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Ŷ rc
t|t−∆t Vector of predicted yield of exposures at time t



List of Symbols XXI
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Chapter 1

Introduction

Credit business is the core business of banks. In general, credit risk represents the highest

risk exposures of a bank, compared to liquidity risk and market risk. Accordingly, accurate

measurement and effective management of credit risk is the major challenge in the attempt

to ensure the solvency and profitability of a bank. Financial institutions employ credit

portfolio models for credit risk measurement and management, risk-adjusted performance

measurement and economic capital allocation.

Within recent years, credit markets have experienced a dynamic evolution characterized

by a rich availability of funds to finance banks’ credit involvements, rising real estate

and equity prices as well as lending volumes, the emergence and exceptional growth of

markets for instruments of credit risk mitigation, the introduction of new risk-adjusted

capital standards for credit exposures, and the wide spread implementation and use of

complex credit risk models.

In the first years of this century, some central banks have eased the availability of funds

excessively by setting moderate interest rates and by increasing the money supply to

support economic growth. Combined with increasing asset prices, especially in many real

estate markets around the world, this expansion of money supply was accompanied by

increased volumes of banks’ lending activities.

The increase in lending volumes was accompanied by an exceptional growth in credit

assurance and credit securitization markets. Within the last decade, the volume of

outstanding credit derivatives has increased from almost zero to a notional amount of

62.17 trillion USD by the end of 2007, compared to equity derivatives of 10 trillion

USD of outstanding notional amount and 382 trillion USD of interest rate and currency

derivatives. In comparison, the total amount outstanding of the US bond market includ-

ing Treasury, municipal, corporate, money market, MBS, ABS and agency securities,

amounts to 30.14 trillion USD, with the European market being approximately of the

same size.
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The existence of active credit derivative markets and primary markets for credit securitiza-

tion has enabled banks to sell, buy, hedge and restructure their credit portfolio risk using

credit default swaps and structured asset-backed securities. From an ex post perspec-

tive, the complex credit risk modelling techniques available and the approved regulatory

standards used to determine risk-adjusted capital requirements seem to be responsible for

the overconfidence of banks in their ability to assess and manage the credit risk inherent

in their portfolios. Inadequate calibration, application and interpretation of credit risk

models caused by the complexity of models, methodological problems in the estimation

and quantification of dependencies of credit exposures, and, finally, a high tolerance for

credit risk has resulted in the accumulation of portfolio credit risk in banks’ portfolios

that is not properly reflected in credit risk measurement and management.

In recent years, many banks have eased their standards for granting loans. The possi-

bility of removing credit exposures from the balance sheet and of earning additional fee

income by marketing credit securitizations has encouraged some banks to abandon pru-

dent standards in granting loans, especially in some mortgage and consumer-financing

markets. Fostered by incentive systems based on an appraisal of short-term performance,

the objective of banks’ credit business activities has shifted from the origination and

management of on-balance held-to-maturity credit exposures to short-term transaction-

focussed origination and securitization activities. Furthermore, communication barriers

within banks and the functional separation of credit origination functions and credit anal-

ysis and monitoring functions seems to have precluded a consistent assessment of credit

risk exposures. Paradoxically, some credit exposures, which have been securitized and

marketed, have been removed from the balance sheet, while at the same time different

exposures of a similar risk profile have been added to bank portfolios from the credit

derivative market and the secondary credit markets.

The objective of financial markets’ supervisory agencies is to maintain the stability of

the financial system by imposing adequate capital requirements on financial institutions.

The revised regulatory framework on the ”International Convergence of Capital Measure-

ment and Capital Standards” BCBS (2006c) adjusts the fixed credit risk capital charges

originally imposed by the Basel Committee BCBS (1988) to more risk-adequate capital

requirements. It follows the successful implementation of a supervision process for banks’

market risk by switching from a quantitative type of banking regulation to a process-

oriented banking regulation based on banks’ internal models. If this change of paradigm

is conducted analogously for the capital requirements induced by credit risk, adequate pro-

cedures and methodologies for the accurate modelling and estimation of credit portfolio

risk must be available.
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The Basel Committee requires an adequate portfolio credit risk model to be conceptually

sound, empirically validated, and to produce capital requirements that are comparable

across institutions. Sound methodological concepts such as CreditmetricsTM described by

Gupton, Finger and Bhatia (1997), CreditRisk+TM CSFP (1997), CreditMonitorTM and

LossCalcTM , (Vasicek (1984) and Kealhofer (1998)), and CreditPortfolioViewTM by Wil-

son (1997a, 1997b) are readily available. Methodological comparisons of different credit

portfolio models as provided by BCBS (1999a), Crouhy, Galai and Mark (2000), Jarrow

and Protter (2004), and Eberlein, Frey, Kalkbrenner and Overbeck (2007). However, there

is still a fundamental need for reliable backtesting procedures to determine the adequacy

of internal credit risk models, both from an internal perspective and from the perspective

of the supervisory agencies.

This need is the starting point of this dissertation. In contrast to tests of the accuracy

of a models’ parameters, the backtesting of credit portfolio models assesses the adequacy

of a model to determine reliable capital requirements. The major and most important

contribution of this thesis to the literature is the development and empirical analysis of

a backtesting procedure to assess the adequacy of a credit portfolio model. This goal

is attained in three major steps. First, a firm-value-based risk-class model of credit

portfolio risk is presented. In the second step, an estimation procedure to determine the

parameters of the portfolio model is introduced. In the third and most important step, a

simple backtesting approach to assess the adequacy of the parameterized credit portfolio

model is developed and analyzed in an extensive simulation study.

A structural first-passage credit-valuation model based on the firm value model proposed

by Black and Cox (1976) is introduced for the valuation of defaultable exposures with

fixed periodic interest payments. In this model, a constant default threshold allows for

the predictable default of a loan at any time until maturity, so that credit default in-

dicates over-indebtedness and insolvency of obligors. For the first time in the literature

,a structural first-passage credit-valuation model is supplemented by a factor model to

create a risk-class-based credit portfolio model.

The estimation of the credit portfolio model encounters the problem that firms’ asset

values, the underlying of firms’ credit liabilities, cannot be observed at any point in

time. Because of their latent nature, asset values are estimated implicitly from observable

market prices of credit-risky instruments using a latent variable estimation approach.

The estimation of the credit portfolio model is based on weekly data from the European

corporate bond market. A clustering procedure is employed to group exposures into

risk classes. For each risk class, the term structures of defaultable zero-coupon bonds’

yield-to-maturities are fitted using the Nelson and Siegel (1987) parametric form.

A two-stage quasi-maximum likelihood estimator based on an Extended Kalman-Filter
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is applied to estimate the time series of latent systematic and specific factors and the

parameters of the corresponding stochastic processes using two non-linear state-space

models. In the first estimation step, process parameters and time series of an implicit

systematic factor are estimated for each risk class. In the pivotal second estimation step,

the process parameters of the asset value process and the coefficients of the systematic

factor process are simultaneously estimated for each risk class using the implicit systematic

factor series from the previous step.

For three variants of the credit portfolio model, the coefficients of orthogonal statistic risk

factors and, accordingly, the correlations of the asset values of different risk classes are

calculated using the coefficients of the systematic factors and the correlations between the

implied factor return series. The estimated asset value correlations are in line with alter-

native estimates of asset correlations presented by Akhavein, Kocagil and Neugebauer,

Dietsch and Petey (2002, 2004) as well as Düllmann and Scheule (2003) under comparable

model assumptions.

With respect to the empirical validation of credit portfolio models, specification tests of

parameter estimates must be differentiated from approaches that are used for backtesting

the adequacy of a model to achieve specified risk management objectives, such as ensur-

ing the solvency of a bank at a specific level of significance. Apart from this thesis, there

are only few comprehensive studies on backtesting the overall adequacy of credit port-

folio models to set capital requirements, such as the studies provided by Koyluoglu and

Hickman (1998b), Gordy (2000), Kern and Rudolph (2001), Frerichs and Löffler (2002),

Emmer and Tasche (2005), Nickell, Perraudin and Varotto (2001a), and Tasche (2006).

For general considerations regarding the backtesting of the adequacy of risk models, confer

Kupiec (2001, 2002, 2004).

Both, credit cycles and credit involvements of banks typically span periods of several years,

so that banks’ credit exposures often do not reveal their ultimate profitability until years

after the origination. Therefore, credit risk forecasts typically use long-term time horizons

and as a consequence, only few independent historical data on credit portfolio performance

are available for a statistical backtesting of credit risk models. However, within a given

time periods rich cross-sectional information is available on the performance of single

credit exposures.

The pivotal problem that has prevented the development of reliably backtesting proce-

dures in the past is this lack of sufficient independent time series data on portfolios’

credit performance. Observations of the credit performance are only independent if they

refer to different time periods, because within a given time period all credit exposures

are influenced by joint background factors that result in cross-sectional observations of

credit performance being dependent. Since conventional statistical inference relies on in-

dependent observations, model adequacy can only be tested conditionally on actual factor
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values. Furthermore, the backtesting of a conditional credit risk on the basis of the con-

ditional loss rates would omit that part of the credit portfolio model that controls for the

dependence of exposures and the variation of loss rates in time. In consequence, due to

this lack of time series data on credit portfolio performance, the conventional statistical

test theory is not applicable for the backtesting of credit portfolio models.

In the following, the development of techniques for backtesting the adequacy of uncondi-

tional Credit-VaR using a time series of few independent observations of credit portfolio

loss is omitted, because small sample inference on the basis of conventional statistical test

theory has proven to result only in a test of low power. Instead, the classical statistical

test paradigm which requires independent observations is dropped.

A simple traffic-light approach to backtesting the adequacy of credit portfolio models is

suggested. This approach relies only on the rich cross-sectional information of a credit

portfolio’s performance within a single time period as a test statistic for backtesting the

unconditional Credit-VaR.

The zone approach to the backtesting of market risk models is transferred to the backtest-

ing of credit risk models by replacing information in time with cross-sectional information.

A two-hypotheses test is formulated to check whether the observation of credit portfolio

loss complies with the assumptions of the model used by a bank, which must not be re-

jected, and a more prudent alternative model, which must be rejected by the test. Three

zones of model adequacy for portfolio credit loss are defined: a green zone of confidence

that the model being used is adequate, a yellow zone of indetermination regarding the

model adequacy, and a red zone of model rejection. The location of the green zone of

credit portfolio loss is critically determined by the applied level of significance and the

specification of the alternative model, particularly its correlation assumption.

The backtesting procedure is analyzed on the basis of a synthetic model setting with re-

spect to a variation of the model structure, the portfolio characteristics and some technical

assumptions made by the risk model. The examinations concerning the model structure

include the assessment of effects on the adequacy zones by a change of the default model,

the number of risk classes and the number of rating classes. Portfolio characteristics are

analyzed for variations in the time-to-maturity and default probability of loans, the size

of asset correlations, and the drift and volatility parameters of asset value processes. The

technical assumptions made by the risk model examined include the number of simulation

sub-intervals and the time horizon of the Credit-VaR forecast. The Credit-VaR and the

zone locations are examined based on two different definitions of portfolio loss, which refer

either to the unexpected credit loss as prescribed by the New Capital Adequacy frame-

work, or to the value of exposures at the time of the risk forecast, equal to the market

risk definition of loss.
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A pivotal result of this dissertation is the application of the backtesting procedure to the

three variants of the credit portfolio model that have been estimated using credit market

data. The resulting capital requirements comply with the core capital ratios typically

maintained by banks only for a significance level of Credit-VaR that is substantially lower

than the level implicitly presumed by the revised capital adequacy framework.

The results of the simulation study show that the structure and parameterization of the

portfolio model and the characteristics of the portfolio have a significant effect on Credit-

VaR and the zones of model adequacy. The location of the adequacy zones depends

primarily on the asset correlation and the granularity of exposures. Furthermore, the

definition of credit portfolio loss impacts Credit-VaR and the zone locations.

The robustness of the zone locations is examined with respect to variations in the time-to-

maturity, face value and default probability of exposures. The impact of drift rate, asset

volatility and the structure of risk classes is assessed. A comparison of the backtesting

zones for a homogenous portfolio and for heterogenous portfolios of loans reveals that the

diversification of the portfolio characteristics and increasingly detailed risk class structures

improve the discriminatory power of the backtesting.

The risk of a deterioration in credit quality and a corresponding decline in the market

value of credit exposures is included in the definition of the credit performance. As a

consequence, the Credit-VaR exceeds the capital requirements of the IRB approach of the

revised Capital Standards.

The proposed test is easily applicable and computationally feasible. It requires minimal

data and can be used in principle independently of the credit risk model, as it does not refer

to parametric or structural model assumptions. In contrast to the backtesting of market

risk models, an unambiguous location of test zones independent of portfolio characteristics

and model specifications cannot be achieved when backtesting the adequacy of portfolio

credit risk models.

The dissertation is organized as follows. In Chapter 2, fundamental concepts, components

and methodologies of credit risk models are introduced. Particularly, different mark-to-

model-based definitions of credit portfolio loss are discussed and a simple traffic-light

approach to backtesting the adequacy of credit portfolio models is suggested.

Chapter 3 starts with a review of the academic literature on single-name credit-valuation

models and credit portfolio models. A structural first-passage credit valuation model for

defaultable claims with fixed deterministic cash flows is presented, and the characteris-

tics of the model are assessed using a comparative-static analysis. The structural credit

portfolio model used in subsequent chapters is defined as a multi-variate risk-factor-based

extension of the single-name credit valuation model introduced above, in which credit

dependence is modelled by a system of systematic and specific factors.
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Chapter 4 includes the clustering of risk classes, the fitting risk classes’ term structures of

interest rates, and the Kalman Filter-based quasi-maximum likelihood estimation of the

systematic and specific factors of risk classes. After a calibration of the coefficients of the

risk-class factor model, estimation results for three representations of the credit portfolio

model are discussed.

Finally, in Chapter 5, the backtesting approach is applied based on simulated distribu-

tions of credit portfolio loss. The backtesting procedure is specified by setting the level

of significance of the two test hypotheses and by defining the alternative model to be

rejected. Credit-VaR and the adequacy zones of the credit portfolio loss are examined

for different discretionary specifications of the credit portfolio model and for the different

characteristics of the portfolio. Credit-VaR and the adequacy zones of the backtesting

are discussed for the portfolio models whose parameters have been estimated in the pre-

ceding chapter. In Chapter 6, the fundamental results are summarized and evaluated.

Prospective research topics are recommended.





Chapter 2

Introduction to Credit Risk

Management

Financial institutions use a variety of different concepts to manage credit portfolio risk. A

general overview of concepts, methodologies, procedures, systems and standards of credit

risk modelling is presented in accordance with the definitions and requirements of the

revised capital adequacy framework set forth by the Basel Committee (BCBS (2006a)).

2.1 General Framework of Credit Risk Management

2.1.1 Procedural and Organizational Standards

The implementation of an appropriate and reliable credit risk management framework

is the prerequisite of a reliable credit risk measurement. In the following, best practice

procedural and organizational standards in the credit risk management of banks are pre-

sented. These standards represent the basis for the modelling, estimation and backtesting

of portfolio credit risk models in subsequent chapters. The following delineation is based

on the requirements defined by the Basel Committee.1

The Basel Committee on Banking Supervision requires banks to maintain appropriate

information systems and processes to identify, measure, monitor and control credit risk

exposures in size, quality and composition. By definition, credit exposures comprise

all contractual arrangements on and off the balance sheet that involve deterministic or

contingent future payments to be received from a contractual partner, such as bonds,

loan arrangements, credit facilities, credit card obligations and contingent claims with

counterparty risk arising from OTC derivative contracts in the trading book.

1 Cf. BCBS (1999b, 2000a, 2000b, 2005c, 2005d, 2006b, 2006d, 2006e).
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A credit risk strategy of a bank is set and approved by the board of directors and im-

plemented by senior management. Credit risk strategies, policies, processes and limits

should be documented, regularly reviewed, updated and communicated throughout the

bank. Credit risk systems provide timely and accurate information for the analysis, ac-

counting, provisioning and capital requirements of credit exposures.

The credit risk management of a bank covers the ongoing identification, origination, ad-

ministration, measurement and monitoring of all on- and off-balance sheet credit expo-

sures. An effective credit management involves lending controls and limits as well as a

comprehensive reporting process. Credit risk management implements an adequate di-

versification of credit portfolios and ensures that exposure limits to single counterparties,

groups of connected counterparties, particular industries or economic sectors, geographic

regions and specific products are set and complied with. Concentrations of credit risk are

managed by means of concentrations limits and risk mitigation techniques such as col-

lateralization, third-party guarantees, credit derivatives, securitization programmes and

secondary credit markets. All credit-risk- related processes are performed in a timely, pe-

riodical and consistent way. Risk assessment, monitoring and control functions are clearly

separated from risk-taking functions of the bank.

Credit origination includes the analysis, granting and approval of credit exposures. A

formal process to decide on and approve the origination or the renewal of credit expo-

sures on an arm’s length basis is defined. Policies for the origination of credit exposures

determine functional and personal responsibilities in terms of amount and product type.

Senior management approves large credit involvements that exceed a certain amount or

percentage of banks’ capital.

The main objective of credit analysis is to assess the risk-reward profile of prospective and

current credit engagements to foreclose that loans are granted or extended on a subjective

basis or non-risk-adequate credit pricing due to personal or commercial affiliations to

borrowers takes place. The effectiveness of credit analysis is based on the quality, detail

and timeliness information is recorded and processed. Often, a comprehensive initial

credit analysis is limited by time constraints caused by competitive pressure. An ongoing

credit re-assessment implements the early identification of deteriorating assets, is used

to determine loan loss provisions in a timely manner, and monitors problem assets and

collections on past-due obligations.

Credit analysis accounts for business-cycle effects using stress tests and scenario analysis,

that examine economic or industry downturns, market-risk events and liquidity conditions.

The counterparty risk of market-risk sensitive exposures, particularly of derivatives that

do not constitute original credit exposures, are analyzed for the counterparties’ willingness

and ability to pay. Third-party guarantees or credit facilities that are sensitive to the

liquidity of credit markets are analyzed for the borrower’s vulnerability to financial stress,
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which may threaten its debt-serving capabilities as well as its financing needs.

Credit policies specify the information and methodologies used to assess the credit risk of

exposures. Methodologies such as internal rating systems quantify and classify the credit

risk of individual exposures. The valuation, classification and provisioning of large credit

risk exposures is conducted on an individual basis considering all available information

on the obligor and the engagement itself, including credit covenants and means of credit

risk mitigation. Periodical re-assessments of credit involvements ensure that specific and

general loan loss provisions and write-offs adequately absorb expected credit losses and

reflect realistic repayment and recovery expectations.

Internal credit risk rating systems support the origination, risk measurement, monitoring

and administration of individual credit exposures by assessing the ability and willingness

of borrowers to meet contractual financial obligations. Rating systems differentiate the

degree of credit risk of exposures and allow for a more accurate control of problem ex-

posures, risk concentrations, capital allocation, pricing of credit exposures and determine

risk-adjusted performance of exposures, adequacy and loan loss provisions. Typically,

credit exposures are categorized into classes of different risk levels considering all rele-

vant indicators of an actual or a potential deterioration of the credit risk of the exposure

and the borrower. For each risk class estimates of he probability of default (PD), the

exposure-at-default (EAD) and the percentage loss-given-default (LGD) of exposures are

provided and reviewed at least annually. Rating migration, default and loss experience

of the bank’s own credit portfolio and credit market data from rating agencies as well

as market observed credit spread data are used to estimate these parameters. Rating

systems provide historical information on credit exposures and information that indicate

the solvency of borrowers for a time period of several years, ideally spanning a complete

economic cycle. If pooled data is used, methodological differences in the definition of data

is taken into account. Structural changes in credit markets and the time-inhomogeneity

of market-derived parameters are addressed by a frequent updating of the estimates of the

relevant parameters. Means of credit risk mitigation including guarantees and collateral

is re-assessed periodically.

Portfolio credit risk models provide measures of portfolio credit risk that reflect the over-

all credit risk of exposures more accurately than the aggregate of single-exposure capital

charges. The advantages of credit portfolio models compared to a single-exposure-based

credit risk assessment include: (1) the implementation of a centralized exposure man-

agement, (2) the analysis of marginal and absolute contributions of single exposures to

portfolio credit risk, (3) portfolio-specific estimates of unexpected credit loss, including

the quantification of concentration effects in credit risk, (4) improvements in system and

data collection efforts, (5) the consideration of portfolio risk in setting limits, reserves

and risk-return-based credit pricing, (6) the implementation of a company-wide consis-
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tent economic capital allocation, (7) improved correspondence of regulatory and economic

capital requirements.

Banks are assumed to be proficient in the methodologies, capabilities and limitations of

the credit risk model used, especially if it is a vendor model. The definition of key model

parameters and the sensitivity of credit risk measures to changes in parameters are as-

sumed to be understood and considered in operational credit risk assessments. Reasonable

structural consistency between model setup and data used for model estimation and the

bank’s portfolio must be ensured. Since model estimation often remains proprietary to

vendors, banks typically face the challenge of adapting the bank’s credit portfolio to the

structural requirements of an external model.

