsteadiness. Such an unsteadiness could, for
example, be caused by diurnal properties of malware epidemics [DZL06] or bursts in
the network traffic. The average value of all measurements is then an estimation of the
specific metric we are interested in. Figure 4.4 provides an overview of our results. In
both graphs, the x-axis represents the number of IP addresses assigned to Nepenthes
running on the testbed machine. The y-axis represents (a) the number of established
TCP connections and (b) the average system load, respectively. We did not plot the
memory consumption because it is so low (less than 20 MB for even a large number of
simulated IP addresses) and nearly independent from the number of established TCP
connections. In (a) we see that the scalability is nearly linear up to 8192 IP addresses.
This corresponds to the system load, which is below 1 (b). Afterward, the number of
established TCP connections is decreasing, which is caused by a system load above 1 —
that is, the system is fully occupied with I/O operations.

4.4.3 Related Work

Large-scale measurements of malicious network traffic have been the focus of previous
research. With the help of approaches like the network telescope [MSVS04] or dark-
nets [Cym06] it is possible to observe large parts of the Internet and monitor malicious
activities. In contrast to Nepenthes, these approaches passively collect information about
the network status and can infer further information from it, e.g., inferring the amount
of Distributed Denial-of-Service attacks [MVS01]. By not responding to the packets, it
is not possible to learn more about full attacks. Slightly more expressive approaches

43

Chapter 4 Tracking Botnets with Central C&C Server

(a) Number of concurrent established TCP connections

(b) System load

Figure 4.4: Measurement results for scalability of Nepenthes in relation to number of IP
addresses assigned to the sensor.

like the Internet Motion Sensor [BCJ+05] differentiate services by replying to a TCP SYN
packet with TCP SYN-ACK packets. However, their expressiveness is also limited and
only with further extensions it is possible to also learn more about spreading malware.

Honeyd [Pro04] creates virtual hosts on a network. It simulates the TCP/IP stack
of arbitrary operating systems and can be configured to run arbitrary services. These
services are generally small scripts that emulate real services, and offer only a limited

44

4.5 Automated Malware Analysis

expressiveness. Honeyd can simulate arbitrary network topologies including dedicated
routes and routers, and can be configured to feign latency and packet loss. In contrast
to Nepenthes, honeyd does not offer as much expressiveness since the reply capabilities
of honeyd are limited from a network point of view. Nepenthes can be used as a
subsystem for honeyd, however. This extends honeyd and enables a way to combine
both approaches: Nepenthes acts then as a component of honeyd and is capable of
dealing with automated downloading of malware.

The Collapsar platform [JX04] is a virtual-machine-based architecture for network
attack detention. It allows to host and manage several high-interaction virtual honeypots
in a central network. Malicious traffic is redirected from other networks (decentralized
honeypot presence) to this central network which hosts all honeypots (centralized hon-
eypot management). This enables a way to build a honeyfarm. Note that the idea of a
honeyfarm is not tied to the notion of a high-interaction honeypot: it is also possible
to deploy Nepenthes or other low-interaction honeypots as a honeyfarm system by
redirecting traffic from remote locations to a central Nepenthes server. In fact, the
design of SGNET uses some of these ideas [LD08].

Internet Sink (iSink) [YBP04] is a system that passively monitors network traffic and is
also able to actively respond to incoming connection requests. The design is stateless and
therefore the expressiveness of the responses is limited. Similarly, HoneyTank [VBBC04]
is a system that implements stateless responders to network probes. This allows to
collect information about malicious activities to a limited amount. In contrast to these
systems, Nepenthes implements a finite state machine to emulate vulnerabilities. This
allows us to collect more detailed information about an attack.

Potemkin [VMC+05] exploits virtual machines, aggressive memory sharing, and late
binding of resources to emulate more than 64,000 high-interaction honeypots using
ten physical servers. This approach is promising, but has currently several drawbacks
compared to low-interaction honeypots: first, each honeypot within Potemkin has
to be a fixed system in a fixed configuration. In contrast to this, the vulnerability
modules of Nepenthes allow greater flexibility. As mentioned above, Nepenthes can
react for example on exploitation attempts against Windows 2000 and Windows XP,
even regardless of service pack. It would even be possible to emulate vulnerabilities
for different operating systems and even different processor architectures on a single
Nepenthes honeypot. Second, there are currently only preliminary results for the
scalability of Potemkin. Vrable et al. provide only results for a representative 10 minutes
period [VMC+05] and no implementation is publicly available.

4.5 Automated Malware Analysis

With the help of low-interaction honeypots that emulate vulnerabilities in network
services we can collect a binary copy of autonomous spreading malware without any
human interaction, thus this step is automated to a high degree. In order to learn more
about the remote control structure behind such malware, we also need to automatically

45

Chapter 4 Tracking Botnets with Central C&C Server

analyze a collected binary: we need to extract all important information about a botnet
and then we can start the actual infiltration process.

A possible way to extract the information from the captured malware is reverse
engineering, the process of carefully analyzing a program without having its source code.
This process is time consuming and error prone. A better approach is an automated
analysis with the help of a honeynet. A standard honeynet setup can also be used for
this purpose: upon startup, a Windows honeypot downloads a piece of malware from a
database located within our university network. It executes the file and reboots itself
after a few minutes. During this time span, the bot installs itself on the honeypots
and connects to the C&C server. With the help of the Honeywall, we are again able to
extract all necessary information like the hostname of the C&C server or the channel the
bot joins in a fully automated way. During each reboot phase, the honeypot resets the
hard disk so that a clean image is booted each time. Such a setup allows us to extract
interesting information related to the botnet from a given binary, but since we want to
analyze the sample in detail, a more advances mechanisms is necessary for automated
malware analysis which we introduce in this section.

In our view the most efficient approach for an automated analysis of a collected
binary in terms of (1) automation, (2) effectiveness and (3) correctness is a sandbox.
Automation means that the analysis tool should create a detailed analysis report of a
malware sample quickly and without user intervention. A machine readable report can
in turn be used to initiate automated response procedures like updating signatures in
an intrusion detection system, thus protecting networks from new malware samples on
the fly. Effectiveness of a tool means that all relevant behavior of the malware should
be logged, no executed functionality of the malware should be overlooked. This is
important to realistically assess the threat posed by the malware sample. Finally, a tool
should produce a correct analysis of the malware, i.e., every logged action should in
fact have been initiated by the malware sample to avoid false claims about it.

As part of a diploma thesis, Willems developed a tool for automated malware analysis
called CWSandbox [Wil06, WHF07] that we use for our work. CWSandbox fulfills the
three design criteria of automation, effectiveness and correctness for the Windows family
of operating systems:

• Automation is achieved by performing a dynamic analysis of the malware. This
means that malware is analyzed by executing it within a controlled environment,
which works for any type of malware in almost all circumstances. A drawback
of dynamic analysis is that it commonly only analyses a single execution of the
malware. Moser et al. introduced a way to explore multiple execution paths with
dynamic analysis [MKK07], which circumvents this limitation.

In contrast to dynamic analysis, the method of static analysis in which the source
code is analyzed without actually executing it allows to observe all executions
of the malware at once. Static analysis of malware, however, is rather difficult
since the source code is commonly not available. Even if the source code were
available, one could never be sure that no modifications of the binary executable
happened, which were not documented by the source. Static analysis at the

46

4.5 Automated Malware Analysis

machine code level is often extremely cumbersome since malware often uses
code-obfuscation techniques like compression, encryption, or self-modification to
evade decompilation and analysis. Since the aim of our research lies on automated
analysis of malware binaries, we chose dynamic analysis.

• Effectiveness is achieved by using the technique of API hooking. API hooking
means that calls to the Win32 application programmers’ interface (API) are re-
routed to the monitoring software before the actual API code is called, thereby
creating insight into the sequence of system operations performed by the malware
sample. API hooking ensures that all those aspects of the malware behavior are
monitored for which the API calls are hooked. API hooking therefore guarantees
that system level behavior (which at some point in time is commonly an API call)
is not overlooked unless the corresponding API call is not hooked.

API hooking can be bypassed by programs which directly call kernel code in order
to avoid using the Windows API. However, this is rather uncommon in malware,
as the malware author needs to know the target operating system, its service pack
level, and some other information in advance. Our empirical results show that
most autonomous spreading malware is designed to attack a large user base and
thus commonly uses the Windows API.

• Correctness of the tool is achieved through the technique of DLL code injection.
Roughly speaking, DLL code injection allows API hooking to be implemented in a
modular and reusable way, thereby raising confidence in the implementation and
the correctness of the reported analysis results.

The combination of these three techniques within CWSandbox allows to trace and
monitor all relevant system calls and generate an automated, machine-readable report
that describes for example

• which files the malware sample has created or modified,

• which changes the malware sample performed on the Windows registry,

• which dynamic link libraries (DLLs) were loaded before executing,

• which virtual memory areas were accessed,

• which processes were created, and

• which network connections were opened and what information was sent over
such connections.

Obviously, the reporting features of the CWSandbox cannot be perfect, i.e., they can
only report on the visible behavior of the malware and not on how the malware is
programmed. Using CWSandbox also entails some danger which arises from executing
malicious software on a machine which is connected to a network. However, the
information derived from executing malware for even very short periods of time in the
CWSandbox environment is surprisingly rich and in most cases sufficient to assess the
danger originating from the malware sample.

47

Chapter 4 Tracking Botnets with Central C&C Server

4.5.1 Technical Background

To understand the system design of CWSandbox, we provide in this section an overview
of the four building blocks of CWSandbox, namely dynamic malware analysis, API
hooking, inline code overwriting, and code injection.

Dynamic Malware Analysis

Dynamic analysis means to observe one or more behaviors of a software artifact to
analyze its properties by executing the software itself. We have already argued above
that dynamic analysis is preferable to static (code) analysis when it comes to malware.
There exist two different approaches to dynamic malware analysis with different result
granularity and quality:

1. taking an image of the complete system state before and comparing this to the
complete system state right after the malware execution

2. monitoring all actions of the malware application during its execution, e.g., with
the help of a debugger or a specialized tool

It is evident that the first option is easier to implement, but delivers more coarse-
grained results, which sometimes are sufficient, though. This approach can only analyze
the cumulative effects and does not take dynamic changes into account. If for example
a file is generated during the malware’s execution and this file is deleted before the
malware terminates, the first approach will not be able to observe this behavior. The
second approach is harder to implement, but delivers much more detailed results, so we
chose to use this approach within CWSandbox.

API Hooking

The Windows API is a programmer’s interface which can be used to access the Windows
resources, e.g., files, processes, network, registry, and all other major parts of Windows.
User applications use the API instead of making direct system calls and thus this offers
a possibility for behavior analysis: we obtain a dynamic analysis if we monitor all
relevant API calls and their parameters. The API itself consists of several DLL files
that are contained in the Windows System Directory. Some of the most important
files are kernel32.dll, advapi32.dll, ws2_32.dll, and user32.dll. Nearly all
API functions do not call the system directly, but are only wrappers to the so called
Native API which is implemented in the file ntdll.dll. With the Native API, Microsoft
introduces an additional API layer. By that, Microsoft increases the portability of
Windows applications: the implementation of native API functions can change from one
Windows version to another, but the implementation and the interface of the regular
Windows API functions are more stable over time.

The Native API is not the end of the execution chain which is performed when an API
function is executed. Like in other operating systems, the running process has to switch

48

4.5 Automated Malware Analysis

from usermode (Ring 3) to kernelmode (Ring 0) in order to perform operations on the
system resources. This is mostly done in the ntdll.dll, although some Windows API
functions switch to kernelmode by themselves. The transfer to kernelmode is performed
by initiating a software interrupt, Windows uses int 0x2e for that purpose, or by
using processor specific commands, i.e., sysenter for Intel processors or syscall for
AMD processors. Control is then transfered to ntoskrnl.exe which is the core of the
Windows operating system.

In order to observe the control flow of a given malware sample, we need to somehow
get access to these different API function. A possible way to achieve this is hooking.
Hooking of a function means the interception of any call to it. When a hooked function
should be executed, control is delegated to a different location, where customized code
resides: the hook or hook function. The hook can then perform its own operations
and later transfer control back to the original API function or prevent its execution
completely. If hooking is done properly, it is hard for the calling application to detect
that the API function was hooked and that the hook function was called instead of the
original one. However, the malware application could try to detect the hooking function
and thus we need to carefully implement it and try to hide as good as possible the
analysis environment from the malware process.

After the execution of the hook function, control is delegated back to the caller, so
that the hook is transparent to it. Analog to that, API Hooking means the interception of
API calls. This techniques allows the hook function to be informed any time a given API
function is called. Additionally, it can analyze the calling parameters used and modify
them if necessary. Then it can call the original API function with altered parameters,
modify the results of it, or even suppress the call of the original API function at all.

There are several methods that allow the interception of system calls during their way
from a potentially malicious user application to the ultimate kernel code [Iva02]. One
can intercept the execution chain either inside the user process itself, in one or multiple
parts of the Windows API or inside the Windows kernel by modifying the Interrupt
Descriptor Table (IDT) or the System Service Dispatch Table (SSDT). All of them have
different advantages, disadvantages, and complexity. We use the technique of Inline
Code Overwriting since it is one of the most effective and efficient methods.

Inline Code Overwriting

With Inline Code Overwriting, the code of the API functions, which is contained in the
DLLs loaded into the process memory, is overwritten directly. Therefore, all calls to
these APIs are re-routed to the hook function, no matter at what time they occur or if
those are linked implicitly or explicitly. We perform the inline code overwriting with the
following five steps:

1. The target application is created in suspended mode. This means that the Windows
loader loads and initializes the application and all implicitly linked DLLs, but does
not start the main thread, such that no single operation of the application is
performed.

49

Chapter 4 Tracking Botnets with Central C&C Server

2. When all the initialization work is done, every to be hooked function is looked
up in the Export Address Table (EAT) of the containing DLL and their code entry
points are retrieved.

3. As the original code of each hooked API function will be overwritten, we have to
save the overwritten bytes in advance, as we later want to reconstruct the original
API function.

4. The first few instructions of each API function are overwritten with a JMP (or a
CALL) instruction leading to the hook function.

5. To make this method complete, the API functions that allow the explicit binding
of DLLs (LoadLibrary and LoadLibraryEx) also need to be hooked. If a DLL
is loaded dynamically at runtime, the same procedure as above is performed to
overwrite the function entry points, before control is delegated back to the calling
application.

Of course the hook function does not need to call the original API function. Also there
is no need to call it with a JMP: the hook function can call the original API with a CALL
operation and get back control when the RET is performed in the called API function.
The hook function can then analyze the result and modify it, if this is necessary.

One of the most popular and detailed descriptions of this approach is available in an
article published in the Code Breakers Journal [Fat04]. Microsoft also offers a library
for that purpose, called Detours [HB99].

For completeness reasons, we also mention System Service Hooking. This technique
performs hooking at a lower level within the Windows operating system and is thus not
considered as API Hooking. There are two additional possibilities for rerouting API calls.
On the one hand, an entry in the Interrupt Descriptor Table (IDT) can be modified, such
that interrupt int 0x2e, which performs the transition from usermode to kernelmode,
points to the hooking routine. On the other hand, the entries in the System Service
Dispatch Table (SSDT) can be manipulated, such that the system calls can be intercepted
depending on the service IDs. We do not use these techniques for now, since API hooking
has proven to deliver accurate results in practice. However, in the future we may extend
CWSandbox to also use kernel hooks since this is more complicated to detect and offers
an additional point of view to monitor the execution of a given sample.

Code Injection

API hooking with inline code overwriting makes it necessary to patch the application
after it has been loaded into memory. To be successful, we perform the following two
steps:

• We copy the hook functions into the target application’s address space, such that
these can be called from within the target; this is the actual code injection.

• We also have to bootstrap and set up the API hooks in the target application’s
address space using a specialized thread in the malware’s memory.

50

4.5 Automated Malware Analysis

For installing the hooks, the performed actions depend on the hooking method used.
In any case, the memory of the target process has to be manipulated, e.g., by changing
the import address table (IAT) of the application itself, changing the export address table
(EAT) of the loaded DLLs, or directly overwriting the API function code. Windows offers
functions to perform both of the necessary tasks for implanting and installing API hook
functions: accessing another process’ virtual memory and executing code in a different
process’ context.

Accessing the virtual memory of another process is possible: kernel32.dll offers
the API functions ReadProcessMemory and WriteProcessMemory, which allow the
reading and writing of an arbitrary process’ virtual memory. Of course, the reader and
writer need appropriate security privileges, respectively. If he holds them, he even can
allocate new memory or change the protection of an already allocated memory region
by using VirtualAllocEx and VirtualProtectEx.

Executing code in another process’ context is possible in at least two ways:

1. suspend one running thread of the target application, copy the code to be executed
into the target’s address space, set the instruction pointer of the resumed thread
to the location of the copied code, and then resume this thread, or

2. copy the code to be executed into the target’s address space and then create a new
thread in the target process with the code location as the start address.

Both techniques can be implemented with appropriate API functions. With those building
blocks it is now possible to inject code into another process.

The most popular technique for code injection is the so called DLL injection. All custom
code is put into a DLL, called the injected DLL, and the target process is directed to load
this DLL into its memory space. Thus, both requirements for API hooking are fulfilled:
the custom hook functions are loaded into the target’s address space, and the API hooks
can be installed in the DLL’s initialization routine, which is called automatically by the
Windows loader.

The explicit linking of a DLL is performed by the API functions LoadLibrary or
LoadLibraryEx, from which the latter one simply allows some more options. The
signature of the first function is very simple, the only parameter needed is a pointer to
the name of the DLL. The trick is to create a new thread in the target’s process context
using the API function CreateRemoteThread and then setting the code address of the
API function LoadLibrary as the starting address of this newly created thread: when
the new thread is executed, the function LoadLibrary is called automatically inside
the target’s context. Since we know the location of kernel32.dll (always loaded at
the same memory address) from our starter application and also know the code location
of the LoadLibrary function, we can use these values for the target application.

4.5.2 System Design of CWSandbox

With the building blocks described in the previous section, we can now describe a system
that is capable of automatically analyzing a given malware sample: CWSandbox. This

51

Chapter 4 Tracking Botnets with Central C&C Server

system performs a behavior-based analysis, i.e., the malware binary is executed in a
controlled environment and all relevant function calls to the Windows API are observed.
In a second step, a high level summarized report is generated from the monitored API
calls. The analysis report contains a separate section for each process that was involved.
For each process, there exist several subsections that contain associated actions, i.e.,
there is one subsection for all accesses to the filesystem and another section for all
network operations. In the following, we describe the tool in detail.

The sandbox routes nearly all API calls to the original API functions, after it has
analyzed their call parameters. Therefore, the malware is not blocked from integrating
itself into the target operating system, e.g., by copying itself to the Windows system
directory or adding new registry keys. To enable a fast automated analysis, we thus
execute the CWSandbox in a special environment, so that after the completion of
an analysis process the system can easily be brought back into a clean state. This
is implemented by executing CWSandbox in a native environment, i.e., a normal
commercial off-the-shelf system, and an automated procedure to restore a clean state.

Architecture

CWSandbox itself consists of two separate applications: cwsandbox.exe and cwmonitor.dll.
The sandbox application creates a suspended process of the malware application and
injects the DLL into it (DLL injection). At the initialization of this DLL, API hooks for
all interesting API functions are installed (API hooking). The sandbox application then
sends some runtime options to the DLL and the DLL in turn answers with some runtime
information of the malware process. After this initialization phase, the malware process
is resumed and executed for a given amount of time. During the malware’s execution,
all hooked API calls are re-routed to the referring hook functions in the DLL. These hook
functions inspect the call parameters, inform the sandbox about the API call in form
of a notification object, and then – depending on the type of the API function called –
delegate control to the original function or return directly. If the original API is called,
the hook function inspects the result and sometimes modifies it, before returning to
the calling malware application. This is for example done to hide the presence of the
sandbox: certain files, processes and registry keys which belong to the implementation
of the sandbox are filtered out from the results and thus their existence is hidden from
the sample under observation.

Besides the monitoring, the DLL also has to ensure that whenever the malware starts
a new process or injects code into a running process, the sandbox is informed about this.
The sandbox then injects a new instance of the DLL into that newly created or already
existing process, so that all API calls from this process are also captured.

Inter-process Communication between Sandbox and the DLL

There is a lot of communication between the executable and all the loaded instances of
the monitoring DLL. Since the communication endpoints reside in different processes,
this communication is called inter-process communication (IPC). Each API hook func-

52

4.5 Automated Malware Analysis

tion sends a notification object to inform the sandbox about the call and the calling
parameters used. Some hook functions also require an answer from the sandbox which
determines the further procedure, e.g., if the original API function should be called
or not. A lot of data has to be transmitted per notification and a various number of
instances of the DLL can exist, so there is a heavy communication throughput. Besides
the high performance need, also a very reliable mechanism is needed, as no data is
allowed to be lost or modified on its way. Thus, a reliable IPC mechanism with high
throughput had to be implemented.

Implementation of cwsandbox.exe and cwmonitor.dll

The work of the sandbox can be divided into three phases:

1. initialization phase,

2. execution phase, and

3. analysis phase.

In the first phase, the sandbox initializes and sets up the malware process. It then injects
the DLL and exchanges some initial information and settings. If everything worked
well, the process of the malware is resumed and the second phase is started. Otherwise
the sandbox kills the newly created malware process and also terminates. The second
phase lasts as long as the malware executes, but can be ended prematurely by the
sandbox. This happens if a timeout occurs or some critical conditions require an instant
termination of the malware. During this phase, there is a heavy communication between
the cwmonitor.dll instances in all running processes and cwsandbox.exe. In the
third phase, all the collected data is analyzed and an XML analysis report is generated
based on the collected information.

The cwmonitor.dll is injected by the sandbox into each process that is created or
injected by the malware. The main tasks of the DLL are the installation of the API hooks,
realization of the hook functions, and the communication with the sandbox. Similar to
the sandbox, also the life cycle of the DLL can be divided into three parts initialization,
execution, and finishing phase. The first and the last of these phases are handled in
the DLL main function, the execution phase is handled in the different hook functions.
Operations of the DLL are executed only during initialization and finishing phase and
each time one of the hooked API functions is called.

Rootkit functionality

Since the malware sample should not be aware of the fact that it is executed inside
of a controlled environment, CWSandbox implements some rootkit functionality: all
system objects that belong to the sandbox implementation are hidden from the malware
binary. In detail, these are processes, modules, files, registry entries, mutexes events,
and handles in general. This at least makes it for the malware sample more difficult to
detect the presence of the sandbox. Furthermore, additional components of the analysis

53

Chapter 4 Tracking Botnets with Central C&C Server

environment, e.g., the mechanisms to restore the infected system back to a clean state,
are hidden as well. Up to now, we ran only in some cases into trouble with this approach,
e.g., with samples that detect API hooking.

CWSandbox Summary

CWSandbox allows us to analyze a given binary without any human interaction. When
the bot contacts the IRC server used for command and control, we can also observe all
information related to the remote control infrastructure like the domain name of the
C&C server or the channel the bot joined. CWSandbox can handle IRC communication
on arbitrary network ports and is able to extract all the information we need in order
to track an IRC-based botnet. Furthermore, also all information observed from HTTP
communication is collected such that infiltration of HTTP-based botnets is feasible based
on the dynamic analysis report. More information about CWSandbox is available in the
thesis by Willems [Wil06] and a paper by Willems et al. [WHF07].

4.5.3 Related Work

Several tools for automatic behavior analysis of malicious software already exist. We
briefly describe the Norman Sandbox and TTAnalyze/Anubis in this section and outline
the difference between these tools and CWSandbox.

The Norman SandBox [Nor03] was developed by Norman ASA, a Norwegian company
which has specialized in data security. In contrast to our solution, Norman emulates a
whole computer and a connected network. This is archived by re–implementing the
core Windows system and then executing the malware binary within this emulated
environment. Implementation details, a description of the underlying technology, and
a live demo can be found in a technical report [Nor09]. Compared to CWSandbox,
the emulation has the advantage that this is transparent for the malware binary, i.e.,
the malware binary has no possibility to detect that it is executed within an emulated
environment. But such an emulation has one limitation: the malware process cannot
interfere with other running processes and infect or modify them, since there are no
other processes within the emulation. However, our research shows that a significant
amount of malware uses such techniques, e.g., by creating a remote thread within
Internet Explorer and using it to download additional content from the Internet. By
using a real operating system as the base of CWSandbox, the malware can infer with
the system with only a very limited disturbance created via our API hooking.

Another comparable approach is TTAnalyze/Anubis [BKK06]. The major difference to
our solution is that the technique of virtual machine introspection is used to observe the
behavior of the to be analyzed malware sample. This had the main advantages that also
techniques like multiple execution path analysis can be implemented [MKK07], which
facilitates a more powerful analysis environment. Furthermore, Anubis is presumably
more stealth since it uses the PC emulator QEMU [Bel05], which enables a tighter
control over the malware sample. Our empirical results show that for most malware

54

4.6 Automated Botnet Infiltration

samples, however, the analysis reports generated by CWSandbox and Anubis contain
the same amount of information.