Banks’ business strategies often aim for a specialization in narrow segments of credit

markets, which inherently leads to concentrations of credit risk. Apart from risk concen-

trations the correlation of seemingly unrelated risk components can pose a threat to the

solvability of banks, for example, the financial strength of a borrower and the liquidity

of the market for its collateral assets may be correlated. Policies on the acceptability of

various forms of collateral, procedures for the ongoing valuation of such collateral and a

process to ensure that collateral is and continues to be adequate, enforceable and realizable

are required to be in place.

In the process of credit monitoring credit exposures are segmented according to the grade

of credit risk, type of loan, geographical location, collateral type and past-due status.

The composition and quality of the overall credit position, including the identification

of risk concentrations, is monitored. For each exposure, the monitoring system provides

the current financial conditions of the borrower or counterparty, compliance with existing

covenants, an assessment of collateral coverage, the identification of contractual payment

delinquencies, loss provisions incurred and a classification of potential problem exposures.

Effective exposures are monitored against established limits. Meaningful exposure limits

are set on the basis of forward-looking stress tests and effective measures of potential future

exposures. Limit monitoring involves netting agreements with specific counterparties.

All functions in credit risk origination, analysis, management and monitoring are required

to be subject to periodical controls by operational credit risk review functions, an inde-

pendent internal audit department and external supervisors. The criteria used to evaluate

the quality of the credit functions are effectiveness, accuracy, timeliness and documen-

tation of policy compliance, model estimation, exposure administration and information

processing.
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2.1.2 Conceptual Standards in Credit Risk Modelling

Fundamental concepts of credit risk modelling differ between (1) a credit risk assessment

conditional and unconditional on economic conditions, (2) an actuarial versus a mark-

to-market consideration of credit risk, (3) expected and unexpected loss of defaultable

exposures, and (4) the concepts of risk-adjusted discounting and risk-neutral valuation.

Conditional vs. Unconditional Credit Risk Models

Reflecting the background conditions on credit risk a general framework for modelling

credit portfolio risk involves:2

• conditional credit performance

• dependence model of credit risk

• unconditional credit performance

The performance of a credit portfolio as measured in terms of default rate, credit loss,

total net revenues or changes in portfolio value over a time interval, fluctuates in time,

reflecting the variation of economic background factors that jointly affect the economic

prospects of all obligors in the portfolio. Conditional on effective economic conditions,

credit performance such as credit defaults of individual obligors, are assumed to be inde-

pendent in a period as economic background factors jointly affect the variation of obligors’

credit risk only in time. Conditional credit risk measures account for the effective eco-

nomic conditions and represent the credit risk of obligors in a specific period.

The dependence of exposures’ credit risk is typically incorporated by a parametric model

of factors that jointly control for an exposure’s credit risk indicating variables. Factors

may be of statistical, macro-economic or business-specific nature. The strength of the

dependence between the credit risk of single exposures is reflected by the strength of the

variation of default rates in time. Credit portfolio models incorporate the dependence of

exposures’ credit quality in predicting credit portfolio risk.

The expected unconditional credit performance represents a long-run average of credit

performance across the full range of probable economic conditions. A distribution of

unconditional credit performance is obtained by aggregating the respective conditional

credit performance multiplied with the probability of the conditioning state-of-economy

over the range of possible economic conditions. Risk forecasts generated by unconditional

models do not explicitly refer to current economic conditions, so that risk parameters

involve a through-the-cycle representation. However, risk models used in the banking

sectors typically adapt the estimation of through-the-cycle parameters by emphasizing

2 Cf. Koyluoglu and Hickman (1998a, 1998b)



14 CHAPTER 2 - Introduction to Credit Risk Management

more recent market conditions, thus taking a hybrid approach concerning the conditioning

of risk forecasts.

Through-the-cycle credit risk considerations are not meaningful if a short-term credit risk

forecast is required. Instead, conditional credit risk models are forward-looking in nature,

as they rely on current or predicted future economic conditions up to the time horizon of

the risk forecast. Clearly, the economic conditioning of parameter estimates must coincide

with the assumption of the respective risk model application. Conditional risk forecasts

are typically performed by macroeconomic factor models as presented in Section 3.4.1.

The ability of conditional models to provide adequate forecasts of credit risk is closely

related to the accurate prediction of future economic conditions, so that prediction failures

or unexpected changes in business prospects result in biased credit risk projections.

Actuarial vs. Mark-to-market based Credit Risk Models

The actuarial concept of credit risk recognition considers a discrete state-space of credit

quality that refers to a real-world probability measure. In actuarial models state-specific

amounts of exposure and credit loss are typically specified, but no explicit valuation

of credit exposures takes place. Mostly a default-only paradigm is implemented, where

credit loss is only incurred if a borrower defaults on its contractual obligations, and

the effective loss is defined as the difference between the bank’s exposure set in terms

of the notional amount of the outstanding claim, and the present value EAD(1-LGD)

of expected net recoveries. Since, the actuarial definition of credit loss does not take

into account a deterioration of credit quality, unrealized economic losses from an adverse

change of mark-to-market values of credit involvements are ignored and may accumulate

in credit portfolios.

In the mark-to-market framework, additionally, deteriorations in the credit quality of ex-

posures unequal to a credit default are reflected. Credit-risky exposures are explicitly

valued using a valuation model that is calibrated either to reproduce market-observed

values of credit exposures or to provide mark-to-model values for exposures without ob-

servable market indications of the credit risk in question. The value of a credit exposure

depends either on a continuous credit-risk-indicating state variable or a discrete multino-

mial credit score, such as a rating. Credit performance is defined on the basis of exposures’

change in credit value within a specified period. Rating-based valuation models derive

credit values from the rating of an exposure and consider obligor default as a specific

rating state.

Expected vs. Unexpected Credit Loss

The expected credit loss EL = PD · EAD · LGD of an exposure is defined by the

estimates of the probability of default, the exposure-at-default and the loss-given-default.

The unexpected credit loss (UL) of an individual exposure or a credit portfolio is typically
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defined as the standard deviation of the (portfolio) credit loss.3 In the determination of

unexpected credit portfolio loss, mutual correlations of default events, exposures and loss

rates must be considered for each borrower as well as between borrowers. Expected and

unexpected loss typically refer to a one-year time horizon. Obviously, the time horizon

and the definition of default must coincide in the estimation of PD, EAD and LGD for

loss estimates to be conclusive.

Risk-adjusted Discounting vs. Risk-neutral Valuation

Credit valuation models either involve the risk-adjusted discounting (RAD)4 of contractual

cash flows under a real-world probability measure using credit-risk adjusted rates or the

risk-neutral valuation (RNV) of defaultable cash flows under a risk-neutral probability

measure to determine current and prospective future credit values.

RAD of non-publicly traded credit exposures relies on the classification of exposures with

homogenous credit risk characteristics into risk classes and requires discount rates of a

class-specific term structures that represents the average credit risk of the class. Risk

classes are typically defined on the basis of the rating of exposures or obligors. However,

exposures of the same rating grade may vary substantially with respect to the expected

LGD of exposures, the migration probabilities or the sensitivity to changes in systematic

risk factors, so that valuation errors may arise by using a term structure of discount

factors that is homogenous for all exposures of a risk class.

Risk-neutral models may circumvent this short-coming. Risk-neutral valuation (RNV)

refers to models of a state- and time-continuous credit risk indicating state variable under

a risk-neutral probability measure. From the stochastic properties of this credit risk indi-

cating variable risk-neutral survival and default probabilities can be derived that enable,

in a complete market setting, the discounting of default state dependent cash flows using

a risk-free interest rate. Models that incorporate risk-neutral valuation include structural

firm-value models and reduced-form models of an exponential-affine default intensity.

The way credit events are triggered constitutes the elementary difference between the two

model types.

Structural models incorporate a microeconomic interpretation of the firm, with default

only triggered if the value of a firm’s assets is not sufficient to serve its financial obligations.

From the dynamics of the firm value risk-neutral probabilities of default and survival are

3 Cf. Ong (1999), p. 113.

4 Cf. Gupton et al. (1997).
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calculated that enable the risk-neutral discounting of probability-weighted cash flows.5

In the reduced-form framework, credit default is typically triggered by an exponentially

distributed default time with an instantaneous default intensity parameter that has no

economic analogy. From the distributional properties of default intensities discount factors

that incorporate default risk of an exposure can be derived.

The data used for model estimation substantially affects the appropriateness of both

model types. Whereas structural models are more convenient for credit risk applications

which are based on macroeconomic and fundamental firm data, intensity models are more

suited to a model calibration from market prices of credit risk. A detailed comparison of

the competing classes of credit valuation models is given in Section 3.1.

With respect to application issues, RAD and RNV mainly differ in the way discount factors

are calculated. RAD models explicitly use market-derived discount factors, whereas RNV

is based on parametric models which need to be calibrated to reproduce observed credit

spreads, for example in the credit default swaps (CDS) market or the corporate bond

markets. RNV models are vulnerable to erroneous specifications and estimation errors

and strongly rely on time series of credit market data for the estimation of the model,

whereas the non-parametric RAD approach makes minimal use of modelling assumptions

but presents estimation problems in the portfolio context.

2.2 Supervisory Framework of Credit Risk Management

2.2.1 Capital Adequacy Framework

Supervisory agencies set minimum capital adequacy requirements to ensure an adequate

capital endowment of financial institutions. Banks are required to calculate and con-

sistently maintain a minimum capital adequacy ratio. A revised framework for capital

measurement and capital standards was passed by the Basel Committee in 2004 to im-

prove the coherence of capital requirements with the risk inherent in the financial positions

of financial institutions and to specify balance sheet items as regulatory capital according

to their ability to absorb losses. Banks are required to adopt a forward-looking approach

to capital management and to set capital levels in anticipation of possible adverse events

or changes in market conditions.

5 Structural models of credit risk typically incorporate the principle of no-arbitrage valuation, which
involves the dynamical replication of uncertain state-dependent cash flows of an asset in a complete
market using a self-financing trading strategy. By generation of a dynamically riskless position consist-
ing of the risky asset and its replication portfolio, resulting cash flows are discounted at a riskless rate.
The basic principles of no-arbitrage theory and risk-neutral valuation are outlined in Neftci (1996) and
Baxter and Rennie (1996). A more rigorous treatment is found in Karatzas and Shreve, (1988, 1998)
and Musiela (1998).
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The definition of bank capital eligible for regulatory purposes is defined in the Basel

Capital Accord BCBS (1988) and its Market Risk Amendment BCBS (1996a). Regula-

tory eligible capital is divided into core capital (tier-I capital) and supplementary capital

(tier-II capital). Core capital includes equity capital and disclosed reserves from post-

tax retained earnings and is required to constitute at least 50% of regulatory capital.

Supplementary capital amounts to the size of tier-I capital at most, and includes undis-

closed reserves, revaluation reserves, general loan loss provisions, hybrid debt capital

instruments and subordinated term debt. Goodwill and investments in non-consolidated

financial subsidiaries and significant corporate investments are deducted from core cap-

ital.6 The Market Risk Amendment establishes an additional tier-III capital consisting

of short-term subordinated debt, which is exclusively determined to cover market risk.7

Regulatory capital is measured against risk weighted assets. This total capital ratio must

not fall below the level of 8%; for the core capital ratio a minimum of 4% is obligatory.8

Specific capital requirements such as capital multipliers or position limits can be imposed

by supervisory agencies on all material exposures.

Capital standards differ financial instruments into banking book exposures and trading

book exposures. Banks must have clearly defined policies and procedures to determine

which exposure to include and exclude from the trading book for capital adequacy pur-

poses and risk management. The trading book consists of positions in financial instru-

ments and commodities held either with the intent of trading or as a hedge of other

positions in the trading book. Financial instruments constitute either assets or liabil-

ities and involve primary financial claims and derivative instruments. Financial assets

include cash, the right to receive cash or another financial asset, equity investments or

the contractual right to exchange financial assets at potentially favorable terms. Finan-

cial liabilities subsume contractual obligations to deliver cash or another financial asset

or the exchange of financial liabilities under conditions that are potentially unfavorable.

Positions held with the intent of trading are projected for short-term resale to profit from

actual or expected short-term price movements or to lock-in arbitrage profits and include

proprietary positions and positions arising from client servicing and market making.

The extent to which an exposure can be marked-to-market on a daily basis by means

of reference to an active, liquid two-way market determines the eligibility of an expo-

sure as trading position. Basic requirements to qualify positions for trading book capital

6 Cf. BCBS (1988), p. 3ff and BCBS (2005b), p. 10

7 Cf. BCBS (1988), p. 3ff including Annex I, p. 17ff, as well as BCBS (1996a), p. 7f. for a rigorous
definition of eligible capital.

8 The calculation of risk-weighted assets and the regulatory requirements for the use of internal models in
the calculation of the market risk and the specific market risk charge are outlined in BCBS (1988) and
BCBS (1996a), respectively. Numerous amendments and newsletters further detail the applications of
risk weights.
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treatment include (1) a clearly documented trading strategy, (2) position limits appro-

priately set and monitored, (3) daily mark-to-market or at least a daily assessment of

model parameters in the case of mark-to-model valuations, (4) positions actively mon-

itored, managed and reported on a daily basis, (5) ability of the bank to identify and

hedge the material risks of the exposure, (6) external validation of a bank’s own valuation

of mark-to-model exposures.

Positions in the bank’s own eligible regulatory capital instruments are deducted from

capital. Trading positions in other financial institutions’ eligible regulatory capital in-

struments will be deducted from capital at the discretion of supervisory agencies. In-

ternal hedges of banking book credit exposure using trading book credit derivatives do

not qualify for the mitigation of capital requirements unless the bank purchases credit

protection from an eligible third party. Interest rate risk in the banking book is subject

to the supervisory review of pillar-II of the revised standards.

Banking book positions subject to the treatment of the revised capital standards are

basically categorized into five classes of corporate, sovereign, bank, retail and equity ex-

posures. Within the corporate asset class, there are five sub-classes of specialized lending

(project finance, object finance, commodities finance, income-producing real estate and

high-volatility commercial real estate). Bank exposures include exposures to banks and

securities firms.

The capital standards differ between expected loss (EL) and unexpected loss (UL) of

exposures.9 Unexpected loss is defined as the amount by which the incurred credit loss

exceeds the expected loss. The amount of available regulatory (economic) capital is

specified by supervisory agencies (banks) to cover unexpected credit loss. In order to

assess the adequacy of capital, the capital endowment of financial institutions is compared

to the experienced credit loss. Economic capital constitutes the capital available to achieve

a target insolvency rate and to cover the predicted unexpected losses.10 The majority of

banks handle economic and regulatory capital requirements independently, however, a few

banks include the cost of regulatory capital in their credit pricing methodology, thereby

increasing the expected loss.

The revised capital standards enable banks to choose between four approaches to de-

termine the capital requirements for their credit risk. First, financial institutions may

stick to the established capital requirements set forth in the original Basel Accord of 1988

and its amendments. Second, under a standardized approach, risk weights of defaultable

exposures refer to obligor ratings provided by external rating agencies. The two internal-

rating-based (IRB) approaches rely on banks’ internal assessment of the risk components

9 Cf. BCBS (2006c), p. 86f.

10Cf. BCBS (1999a), p. 14.
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PD, LGD and EAD in determining the capital charges of exposures. The foundation IRB

approach requires that banks use internal PD estimates derived for obligors of a partic-

ular rating class, whereas supervisory agencies provide estimates of LGD, EAD and the

effective maturity of exposures. A reference LGD of 45% for senior unsecured claims and

75% for subordinated claims is mandatory. The effective LGD of collateralized exposures

is calculated by adjusting the reference LGD to the exposure net of the collateral. Under

the advanced IRB approach, the bank’s own estimates of PD, LGD and EAD from an

internal credit assessment process are used and an effective maturity is calculated for each

exposure. PD must refer to a one-year time period and will be set to 100% for obligors

in default. LGD estimates must refer to specific EAD estimates.

Partial use of the IRB approach to cover only a few particular asset classes is permissible.

The percentage capital requirement (CR) of an exposure is defined as the eligible capital

required per monetary unit of a single exposure and takes into account PD, LGD, the

correlation of defaults and a maturity adjustment.11 The risk-weighted assets (RWA) are

calculated by RWA = CR · EAD · 12.5. For small and medium size corporate borrowers,

an RWA discount is incorporated using a reduced correlation assumption. The total

risk-weighted assets aggregate the market risk, operational risk and credit risk RWA of

exposures. An additional scaling factor at the discretion of supervisory agencies generates

the aggregate level of minimum capital requirements.

Risk-weight functions provide capital requirements for UL, whereas EL is covered by credit

loss provisions. A loss provisioning methodology identifies exposures to be evaluated for

impairment on an individual basis. Impairments of individual loans result in specific

loan-loss provisions, whereas collective impairments induce general-loss provisions. Loss

charge-offs and recoveries must be carried out in accordance with the applicable accounting

framework.

The total eligible provisions include specific provisions, partial write-offs, discounts on

defaulted assets and portfolio-specific provisions, such as country risk or general-loss pro-

visions. A positive difference between total eligible provisions and total expected loss can

be allotted to tier-II capital under the IRB approach, whereas the standardized approach

allows only the to inclusion of general provisions in tier-II capital.

Loans not subject to individual impairment must be grouped and impaired collectively.

Factors likely to alter credit loss as compared to historical loss experience such as (1)

changes in lending policy, (2) changes in relevant economic, business or market conditions,

(3) changes in trend, volume and severity of past-due and low-quality loans, and (4)

changes in the quality of the loan review system, should be considered in collective loss

provisions.

11Cf. BCBS (2005b), p. 60.
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Instruments of credit risk mitigation can be used to adjust PD, LGD or EAD estimates

in a consistent way to lower capital requirements. Instruments of credit risk mitigation

include third-party guarantees, collateral, securitization, credit derivatives and netting

agreements and may generate types of risk that make risk reduction less effective. Credit

mitigation risks include the inability to seize pledged collateral in a timely manner, refusal

or delay by a guarantor to pay as well as legal, documentation and liquidity risk. The

counterparty risk of trading exposures is covered as specific market risk under provisions

of the market risk amendment (BCBS (1996a)).

On- and off-balance sheet exposures must be measured gross of specific provisions or

partial write-offs. The EAD of facilities must not be less than the amount currently

drawn. For on-balance sheet items, the netting of loans and deposits is recognized, with

special adjustments for currency and maturity mismatches.12 For off-balance-sheet items,

the exposure is calculated as the committed but undrawn amount multiplied by a credit

conversion factor depending on the type of instrument.13 Effective maturity is set to 2.5

years using the foundation approach. Using the advanced IRB approach, the effective

maturity calculates as McCauley-Duration given a zero yield-to-maturity. If contracted

payments are not specified explicitly, the time-to-cash flow of the last payment is used as

an alternative.

2.2.2 IRB Minimum Requirements

Minimum requirements for the use of the IRB approach include, amongst others, corpo-

rate governance, organizational, procedural and system standards, the methodology and

operation of a rating system, the validation of procedures and system calibration including

the estimates of risk quantities, as well as disclosure requirements.

As part of the loan approval process, a rating is assigned to each (potential) borrower

or exposure. Rating assignments and periodic rating reviews are carried out by a credit

analysis function that does not directly profit from taking credit risk exposures. An

effective process must be in place for obtaining and updating all credit-risk-relevant and

material obligor- and exposure-specific information in a timely way. Ratings must be

reviewed and updated whenever relevant new information is received, at least annually.

A bank must have specific rating definitions, processes and criteria for assigning exposures

to classes within a rating system. The term rating systems includes all methods, processes,

controls, and data collection and IT systems that support the assessment of credit risk,

the assignment of internal ratings and the quantification of default and loss estimates.

12BCBS (2006d), p. 45ff.

13BCBS (2005b), p. 22f.
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Theory, assumptions and methodologies of the rating process must be documented as

well as the empirical basis and statistical and mathematical methods used. Documented

class descriptions and criteria must be clear and detailed enough to make possible a

consistent assignment of rating grades to borrowers of similar risk. The rating criteria

must be consistent with the bank’s lending standard and must be applied consistently

across business lines and geographical regions. All relevant and material information

available must be used in the rating process.

A rating system which qualifies for the IRB approach must consider obligor-specific as

well as transaction-specific risk factors. Obligor-specific risk factors determine an iden-

tical obligor rating for any transaction against the obligor, irrespective of its specific

nature. Transaction-specific factors include collateral, seniority, product type and third-

party guarantees. Under the advanced IRB approach, transaction-specific factors must be

reflected exclusively in the LGD estimates, whereas PD estimates incorporate the obligor-

specific default risk, so that a cross-default clause is incorporated. Under the foundation

approach, LGD are equal for each obligor in a risk class.

A minimum of seven non-default grades and one default grade is mandatory. The spec-

ification of risk classes must avoid a concentration of the credit portfolio in a particular

market segment or range of default risk. For LGD estimates, there is no specific number

of LGD classes that is obligatory under the advanced IRB approach, however, grouping

exposures into a single risk class with a widely varying LGD must be avoided.

Banks must have independent credit risk control units responsible for the design, selec-

tion, implementation and performance of internal rating systems. Credit risk control must

be functionally and personally independent from management functions responsible for

originating exposures. Credit risk control includes the testing and monitoring of inter-

nal ratings, the production and analysis of summary reports including historical default

statistics, rating migration analysis, controls to ensure the consistent application of the

rating process across departments and geographic entities, as well as the review and doc-

umentation of changes in the rating process. Furthermore, the credit risk control unit

must actively participate in the development, selection, implementation and validation of

rating models.

The variables of a credit scoring model must be reasonable predictors of credit risk. The

model must be accurate on average across the range of bank’s obligors and foreclose

any material bias. A process must be in place to secure the quality of data inputs for

its accuracy, completeness and appropriateness must be in place. The data used for

model estimation must be representative of the population of banks’ actual borrowers and

exposures. Regular model validations include the monitoring of the model’s performance,

a stability review of model relationships and the testing of model outputs against realized

outcomes. A rigorous statistical validation process, including out-of-time and out-of-
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sample tests, must be established.

Although default probabilities refer to a one-year period, a longer time horizon is to be

considered in rating assignments. A conservative through-the-cycle rating standard is re-

quired, where a borrower rating represents the bank’s assessment of the borrower’s ability

and willingness to fulfil its contractual obligations under stress scenarios of unfavorable

economic conditions. The range of economic conditions included in the calculation must

be likely to occur during a business-cycle in the industry sector and/or geographic region

in question and be consistent with the current state of the economy. Credit scoring models

and other standardized rating procedures generally utilize only a subset of the relevant in-

formation. Mechanical credit scoring is another source of rating errors. Experienced skills

are required to ensure that all relevant and material information, including information

outside the scope of the scoring model, is appropriately taken into account.

Banks using the advanced IRB approach must estimate a PD for each risk class of cor-

porate, sovereign and bank exposures. Default probabilities must represent a long-run

estimate of the one-year default rates in each class. Additionally, an appropriate LGD

and long-run default-weighted EAD must be estimated. Internal estimates of PD, LGD

and EAD must incorporate all relevant, material and available information from internal

and external sources. The population of exposures in the estimation data should closely

match the current exposure of the bank in terms of the relevant characteristics. Estimates

must be based on historical experience and sufficient empirical data for the bank to be

confident of the estimates’ accuracy and robustness.

Exposures limits for single counterparties or groups of related counterparties must be

established and monitored on a frequent basis. Aggregate limits of large exposures are

recommended.

Credit risk concentrations arise from (1) exposures to counterparties in the same economic

sector or geographic region, (2) exposures to counterparties whose financial performance is

dependent on the same activity, and (3) credit risk mitigation involving a single collateral

type or a single provider of credit protection. Concentration limits should be defined in

relation to the bank’s capital, total assets or overall risk level. Periodic stress tests of major

credit risk concentrations should be conducted. Counterparty risk management should

include the identification, measurement, management, approval and internal reporting

of counterparty credit risk. CCR must take into account market, liquidity, legal and

operational risk factors.

Credit risk management involves credit scoring, estimating and measuring of credit risk,

as well as stress testing and the validation of the quality of credit risk assessment models.

An independent credit review process that involves a credit evaluation system must be

consistently applied and identifies changes of credit risk characteristics in a timely man-
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ner. Independent internal audit functions review the estimations of PD, LGD and EAD

on at least an annual basis. Rating and estimation systems designed and implemented

exclusively to qualify for the advanced IRB approach are not accepted by supervisory

agencies. A three-year track record is mandatory to gain supervisory recognition of a

rating system for the advanced IRB approach.

Banks must have a robust system in place to validate the accuracy and consistency of

rating systems, processes, and the estimation of all relevant risk components. Banks

must regularly compare actual default rates with estimated PD for each risk class and be

able to demonstrate that the actual default rates are within the expected rage for that

class. Under the IRB approach banks, must complete such analysis for their estimates

of LGD and EAD using historical data. The assessment of the performance of banks’

own rating systems must be based on long data histories, covering a range of economic

conditions and, ideally, one or more complete business-cycles. Banks must demonstrate

that quantitative testing methods and other validation methods do not vary systematically

with the economic cycle.

Stress tests must be used to assess capital adequacy. Stress testing must involve the

identification of possible future changes in economic conditions with possible unfavorable

effects on credit exposures. Appropriate scenarios include economic or industry down-

turns, market risk events and market illiquidity. The objective of stress tests is not to

consider worst-case scenarios, but rather, scenarios of mild recession to assess their effect

on PD, LGD and EAD estimates. The effect of stress conditions on regulatory capital

adequacy must be assessed. Effects of the rating migration of obligors and the worsening

of the bank’s own rating should be considered in stress tests as well.

2.2.3 IFRS Accounting Framework

Accounting standards affect the earnings, risk and capital adequacy ratios of financial

institutions and thus interact with capital requirements. The International Financial

Reporting Standards (IFRS) are mandatory for financial institutions within the European

Union. The supervisory definition of eligible regulatory capital refers to balance sheet

items that are subject to accounting standards. Capital standards rely on a definition of

loss that should not contradict the value credit exposures are recognized in the financial

statement. Accounting standards relevant to the evaluation of credit exposures include

IAS 39 which regulates the ”Recognition and Measurement of Financial Instruments”,

whereas IFRS 7 stipulates disclosures about risk and performance of financial instruments.

IAS 39 permits the use of a fair value option in the valuation of financial instruments,

if a fair value can reliably be obtained directly from observable market prices or from

a robust valuation technique. Fair value accounting requires that a risk management
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system is in place which incorporates appropriate valuation methods to calculate reliable

fair values.14 The fair value option of IAS 39 requires a firm to decide irrevocably at the

initiation of an exposure, whether a financial asset or liability will be measured at fair

value to determine profit and loss. Criteria for determining the eligibility of exposures

for fair value accounting are stated in paragraph IAS 39.9-39.11A.15 The objective of fair

value accounting is to avoid significant mismatches between the value of an exposure under

accounting standards and economic criteria.16 The exclusion of loans and receivables from

fair value accounting supports the transparency and reliability of financial statements, as it

is difficult to determine and validate reliable fair values of financial instruments without

an observable market price from an active market. Furthermore, applying fair value

accounting to liabilities without an observable market price would permit institutions to

report profits from a deterioration of their own creditworthiness. Banks would be enabled

to strategically manage earnings report and to misreport financial statements.

Banking book assets are mostly qualified as held-to-maturity and accounted for at accrued

costs, whereas, trading book assets are generally assumed to be available-for sale and

accounted for at fair value.

Supervisory agencies decline the use of fair value accounting for illiquid financial instru-

ments to prevent unrealized gains of credit exposures from being recognized as regulatory

capital.17 Deficiencies in banks’ risk management must not result in recognizing unrealized

gains in the regulatory capital or deriving understated unrealized losses from unreliable

fair values. The exclusion of loans and receivables from fair value accounting implements

the supervisory view. Corporate loans of banking book exposures are accounted for at

accrued costs so that unrealized gains in fair value are omitted from being recognized as

capital, whereas unrealized losses are covered, establishing adequate loss provisions.

The Basel Committee recommends recognizing gains and losses which result from fair

value accounting as tier-I capital, with the exception of gains and losses arising from

changes in a bank’s credit risk of liabilities. However, unrealized gains or losses resulting

from exposures subject to fair value accounting must not alter regulatory capital in a way

that would distort the economic condition of a bank. Supervisors agencies control for the

level of cumulative unrealized gains attributable to the fair value option in relation to

14Supervisory agencies encourage the use of systems that integrate accounting, risk assessment and capital
adequacy functions for credit exposures.

15Effects of accounting standards on capital requirements will not be addressed for host contracts with
embedded derivatives, hedge accounting or derivative contracts of production assets.

16Cf. BCBS (2005e), p. 7.

17In contrast, supervisory agencies consider the use of mark-to-model valuations to be an indispensable
requirement for an adequate valuation and economic performance measurement of credit portfolios in
risk management applications.
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equity and regulatory capital.

The expected loss of credit exposures differ from credit loss provisions reported in finan-

cial statements for methodological reasons. Accounting standards allow the identified but

not yet incurred credit loss of exposures recognized at amortized costs to be considered in

loss provisions. IFRS fair value accounting does not allow for loss provisions. Differences

between the level of loss provisions and expected losses under the Basel II framework par-

tially result from the exclusion of recently originated loans and the fact that expected loss

only covers default risk for a one-year time horizon. Under the revised capital standards,

the eligible regulatory capital is adapted for any difference between credit loss provisions

and expected credit loss of exposures.

For credit exposures carried at amortized cost, a methodology must be in place to specify

loan loss provisions, if (1) bankruptcy or financial reorganization of the borrower is proba-

ble, (2) the borrower suffers from significant financial difficulties, (3) a breach of contract

occurs, such as default or delinquency on interest or principal payments, or (4) the lender

has granted concessions to the obligors to circumvent financial difficulties. The method-

ology for determining loan provisions is accepted by supervisory agencies, if the bank (1)

maintains effective systems and controls for identifying, monitoring and addressing asset

quality problems in a timely manner, (2) has analyzed all factors that significantly affect

the collection of obligations, (3) has established an appropriate loan provisioning process.

After an identification of exposures, banks assess loans for impairment. Financial in-

struments carried at amortized costs are impaired individually by discounting expected

outstanding cash flows using the original effective interest rate of the instrument. If an

impairment on the basis of an individual loan assessment is denied, a loan is included in

a group of loans with similar credit risk characteristics and the group is assessed for a

collective impairment. Segmentation of loans for collective impairment is typically based

on the type of loan, credit risk class, geographical location, collateral type and past-due

status.

Under the IFRS framework, impairments are incurred as a result of effective events that

impact the estimated future cash flows of the asset, whereas likely losses expected as a

result of future events are not recognized. The definition of impairment events is based

on objective and subjective criteria. Objective criteria refer to actions that are beyond

the control of the bank, such as payments that are overdue by a minimum amount or

by a minimum number of days. Subjective criteria depend on the bank’s assessment of

exposures and bank-initiated actions such as the granting of a payment delay. Events

that trigger an impairment of exposures include (1) significant financial difficulties of the

obligor, (2) a breach of contract such as default or failure to make in interest or principal

payment, (3) concessions granted by the lender in response to the borrower’s financial

situation, (4) a probable default, (5) a change of the obligor’s PD, which may coincide
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with a change of external rating, (6) a change in the LGD estimate, (7) a change in

credit spread given a constant expected loss, (8) a change in the usage of a particular

credit facility, (9) the disappearance of an active market, or (10) an expected decrease

in estimated future cash flows of a group of exposures, for example due to unfavorable

national or sectoral economic conditions.

It is assumed that a secondary markets exists for any credit corporate exposure consid-

ered in the prediction of credit portfolio risk, so that fair values reliably represent the

economic risk to be covered by regulatory capital. The quantification of credit portfolio

risk described in Section 5 relies on the assumption that the credit risk valuation model

of Section 3 will receive the approval of supervisory agencies as an appropriate valuation

method to provide fair values of credit exposures.

2.3 Fundamental Components of Credit Risk Models

2.3.1 Rating Methodology

A rating system involves the classification of borrowers or exposures into disjoint risk

classes of homogenous credit quality estimates. Risk classes are typically defined by

rating, country of risk and industrial sector of the exposure. The credit quality is defined

either by the probability of default, expected loss or, more generally, by a credit score.

Credit scoring models determine a credit quality score on the basis of quantitative and

qualitative characteristics of a (potential) exposure, including PD, transition risk, LGD

and EAD. Some credit scoring models provide an automatic credit assessment process for

retail exposures, whereas other systems have a strong focus on expert judgement in the

assessment of obligor and exposure characteristics.

With respect to the rating methodology, point-in-time (PIT) ratings and through-the-

cycle (TTC) ratings must be differentiated. PIT ratings respond to changes in current

business conditions and focus on the current economic perspectives of obligors, whereas

TTC ratings tend to be stable throughout the business-cycle and assess obligors’ perfor-

mance during the entire business-cycle. A PIT rating system uses static and dynamic

obligor-specific and aggregate macroeconomic information. PIT ratings of obligors adjust

quickly to changing economic prospects. Overall PIT ratings of obligors are positively

correlated with the economic cycle and tend to rise (fall) during economic expansions

(downturns).

A TTC rating system uses static and dynamic obligor characteristics, but does not adjust

ratings in response to changes in macroeconomic conditions, so that TTC ratings of oblig-

ors tend to be stable throughout an economic cycle and the distribution of TTC ratings
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of a fixed credit portfolio is not expected to change significantly during the business-

cycle. During times of economic expansions, the mean quality of dynamic obligor-specific

information in a PIT class tends to fall, compensating for improved macroeconomic con-

ditions. A TTC rating migration occurs only if the change in dynamic obligor-specific

characteristics deviates significantly from the average change of the class.

It is at the discretion of national supervisory agencies whether to allow for PIT ratings

or TTC ratings, or both, under the IRB approach. However, the rating methodology

should reflect the business model of a bank. For banking book exposures TTC ratings

are more favorable, whereas PIT ratings are more suited to the pricing of credit-risky

trading positions and the tracking of credit portfolio risk PIT ratings are suited. Treacy

and Carey (1998) find that the rating systems of US commercial banks conform more

closely to a PIT standard. The frequent allegation levelled at rating agencies, that they

fail to provide timely PIT ratings that reflect current market conditions, has to be con-

sidered with respect to the rating model used. Rating agencies do not claim to provide

PIT ratings and mostly employ hybrid rating models with characteristics of PIT and

TTC rating methodology that incorporate cyclical changes in obligor ratings according

to macroeconomic conditions with a long-run outlook.18

In conclusion, PIT rating systems are suited for mark-to-model valuation, economic cap-

ital allocation and short-term credit risk management of credit risky assets available for

sale. In contrast, TTC rating systems inherently implement a hold-to-maturity approach

and qualify for the credit provisioning of exposures held at accrued cost. In practice, most

rating systems do not incorporate a TTC or PIT methodology in a pure form as outlined

by the Basel Committee.19

The calculation of corporate exposures’ capital charges as well as typical credit portfolio

management applications refer to pooled unconditional PD. The pooled PD of a risk class

designates the default probability assumed for each obligor in the class. The minimum

standards for the internal rating process of IRB banks outline permissible approaches

to estimate pooled PD, however, no single approach to the estimation and validation of

pooled PD is prescribed. The pooled PD of risk classes can be estimated using the default

experience of internal risk classes and an external risk class mapping. Since the capital

requirements imposed by supervisory agencies rely on unconditional PD estimates, credit

portfolio models intended to determine capital requirement must also perform uncondi-

tional credit risk forecasts on the basis of unconditional PD estimates.

18Cf. Moody’s (1999), p. 6f, and Standard and Poor’s (2002), p. 41ff.

19Cf. BCBS (2005d), p. 14f.
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2.3.2 Probability of Default

The probability of default of a particular obligor is a forward-looking assessment of the

likelihood that the obligor will fail to meet its contractual obligations or file for bankruptcy

during a fixed time interval which is conventionally set at one year. A default rate is

defined as the number of defaults in a risk class within a specified time interval of one

year, in general, divided by the total number of obligors in the class at the beginning

of the interval. Unlike the PD, the default rate is an ex post measure of the number of

actual default events and refers to a set of obligors rather than to a single obligor.20

The definition of default is typically based on subjective conditions established in the

loan agreements for corporate portfolios, whereas objective conditions are predominant

in retail portfolios. A credit default of a borrower is triggered, if either or both of the

following apply: (1) it is unlikely that the obligor will pay its obligations in full, or (2)

any material financial obligation owed by the borrower is more that 90 days past due.

Indicators for an unlikely payment are the borrower’s filing for bankruptcy, non-accrued

status of debt, charge-offs or specific provisions, sale of the credit obligation at a material

credit-related economic loss, or consent of banks to a distressed restructuring. Typically,

cross-default clauses of credit arrangements synchronize the default events of all exposures

against a particular counterparty, so that the default probabilities of an obligor and its

exposures are considered to be equal. The definition of default must be used consistently

when PD, LGD and EAD are being estimated.

Transition or migration probabilities designate the likelihood that an obligor or expo-

sure will migrate from one class of a rating system to another within one year’s time.

Probabilities of default and transition probabilities can refer to a risk-neutral probabil-

ity measure or to a real-world probability measure. Risk-neutral default or transition

probabilities can be derived from no-arbitrage credit pricing models that are calibrated

using time series of cross-sectional price data of defaultable securities from efficient credit

markets. In estimating the real-world default and migration probabilities of obligors, one

can distinguished between direct and indirect methods. Direct methods provide a credit

score that represents a single-obligor PD and includes statistical default prediction mod-

els such as Logit, Probit or Hazard Rate models. If credit scores of a rating model do

not represent default probabilities as in the case of the default-prediction by discriminant

analysis, indirect methods estimate the pooled PD of risk classes and use either histori-

cal migration rates and the default experience of obligors or external risk class mapping.

Direct methods are typically connected to PIT ratings, whereas indirect methods mostly

refer to TTC rating systems.

20Cf. BCBS (2005a)
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Methodologically, stressed and unstressed PD can be differentiated according to the eco-

nomic state and the time period on which the credit risk assessment is conditioned.

Stressed PD indicate the default probability of an obligor, conditioned on a specified stress

scenario of unfavorable economic conditions, whereas unstressed PD comprise probabili-

ties of default which are either conditional or unconditional on actual economic conditions.

Conditional PD indicate the likelihood that an obligor will default, assuming an extrap-

olation of current economic conditions. Conditional PD incorporate static and dynamic

credit-quality characteristics of the obligor and current aggregate information. By virtue

of the dependence on macroeconomic variables, conditional PD are negatively correlated

to the credit cycle and tend to fall (rise) during economic upturns (contractions), so that,

in principle, the deviations of an obligor’s conditional PD from its long-run average are

exclusively caused by the economic cyclic only. Unconditional PD indicate the likelihood

of default under long-run average economic conditions, incorporate only obligor-specific

information, are expected to remain stable throughout the business-cycle, and do not

show a significant correlation with the economic cycle.

Pooled PD reflect the central tendency (mean or median) of the individual PD of obligors

assigned to a risk class. The pooled PD of a risk class change during a business-cycle,

where the dynamic properties of the fluctuation depend on methodology and stress char-

acteristics of the PD considered. The utilization of the direct method of PD estimation

dominates, if pooled PD condition on the business-cycle or are intended to incorporate

stress scenarios. The estimation of pooled PD by statistical default prediction models

involves (1) the estimation of individual default probabilities for each obligor, (2) the

classification of obligors into segments of homogenous credit risk, and (3) the derivation

of the pooled PD of a risk class that reflects the individual PD of all obligors in the class.

Single-obligor PD can be estimated regardless of the rating methodology applied. Accord-

ing to the minimum requirements of the IRB approach, banks are allowed to calculate

a simple average of single-obligor PD estimates to estimate the pooled PD of a class.

Testing the accuracy of pooled PD estimates involves validating the risk class assignment

as well as the estimation model of single-obligor PD.

The estimation of single-obligor PD by statistical default risk models incorporates obligor-

specific information as well as aggregate information on the economic environment the

obligor operates in to assess the obligor’s ability and willingness to repay its debt. Obligor-

specific information is unique to a particular obligor and can be static or dynamic, such as

economic sector affiliation or financial leverage. Aggregate information refers to the time

a PD is estimated, affects many obligors jointly and typically includes macroeconomic

variables such as exchange rates, unemployment rates or GDP growth. Aggregate and

dynamic obligor-specific information are often highly correlated, such as GDP growth and

increased of revenues.
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The default experience of proprietary corporate loan portfolios or public credit markets

is used to estimate pooled unstressed PD of PIT risk classes. Default events in a risk

class are typically correlated to joint background factors, so that the default rates of risk

classes deviate from the pooled unstressed PD due to unexpected changes in economic

conditions. Averaging one-year default rates of a risk class gives the long-run default

frequency. Over time, differences between pooled unstressed PD and observed default

rates cancel out and the long-run average default rate is expected to converge toward the

average pooled unstressed PD of the class. In the calculation of default rates, changes in

rating methodology, underwriting standards and default definitions must be reflected and,

according to the minimum requirements of the IRB approach, the length of the observed

default experience must cover all obligors of a risk class for a period of at least five years.

In principle, the pooling of data across institutions is permitted.

Finally, the pooled PD of risk classes can be determined from external risk class map-

pings. Using a mapping of the internal and external rating scale, the pooled PD estimates

of external risk classes are assigned to obligors of the corresponding internal risk class.

However, the suitability of the external mapping relies on the consistency of the internal

and external rating methodology. The mapping of rating systems must involve a compar-

ison of the internal and external rating criteria and a comparison of assigned internal and

external rating classes of any common borrower. Rating agencies mostly derive estimates

of the pooled PD from public credit markets, so that the conformity of PD methodol-

ogy, sample population and default definition with internal risk classes must explicitly be

ensured.