A different approach is Tomlin’s Sandnet. The malicious software is executed on a real
Windows system, not on an emulated or simulated one. After 60 seconds of execution,
the host is rebooted and forced to boot from a Linux image. After booting Linux, the
Windows partition is mounted and the Windows registry as well as the complete file
list are extracted and the Windows partition is reverted back to its initial clean state.
Since Sandnet focuses on network activity, several dispositions are made. During the
execution of the malware, the Windows host is connected to a virtual Internet with an
IRC server running which positively answers to all incoming IRC connection request.
Furthermore, all packets are captured to examine all other network traffic afterwards.
Compared to CWSandbox, the advantage of this approach is that a native operating
system is used. But since only a snapshot of the infected system is taken, all dynamic
actions, e.g., creation of new processes, cannot be monitored. Truman (The Reusable
Unknown Malware Analysis Net) [Ste] is a similar approach.

Hunt et al. introduced Detours, a library for instrumenting arbitrary Windows func-
tions [HB99]. With the help of this library it is possible to implement an automated
approach for malware analysis similar to CWSandbox. We opted to implement our own
API hooking mechanism in order to have greater flexibility and a more fine grained
control over the instrumented functions.

4.6 Automated Botnet Infiltration

Once we have collected all sensitive information of the botnet, we start to infiltrate the
botnet as we have all the necessary data to join a given botnet. In a first approach, it
is possible to set up a normal IRC client and connect to the network. If the operators
of the botnets do not detect this client, logging all the commands can be enabled. This
way, all bot commands and all actions can be observed. If the botnet is relatively small,
there is a chance that the bogus client will be identified, since it does not answer to
valid commands. In this case, the operators of the botnets tend to either ban or attack
the suspicious client using DDoS. But often it is possible to observe a botnet simply with
a normal IRC client, to which we need to feed all information related to the botnet.

However, there are some problems with this approach. Some botnets use a very
strongly stripped-down C&C server that is not standard compliant so that a normal IRC
client cannot connect to this network. Furthermore, this approach does not scale very
well. Tracking more than just a few botnets is not possible, since a normal IRC client
will be overwhelmed with the amount of logging data, and it does not offer a concise
overview of what is happening in all botnets.

Therefore, we use an IRC client optimized for botnet tracking called botspy. This
software was developed by Overbeck in his diploma thesis [Ove07] and offers several
techniques for observing botnets. It is inspired by the tool drone, developed by some
members of the German Honeynet Project, and shares many characteristics with it:

• Multiserver support to track a large number of botnets in parallel

55

Chapter 4 Tracking Botnets with Central C&C Server

• Support for SOCKS proxies to be able to conceal the IP we are running the botnet
monitoring software

• Database support to log all information collected by several botspy nodes in a
central database

• Automated downloading of malware identified within the botnet

• Modular design to be flexible, e.g., to also support non-IRC-based or HTTP-based
botnets

This tool allows us to monitor many botnets in parallel and infiltrate the botnets
we found based on the automated analysis of CWSandbox. Rajab et al. [RZMT06]
implemented an advanced version of botspy/drone which also emulates certain aspects
of bot behavior. Such a more expressive approach enables a stealthier evasion of botnets
since the botmaster cannot easily identify the presence of the agent within the botnet.

4.7 Botnet Tracking

With the building blocks described in the previous three sections, we can implement the
general methodology presented in Chapter 3.

4.7.1 Tracking of IRC-based Botnets

To track classical botnets that use a central, IRC-based C&C server, we can use the
three tools introduced above in a straightforward way: in the first phase, we capture
samples of autonomous spreading malware with the help of honeypots, in our case
either Nepenthes, HoneyBow, Amun, Omnivora, or any of the other honeypot solutions
built for that use case. In the second phase, we use CWSandbox to generate a malware
analysis report of a given sample. As a result, we obtain a dynamic analysis report that
contains a summary of the behavior observed during runtime. This report commonly
contains more information about the communication channel used by the bot, i.e., the
domain name of the C&C server, the port to connect to, and the channel and nickname
used by the bot. Based on this report, we can infiltrate the botnet and impersonate as
a legitimate member of the botnet. Once we have joined the IRC channel used by the
botnet, we can start observing all communication activity taking place in the channel.
This enables us to observe all commands issued by the botmaster and we can — if the
IRC server is configured to show bots entering and leaving the channel — also monitor
how many victims belong to a given botnet. In the next section, we present empirical
measurement results for tracking this kind of botnets.

4.7.2 Tracking of HTTP-based Botnets

As a second example, we show how our general methodology outlined in Chapter 3
can be used to also track other kinds of remote control networks. We now focus on

56

4.7 Botnet Tracking

C&C server
using HTTP

infected
machine

infected
machine

infected
machine

attacker

new command
1

1
1

2
2

2

Figure 4.5: Communication flow in a HTTP-based botnet: the bots periodically (1) poll
for new commands and (2) receive the commands as HTTP response by the
C&C server.

botnets that use HTTP as communication protocol. This kind of botnets has one key
characteristic that differentiates it from IRC-based botnets: instead of pushing the
commands from the botmaster to the victims via IRC, such bots periodically poll the
C&C server for new commands. Such a query can for example be:

(1) /ger/rd.php?id=1-1C712F85E20BB42&ver=gr7

(2) /index.php?id=thonqfeoov&ver=19&cnt=DEU

(3) /px/new/notify.php?port=2721

In the first example, the bot encodes in the query a randomly chosen ID and the version
information about the bot. Similarly, in the second example the bot transmits within the
query its randomly chosen ID, and information about the bot version and the country the
bot is running in. Finally, in the third example, the bot just transmits a TCP port number
back to the C&C server. At this TCP port, the bot has installed a listening tool that the
attacker can use as a backdoor to access the system. As a reply to such a query, the C&C
server sends a command back to the bot. Figure 4.5 illustrates the communication flow
in an HTTP-based botnet. The query is periodically repeated by the bot, typically in a
five minute or longer interval. The botnet controller can send a command to the C&C
server and update the reply that is sent back to a bot’s query. The next time a bot sends
a request, the updated command is delivered to the bot.

The general method outlined in Chapter 3 can also be applied to this kind of remote
control networks. With the help of honeypots, we can capture a propagating malware
binary: in order to propagate further, a bot binary has to infect a victim and take control

57

Chapter 4 Tracking Botnets with Central C&C Server

of it. In order to be infected, we deploy honeypots as outlined in Section 4.4. Tools like
Nepenthes, Amun, or GenIII honeypots are also useful to capture this kind of bots. With
the help of an automated analysis as outlined in Section 4.5, we do not need any human
intervention during the analysis process. CWSandbox enables us to automatically extract
the network communication and thus detect the communication channel between the
bot and the HTTP-based C&C server. Based on this information, we can then use botspy
to monitor the C&C server: we periodically query the server, analyze the reply, and can
thus track this kind of botnets.

When tracking HTTP-based botnets, we loose some of the insights compared to IRC-
based botnets. We can still observe new commands launched by the attacker, but we can
for example not estimate how many other bots are part of the HTTP-based botnet: since
we cannot see how other victims send a request to the C&C server, we cannot count the
number of victims.

4.8 Empirical Measurements

In this section we present some of the findings we obtained through our observation of
botnets. Data is sanitized so that it does not allow one to draw any conclusions about
specific attacks against a particular system, and it protects the identity and privacy of
those involved. The information about specific attacks and compromised systems was
forwarded to different CERTs (Computer Emergency Response Teams) which handle the
incidents and inform the victims (if possible/necessary).

4.8.1 General Observations

The results are based on the observations collected with several virtual honeypot sensors,
either running Nepenthes or a full high-interaction honeypot. We start with some statis-
tics and informal observations about the botnets we have tracked in the measurement
period between March and June 2007.

• Number of botnets: We were able to track more than 900 botnets during a four-
month period. Some of them went offline (i.e., C&C server went offline) but
typically about 450 active botnets were monitored.

• Number of hosts: During these few months, we saw more than 500,000 unique IP
addresses joining at least one of the channels we monitored. Seeing an IP address
means here that the C&C server was not modified to not send a JOIN message for
each joining client. If an IRC server is modified not to show joining clients in a
channel, we do not see IP addresses here. Furthermore, some IRC server obfuscate
the joining client’s IP address and obfuscated IP addresses do not count as seen,
too. Note that we do not take churn effects like DHCP or NAT into account here.
Nevertheless. this shows that the threat posed by botnets is high, given the large
amount of infected machines. Even if we are very optimistic and estimate that
we track a significant percentage of all botnets and all of our tracked botnet C&C

58

4.8 Empirical Measurements

servers are not modified to hide JOINs or obfuscate the joining clients IPs, this
would mean that a large number of hosts are compromised and can be controlled
by malicious attackers.

• Typical size of botnets: Some botnets consist of only a few hundred bots. In contrast
to this, we have also monitored several large botnets with up to 40,000 hosts.
The actual size of such a large botnet is hard to estimate. Often the attackers use
heavily modified IRC servers and the bots are spread across several C&C servers
which are linked together to form a common remote control network.

• Dimension of DDoS attacks: We are able to make an educated guess about the cur-
rent dimension of DDoS attacks caused by botnets. We can observe the commands
issued by the controllers and thus see whenever the botnet is used for such attacks.
During the observation period of four months, we were able to observe almost
300 DDoS attacks against 96 unique targets. Often these attacks targeted dial-up
lines, but there are also attacks against bigger websites or other IRC servers.

• Spreading of botnets: Commands issued for further spreading of the bots are the
most frequently observed messages. Commonly, Windows systems are exploited,
and thus we see most traffic on typical Windows ports used for communication
between Windows systems.

• “Updates” within botnets: We also observed updates of botnets quite frequently.
Updating in this context means that the bots are instructed to download a piece of
software from the Internet and then execute it. We could collect a little more than
300 new binaries by observing the control channels. These binaries commonly
had a very low detection rate by antivirus engines.

• Modified servers: Something we also observe quite often is that the controllers
change the protocol of the whole IRC server and modify it in such a way that it
is not possible to use a traditional IRC client to connect to it. For example, the
attacker can replace the normal IRC status messages and use other keywords. The
modifications are often rather simple: A server can for example use SENDN and
SENDU instead of the normal NICK and USER, respectively. But even this small
change prohibits the use of a traditional IRC client to connect to this botnet and
observe it. Due to the modular design of botspy, it is also easily possible to extend
the tool and write a module that can communicate with the modified server.

• Encryption: There are also modifications regarding the communication protocol
that we cannot easily adopt. For example, the botnet controller can implement
an encryption scheme, i.e., she sends encrypted commands to the bots, which in
turn decrypt and execute them. In such a case, the topic of the channel contains
encrypted commands, which we cannot understand, unfortunately. By reverse
engineering of the bot, it is possible to find out the issued command, but this is a
time-consuming and cumbersome job. This indicates that encryption could pose

59

Chapter 4 Tracking Botnets with Central C&C Server

limitations for automation, especially if more and more botnets use encrypted
command channels in the future.

Moreover, the data we captured while observing the botnets show that these control
networks are used for more than just DDoS attacks. Possible usages of botnets can be
categorized as listed here. And since a botnet is nothing more than a tool, there are
most likely other potential uses that we have not listed.

• Spamming: Some bots offer the possibility to open a SOCKS v4/v5 proxy – a
generic proxy protocol for TCP/IP-based networking applications – on a compro-
mised machine. After enabling the SOCKS proxy, this machine can then be used
for nefarious tasks such as sending bulk e-mail (spam) or phishing mails. With
the help of a botnet and thousands of bots, an attacker is able to send massive
amounts of spam. Some bots also implement a special function to harvest e-mail
addresses from the victims.

In addition, this can, of course, also be used to send phishing mails, since phishing
is a special case of spam. Also increasing is so-called stock spam: advertising
of stocks in spam e-mails. In a study we could show that stock spam indeed
influences financial markets [BH06].

• Spreading new malware: In many cases, botnets are used to spread new bots. This
is very easy, since all bots implement mechanisms to download and execute a
file via HTTP or FTP. A botnet with 1,000 hosts that acts as the start base for
the new malware enables very fast spreading and thus causes more harm. The
Witty worm, which attacked the ICQ protocol parsing implementation in Internet
Security Systems (ISS) products, could have been initially launched by a botnet
because some of the attacking hosts were not running any ISS services and the
number of initial infections was more than just one host [SM04].

• Installing advertisement add-ons: Botnets can also be used to gain financial ad-
vantages. This works by setting up a fake website with some advertisements.
The operator of this website negotiates a deal with some hosting companies that
pay for clicks on advertisements. With the help of a botnet, these clicks can
be automated so that instantly a few thousand bots click on the pop-ups. This
process can be further enhanced if the bot hijacks the start-page of a compromised
machine so that the clicks are executed each time the victim uses the browser.

• Keylogging: If the compromised machine uses encrypted communication channels
(e.g., HTTPs or POP3s), then just sniffing the network packets on the victim’s
computer is useless, since the appropriate key to decrypt the packets is missing.
But most bots also implement functions to log keystrokes. With the help of a
keylogger, it is very easy for an attacker to retrieve sensitive information.

• Harvesting of information: Sometimes we can also observe the harvesting of
information from all compromised machines. With the help of special commands,
the operator of the botnet can request sensitive information from all bots.

60

4.8 Empirical Measurements

This list demonstrates that attackers can cause a great deal of harm or criminal
activity with the help of botnets. With our method we can identify the root cause of all
of these types of nuisances – namely the central command infrastructure – and hence
the proposed methodology cannot only be used to combat DDoS.

4.8.2 Measurement Setup in University Environment

In the following, we present more precise measurements and analysis results of au-
tonomous spreading malware activity within the network of RWTH Aachen University,
Germany. With more than 40,000 computer-using people to support, this network offers
us a testbed to study the effects of bots and worms. Our analysis is based on eight weeks
of measurement, which took place during December 2006 and January 2007.

The network of RWTH Aachen university consists of three Class B network blocks
(three /16 networks in CIDR notation). A Nepenthes sensor listens on about 16,000
IP addresses spread all across the network. Most of the IP addresses are grouped in a
large block in one Class B network, but we have also taken care of evenly distributing
smaller blocks of the sensor IPs all across the network to have a more distributed setup.
This is achieved by routing smaller network blocks to the machine on which Nepenthes
emulates the vulnerabilities. We do not need to install additional software on end-hosts,
but use a purely network-based measurement approach.

4.8.3 Network-based Analysis Results

With the help of the logging modules of Nepenthes, we can keep track of all connections
which were established to the sensor. That includes the attacker’s IP address, the target
IP address and port, as well as the vulnerability module which was triggered. More than
50 million TCP connections were established during the measurement period. Since
the Nepenthes sensor is a honeypot and has no real value in the network, it should
not receive any network connections at all. Thus, the vast majority of these 50 million
network connections have a malicious source. On average, more than 900,000 TCP
connections were established to the Nepenthes sensor per day and about 240,000 known
exploits were performed every single day. Thus Nepenthes recognized about 27% of all
incoming connection attempts as attacks and responded with a correct reply.

The remaining 73% of network connections are mainly caused by scanning attempts:
about 75% of these connections target TCP port 80 and search for common vulnerable
web applications. An additional 22% contain probe requests used by attackers during
the reconnaissance phase in order to identify the network service running on a given
target. About 3% of network connections contain a payload that Nepenthes could
not understand. By manually adding support for these missed exploitation attempts,
Nepenthes could be enhanced. With approaches like ScriptGen [LDM06], the detection
rates could be automatically improved in the future as shown by preliminary results by
Leita with SGNET [Lei08].

A total of more than 13,400,000 times the sensor system was hit. This means that
this many times a TCP connection was established, the vulnerability emulation was

61

Chapter 4 Tracking Botnets with Central C&C Server

successful, and a malware binary could be downloaded by the sensor. If one host
scans linearly the whole measurement range, then we count each of these connections
as a separate one. Since this skews the data, we take only the unique hostile IP
addresses into account. Roughly 18,340 unique IP addresses caused those hits. Table 4.1
depicts the sanitized IP addresses of the ten most active attackers together with the
according country. It is evident that a small number of IP addresses are responsible for a
signification amount of malicious network traffic.

IP Address: Country: Hits:
XXX.178.35.36 Serbia and Montenegro 216.790
XXX.211.83.142 Turkey 156.029
XXX.7.116.4 France 108.013
XXX.147.192.47 United States 107.381
XXX.92.35.23 Norway 94.974
XXX.206.128.27 United States 91.148
XXX.12.234.94 Japan 91.051
XXX.255.1.194 United States 78.455
XXX.92.35.24 Norway 78.439
XXX.29.103.225 United States 77.580

Table 4.1: Top ten attacking hosts with country of origin.

An analysis revealed that the distribution of attacking hosts follows a classical long-tail
distribution as depicted in Figure 4.6. About 9,150 IP addresses, corresponding to about
50% of the total number observed, contacted the sensor system less then five times.
These IP addresses are presumably infected with some kind of autonomous spreading
malware which propagates further by scanning randomly for other victims.

Figure 4.6: Distribution of attacking hosts.

62

4.8 Empirical Measurements

TCP Port Number Number
445 57,015,106
135 184,695
3127 23,076
80 20,746
42 18,653
139 15,112
1023 14,709
5554 13,880
6129 27
1025 1

(a) Top ten vulnerabilities detected by Ne-
penthes.

Dialogue Number
LSASSDialogue 56,652,250
PNPDialogue 361,172
DCOMDialogue 184,696
SasserFTPDDialogue 28,589
MydoomDialogue 23,076
IISDialogue 20,746
WINSDialogue 18,655
NETDDEDialogue 15,112
SMBDialogue 2,341
DWDialogue 27

(b) Top ten TCP ports used by autonomous
spreading malware.

Figure 4.7: Statistics of attacks observed with Nepenthes.

The 18,340 unique IP addresses we monitored during the analysis period connected
to different TCP ports on the sensor. The distribution of target ports is very biased, with
more than 97% targeting TCP port 445. This port is commonly used by autonomous
spreading malware that exploits vulnerabilities on Windows-based systems. Table 4.7a
provides an overview of the distribution.

Closely related to the distribution of target TCP ports is the type of vulnerabilities
exploited. This distribution is also dominated by the most common vulnerability on TCP
port 445: the Lsasrv.dll vulnerability, commonly referred to as LSASS (Microsoft
Security Bulletin MS04-011 [Mic04]). Table 4.7b provides an overview of the vulnera-
bility modules triggered and we see a bias towards the Windows vulnerabilities related
to network shares.

The 13.4 million downloaded binaries turned out to be 2,454 unique samples. The
uniqueness is determined by the MD5 hash of each binary: two binaries that have the
same MD5 hash are considered to be the same binary. This is not foolproof due to
the recent attacks on MD5 [WFLY, BCH06], but so far we have no evidence that the
attacking community has released different binaries with the same MD5 hash. On the
other hand, this is also no strong indicator for uniqueness: if the malware binary is
polymorphic, i.e., it changes with each iteration, we collect many samples which in fact
are very similar. In the middle of December 2006, such a polymorphic bot was released
in the form of Allaple worm. In Section 4.8.4 we show preliminary results on how we
can identify similar malware binaries based on behavior.

The number of collected samples result in an average of one unique malware binary
every 5,240 hits. Considering the number of successful exploits per day, this results
in almost 46 new binaries every 24 hours. Figure 4.8 provides an overview of the
chronological sequence for the number of collected binaries and number of unique
binaries. The number of collected binaries varies from day to day, ranging between

63

Chapter 4 Tracking Botnets with Central C&C Server

Figure 4.8: Chronological analysis of collected malware binaries.

58 and 281. There are several spikes in this measurement, but no reason for these
anomalies could be identified with certainty. Presumably these spikes are caused by
polymorphic samples. The situation is slightly different for the number of unique
binaries: in the first few days, the number of unique binaries collected per day is high,
whereas this number drops after about six weeks. It seems like there is some kind of
saturation: in the beginning, the number of unique binaries is significantly higher than
in the end of the measurement period. After a certain period of time we have collected
the commonly propagating malware in the measurement network and only a few new
binaries are collected per day. This number varies between 6 and 16, an educated guess
would be that this corresponds to new malware binaries released by attackers on a daily
basis that hit our sensor.

4.8.4 CWSandbox Analysis Results

In this section, we present some quantitative statistics about the analysis results of
our malware collection. It should be mentioned that our collection cannot give a
representative overview of current malware on the whole Internet, as on the one
hand, the sample set size is not large enough and, on the other hand, it contains only
autonomous spreading applications like bots and worms. However, for this particular
subset of malicious activity, our measurement setup can provide us with an overview of
the current threat level for a typical university environment.

From the overall collected 2,454 sample files, 2,034 could be analyzed correctly
by CWSandbox, one failed due to a crash and 419 were no valid Win32 applications.
This means that in roughly 17% of the collected samples, the resulting file was not
a valid executable. This can be explained by aborted transfers or disrupted network
connectivity. One additional file of the remaining 2034 had a valid PE header, but
could not be correctly initialized by the Windows Loader due to an access violation
exception. Each successful analysis resulted in an XML analysis report, which reflects all
the security-relevant operations performed by the particular file. As we are not interested
in a detailed malware analysis for single file instances, we present quantitative results
extracted from the 2,034 valid reports. The main focus of our statistics lies on network
activities, but a few other important results are presented as well.

64

4.8 Empirical Measurements

Remote TCP port # samples
445 1312

80 821
139 582

3127 527
6667 403
6659 346

65520 143
7000 30
8888 28

443 16

Table 4.2: Top ten outgoing TCP ports used.

1,993 of the 2,034 valid malware samples tried to establish some form of TCP/IP
connection, either outgoing, incoming (i.e., listening connections) or both. Besides DNS
requests, we have not found any single malware in our set that uses only UDP directly.
1,216 binaries were successful in the attempt to setup an outgoing TCP connection. For
all the others, the remote host was not reachable or refused the connection for some
other reason. Altogether, 873 different TCP remote ports have been used for outbound
connection attempts, and Table 4.2 shows the top ten of them. It is highly probable that
most connections on port 445 and 139 are aiming on further malware propagation, port
80 and 443 are used for HTTP(s) connections, 6667, 66520, 7000, 6659, and 8888 are
used for IRC communication, and port 3127 is presumably used as a backdoor by the
malware family MyDoom.

Furthermore, we have found 1,297 samples that install a TCP server for incoming
connections, most of them setting up an Ident server on port 113 for supporting IRC
connections (497 samples). Other common ports on which malware opens TCP servers
is port 3067 (122 samples), port 80 (9 samples), and port 5554 (7 samples).

Since most bots rely on IRC communication, a deeper investigation of these con-
nections is necessary. 505 samples could successfully establish a connection to an
IRC server. Moreover, 352 files tried to send IRC commands over an unestablished
connection. The reason for that is most probably bad software design. 349 of these
files are variants of GhostBot, the other 3 are Korgo worms. Furthermore, we have 96
samples that try to connect to a remote host on TCP port 6667 or 7000 and fail. Adding
these numbers, we have at least 953 files which try or are successful in setting up an
IRC connection. The corresponding samples are most probably IRC bots. We cannot
know, how many of these different binaries belong to the same bot variant or even
to the same botnet. However, by taking the remote IP address, remote TCP port, IRC
channel name and IRC channel password into account, we can give an educated guess
since this quadruple is a good indication for uniqueness: if a given binary uses the
same tuple of network parameters, we can be sure that it is the same variant, although
the MD5 sum of these binaries is different. Of all established IRC connections, 64
different host:port:channel:channelpassword-combinations have been used. As the host
IP address for a botnet may change, we generalize the results to the different chan-

65

Chapter 4 Tracking Botnets with Central C&C Server

Figure 4.9: Distribution of IRC channel:password combinations.

nel:channelpassword-combinations and assume that each of those represent a different
botnet or at least a different bot family. By generalizing the number of different combi-
nations decreases down to 41. The most common channels are &virtu (no password)
and dd (password “dpass”) with 143 and 141 samples, respectively. These samples have
a different MD5 sum, but based on their network behavior we argue that they are very
similar. An overview of these results is given in Figure 4.9. Please note that all the
combinations with only one corresponding malware sample are aggregated into others.
We have also developed some techniques to classify a given set of malware samples
based on their behavior [RHW+08], but refrain from detailing these results since it is
beyond the scope of this section.

When looking at the different remote TCP ports which are used for establishing an
IRC connection, we see that not only the default IRC port 6667 is used, but many more.
It is interesting to see that, beside some probably random ports, a lot of well known
ports of other well-known protocols are used, e.g., port 80 (HTTP), port 443 (HTTPS)
or port 1863 (Microsoft Notification Protocol, used by a number of Instant Messaging
clients). This allows the bot to communicate through a firewall that is open for these
standard protocols. Thus it is necessary to also closely observe these port when thinking
about vulnerability assessment. Figure 4.10 shows a distribution diagram of the TCP
ports observed during the study.

As already mentioned above, a few other interesting, system-level related results
can be drawn from our analysis reports as well. After infecting a new host, nearly all
malware samples try to install some auto-start mechanism, such that it is activated each
time the infected system reboots. This is commonly done by adding some auto-start
registry keys, but some malware install a Windows Service Application or even a kernel
driver. By doing that, it is much harder to detect the presence of malware. Especially

66

4.8 Empirical Measurements

Figure 4.10: TCP ports used for IRC connections.

Servicename Filename Kernel #
(base directory is C:\Windows\) driver Samples

SVKP system32\SVKP.sys x 15
DLLHOST32 system\dllhost.exe 8
WINHOST32 system\services.exe 2
Print Spooler system32\spooler.exe 1
hwclock system32\hwclock.exe 1
oreans32 system32\drivers\oreans32.sys x 1
Windows System 32 services.exe x 1
Windows Terminal Services system32\vcmon.exe 1
Advanced Windows Tray system32\vcmon.exe 1
Windows MSN wmsnlivexp.exe 1
Windows Process Manager system32\spoolsc.exe 1
mside system\mside.exe 1
TCP Monitor Manager system32\symon.exe 1
Client Disk Manager system32\symon.exe 1
Monitor Disk Manager system32\spoolcs.exe 1
System Restore Manager system32\symon.exe 1

Table 4.3: Services and kernel drivers installed by collected malware samples.

in the case of kernel drivers, the malware binaries can get higher security privileges
on the local system. Table 4.3 provides an overview of the services and kernel drivers
installed by the samples we collected. In total, 21 of our collected files install a service
application and 17 install a kernel driver. Since some of these binaries use the same
service name and filename for the given processes, we can learn that these were most
probably installed by variants of the same malware family.

As a final statistic result, Table 4.4 shows a summary of the windows processes,
into which the malware samples injected malicious code. It is a common approach to

67

Chapter 4 Tracking Botnets with Central C&C Server

Injection target process (base directory is C:\Windows\) # Samples
explorer.exe 787
system32\winlogon.exe and explorer.exe 101
system32\winlogon.exe 74

Table 4.4: Injection target processes observed for collected malware samples.

create a new thread (or modify an existing one) in an unsuspicious windows process,
e.g., explorer.exe or winlogon.exe, and perform all malicious operations from
that thread. By doing this, the malware becomes more stealthy and, furthermore,
circumvents local firewalls or other security software that allows network connections
only for trusted applications.

4.8.5 Antivirus Engines Detection Rates

In order to evaluate the performance of current antivirus (AV) engines, we scanned all
2,034 binaries, which we had captured with Nepenthes and successfully analyzed with
CWSandbox, with four common AV engines. This scan was performed one week after the
measurement period, in order to give AV vendors some time to develop signatures and
incorporate them into their products. This test helps us to estimate the detection rate for
common autonomous spreading malware and also for vulnerability assessment. These
binaries are currently spreading in the wild, exploited a vulnerability in our measurement
system, and could be successfully captured. In contrast to common antivirus engine
evaluation tests, which partially rely on artificial test sets, this set represents malware
successfully spreading in the wild during the measurement period.

AV software Absolute detection Relative detection rate
AntiVir 2015 99.07%
ClamAV 1963 96.51%
BitDefender 1864 91.64%
Sophos 1790 88.00%

Table 4.5: Detection rates for 2,034 malware binaries for different AV scanners.

Table 4.5 displays the current detection rates of each scanner with the latest signature
version installed. Nevertheless, none of the tools was able to detect all malicious files
and classify them accordingly. The malware reports vary significantly from one tool to
another. Figure 4.11 provides an overview of the detected malware binaries by the four
different antivirus engines.

We focus on the ClamAV results in the following and analyze the different malware
families more closely. ClamAV detected 137 different malware variants in the test set of
2,034 samples. In total, 27 different families of malware could be identified. Table 4.6
provides an overview of the top ten different malware variants. Two families of malware
clearly dominate the result: Padobot and Gobot are the two main autonomous spreading
malware families we could observe within our measurement environment. Besides these

68

4.8 Empirical Measurements

Figure 4.11: Malware variants detected by different antivirus engines.

Malware Variant Number of Samples
Worm.Padobot.M 426
Worm.Padobot.P 274
Trojan.Gobot-3 118
Trojan.Gobot-4 106
Worm.Padobot.N 101
Trojan.Downloader.Delf-35 100
Trojan.IRCBot-16 76
Trojan.Gobot.A 61
Trojan.Ghostbot.A 53
Trojan.Gobot.T 37

Table 4.6: Top ten different malware variants.

two families, also many other forms of autonomous spreading malware are currently
spreading in the wild. Although Padobot and Gobot dominate the list of malware
variants, the largest number of different variants was captured for SdBot: 35 different
variants of the same family could be captured, whereas Padobot (14) and Gobot (8) had
significantly less different variants.

Some of the malware binaries are already known for a long time. For example, the
first variants of Blaster were observed in the wild in August 2003. More than three years
later, we captured four different variants of Blaster which are still propagating on the

69

Chapter 4 Tracking Botnets with Central C&C Server

Internet. Similarly, three different variants of Sasser, which first appeared in April 2004,
were captured during the measurement period. We conclude that there are still systems
on the Internet which are infected for a long time, helping “old” malware binaries to
propagate further even today.

4.8.6 Botspy Analysis Results

With the help of botspy, we can study the remote control networks used by the au-
tonomous spreading malware: in case we have captured a bot, it connects to this remote
control network so that the attacker can send it commands. With the help of botspy, we
can infiltrate this remote control network and observe from the inside what is happening
within the botnet.

In total, we could observe 41 different botnet Command & Control (C&C) servers.
Again, this behavior can be used to classify malware samples: if two binaries connect
to the same C&C server, we can argue that they are similar despite the fact that they
have a different MD5 sum. For example, 149 binaries connected to the IP address
XXX.174.8.243 (home.najd.us). The system-level behavior of these samples is also
very similar, so presumably these are just minor variants of the same malware family.

When connecting to the botnets, we could observe 33 different topics in the channel
used to command the bots. The most common command used by the botmaster was
related to propagation: most bots are instructed to scan for other vulnerable machines
and exploit vulnerabilities on these systems. More and more common are botnets that
use non-standard IRC or encrypted communication mechanisms. For example, the
command sent by the botmaster to the bots could be an encrypted string. In total, we
found 10 different botnets that use encrypted, IRC-based communication. Without a
proper decryption routine, it is hard to study this kind of botnets. Currently it is unclear
how we can efficiently study this kind of botnets, since only manual reverse engineering
can uncover the current command issued by the botmaster.

Estimating the size of a given botnet is a hard task [RZMT07]. One possibility to
estimate the size is to rely on the statistics reported by the C&C server upon connect:
if the IRC server is not configured properly, it reports the number of connected clients.
Moreover, we can query the server for the number of connected clients and various
other status messages. Based on these numbers, the typical botnet size in our sample set
varied between only a few hundred up to almost 10,000 bots.

Besides the IRC-based bots, we also found several samples of HTTP-based bots. These
bots periodically query a given HTTP server and the response contains commands which
are executed by the bot. Due to the rather stealthy communication channel of such
bots, detection becomes harder. In addition, measuring the size of such a botnet is hard
since we can only passively monitor the HTTP server. In total, we could identify seven
different botnets that use HTTP-based communication.

70

4.9 Mitigation

4.9 Mitigation

Several ways to prevent DDoS attacks caused by botnets exist that we want to sketch
in this section. Since we observe the communication flow within the botnet, we are
also able to observe the IP addresses of the bots unless this information is obfuscated,
e.g., by modifying the C&C server. Thus one possible way to stop DDoS attacks with
this methodology is to contact the owner of the compromised system. This is however a
tedious and cumbersome job that does not scale since many organizations are involved
and these organizations are spread all over the world. In addition, the large number of
bots make this approach nearly infeasible, only an automated notification system could
help. For now it is unclear how such a system could be implemented and operated in an
efficient and scalable manner.

Another approach to prevent DDoS attacks caused by botnets aims at stopping the
actual infrastructure, in particular the C&C server, since this component is vital for the
remote control network. Currently, the most effective method to stop bots is to stop
the initial establishment of a connection from a bot to the C&C server. The botnets
we analyzed in this chapter use a central server for Command and Control (commonly
either based on the protocol IRC or HTTP), and, in most cases, a dynamic DNS name
is used for this server. This allows us to stop a botnet effectively: once we know this
DNS name, we can contact the DNS provider and file an abuse complaint. Since many
DNS providers do not tolerate abuse of their service, they are also interested in stopping
the attack. The DNS provider can easily blackhole the dynamic DNS name, i.e., set it
to an IP address in the private range as defined in RFC 1918. If an infected machine
then tries to contact the C&C server, the DNS name will resolve to a private IP address
and thus the bot will not be able to contact the C&C server. This method is commonly
used by CERTs and similar organizations and has proven to be quite effective; many
communication channels have been disrupted in this way. Nevertheless, it requires the
DNS provider’s cooperation, which is not always the case.

There are also several methods to stop a bot within a network that can be carried
out by a network administrator or security engineer. We discuss several methods in the
following. As always, the best way to cancel a threat is to stop its root cause. In this case,
this would mean eliminating the attack vectors and checking for signs of intrusions, e.g.,
by patching all machines and keeping AV signatures up-to-date. But this is often difficult:
a zero-day exploit cannot be eliminated in all cases, and patching needs some testing
since it could break important systems. In addition, AV scanners often cannot identify
targeted attacks. In several recent incidents, the time between a proof-of-concept exploit
for a new security vulnerability and the integration of it into a bot can be as little as
several hours or days, so patching cannot always help; nevertheless, it is still important
to try to keep patches as up to date as possible.

One quite effective method to detect the presence of bots also exploits their rather
noisy nature. Most bots try to spread by exploiting security flaws on other systems. To
find such a system, they have to extensively scan the network for other machines. In
addition, the communication channel often uses specific, rather unusual ports. Thus
by looking at the state of the network, it is often possible to detect bots. Flow-based

71

Chapter 4 Tracking Botnets with Central C&C Server

approaches like Netflow/cflow are easy-to-use solutions for this problem, in which the
collected data often allows an administrator to spot an infected machine. A typical sign
is a spike in the number of outgoing connections, most often on TCP ports 445 and 135,
or on ports with recent security vulnerabilities, caused by bots that try to propagate
via common vulnerabilities. Another sign is a high amount of traffic on rather unusual
ports. We analyzed the information about more than 1,400 botnets and found out that
the vast majority of botnets use TCP port 6667 for C&C. Other commonly used ports
include TCP ports 7000, 3267, 5555, 4367, and 80. TCP port 6667 is commonly used
for IRC, and of course 80 for HTTP, but an administrator should take a look at these and
the others mentioned.

We developed simple, yet effective bot-detection system that relies on detecting the
communication channel between bot and C&C server [GH07]. The technique is mainly
based on passively monitoring network traffic for unusual or suspicious IRC nicknames,
IRC servers, and uncommon server ports. By using n-gram analysis and a scoring system,
we are able to detect bots that use uncommon communication channels, which are
commonly not detected by classical intrusion detection systems. Upon detection, it is
possible to determine the IP address of the C&C server, as well as, the channels a bot
joined and the additional parameters which were set. The software Rishi implements
the mentioned features and is able to automatically generate warning emails to report
infected machines to an administrator. Within the 10 GBit network of RWTH Aachen
university, we detected 82 bot-infected machines within two weeks, some of them using
communication channels not picked up by other intrusion detection systems. Of course,
such a method requires some human supervision, since it is not error-free and could
lead to false positives. In addition, the C&C commands can change with time, and thus
regular updates are necessary. There exist many other botnet detection systems that try
to detect different aspects of botnet communication [GPY+07, GZL08, GPZL08, YR08].

4.10 Summary

Today, botnets are a problem for individuals and also corporate environments. Due to
their immense size (several thousand compromised systems can be linked together),
botnets pose a severe threat to the Internet community: they are often used for DDoS
attacks, to send spam or phishing mails, and as spyware to steal sensitive information
from the victim’s machine. Since an attacker can install programs of her choice on the
compromised machines, her procedures are arbitrary.

In this chapter, we have exemplified a technical realization of the methodology
proposed in Chapter 3 to prevent malicious remote control networks considering as
example the tracking of botnets with a central server that is used for Command and
Control. We showed how to use honeypots to collect more information related to a
botnet. With the help of low-interaction honeypots that emulate vulnerabilities in
network services, we can capture samples of autonomous spreading malware in an
automated way. By analyzing the collected samples with CWSandbox, we obtain —
also in an automated way — a behavior-based report that contains amongst other

72

4.10 Summary

information valuable data about the botnet itself. Based on this information, we can
infiltrate the botnet and observe it from the inside based on a light-weight agent. With
the help of the collected information, we can then try to mitigate the threat, e.g., by
contacting the DNS provider to withdraw the domain name related to the botnet. The
important point here is that we are able to automate most of the collection, analysis,
and infiltration steps to a high degree based on the tools we introduced in this chapter.
Since botnets are an automated threat, we also need an automated countermeasure.

More research is needed in this area. Current botnets are rather easy to stop due to
their central C&C server. But in the future, we expect other communication channels
to become more relevant, especially peer-to-peer-based C&C communication. We
have seen the first bots that use such communication channels with Sinit [Gro03],
Nugache [Naz06], and Storm Worm [Ste07], but presumably the future will bring many
more of these types of malware. Thus the next chapter focusses on botnets with a peer-
to-peer-based Command and Control infrastructure and we show how the methodology
we introduced in Chapter 3 can also be used to mitigate these botnets.

73

Chapter 4 Tracking Botnets with Central C&C Server

74

Chapter 5
Tracking Botnets with
Peer-to-Peer-based C&C Server

5.1 Introduction

Today we are encountering a new generation of botnets that use peer-to-peer style
communication. These botnets do not have a central server that distributes commands
as we have analyzed in the previous chapter, but the botnets rely on peer-to-peer
communication to disseminate commands to the bots. Simply shutting down the central
server that is used to disperse the commands is thus not feasible since there is no
central server. We thus need another way to stop this kind of botnets. As a second case
study on the feasibility of our methodology to track malicious remote control networks
introduced in Chapter 3, we focus in this chapter on botnets with a peer-to-peer-based
communication channel and show that we can also successfully track these botnets with
the proposed methodology. As a running example, we analyze Storm Worm, one of the
most prevalent botnets observed so far.

Our measurements show that our strategy can be used as a way to disable the
communication within the Storm Worm botnet to a large extent. As a side effect, we
are able to estimate the size of this botnet, in general a hard task [RZMT07]. Our
measurements are much more precise than previous measurements [GSN+07, Kre07].
This is because previous measurements were based on passive techniques, e.g., by
observing visible network events like the number of spam mails supposedly sent via
the bots. We are the first to introduce an active measurement technique to actually
enumerate the number of infected machines: we crawl the peer-to-peer network, keep
track of all peers, and distinguish an infected peer from a regular one based on the
characteristic behavior of a bot.

Contributions. To summarize, our work presented in this chapter makes the following
three main contributions:

75

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

1. We show how the method of tracking malicious remote control networks as
introduced in Chapter 3 can be used to track peer-to-peer based botnets. We
argue that the method is applicable to analyze and mitigate any botnet using
peer-to-peer publish/subscribe-style communication.

2. We demonstrate the applicability by performing a case study of Storm Worm,
thereby being the first to develop ways to mitigate the Storm Worm botnet.

3. In doing this, we present the first empirical study of peer-to-peer botnets giving
details about their propagation phase, their malicious activities, and other features.

Outline. This chapter is structured as follows: we first motivate our work by intro-
ducing botnets that use peer-to-peer based communication channels in Section 5.2. In
Section 5.3 we show how the methodology proposed in Chapter 3 can be applied to this
kind of botnets. A technical overview of Storm Worm, our running example, is given in
Section 5.4. In Section 5.5 we show how we can actually track the Storm Worm botnet,
before we present in Section 5.6 empirical measurement results. Section 5.7 discusses
how to mitigate this botnet and we finally conclude in Section 5.8.

5.2 Motivation

As introduced in the previous chapter, the common control infrastructure of botnets in
the past was based on Internet Relay Chat (IRC): the attacker sets up an IRC server and
opens a specific channel in which she posts her commands. Bots connect to this channel
and act upon the commands they receive from the botmaster. Today, the standard
technique to mitigate IRC-based botnets is called botnet tracking and the whole method
was discussed in depth in Section 4.7.1. To summarize, botnet tracking includes three
steps: the first step consists of acquiring and analyzing a copy of a bot in an automated
way. This can be achieved for example using honeypots [BKH+06] and special analysis
software [BMKK06, WHF07]. In the second step, the botnet is infiltrated by connecting
to the IRC channel with a specially crafted IRC client [Ove07]. Using the collected
information, it is possible to analyze the means and techniques used within the botnet.
More specifically, it is possible to identify the central IRC server which, in the third
and final step, can be taken offline by law enforcement or other means [Fed07]. An
attacker can also use an HTTP server for distributing commands: in this setup, the bots
periodically poll this server for new commands and act upon them. The botnet tracking
methodology proposed in this thesis can also be applied in such a scenario as we have
shown in Section 4.7.2.

Today we are encountering a new generation of botnets that use peer-to-peer style
communication. These botnets do not have a central server that distributes commands
and are therefore not directly affected by botnet tracking. Probably the most prominent
peer-to-peer bot currently spreading in the wild is known as Peacomm, Nuwar, or Zhelatin.
Because of its devastating success, this worm received major press coverage [Gro07,
Kre07, Nau07] in which – due to the circumstances of its spreading – it was given the

76

5.3 Botnet Tracking for Peer-to-Peer-based Botnets

name Storm Worm (or Storm for short) [Ste07]. This malware is currently the most
wide-spread peer-to-peer bot observed in the wild. Other botnets that use peer-to-peer
techniques include Sinit [Gro03] and Nugache [Naz06]. Due to their success and
resistance against take-down, we expect many more such botnets appearing in the wild
in the near future.

In this chapter we show how the technique of botnet tracking can be extended to
analyze and mitigate peer-to-peer based botnets. Roughly speaking, we adapt the three
steps of botnet tracking in the following way using Storm Worm as a case study: in the
first step, we must get hold of a copy of the bot binary. In the case of this botnet, we use
spam traps to collect Storm-generated spam and client-side honeypots to simulate the
infection process. This is similar to the approach in the previous chapter in which we
used low-interaction honeypots that emulate vulnerabilities in network services. The
second step, the infiltration of the botnet, is adopted since we need to use a peer-to-peer
protocol instead of IRC, HTTP, or other client/server protocols. From a methodological
point of view, only the protocol used during the infiltration phase changes, the overall
method stays the same. The third step, the actual mitigation, is the most difficult: in
the case of Storm Worm we exploit weaknesses in the protocol used by the bot to inject
our own content into the botnet, in an effort to disrupt the communication between the
bots. We argue later that this method is effective against any peer-to-peer botnet using
content-based publish/subscribe-style communication, as we now explain.

5.3 Botnet Tracking for Peer-to-Peer-based Botnets

We now present a general method to analyze and mitigate specific peer-to-peer botnets.

5.3.1 Class of Botnets Considered

The class of botnets we consider in this chapter are those which use unauthenticated
content-based publish/subscribe style communication. This communication paradigm
is popular in many of the well-known file sharing systems like Gnutella, eMule, or
BitTorrent. The characteristics of such systems can be summarized as follows:

• Peer-to-peer network architecture: These networks have in common that all network
nodes are both clients and servers. Any node can provide and retrieve information
at the same time. This feature makes peer-to-peer networks extremely robust
against node failures, i.e., they provide high resilience. Moreover, a peer-to-peer
network has no central server that can be taken down in order to mitigate the
whole network.

• Content-based publish/subscribe-style communication: In such systems the network
nodes do not directly send information to each other. Instead, an information
provider publishes a piece of information i, e.g., a file, using an identifier which
is derived solely from i. An information consumer can then subscribe to certain
information using a filter on such identifiers. In practice, such identifiers can be

77

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

derived from specific content of i or simply computed using a hash function. The
peer-to-peer system matches published information items to subscriptions and
delivers the requested information to the consumer. This is the common model
implemented by most file sharing peer-to-peer systems, where each participant
publishes his content and other participants can search for specific content using
an identifier.

• Unauthenticated communication: Content providers do not authenticate informa-
tion, but authentication is usually implicit: if the information received by a peer
matches its subscription, then it is assumed to be correct. None of the popular file
sharing systems provides any authentication procedure.

Note that in such systems communication is very loosely coupled. Neither information
consumers know in general, which node published the information they receive, nor
does an information provider know, which nodes will receive their published informa-
tion. Both points, loose coupling and high resilience, make these networks attractive
technologies for running botnets.

5.3.2 Botnet Tracking for Peer-to-Peer Botnets

We now introduce a widely applicable method to analyze and mitigate any member
of the class of botnets described above. We show how the botnet tracking method
introduced in Chapter 3 can be adopted for botnets that use peer-to-peer networks and
exemplify the method with the help of a case study on the Storm Worm botnet later on.

Step 1: Exploiting the peer-to-peer Bootstrapping Process. A bot spreading in the
wild must contain information to bootstrap itself within the botnet. In the case of
peer-to-peer botnets, the bot must contain sufficient information on how to connect to
the botnet and how to receive commands from the attacker. Usually this information
includes a number of IP addresses of initial peers, service ports and application-specific
connection information. By getting hold of and analyzing a bot, it is possible to extract
this information by either active or passive means.

Getting hold of a bot means to simulate the infection process, which is a technique
known from the area of honeypot technology. The main difficulties here are (1) to find
out the infection vector and (2) to simulate vulnerable applications. While (1) may take
some time and is hard to automate, (2) can be efficiently automated, e.g., using sandbox
or network analysis techniques. The result of this step is a list of network locations (IP
address/port) of peer services that form part of the peer-to-peer botnet.

This step is similar to the method we introduced in Section 4.4 and 4.5 which relies
on honeypots to capture bots and sandboxes to automatically analyze the samples.

Step 2: Infiltration and Analysis. As a result of step 1, we also retrieve connection
information to actually join the botnet. Joining the botnet means to be able to receive
botnet commands issued by the attacker. By crafting a specific peer-to-peer client,

78

5.4 Technical Background

infiltration of the botnet remains a dangerous, but technically manageable process. It
can be dangerous since the attacker could notice the infiltration process and start to
specifically attack us.

This step is similar to the infiltration phase of botnets with a central server as outlined
in Section 4.6.

Step 3: Mitigation. The mitigation of botnets must attack the control infrastructure
to be effective, i.e., either the servers or the communication method. We now argue
that publish/subscribe-style communication has weaknesses which can be generally
exploited. In a botnet, the attacker wishes to in some way send commands to the bots.
This is the characteristic of remote control. However, in publish/subscribe systems, there
is no way to send information directly. Instead, a broadcast is simulated, as we now
explain. The attacker defines a set C = {c1, c2, . . .} of botnet commands. At any point
in time, whenever she wishes to send a command ci to the bots, she publishes ci in
the peer-to-peer system. The bots must be able to receive all the commands from the
attacker so they subscribe to the entire set C and can then accept commands.

Note that since we consider unauthenticated publish/subscribe systems, any member
of the peer-to-peer system can publish ci. This is the idea of our mitigation strategy:
using the client from step 2, we can now try to either inject commands into the botnet or
disrupt the communication channel. In general, disruption is possible: we can flood the
network with publication requests and thus “overwrite” publications by the attacker. In
order to actually inject commands, we need to understand the communication process
in detail and then publish a specially crafted ci .

This step is in principle similar to the mitigation methods we introduced Section 4.9
for botnets with a central C&C server, but requires a different implementation.

5.4 Technical Background

Before exemplifying our methodology of tracking peer-to-peer botnets, we provide an
overview of Storm Worm. Please note that this description is a summary of the behavior
we observed when monitoring the Storm botnet for a period of several months during
August 2007 and June 2008. The attackers behind this network quite frequently change
their tactics and move to new attack vectors, change the communication protocol, or
change their behavior in other ways. The results from this section describe several
important aspects of Storm and we try to generalize our findings as much as possible.
Together with the work by Porras et al. [PSY07] and Kreibich et al. [KKL+08b], this is
at the time of writing the most complete overview of Storm Worm.

5.4.1 Propagation Mechanism

A common mechanism for autonomous spreading malware to propagate further is
to exploit remote code execution vulnerabilities in network services. If the exploit is
successful, the malware transfers a copy of itself to the victim’s machine and executes this

79

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

copy in order to propagate from one machine to another. This propagation mechanism
is used for example by CodeRed [MSkc02], Slammer [MPS+03], and all common IRC
bots [BY07]. Storm Worm, however, propagates solely by using e-mail, similar to mail
worms like Loveletter/ILOVEYOU and Bagle. The e-mail body contains a varying English
text that tries to trick the recipient into either opening an attachment or clicking on an
embedded link. The text uses social engineering techniques in order to pretend to be a
legitimate e-mail, e.g., we found many e-mails related to Storm Worm that feign to be a
greeting card in order to trick the victim into clicking the embedded link.

With the help of spamtraps, i.e., e-mail addresses not used for communication but to
lure spam e-mails, we can analyze the different spam campaigns used by Storm Worm
for propagation. We have access to a spamtrap archive between September 2006 and
September 2007 which receives between 2,200 and 23,900 spam messages per day
(8,500 on average). The first Storm-related message we are aware of was received on
December 29, 2006: it contained best wishes for the year 2007 and as an attachment
a copy of the Storm Worm binary. An analysis of this archive shows that this botnet is
quite active and can generate a significant amount of spam: we found that the botnet
was in some period responsible for more than 10% of all spam messages received in this
particular spamtrap.