Despite its simplicity, the external mapping poses some difficulties with respect to rating

validation. The validation of pooled PD estimates from an external risk class mapping

involves the validation of the accuracy of pooled PD of the external rating system and

the validation of the mapping itself. For external rating systems, the estimation of pooled

PD pose the same challenges as it does for internal rating systems. If historical default

experience is used, pooled PD must be checked against long-run default rates, and for

an external statistical default risk model the same validation procedures apply as for an

internal model, so that the main benefit of using external PD estimates is the availability

of a more extensive data set in the time- and cross-sectional dimension. The mapping of

risk classes is stable in time, if the bank and the external rating provider use unchanged

rating methodologies. If this is not the case, the mapping is time-inhomogenous and

eventually the pooled PD estimates of external risk classes will need to be adapted to the

internal rating system.

In a PIT risk class, obligors share similar conditional PD, and the PIT ratings of obligors

change if obligors’ conditional PD change, so that the volatility of obligor ratings is higher

than in a TTC rating system. Conditional PD decrease if business conditions improve and



2.3 Fundamental Components of Credit Risk Models 31

obligors tend to migrate upwards out of a PIT risk class, whereas previously lower-quality

obligors migrate into that class. The reverse applies for adverse business conditions. In

contrast, the variation in the pooled unconditional PD of a PIT risk class is positively

correlated to changes in economic conditions. This seemingly paradoxical effect is caused

by obligors with currently improved conditional PD and high unchanged unconditional PD

who migrate into a PIT risk class, while obligors with lower unconditional PD migrate

upwards. In summary, the pooled conditional PD of a PIT risk class remain stable

throughout the economic cycle, while pooled unconditional PD tend to rise as business

conditions improve and slump during recessions.

In a TTC risk class, all obligors share a similar unconditional PD. The TTC ratings

as well as the unconditional PD of obligors can fluctuate over time, however, changes

are uncorrelated to the economic cycle. Obligors migrate in and out of the TTC risk

class as their particular business prospects change beyond current economic conditions,

so that strong cyclical migration patterns do not occur. In contrast, the conditional PD of

obligors in a TTC risk class decline (rise) when business prospects improve (deteriorate).

In summary, the pooled unconditional PD of a TTC risk class remain stable as economic

conditions change, whereas the variation of pooled conditional PD is negatively correlated

to changes in the economic cycle and pooled conditional PD of TTC rating classes rise

(decrease) during economic recessions (upswings).

Methods used for the estimation of single-obligor PD must reflect the type of rating

system and the usage of PD estimates. Econometric models based on macroeconomic,

statistic or fundamental factor models are prevalent in estimating conditional PD.21 Since

conditional PD are not suited to determine capital requirements under the IRB approach,

further considerations are restricted to the estimation and validation of unconditional PD

estimates from the historical default rates of risk classes.

A natural estimator for the pooled conditional default probability pt+1 of a risk class in

period t+ 1 is the default rate p̂t = dt/nt of nt obligors at the beginning of the preceding

period t with dt defaults observed. However, as pointed out by Bühler, Engel, Korn

and Stahl (2002), the default rate p̂t of a risk class is a biased estimator for the pooled

unconditional PD p with strictly positive approximative variance p(1−p)ρdef for nt →∞,

if a positive homogenous correlation ρdef > 0 is present in the class, so that the central

limit theorem does not apply and the default rate p̂t is not a consistent estimator of

p. An unbiased estimator of p is the mean default rate p̂ =
∑T

t=1 p̂t/T of the risk class

across t = 1, ..., T periods.22 Assuming a time-invariant default correlation ρdef , the mean

default rate is consistent if n =
∑T

t=1 nt → ∞ and nt/n → 0,∀t, which is equivalent to

21Cf. Hamerle, Liebig and Scheule (2002, 2004).

22Cf. Huschens and Stahl (2004), p. 6.
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T → ∞.23 In most practical applications, however, the number of observation periods

is typically small, and due to the default correlation ρdef unconditional PD estimates

include large estimation errors if the default rates of only a few periodic observations

of a credit portfolio are available. To cope with this problem, Koyluoglu and Hickman

(1998b) as well as Gordy and Heitfield (2000) additionally account for the correlation

of credit defaults in the estimation of pooled unconditional PD of a single risk class.

With default probabilities and inner-class default correlations being unobservable, Gordy

and Heitfield estimate both parameters simultaneously using a multi-period maximum-

likelihood-estimator (MLE). Using a one-factor asset value default model with a standard-

Gaussian single factor zt and time-invariant asset correlation ρa in a risk class with nrct

obligors, the pooled conditional probability of default pt|zt is calculated as follows:

pt|zt = pt(zt; p, ρ
a) = Φ

(
Φ−1(p)−

√
ρazt√

1− ρa

)
. (2.1)

Conditional on the factor return zt, default events in period t are stochastically indepen-

dent and the number of defaults dt is binomially distributed with probability pt|z(t). This

conditional independence of defaults results in the likelihood function

L(p, ρa; dt, nt) = P (p̂t = dt/nt) =

∞∫
−∞

(
nt
dt

)
pdt

t|zt

(
1− pt|zt

)nt−dt
ϕ(zt)dz (2.2)

of the unconditional default probability p, which is equal to the probability function of

the default rate p̂t = dt/nt and constitutes a mixture of a binomial distribution with

probability pt|zt = pt(zt; p, ρ
a) and the standard normal distribution of the factor zt.

Enhancements of the basic likelihood function in (2.2) incorporate multiple time periods,

risk classes and refined correlation structures into the estimation of unconditional PD.24

For example, Huschens, Vogl and Wania (2003) propose a simultaneous multi-period MLE

with the likelihood function

L(p) =
T∏
t=1

∞∫
−∞

nrc∏
rc=1

(
nrct
drct

)
p
drc

t

t,rc|zrc
t

(
1− pt,rc|zrc

t

)nrc
t −drc

t ϕ(zrct )dzrct (2.3)

being a convolution of mixture distributions for the vector p = (p1, ..., pnrc) of the uncon-

ditional default probabilities of nrc risk classes with the conditional default probability

pt,rc|zrc
t

= p(zrct ; prc, ρarc) and given the number of defaults drct and the number of obligors

nrct of risk class rc in period t = 1, ..., T . Note that the risk class factors zrct in (2.3)

are assumed to be independent. Estimation results for (2.2) and (2.3) are not satisfying,

23Cf. Höse and Huschens (2003a), p. 158.

24Cf. Gordy and Heitfield (2002), Höse and Huschens (2003b).
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however, as the identification of parameters is insufficient, especially if different factors

are involved and the asymptotic properties of the MLE cannot be determined analytically.

Simulation results reveal that the MLE perform well in reproducing unconditional PD,

whereas estimated asset correlations are biased downward and produce large standard

errors.25

In summary, the single-period default rate p̂t may be used to estimate pooled conditional

PD of a PIT rating system, whereas the average default rate of risk classes in time is

more suited for estimating unconditional PD of TTC ratings systems. In a situation in

which historical default experience is scarce or there are structural breaches in the rating

methodology or default definition, the unconditional PD of risk classes can be estimated

from the default rates of risk class using the MLE estimator in (2.2) and (2.3).

2.3.3 Loss-Given-Default and Recovery Values

Loss-given-default is a measure of the loss severity in the case of the default of an exposure,

expressed as a percentage of the EAD.26 LGD estimates represent the ex-ante expectation

of the loss conditional on the default of an exposure that is yet non-defaulted, whereas

the realized LGD or ”loss rate”-given-default is an ex post measure of the loss severity

of a defaulted exposure. The LGD of a particular exposure is assumed to depend on a

limited set of characteristics such as the type of credit product, estimated PD or risk

grade, seniority, collateral and country of origination. Complementary, LGD = 1 - RR

can be expressed in terms of a recovery rate RR, which is defined as the expected or

actual discounted value of uncertain or actual recoveries net of workout costs at the time

of default divided by the EAD amount.

In credit risk modelling, the LGD is assumed to be either deterministic or random. In

the latter case, the LGD of exposures with equal properties are typically assumed to

be i.i.d. In the specification of LGD distributions, pooled information from a bank’s or

public loan loss experience from rating agencies or supervisory authorities are often used,

as well as rating agencies’ corporate bond LGD data. Obviously, for reasons of estimation

conformity, the type of instrument, default definition, reference value, risk grade, regional

and seasonal origin of pooled LGD data must coincide.

For the estimation of LGD, there are subjective methods, such as expert judgement, and

objective, mostly quantitative methods. Objective methods are subdivided into implicit

and explicit methods. Implicit methods do not take into account single-exposure loss rates,

but use model-derived expected credit loss of single exposures or the historical aggregate

25Cf. Gordy and Heitfield (2000) and Düllmann and Scheule (2002).

26Cf. BCBS (2005b), paragraph 468–473.
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loss of credit portfolios for LGD estimates. Implicit market LGD methods derive LGD

estimates from market prices of non-defaulted credit exposures, such as corporate bonds

or credit default swaps (CDS), using an asset pricing model. Though market-implied

LGD estimates typically suffer from a lack of identification in the decomposition of credit

spreads into PD and LGD components, they are considered to be the only manageable

way to estimate appropriate LGD for large, ”too-big-to-fail” corporate exposures. For

retail portfolios implicit historical LGD estimates are derived from PD estimates and the

aggregate loss experience of a portfolio.

Explicit methods derive LGD estimates for non-defaulted exposures from loss rates of

defaulted claims. The actual credit loss of single exposures can be computed either from

market prices of defaulted bonds or loans (explicit market LGD) or by discounting the

expected cash flows, including workout cost from the date of default to the end of the

recovery process (workout LGD). Factors that affect the workout LGD are (1) the amount

and date of cash and non-cash recoveries, (2) direct and indirect workout cost, (3) the

definition of workout completion, (4) the treatment of recovery profits and (5) the discount

factor, as well as (6) the reference value of the exposure.

Cash recoveries are easy to handle in LGD calculations. If all cash flows from the date of

default to the end of the recovery process are known with certainty, to obtain actual LGD

one subtracts the value of discounted net recoveries from a reference value conventionally

set to the face value of the debt. Direct workout costs, such as legal costs or the costs of

the appraisal of collateral are associated with a particular exposure. Indirect costs, such

as the office and staff costs of the workout department emerge from the recovery process

itself, and the allocation of indirect costs to defaulted exposures affects the estimation of

workout LGD.

The recovery process is definitely complete when all non-cash recoveries, such as collat-

eral, repossessions or restructured claims, have been sold to a third party. However, it

seems more appropriate to consider the recovery process complete when the non-cash

recoveries are transferred, because the change in the management of seized assets may

impact valuations, and because costs attributable to the workout process can no longer

be unambiguously identified. In principle, the exposure to credit risk is terminated at

the time of recovery transfer, and other sort of risks, such as market risk become relevant

afterwards. Furthermore, the time lag between the time of transfer and the disposal to

a third party can be considerable, which prevents recently defaulted exposures with un-

completed workout and distorts effective LGD estimates from being taken into account.

Hence, non-cash recoveries are often transformed into artificial cash recoveries including

a haircut to the book value of repossessed goods which is carried out to be prudent. Ob-

viously, workout and collection expertise significantly impacts recovery rates and LGD

estimates.
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Supervisory agencies require LGD estimates to be non-negative. In this context, censoring

recovery profits does not interfere with the definition of default in PD estimates, whereas

the truncation of recovery profits biases LGD estimates.

Discount rates must reflect the uncertainty of the recoveries to be received over a workout

period of unknown length. The recovery value can be computed by discounting expected

net recoveries using a risk-adjusted discount rate or by discounting certainty-equivalent

cash flows at a riskless rate. The impact of the discount rate on LGD estimates is partic-

ularly important if the recovery period is long. Theoretically, appropriate risk-adjusted

discount rates should be derived from liquid markets for recovery claims. However, as

such markets typically do not exist, the historical or current rates of conventional credit

markets are used. Historical discount rates are fixed at the date of default, and typically,

either the contractual rate of the original exposure or a suitable rate for assets with a

similar risk to that of the recovery claim is used. Current discount rates are fixed at each

date on which recoveries are valued and effectively assess the marketability of the recovery

claim, which facilitates the comparison of LGD estimates of different exposures.

The loss specified by the LGD represents the economic loss incurred by the lender from

the default of an exposure, which may differ from the credit loss considered in financial

accounting. For example, explicit market LGD typically compare the market price of a

credit-risky asset shortly before the default event with the market price of the asset 30

days after the date of default. Compared to workout LGD, the use of explicit market

LGD is straightforward because neither allocations of costs nor discount rates need to be

taken into account. Though observable prices of defaulted assets are scarce, most rating

agencies apply this approach.

In credit pricing applications, regression models are used for LGD forecasts that are

conditional on current economic conditions. Though the predictive power of regression-

based LGD estimates can be readily assessed by out-of-time and out-of-sample tests, the

advanced IRB approach requires LGD estimates to represent long-run default-weighted

average loss rates instead of point-in-time estimates.

The revised capital standards require LGD estimates under the advanced IRB approach

to represent conditions during an economic downturn. Downturn conditions can be char-

acterized by periods of expected negative GDP growth, increased unemployment rate or

credit default rates, or by periods in which other risk factors, such as collateral values, are

expected to jointly affect default and recovery rates. Loss rates are positively correlated

to default rates, so that LGD estimates, which are assumed to be fixed or stochastically

independent from default rates, will result in an underestimation of Credit-VaR. To qual-

ify for the advanced IRB approach, LGD estimates must not be lower than the long-run

average loss rate of defaulted exposures during periods of increased credit loss for the

exposure type in question. The loss experience must span a complete credit cycle of at
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least seven years and contain all defaults in a bank’s credit portfolios within this time

frame. Obviously, the definition of default must be the same for PD and LGD estimates.

No particular method is prescribed for the validation of LGD estimates by supervisory

agencies,27 but an assessment of LGD estimates under conditions of an economic down-

turn, along with a comparison to external LGD estimates and a backtesting of actual

LGD against a bank’s LGD estimates is recommended.

Empirical LGD studies are available for corporate bond and syndicated loan markets

and include a wide range of actual LGD.28 Different studies find average actual LGD

for the overall US corporate bond market of between 58% and 78%, whereas for senior

secured (senior subordinated, subordinated) corporate bonds average loss rates fall into

the intervals from 42% − 47% (58% − 66%, 61% − 69%). For senior secured (senior

unsecured, commercial) loans, average actual LGD in the interval from 13%−38% (21%−
48%, 31% − 40%) have been observed. Obviously, loans suffer from lower actual LGD

than corporate bonds, which can be attributed to stricter covenants and higher collateral

pledged in loan contracts.

The distribution of single-exposure LGD is mostly found to be unimodal, highly dispersed

and skewed to low LGD. Factors found to affect actual LGD are predominantly seniority

and the type of collateralization of claims, macroeconomic conditions at default, industry

affiliation of the obligor and the liquidity of collateral. In periods of high default frequency,

loss rates are found to be higher than in periods of infrequent defaults. Liquid collateral

such as cash and accounts receivable yield lower loss rates than illiquid collateral such as

property, plant and equipment. Industries that provide less liquid collateral show higher

actual LGD. The size of the borrower does not seem to affect LGD, whereas loss rates

increase with the amount of other outstanding debt, especially for unsecured loans. The

effect of loan size is therefore unclear.

2.3.4 Exposure-at-Default

The revised capital standards define the exposure-at-default of on-balance-sheet and off-

balance-sheet items as the respective expected net credit exposure of the obligor upon

default. For on-balance sheet facilities, the EAD estimate must not be lower than the

amount currently drawn, subject to on-balance-sheet netting. Off-balance-sheet items are

converted into loan equivalent exposures (LEE) using mandatory credit conversion factors

(CFF) under the standardized approach, whereas the advanced IRB approach requires the

estimate of a credit conversion factor for each off-balance-sheet item, based on the expo-

27Cf. BCBS (2005d), p. 71f.

28For a comprehensive overview of empirical LGD studies, see BCBS (2005d), p. 77ff.
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sure type. EAD estimates must represent the long-run default-weighted average exposure

of similar facilities and borrowers, including a security margin subject to estimation error.

The time period of EAD estimates must ideally cover a complete economic cycle, but in

any case should not be less than seven years. If a positive correlation is expected between

the default frequency and the magnitude of the EAD, the margin of conservatism inherent

in the EAD estimate must be larger. EAD estimates of exposure types that are volatile

over the economic cycle, must incorporate economic-downturn conditions.

The EAD estimate of a credit exposure is either determined by fixed contractual payments

to be received or it is uncertain and depends on future random events as in the case of

credit facilities or credit-risky OTC derivatives. The uncertainty about the exposure at a

potential default event can have two reasons:

First, the future usage of a borrower’s credit facility is uncertain. Typically, credit facilities

are used to a low extent and draw-down rates increase not before the credit quality of

the obligor deteriorates considerably, which reflects the reduced availability or higher

costs of alternative funding. Conceptually, EAD estimates for credit facilities include an

estimate of additional future draw-downs on the basis of the current usage of the agreed

commitment.29 Second, the market value of derivative exposures with counterparty risk

is uncertain, with the LEE imposed being equal to the instrument’s current market value

plus a surcharge for potential future exposure.

Given a mark-to-market recognition of credit exposures, no-arbitrage credit pricing mod-

els make it possible to derive EAD estimates from model-inherent assumptions on the

recovery claim at the time of default. Four definitions of the recovery claim can be dis-

tinguished: (1) recovery-of-face-value specifies the recovery claim as the face value of the

debt; (2) recovery-of-market-value claims the market value of the debt immediately before

the default occurs; (3) recovery-of-treasury value defines the recovery claim as the present

value of the remaining contractual payments of the debt discounted at default-free rates;

(4) recovery-of-firm-value applies to firm value models, where the value of the firm’s assets

at the time of default determines the recovery claim of creditors. The choice of the defi-

nition of the recovery claim is often a question of model consistency, since the definitions

of EAD and LGD are interrelated.

Public empirical evidence on EAD estimates are scarce. The current usage of a commit-

ment is a leading indicator of the expected EAD. The type of the credit exposure, the

credit characteristics and the type of borrower typically impact EAD.30 In contrast to

fixed rate facilities, the usage of floating commitments depends on the variation of the

29Frequently, the draw-down rate of a credit facility is assumed to be a deterministic function of the
obligor rating, so that the expected usage of a credit facility aggregates the draw-down rates of rating
classes multiplied by the migration probability during a risk period.

30Cf. BCBS (2005d), p. 94f.
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underlying benchmark rate. The usage of revolving and non-revolving facilities differs and

the time-to-maturity of a commitment is supposed to be positively related to the EAD.

The borrowers’ access to alternative sources and forms of funding reduces the EAD. Em-

pirical findings indicate that the usage of credit facilities at the time of default increases

with the rating of the obligor at the time the commitment was granted. Apparently, banks

require more restrictive covenants for obligors with low credit quality which constrains

draw-downs if the obligor faces financial difficulties. In this context, restrictive covenants

may reduce the EAD at the cost of a higher PD.

2.3.5 Definition of Credit Loss

The definition of credit loss affects the distribution of portfolio credit loss, Credit-VaR

and the actual portfolio performance used in the validation of portfolio credit risk models.

Without restriction of generality, credit portfolio loss aggregates the individual credit

losses of N credit exposures in the interval from forecasting time t = 0 to forecasting

horizon t = 1. In market risk management, VaR refers to a synthetic performance measure

that is used only in market risk measurement and backtesting of the VaR model, and

does not enter into financial accounting or internal performance measurement. This ’buy-

and-hold-performance’ considers a trading portfolio held constant during the forecasting

interval, so that profits from intra-day trading do not pollute the change-of-portfolio value.

Likewise, synthetic credit performance measures are defined for a capital-related credit

risk management.

The criteria for a definition of credit loss that are appropriate for a model-based determi-

nation of capital requirements include:

• consistency of performance and risk definition

• robustness across valuation models and model configurations

• independence of accounting standards applied

• prudence

Obviously, the definition of credit performance used in the calculation of Credit-VaR and

the measurement of actual portfolio performance must be the same. Omitting market risk,

liquidity risk and operational risk, the performance measure must reflect only changes in

the value of credit portfolios that result from changes in the credit risk of exposures or

from changes in time.

Second, the applied risk model affects how credit performance is measured. Default-only

models recognize loss due to credit default, omit the deterioration of exposures’ credit
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quality and exclude positive credit performance. The difference between the notional

value and the recovery payment defines the credit loss of an exposure. Mark-to-market

models derive credit values either from a rating of the obligor or exposure itself, or alterna-

tively from continuous credit-risk-indicating state variables, using a parametric valuation

model. Changes in exposures’ credit quality apart from default should be recognized and

positive credit performance be allowed, if it is convenient. The robustness of a perfor-

mance measure requires that Credit-VaR and the credit performance of exposures are

comparable across credit risk models of different model categories, even for extreme pa-

rameter specifications and portfolio compositions.

Third, the recognition of credit performance differs under different accounting categories.