The attackers behind Storm change the social engineering theme quite often and
adopt to news or events of public interest. For example, the name “Storm Worm” itself
relates to the subject used in propagation mails during January 2007 which references
the storm Kyrill, a major windstorm in Europe at that time. For events of public interest
(e.g., Labor Day, Christmas, start of NFL season, or public holidays), the attackers use
a specific social engineering scam. Furthermore, they also use general themes (e.g.,
privacy concerns or free games) to trick users into opening the link in the e-mail message.
In total, we counted more than 26 different e-mail campaigns for the period between
December 2006 and June 2008.

The different campaigns also reveal a growing sophistication in the propagation
mechanism. The first versions of Storm used an e-mail attachment to distribute a binary
copy of the malware and tried to trick the recipient into opening the attachment, thus
infecting the machine. However, in May/June 2007, the attackers changed their tactics
and began to include a link to a malicious Web site in the e-mail body.

This change has presumably two main reasons: first, by not including the actual
binary in the mail, there is no malicious attachment that an antivirus engine at the
e-mail gateway could detect. Thus the chances are higher that the e-mail is not filtered
and actually reaches the intended recipient. Second, if the recipient clicks on the link,
a Web site opens which contains several exploits for vulnerabilities in common web
browsers. Presumably the attackers hope that the victim has not patched the browser
and is thus vulnerable to this kind of attacks.

To study the next step in the propagation phase, we examined the links from Storm-
related e-mails with the help of honeyclients. A honeyclient is a system designed to study
attacks against client applications, in our case attacks against a web browser [WBJ+06].
We implemented our own client-side honeypot which can be used to analyze a given
Web site with different kinds of browsers on top of CWSandbox [WHF07]. Based on this

80

5.4 Technical Background

system and the analysis report generated by CWSandbox, we can determine whether
or not the visited site compromised our honeypot. During five of the different spam
campaigns we examined several URLs referenced in the e-mails. We used different
releases of three web browsers, resulting in a total of eight different browser versions.
The results indicate that Storm exploits only web browsers with a specific User-Agent,
a HTTP request header field specifying the browser version. If this header field specifies
a non-vulnerable browser, the malicious server does not send the exploit to the client.
However, if the client seems to be vulnerable, the server sends between three and six
different exploits for vulnerabilities commonly found in this browser or in common
browser-addons. The goal of all these exploits is to install a copy of the Storm Worm
binary on the visitor’s machine. We observed that the actual exploit used in the malicious
Web sites is polymorphic, i.e., the exploit code changes periodically, in this case every
minute, which complicates signature-based detection of these malicious sites.

If the malicious Web site successfully compromises the visitor’s web browser or the
visitor falls for the social engineering scam and intentionally installs the binary, the victim
is infected. The binary itself also shows signs of polymorphism: when continuously
downloading the same binary from the same web server, the size (and accordingly the
MD5 checksum) changes every minute. An analysis revealed that the changes are caused
by periodically re-packing the binary with an executable packer which is responsible for
the change in size.

In total, we collected more than 7,300 unique binaries over several weeks in August
and September 2007. We tested this malware corpus with common antivirus engines
and found that they have rather good detection rates for these samples because between
82 and 100 percent were detected. At least six different variants of the binary were
used by the attackers, with a size of the binary between 97 and 164 KB. The different
variants contain the same basic functionality, however the attackers slightly change each
variant, e.g., by including code to detect virtual machines [PSY07]. We can also use the
polymorphism observed for the binaries to collect evidence that the webservers are in
fact only proxies which redirect requests to a central server which answers each request:
when querying webserver a and b for the same content, the returned binary has at
timestamp t1 the same checksum c1. At timestamp t2 — at least one minute later — the
servers a and b return both a binary with checksum c2.

5.4.2 System-Level Behavior

Storm Worm itself is a sophisticated malware binary and uses several advanced tech-
niques, e.g., the binary packer is one of the most advanced seen in the wild [Fra07],
the malware uses a rootkit in order to hide its presence on the infected machine, and it
has a kernel-level component in order to remain undetected on the system. We do not
provide a complete overview of the system-level behavior since some of this information
is already available [PSY07, Ste07] and major antivirus vendors periodically publish
analysis results of reverse engineering this bot.

We only mention two aspects that are important to understand the network-level
behavior of this bot, which is a key part in understanding how to infiltrate and mitigate

81

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

this malicious remote control network. First, during the installation process, the malware
also stores a configuration file on the infected system. This file contains in an encoded
form information about other peers with which the program communicates after the
installation phase. Each peer is identified via a hash value and an IP address/port
combination. This is the basic information needed to join the peer-to-peer network,
for which we provide details in the next section. Based on the CWSandbox analysis
report, we can automatically extract this information from a given binary during the
behavior-based analysis phase. Second, Storm synchronizes the system time of an
infected machine with the help of the Network Time Protocol (NTP). This means that
each infected machine has an accurate clock. In the next section, we show how this
synchronization is used by Storm for communication purposes.

5.4.3 Network-Level Behavior

For finding other bots within the peer-to-peer network and receiving commands from its
controller, the first version of Storm Worm uses OVERNET, a Kademlia-based [MM02]
peer-to-peer distributed hash table (DHT) routing protocol. OVERNET is implemented
by Edonkey2000, that was officially shut down in early 2006, but still benign peers are
online in this network, i.e., not all peers within OVERNET are bots per se.

In October 2007, the Storm botnet changed the communication protocol slightly.
From then on, Storm does not only use OVERNET for communication, but newer versions
use their own peer-to-peer network, which we choose to call the Stormnet. This peer-
to-peer network is identical to OVERNET except for the fact that each message is XOR
encrypted with a 40 byte long key. Therefore, the message types enumerated below
remain the same, only the encoding changed. All algorithms introduced in later sections
and the general methodology are not affected by this change in communication since the
underlying weakness – the use of unauthenticated content-based publish/subscribe style
communication – is still present. Note that in Stormnet we do not need to distinguish
between bots and benign peers, since only bots participate in this network.

In the following, we describe the network-level communication of Storm and how it
uses OVERNET to find other infected peers. As in other DHTs, each OVERNET or Stormnet
node has a global identifier, referred to as DHT ID, which is a randomly generated 128
bit ID. When the client application starts for the first time, it generates the DHT ID and
stores it. Storm Worm implements the same mechanism and also generates an identifier
upon the first startup, which is then used in subsequent communications.

Routing Lookup. Routing in OVERNET and Stormnet is based on prefix matching: a
node a forwards a query destined to a node d to the node in its routing table that has
the smallest XOR-distance with d. The XOR-distance d(a, b) between nodes a and b
is d(a, b) = a⊕ b. It is calculated bitwise on the DHT IDs of the two nodes, e.g., the
distance between a = 1011 and b = 0111 is d(a, b) = 1011⊕ 0111 = 1100. The entries
in the routing tables are called contacts and are organized as an unbalanced routing tree.
Each contact consists of the node’s DHT ID, IP address, and UDP port. A peer a stores
only a few contacts to peers that are far away in the DHT ID space (on the left side of

82

5.4 Technical Background

the tree) and increasingly more contacts to peers closer in the DHT ID space (on the
right side of the tree).

The left side contains contacts that have no common prefix with the node a that owns
the routing tree (XOR on the first bit returns 1). The right side contains contacts that
have at least one prefix bit in common. The root of the tree is the node a itself. The
tree is highly unbalanced and the right side of each tree node is (recursively) further
divided in two parts containing on the left side the contacts having no further prefix bit
in common, and on the right side the contacts having at least one more prefix bit in
common. A bucket of contacts is attached to each leaf of the routing tree, containing up
to ten contacts, which allows to cope with peer churn without the need to periodically
check if the contacts are still online. In summary, a node a stores only a few contacts
that are far away in the overlay and increasingly more peers closer to a.

Routing to a given DHT ID is done in an iterative way. P sends route request
messages to three peers (to improve robustness against node churn), which may or
may not return to P route responses messages containing new peers even closer to
the DHT ID, which are queried by P in the next step. The routing lookup terminates
when the returned peers are further away from the DHT ID than the peer returning
them. While iterative routing experiences a slightly higher delay than recursive routing,
it offers increased robustness against message loss and it greatly simplifies crawling
the OVERNET network and Stormnet, which we use to enumerate all Storm nodes
within these networks (see Section 5.5). In OVERNET and Stormnet, a routing lookup
is performed in a first step by both the publish and the search module, which are both
used for command distribution by the Storm Worm botnet.

Publishing and Searching. A key in a peer-to-peer system is an identifier used to
retrieve information. In many peer-to-peer systems, a key is typically published on a
single peer that is closest to that key according to the XOR metric. In OVERNET, to deal
with node churn, a key is published on twenty different peers. Note that the key is
not necessarily published on the peers closest to the key. To assure persistence of the
information stored, the owner periodically republishes the information.

As for the publishing process, the search procedure uses the routing lookup to find
the peer(s) closest to the key searched for. The four most important message types for
the publish and search process are:

1. hello, to check if the other peer is still alive and to inform the other peer about
one’s existence and the IP address and DHT ID.

2. route request/response(kid), to find peers that are closer to the DHT ID
kid.

3. publish request/response, to publish information within the DHT.

4. search request/response(key), to search within the DHT for information
whose hash is key.

83

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

The basic idea of the Storm communication is that an infected machine searches
for specific keys within the network. The controller knows in advance which keys are
searched for by the infected machines and thus she publishes commands at these keys.
These keys can be seen as rendezvous points or mailboxes the controller and infected
machines agree on. In the following, we describe this mechanism in more detail.

Storm Worm Communication. In order to find other Storm-infected machines within
the OVERNET network, the bot searches for specific keys using the procedure outlined
above. This step is necessary since the bot needs to distinguish between regular and
infected peers within the network. The key is generated by a function f (d, r) that takes
as input the current day d and a random number r between 0 and 31, thus there can
be 32 different keys each day. We found this information in two different ways: first,
we reverse engineered the bot binary and identified the function that computes the key.
The drawback of this approach is that the attacker can easily change f and then we
need to analyze the binary again, thus we are always one step behind and have to react
once the attacker changes her tactics. Thus a generic way to find the keys is desirable.

The second way to retrieve this information is by treating the bot as a black-box and
repeatedly force it to re-connect to the network. This is achieved by executing the bot
within a honeynet, i.e., a highly controlled environment. The basic idea is to execute
the binary on a normal Windows machine, set up a modified firewall in front of this
machine to mitigate risk involved (e.g., prohibit sending of spam mails), and capture all
network traffic (see Chapter 2 for more details). Since the bot can hardly identify that
it runs within a strictly monitored environment, it behaves as normal, connects to the
peer-to-peer network, and then starts to search for keys in order to find other infected
peers and the commands from the controller. We monitor the communication and
extract from the network stream the key the bot searches for. Once we have captured
the search key, we revert the honeypot to a clean state and repeat these steps. Since
the bot cannot keep any state, it generates again a key and starts searching for it. By
repeating this process over and over again, we are able to enumerate the keys used by
Storm Worm in a black-box manner, without actually knowing the function f used by
the current binary.

Figure 5.1 shows the keys found during a period of five days in October 2007. We see
a clear pattern: on each day, there are 32 unique keys which are generated depending
on the time, and for different days there is no overlap in the search keys. This result
confirms the results of our reverse engineering approach. The keys are important to
actually identify Storm-infected machines and we can also use them for mitigation
purposes. Another important implication is that we can pre-compute the search keys
in advance: on day d, we can set the system time to d + n and perform our black-box
enumeration process as outlined above. As a result, we collect all keys the bot will
search on day d + n in advance.

If the attackers change the function that generates the key, e.g., by using other inputs
for f , we can still determine which keys are currently relevant for the communication
within the botnet with the help of our honeypot setup: by analyzing the network

84

5.4 Technical Background

Figure 5.1: Keys generated by Storm in order to find other infected peers within the
network (October 14-18, 2007).

communication, we can obtain the current search key relevant for the communication.
In general, we can use this setup to learn the keys a bot searches for in a black-box
manner, regardless of the actual computation since we impersonate as a valid member
of the botnet by executing an actual copy of the bot in the honeypot environment.

The keys are used by the bot to find the commands which should be executed: the
attacker has in advance published content at these keys since she knows which keys are
searched for by an infected peer. In DHT-based peer-to-peer networks, this is a viable
communication mechanism. The actual content published in OVERNET at these keys
contains a filename of the pattern “*.mpg;size=*;” [PSY07]. No other meta tags
(like file size, file type, or codec) are used and the asterisks depict 16-bit numbers. Our
observations indicate that the bot computes an IP address and TCP port combination
based on these two numbers and then contacts this control node. However, up to now
we do not know how to compute the IP address and port out of the published numbers.

Only bots participate in Stormnet, thus they do not need to authenticate themselves.
Publications in Stormnet do not contain any meta tags. The IP address and port of the
machine that send the publish request seem to be the actual information.

All following communication just takes place between the bot and the control node,
which sends commands to the bot. This is similar to a two-tier architecture where
the first-tier is contained within OVERNET or Stormnet and used to find the second-tier
computers that send the actual commands. Once the Storm infected machine has
finished the TCP handshake with the control node, this node sends a four byte long
challenge c in order to have a weak authentication scheme. The bot knows the secret
“key” k = 0x3ED9F146 and computes the response r via r = c ⊕ k. This response is

85

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

then sent to the control node and the bot is successfully authenticated. All following
communication is encoded using zlib, a data compression library.

The infected machine receives via this communication channel further commands
that it then executes. Up to now, we only observed that infected machines are used
to either start DDoS attacks or to send spam e-mails. The DDoS attacks we observed
were either SYN or ICMP flooding attacks against various targets all over the Internet.
In order to send spam, the infected machines receive a spam template and a list of
e-mail addresses to be spammed. We found two different types of mails being sent by
Storm: propagation mails that contain different kinds of social engineering campaigns
as introduced in Section 5.4.1 or general spam messages that advertise for example
pharmaceutical products or stocks. The attackers behind Storm presumably either earn
money via renting the botnet to spammers, sending spam on behalf of spammers, or
running their own pharmacy shop. Kanich et al. recently analyzed the economic aspects
behind Storm Worm in detail [KKL+08a].

5.4.4 Encrypted Communication Within Stormnet

As mentioned above, Stormnet uses encrypted communication and we now describe
this procedure in more detail. Several minutes after a bot joins Stormnet, a specific
machine X sends a Publicize message to the bot. We noticed this behavior for several
months (at least between October 2007 and June 2008) and always observed this
message coming from the same IP address. After the typical protocol to establish a
communication channel within the botnet, we found an interesting pattern: X always
sends the same packet which is 180 bytes long (shown in Figure 5.2).

0 5 B 3 D 5 7 C 0 C 9 0 A 3 0 1 A 8 0 0 0 0 0 0
4 A 9 D 5 B 9 A 6 7 F 8 8 1 0 1 B 5 1 0 B 0 3 1 4 2 8 F 3 9 0 1
F 4 9 D 3 7 7 0 D 7 C 7 D 0 0 0 A 7 5 4 0 7 D 6 C C 0 3 F E 0 0
4 E C C 6 3 7 3 4 1 8 4 3 0 0 1 D 4 9 0 F E B 6 B 0 A A B 9 0 0
5 E D 7 7 F 3 A A 3 E F D 4 0 0 7 C 1 E 4 5 C 3 C 8 7 0 6 7 0 1
F 8 8 A 3 5 3 9 C 1 6 3 0 E 0 1 4 B 7 9 4 F 2 A 6 2 0 9 3 8 0 0
9 0 3 F F 7 3 2 A 5 3 F 8 0 0 1 A C 5 4 6 5 1 1 3 6 3 A 4 7 0 0
4 B 7 9 4 F 2 A 6 2 0 9 3 8 0 0 9 E 0 5 2 A 7 1 B 4 1 9 6 6 0 1
F 8 8 A 3 5 3 9 C 1 6 3 0 E 0 1 4 B 7 9 4 F 2 A 6 2 0 9 3 8 0 0
9 0 3 F F 7 3 2 A 5 3 F 8 0 0 1 E 4 A 4 F D 8 4 8 D 8 1 D F 0 0
4 B 7 9 4 F 2 A 6 2 0 9 3 8 0 0 AB 5 C 0 D 3 1 8 3 1 8 4 E 9 0 0
0 F C 5 2 E 0 5 9 B D 9 8 4 0 0

RSA modulus n Length

Encrypted blocks (64 Bit)

Figure 5.2: Content of RSA-encrypted packets (180 bytes).

Closer examination revealed that the packet content is encrypted with RSA, a public-
key encryption system [RSA78]. To encrypt the cleartext p to the ciphertext c, RSA uses
the equation

c = pe mod n

86

5.4 Technical Background

with the public key exponent e and the RSA modulus n. Decryption is implemented in a
similar way, using the equation

p = cd mod n

with the private key exponent d. The first eight bytes within the packet depicted in
Figure 5.2 are the RSA modulus n. The next four bytes encode the length of the rest
of the packet: 0x000000A8= 16810 bytes are following in the packet. The private key
d = 0xBD1AEF19162D5F02 is embedded in the bot and can be extracted with the help
of reverse engineering the actual binary. Based on this knowledge, we can decrypt the
rest of the packet in blocks of 64 bit length. Note that we need to reverse the order of
the bytes. For example, the first block can be decrypted in the following way:

p = cd mod n

= 0x0181F8679A5B9D4A0x025F2D1619EF1ABD mod 0x01A3900C7CD5B305
= 0xBF83004E

The decrypted packet is shown in Figure 5.3. The first two bytes are a checksum of
the decrypted content, starting with the second block. Bytes 3 and 4 are the length
of the remaining bytes in the packet (0x004E = 7810 bytes). 13 blocks with a size
of six bytes follow, each of them specifying a TCP port and IP address combination
encoded in hexadecimal notation. The TCP port is always set to 0x0050 = 8010, the
port typically used for web servers. The IP addresses belong to different co-location
providers within the United States. For example, the first two blocks decode to the IP
addresses 205.209.179.3 and 69.50.166.234.

B F 8 3 0 0 4 E 0 0 5 0 C D D 1 B 3 0 3 0 0 5 0 4 5 3 2 A 6 E A
0 0 5 0 D 8 F F B D D 2 0 0 5 0 D 8 F F B E 1 A 0 0 5 0 4 2 9 4 4 A 0 7
0 0 5 0 4 5 2 9 A B 6 2 0 0 5 0 4 5 2 9 A 2 4 5 0 0 5 0 4 5 2 9 A 2 4 D
0 0 5 0 4 5 2 9 A 1 4 A 0 0 5 0 4 5 2 9 A B 6 2 0 0 5 0 4 5 2 9 A 2 4 5
0 0 5 0 4 5 2 9 A 1 4 A 0 0 5 0 4 5 2 9 B 9 4 2

Checksum Length TCP port / IP Address

Figure 5.3: Decrypted packets contents.

These specific IP addresses are static, central control nodes within Stormnet. Thus the
Storm Worm botnet is — contrary to popular belief — no pure peer-to-peer network,
but the botnet maintains several central servers as we explain in the following section.

5.4.5 Central Servers Within Stormnet

The Storm Worm botnets does not solely rely on peer-to-peer based communication
within the network. In fact, there are several static control nodes acting as a backend
within the botnet. We discovered this by dissecting the encrypted packets as explained
in the previous section and running actual Storm binaries in different configurations.

Figure 5.4 provides a schematic overview of the network configuration. In total, there
are three different layers within the network. First, there are the machines which have a

87

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

private IP address, e.g., all machines which are located behind a NAT gateway. These
machines are used by the botmasters to send out either spam mails or carry out DDoS
attacks. Each of these bots maintains several connections to gateway bots. These are
infected machines with a public, routable IP address. These machines do not send
out spam mails, but are used for relaying messages within the botnet. The third layer
consists of the static control nodes which for example host spam templates. Furthermore,
the infected machines send stolen information from the compromised machines like for
example e-mail addresses found on these systems to the control nodes.

Gateways

Controller

Spam/DDoS
Bots

216.255.189.210 69.41.162.69

Figure 5.4: Schematic overview of Stormnet, including central servers used for command
distribution.

5.5 Tracking of Storm Worm Botnet

After an overview of the behavior of Storm Worm, we now present a case study of
how to apply the botnet tracking methodology outlined in Chapter 3 and Section 5.3.2
for this particular bot. We show that we can successfully infiltrate and analyze the
botnet, even though there is no central server like in traditional botnets as described in
Chapter 4. Furthermore, we also outline possible attacks to mitigate Storm and present
our measurement results.

5.5.1 Exploiting the Peer-to-Peer Bootstrapping Process

At the beginning, we need to capture a sample of the bot. As outlined in Section 5.4.1,
we can use spamtraps to collect spam mails and then honeyclients to visit the URLs and

88

5.5 Tracking of Storm Worm Botnet

obtain a binary copy of the malware. Based on this copy of Storm Worm, we can obtain
the current peer list used by the binary via an automated analysis (see Section 5.4.2).

In the first step, we also use the honeynet setup introduced in Section 5.4.3. With
the help of the black-box analysis, we are able to observe the keys that Storm Worm
searches for. As explained before, the controller cannot send commands directly to the
bot, thus the bot needs to search for commands and we exploit this property of Storm to
obtain the search keys. During this step we thus obtain (at least a subset of) the current
search keys, which allows us to infiltrate and analyze the Storm botnet. With a single
honeypot, we were able to reliably acquire all 32 search keys each day for a given Storm
Worm binary in a black box manner.

5.5.2 Infiltration and Analysis

Based on the obtained keys and knowledge of the communication protocol used by
Storm, we can start with the infiltration and analysis step to learn more about the botnet,
e.g., we can enumerate the size of the network. First, we introduce our method to learn
more about the peers in OVERNET and Stormnet and about the content announced and
searched for in these networks. Afterwards we present several measurement results
obtained when tracking this botnet for a longer period of time.

Crawling the Peer-to-Peer Network

To measure the number of peers within the whole peer-to-peer network, we use the
crawler for OVERNET and Stormnet developed by Steiner as part of his PhD thesis [Ste08].
It uses the same basic principle as the KAD crawler also developed by Steiner [SENB07].
The crawler runs on a single machine and uses a breadth first search issuing route
requests messages to find peers currently participating in OVERNET or Stormnet. The
speed of the crawler allows us to discover all peers within a short amount of time,
usually between 20 to 40 seconds (depending on the time of day).

The crawler runs two asynchronous threads: one to send the route requests (see
Algorithm 1) and one to receive and parse the route responses (see Algorithm 2).
One list containing the peers discovered so far is maintained and used by both threads.
The receiving thread adds the peers extracted from the route responses to the list,
whereas the sending thread iterates over the list and sends 16 route requests to
every peer. The DHT ID asked for in the route requests are calculated in such a way
that each of them falls in different zones of the peer’s routing tree. This is done in order
to minimize the overlap between the sets of peers returned.

Spying in OVERNET and Stormnet

The main idea of the Sybil attack [Dou02] is to introduce malicious peers, the sybils,
which are all controlled by one entity. Positioned in a strategic way, the sybils allow
us to gain control over a fraction of the peer-to-peer network or even over the whole
network. The sybils can monitor the traffic, i.e., act as spies (behavior of the other peers)

89

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

Algorithm 1: Send thread (is executed once per crawl)
Data: peer: struct{IP address, port number, DHT ID}
Data: shared l ist Peers = list of peer elements

/* the list of peers filled by the receive thread and worked
on by the send thread */

Data: int position = 0
/* the position in the list up to which the peers have

already been queried */
Data: l ist ids = list of 16 properly chosen DHT ID elements
Peers.add(seed); /* initialize the list with the seed peer */1

while position < size(Peers) do2

for i=1 to 16 do3

dest DHT ID = Peers[position].DHT ID ⊕ ids[i];4

/* normalize bucket to peer’s position */
send route requests(dest DHT ID) to Peers[position];5

position++;6

Algorithm 2: Receive thread (waits for the route response messages)
Data: message mess = route response message
Data: peer: struct{IP address, port number, DHT ID}
Data: shared l ist Peers = list of peer elements

/* the list shared with the send thread */
while true do1

wait for (mess = route response) message;2

foreach peer ∈ mess do3

if peer /∈ Peers then4

Peers.add(peer);5

90

5.6 Empirical Measurements on Storm Botnet

or abuse the protocol in other ways. For example, route requests may be forwarded
to the wrong end-hosts or re-routed to other sybil peers. We use the Sybil attack to
infiltrate OVERNET and the Stormnet and observe the communication to get a better
understanding of it.

Assume that we want to find out what type of content is published and searched for
in the one of both networks in the least intrusive way. For this, we need to introduce
sybils and make them known, such that their presence is reflected in the routing tables
of the non-sybil peers. Steiner developed a light-weight implementation of such a “spy”
that is able to create thousands of sybils on one single physical machine that we use
for our measurements. The spy achieves this scalability since the sybils do not keep
any state about the interactions with the non-sybil peers [SEENB07]. We introduce 224

sybils into OVERNET and Stormnet: the first 24 bits are different for each sybil and the
following bits are fixed, they are the signature of our sybils. The spy is implemented in
the following steps:

1. Crawl the DHT ID space using our crawler to learn about the set of peers P
currently online.

2. Send hello requests to the peers P in order to “poison” their routing tables
with entries that point to our sybils. The peers that receive a hello request
will add the sybil to their routing table.

3. When a route request initiated by non-sybil peer P reaches a sybil, that request
will be answered with a set of sybils whose DHT IDs are closer to the target. This
way, P has the impression of approaching the target. Once P is “close enough”
to the target DHT ID, it will initiate a publish request or search request
also destined to one of our sybil peers. Therefore, for any route request
that reaches one of our sybil peers, we can be sure that the follow-up publish
request or search request will also end-up on the same sybil.

4. Store the content of all the requests received in a database for later evaluation.

Using the Sybil attack, we can monitor requests within the whole network.

5.6 Empirical Measurements on Storm Botnet

Other Studies related to Storm Worm. Concurrent to our work, Storm Worm has
become the subject of intense studies at many places around the world [Enr07, Bal07].
By looking at the (DHT ID, IP address) pairs collected by our crawler, we found several
instances where DHT IDs that contain a well chosen pattern covered the whole DHT ID
space and the IP addresses map all to the same institution. We could observe experiments
(or worm activities) going on in San Diego (UCSD), Atlanta (Georgia Tech) and many
other places (also on address spaces we could not resolve). We filtered out all these
(DHT ID, IP address) pairs before doing our analysis.

91

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

In their technical report, Sarat and Terzis [ST07] claim that OVERNET is used by
430,000 to 600,000 peers. This contradicts our results and the results found in the
literature. Moreover, they claim that all these nodes are infected with Storm and they do
not differentiate between bots and regular peers. We also found many legitimate peers
within OVERNET and thus they over-estimate the size of the botnet created by Storm.
They observed several IP addresses that account for almost half of all DHT IDs. Since
their observation period is the same than ours, we believe that they saw our sybils and
those of other researchers working on the Storm Worm botnet.

5.6.1 Size Estimations for Storm Bots in OVERNET

During full crawls from October 2007 until the beginning of February 2008, we found
between 45,000 and 80,000 concurrent online peers in OVERNET. We define a peer as
the combination of an IP address, a port number and a DHT ID. In the remaining part,
we use the term “IP address” for simplicity. If one DHT ID is used on several IP addresses,
we filter these instances out. We also filter out IP addresses that run more than one DHT
ID simultaneously.

Note that the same machine participating in OVERNET can, on the one hand, change
its IP address over time. This fact is known as IP address aliasing. On the other hand, it
can also change its DHT ID over time. This is known as DHT ID aliasing. Due to this
reason, simply counting the number of different DHT IDs or IP addresses provides only a
rough estimate of the total number of machines participating in OVERNET. Nevertheless,
we present for the sake of completeness the total number of DHT IDs and IP addresses
observed during the month of October 2007: with our crawler, we could observe 426,511
different DHT IDs on 1,777,886 different IP addresses. These numbers are an upper
bound for the number of Storm-infected machines: since we enumerate the whole DHT
ID space, we find all online peers, from which a subset is infected with a copy of the
Storm Worm bot.

About 75% of all peers are not located behind NATs or firewalls and can be directly
contacted by our crawler. We used the MaxMind database [Max] to map the IP addresses
to countries. We saw clients from 210 countries. These split up in 19.8% that cannot be
resolved, 12.4% from the US, 9.4% from Uruguay, 6% from Germany, etc.

Lower Bound for Storm-infected Machines in OVERNET. When spying on OVERNET,
the benign peers can be distinguished from the bots of the Storm Worm botnet: bots
publish files with characteristic filenames and no other meta tags (see Section 5.4.3 for
details). However, not every bot does make such announcements. This allows us to
obtain a lower bound of the size of the botnet since only peers with this characteristic
pattern are definitely infected with Storm. Note that only the Storm bots with a public
IP address publish content in OVERNET.

Every day we see between 5,000 and 6,000 distinct peers that publish Storm related
content. About the same number of peers publish real, e.g., non-Storm related, content.
Around 30,000 peers per day did perform searches for content. Most of the clients that
published Storm content (the bots running on public IP addresses) come from the US

92

5.6 Empirical Measurements on Storm Botnet

(31%) followed by India (5.3%) and Russia (5.2%). Note, however, that 21% of the IP
addresses could not be mapped to any country. In total, we observed bots from over 133
countries. Due to the fact that all social engineering campaigns we observed contain
English text, it is not surprising that the majority of Storm-infected machines are located
in the United States.

Estimating the Number of Storm-infected Machines in OVERNET. All we can mea-
sure with confidence are upper and lower bounds of the number of concurrently active
bots in OVERNET. The lower bound being around 5,000 – 6,000 and the upper bound
being around 45,000 – 80,000 distinct bots.

Storm content was published using roughly 1,000 different keys per day. This indicates
that there are many different version of Storm in the wild, since each binary only searches
for 32 keys per day. Some of these keys were used in more than 1,500 publications
requests, whereas the majority of keys was used in only few publications. During the
observation period in October 2007, we observed a total of 13,307 keyword hashes
and 179,451 different file hashes. We found that 750,451 non-Storm related files were
announced on 139,587 different keywords.

 500

 600

 700

 800

 900

 1000

15/12/07 22/12/07 29/12/07 05/01/08 12/01/08 19/01/08

p
e

e
rs

date

storm bots in overnet

storm peers
benign peers

Figure 5.5: Number of bots and benign peers that published content in OVERNET.

From the end of the year 2007 on, the number of storm bots using OVERNET and the
Storm activity in OVERNET decreased. Figure 5.5 shows the number of bots and benign
peers that published content in OVERNET in December 2007 and January 2008. The
number of benign peers remains constant, while the number of storm bots decreases.
We think this is due to the fact that the whole botnet shifted from OVERNET to Stormnet.

93

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

5.6.2 Size Estimation for Stormnet

We can apply the algorithms outlined above to enumerate all peers within Stormnet.
The important difference between Stormnet and OVERNET is the fact that OVERNET is
used by regular clients and Storm bots, whereas Stormnet is used only by machines
infected with Storm Worm. Hence, we do not need to differentiate between benign and
infected peers within Stormnet.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Jan Feb Mar Apr

st
or

m
bo

ts

date

Figure 5.6: Total number of bots in Stormnet.

In collaboration with Steiner, we crawled Stormnet every 30 minutes since beginning
of December 2007 until the middle of June 2008. During this period, we saw between
5,000 and 40,000 peers concurrently online. There was a sharp increase in the number
of storm bots at the end of 2007 due to a propagation wave during Christmas and New
Years Eve (Figure 5.6). After that increase, the number of bots varied between 25,000
and 40,000 before stabilizing in the beginning of March 2008 around 10,000 to 15,000
bots. In total, we found bots in more than 200 different countries. The biggest fraction
comes from the US (23%). As seen in the Figure 5.7, Storm Worm also exhibits strong
diurnal patterns like other botnets [DZL06].

Figure 5.8 depicts the number of distinct IP addresses as well as the number of distinct
“rendezvous” hashes searched for in Stormnet. At the end of 2007, the number of peers
searching in Stormnet increased significantly and the search activity stabilized at high
level in the middle of January 2008, before increasing significantly since February 2008.
Similar to the diurnal pattern of the number of storm bots, also the search activity within
Stormnet shows a distinct diurnal pattern.

The publish activity shows exactly the same behavior over time compared to the
search activity (Figure 5.9). However, the number of “rendezvous” hashes that are
searched for is nearly of an order of magnitude higher than the number of hashes that
are published. For the number of distinct IP addresses, especially in the week from

94

5.6 Empirical Measurements on Storm Botnet

 0

 2000

 4000

 6000

 8000

 10000

12/26 12/28 12/30 01/01

st
or

m
bo

ts

date

US
IN
--

TR

Figure 5.7: Detailed overview of number of bots within Stormnet, split by geo-location.

 500

 1000

 1500

 2000

 2500

01/12/07 01/01/08 01/02/08 01/03/08 01/04/08 01/05/08

date

Searching in Stormnet

distinct hashes
distinct IPs

Figure 5.8: Search activity in Stormnet.

29/12/2007 to 05/01/2008 and starting again on 19/01/2008, the distinct number of
IP addresses launching search queries are two orders of magnitudes higher than the
number of IP addresses publishing. The number of IP addresses searching for content
is around three times bigger than the number of IP addresses publishing content. It
is somehow intuitive that the number of IP addresses that search is bigger than those
publishing, since the goal is to propagate information.

95

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

 0

 200

 400

 600

 800

 1000

 1200

01/12/07 01/01/08 01/02/08 01/03/08 01/04/08 01/05/08

date

Publishing in Stormnet

distinct hashes
distinct IPs

Figure 5.9: Publish activity (distinct IP addresses and rendezvous hashes) in Stormnet.

5.7 Mitigation of Storm Worm Botnet

Based on the information collected during the infiltration and analysis phase, we can
also try to actually mitigate the botnet. In this section, we present two theoretical
approaches that could be used to mitigate Storm Worm and our empirical measurement
results for both of them.

5.7.1 Eclipsing Content

A special form of the sybil attack is the eclipse attack [SNDW06] that aims to separate a
part of the peer-to-peer network from the rest. The way we perform an eclipse attack
resembles very much that of the sybil attack described above, except that the DHT ID
space covered is much smaller.

To eclipse a particular keyword K, we position a certain number of sybils closely
around K, i.e., the DHT IDs of the sybils are closer to the hash value of K than the
DHT IDs of any real peer. Afterwards, we need to announce these sybils to the regular
peers in order to “poison” the regular peers’ routing tables and to attract all the route
requests for keyword K . Unfortunately, using this technique we could — in contrast
to similar experiments in KAD [SBEN07]— not completely eclipse a particular keyword.
This is due to the fact that in OVERNET and Stormnet the content is spread through the
entire hash space and not restricted to a zone around the keyword K . As a consequence,
in OVERNET and Stormnet, the eclipse attack cannot be used to mitigate the Storm Worm
network.

96

5.8 Summary

5.7.2 Polluting

Since eclipsing content is not feasible in OVERNET or Stormnet, we investigated another
way to control particular content. To prevent peers from retrieving search results for
a certain key K, we publish a very large number of files using K. The goal of the
pollution attack is to “overwrite” the content previously published under key K . Since
the Storm bots continue to publish their content as well, this is a race between the group
performing mitigation attempts and the infected machines.

To perform this attack, we again first crawl the network, and then publish files to
all those peers having at least the first 4 bits in common with K. This crawling and
publishing is repeated during the entire attack. A publishing round takes about 5
seconds, during which we try to publish on about 2,200 peers, out of which about
400 accept our publications. The peers that do not respond did either previously leave
the network, could not be contacted because they are behind a NAT gateway, or are
overloaded and could not process our publication.

Once a search is launched by any regular client or bot, it searches on peers closely
around K and will then receive so many results (our fake announcements) that it is
going to stop the search very soon and not going to continue the search farther away
from K. That way, publications of K that are stored on peers far away from K do not
affect the effectiveness of the attack as they do for the eclipse attack.

We evaluate the effectiveness of the pollution attack by polluting a hash used by
Storm and searching at the same time for that hash. We use two different machines,
located at two different networks. For searching we use kadc [Kad], an open-source
OVERNET implementation, and an exhaustive search algorithm developed by Steiner.
Our search method is very intrusive, it crawls the entire network and asks every peer
for the specified content with key K. Figure 5.10a shows that the number of Storm
content quickly decreases in the results obtained by the regular search algorithm,
then nearly completely disappears from the results some minutes after the attack is
launched, and finally comes back after the attack is stopped. However, by modifying
the search algorithm used and by asking all peers in the network for the content and
not only the peers close to the content’s hash, the storm related content can still be
found (Figure 5.10b). Our experiments show that by polluting all those hashes that we
identified to be storm hashes, we can disrupt the communication of the botnet. The bots
still publish and search, but they do not receive the intended results from the control
nodes and can thus not carry out commands by the botmaster.

5.8 Summary

In this chapter, we showed how to use the methodology of botnet tracking for botnets
which use peer-to-peer techniques for communication. We exemplified our methodology
with a case study on Storm Worm, the most wide-spread peer-to-peer bot propagating
in the wild at the time of writing. Our case study focussed on the communication within
the botnet and especially the way the attacker and the bots communicate with each
other. Storm Worm uses a two-tier architecture where the first-tier is contained within

97

Chapter 5 Tracking Botnets with Peer-to-Peer-based C&C Server

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

minutes

re
su

lts

storm

pollution

start of pollution

stop of pollution

(a) Using the standard search.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

4

minutes

re
su

lts

storm

pollution
start of pollution

stop of pollution

(b) Using the exhaustive search.

Figure 5.10: The number of publications by Storm bots vs. the number of publications
by our pollution attack.

the peer-to-peer networks OVERNET and the Stormnet and used to find the second-tier
computers that send the actual commands. We could distinguish the bots from the
benign peers in the OVERNET network and identify the bots in the Stormnet and give
some precise estimates about their numbers. Moreover, we presented two techniques
to disrupt the communication of the bots in both networks. While eclipsing is not very
successful, polluting proved to be very effective.

98

Chapter 6
Tracking Fast-Flux Service Networks

6.1 Introduction

Up to now, the focus of this work was on “classical” botnets, i.e., networks of com-
promised machines that directly execute the attacker’s commands such as performing
DDoS attacks. In such malicious remote control networks, the compromised machines
either contact a central server (see Chapter 4) or use a communication channel based
on peer-to-peer techniques (see Chapter 5) to receive commands from the attacker. In
this chapter, we focus on a different kind of malicious remote control networks, namely
fast-flux service networks (FFSNs). The basic idea of such networks is that the attacker
establishes a distributed proxy network on top of compromised machines that redirects
traffic through these proxies to a central site, which hosts the actual content the attacker
wants to publish. Instead of using the infected machines to send out spam mails, perform
DDoS attacks, or mass identity theft, the focus of FFSNs thus lies in constructing a robust
hosting infrastructure with the help of the victim’s machines.

In this chapter, we show how the basic methodology proposed in Chapter 3 can
also be applied to FFSNs. In the first phase, we need to get hold of a sample of a
fast-flux agent, i.e., a sample belonging to a FFSN. Since this kind of malware commonly
propagates further by drive-by downloads on malicious websites, we can use client-side
honeypots to collect samples of such agents. By executing a fast-flux agent in a honeypot
environment, we can then closely study the communication channel used by a FFSN.
Since FFSNs are based on DNS, we can also passively infiltrate the network, i.e., by
repeatedly performing DNS lookups for domains used by FFSNs, we can also get an
insight into their operation. All collected information can then in the final phase be used
to mitigate the threat and prevent further abuses.

While the technical aspects of fast-flux service networks have been reported on
elsewhere [The07], it is still unclear how large the threat of FFSNs is and how these
networks can be mitigated. In this chapter we present one of the first empirical studies
of the fast-flux phenomenon, giving many details about FFSNs we observed during
a two-month period in summer 2007. By analyzing the general principles of these

99

Chapter 6 Tracking Fast-Flux Service Networks

networks, we develop a metric with which FFSNs can be effectively detected using
information offered by DNS. Such a metric can be used to develop methods to mitigate
FFSNs, a topic which we also discuss in this chapter.

Contributions. The contributions of this chapter are threefold:

• We show that the methodology proposed in Chapter 3 can also be applied to FFSNs,
a completely different type of malicious remote control networks compared to
“classical” botnets.

• We present the first detailed empirical study of FFSNs and measure with the help
of several properties the extent of this threat. Our measurements show that almost
30% of all domains advertised in spam are hosted via FFSNs and we found several
ten thousands of compromised machines during our study.

• We analyze the principles of FFSNs, from this develop a metric to detect FFSN and
show the effectiveness of this metric by using real-world measurements.

Our contribution does not only clarify the background behind a fast growing threat
within the Internet, but moreover we presents new results obtained after reinterpreting
previous measurements [AFSV07] taking our findings into consideration. We are aware
neither of any other work which has investigated FFSNs in an empirical way nor of work
which discusses detection and mitigation strategies. Due to the severity of the novel
FFSN threat, we feel that our results can also be helpful in practice.

Outline. Section 6.2 motivates our work and in Section 6.3, we provide an overview
of the technical background related to this chapter. We develop a metrical framework to
automatically detect FFSNs based on their answers to DNS requests in Section 6.4 and
show that our metric can identify FFSNs with high accuracy and almost no false positives.
We present a method to track FFSNs according to our methodology in Section 6.5 and
in Section 6.6, we provide detailed results of empirical measures for several FFSNs.
Several strategies to mitigate FFSNs are proposed in Section 6.7 before we conclude this
chapter in Section 6.8 with a summary.

6.2 Motivation

One of the most important properties of commercial service providers on the Internet is
the continuous availability of their websites. If webservers are not online, the service
cannot be offered, resulting in loss of profit. It is estimated that online shops like
Amazon loose about $550,000 for every hour that their website is not online [Pat02].
The main cause of unavailability have been hardware faults: since electronic components
have only a limited lifetime, computer and storage systems are prone to failures. Tech-
niques from the area of reliability engineering [Bir04], e.g., redundancy techniques like
RAID [PGK88] or commercial failover systems [Hew07], help to overcome these failures.

100

6.2 Motivation

Nowadays, tolerance against the failure of individual hardware components is rather
well-understood. However, Distributed Denial-of-Service attacks [MR04], especially in
the form of network bandwidth exhaustion, pose a significant threat. This threat has
become an almost daily nuisance with the advent of botnets, which we introduced in
detail in the previous two chapters. A medium-sized botnet of 1,000 or 2,000 machines
is often sufficient to take down almost any network service.

Several methods exist to alleviate the results of distributed denial-of-service attacks.
We focus here on standard methods which use the global Domain Name Service (DNS).
A well-known method is called Round-robin DNS (RRDNS) [Bri95]. This method is
used by large websites in order to distribute the load of incoming requests to several
servers [KBM94, CCY99] at a single physical location. A more advanced (and more
expensive) technique is implemented by so called Content Distribution Networks (CDNs)
like Akamai [Aka]. The basic idea is to distribute the load not only to multiple servers at
a single location, but to also distribute these servers over the globe. The real benefit of
CDNs comes with using DNS: when accessing the name of the service via DNS, the CDN
computes with the help of sophisticated techniques the “nearest” server (in terms of
network topology and current link characteristics) and returns its IP address. The client
then establishes a connection to this server and retrieves the content from there. In
effect, content is thereby moved “closer” to the client that sends the request, increasing
responsiveness and availability.

RRDNS and CDNs are techniques employed by legal commercial organizations. Unfor-
tunately, there are also a lot of illegal commercial organizations offering services on the
Internet. Naturally, they also demand high availability for the services they offer. For
example, a spammer that runs a website to sell pharmaceutical products, adult content,
or replica watches can only make money if the website is reachable. As another example,
consider a phisher that steals confidential information by redirecting users to fake online
sites and tricking them into revealing their credentials. The phisher also requires the
phishing website to be online most of the time; only then victims can fall for this scam.
As a final example, consider a botherder who directs a large botnet. The botnet itself
requires a reliable hosting infrastructure such that the botherder’s commands can be
sent to the bots or malicious binaries can be downloaded by existing bots.

The starting point of our research is the question, how illegal organizations achieve
high availability of their online services, explicitly focusing on HTTP services (i.e., web-
sites). The problems which such organizations face today is that law enforcement’s
abilities to take webservers with illegal content down has reached a certain level of
effectiveness. RRDNS and CDNs are therefore no real alternatives for hosting scams. In
a slightly ironic repetition of history, it seems that today illegal organizations are discov-
ering classic redundancy techniques to increase the resilience of their infrastructure, as
we explain in this chapter.

In this chapter we focus on a newly emerging threat on the Internet called a fast-flux
service network (FFSN). Such a network shows a similar behavior as RRDNS and CDNs
in regards to the network characteristics: a single service seems to be hosted by many
different IP addresses. Roughly speaking, a FFSN uses rapid-changing DNS entries to
build a hosting infrastructure with increased resilience. The key idea is to construct

101

Chapter 6 Tracking Fast-Flux Service Networks

a distributed proxy network on top of compromised machines that redirects traffic
through these proxies to a central site, which hosts the actual content. Taking down
any of the proxies does not effect the availability of the central site: with the help of a
technique similar to RRDNS, the attacker always returns a different set of IP addresses
for a DNS query and thus distributes the traffic over the whole proxy network. This leads
to an increased resilience since taking down such schemes usually needs cooperation
with a domain name registrar. As we will see in this chapter, a single fast-flux service
network can consist of hundreds or even thousands of compromised machines which
form a different kind of malicious remote control network. The general methodology we
introduced in Chapter 3 can also be used to track this kind of malicious remote control
networks as we shown in the rest of this chapter.

6.3 Technical Background

6.3.1 Round-Robin DNS

Round-robin DNS is implemented by responding to DNS requests not with a single DNS
A record (i.e., hostname to IP address mapping), but a list of A records. The DNS server
cycles through this list and returns them in a round-robin fashion.

;; ANSWER SECTION:
myspace.com. 3600 IN A 216.178.38.116
myspace.com. 3600 IN A 216.178.38.121
myspace.com. 3600 IN A 216.178.38.104

Figure 6.1: Example of round-robin DNS as used by myspace.com.

Figure 6.1 provides an example of round-robin DNS used by myspace.com, one of
the Top 10 websites regarding traffic according to Alexa [Ale07]. We performed the
DNS lookup with dig [Int07], a tool dedicated to this task, and only show the ANSWER
section for the sake of brevity. In total, three A records are returned for this particular
query, all pointing to servers hosting the same content. The DNS client can then choose
one of these A records and return the corresponding IP address. Basic DNS clients
simply use the first record, but different strategies can exist, e.g., using the record which
is closest to the DNS client in terms of network proximity. Every A record also has a
Time To Live (TTL) for the mapping, specifying the amount of seconds the response
remains valid. RFC 1912 recommends minimum TTL values of 1-5 days such that clients
can benefit from the effects of DNS caching [Bar96]. Shaikh et al. study the trade-off
between responsiveness of round-robin based server selection, client-perceived latency,
and overall scalability of the system and show that small TTL values can have negative
effects [STA01]. If the DNS lookup is repeated while the answer is still valid, the query
for myspace.com returns the same set of IP addresses, but in a different order. Even
after the TTL has expired, i.e., after 3600 seconds in this example, a subsequent DNS
lookup returns the same set of A records.

102

6.3 Technical Background

We tested all domains from the Alexa Top 500 list and found that almost 33 percent
use some form of RRDNS, i.e., more than one A record was returned in a DNS lookup.
Furthermore, we measured the TTL values used by these sites: about 43 percent of these
domains have a TTL below 1800 seconds.

6.3.2 Content Distribution Networks

Like round-robin DNS, content distribution networks also usually implement their service
using DNS [GCR01, KWZ01, SGD+02]: The domain name of the entity which wants
to host its content via a CDN points to the nameservers of the CDN. With the help of
sophisticated techniques, the CDN computes the (in terms of network topology and
current link characteristics) nearest edge server and returns the IP address of this server
to which the client then connects.

;; ANSWER SECTION:
images.pcworld.com. 900 IN CNAME images.pcworld.com.edgesuite.net.
images.pcworld.com.edgesuite.net. 21600 IN CNAME a1694.g.akamai.net.
a1694.g.akamai.net. 20 IN A 212.201.100.135
a1694.g.akamai.net. 20 IN A 212.201.100.141

Figure 6.2: Example of DNS lookup for domain images.pcworld.com hosted via Con-
tent Distribution Network, in this case Akamai.

Figure 6.2 depicts the A and CNAME (canonical name, an alias for one name to
another) records returned in DNS lookups for the domain images.pcworld.com,
which uses Akamai to host its content. Again, the DNS lookup returns multiple A records
which all belong to the network of Akamai. Compared to the previous example, the TTL
is significantly lower with only 20. A low TTL is used by CDNs to quickly enable them to
react to changes in link characteristics. The Akamai edge server is automatically picked
depending on the type of content and the user’s network location, i.e., it can change
over time for a given end-user.

6.3.3 Fast-Flux Service Networks

From an attacker’s perspective, the ideas behind round-robin DNS and content distribu-
tion networks have some interesting properties. For example, a spammer is interested in
having a high reliability for hosting the domain advertised in his spamming e-mails. If
he could advertise several IP addresses for a given domain, it would become harder to
shut down the online pharmacy shop belonging to the scam: if at least one of the IP
addresses returned in an A record is reachable, the whole scam is working. As another
example, a botherder is interested in scalability and he could use round-robin DNS
to split the bots across multiple Command & Control servers in order to complicate
shutdown attempts. In both examples, the resulting scam infrastructure is more resilient
to mitigation attempts.