Book value accounting at amortized costs is linked to a held-to-maturity horizon, whereas

fair value accounting incorporates the pre-mature resolution of credit exposures. Book

value accounting at amortized costs acknowledges effective net cash flows and non-cash-

related impairments in profit and loss. Fair value accounting recognizes positive and neg-

ative changes in the mark-to-market value of exposures differently. Although the Basel

Committee disclosed ”Sound Practices for Loan Accounting” (BCBS 1998), the valuation

of credit exposures without observable market prices in financial accounting is, to a cer-

tain extent, a political question and provisioning rules provide some leeway to influence

the recognized profit and loss. Capital standards require credit performance to repre-

sent economic loss. For marketable exposures, adverse changes in fair value constitute

economic loss, whereas for exposures held-at-amortized-costs, changes in book value are

not adequate to represent economic performance. A performance measure used in credit

risk management must therefore be independent of the credit assessment of the relevant

financial accounting standards.

Fourth, supervisory agencies require credit performance to be measured in a conservative

way. Therefore, netting of unrealized mark-to-model profits of exposures without observ-

able market price against credit loss from marketable exposures or incurred by obligor

default should be prevented. It is controversial whether and how interest payments enter

into credit performance. Interest received from credit exposures includes refinancing and

administration costs, a compensation for bearing the default risk and a profit margin.

Credit risk compensation and profit margins are proprietary-information of a bank, vary

across institutions and should not be subject to supervisory recognition in setting capital

requirements. A conservative measure of credit performance used to set adequate capital

requirements must therefore omit unrealized changes in mark-to-model values and interest

income.

In principle, the credit loss Li of a credit exposure i = 1, ..., N with fixed periodic interest

payments is derived from the difference between a reference value and the mark-to-model

valuation Di
t of the credit exposure at time t = 1 net of accrued or paid interest. The
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value of the credit portfolio is set to be Dt =
∑N

i=1D
i
t at time t. Additionally, the value of

a portfolio of synthetic loans with identical but non-defaultable cash flows is defined by

Bt =
∑N

i=1B
i
t, with the individual default-free bond value Bi

t calculated by discounting

the contractual cash flows of exposure i using the default-free term structure.

The adaption of the loss definition in market risk modelling by defining credit loss Li =

Di
0 − Di

1 of exposure i as the change of credit valuations during the forecasting horizon

is not adequate for the setting of conservative capital requirements, because marketable

exposures and exposures without observable market prices are taken into account and

unrealized profits would enter into portfolio performance.

Three definitions of credit loss will be considered below. At first, in line with supervisory

agencies’ objection of fair value accounting of non-marketable exposures, credit loss

Li(Di
0) =

(Di
0 −Di

1)
+

Di
0

, i = 1, ..., N (2.4)

is defined in percentage terms of the original credit valuation Di
0, with positive changes

in the mark-to-market value of exposures being excluded. Correspondingly, portfolio

credit loss is defined by L(D0) =
∑N

i=1D
i
0L

i(Di
0)/D0. The percentage notation facilitates

the comparison of portfolio credit loss to capital requirements, and loss distributions of

different portfolios can easily be compared. Notice that interest accrued or paid during

the risk interval is not included in Di
t, t = 0, 1.

Second, the reference value of credit performance is set as the value Bi
1 of the non-

defaultable contractual cash flows of exposure i. The percentage credit risk discount

Li(Bi
1) =

Bi
1 −Di

1

Di
0

, i = 1, ..., N (2.5)

in terms of Di
0 omits interest accrued or paid until t = 1. The portfolio performance

L(B1) =
∑N

i=1D
i
0L

i(Bi
1)/D0 aggregates the individual credit risk discounts. Since Di

t

never exceeds Bi
t, a positive credit performance is by definition impossible. The reference

value of Bi
1 is justified by the objective to ensure adequate capital to cover credit risk,

with credit risk understood to be the difference between the mark-to-model value of credit

exposures and the value of its non-defaultable equivalent.

Even if the credit quality of an exposure remains constant, credit valuations change in

time, because the constant interest paid, in general, does not incorporate a fair compen-

sation of default risk for any interval. To capture this effect, the credit valuation expected

in the forecasting horizon is taken into account in a third definition of credit loss:

Li(E[Di
1]) =

(E[Di
1]−Di

1)
+

Di
0

, i = 1, ..., N (2.6)
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Setting the reference value equal to E[Di
1] corresponds to the loss definitions preferred

by Gupton et al. (1997), Ong (1999) and Crouhy et al. (2000). Positive credit

performance and interest accrued or paid is excluded and portfolio loss is defined by

L(E[D1]) =
∑N

i=1D
i
0L

i(E[Di
1])/D0. Furthermore, loss definition L(E[D1]) corresponds to

the supervisory agencies’ objective that unexpected loss be covered by capital require-

ments. In Chapter 5, the loss definitions L(D0) and L(E[D1]) are used to derive loss

distributions for the calculation of Credit-VaR and the backtesting of the credit portfolio

model in 3.5.

2.3.6 Concentration and Dependence of Credit Risk

Credit risk concentrations constitute a serious threat to the solvency of a bank. A risk

concentration is defined as a single large exposure or a group of exposures with the

potential to induce losses, which are large relative to a bank’s capital, its total assets

or risk limits, and that threaten the solvency and core operations of a bank.31 Credit

risk concentrations arise from direct exposures to obligors and guarantees of third-party

protection, and comprise material exposures against (1) a single counterparty, (2) a group

of connected counterparties, (3) a particular industry or economic sector, (4) a geographic

region, (5) an individual foreign country or a group of countries, whose economies are

closely interrelated, (6) a certain type of credit risk related products, (7) a certain type

of collateral, or (8) exposures of the same maturity.

In situations of market stress, credit risk concentrations materialize by a joint adverse

effect on the credit quality of each exposure that is part of the concentration. Risk

components affected by stress scenarios are default events, rating migrations, or more

generally, a change in credit quality, LGD and EAD. Empirical evidence confirms, that

the cyclical pattern of default rates coincides with the economic cycle, and from the

business interactions of firms, one can conclude that conditional default probabilities vary

in time in a common way, so that obligor defaults are stochastically dependent in time.32

A dependence concept incorporates the joint variation of credit risk components in port-

folio credit risk modelling. Credit risk dependence is typically implemented by models of

orthogonal or correlated risk factors that represent either macroeconomic, obligor-specific

or latent statistical factors and affect the credit quality of any exposure in a risk class in a

common way. Though intuitive in nature and empirically validated, risk models typically

neglect the dependencies between PD, LGD and EAD estimates of exposures, whereas

31BCBS (2005b) defines a single large exposure to comprise ten percent or more of a bank’s capital and
requires a concentration exposure not to exceed more than twenty-five percent of capital.

32Löffler (2001) separates the cyclicity of default probabilities from the random noise included in default
rates.
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the dependence of credit risk components across borrowers is well-established.33

Copulas provide a flexible way to represent the dependence structure of multi-variate

random variables independently of their marginal distributions. For a general discussion

of dependence concepts, see Joe (1997) and Mari and Kotz (2001). A basic introduction

to copulas is provided by Nelson (1999). The univariate marginal distributions and the

correlation structure of random variables are not sufficient to unambiguously determine

the joint distribution function denoted as copula.34 Instead, the copula and the marginal

distributions must be given explicitly to specify the distribution of a multi-variate random

variable. In general, correlation structure and marginal distributions can be determined

from a multi-variate distribution, but not vice versa. Formally, a copula C of n uniform

random variables U1, ..., Un is defined by the joint distribution function

C(u1, ..., un; ρ) = P [U1 ≤ u1, ..., Un ≤ un]. (2.7)

where ρ represents a general concept of correlation that is not necessarily restricted to

typical coefficients of correlation such as Pearson’s linear correlation, Spearman’s Rho

or Kendall’s τ . Replacing U1, ..., Un with univariate marginal distribution functions

F1(τ1), ..., Fn(τn) yields the copula

C(F1(τ1), ..., Fn(τn); ρ) = F (τ1, ..., τn) (2.8)

in terms of the multivariate distribution F (·). Sklar’s Theorem proves the existence of

a unique copula for any multivariate distribution F with continuous univariate marginal

distributions Fi, i = 1, ..., n.35 In contrast, given a set of univariate distributions, the

existence of a suitable copula to attain any arbitrary correlation structure is not ensured,

whereas marginal distributions Fi(τi) = C(F1(∞), ..., Fi(τi), ..., Fn(∞); ρ) can easily be

derived from the copula C. Copulas are independent under increasing and continuous

transformations of the marginals. In the Gaussian case, any m-dimensional marginal of

an n-variate Gaussian copula is m-variate normal for m ≤ n.

Different measures of credit dependence can be differentiated. The default correlation

is defined as the correlation between two dichotomous variables of credit default and

compares the probability of a joint default of two obligors to the default probabilities

of individual obligor defaults.36 Based on the random default times τA and τB of two

33Recent approaches such as Düllmann and Trapp (2005) consider the relation of PD and LGD.

34Cf. Embrechts, McNeil and Straumann (2001), p. 28 for an intuitive example.

35Cf. Nelson (1999), p. 15.

36For a comprehensive comparison of the different concepts of credit correlation see Erlenmaier and
Gersbach (2000), and Erlenmaier (2001).
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obligors A and B with individual default probabilities pA = P [τA ≤ t], pB = P [τB ≤ t]

in a time interval [0, t], the joint default probability in the interval [0, t] is defined by

pAB = P [τA ≤ t, τB ≤ t]. This results in a default correlation

ρAB =
pAB − pApB√

pA(1− pA)pB(1− pB)
(2.9)

for the time interval [0, t].37 Default correlations can be obtained under a risk-neutral

probability measure or obey to the real-world measure if default histories are used for

estimation. A default correlation always refers to a specified time interval and takes only

joint credit default of exposures into account, but it omits the joint dynamics of obligors’

credit quality irrespective of default, which is incorporated in the correlations of default

times, asset values or default intensities.

Another measure of credit dependence is the default time correlation between the random

default times τA and τB of two obligors A and B.38 Default-time correlation always

refers to a default model that permits the determination of the time of default of the

obligors. Suspending the reference to a specific time interval and using Cov(τA, τB) =

E[τA, τB]− E[τA]E[τB], the default time correlation for obligor A and B is defined by

ρAB =
E[τA, τB]− E[τA]E[τB]√

V ar(τA)V ar(τB)
. (2.10)

Asset correlations and intensity correlations refer to the separate classes of credit valu-

ation models discussed in Chapter 3. Intensity correlations determine the co-movement

of stochastic default intensities of inhomogenous Poisson processes, whereas asset cor-

relations define the correlation between the normalized asset returns of obligors. The

asset correlation ρaAB between the normalized asset returns of two obligors A and B with

a bi-variate standard normal joint distribution function Φ2(·) and marginal distribution

functions FA(1) and FB(1) of default by time t = 1 is implicitly given by the joint prob-

ability

P [τA ≤ 1, τB ≤ 1] = Φ2(Φ
−1(FA(V )),Φ−1(FB(V )); ρaAB), (2.11)

of default in a one-year time interval where Φ(·) denotes the standard normal distribu-

tion function. Within the asset value and within the default intensity framework, default

correlations can be derived from the expectation of the joint evolution of asset values

or intensities which is typically incorporated by factor models. Asset and intensity cor-

37Cf. Li (1999a).

38Li (1999a) shows that for a given default time correlation the default correlation increases monotonically
with the length of the time interval considered.
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relations determine the strength of the variation in the default rates of a risk class in

time. Empirical estimates of asset and intensity correlations vary in time, however, it

remains controversial whether this variation is just a sample effect, or it is due to the

time-inhomogeneity of correlations.

Despite its widespread use in credit risk modelling and analysis, linear correlation is not

a conceptually consistent measure of the dependence of random default variables or de-

fault times, for several reasons. First, linear correlation is not defined if variances are

not finite.39 Second, the independence of two random variables implies a zero correlation,

whereas the reverse is generally not true, so that particular patterns of credit risk depen-

dence are not captured. Third, linear correlation is only suited to multi-variate elliptical

distributions. Finally, linear correlation is not invariant under non-linear increasing trans-

formations. With respect to VaR forecasts, Embrechts, McNeil and Straumann (2001)

show that the maximal VaR of a bivariate linear portfolio does not necessarily correspond

to the maximal linear correlation.

Concordance (rank correlation), quadrant dependence and tail dependence provide al-

ternative dependence concepts.40 Concordance measures transfer the concept of linear

correlation to ordinal variables and imply invariance under monotonic transformations,

but cannot be extended to more than the bivariate case. The most prominent concor-

dance measures are Kendall’s τ and Spearman’s ρ. Positive quadrant dependence of

default times exists, if

P [τA ≤ tA, τB ≤ tA] ≥ P [τA ≤ tA] · P [τB ≤ tB] (2.12)

for any arbitrary time frame tA, tB. Orthant dependence denotes the multivariate analogue

of quadrant dependence. The coefficient of (lower) tail dependence

λ = lim
α→0

P [τA < F−1
A (α)|τB < F−1

B (α)] (2.13)

measures the asymptotic dependence of bivariate default events and is defined as the

probability of a random variable takes an extreme value, conditional on another variable

being extreme as well. If λ > 0, default times are said to be asymptotic dependent.

Under a Gaussian copula, default times are asymptotic independent, i.e. they have zero

pairwise tail dependence, so that joint defaults within a short period of time are a rare

event. In contrast, normal mean-variance mixtures such as multivariate hyperbolic and

t-copulas of default times exhibit strictly positive (lower) tail dependence even for nega-

39For bivariate t-distributed default time correlation is not defined, if the degree of freedom is smaller
than 3.

40For a definition and a rigorous discussion of aforementioned dependence measures cf. Embrechts,
McNeil and Straumann (2001), p. 195ff and Malevergne and Sornette (2006), p. 154ff.
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tive or zero linear correlations of default times and show more joint default events than

under a Gaussian copula for equal time periods. For multivariate t-distributions, the tail

dependence increases as the degree of freedom decreases, i.e. the marginal becomes more

heavy-tailed.

2.3.7 Measures of Risk

For a probable supervisory recognition of model-based credit risk capital charges, the

measure of risk to apply must be defined. A measure R(·) of portfolio credit risk is de-

fined as a function of random portfolio credit losses X, Y ≥ 0. Axiom systems as provided

by Artzner, Delbaen, Eber and Heath (1999) and Albrecht (2003) define the properties of

financial risk measures. Axioms that characterize the properties of risk measures include:

(A1)non-negativity: R(X) ≥ 0
(A2)positive homogeneity: R(cX) = cR(X), c ≥ 0
(A3)sub-additivity: R(X + Y ) ≤ R(X) +R(Y )
(A4)shift invariance: R(X + c) ≤ R(X),∀c
(A5)translation invariance: R(X + c) = R(X)− c, ∀c
(A6)monotonicity: X ≤ Y =⇒ R(X) ≤ R(Y )
(A7)expectation-boundedness:R(X) > E(−X)
(A8)comonotone-additivity: R(X + Y ) = R(X) +R(Y )

Table 2.1: Axioms of Risk Measures

Non-negativity of the portfolio credit risk measure requires the exclusion of unrealized

profits in credit loss. Positive homogeneity implies that a multiple of a credit exposure

induces an identical multiple of risk. Sub-additivity ensures the existence of diversifi-

cation effects when sub-portfolios are combined. Shift-invariance turns a risk measure

invariant to the addition of a constant, such as expected loss. Positive homogeneity

and sub-additivity together imply that zero risk is assigned to a constant loss. Positive

homogeneity and sub-additivity imply the convexity of the risk measure.41 Translation

invariance ensures that adding a fixed amount to a random credit loss reduces the risk

measure by the same amount. Monotonicity implements, that X is less risky than Y if

X(ω) ≤ Y (ω) for any state ω. A risk measure satisfying (A2, A3, A5, A6) is termed

coherent.

Credit risk measures assess either or both the dispersion of portfolio credit loss L or its

deviation from a reference value. A general form of a risk measure is defined by

R(L) = E[g(L− lref )k1 ]1/k2 , (2.14)

41Cf. Albrecht (2003), p. 12.
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with reference value z and parameters k1 and k2. The risk-defining function g(∆l) of

∆l = L − lref represents either (1) the identity function g(∆l) = ∆l to calculate higher

(centralized) moments, (2) the maximum function to obtain lower partial moments, (3)

the absolute value of an absolute deviation measure, or (4) a utility function as used in

expected utility theory.

Setting g(∆l) = ∆l, k2 = 1 and the reference value lref = E[L] in (2.14), we obtain

two-sided risk measures that assess the dispersion of loss from its expected value. We get

the k1-th central moment, i.e. variance (k1 = 2), skewness (k1 = 3), or kurtosis (k1 = 4).

Adapting k2, we obtain the standard deviation (k2 = 2) and the respective roots of higher

moments. Distributions of portfolio credit loss are typically skewed and leptokurtic, i.e.

fat-tailed, so that variance is not an appropriate risk measure for its negligence of extreme

value properties. Skewness and kurtosis seem more appropriate for portfolio credit risk

applications, however, two-sided risk measures oppose the perception that a risk measure

must only refer to downside risk.

Measures of shortfall risk are one-sided risk measures that consider the downside risk

of credit loss relative to a reference value. Shortfall risk measures basically involve lower

partial moments E[max(L− lref, 0)k1 ]1/k2 . Setting k2 = 1, we get the shortfall probability

(k1 = 0), shortfall expectation (k1 = 1) and shortfall variance (k1 = 2) with respect to

a fixed benchmark. The standard deviation of shortfall results for k1 = 2 and k2 = 2.

Regarding capital requirements, the shortfall probability with respect to the available

economic or regulatory capital is of interest. If lref = E[L], it results lower-semi-absolute

deviation, semi-variance and semi-standard deviation of the shortfall, respectively.

Other risk-defining functions g(∆l) that rely on utility theory are omitted here. Com-

plementary to the general form in (2.14), conditional measures of shortfall risk provide

worst-case risk measures. Conditional expected shortfall, for example, is defined as mean

excess loss E(L− lref |L ≥ lref ).

Supervisory agencies prefer Credit-Value-at-Risk (Credit-VaR) to other measures for the

quantification of portfolio credit risk. The Credit-VaR CV ARα at a confidence level α

designates the maximum credit loss of a portfolio that is not exceeded with probability α

and is defined by

P (L ≤ CV ARα) = α, (2.15)

so that CV ARα is equal to the α−quantile of the distribution of portfolio credit loss

L. Credit-VaR is monotone, positive homogenous, translation-invariant and comonotone-

additive. Since it is not sub-additive, Credit-VaR is not generally coherent, but it is

only coherent for certain well-behaved distribution classes, such as normal distributions.

Furthermore, CV ARα does consider extreme tail properties. A remedy is provided by the
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Conditional-Credit-VaR CCV ARα(L) = E[L|L > CV ARα], defined by the expected loss

exceeding CV aRα. Albrecht (2004) shows that Conditional-Credit-VaR equals CV ARα

plus the conditional mean excess loss E[L − CV ARα|L > CV ARα]. The Conditional-

Credit-VaR is coherent if a closed-form density function of portfolio credit loss exists.

In accordance with the preference of supervisory agencies and risk management practice,

Credit-VaR is considered as the relevant risk measure to determine capital charges for

credit portfolios. Credit-VaR is typically measured at quantiles 1−α higher than those in

market risk management. However, extreme-tail properties of credit loss distributions dif-

fer considerably across different credit portfolio models. Since parametric representations

of portfolio loss are typically not available and the estimation error increases dramatically

the more extreme quantiles are considered, the adequate measurement and validation of

Credit-VaR presents a special challenge.

Reflecting the possible classification of balance-sheet items under IFRS accounting stan-

dards, the time horizon of Credit-VaR can be set according to a liquidation period or

a hold-to-maturity period approach. Under the liquidation period approach, a one-year

time horizon of Credit-VaR has become the general standard, because it is a time interval

which is sufficiently long, so that the following measures can be implemented: (1) a capital

raise can be completed, (2) loss mitigation actions and default workouts can typically be

completed, (3) new obligor information for the adaption credit ratings reveal, (4) calibra-

tions of credit risk parameters can be updated, (5) internal capital budgeting is planned,

and (6) credits are reviewed for prolongation. From a supervisory and risk management

perspective, a hold-to-maturity time horizon of Credit-VaR and credit loss recognition is

not appropriate, because it makes possible the accumulation of unperceived credit loss.

Because recalculations of market value-at-risk are required by supervisors for a ten-day

time period and recalculations are usually performed on a daily basis by banks, the typical

recalculation frequency of Credit-VaR range from weekly to quarterly intervals.

The risk measure which is most relevant to ensure the capital adequacy of financial insti-

tutions is the unexpected loss of the credit portfolio. Huschens et al. (2003) show that

the distribution of expected conditional loss rates of a credit portfolio approximate the

distribution of the random unconditional loss rate if the portfolio is infinitely granular.

Given a credit portfolio with exposures of different size, loss distributions can be approx-

imated by means of a concentration-equivalent portfolio with exposures of equal size that

is constructed using a concentration index.42 Assuming infinite granularity, an asymp-

totical distribution of portfolio loss with given density can be determined under certain

conditions. Using the equivalent homogenous-portfolio approximation a Credit-VaR that

incorporates concentration effects can be determined.