103

Chapter 6 Tracking Fast-Flux Service Networks

RRDNS and CDNs return several IP addresses in response to a DNS request. As long as
one of these addresses responds, the entire service is online. Fast-flux service networks
employ the same idea in an innovative way. The main characteristic of fast-flux is the
rapid (fast) change in DNS answers: a given fast-flux domain returns a few A records
from a larger pool of compromised machines (“flux-agents”) and returns a different subset
after the (low) TTL has expired. By using the compromised machines as proxies to route
an incoming request to another system (control node or “mothership”), an attacker can
build a resilient, robust, one-hop overlay network on top of the compromised machines.

We explain the structure behind FFSNs with the help of a short example. The domain
unsubscribe-link.com was found in a spam e-mail in November 2008. The dig
response for this domain is shown in the upper part of Figure 6.3. We repeated the
DNS lookup after the TTL timeout given in the first answer to have two consecutive
lookups of the same domain. The results of the second lookup is shown in the lower
part of Figure 6.3. The DNS request returns five A records, similar to the round-robin
DNS example above. However, all IP addresses belong to different network ranges. We
performed a reverse DNS lookup, resolved the Autonomous System Number (ASN), and
determined the country via geolocation lookup for each of the IP addresses returned
in the first lookup. The results are shown in Table 6.1. Overall, we identify several
interesting features: first, all IP addresses are located in DSL/dial-up network ranges
located in several different countries, e.g., United States, Italy, and Poland. Second, the
IP addresses belong to several different Autonomous Systems (AS). Third, the TTL is
rather low with 1800 seconds. And fourth, the DNS server returns a set of five totally
different IP addresses in the second request.

;; ANSWER SECTION:
unsubscribe-link.com. 1800 IN A 76.19.165.94
unsubscribe-link.com. 1800 IN A 83.24.202.150
unsubscribe-link.com. 1800 IN A 87.6.20.246
unsubscribe-link.com. 1800 IN A 222.147.245.25
unsubscribe-link.com. 1800 IN A 70.244.130.148

;; ANSWER SECTION:
unsubscribe-link.com. 1800 IN A 118.219.111.107
unsubscribe-link.com. 1800 IN A 88.109.35.223
unsubscribe-link.com. 1800 IN A 89.201.100.21
unsubscribe-link.com. 1800 IN A 79.114.237.237
unsubscribe-link.com. 1800 IN A 82.83.234.227

Figure 6.3: Example of A records returned for two consecutive DNS lookups of domain
found in spam e-mail. The DNS lookups were performed 1800 seconds apart
such that the TTL expired after the first request.

A closer examination reveals that the A records returned by the DNS lookup point
to IP addresses of suspected compromised machines which run a so called flux-agent.
The flux-agents are basically proxies which redirect an incoming request to the control
node [The07], on which the actual content of the scam is hosted.

104

6.3 Technical Background

IP address Reverse DNS lookup for IP address ASN Country
76.19.165.94 c-76-19-165-94.hsd1.ct.comcast.net. 7015 US
83.24.202.150 drq150.neoplus.adsl.tpnet.pl. 5617 Poland
87.6.20.246 host246-20-dynamic.6-87-r.retail.telecomitalia.it. 3269 Italy
222.147.245.25 p2025-ipbf705osakakita.osaka.ocn.ne.jp. 4713 Japan
70.244.130.148 ppp-70-244-130-148.dsl.lbcktx.swbell.net. 7132 US

Table 6.1: Reverse DNS lookup, Autonomous System Number (ASN), and country for
first set of A records returned for fast-flux domain from Figure 6.3.

1) HTTP GET
host: www.example.com

www.example.com

2) Response

Figure 6.4: Content retrieval process for benign HTTP server.

Figure 6.4 illustrates the process of retrieving the content from a legitimate site: the
client contacts the webserver and the content is sent directly from the server to the
client. This is a common setup used by many websites.

In a scam that uses FFSN for hosting, the process is slightly different (Figure 6.5):
The client uses DNS to resolve the domain and then contacts one of the flux-agents. The
agent relays the request to the control node, which sends the content to the flux-agent.
In the fourth step, the content is delivered to the client. Note that if the TTL for the
fast-flux domain expires and the client performs another DNS lookup, the DNS lookup
process will most likely return a different set of A records. This means that the client
will then contact another flux-agent, but the request is relayed from that machine to the
control node in order to retrieve the actual content. More technical details on fast-flux
service networks can be found in a recent paper by the Honeynet Project [The07].

105

Chapter 6 Tracking Fast-Flux Service Networks

1) HTTP GET
host: thearmynext.info

thearmynext.info

4) Response

2) GET redirected

3) Response

"mothership"

flux agent

flux agent

flux agent

Figure 6.5: Content retrieval process for content being hosted in fast-flux service net-
work.

6.4 Automated Identification of Fast-Flux Domains

As we want to distinguish between FFSNs and other legitimate domains in an automated
way, we now turn to the extraction of features enabling us to decide whether a given
domain is using the FFSN infrastructure or not.

Restrictions in establishing a FFSN. In contrast to legitimate service providers which
may buy availability over CDNs, providers running FFSNs naturally suffer from two
main restrictions:

• IP address diversity: A scammer is not as free to choose the hardware and network
location (IP address) of an individual node as freely as in a CDN. Basically, the
FFSN has to live with those machines which can be compromised to run a flux-
agent. The range of IP addresses must therefore be necessarily rather diverse and
the attacker cannot choose to have a node with a particular IP address.

• No physical agent control: In contrast to CDNs which run in large computing
centers which professionally host the servers and manage server failures through
planned downtimes, a scammer does not have direct control over the machines
which run the FFSN. Even worse, flux-agents usually run on ill-administered

106

6.4 Automated Identification of Fast-Flux Domains

machines in dial-up networks which may go down any minute even if their uptime
is rather large. This implies that there is no guaranteed uptime of the flux-agent
the scammer can rely on.

Possible distinguishing parameters. Based on these two restrictions in establishing
a FFSN, we now enumerate a set of parameters which can be used to distinguish
DNS network behavior of CDNs from FFSNs. The absence of physical control over the
flux-agents results in the consideration of the following two values:

• nA, the number of unique A records returned in all DNS lookups: legitimate
domains commonly return only one to three A records, whereas fast-flux domains
often return five or more A records in a single lookup in order to have a higher
guarantee that at least one of the IPs is online.

• nNS , the number of nameserver (NS) records in one single lookup: FFSNs can also
host the nameserver within the fast-flux network [The07] and often return several
NS records and A records for the NS records. In contrast, legitimate domains
commonly return a small set of NS records.

The restriction of IP address diversity results in the consideration of the following value:

• nASN , the number of unique ASNs for all A records: Legitimate domains and even
the domains hosted via CDNs tend to return only A records from one particular AS.
In contrast, FFSNs tend to be located in different ASs since the infected machines
are scattered across different ISPs.

All the above parameters can be determined via DNS lookups and short post-processing
of the result. Note that we do not consider the TTL value of the DNS entries as a good
parameter. This is because legitimate domains like those hosted via CDNs have similar
requirements as FFSNs with respect to the speed of adaptation to network congestion or
server outages. The TTL value is, however, a good indicator to distinguish FFSN/CDN
from RRDNS. Therefore we take only domains with a TTL of the A records below or
equal to 1800 seconds into account, since higher TTL values cannot be considered fast
enough for rapid changes.

Fluxiness. In general, a metric to distinguish FFSNs from CDNs is a function of nA,
nAS, and nNS. Several possibilities to define this function exist. For example a first
approximation could be the following value, which we call the fluxiness of a domain:

ϕ = nA/nsingle

The value nsingle is the number of A records a single lookup returns. A value ϕ = 1.0
means that the set of A records remains constant over several consecutive lookups,
which is common for benign domains. In contrast, ϕ > 1.0 indicates that at least one
new A record was observed in consecutive requests, a strong indication of CDNs and

107

Chapter 6 Tracking Fast-Flux Service Networks

FFSNs. In the example of Figure 6.3, ϕ = 2.0 since the second set of returned A records
has no overlap with the first lookup.

Note that the fluxiness of a domain is implicitly also contained in the two features
nA and nASN : for FFSNs (and also CDNs), the number of observed A records (and thus
potentially also number of ASNs) grows over time since the lookup process returns a
different set of IPs over time.

Flux-Score. A general metric for detection of fast-flux domains can be derived by
considering the observed parameters as vectors x of the form (nA, nASN , nNS). The
resulting vector space enables definition of a linear decision function F using a weight
vector w and a bias term b by

F(x) =

(

wT x − b > 0 if x is a fast-flux domain

wT x − b ≤ 0 if x is a benign domain

The decision surface underlying F is the hyperplane wT x + b = 0 separating instances
of fast-flux service networks from benign domains.

Given a corpus of labeled fast-flux and benign domains, there exist numerous assign-
ments of w and b correctly discriminating both classes, but differing in their ability to
generalize beyond the seen data. A well-known technique for obtaining strong general-
ization is determining the optimal hyperplane, which separates classes with maximum
margin [Vap98]. For the linear case of the decision function F , an optimal hyperplane
can be efficiently computed using the technique of linear programming [BM00].

Based on a labeled corpus of domains, we can determine a decision function F with
high generalization ability by computing the weight vector w and bias b of the optimal
hyperplane. The decision function F induces a scoring metric f for the detection of
fast-flux domains referred to as flux-score and given by

f (x) = wT x = w1 · nA+w2 · nASN +w3 · nNS (6.1)

A flux-score f (x)> b indicates an instance of a fast-flux service network, while lower
scores correspond to benign domains. Furthermore, the flux-score provides a ranking
of domains, such that higher values reflect a larger degree of fast-flux characteristics —
implicitly corresponding to a larger distance from the optimal hyperplane of F .

Validation of Current FFSN. To instantiate the weights w1, w2, and w3, we used
empirical measurements of 128 manually verified fast-flux domains and 5,803 be-
nign domains as input. The latter were randomly taken from the Open Directory
Project [Net07], a human-edited directory, and the Alexa Top 500 list. Since these two
sets of domains are legitimate and do not contain fast-flux domains, they can be used
as a begin set to instantiate the weights. At first, we performed two consecutive DNS
lookups of all domains. This lookup process took the TTL of each domain into account:
we waited TTL + 1 seconds between two lookups to make sure not to get a cached

108

6.4 Automated Identification of Fast-Flux Domains

response from the nameserver in the second lookup. We repeated the lookup process
several times.

In order to evaluate the detection performance of the proposed flux-score, we per-
formed a 10-fold cross-validation on the corpus of labeled fast-flux and benign domains
using different model parameters for finding the optimal hyperplane. The best model
achieves an average detection accuracy of 99.98% with a standard deviation of 0.05%,
thus almost no predictions on the testing data sets are incorrect. Regarding the weight
vector w and bias b, the obtained assignments yield the following definition of the
flux-score based on our experiments:

f (x) = 1.32 · nA+ 18.54 · nASN + 0 · nNS (6.2)

with b = 142.38

Note, that the weight corresponding to nNS is 0 and does not contribute to the
detection of current FFSNs. Even though the flux-score is constructed from only two
observed parameters, evading detection is difficult as the involved parameters nA and
nASN reflect essential properties of the underlying distributed structure of a FFSN.

The values of w1, w2 and w3 as well as the threshold should be adjusted periodically
since attackers could try to mimic CDNs in order to evade our metric, e.g., by sorting
the IP addresses from their flux-agents according to IP address and then return only
sequences of IP addresses that look like CDNs. We claim however that due to the two
restrictions described above, it is hard for scammers to mimic exactly the behavior of
a CDN. A fundamental difference between FFSNs and CDNs remains: a FFSN is built
on top of compromised machines and the attacker has only limited influence on the
availability, e.g., the user of the compromised machine can turn on or off the machine at
arbitrary times. As part of future work, we want to examine how we can build a metric
that automatically adapts to changes in FFSNs. This could for example implicitly include
the fluxiness ϕ since ϕ for benign domains reaches its saturation limit pretty quickly
comparing to fast-flux domains which have a growing fluxiness over time. In particular,
benign domains with only one fixed IP have a constant ϕ (= 1) from the very beginning
of repeated DNS lookups. We would sacrifice our fast detection metric (only two DNS
lookups are required now), but could possibly also detect more stealthy FFSNs. In a
related work, Passerini et al. [PPMB08] introduced a different metric which employs
several additional parameters. All of their parameters are also included in our metric,
however, they include some parameters that contain slightly redundant information,
e.g., Number of distinct networks, Number of distinct autonomous systems and Number
of distinct assigned network names are three parameters that are closely related to each
other. Their use of domain age and domain registrar could be included in our metric to
improve the resistance against attacks, though. We will examine different methods to
improve the metric as part of future work on this topic.

109

Chapter 6 Tracking Fast-Flux Service Networks

6.5 Tracking Fast-Flux Service Networks

Based on the information presented in the previous sections, we can now describe how
to track fast-flux service networks. Please note that the mechanism behind this kind
of networks differs significantly from malicious remote control networks as described
in Chapters 4 and 5: the infected machines are not used to send out spam mails or to
perform distributed denial-of-service attacks, but only to act as proxies and to relay HTTP
requests to a central server. The infiltration step is thus a bit different compared to the
tracking of botnets: on the one hand, we can actively infiltrate the network by executing
a flux-agent in a controlled honeypot environment. We can then study the network from
the inside and for example observe incoming requests and the actual proxy request to
the mothership. This approach enables us to identify the mothership in an automated
and efficient way. On the other hand, we can also passively infiltrate the network. In
this case, we monitor the domain names used by the FFSNs and periodically perform
a DNS lookup. This allows us to keep track of the flux-agents currently being used by
the attackers to proxy content to the central server. We can monitor the dynamics of
these networks and get an insight from a completely different angle. In the following,
we show how such a passive infiltration can be implemented in practice and provide
empirical measurement results.

6.6 Empirical Measurements on Fast-Flux Service Networks

We now present results of studies on fast-flux domains and the underlying scam infras-
tructure. This is the first empirical study of the fast-flux phenomenon giving details
about FFSNs we observed during a two-month period in July/August 2007. Most im-
portant, we demonstrate that some results of a previous study in this area [AFSV07]
have changed, since scammers now operate differently because they adopted FFSNs and
use this technique to host their scams. Even in the short period since the results of that
study, there is already a change in tactic by the scammers.

6.6.1 Scam Hosting via Fast-Flux Service Networks

In this section, we focus on how FFSNs are used by spammers, e.g., for hosting websites
that offer pharmaceutical products or replica watches. We study the domains found in
spam e-mails (spamvertized domains). There are commonly both fast-flux and benign
domains in this set: a spammer could host the online shop for his scam on a normal,
benign web server or use a FFSN to have a more reliable hosting infrastructure which is
hard to take down and mitigate.

FFSNs Used by Spammers. Our study is based on a spam corpus we obtained from
http://untroubled.org/spam/. The corpus contains 22,264 spam mails collected
in August 2007 with the help of spamtraps, thus we can be sure that our corpus contains
only spam messages. From all these mails, we were able to extract 7,389 unique

110

6.6 Empirical Measurements on Fast-Flux Service Networks

domains that were advertised in the spam mails. We performed two dig lookups on
all these domains and computed the flux-score according to Equation 6.2. In total, we
could identify 2,197 (29.7%) fast-flux domains in the corpus. Anderson et al. used
in their study a spam corpus collected in November 2006, and they did not find any
FFSNs [AFSV07]. They found that 6% of scams were hosted on multiple IP addresses,
with one scam using 45. All the scams hosted on multiple IP addresses could be FFSNs,
which were not identified as such.

The two dig lookups for all fast-flux domains identified in our spam corpus resulted in
1,737 unique IP addresses pointing to compromised machines running flux-agents. This
demonstrates that FFSNs are a real threat and nowadays commonly used by attackers.
By performing a reverse DNS lookup, we confirmed that the flux-agents are commonly
located in DSL/dial-up ranges, thus presumably belong to inexperienced users.

The majority of the fast-flux domains (90.9%) consist of three domain-parts. For these,
the third-level domain is usually a wildcard that acts as a CNAME (canonical name) for
the second-level domain. To exclude wildcards, we only take the top- and second-level
domain into account: in total, we can then identify 563 unique fast-flux domains. Only
four top-level domains are targeted by attackers: .com was used 291 times (51.7%),
.cn 245 times (43.5%), .net 25 times (4.4%), and .org twice (0.4%). Together with
Nazario we performed a similar analysis for the period between late January 2008 and
end of May 2008 and found a wider distribution of affected top-level domains [NH08].

Similarity of Scam Pages. We also studied how many scams are hosted via these
FFSNs. Similar to a previous study [AFSV07], we want to explore the infrastructure
used in these fraud schemes. We thus downloaded a snapshot of the webpage of each
IP addresses returned in the dig lookup. The retrieved webpages comprise various
dynamic content such as sessions numbers or randomized hostnames. These random
strings, however, render analysis of content common to multiple webpages at the same
IP address difficult. To tackle this issue we apply so called string kernels: a comparison
method for strings, which is widely used in bioinformatics to assess similarity of DNA
sequences [LEN02, STC04]. Compared to image shingling [AFSV07], a graphical method
to find similar webpages, string kernels are more resilient to obfuscations: for example,
we found several webpages that simply changed the background image and such
similar sites cannot be identified via image shingling. Furthermore, string kernels
enable comparison of documents with linear run-time complexity in the number of
input bytes and yield performance rates up to 5,000 comparisons per second [RLM06,
SRR07]. Moreover, as our approach considers the original HTML documents, no further
preprocessing or rendering of HTML content is required. Thus using a string kernel
approach to detect similarity of scam pages is significantly faster than image shingling.

For our setup, we employ a string kernel that determines the similarity of two
webpages by considering n-grams (substrings of n bytes) shared by both pages. Given
webpages p1, p2 and an n-gram a shared by p1 and p2, we first define φa(p1) and

111

Chapter 6 Tracking Fast-Flux Service Networks

φa(p2) as the number of occurrences of a in p1 and p2, respectively. The string kernel is
then defined over the set A of all shared n-grams as

k(p1, p2) =
∑

a∈A

φa(p1) ·φa(p2)

Note, that k(p1, p2) corresponds to an inner-product in a vector space, whose dimen-
sions are enumerated by all possible n-grams. Since φa(p1) and φb(p2) are natural
numbers k is not bounded, so that we need to normalize it by considering a normalized
variant k̂

k̂(p1, p2) =
k(p1, p2)
p

k(p1, p1) · k(p2, p2)

The output of the kernel k̂ is in the range 0 to 1, such that k̂(p1, p2) = 0 implies that no
shared n-grams exists and k̂(p1, p2) = 1 indicates equality of p1 and p2. For all other
cases 0 < k̂(p1, p2) < 1, the kernel k̂ can be used as a metric to measure of similarity
between webpages.

Grouping of Webpages. Using string kernels, we can define an intuitive method for
determining groups of similar webpages located at a given IP address. For each address
we compute a matrix K , whose entries Ki j correspond to kernel values k̂(pi , pi) of the
i-th and j-th webpage. We then define a similarity threshold 0 < t < 1 and assign
two webpages pi and p j to the same group if k(pi , p j) > t holds. Computing these
assignments for all pages is carried out by simply looping over the columns of the matrix
K . In empirical experiments we found a value of k = 0.85 to be a good threshold using
the string kernel method for grouping webpages into scam hosts with the same content
based on our data set.

Figure 6.6 shows the distribution of retrieved webpages per flux-agent. Please note
that the x-axis is grouped into bins that grow quadratically. A little more than 50% of
the flux-agents host just one webpage, but several pages per IP are not uncommon.

In Figure 6.7, we depict the distribution of unique scams hosted on one particular
IP after having applied the grouping algorithms. We see that commonly attackers just
proxy one scam via one flux-agent, but in 16.3% of our observations, also multiple
scams are proxied through one particular flux-agent. This is significantly less than in
the study performed by Anderson et al. [AFSV07], who found that 38% of scams were
hosted on machines hosting at least one other scam. This indicates that scammers can
now have a broader distribution of their infrastructure due to FFSNs.

6.6.2 Long-Term Measurements

To study the long-term characteristics of FFSNs, we observed several of them over a
longer period of time: for 33 fast-flux domains found in spam e-mails, we performed
a DNS lookup every 300 seconds over a period of seven weeks. In total, we observed
18,214 unique IP addresses during the measurement period between July 24 and
September 10, 2007. This confirms that FFSNs are a real threat, with thousands of

112

6.6 Empirical Measurements on Fast-Flux Service Networks

Figure 6.6: Distribution of virtual hosts per IP address per flux-agent

Figure 6.7: Distribution of unique scams per IP address per flux-agent

machines being compromised and abused. The monitored IPs belong to 818 unique
ASNs and Table 6.2 lists the top eight ASNs we found. We see a wide distribution of
flux-agents all over the (networked) world. Furthermore, the distribution follows a
long-tail distribution, with 43.3% of all IPs contained in the top 10 ASNs.

This measurement does not take churn effects caused by DHCP or NAT into account.
Note that NAT is no problem since a flux-agent needs to be reachable in order to serve
as content proxy. We estimate that the percentage of churn caused by DHCP is rather
small: in order to be a reliable flux-agent, the machine should be online for a longer
time as otherwise it could cause downtime for the scam infrastructure. Thus an attacker
will make sure to only include stable nodes, i.e., nodes that have a high uptime and
constant IP address, into the pool of IP addresses served within FFSNs.

113

Chapter 6 Tracking Fast-Flux Service Networks

ASN AS name and country # observed flux-agents
1) 7132 AT&T Internet Services, US 2,677
2) 9304 Hutchison Global, HK 1,797
3) 4766 Korea Telecom, KR 590
4) 3320 Deutsche Telekom, DE 500
5) 8551 Bezeqint Internet, IL 445
6) 12322 Proxad/Free ISP, FR 418
7) 8402 Corbina telecom, RU 397
8) 1680 NetVision Ltd., US 361

Table 6.2: Top eight ASNs observed while monitoring 33 fast-flux domains over a period
of seven weeks. The table includes the name and country of the AS, and the
number of fast-flux IPs observed in this AS.

For each of the 33 FFSN domains, we examined the diversity of returned A records:
each time we observe a new A record, we assign an ascending ID to this IP address. This
allows us to keep track of how often and when we have seen a particular IP. The upper

Figure 6.8: IP address diversity for two characteristic fast-flux domains (upper part) and
two domains hosted via CDNs (lower part).

114

6.6 Empirical Measurements on Fast-Flux Service Networks

part of Figure 6.8 plots the diversity of IPs for a period of 12.5 hours for two exemplary
fast-flux domains. We see a wide variety of IPs returned in our DNS lookups and a steady
increase of new fast-flux IPs we monitor (leading to an increase in the fluxiness ϕ). The
slope of both graphs is different, indicating that different FFSNs have a different value
for ϕ. Furthermore, this graph also highlights the dimension of flux-agents: within the
short amount of time (150 lookups), more than 600 unique flux-agents were returned
for the fast-flux domain shown in the upper part of the figure.

In contrast we also plot IP diversity over time for two benign domains in the lower
part of Figure 6.8. Please note that the measurement period for benign domains is ten
times more DNS lookups to show some effects in the plot. For the CDN domains, we
observe only a small total number of unique IP addresses returned and a clear pattern.

We found the fluxiness ϕ to be a reliable feature in case of many repeated DNS
lookups: even though it grows for both CDNs and fast-flux domains during the first few
rounds of DNS lookups, a saturation can be seen earlier for the CDNs and hence we can
reliably decide whether or not a given domain uses fast-flux techniques after repeated
lookups by only considering the number of unique IP addresses observed during lookups,
i.e., nA.

Figure 6.9: Cumulative number of distinct A records observed for 33 fast-flux domains.

To further study the long-term growth of nA and nASN , we present in Figure 6.9 the
cumulative number of distinct A records and in Figure 6.10 the cumulative number of
ASNs observed for each of the 33 fast-flux domains during a period of more than 15
days. We see three different classes of growth in both figures. This means that different
fast-flux domains have a characteristic distribution of flux-nodes. If two domains have
a similar growth of the cumulative number of distinct A records or ASNs, this could
indicate that both domains belong to the same FFSN: the nameservers return A records

115

Chapter 6 Tracking Fast-Flux Service Networks

Figure 6.10: Cumulative number of distinct ASNs observed for 33 fast-flux domains.

with similar characteristics. We plan to examine this in the future as a possible way to
identify different domains belonging to the same control infrastructure. Furthermore,
the two figures also show a declining growth over time. A longer measurement of
the number of distinct A records or ASNs could be used to estimate the overall size of
the pool of compromised machines used for a particular FFSN: since the curves will
eventually reach a saturation, this is an upper bound of the pool size. The initial strong
growth in Figure 6.10 also indicates that flux-agents are commonly spread over several
ASs, confirming our weighting for the flux-score.

One goal of FFSNs is to provide a robust hosting infrastructure for cybercriminals.
However, we found that FFSNs also need to deal with unavailability of the site, especially
caused by the unavailability of the DNS server itself. From the 374,427 DNS queries
during the measurement period, 16,474 (4.60%) failed. We also monitored 16 legitimate
domains from the Alexa Top 500 to measure the reliability of benign domains. From
128,847 lookups against these domains, only 17 (0.01%) failed.