42Gordy (2001) uses the Herfindahl index in this context.
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2.4 Backtesting of Credit Risk Models

After a review of supervisory agencies requirements on the validation of credit risk mod-

els, methods for the validation of default prediction models and for the backtesting of

default probability estimates of rating models are discussed. A parsimonious approach to

backtesting the adequacy of portfolio credit risk models is introduced.

2.4.1 General Standards of Model Validation

The Basel Committee requires banks to establish robust procedures and methodologies

to validate if internal risk models are conceptually suited and if they accurately and

adequately represent the material risk.43 Supervisory recognition of risk models under the

IRB approach and internal market risk models of the revised capital standards require:

(1) an initial approval of the model based on specified minimum requirements, (2) an

independent review process established to assess the risk systems and processes, and (3)

a supervisory review of the validation process.

The initial approval of risk models takes into account the documentation of risk proce-

dures, models and systems, the consistency of type and source of data, the methodological

and statistical concept of the risk model, procedural requirements on the estimation and

validation of risk measures as well as the independence and qualification of staff engaged

in developing and operating risk models.44 Guidelines for the model approval are industry

standards and established results from academic research.

Banks take on the primary responsibility for the review of risk measurement systems

and processes. The independent review of the internal risk measurement systems for

market risks involves the verification of approval, documentation, a change-control for

all risk measurement processes and systems, the integration of risk measurement into

the risk management function, the consistency, timeliness and reliability of independent

data sources, the accuracy and completeness of exposures, the accuracy in parameters in

estimation, risk measurement and validation models, and finally, the quantitative model

validation using backtesting.45 Backtesting involves all validation techniques that compare

estimates of risk components to actual outcomes using statistical test theory. Supervisors

do not stipulate specific techniques or definite criteria for the validation of risk models, but

they require banks to develop the expertise for a self-reliant qualitative and quantitative

assessment of applied risk models.

43Cf. BCBS (2006c), p. 109ff and p. 202.

44Cf. BCBS (2006c), p. 88ff. and p. 254ff.

45Cf. BCBS (2006c), p. 193.
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The review of internal rating models for the estimation of PD, LGD and EAD is divided

into a procedural validation of the rating process and a methodological validation of the

risk model. The evaluation of the rating process is qualitative in nature and involves

data quality, internal reporting, problem identification and handling, system usage, staff

training, and consistent application of the risk model throughout business lines and geo-

graphic regions. The methodological validation consists of an assessment of model design

and a quantitative assessment of the quality of predictions. The examination of the model

design includes a qualitative review of the statistical concept, the relevance of the input

data, the way risk factors were selected and whether they are economically meaningful.

Quantitative validation involves backtesting and the comparison of estimates to external

data sources. Quantitative tests must not vary systematically during the economic cycle.

Requirements similar to those specified for market risk measurement systems and models

for the estimation of risk components under the IRB approach are assumed to apply to the

validation of internal credit portfolio models as well, although, the use of internal models

to set capital requirements for credit risk has not yet been approved and standards for

the validation of credit portfolio models are not specified.

The validation procedures conducted by supervisory agencies are specified on a general

level to avoid a limitation of the competence of supervisors. Supervisory agencies review

the adequacy of risk assessments and derived capital requirements, the compliance with

minimum standards and qualifying criteria and the effectiveness of the review of the risk

assessment processes.46

The quantitative validation of risk models has two objectives: (1) testing the accuracy of

risk measures and risk parameter estimates, and (2) assessing the adequacy of a model to

accomplish the overall objectives of the risk measurement process.47

Risk parameters that are typically controlled for the accuracy of estimates are PD, LGD,

EAD and credit correlations of individual exposures or exposure classes. Accurate risk

models implement a timely and accurate estimation of risk measures. However, statistical

tests are limited in their ability to distinguish between accurate and inaccurate models

or risk estimates, since the power of a hypothesis test to avoid committing a type II

error, i.e. to reject the null hypothesis when it is actually false, cannot be calibrated to

unity by a suitable specification of the test. The Basel Committee acknowledges that

it is not possible to define a statistical test to correctly identify inaccurate models that

prevents giving erroneous negative indications on other accurate models.48 According to

the limitations of hypothesis tests, statistical evidence on the accuracy of a risk model is

46Cf. BCBS (2006c), p. 209ff.

47Cf. BCBS (2006c), p. 193.

48Cf. BCBS (1996b), p. 5.
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not mandatory for a model to receive approval from supervisory agencies, because even

risk models whose accuracy cannot be verified can nevertheless be considered to provide

adequate risk forecasts. The current backtesting procedure for internal market risk models

implements this view.

Model adequacy refers to the ability of a model to reach an appropriate decision under

uncertainty to meet pre-specified objectives. Pesaran and Smith (1985) stipulate the

following criteria to assess the adequacy of a risk model:

• Does the model comply with the requirements of the user? (relevance criteria)

• Does the model contradict to secured knowledge? (consistency criteria)

• Is reliability ensured on a satisfactory statistical level? (statistical adequacy)

Credit portfolio models are required to ensure capital adequacy of a bank with respect to

the credit risk of the bank’s credit portfolio. The consistency of a model is assumed to

be given, if the conceptual design implements established methodologies of risk modelling

and if the definition of model parameters coincide with those of parameter estimates.

Statistical adequacy requires that the relevance criteria be met on a specified confidence

level.

Quantitative methods of assessing the adequacy of credit risk models are sensitivity anal-

ysis, stress tests and backtesting. Sensitivity tests of credit portfolio models examine

the dependence of capital requirements and risk measures on a change in PD, LGD,

EAD, correlations and credit spreads. Furthermore, the impact of a change of risk con-

centrations within particular economic sectors, regions or rating classes is assessed. For

mark-to-market credit portfolio models, the effect of a change in drift, reversion, volatility

or correlation parameters is of interest.

Stress tests examine the effect of adverse circumstances on risk measures and capital

adequacy. Stress tests typically take the form of a scenario analysis and represent either

an absolute or a relative change of several model parameters and market factors. Instead

of the directional change of risk measures as observed in sensitivity analysis, stress tests

consider the absolute outcome of a risk measure.

Regarding validation methodologies different approaches are distinguished for default pre-

diction models, rating models, and portfolio credit risk models. Default prediction models

discriminate between prospectively defaulting and non-defaulting exposures to support

credit approval and prolongation decisions. Rating models assess effective and potential

credit exposures on a fine-grained scale for risk-adequate pricing, assessment of general

and specific credit loss provisions, determination of impairments, economic loss and capi-

tal requirements. Risk parameters estimated by rating models comprise PD, LGD, EAD
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or correlations. Credit portfolio models provide risk measures to assess the unexpected

loss of portfolios and the capital requirements of banks.

Backtesting the statistical adequacy of credit risk models either involves testing the dis-

criminatory power of default prediction models, the accuracy of risk parameter estimates,

or the adequacy of portfolio credit risk measures to specify capital requirements. Tech-

niques for validating the effectiveness of default prediction models are presented in Section

2.4.2. Backtesting risk parameter estimates involves hypothesis tests as outlined in Sec-

tion 2.4.3 for the validation of PD estimates. Drift, recursion and diffusion parameters of

credit portfolio models have not been considered in backtesting studies yet. Backtesting

the adequacy of a credit portfolio model involves verifying whether the actual portfolio

credit loss is in line with unexpected loss and corresponding economic and regulatory

capital.49

Data limitations are a key impediment to the estimation and validation of credit risk

models. The scarcity of data is due to the infrequent nature of default events and long-

term time horizons in risk measurement. In consequence, data pooling, proxy data and

low-frequency data are frequently used in model estimation and validation. Compared

to market risk models, the one-year holding period and the higher quantile of Credit-

VaR complicates backtesting. A statistical confidence equal to the backtesting of market

risk models would require the excessive number of 250 observations of actual one-year

portfolio outcome in backtesting credit portfolio models. To qualify for the advanced IRB

approach, banks are required to establish a track record of historical estimates and actual

rates of PD, LGD, EAD, as well as rating histories including the dates of any rating

review for a time interval of at least five years.50

Corporate loans are typically not marked-to-market, so that risk models cannot be esti-

mated from time series of loan valuations and the predictive quality of portfolio models

cannot be compared to observed portfolio outcomes. Instead, it is assumed that mark-to-

model valuations of credit exposures without observable market prices are derived from

updated ratings to determine the credit loss of exposures. Thus, the validation of the

credit portfolio model relies on the accuracy of the internal rating system, which is it-

self subject to a separate validation process. In this context, the inaccurate recognition

of significant credit losses that accumulate in the banking book unnoticed due to mis-

specified PD estimates is the major threat to an adequate capital endowment and affects

rating-based capital standards as well as credit portfolio risk measures.

49The comparison of expected and actual portfolio credit loss does not address the capital adequacy
purposes but only credit provisioning and pricing.

50Cf. BCBS (2006c), p. 102.
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2.4.2 Validation of Default Prediction Models

The effectiveness of default prediction models depends on the accurate discrimination be-

tween obligors predicted to default (defaulters) and those predicted not to default (non-

defaulters) on an ordinal or continuous rating scale that represents the default risk of

obligors. Common techniques used to assess the discriminatory power of default predic-

tions are the Cumulative Accuracy Profile (CAP), the related Accuracy Ratio (AR), the

Receiver Operating Characteristic (ROC), the ROC measure and the related Pietra index,

the Bayesian error rate, Conditional Information Entropy, Information Value, Kendall’s

τ , Somers’ D and the Brier score.51

The CAP is defined as the percentage of defaulters per portion of obligors ranked by

decreasing riskiness, i.e. obligors are ordered from risky to safe according to their rating

score from . A perfect model will assign the lowest scores to defaulting obligors, whereas

all obligors above a threshold score will be non-defaulting. For a random model without

discriminatory power, any equal-sized portion of obligors will contain the same proportion

of defaulting obligors. Typically, rating systems perform in between a perfect and a

random rating model. The Accuracy Ratio aggregates the information of the CAP about

the discriminatory power of the scoring function into a single number by setting the surface

between the CAP of the perfect model and the randomly discriminating model in relation

to the surface between the CAP of the current model and the randomly discriminating

model.52

The Receiver Operating Characteristic compares the distribution of rating scores for de-

faulted and non-defaulted obligors. Assuming that all obligors with a rating score below

a certain threshold will default, a false alarm rate is defined as type-I-error of erroneously

qualifying a non-defaulting loan as prospectively defaulting, and a hit rate specifies the

number of obligors, whose default has been correctly predicted. The ROC curve now gives

the ratio of the hit rate to the false alarm rate per applied threshold score, and the ROC

measure is defined as the area under the ROC curve. AR and ROC measure are linearly

related, and confidence intervals can be derived analytically for both measures.53

The Pietra index is derived from the maximum distance of the ROC curve to the diagonal

of the random scoring model. The Bayesian error rate considers the default-frequency-

weighted type-I-errors and type-II-errors of the prediction model for any threshold score.

Under specified conditions, it is equivalent to the Pietra Index and the Kolmogorov-

Smirnov test statistic. Kendall’s τ and Somers’D are rank-order statistics used to evaluate

51A comprehensive overview about statistical methodologies to assess the discriminatory power of default
prediction processes is given in BCBS (2005d), p. 36–46.

52Cf. Sobehart, Keenan and Stein (2000), p. 13.

53Cf. BCBS (2005d), p. 39ff.
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out-of-sample out-of-time rating systems. Brier scores are typically used to compare the

effectiveness of rating systems, but lack statistical tests which can be used for validation

purposes.

The information-theoretic concept of entropy considers how much randomness is included

in the observation of an obligor’s default status. Entropy measures assess the information

on credit scores or PD estimates by observing the ultimate default status of the obligor.

Entropy measures are Information Entropy, Conditional Entropy, Kullback-Leibler Dis-

tance, Conditional Information Entropy Ratio (CIER) and Information Value.54 Mini-

mum values of entropy measures indicate a high discriminatory power of a rating system,

but, as distributions of entropy-based measures cannot be derived in parametric form,

they are not useful for hypothesis tests.

On the basis of the aforementioned statistics, the Validation Group of the Basel Com-

mittee considers Accuracy Ratio (AR) and ROC measure to be most appropriate for the

favorable properties of their confidence intervals.55

2.4.3 Validation of Internal Rating Systems

The ability of internal rating models to provide accurate estimates of risk parameters is

assessed by backtesting techniques. With respect to the estimation of PD, backtesting

compares pooled PD estimates for risk classes of assumed homogenous credit quality

with default rates of the class. A major obstacle to the backtesting of PD estimates is

the scarcity and infrequency of default events and the impact of default correlation on

confidence intervals. The explanatory power of statistical tests is further limited if data

are restricted to the five year interval required to qualify for the IRB approach.

In a PIT rating system, pooled conditional PD of a risk class are stable in time and

expected to equal the default rates of the class. A substantial deviation of default rates of

a PIT risk class from its pooled PD estimates indicates either an inaccurate consideration

of systematic and obligor-specific effects in PD estimates, a time delay in the assignment of

obligors to risk buckets, or an inconsistency of the rating methodology, such as processing

a hybrid or TTC methodology instead of assigning PIT ratings. For an accurate PIT

rating system, the long-run average of default rates must converge towards the long-run

average of conditional pooled PD of the PIT risk classes, as the number of observation

periods approaches to infinity.

Ratings of a TTC system express the long-run average default expectation. The TTC

rating of an obligor remains unchanged throughout the cycle, unless obligor-specific effects

54For a detailed discussion of entropy measures in credit scoring confer Keenan and Sobehart (1999).

55Cf. BCBS (2005d), p. 32.
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distort the credit quality as compared with the remaining obligors of the class. Pooled

unconditional PD estimates of TTC risk classes are stable in time and do not refer to

the prospective state of the economy in the prediction period, whereas pooled conditional

PD estimates of a TTC risk class and observed default rates are not expected to stay

constant in time, but may vary substantially throughout the credit cycle. Unconditional

PD estimates are not expected to match periodic default rates, and the long-run average

default rate of a TTC risk class will converge towards the pooled unconditional PD if the

TTC rating system is accurate. The conditional pooled PD of a TTC risk class is nega-

tively correlated to economic conditions and cannot be compared to the long-run average

default frequency, but must be compared to the periodic default rates under consideration

of prevailing economic conditions.56 The validation of conditional PD estimates tests two

properties of a TTC rating system. First, the ability of the estimator to predict system-

atic factor effects on the default risk of obligors during the prediction period, and second,

the ability to assess the specific credit risk of obligors given the predicted state of the

credit cycle.

Stressed PD estimates typically exceed observed default rates and can only be assessed

using default rates that refer to economic conditions inherent in these PD estimates,

whereas long-run average default rates are not suited to the backtesting of stressed PD.

In summary, the long-run average default rate of a PIT rating class must converge to

the average pooled conditional PD of the class. For a TTC rating class, the average

long-run default rate is expected to converge to the long-run average of pooled uncon-

ditional PD. Single one-year default rates of risk classes are not meaningful in testing

pooled unconditional PD estimates without a model assumption of the cross-sectional

dependence of credit defaults that relates the variation of default rates to the uncondi-

tional PD estimate. Estimates of stressed PD can only be validated using default rates

under infrequent stress conditions. Consistency in the rating methodology and validation

methods is an important prerequisite for an effective backtesting of rating systems. In

principle, credit dependence measures and unconditional PD estimates must be tested si-

multaneously, however, most approaches to the validation of unconditional PD estimates

fail to fulfil this requirement. Techniques for backtesting the accuracy of rating models

can be divided into

• parameter tests,

• distribution tests,

• resampling methods, and

• traffic light procedures.

56Cf. BCBS (2005d), p. 24ff.
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Parameter tests evaluate the accuracy of estimates of single or groups of risk parame-

ters predicted by a rating system such as pooled PD, EL loss or correlation estimates.

Distribution tests assess if the empirical distribution of parameter values matches the

predicted distribution of the parameter. Resampling methods enlarge the statistical basis

for parameter and distribution tests and increase the number of observations available

for testing using simulation techniques. Traffic-light procedures specify different zones of

model acceptance for a test statistic, with zone ranges typically specified on the basis of

statistical test theory.

A binomial test can be applied to test the pooled conditional PD estimate for a PIT risk

class of independent exposures with homogenous credit risk, using the one-period default

rate as a test statistic. However, the binomial test cannot be applied to the backtesting

of pooled unconditional PD estimates if default correlation across periods is present,

so that default rates typically differ substantially from unconditional PD estimates and

exceed the critical values of a two-sided binomial test. In this case, the true type-I

error is much larger than it is specified in the binomial test. In consequence, tests of

unconditional PD estimates based on the independence assumption are rather conservative

in nature, whereas binomial tests of conditional PD estimates that inherently consider

default correlation enable only to detect obvious cases of estimation bias.

Another approach to the validation of the pooled conditional PD estimate of a risk class is

a multi-period normal test, which is based on a normal approximation of the distribution

of the mean default rate and makes use of the central limit theorem. Default events are

assumed to be independent in time and cross-sectional dependence is permitted. Several

studies show that the power of the normal test is modest but that it exhibits a conservative

bias.57 The true type-I-error is lower than presumed by the test and it is robust against a

violation of the assumed independence of credit defaults in time. However, approximating

the asymptotic distribution of conditional PD by a normal distribution allows in principle

for negative PD.

The binomial test of PD estimates refers to a single risk class only. If the conditional

PD estimates of several risk classes are tested using separate binomial tests with typical

confidence intervals, it is probable that the null hypothesis of a correct PD estimate will

be erroneously rejected for at least one risk class. A simultaneous validation of the PD

estimates of all risk classes of a rating system is achieved using a chi-square test based

on the assumptions of independent credit defaults within and in-between risk classes and

assuming that the differences in default rates from conditional PD are approximatively

normal due to the central limit theorem.58 However, in practice, the factual dependence of

57Cf. BCBS (2005d), p. 53ff. and Höse and Huschens (2003a), p. 159f.

58Cf. BCBS (2005d), p. 52f.
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default events and the low frequency of default events results in single-period chi-squared

tests underestimating the true type-I-error.

Pooled unconditional PD estimates of TTC risk classes are not expected to equal the

observed default rates of a risk class, due to the dependence of exposures’ credit quality

on common background factors that fluctuate during a credit cycle. Given a positive

time-invariant default correlation ρdef between nt obligors of a TTC risk class in period t,

the one-period default rate p̂t represents an inconsistent estimator for the unconditional

PD with variance

V ar(p̂t) =
pt(1− pt)

nt
+
nt − 1

nt
ρdefpt(1− pt), (2.16)

that converges to the strictly positive asymptotic variance ρdefpt(1 − pt) if the number

of obligors tends to infinity. In consequence, the default rate p̂t does not converge to-

wards the unconditional PD, if nt → ∞, but rather, it converges towards an asymptotic

distribution.59 Taking the long-run average default rate as an estimator of the pooled

unconditional PD instead, the asymptotic variance decreases proportional to the number

of observation periods.60

Another approach to the backtesting of pooled unconditional PD estimates of TTC risk

classes is the estimation of conditional PD using a one-factor model according to (2.1), so

that the default rate p̂t converges towards the random conditional PD pt|zt in distribution.

Given the inner-class asset correlation ρa, the probability distribution

P (pt|zt ≤ x) = Φ

(√
1− ρaΦ−1(x)− Φ−1(p)√

ρa

)
(2.17)

of the conditional PD as calculated by Vasicek (1991) results in the asymptotic standard

Gaussian test statistic

√
1− ρaΦ−1(p̂t)− Φ−1(p)√

ρa
D−→ N (0, 1) (2.18)

for the hypothesis of equality between the default rate and the model-derived conditional

PD.61 Asymptotic confidence intervals for the unconditional PD estimate p can be speci-

fied as a function of default rate p̂t and asset correlation ρa.62 The range of non-rejection

of PD estimates is essential for the acceptance and suitability of the test in the banking

practice, so that the specification of the significance level becomes a meaningful deci-

59Cf. Höse and Huschens (2002), p.12.

60Cf. Huschens and Locarek-Junge (2000), p. 21.

61Höse and Huschens (2003a), p. 151f.

62Cf. Höse and Huschens (2003b).
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sion to be taken by supervisory agencies. However, when typical default rates and asset

correlations are used, analytical results exhibit only a modest power for typical levels of

confidence.63

The random conditional PD involved in the backtesting of unconditional PD estimates is

a function of asset correlation ρa. If ρa is derived in a simultaneous estimation together

with the unconditional PD estimate p, e.g. using the MLE in (2.2), both parameters

must, in principle, be validated in a simultaneous test using a joint confidence interval for

the unconditional PD and the asset correlation. This issue is yet still unresolved.

Simultaneous tests of unconditional PD estimates of several risk classes are based on the

joint asymptotic distribution of default rates.64 In an attempt to derive a lower bound

of a joint confidence interval Huschens (2004) as well as Höse and Huschens (2003b)

provide different statistics to test the joint pooled unconditional PD of risk classes, given

a one-factor default model with known asset correlations.65 Extensions of the factor-based

backtesting of unconditional PD estimates by Huschens and Stahl (2004) include more

detailed factor structures and tests of unconditional portfolio loss that use concentration

indices to generate synthetic credit portfolios of infinite granularity to adjust for differing

face values of exposures.