6.6.3 Other Abuses of Fast-Flux Service Networks

Besides using FFSNs to host scam sites related to spam, we also found several other
illegal use cases for these networks. This is presumably due to the fact that FFSNs
provide a robust infrastructure to host arbitrary content: they are not restricted to work
with HTTP servers, but an attacker could also set up a fast-flux SMTP or fast-flux IRC
server. In this section, we briefly provide information about two additional examples of
how attackers use FFSNs as part of their infrastructure.

116

6.7 Mitigation of Fast-Flux Service Networks

First, fast-flux networks are commonly used by phishing groups. Rock phish is a
well-known phishing toolkit which allows an attacker to set up several phishing scams
in parallel: the attacker installs the phishing kit on a webserver and different URL-paths
lead to different phishing pages [MC07]. The actual domain belonging to these phishing
pages commonly uses fast-flux service networks to host the website. For example, the
domain regs26.com was used for phishing in September 2007. By performing a DNS
lookup every time the TTL expired, we observed a total of 1,121 unique A records during
a measurement period of four days.

Second, also botherders use FFSNs to host malicious content. The Storm Worm botnet,
which we covered in detail in Chapter 5, uses fast-flux domains to host the actual bot
binary. We monitored the domain tibeam.com for a period of four weeks in August
2007 and observed more than 50,000 unique IP addresses in the returned A records for
this particular domain. This indicates that Storm Worm is a large botnet, since the pool
of IP addresses served for the FFSNs is apparently large. Furthermore, monitoring the
domain allows us to keep track of the botnet: since each compromised machine also
runs a webserver, which hosts the actual bot binary, we can download the current binary
from this host.

6.7 Mitigation of Fast-Flux Service Networks

In this section, we briefly review several strategies to mitigate the threat posed by FFSNs.
Even though the client’s view onto an FFSN is pretty limited (we can only monitor
the flux-agents), we try to collect as much information as possible with the techniques
outlined in the previous sections. Our metric helps us to automatically find fast-flux
domains, which can be collected in a domain blacklist. First, such a blacklist can be used
to stop a fast-flux domain with the help of collaboration from domain name registrars:
a registrar has the authority to shut down a domain, thus effectively taking down the
scam. An automated blacklist of fast-flux domains can quickly notify registrars about
fraudulent domains. Second, an ISP can use such a blacklist to protect its clients from
FFSNs by blackholing DNS requests for fast-flux domains. Third, the domain blacklist
can be used for spam filtering: if an e-mail contains a fast-flux domain, it is most likely
a spam mail. This technique could be used at the client- or server-side if slight delay
is tolerable. Tracking of FFSNs by periodically performing DNS lookups for fast-flux
domains can be used to build a list of IPs which most likely are compromised, which
could be used in a similar way as the domain blacklist.

Similar to an anonymity system, a FFSN has one layer of redirection: a client cannot
directly observe the location of the control node, which hosts the actual content, but
only the flux-agent. Ideas from this area can be adopted to identify the actual location of
the control node: an ISP has the capability to monitor “from above” both the incoming
and outgoing flows for a given machine and thus can monitor flows belonging to a
flux-agent. If a flux-agent is located within the network of an ISP, the idea is to inject
requests which are proxied from the agent to the control node (step 2 in Figure 6.5).

117

Chapter 6 Tracking Fast-Flux Service Networks

Together with the response to such requests, the location of the control node can be
identified and this content-serving central host can then be taken down [The07].

As FFSNs might be only the first step towards high available scams, we should also
think of more general approaches on combating this kind of distributed, malicious
infrastructure. One possibility would be to block certain incoming connection requests
directed to dial-up ranges, e.g., to TCP port 80 or UDP port 53. The majority of dial-up
users does not need to host servers, and such an approach would block many possibilities
to abuse compromised clients. ISPs could change their policy to not allow any network
services within mainly dynamic IP ranges by default. Still certain ports could be enabled
by whitelisting if there is a need for network services for specific users.

6.8 Summary

In this chapter, we showed how a different kind of malicious remote control networks,
namely fast-flux service networks, can also be studied with our methodology. We
presented the first empirical study of FFSNs, which use compromised host to build a
proxy network that is then used to host content. In this kind of attack, the control
network is indirect, i.e., the attacker does not send directly commands to the infected
machines, but abuses their network resources of the victim to establish a proxy network.
This is in contrast to classical botnets which we studied in the previous chapter, since
these networks use a direct command channel. Nevertheless, we can still track this kind
of networks with our method and learn more about them in an automated way.

For the study, we developed a metric that exploits the principles of FFSNs to derive an
effective mechanisms for detecting new fast-flux domains in an automated way. Beside
being straightforward to compute, we also showed that the method is accurate, i.e., we
had very low false positive and false negative rates. As we are aware of the dynamics
within fast-flux, we expect the need of further refinements in our method. Based on
our empirical observations, we found other information, e.g., whois lookups and MX
records, as promising features for an extended version of our flux-score.

Beside analyzing FFSN features in terms of detection and mitigation, we plan to work
on statistical methods to estimate how many IP addresses are in a certain pool of one
fast-flux domain. Adopting capture-recapture methods, which are applied in biology for
measuring the number of members of a certain population [PNBH90], could be one way
to obtain such an estimation. Similar methods were successfully applied by Weaver and
Collins to measure the extent of phishing activity on the Internet [WC07] and we plan
to study how this technique could be adopted for the area of fast-flux service networks
to estimate the number of infected machines.

118

Chapter 7
Conclusion and Future Work

With the current operating systems and network designs, an attacker can often com-
promise a victim’s machine and obtain complete control over this machine without
too much effort. On the one hand, an attacker can for example use technical means
like a remote exploit to take advantage of a vulnerable network service, or utilize a
vulnerability on a client application to compromise a system. On the other hand, she
can also use social means like social engineering, e.g., tricking the victim into opening
a malicious e-mail attachment, to attack a user. Based on these kinds of attacks, she
can compromise a large number of machines and establish a malicious remote control
network. We expect that this kind of networks will be used by attackers in the next few
years since no effective countermeasures against all kinds of threats can be expected
in the near future. Especially social engineering is still a growing problem, with many
users falling for this kind of scam. And attackers increasingly take advantage of the
compromised machines, e.g., by using them to carry out distributed denial-of-service
attacks, to send spam mails, or other means to take financial advantage.

To combat these attacks, we need to develop effective countermeasures against
malicious remote control networks and the factors behind them. These countermeasures
can apply on different levels. For example, many different methods have been proposed
to stop or circumvent memory corruption attacks (see for example the work by Cowan
et al. [CPM+98], Shankar et al. [STFW01], Cowan et al. [CBJW03], or Ruwase et
al. [RL04]), thereby stopping the most prevalent attack vector. Another approach is to
address the financial motivation behind these attacks [FG06, LLS08] and making these
attacks unprofitable. Increasing user awareness by for example teaching them about
current attacks [KGOL05] is a third approach to combat these attacks.

In this thesis, we proposed a methodology to deal with malicious remote control
networks by providing a root cause approach to stop this kind of networks. The basic
idea of the method is to first infiltrate the network, then analyze the network from the
inside, and finally use the collected information to stop it. This addresses the problem
of these networks in a reactive way, offering the possibility to stop them once they have
been established. Such an approach is necessary since we anticipate that attackers will

119

Chapter 7 Conclusion and Future Work

always find novel ways to compromise a larger number of machines and use them for
nefarious purposes. In a sense, this approach seems to be always one step behind the
attacker. However, by automating the method to a high degree we are able to compete
against the attackers and learn more about their methods. Also note that our method
neither implies a resource arms race nor needs any additional infrastructure.

In the following, we briefly summarize the important results of this thesis and outline
directions for future research in the individual areas.

Chapter 3: Root-Cause Methodology to Prevent Malicious Remote Control Net-
works. In Chapter 3 we introduced the general methodology to stop malicious remote
control networks. The method is based on the insight that an attacker usually wants to
control a large number of compromised machines such that she can perform a DDoS
attack or send out a many spam mails. To coordinate a large number of machines, she
needs a remote control mechanism. Therefore we can stop the whole attack if we are
able to disable the remote control mechanism in an efficient way.

In the following chapters we showed that this method can be applied to different
kinds of malicious remote control networks that exist today. In the future, we want to
extend this study and examine what other kind of attacks can be stopped by the same
approach. An obvious extension is to use this method to study spambots, i.e., bots that
focus on sending spam mails only, in detail [JMGK09].

Chapter 4: Tracking Botnets with Central C&C Server. In the first case study, we
focussed in Chapter 4 on botnets with a central command and control (C&C) server.
In this setup, the attacker uses a central server to disseminate the commands to the
infected machines. This is the classical type of botnets prevalent today and thus an
important problem to address.

As outlined above, stopping malicious remote control networks requires several steps.
Therefore we first showed how to use honeypots to obtain samples of autonomous
spreading malware in an automated way. In the second step, we introduced a method
to analyze a given sample in an automated way by performing a dynamic, runtime
analysis. Finally, we used the obtained information to impersonate as a bot and join the
network. We can then start observing the network from the inside and collect detailed
information about the setup, which can then be used to stop the botnet. This method is
used by several organizations. For example, the ShadowServer Foundation, a group of
security professionals that gathers, tracks, and reports on malware, botnet activity, and
electronic fraud [Sha09], and many other groups around the world use the tools and
methods outlined in Chapter 4 to combat botnets.

We expect that botnets with a central C&C server will prevail for several years since
this kind of control over compromised machines is the easiest from an attacker’s point
of view. Thus we need to continue studying this kind of botnets and examine whether
or not the method needs to be adjusted in the future. Custom protocols for C&C
communication, encrypted or hidden communication channels, or similar stealth bots
will certainly provide opportunities for future research in this area.

120

Chapter 5: Tracking Botnets with Peer-to-Peer-based C&C Server. In Chapter 5 we
analyzed how botnets with a peer-to-peer-based C&C channel can be tracked with our
methodology. We showed how to successfully apply the proposed method to Storm
Worm, the most prevalent bot using a decentralized communication protocol observed
until now. The method is similar to the case of botnets with a central server, we just had
to adjust the observation step by implementing a crawler that can be used to contact all
bots within the network.

In the future, we expect the emergence of more advanced malicious remote control
networks that could defeat current defense mechanisms such as the ones proposed in
this thesis. To increase the understanding of such networks, we introduced the design of
an advanced botnet named Rambot [HHH08]. The design is based on the weaknesses
we identified when studying different kinds of malicious remote control networks during
the work on this thesis. The main features of this bot are peer-to-peer communication,
strong cryptography, a credit-point system to build bilateral trust amongst bots, and a
proof-of-work scheme to protect against potential attacks. While some of our design
decisions seem to be obvious, e.g., using strong cryptography, (almost) no current botnet
uses them. Furthermore, some aspects of Rambot’s design are countermeasures against
new techniques to track botnets, e.g., proof-of-work schemes to counter crawling of
the whole botnet (see Chapter 5 for details). The goal of this discussion is a better
understanding of how next-generation malicious remote control networks could be
developed by attackers and what to do against them.

Starnberger et al. recently introduced Overbot, a botnet communication protocol
based a peer-to-peer architecture [SKK08]. Their design also demonstrates the threats
that may result when future botnets utilize more advanced communication structures.
We anticipate that such discussions help understanding future attacks, such that we can
begin to develop better countermeasures against novel threats. Therefore it is crucial to
also think about future malicious remote control networks and how their design could
look like. For example, the communication pattern used by NNTP [KL86] is much more
suitable for anonymous communication than distributed hash table (DHT) based routing.
This communication pattern is the core of fault-tolerant information dissemination like
in Golding’s weak consistency replication [Gol92] or the reliable broadcast algorithms by
Hadzilacos and Toueg [HT93]. Botnets based on these design principles and techniques
will be much harder to mitigate than the current ones.

Chapter 6: Tracking Fast-Flux Service Networks. We studied in Chapter 6 a com-
pletely different kind of malicious remote control networks, namely fast-flux service
networks. The idea behind these networks is that the attacker does not directly abuse
the compromised machines, but uses them to establish a proxy network on top of these
machines to enable a robust hosting infrastructure.

We proposed a metric to identify fast-flux service networks (FFSNs) in an automated
way. The metric is based on the general principles of these networks, e.g., an attacker is
not free to choose the hardware and network location of an individual node (IP address
diversity) and the nodes can go down at arbitrary times (no physical agent control).

121

Chapter 7 Conclusion and Future Work

These restrictions were used to find distinguishing parameters which enable us to decide
in an efficient way whether or not a given domain uses the technique of fast-flux or
not. We need to carefully study how attackers could subvert our metric and examine
how a more robust metric could be developed. Furthermore, our understanding of
fast-flux service networks is rather limited up to now, thus we need to closely study this
phenomenon to learn more about the underlying techniques.

Other Directions of Future Work. We presented several honeypot tools that can be
used to study current attacks on the Internet. Since the behavior of attackers is constantly
changing and new attack vectors constantly evolve, also the honeypot tools need to
advance. A first step in this area is the observation that many novel attacks target client
applications instead of network services. As a result, several different types of client-side
honeypots have been developed [WBJ+06, SS09, Wan09]. How to study attacks in IPv6
networks, or against the network backbone and infrastructure is still an open problem.
Furthermore, targeted attacks and spear phishing cannot easily be observed with current
honeypot-based techniques. Thus there are many options for future work in the area of
honeypots which could address the development of new tools and techniques to track
latest attacks.

In addition, we presented an approach for automated, dynamic analysis of malware in
this thesis. CWSandbox is nowadays a commercial tool and used by many organizations
worldwide. More than one million samples have been analyzed with a CWSandbox
installation at the Laboratory for Dependable Distributed Systems and many gigabytes of
analysis results have been generated by this system. Using this data for novel applications
is an interesting area for future research. For example, such data can be used to
perform malware classification [RHW+08] or malware clustering [BOA+07, BMH+09].
Improving these results and using the outcome of the algorithms, e.g., by generating
behavioral signatures for the individual clusters, are topics of future work in this area.

The Internet Malware Analysis System (Internet-Malware-Analyse-System, InMAS) is
a distributed system to collect and analyze malware. The project is developed at the
Laboratory for Dependable Distributed Systems and funded by the German Federal
Office for Information Security (Bundesamt für die Sicherheit in der Informationstechnik,
BSI). The core functionality of InMAS is based on honeypots as well as automated
analysis tools such as CWSandbox (see Chapter 4). InMAS is being developed as a
building block for an early-warning system such that autonomously spreading malware
in its many forms can be detected and analyzed in detail. InMAS also allows to connect
different data-sources so that analysis and detection can be further improved. The result
of this research project is a unique set of collection and analysis tools for autonomously
spreading malicious software. Statistics and analysis results enable the operator of the
early-warning system to detect, classify, and react to the network threats caused by such
malware. The data can for example be used to trace back the origin of the outbreak
of a worm, or to answer questions regarding the network propagation of autonomous
spearing malware over time.

122

Bibliography

[AFSV07] David S. Anderson, Chris Fleizach, Stefan Savage, and Geoffrey M. Voelker.
Spamscatter: Characterizing Internet Scam Hosting Infrastructure. In
Proceedings of the 16th USENIX Security Symposium, 2007.

[Aka] Akamai Technologies. Akamai Content Distribution Network. http://www.
akamai.com.

[Ale07] Alexa, the Web Information Company. Global Top 500 Sites, September
2007. http://alexa.com/site/ds/top_sites?ts_mode=global.

[ASA+05] Kostas G. Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos
Xinidis, Evangelos P. Markatos, and Angelos D. Keromytis. Detecting Tar-
geted Attacks Using Shadow Honeypots. In Proceedings of the 14th USENIX
Security Symposium, 2005.

[Bal07] Josh Ballard. Storm Worm, October 2007. NANOG 41, http://www.
nanog.org/mtg-0710/kristoff.html.

[Bar96] Dave Barr. RFC 1912: Common DNS Operational and Configuration Errors,
February 1996. http://www.ietf.org/rfc/rfc1912.txt.

[BCH06] J. Black, M. Cochran, and T. Highland. A Study of the MD5 Attacks: Insights
and Improvements. In Fast Software Encryption, 2006.

[BCJ+05] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David
Watson. The Internet Motion Sensor: A Distributed Blackhole Monitoring
System. In Proceedings of the 12th Annual Network and Distributed System
Security Symposium (NDSS’05), 2005.

[Bel01] Steve M. Bellovin. ICMP traceback messages, March 2001. Internet Draft.

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the USENIX 2005 Annual Technical Conference, pages 41–46,
2005.

123

Bibliography

[BH06] Rainer Böhme and Thorsten Holz. The Effect of Stock Spam on Financial
Markets. In Proceedings of 5th Workshop on the Economics of Information
Security (WEIS’06), June 2006.

[Bin06] James R. Binkley. Anomaly-based Botnet Server Detection. In Proceedings
of FloCon 2006 Analysis Workshop, October 2006.

[Bir04] Alessandro Birolini. Reliability Engineering: Theory and Practice. Springer
Verlag, 2004.

[BKH+06] Paul Bächer, Markus Kötter, Thorsten Holz, Felix Freiling, and Maximillian
Dornseif. The Nepenthes Platform: An Efficient Approach to Collect Mal-
ware. In Proceedings of 9th International Symposium On Recent Advances in
Intrusion Detection (RAID’06), September 2006.

[BKK06] Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A Tool for
Analyzing Malware. In Proceedings of the 15th Annual Conference of the
European Institute for Computer Antivirus Research (EICAR’06), 2006.

[BM00] P.S. Bradley and O.L. Mangasarian. Massive Data Discrimination via Linear
Support Vector Machines. Optimization Methods and Software, 13:1–10,
2000.

[BMH+09] Ulrich Bayer, Paolo Milani, Clemens Hlauschek, Christopher Kruegel, and
Engin Kirda. Scalable, Behavior-Based Malware Clustering. In Proceedings
of the 16th Annual Network and Distributed System Security Symposium
(NDSS’09), February 2009.

[BMKK06] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dy-
namic Analysis of Malicious Code. Journal in Computer Virology, 2:67–77,
2006.

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam
Jahanian, and Jose Nazario. Automated Classification and Analysis of
Internet Malware. In Proceedings of 10th International Symposium On Recent
Advances in Intrusion Detection (RAID’07), 2007.

[Bri95] Thomas P. Brisco. RFC 1794: DNS Support for Load Balancing, April 1995.
http://www.ietf.org/rfc/rfc1794.txt.

[BS06] James R. Binkley and Suresh Singh. An Algorithm for Anomaly-based
Botnet Detection. In Proceedings of USENIX Steps to Reducing Unwanted
Traffic on the Internet Workshop (SRUTI’06), pages 43–48, July 2006.

[BV05] Edward Balas and Camilo Viecco. Towards a Third Generation Data Capture
Architecture for Honeynets. In Proceeedings of the 6th IEEE Information
Assurance Workshop, West Point, 2005.

124

Bibliography

[BY07] Paul Barford and Vinod Yegneswaran. An Inside Look at Botnets, volume 27
of Advances in Information Security, pages 171–191. Springer, 2007.

[Can05] John Canavan. The Evolution of Malicious IRC Bots. In Proceedings of the
Virus Bulletin Conference, 2005.

[CBJW03] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard:
Protecting Pointers From Buffer Overflow Vulnerabilities. In Proceedings of
the 12th USENIX Security Symposium, 2003.

[CCY99] Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Dynamic Load
Balancing on Web-Server Systems. IEEE Internet Computing, 3(3):28–39,
1999.

[Che06] Yan Chen. IRC-Based Botnet Detection on High-Speed Routers. In ARO-
DARPA-DHS Special Workshop on Botnets, June 2006.

[CJM05] Evan Cooke, Farnam Jahanian, and Danny McPherson. The Zombie
Roundup: Understanding, Detecting, and Disrupting Botnets. In Work-
shop on Steps to Reducing Unwanted Traffic on the Internet (SRUTI’05), pages
39–44. USENIX, June 2005.

[Com96] Computer Emergency Response Team. CERT advisory CA-1996-21 TCP
SYN Flooding Attacks. Internet: http://www.cert.org/advisories/
CA-1996-21.html, 1996.

[CPM+98] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. StackGuard: Automatic Adaptive Detection
and Prevention of Buffer-overflow Attacks. In Proceedings of the 7th USENIX
Security Symposium, 1998.

[Cui06] Weidong Cui. Automating Malware Detection by Inferring Intent. PhD thesis,
University of California, Berkeley, September 2006.

[Cym06] Team Cymru: The Darknet Project. Internet: http://www.cymru.com/
Darknet/, Accessed: 2006.

[DHK04] Maximillian Dornseif, Thorsten Holz, and Christian Klein. NoSEBrEaK –
Attacking Honeynets. In Proceedings of the 5th IEEE Information Assurance
Workshop, West Point, 2004.

[Dit09] Dave Dittrich. Distributed Denial of Service (DDoS) attacks/tools re-
source page. Internet: http://staff.washington.edu/dittrich/
misc/ddos/, Accessed: March 2009.

[Dou02] John R. Douceur. The Sybil attack. In Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS), pages 251–260, March 2002.

125

Bibliography

[DZL06] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propagation Using
Time Zones. In Proceedings of the 13th Annual Network and Distributed
System Security Symposium (NDSS’06), 2006.

[Enr07] Brandon Enright. Exposing Stormworm, October 2007. Toorcon 9, http:
//noh.ucsd.edu/~bmenrigh/.

[Fat04] Holy Father. Hooking Windows API – Technics of Hooking API Functions
on Windows. Code Breakers Journal, 1(2), 2004.

[Fed04] Federal Bureau of Investigation (FBI). Report on Operation Cyberslam. Inter-
net: http://www.reverse.net/operationcyberslam.pdf, February
2004.

[Fed06] Federal Bureau of Investigation (FBI). Moroccan Authorities Sentence Two
In Zotob Computer Worm Attack. http://www.fbi.gov/pressrel/
pressrel06/zotob091306.htm, September 2006.

[Fed07] Federal Bureau of Investigation (FBI). Operation Bot Roast, February 2007.
http://www.fbi.gov/pressrel/pressrel07/botnet061307.htm.

[Fer00] Paul Ferguson. Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing, May 2000. Request for Comments:
RFC 2827.

[FG06] Richard Ford and Sarah Gordon. Cent, Five Cent, Ten Cent, Dollar: Hitting
Botnets Where it Really Hurts. In Proceedings of the 2006 Workshop on New
Security Paradigms (NSPW’06), pages 3–10, 2006.

[FHW05] Felix Freiling, Thorsten Holz, and Georg Wicherski. Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks. In Proceedings of 10th European Symposium On Research In Com-
puter Security (ESORICS’05), July 2005.

[Fis05] Tom Fischer. Botnetze. In Proceedings of 12th DFN-CERT Workshop, March
2005.

[FPPS07] Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An Inquiry
into the Nature and Causes of the Wealth of Internet Miscreants. In Proceed-
ings of 14th Conference on Computer and Communications Security (CCS’07),
November 2007.

[Fra07] Frank Boldewin. Peacomm.C – Cracking the Nutshell, September 2007.
http://www.reconstructer.org/.

[Gar00] Lee Garber. Denial-of-service attacks rip the Internet. Computer, 33(4):12–
17, April 2000.

126

Bibliography

[GCR01] Syam Gadde, Jeffrey S. Chase, and Michael Rabinovich. Web Caching and
Content Distribution: A View from the Interior. Computer Communications,
24(2):222–231, 2001.

[GH07] Jan Göbel and Thorsten Holz. Rishi: Identify Bot Contaminated Hosts by
IRC Nickname Evaluation. In Proceedings of Hot Topics in Understanding
Botnets (HotBots’07), April 2007.

[GHH06] Jan Göbel, Jens Hektor, and Thorsten Holz. Advanced Honeypot-Based
Intrusion Detection. USENIX ;login:, 31(6), December 2006.

[GHW07] Jan Göbel, Thorsten Holz, and Carsten Willems. Measurement and Anal-
ysis of Autonomous Spreading Malware in a University Environment. In
Proceedings of 4th Conference on Detection of Intrusions & Malware, and
Vulnerability Assessment (DIMVA’07), July 2007.

[Göb08] Jan Göbel. Amun: Python Honeypot. Internet: http://amunhoney.
sourceforge.net/, October 2008.

[Gol92] Richard A. Golding. Weak-Consistency Group Communication and Member-
ship. PhD thesis, University of California at Santa Cruz, December 1992.
UCSC- CRL-92-52.

[GPY+07] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke Lee.
BotHunter: Detecting Malware Infection Through IDS-Driven Dialog Corre-
lation. In Proceedings of the 16th USENIX Security Symposium (Security’07),
August 2007.

[GPZL08] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotMiner: Clus-
tering Analysis of Network Traffic for Protocol- and Structure-Independent
Botnet Detection. In Proceedings of the 17th USENIX Security Symposium
(Security’08), 2008.

[Gro03] LURHQ Threat Intelligence Group. Sinit P2P Trojan Analysis. Internet:
http://www.lurhq.com/sinit.html, 2003.

[Gro04a] LURHQ Threat Intelligence Group. Bobbax Worm Analysis. Internet: http:
//www.lurhq.com/bobax.html, 2004.

[Gro04b] LURHQ Threat Intelligence Group. Phatbot Trojan Analysis. Internet:
http://www.lurhq.com/phatbot.html, 2004.