Distribution tests not only consider the accuracy of unconditional PD estimates, they

also test the shape of the distribution function of conditional PD estimates. Frerichs and

Löffler (2002) apply an approach, originally proposed by Berkowitz (1999) to evaluate VaR

forecasts, to test conditional PD and asset correlation estimates of a one-factor default

model. Given the model-implied estimate of the distribution function F̂ (p̂t) of default

rate p̂t, the transformation Φ−1(F̂ (p̂t)) results in a series of transformed observations that

must be i.i.d. standard-Gaussian if the estimated distribution of conditional PD is equal

to the true one. A standard likelihood ratio test with a joint hypothesis of zero mean

and unit variance is applied to test the normality of the transformed observations. In a

simulation study, the power of the test is assessed for different hypotheses of unconditional

PD and asset correlation estimates. At a moderate level of significance, the power of the

test is suitable for a time series of ten default rates, but the power of the test decreases if

distributions of portfolio loss rates are considered instead.

In a resampling method proposed by Lopez and Saidenberg (2000), the number of ob-

servations available for backtesting is multiplied by cross-sectional resampling credit loss

from a panel data set. Assuming that exposures have equal face values and omitting re-

63Cf. Höse and Huschens (2003a), p. 155.

64Cf. Höse and Huschens (2003c), p. 553.

65The alternative use of the Bonferroni inequality to derive a lower bound of the joint confidence level of
unconditional PD estimates results in a low power of the test, cf. Höse and Huschens (2003c), p. 553.
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covery rates, the approach corresponds to the backtesting of unconditional PD estimates.

Within each period of the sample, a number of sub-portfolios is determined at random.

Assuming default rates of any sub-portfolio to be independent in-between and within each

time period, Mincer-Zarnowitz regressions and likelihood ratio tests are proposed to test

expected loss or PD estimates, Credit-VaR and the shape of loss distributions. However,

Bühler et al. (2002) as well as Frerichs and Löffler (2002) show that the assumption of

independent observations is invalid and tests that rely on this assumptions will lead to

erroneous statistical inference.66

Traffic light approaches define zones of a test statistic that may lead to escalating su-

pervisory actions.67 The traffic light approach has established as a methodology for the

supervisory backtesting of internal market risk models, where three zones are defined for

the number of daily portfolio performances that exceed the VaR forecast within a one-

year period. Within a green zone, no action is taken. In the yellow zone, the market risk

capital multiplier for capital requirements is incremented and the VaR model has to be

reviewed. The red zone triggers a maximum multiplier and fundamental changes to the

market risk model. Bühler et al. (2002), Blochwitz and Hohl (2003) and Tasche (2003)

transfer the concept of the traffic light approach to the validation of PD estimates and

consider the actual default rate compared to the estimated PD as a test statistic.

Blochwitz, Hohl, Tasche and Wehn (2004) as well as Blochwitz, Hohl and Wehn (2005)

propose a multi-period traffic light approach to the validation of unconditional PD es-

timates of a single risk class with conditional PD estimates derived from a default-only

single-factor model with time-invariant asset correlation. The number of defaults in a

single year is assumed to be normally distributed and the one-period default experience is

mapped to one out of four color-grade zones according to the deviation of the default rate

from the pooled unconditional PD of the respective risk class. This mapping results in

a multinomial distribution of frequencies with which the particular zones are hit in time

and which are used to infer on the accuracy of PD estimates. In contrast to the traffic

light approach to backtesting market risk models, no alternative model is considered so

that the definition of zones is judgemental. The extended traffic light approach appears

to be conservative, with type-I-errors being higher than expected, whereas the frequency

of false alerts is controllable, as simulative results indicate.

In summary, no powerful test of the accuracy of unconditional PD estimates exists due

to the cross-sectional dependence of default events in time, nor do supervisory agencies

66If the number of defaults in the portfolio is elevated in a particular period, any resampled sub-portfolio
will reflect the enlarged default rate. In consequence, tests are biased towards rejection as the adverse
information content of a single period is overestimated. Cf. Frerichs and Löffler (2002), p. 37ff for a
formal proof.

67Cf. Kupiec (1995), Kupiec and O’Brien (1997).
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expect such a test to be developed in the future. Existing tests, such as the binomial test

and the chi-squared test are rather conservative or detect only the most obvious cases of

estimation inaccuracies, i.e. the discriminatory power is not satisfactory at typical levels of

significance. Distributional tests are promising in terms of their general requirements, but

suffer from the modest number of available observations in time, so that the power of these

tests is low. The examined technique for the resampling of cross-sectional information has

been proven to result in invalid statistical inference. Traffic light approaches appear to be

a promising tool, due to their easy adaptability and interpretation, though the definition

of zones is judgemental.

Effects that are typically not considered in the estimation and validation of default prob-

abilities are methodologically inconsistent mixtures of TTC- and PIT-rating systems, and

granularity effects of differing exposure sizes in a portfolio. Meyer zu Selhausen (2004b)

fundamentally disputes that credit portfolio models can be tested at all, because time-

homogenous sets of obligors are not available for model estimation or validation, and the

number of available observations does not enable the calculation of prediction errors. The

information used by the rating models is typically not complete and in part represents

inappropriate proxy data. Credit experience used for PD estimation represents the fil-

tered data of creditors that passed the loan-granting process, so that it is questionable, if

rating models can be applied to assess new loan applicants. Changes in the credit quality

of obligors short of credit defaults, e.g. rating migrations, are neglected in the estimation

and validation of rating models, so that the information contained in the majority of

non-defaulted exposures is omitted. Finally, according to Meyer zu Selhausen (2004a),

structural breaches of economic background factors, credit granting policy, insolvency

rulings or variables used in credit scoring models prevent the time-homogeneity of risk

parameters and turn long-term time series of credit data inappropriate for the estimation

and validation of credit risk models.

Due to these limitations of statistical backtesting, supervisory agencies additionally rec-

ommend the benchmarking of banks’ ratings and PD estimates against equivalent data

from external sources as a complementary tool for PD validation, provided that appropri-

ate adaptions for methodological differences of the ratings systems are conducted. With

no unambiguously superior test available to adequately validate the accuracy of internal

rating systems, supervisory agencies resort to a mixture of quantitative and qualitative

validation procedures.

2.4.4 Backtesting of Credit Portfolio Models

In this section, a traffic light approach to the backtesting of the adequacy of a credit

portfolio model is suggested that is based on the binomial tests supervisory agencies use
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in the backtesting of market risk models (VaR backtesting).68 VaR considers changes in

the mark-to-market value of a static portfolio that result from changes in market risk

factors during the VaR horizon. Correspondingly, portfolio performance is given by a

synthetic buy-and-hold-performance measure that excludes intra-day trading positions,

fee income and the mark-to-market performance of positions entered into during the VaR

horizon. The mark-to-market performance of trading positions liquidated during the VaR

horizon is replaced by the hypothetical outcome of the position up to the end of the VaR

horizon.

In the VaR backtesting, the time horizon of the VaR is synchronized with the daily

calculation frequency of VaR and portfolio performance, though a one-day VaR horizon

differs from the 10-day period prescribed by supervisory agencies to determine capital

requirements. With respect to the backtesting of credit portfolio models, a time horizon

of Credit-VaR shorter than the one-year horizon of typical Credit-VaR calculations and

prescribed by the revised capital standards may be used if the credit risk of any exposure in

the portfolio has been re-assessed during that period. Typically, Credit-VaR is calculated

on a quarterly or monthly basis, however, re-ratings of exposures are not so frequent.

VaR backtesting assesses if the confidence level of the VaR model is adequate, i.e. daily

V aR0.99 can be expected to cover 99% of the daily portfolio loss observations. Given sta-

tionary market factors, it can be assumed that the observations of portfolio performance

are independent and the number of VaR outliers is binomially distributed. Two binomial

tests for the risk models and an alternative model are defined by hypothesis H0 and H0:

H0 : α ≥ 99% H1 : α < 99% (2.19)

H0 : α ≤ 95% H1 : α > 95% (2.20)

Under the assumption that the calculated VaR figures do not underestimate the market

risk of the portfolio, the hypothesis H0, which assumes that the risk model indicates

VaR at a confidence level α ≥ 99%, is tested using a binomial test. Accordingly, given

the conjecture that the portfolio market risk is underestimated and that the probability

of observing a portfolio loss above the reported VaR is at least five times higher, the

hypothesisH0, which assumes that the calculated VaR figure in fact refers to an alternative

confidence level of α ≤ 95%, is tested. The test statistic for both hypotheses is the

number of portfolio loss observations caused by a change of market factors within the last

250 trading days, which exceed the VaR of the respective day (outlier). Significance level

αH = 0.1%(αH = 0.5%) is set for the binomial test of hypothesis H0(H0).

The green, yellow and red zones of model adequacy are defined for the number of outliers,

68Cf. BCBS (1996b) in conjunction with BCBS (1996a).



2.4 Backtesting of Credit Risk Models 61

according to the range of outliers that induces a rejection of hypotheses H0 and H0. The

green zone comprises the outlier interval [0, 4], where H0 is not rejected, H0 is rejected,

the market risk model is qualified as adequate, and supervisors allow its use to calculate

capital requirements. The interval [10, 250] defines the red zone. Observing 10 or more

outliers, H0 is rejected, H0 is not rejected and the market risk model is qualified as

inadequate for VaR calculation. In case the number of outliers hits the yellow zone [5, 9],

both null hypotheses cannot be rejected, it exists no confidence in the ability of the

model to determine the VaR adequately, and supervisors increase the regulatory capital

requirement multiplier unless the bank can prove the adequacy of its model by additional

analysis. Possible explanations for an increased number of VaR outliers and a related

failure of backtesting concern the basic integrity of the model (positions are considered

incorrectly or parameter estimates are inaccurate), insufficient model precision, random

chance or structural breaks in market movements. It is at the discretion of supervisory

agencies to react to failures in risk measurement in a judgemental way, taking the severity

of the model deficit into account.

With reduced significance levels, the binomial tests could unambiguously decide between

the risk model and the specified alternative. However, it is not possible to define zone loca-

tions so that inadequate models are correctly indicated at a sufficient level of significance

without triggering a false rejection for many adequate models. Consequently, a yellow

zone of uncertainty regarding model adequacy is established due to the comparatively

high levels of significance required for the rejection of H0 and H0.

Backtesting using a two-hypotheses tests has to balance two types of inference error: (1)

the erroneous rejection of an adequate risk model (error-of-rejection, type-I-error). (2)

the erroneous non-rejection of an inadequate risk model (error-of-non-rejection, type-II-

error). In contrast to the classical hypotheses tests, the two types of inference error refer

to different hypotheses.69

It is assumed that Credit-VaR and the backtesting of credit portfolio models use one

of the measures of credit portfolio loss defined in Section 2.3.5. In the backtesting of

credit portfolio models, the prospects of time series inference are restricted due to the

lack of a sufficient number of independent portfolio observations. In VaR backtesting

the daily VaR and portfolio loss is used, so that the required 250 observations accrue

within a one-year time interval. In contrast, Credit-VaR typically refers to a one-year

time horizon, so that 250 yearly observations of portfolio loss are necessary to apply

the binomial tests of VaR backtesting to the backtesting of portfolio credit risk models

equivalently. Furthermore, changes in the credit scoring and loan granting process, the

conceptual design of the risk model and the parameter estimation, as well as structural

69In a hypothesis test a type-I-error is committed, if a true null hypothesis is incorrectly rejected. A
type-II-error occurs, if the test fails to reject a false null hypothesis.
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breaches in market data are likely to occur over multiple-year time horizons and challenge

the methodological consistency of the risk measurement and backtesting. In practice, only

a small number of independent observations of credit portfolio loss in time are available,

whereas many observations of the credit loss of single exposures exist in cross-sectional

data.70 However, the credit loss of exposures depends on common risk factors in time, so

that single exposures are independent only within a single period conditional on the actual

factor values. Since conventional statistical inference relies on independent observations,

model adequacy can only be tested conditionally on actual factor values. Furthermore,

the backtesting of a conditional credit risk on the basis of the conditional loss rates would

omit that part of the credit portfolio model that controls for the dependence of exposures

and the variation of loss rates in time.

The development of techniques for backtesting the adequacy of unconditional Credit-VaR

using a time series of few independent observations of credit portfolio loss is omitted,

because small sample inference on the basis of conventional statistical test theory is ex-

pected to result in a test of moderate power that suffers from the fundamental obstacles

enumerated in the previous section. Instead, the classical statistical test paradigm which

requires independent observations is dropped, and only one observation of credit portfolio

loss which includes the cross-sectional information of only a single period is considered as

a statistic to test the adequacy of the corresponding unconditional Credit-VaR.

By omitting the time-dimension of a series of independent portfolio loss observations

and restricting the test statistic to the cross-sectional information of a single period, a

backtesting approach is proposed that uses two-hypotheses tests to validate if the uncon-

ditional portfolio credit loss observed is distributed as presumed by the credit portfolio

model, and if a distribution of portfolio loss given by an alternative model can be re-

jected.71 The test statistic is defined as single-period portfolio credit loss according to

one of the definitions presented in Section 2.3.5. In contrast to standard hypothesis tests,

the true distribution of the test statistic is unknown. The central limit theorem and the

law of large numbers no longer apply with respect to the number of exposures in the

portfolio or the number of portfolio loss observations available. The dependence concept

and the strength of credit dependence incorporated by the credit portfolio model and its

alternative are not revealed by a single period loss observation, but by the loss distribu-

tions assumed under the different hypotheses. The green, yellow and red zones of model

70Resampling of cross-sectional data results in invalid statistical inference as outlined in Bühler et al.
(2002).

71The portfolio credit loss converges in distribution against the unconditional distribution of loss provided
by the model, if the credit portfolio model is accurate, however this convergence cannot be tested
meaningful due to the lack of observations.
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adequacy are defined on the basis of the rejection range of the two-hypotheses tests

H0 : L ≤ q1−α H1 : L > q1−α (2.21)

H0 : L ≥ qα H1 : L < qα, (2.22)

where loss L is specified according to one of the definitions of portfolio credit loss in Section

2.3.5 and refers to the distributions of loss provided by the credit portfolio model to be

tested under hypothesis H0 and to the loss distribution given by an alternative model

H0. The level of significance α(α) of the hypotheses tests and correspondingly the zone

locations of the backtesting can be adapted according to the required level of statistical

confidence and discriminatory power of the backtesting given model specification and

portfolio composition.

The conjecture that credit risk is underestimated by the model and that the probability

of observing losses higher than Credit-VaR is higher than the confidence level of the

Credit-VaR predicts, is validated by testing H0. Hypothesis H0 is rejected if the portfolio

loss L is above the α-quantile q1−α of the unconditional loss rate with density f̄(L) as

provided by the credit portfolio model. A red zone of model rejection is defined by

the interval [q1−α, l
max], where lmax designates the maximum loss given definition L of

portfolio credit loss. If the significance level of the test is smaller than the confidence

level of Credit-VaR, i.e. if q1−α is smaller than Credit-VaR, a portfolio loss that exceeds

Credit-VaR is automatically attributed to the red zone of model rejection. The alternative
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Figure 2.1: Principle of Zone Definition

model tested by hypothesis H0 represents a more conservative specification of the same

credit portfolio model, depending on the conceptual design and the model parameters of

the model in question. Given deterministic exposure amounts, the main risk drivers of

Credit-VaR are PD, LGD and correlations. Relevant model parameters which control for

the main risk drivers are (depending on the type of model) asset values, default intensities,
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drift, diffusion, mean-reversion and recovery parameters as well as factor coefficients. A

consideration of the definition of the alternative model to a structural credit portfolio

model is given in Section 5.3.2.

Under hypothesis H0, it is assumed that the alternative model adequately measures the

credit risk of the portfolio. H0 is rejected, if the portfolio loss L is below the α-quantile

qα of the unconditional loss rate with density f̄(L) as provided by the alternative model.

The green zone of model adequacy is defined by the interval [lmin, qα] of portfolio loss,

where lmin designates the minimum loss given the definition L of portfolio credit loss.

The credit portfolio model is considered to be adequate, i.e. there is no indication that

Credit-VaR is underestimated, if hypothesis H0 is not rejected and hypothesis H0 is re-

jected, which is equivalent to L ≤ min{q1−α, qα}. The yellow zone, in which the adequacy

of the model is indeterminate, is located in-between the green and the red zone and set

to the interval [min{q1−α, qα}, q1−α]. Typically, it is qα < q1−α, and the yellow zone is of

a strictly positive size. Figure 2.1 represents a principle depiction of the location of the

green, yellow and red zone.

The backtesting approach suggested here does not depend on the particular credit port-

folio model under examination, although zone locations and the discriminatory power of

the tests depend on the conceptual design and specification of the model and the compo-

sition of the credit portfolio as will be seen in Chapter 5. In most practical applications,

there is no closed-form representation available for the distribution of portfolio loss un-

der hypotheses H0 and H0, so that approximate loss distributions are generated using a

simulative exercise to determine the zone locations.



Chapter 3

Portfolio Credit Risk Modelling

Portfolio credit risk models involve a model for the valuation of individual defaultable

exposures and a dependence model that incorporates the co-movement of credit risk of

exposures in time. This chapter starts with a general overview of models for the valuation

of individual defaultable claims. Next, a structural first-passage credit valuation model for

defaultable exposures with constant periodic interest is introduced. The mechanics of the

credit valuation model are examined using a comparative-static analysis. A systematic

overview of credit portfolio models is provided and a credit portfolio factor model based on

the structural first-passage credit valuation model for individual exposures is introduced.

3.1 Single-name Credit Risk Pricing Models

Structural models and intensity models are distinguished for the pricing of defaultable

claims. Structural models use the evolution of a firm’s asset value to define the default

event and to determine the value of credit exposures. The term ’structural model’ refers

to the capital structure of a firm that can be derived if the market value of the firm’s assets

and the market value of its debt is known. Structural credit valuation models are also

referred to as asset value models, firm value models, or generally as ability-to-pay model.

In contrast to the structural approach, the intensity-based pricing framework does not

incorporate an economic intuition for the default of a financial claim. Instead, a purely

statistical concept of credit default is applied, so that intensity based credit pricing models

are often alternatively referred to as reduced-form models. For reasons of completeness, a

brief overview of intensity models found in the credit risk literature is provided to describe

the advantages and deficiencies of the competing approaches. Subsequently, the structural

valuation framework is reviewed and an asset value model for the valuation of defaultable

debt with discrete interest payment is introduced.
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3.1.1 Intensity Models

The fundamental concept of intensity models for the valuation of defaultable claims is

the modelling of the time of default as stopping or arrival time τ of the first jump of

a non-explosive counting or point process. In their seminal work, Jarrow and Turnbull

(1995) propose the use of a homogenous Poisson counting process with a constant inten-

sity parameter, so that inter-arrival times are independent and exponentially distributed.

The non-negative default intensity of the Poisson process represents the instantaneous

probability of default. Hull and White (2000a, 2000b) consider an inhomogenous Poisson

process, in which the intensity is a deterministic function of time. Given the term struc-

ture of the riskless zero bond prices, piecewise constant risk-neutral default intensities

are fitted from prices of traded defaultable instruments of a particular obligor. Other

approaches consider the default intensity itself to be stochastic, so that default events are

triggered by a doubly stochastic Poisson process, referred to as Cox process.1

In a finite state space Jarrow, Lando and Turnbull (1997) as well as Kijima and Komorib-

ayashi (1998) consider rating classes of defaultable claims with an absorbing default state,

and model rating transitions of an obligor using a time-homogenous discrete-time Markov

chain with constant transition intensities, where the risk of a change in credit spreads

is neglected, if it does not coincide with a change of the rating. Das and Tufano (1996)

extend the model of Jarrow, Lando and Turnbull and implement obligor-specific random

recovery rates in a discrete-time Heath-Jarrow-Morton framework, so that the risk of a

change in credit spreads is considered along with to the risk of a rating change. This

results in a better fit of empirical credit spreads than the approach of Jarrow, Lando and

Turnbull and enables obligor-specific pricing.

Extending the framework of Jarrow, Lando and Turnbull, Lando (1997) considers default

intensities following a multi-dimensional Cox process. The process of rating transitions is

implemented using a homogenous continuous-time Markov chain with finite state space

and an absorbing default state, and incorporates the correlation between the riskless rate

and default intensities, so that empirically observed co-movements of interest rates and

credit spreads can be fitted.

In contrast to structural models, the default time of intensity models is not predictable.2

A stopping time is predictable only if a continuous-state variable of credit risk refers to a

default-triggering barrier function, which excludes defaults triggered by jumps events. The

unpredictability of defaults in the intensity based framework challenges the arbitrage-free

pricing framework, since defaultable bonds that are prone to unpredictable jumps cannot

1 Cf. Lando (1998), p. 101.

2 For a formal definition of the concept of predictability see Duffie (1996),p. 357ff.
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be duplicated by assets that follow a predictable process, i.e. the defaultable bond cannot

be hedged perfectly and the market for the obligor’s default risk is incomplete if there is

not at least one other traded asset with payoffs contingent on the same default process.3

The pricing framework of intensity models for the valuation of defaultable claims is anal-

ogous to affine diffusion models of the default-risk-free instantaneous short rate. Seminal

affine term structure models include the model of Vasicek (1977) with a Gaussian diffusion

of the riskless short rate4, the CIR model presented by Cox et al. (1985), which prevents

negative short rates using a noncentral-χ2-distributed diffusion term, and the Gaussian

forward rate model introduced by Heath, Jarrow and Morton (1992). Term structure

models with a log-normal dynamic of the short rate as suggested by Black and Karasin-

ski (1991), or the market model by Brace, Gatarek and Musiela (1997), and Miltersen,

Sandmann and Sondermann (1997) have not yet been incorporated into closed-from credit

pricing formulas of the exponential-affine type.