[Gro07] Lev Grossman. The Worm That Roared. Internet: http://www.time.
com/time/magazine/, September 2007.

[GSN+07] Julian B. Grizzard, Vikram Sharma, Chris Nunnery, Brent ByungHoon Kang,
and David Dagon. Peer-to-Peer Botnets: Overview and Case Study. In
Proceedings of Hot Topics in Understanding Botnets (HotBots’07), 2007.

127

Bibliography

[Gu08] Guofei Gu. Correlation-based Botnet Detection in Enterprise Networks. PhD
thesis, Georgia Institute of Technology, August 2008.

[GZL08] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic. In Proceedings of the
15th Annual Network and Distributed System Security Symposium (NDSS’08),
February 2008.

[HB99] Galen C. Hunt and Doug Brubacker. Detours: Binary Interception of Win32
Functions. In Proceedings of the 3rd USENIX Windows NT Symposium, pages
135–143. Advanced Computing Systems Association, 1999.

[HEF08] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More About
the Underground Economy: A Case-Study of Keyloggers and Dropzone.
Technical Report TR-2008-006, University of Mannheim, December 2008.

[Hew07] Hewlett Packard Inc. NonStop home page: HP Integrity NonStop com-
puting. Online: http://h20223.www2.hp.com/nonstopcomputing/
cache/76385-0-0-225-121.aspx, September 2007.

[HGRF08] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix Freiling. Measur-
ing and Detecting Fast-Flux Service Networks. In Proceedings of 15th Annual
Network & Distributed System Security Symposium (NDSS’08), February
2008.

[HHH08] Ralf Hund, Matthias Hamann, and Thorsten Holz. Towards Next-Generation
Botnets. In European Conference on Computer Network Defense (EC2ND’08),
pages 33–40, December 2008.

[Hol05] Thorsten Holz. A Short Visit to the Bot Zoo. IEEE Security & Privacy,
3(3):76–79, 2005.

[Hol06] Thorsten Holz. Learning More About Attack Patterns With Honeypots. In
Proceedings of Sicherheit 2006, pages 30–41, February 2006.

[Hon05] Honeynet Project. Know your Enemy: Tracking Botnets, March 2005.
http://www.honeynet.org/papers/bots.

[HR05] Thorsten Holz and Frederic Raynal. Detecting Honeypots and Other Suspi-
cious Environments. In Proceeedings of the 6th IEEE Information Assurance
Workshop, West Point, June 2005.

[HSD+08] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix
Freiling. Measurements and Mitigation of Peer-to-Peer-based Botnets: A
Case Study on Storm Worm. In Proceedings of First USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET’08), April 2008.

128

Bibliography

[HT93] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems.
In Sape Mullender, editor, Distributed Systems, chapter 5. Addison-Wesley,
second edition, 1993.

[IHF08] Ali Ikinci, Thorsten Holz, and Felix Freiling. Monkey-Spider: Detecting
Malicious Websites with Low-Interaction Honeyclients. In Proceedings of
Sicherheit 2008, April 2008.

[Int07] Internet Software Consortium. dig: domain information groper, September
2007. http://www.isc.org/sw/bind/.

[Iva02] Ivo Ivanov. API Hooking Revealed. The Code Project, 2002.

[JMGK09] John P. John, Alexander Moshchuk, Steven D. Gribble, and Arvind Krish-
namurthy. Studying Spamming Botnets Using Botlab. In Proceedings of the
6th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’09), 2009.

[JX04] Xuxian Jiang and Dongyan Xu. Collapsar: A VM-Based Architecture for
Network Attack Detention Center. In Proceedings of 13th USENIX Security
Symposium, 2004.

[Kad] KadC. P2P library. http://kadc.sourceforge.net/.

[KAG06] Andrew Kalafut, Abhinav Acharya, and Minaxi Gupta. A Study of Malware in
Peer-to-Peer Networks. In Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, pages 327–332, 2006.

[KBM94] Eric Dean Katz, Michelle Butler, and Robert McGrath. A Scalable HTTP
Server: The NCSA Prototype. In Selected Papers of the First Conference on
World-Wide Web, pages 155–164. Elsevier Science Publishers B. V., 1994.

[KGOL05] Sven Krasser, Julian B. Grizzard, Henry L. Owen, and John G. Levine.
The Use of Honeynets to Increase Computer Network Security and User
Awareness. Journal of Security Education, 1(2):23–37, 2005.

[KKL+08a] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Ge-
off Voelker, Vern Paxson, and Stefan Savage. Spamalytics: An Empirical
Analysis of Spam Marketing Conversion . In Proceedings of the 15th ACM
Conference on Computer and Communications Security (CCS’08), October
2008.

[KKL+08b] Christian Kreibich, Chris Kanich, Kirill Levchenko, Brandon Enright, Geof-
frey M. Voelker, Vern Paxson, and Stefan Savage. On the Spam Campaign
Trail. In Proceedings of First USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET’08), 2008.

129

Bibliography

[KL86] Brian Kantor and Phil Lapsley. Network News Transfer Protocol (NNTP).
Internet RFC 977, available at http://www.faqs.org/rfcs/rfc977.
html, February 1986.

[Kre07] Brian Krebs. Storm Worm Dwarfs World’s Top Supercomputers. Internet:
http://blog.washingtonpost.com/securityfix/, August 2007.

[KRH07] Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-Scale Botnet
Detection and Characterization. In Proceedings of the Workshop on Hot
Topics in Understanding Botnets (HotBots’07), April 2007.

[KWZ01] Balachander Krishnamurthy, Craig Wills, and Yin Zhang. On the Use and
Performance of Content Distribution Networks. In Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement, pages 169–182, 2001.

[LD08] Corrado Leita and Marc Dacier. SGNET: A Worldwide Deployable Frame-
work to Support the Analysis of Malware Threat Models. In Proceedings of
7th European Dependable Computing Conference (EDCC’08), 2008.

[LDM06] Corrado Leita, Marc Dacier, and Frédéric Massicotte. Automatic Handling
of Protocol Dependencies and Reaction to 0-Day Attacks with ScriptGen
Based Honeypots. In Proceedings of 9th Symposium on Recent Advances in
Intrusion Detection (RAID’06), 2006.

[Lei08] Corrado Leita. SGNET: Automated Protocol Learning for the Observation of
Malicious Threats. PhD thesis, Eurecom, December 2008.

[LEN02] Christina Leslie, Eleazar Eskin, and William S. Noble. The Spectrum Kernel:
A String Kernel for SVM Protein Classification. In Proceedings of Pacific
Symposium on Biocomputing, pages 564–575, 2002.

[LLS08] Zhen Li, Qi Liao, and Aaron Striegel. Botnet Economics: Uncertainty
Matters. In Proceedings of the 7th Workshop on the Economics of Information
Security (WEIS’08), 2008.

[LMD05] Corrado Leita, Ken Mermoud, and Marc Dacier. ScriptGen: An Automated
Script Generation Tool for Honeyd. In Proceedings of the 21st Annual
Computer Security Applications Conference (ACSAC’05), 2005.

[Mai03] SecurityFocus Honeypots Mailinglist. Moving forward with defintion of
honeypots, May 2003. Internet: http://www.securityfocus.com/
archive/119/321957/30/0/threaded.

[Max] Maxmind. Geolocation and Online Fraud Prevention.
http://www.maxmind.com/.

[MC07] Tyler Moore and Richard Clayton. An Empirical Analysis of the Current
State of Phishing Attack and Defence. In Proceedings of the 6th Workshop
on the Economics of Information Security (WEIS’07), 2007.

130

Bibliography

[McC03a] Bill McCarty. Automated Identity Theft. IEEE Security & Privacy, 1(5):89–92,
2003.

[McC03b] Bill McCarty. Botnets: Big and Bigger. IEEE Security & Privacy, 1(4):87–90,
2003.

[MDDR04] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. Internet
Denial of Service: Attack and Defense Mechanisms. Prentice Hall PTR, 2004.

[Mea98] Catherine Meadows. A Formal Framework and Evaluation Method for
Network Denial of Service. In Proceedings of the 1999 IEEE Computer
Security Foundations Workshop, pages 4–13. IEEE Computer Society Press,
1998.

[Mic03] Microsoft. Security Bulletin MS03-026: Buffer Overrun In RPC Interface
Could Allow Code Execution, July 2003.

[Mic04] Microsoft. Security Bulletin MS04-011: Security Update for Microsoft
Windows, April 2004.

[Mic05] Microsoft. Security Bulletin MS05-039: Vulnerability in Plug and Play Could
Allow Remote Code Execution and Elevation of Privilege, August 2005.

[Mic08] Microsoft. Security Bulletin MS08-067: Vulnerability in Server Service
Could Allow Remote Code Execution, October 2008.

[MKK07] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring Multi-
ple Execution Paths for Malware Analysis. In Proceedings of 2007 IEEE
Symposium on Security and Privacy, 2007.

[MM02] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-peer Infor-
matiion System Based on the XOR Metric. In Proceedings of the 1st Workshop
on Peer-to-Peer Systems (IPTPS), March 2002.

[MPS+03] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Stani-
ford, and Nicholas Weaver. Inside the Slammer Worm. IEEE Security and
Privacy, 1(4):33–39, 2003.

[MR04] Jelena Mirkovic and Peter Reiher. A Taxonomy of DDoS Attack and DDoS
Defense Mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53,
2004.

[MRRK03] Jelena Mirkovic, Max Robinson, Peter Reiher, and Geoff Kuenning. Alliance
Formation for DDoS Defense. In Proceedings of the New Security Paradigms
Workshop 2003. ACM SIGSAC, August 2003.

[MSkc02] David Moore, Colleen Shannon, and k claffy. Code-Red: A Case Study on
the Spread and Victims of an Internet Worm. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurement, pages 273–284, 2002.

131

Bibliography

[MSVS04] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage.
Network Telescopes. Technical Report TR-2004-04, CAIDA, 2004.

[MT06] Jerry Martin and Rob Thomas. The Underground Economy: Priceless.
USENIX ;login:, 31(6), December 2006.

[Müt07] Michael Müter. Web-based Honeypot Decoys. Master’s thesis, RWTH Aachen
University, Germany, April 2007.

[MVS01] David Moore, Geoffrey M. Voelker, and Stefan Savage. Inferring Inter-
net Denial-of-Service Activity. In Proceedings of the 10th USENIX Security
Symposium, August 2001.

[Nau07] John Naughton. In Millions of Windows, the Perfect Storm is Gathering.
http://observer.guardian.co.uk/, October 2007.

[Naz06] Jose Nazario. Nugache: TCP port 8 Bot. Internet: http://asert.
arbornetworks.com/2006/05/nugache-tcp-port-8-bot/, May
2006.

[Naz07] Jose Nazario. Estonian DDoS Attacks – A summary to date.
Internet: http://asert.arbornetworks.com/2007/05/
estonian-ddos-attacks-a-summary-to-date/, May 2007.

[Naz08] Jose Nazario. Georgia On My Mind - Political DDoS. In-
ternet: http://asert.arbornetworks.com/2008/07/
georgia-on-my-mind-political-ddos/, July 2008.

[Net07] Netscape Communications Corporation. ODP – Open Directory Project.
Online: http://dmoz.org, September 2007.

[New04] BBC News. Hacker Threats to Bookies Probed. Internet: http://news.
bbc.co.uk/1/hi/technology/3513849.stm, February 2004.

[NH08] Jose Nazario and Thorsten Holz. As the Net Churns: Fast-Flux Botnet
Observations. In Proceedings of 3rd International Conference on Malicious
and Unwanted Software, October 2008.

[Nor03] Norman. Sandbox Whitepaper, 2003. Internet: http://sandbox.
norman.no/pdf/03_sandboxwhitepaper.pdf.

[Nor09] Norman. Norman SandBox Information Center. Internet: http://
sandbox.norman.no/, Accessed: 2009.

[NS05] James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and SignatureGeneration of Exploits on
Commodity Software. In Proceedings of the Network and Distributed System
Security Symposium (NDSS’05), 2005.

132

Bibliography

[OMR08] Markus F.X.J. Oberhumer, László Molnár, and John F. Reiser. UPX, the
Ultimate Packer for eXecutables. Internet: http://upx.sourceforge.
net/, April 2008.

[Ove07] Claus R. F. Overbeck. Efficient Observation of Botnets. Master’s thesis,
RWTH Aachen University, May 2007.

[Pat02] David A. Patterson. A Simple Way to Estimate the Cost of Downtime. In
Proceedings of the 16th USENIX System Administration Conference (LISA’02),
2002.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). ACM Press, New York, NY, USA, 1988.

[PH07] Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Addison-Wesley, July 2007.

[PMRM08] Niels Provos, Panayiotis Mavrommatis, Moheeb A. Rajab, and Fabian Mon-
rose. All Your iFRAMEs Point to Us. In Proceedings of the 17th USENIX
Security Symposium (Security’08), 2008.

[PNBH90] Kenneth Hugh Pollock, James D. Nichols, Cavell Brownie, and James E.
Hines. Statistical Inference for Capture-recapture Experiments. Wildlife
Society, 1990.

[PPMB08] E. Passerini, R. Paleari, L. Martignoni, and D. Bruschi. FluXOR: Detecting
and Monitoring Fast-Flux Service Networks. In Proceedings of 5th Con-
ference on Detection of Intrusions & Malware, and Vulnerability Assessment
(DIMVA’08), pages 186–206, 2008.

[Pro04] Niels Provos. A Virtual Honeypot Framework. In Proceedings of the 13th
USENIX Security Symposium, pages 1–14, 2004.

[PSB06] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: An Emu-
lator for Fingerprinting Zero-Day Attacks. In Proceedings of ACM SIGOPS
EUROSYS’2006, Leuven, Belgium, April 2006.

[PSY07] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A Multi-perspective
Analysis of the Storm (Peacomm) Worm. Technical report, Computer
Science Laboratory, SRI International, October 2007.

[RHW+08] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and Classification of Malware Behavior. In Proceedings
of 5th Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment (DIMVA’08), pages 108–125, July 2008.

[RIP07] RIPE NCC. DNS Monitoring Services. Internet: http://dnsmon.ripe.
net/dns-servmon/, Accessed: March 2007.

133

Bibliography

[RL04] Olatunji Ruwase and Monica S. Lam. A Practical Dynamic Buffer Overflow
Detector. In Proceedings of the 11th Annual Network and Distributed System
Security Symposium (NDSS’04), pages 159–169, 2004.

[RLM06] Konrad Rieck, Pavel Laskov, and Klaus-Robert Müller. Efficient Algorithms
for Similarity Measures over Sequential Data: A Look beyond Kernels. In
Proceedings of 28th DAGM Symposium on Pattern Recognition, LNCS, pages
374–383, September 2006.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[Rya08] Ryan McGeehan et al. GHH - The “Google Hack” Honeypot. Internet:
http://ghh.sourceforge.net/, Last checked: October 2008.

[RZMT06] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis.
A Multifaceted Approach to Understanding the Botnet Phenomenon. In
Proceedings of the 6th Internet Measurement Conference, 2006.

[RZMT07] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis.
My Botnet Is Bigger Than Yours (Maybe, Better Than Yours): Why Size
Estimates Remain Challenging. In Proceedings of 1st Workshop on Hot Topics
in Understanding Botnets (HotBots’07), 2007.

[SBEN07] Moritz Steiner, Ernst W. Biersack, and Taoufik En-Najjary. Exploiting KAD:
Possible Uses and Misuses. Computer Communication Review, 37(5), October
2007.

[Sch00] Bruce Schneier. Inside Risks: Semantic Network Attacks. Communications
of the ACM, 43(12):168–168, December 2000.

[Sco07] Scott McIntyre. Toxbot Takedown and Provider Paranoia: A Reflection on
Modern ISP Incident Response., May 2007. AusCERT Conference.

[SEENB07] Moritz Steiner, Wolfgang Effelsberg, Taoufik En-Najjary, and Ernst W. Bier-
sack. Load Reduction in the KAD Peer-to-Peer System. In Fifth International
Workshop on Databases, Information Systems and Peer-to-Peer Computing
(DBISP2P’07), 2007.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. A Global View of
KAD. In Proceedings of the Internet Measurement Conference (IMC), 2007.

[SGD+02] Stefan Saroiu, P. Krishna Gummadi, Richard J. Dunn, Steven D. Gribble, and
Henry M. Levy. An Analysis of Internet Content Delivery Systems. In Pro-
ceedings of 5th Symposium on Operating System Design and Implementation
(OSDI’02), 2002.

134

Bibliography

[Sha09] Shadowserver Foundation. Homepage. Internet: http://shadowserver.
org/wiki/, Accessed: March 2009.

[SII05] Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of Passive Internet
Threat Monitors. In Proceedings of the 14th USENIX Security Symposium,
2005.

[SJB06] Seungwon Shin, Jaeyeon Jung, and Hari Balakrishnan. Malware Prevalence
in the KaZaA File-Sharing Network. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, pages 333–338, 2006.

[SKK+97] Christoph L. Schuba, Ivan V. Krsul, Markus G. Kuhn, Eugene H. Spafford,
Aurobindo Sundaram, and Diego Zamboni. Analysis of a Denial of Service
Attack on TCP. In Proceedings of the 1997 IEEE Symposium on Security and
Privacy, pages 208–223, May 1997.

[SKK08] Günther Starnberger, Christopher Kruegel, and Engin Kirda. Overbot: A
Botnet Protocol Based on Kademlia. In Proceedings of the 4th Conference on
Security and Privacy in Communication Networks (SecureComm’08), pages
1–9, 2008.

[SM04] Colleen Shannon and David Moore. The Spread of the Witty Worm. IEEE
Security & Privacy, 2(4):46–50, 2004.

[SMPW04] Stuart Staniford, David Moore, Vern Paxson, and Nicholas Weaver. The Top
Speed of Flash Worms. In Proceedings of the 2004 ACM Workshop on Rapid
Malcode (WORM’04), 2004.

[SMS01] Dug Song, Robert Malan, and Robert Stone. A Snapshot of Global Worm
Activity. Technical report, Arbor Networks, November 2001.

[SNDW06] A. Singh, T.W. Ngan, P. Druschel, and DS Wallach. Eclipse Attacks on Overlay
Networks: Threats and Defenses. In Proceedings of Infocom’06, April 2006.

[Sof] NETSEC Network Security Software. SPECTER Intrusion Detection System.
Internet: http://www.specter.com.

[Sop06] Sophos. Online Russian blackmail gang jailed for extorting $4M from
gambling websites. http://www.sophos.com/pressoffice/news/
articles/2006/10/extort-ddos-blackmail.html, October 2006.

[SP01] Dawn X. Song and Adrian Perrig. Advanced and Authenticated Marking
Schemes for IP Traceback. In Proceedings of IEEE Infocom 2001, April 2001.

[SRR07] Sören Sonnenburg, Gunnar Rätsch, and Konrad Rieck. Large Scale Learning
with String Kernels. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston,
editors, Large Scale Kernel Machines, pages 73–103. MIT Press, 2007.

135

Bibliography

[SS09] Christian Seifert and Ramon Steenson. Capture-HPC Client Honeypot. In-
ternet: https://projects.honeynet.org/capture-hpc, Accessed:
March 2009.

[ST07] Sandeep Sarat and Andreas Terzis. Measuring the Storm Worm Network.
Technical report, Johns Hopkins University, 2007.

[STA01] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the Effectiveness of
DNS-based Server Selection. In Proceedings of 20th IEEE INFOCOM, 2001.

[Sta08] StarForce. ASPack – Best Choice Compression and Protection Tools for Soft-
ware Developers. Internet: http://www.aspack.com/, October 2008.

[STC04] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[Ste] Joe Stewart. Truman - The Reusable Unknown Malware Analysis Net.
http://www.lurhq.com/truman/.

[Ste07] Joe Stewart. Storm Worm DDoS Attack. Internet: http://www.
secureworks.com/research/threats/storm-worm, 2007.

[Ste08] Moritz Steiner. Structure and Algorithms for Peer-to-Peer Cooperation. PhD
thesis, Eurecom and University of Mannheim, December 2008.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detect-
ing Format String Vulnerabilities With Type Qualifiers. In Proceedings of the
10th USENIX Security Symposium, 2001.

[SWKA00] Stefan Savage, David Wetherall, Anna R. Karlin, and Tom Anderson. Prac-
tical Betwork Support for IP Traceback. In Proceedings of the 2000 ACM
SIGCOMM Conference, pages 295–306, August 2000.

[SWLL06] W. Timothy Strayer, Robert Walsh, Carl Livadas, and David Lapsley. Detect-
ing Botnets with Tight Command and Control. In Proceedings of the 31st
IEEE Conference on Local Computer Networks, November 2006.

[Sym] Symantec. Decoy Server. Internet: http://www.symantec.com.

[Sym06] Symantec. Mantrap. Internet: http://www.symantec.com/, Accessed:
2006.

[Tea08] WASTE Development Team. WASTE – An anonymous, secure, and en-
cryped collaboration tool. Internet: http://waste.sourceforge.net/,
October 2008.

[Tec08] Bitsum Technologies. PECompact2. Internet: http://www.bitsum.com/
pecompact.shtml, October 2008.

136

Bibliography

[The03] The Honeynet Project. Know Your Enemy: Sebek, November 2003. http:
//www.honeynet.org/papers/sebek.pdf.

[The05] The Honeynet Project. Know Your Enemy: Phishing, May 2005. http:
//www.honeynet.org/papers/phishing/.

[The07] The Honeynet Project. Know Your Enemy: Fast-Flux Service Networks, July
2007. http://www.honeynet.org/papers/ff/.

[Tho08] Thomas P. O’Brien. Two European Men Charged With Conspiring to
Launch Cyberattacks Against Websites of Two U.S. Companies. http:
//www.usdoj.gov/criminal/cybercrime/walkerIndict.pdf, Oc-
tober 2008.

[Tri07] Philipp Trinius. Omnivora: Automatisiertes Sammeln von Malware unter
Windows. Master’s thesis, RWTH Aachen University, Germany, October
2007.

[UML] The user-mode linux kernel home page. Internet: http://
user-mode-linux.sourceforge.net/.

[Uni07] United States District Court. Indictment: United States of America
vs. Lee Graham Walker and Axel Gembe. http://blog.wired.com/
27bstroke6/files/walker_indictment.pdf, December 2007.

[Vap98] V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[VBBC04] Nicolas Vanderavero, Xavier Brouckaert, Olivier Bonaventure, and Bau-
douin Le Charlier. The HoneyTank : A Scalable Approach to Collect Ma-
licious Internet Traffic. In Proceedings of the International Infrastructure
Survivability Workshop, 2004.

[VMC+05] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C.
Snoeren, Geoffrey M. Voelker, and Stefan Savage. Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm. In Proceedings of the ACM
Symposium on Operating System Principles (SOSP’05), 2005.

[VMw] VMware. Virtual infrastructure software. Internet: http://www.vmware.
com/.

[Wan09] Kathy Wang. MITRE Honeyclient Development Project. Internet: http:
//honeyclient.org, Accessed: March 2009.

[WBJ+06] Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski,
Shuo Chen, and Samuel T. King. Automated Web Patrol with Strider Hon-
eyMonkeys: Finding Web Sites That Exploit Browser Vulnerabilities. In
Proceedings of the 13th Annual Network and Distributed System Security
Symposium (NDSS’06), February 2006.

137

Bibliography

[WC07] Rhiannon Weaver and Michael Collins. Fishing for Phishes: Applying
Capture-Recapture Methods to Estimate Phishing Populations. In Proceed-
ings of 2nd APWG eCrime Researchers Summit, 2007.

[WFLY] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. Collisions for
Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. Short talk presented
at CRYPTO’04.

[WHF07] Carsten Willems, Thorsten Holz, and Felix Freiling. CWSandbox: Towards
Automated Dynamic Binary Analysis. IEEE Security and Privacy, 5(2), March
2007.

[Wil06] Carsten Willems. Automatic Behavior Analysis of Malware. Master’s thesis,
RWTH Aachen University, June 2006.

[YBP04] Vinod Yegneswaran, Paul Barford, and Dave Plonka. On the Design and
Use of Internet Sinks for Network Abuse Monitoring. In Proceedings of
the 7th International Symposium on Recent Advances in Intrusion Detection
(RAID’04), 2004.

[YR08] Ting-Fang Yen and Michael K. Reiter. Traffic Aggregation for Malware
Detection. In Proceedings of 5th Conference on Detection of Intrusions &
Malware, and Vulnerability Assessment (DIMVA’08), 2008.

[ZHH+07] Jianwei Zhuge, Thorsten Holz, Xinhui Han, Chengyu Song, and Wei Zou.
Collecting Autonomous Spreading Malware Using High-Interaction Honey-
pots. In Proceedings of the 9th International Conference on Information and
Communications Security (ICICS’07), pages 438–451, December 2007.

[ZHS+08] Jianwei Zhuge, Thorsten Holz, Chengyu Song, Jinpeng Guo, Xinhui Han,
and Wei Zou. Studying Malicious Websites and the Underground Economy
on the Chinese Web . In Proceedings of 2008 Workshop on the Economics of
Information Security (WEIS’08), June 2008.

138