The exponential-affine pricing framework for short rate models defined by Duffie and Kan

(1996) can be extended to cover interest-risky defaultable claims, if riskless short rates

and default intensities follow a general affine jump-diffusion process.5 In the Martingale

representation of a zero-coupon bond price, an instantaneous mean-loss spread is added

to the riskless short rate in an extended risk-neutral probability space6, with the mean-

loss short spread defined as a product of a stochastic instantaneous intensity factor and

a loss rate expressed in percentage of the market value of the claim immediately before

default.7 Given a zero-recovery assumption short spread and default intensity coincide. If

a fractional recovery of the market value is assumed in the case of default, the price of a

defaultable zero-coupon bond is given by an exponential-affine function of instantaneous

short rate and short spread.8 The implied term structure of defaultable zero-coupon bond

yields (zero yield curve) is derived using an affine function of short spread and short rate.

Dependence between interest rate risk and credit risk and an improved flexibility of the

implied defaultable zero yield curve is incorporated by decomposing the short rate and

short spread into functions of orthogonal or correlated latent factors that follow basic

3 In an arbitrage free market, the price of an asset cannot perform unpredictable jumps with known jump
size that do not correspond to a cash outflows.

4 Cf. Hull and White (1990) for an extended version of the Vasicek model with time-dependent param-
eters.

5 Cf. Duffie and Singleton (1999a), p. 688ff. An affine process is a jump-diffusion process with drift
vector, covariance matrix and jump-arrival intensities, which have affine dependence on a state vector,
cf. Duffie and Singleton (2003), p. 346.

6 See Duffie and Singleton (1997), p. 1291.

7 By use of the Doob-Meyer decomposition, loss arrival is conditioned on the default event only (cf.
Duffie, Schroder and Skiadas (1996), as well as Duffie and Singleton (1999a)).

8 Cf. Duffie (1999), p. 79, and Duffie (2005), p.2756ff.
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affine processes.9 Factor dynamics are calibrated to reproduce the joint evolution of the

empirical riskless yield curve and the term structure of the obligor’s credit spreads. For the

empirical fitting of intensity models, the time-discrete affine expectation of instantaneous

factors is used to constitute the transition function of a state-space model as defined in

Harvey (1989), with the affine function (exponential-affine) of zero yields or zero spreads

(zero-coupon bond prices) representing the measurement equation.

Hybrid models approximate intensity models towards the structural valuation framework.

Belanger, Shreve and Wong (2004) suggest a jump-diffusion model of the asset value that

determines the jump component using an intensity based point process, whereas intensity

models proposed by Madan and Unal (1998, 2000) incorporate asset values as a Markovian

factor that affects default intensity.

Among many other studies on the fitting of empirical credit spreads using reduced-form

models, Duffie and Singleton (1997), Duffee (1999), and Liu, Longstaff and Mandell (2001)

present a satisfying fitting quality, especially with regard to empirical short-term spreads.

3.1.2 Structural Models

In the structural framework, credit events are triggered if the firm value falls below a

certain threshold or barrier. In contrast to reduced form models, probabilities of credit

default are not given exogenously, but have to be derived endogenously, taking the dy-

namics of the value of firm assets and the definition of default into account. 10

Credit default due to insolvency and default due to over-indebtedness are distinguished.

Insolvency designates the inability of a firm to fulfil its financial obligations in time, also

referred to as cash-flow-based default. Over-indebtedness occurs if the market value of a

firm’s assets no longer exceeds the market value of its obligations.11 First-passage models

trigger credit default at the first time the asset value hits a lower default threshold and can

be interpreted as causing over-indebtedness as well as insolvency due to the inability to

raise additional capital to meet financial obligations. Constitutive characteristics of first-

passage models that influence the ability to find a closed-form valuation for defaultable

claims include the dynamics of the asset value and the riskless short rate, the definition

of the default barrier, the timing and seniority of the cash flows, and the recovery claim.

The structural approach to value defaultable claims was originated by Merton (1974),

who considers corporate debt to be a contingent claim on the value of a firm, that is

financed by equity and a defaultable zero(-coupon) bond with face value K and maturity

9 Cf. Lando (1998), p. 383ff as well as Duffie, Pan and Singleton (2000), p. 1351ff.

10The notion of firm value and asset value are considered to be synonymous in the remainder.

11The jurisdictional definition of over-indebtedness refers to the accounting value of assets and debt.
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at time T . The value Vt of the firm at time t follows a geometric Brownian motion with

constant instantaneous drift rate µ and standard deviation σ. If the value VT of the firm

at maturity T of the debt falls below its face value, the firm defaults on its debt. In case

of default, the firm is over-indebted and illiquid at the same time, and the bondholders

take over the firm with the equity holders receiving nothing. Summarized, bondholders

receive the amount min{VT , K} at the debt’s maturity, and the value of a defaultable zero

bond equals the value of a non-defaultable zero bond less a put option on the firm value

at any time t ≤ T .

The pricing formula for an equity put option provided by Black and Scholes (1973) is used

to derive the value

DMerton(Vt, K, σ, r, T − t) = Ke−rTΦ(d1) + VtΦ(d2) (3.1)

of a defaultable zero bond at time t ≤ T , with constant instantaneous riskless rate r,

standard Gaussian distribution Φ(·) and auxiliary variables

d1 =
ln(Vt/K)+(r− 1

2
σ2)(T−t)

σ
√
T−t d2 =

ln(K/Vt)−(r+ 1
2
σ2)(T−t)

σ
√
T−t

. (3.2)

Although it is elegant in its consideration of corporate debt, the applicability of the

Merton model is limited by its restrictive assumptions. The consideration of a zero bond

prevents credit defaults prior to maturity of the debt, and default probabilities can only

be expressed for the entire lifetime of the bond. The omission of interest rate risk and

the simplistic capital structure are further aspects which are subject to criticism.

Subsequent structural models relax the restrictive assumptions of the Merton model in

several ways. First, different types of debt are taken into account, including perpetual

and finite-maturity coupon bonds, capital structures of senior and junior debt as well as

defaultable bonds with embedded options and credit derivatives.

Second, default can be triggered by events other than the firm’s failure to timely fulfil its

obligations from debt contracts. Over-indebtedness and the inability to fulfil third-party

financial commitments such as wages, accounts payable or social security payments can

also force a credit default. First-passage models implement the premature default of debt

contracts by triggering the default event if the asset value of a firm hits a deterministic

or stochastic lower threshold for the first time. With default events enabled continuously

during the lifetime of the debt, models differ between cash-flow-based default and default

from over-indebtedness. First-passage models with exogenous and endogenous default

barriers can be distinguished. An exogenous default barrier is determined by a bankruptcy

code or by calibrating the firm value to reproduce a specific term structure of default

probabilities or loss expectation. Furthermore, bond indenture and loan provisions often
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include safety covenants that grant to the lender the right to foreclose on the debt or to

reorganize the firm. In contrast, models with an endogenous definition of default allow

the firm’s stockholders to decide at their own discretion and in their own interest, whether

and when the firm will default on its obligations.12

Third, stochastic models of the riskless interest rates are incorporated, so that credit

valuations involve the prevailing term structure of riskless market rates. Finally, recov-

ery in the case of default is no longer derived from the relation of the firm value to the

contractual payments of the debt. Exogenous LGD estimates are used instead. Alterna-

tively, Hsu, Saa-Requejo and Santa-Clara (2003) differentiate between the firm value as

the going-concern value of the firm and the liquidation value of its assets.

Geske (1977) considers a defaultable coupon bond to be a compound option on the firm

assets. In his model, default occurs at coupon dates and results from the equity holder’s

strategic decision whether to foreclose the debt contract immediately or to receive the

coupon payment and maintain a claim on the assets of the firm for another period,along

with the recursive option to extend the claim on the firm’s assets at each coupon date

before the maturity of the debt. A term structure of periodic default probabilities can

be derived, however, the calibration to bond market credit spreads is restricted due to

the endogenous default decision. Furthermore, computational requirements restrict the

applicability of the approach within large portfolio applications.

Structural first-passage models with an exogenous default barrier will be examined in

detail, because of their well-founded economic theory, combined with their convenient

characteristics in credit portfolio applications. Fundamental properties of major struc-

tural first-passage models with an exogenous default barrier are exhibited in 3.1. A

comprehensive overview of structural pricing models of defaultable claims is provided by

Uhrig-Homburg (2002). For a rigorous treatment of structural first-passage models, confer

Harrison (1985), Karatzas and Shreve (1988), and Bielecki and Rutkowski (2002).

Black and Cox (1976) developed the first-passage approach to the valuation of defaultable

claims. Closed-form solutions are provided for the valuation of senior and subordinated

defaultable zero bonds with a deterministic default barrier that grows monotonously at a

constant rate. Black and Cox allow for default at maturity, enabling the default barrier

at maturity of the debt to be smaller than its face value. Premature default caused

by hitting the barrier function is considered to indicate that the firm is over-indebted,

whereas default at maturity represents insolvency. Furthermore, Black and Cox provide

12A list of structural models that incorporate strategic behavior of equity holders and an endogenous
definition of the default threshold includes (in chronological order) the contributions of Black and Cox
(1976), Leland (1994), Leland and Toft (1996), Anderson and Sundaresan (1996), Anderson, Breedon,
Deacon, Derry and Murphy (1996), Mella-Barral and Perraudin (1997), Mella-Barral (1999), Anderson
and Sundaresan (2000), Ericsson (2000), Fan and Sundaresan (2000), Goldstein, Ju and Leland (2001),
as well as Francois and Morellec (2004).
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an extended model for the valuation of defaultable consol bonds with endogenous default

barrier and strategic behavior by equity holders. Bielecki and Rutkowski (2002) provide

a corrected version of the original Black and Cox model and propose a model extension

for corporate coupon bonds that pay interest continuously at a constant coupon rate.

The system application Creditgrade proposed by Finger (2002) is based on the model

presented by Black and Cox (1976) and involves a structural first-passage model with a

random log-normal barrier function that represents the debt per share. With parameters

estimated from stock market data and the asset value calibrated to CDS data, the model

is used for credit pricing, where a constant riskless rate is assumed.

Mella-Barral and Tychon (1996) assume an exogenous default-triggering state variable

with geometric Brownian dynamics that does not represent the value of the firm’s assets,

but reflects its economic state in general. A constant default threshold is assumed, and

the prices of discount and perpetual bonds are calculated along the line presented by

Black and Cox. For the valuation of a defaultable coupon bond with finite maturity,

periodic coupon payments are transferred into periodical continuous coupon rates. The

use of a general state variable allows the inclusion of more sophisticated structures of

several senior and subordinated debt contracts under a cross-default clause, with each

defaultable claim being evaluated independently.

Briys and de Varenne (1997) incorporate interest rate risk into the Black and Cox model in

the form of a generalized one-factor Vasicek short rate model. An exogenous recovery rate

is assumed, and correlation between the asset value and the riskless rate is considered. The

default barrier is defined by a fixed default point at the maturity of the debt, discounted

with the random riskless rate, so that the default barrier becomes stochastic.13 Apart from

the groundbreaking work of Black and Cox (1976), the approach of Briys and de Varenne

is the only first-passage model to provide a closed-form solution for the valuation of

defaultable claims with an exogenous default barrier. Bielecki and Rutkowski (2002)

introduce time-dependent deterministic parameters of the asset value process into the

set-up of Briys and de Varenne (1997). In a Gaussian HJM setting, a quasi-closed-form

solution for the forward value of a defaultable zero bond is presented under the Forward-

martingale measure. An explicit pricing formula, however, is only provided for the case

of a zero payout rate of the asset.

Longstaff and Schwartz (1995) incorporate a stochastic riskless short rate according to

the one-factor Vasicek model into a first-passage model with a constant default barrier

and allow for correlation between the asset value and the riskless short rate. Longstaff

and Schwartz show that the ratio of the asset value to the default barrier is sufficient

13The model of Schöbel (1999) presents a simplified version of the Briys and de Varenne model using a
standard Vasicek short rate with time-stationary parameters and with default at maturity precluded.
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to specify the default time of a defaultable claim, so that both quantities need not be

considered explicitly in the valuation of individual claims. Coupon bonds with finite

time to maturity are considered as a portfolio of defaultable discount bonds, and the

value additivity of cash flows is valid, which presents a major benefit compared to the

compound option approach. The capital structure is exogenous and allows for more com-

plex debt structures that include bonds of different coupon rates, maturity dates, and

seniority. Net-worth-based default and cash-flow-based default can be distinguished. A

cross-default clause ensures that the firm defaults on all its obligations simultaneously.

The strict absolute priority of claims with respect to seniority at default is revoked by

the specification of exogenous recovery rates. Recovery is paid at the original maturity of

the debt and formally, a recovery-of-face-value assumption defines the recovery amount,

however, the exogenous recovery rates enables to specify discretionary recovery claims.

Under the forward-risk-neutral measure, only a quasi-closed-form solution is provided for

the valuation of defaultable discount bonds, because the default time value of the recovery

payment at maturity weighted by the density of the default time must be approximated

numerically. It appears that no closed-form solution can be derived for the valuation

of defaultable claims with finite maturity by a first-passage model with constant default

barrier and correlated stochastic riskless short rate. 14 Therefore, it is conjectured that

a stochastic short rate in general precludes a closed-form valuation of defaultable claims

if a structural first-passage model with constant exogenous default barrier is considered.

Although, the model of Longstaff and Schwartz (1995) matches the methodological re-

quirements for a structural credit valuation model, it will be omitted in the remainder for

its lack of analytical tractability.

Kim, Ramaswamy and Sundaresan (1993) consider a first-passage model that involves a

one-factor CIR model of the riskless short rate to incorporate interest rate risk. Corre-

lation between riskless rate and asset value is permitted, however, the risk premium of

interest rate risk is set to zero, so that the short rate has identical dynamics under the

risk-neutral and the real-world probability measure. Credit default occurs if the payout

of the assets, modelled by a constant continuous payout rate, is not sufficient to cover

the debt service for a bond with finite maturity and a constant continuous coupon rate.

The constant default threshold is defined by the ratio of the payout rate of the assets to

the coupon rate of the bond, with the fraction of the payout available for debt service

considered to be the net cash flow of the firm’s production and investment decisions.15

The partial differential equation of the bond price is solved numerically, which renders

14See Bielecki and Rutkowski (2002), p. 100ff for a discussion of this topic.

15It is controversial why a firm should default due to a pure cash flow shortage, since equity holders
might be willing to provide additional capital to avoid bankruptcy costs as long as the firm is not
over-indebted.



3.1 Single-name Credit Risk Pricing Models 73

the model infeasible for portfolio applications.16

Nielsen, Saa-Requejo and Santa-Clara (1993) as well as Saa-Requejo and Santa-Clara

(1999) extend the model presented by Longstaff and Schwartz (1995) by assuming a

stochastic default barrier, which is assumed to represent the exogenous liquidation value

of the firm. The liquidation value determines the willingness of equity holders to provide

additional capital to prevent default. The resulting bond price PDE must be solved by

numerical techniques. Hsu et al. (2003) generalize the model of Nielsen, Saa-Requejo

and Santa-Clara to a Gaussian HJM framework with deterministic volatility of default-

free zero bond prices. A quasi-analytical formula for the price of a defaultable discount

bond is derived under the risk-neutral forward measure.

Cathcart and El-Jahel (1998) relax the assumption that the default-triggering variable

represents the asset value of a firm and propose a structural model with a signaling pro-

cess and a mutually independent one-factor CIR short rate process. A constant default

threshold is assumed and a quasi-analytical solution to the fundamental PDE of a de-

faultable coupon bond is provided in terms of the inverse Laplace transform. Lo and Hui

(1999) modify the model of Cathcart and El-Jahel using a generalized one-factor CIR

short-rate process and a default barrier that is a deterministic function of the default-

signalling variable.

Collin-Dufresne and Goldstein (2001) propose a first-passage model with a Vasicek short-

rate model that is correlated to the asset value. A stable capital structure is implemented

by a stochastic mean-reverting default barrier. The definition of the default barrier as-

sumes that the firm issues additional debt if the leverage ratio falls below a target value,

and that it reduces debt financing if the ratio is above the target. A quasi-analytical

pricing formula is provided for discount and coupon bonds under the forward measure

at the bond maturity and an approximation scheme for the distribution function of the

first-passage time is proposed to solve the probabilistic pricing equation of the bond price.

Default events triggered by diffusion processes are inherently predictable. Credit spreads

implied by first-passage models therefore involve the empirical unsupported property con-

verging to zero if the time-to-maturity of the claim approximates zero. This problem can

be circumvented if asset values follow a jump-diffusion process as proposed by Zhou (1997).

In contrast to intensity models, the jump of the asset value does not automatically trig-

ger a credit default, because the default barrier is not necessarily hit. Since the default

threshold may be reached either by a jump or by diffusion, the predictability of default

events does no longer apply unambiguously. In the estimation of jump-diffusion models

of the asset value, the specification of the jump size is critical. Zhou assumes a constant

16For the analytical intractability of the pricing equation the same arguments apply as for the model of
Longstaff and Schwartz (1995).
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jump intensity and a log-normal distributed jump size, and solves the resulting pricing

PDE numerically.

The first-passage jump-diffusion model presented by Cathcart and El-Jahel (2002) involves

a geometric Brownian signalling variable, an independent Gaussian short-rate process, and

additionally, a doubly stochastic jump process. Since the jump component is not interre-

lated to the signalling variable, a jump unequivocally triggers a default event. A stochastic

default threshold is modelled along the lines pretended by Briys and de Varenne (1997),

and the pricing PDE of a defaultable coupon bond is solved by numerical integration on

the basis of the value additivity of cash flows.

The extension of first-passage models with a jump component effects model-implied credit

spreads, especially in the short term, whereas for long-term credit spreads, default induced

by the asset diffusion is prevalent. However, for the unresolved identification of jump size

and jump frequency in model estimation, first-passage jump-diffusion models are excluded

from further consideration in this study.

The evidence on the power of structural models to fit empirical credit spreads is mixed.

Helwege and Turner (1999) examine fundamental properties of the empirical term struc-

tures of bond yield spreads. Sarig and Warga (1989) find that the empirical default risk

premia resemble the term structure of spreads implied by the Merton model. Wei and Guo

(1997) compare Merton’s model to the model of Longstaff and Schwartz in its ability to

fit Eurodollar rates by minimizing the mean squared yield errors along the line suggested

by Brown and Dybvig (1986), and receive a sufficient quality of the fit. However, if a

term structure of empirical credit yields is expected to results in a decrease of the fitting

quality, since existing estimates of model parameters imply hump-backed term structures

of credit spreads for long-term maturities.

Strictly positive short-term yield spreads underpin the conjecture that either structural

models are systematically flawed, or empirical yield spreads contain factors other than

credit risk, such as a margin for liquidity, taxes, or trading costs. Low trading volumes

of bonds with maturities of less than one year support the assumption the a liquidity

premium is included in the short-term yield spreads. In a comparative analysis Huang

and Huang (2002) use bond market data as well as observed default rates to examine to

which extent the empirical bond yield spreads can be attributed to credit risk for a variety

of structural credit pricing models. The results reveal that structural models provide a

better fit for junk bonds, whereas proportionally higher fitting errors are observed for

investment grade credit spreads, which gives further support to the assumption that

empirical bond yield spreads incorporate factors other than credit risk. Eom, Helwege

and Huang (2002) compare several structural models in their ability to fit US corporate

bond market yield data and conclude that structural models do not underestimate yield

spreads systematically, with yield and pricing errors considered to be satisfying.
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On one hand, a structural model used for the valuation of defaultable exposures in a

credit portfolio model must sufficiently reproduce the cross-sectional and inter-temporal

properties of empirical credit spreads, on the other, it should be as parsimonious as

possible. With respect to model estimation and simulative portfolio analysis, analytical

tractability and economical computing times are required. Specific model components

that cannot be generalized within a risk class, or which develop problems, qualify for its

exclusion from a model. Therefore, models that include jump components or information

on the capital structure of firms are discarded. Despite the methodological suitability,

the analytical intractability and extensive computational requirements prevent the use of

structural models with stochastic interest rates within portfolio applications.

3.2 A Structural First-Passage Credit Risk Model

A structural first-passage model is presented for the valuation of defaultable claims with

finite maturity and fixed coupons. The objective of the model is to provide mark-to-

model valuations of credit exposures in corporate loan or bond portfolios to be used in

the calculation of portfolio credit risk.

Conventionally, structural models consider a credit exposure to be a contingent claim on

the assets of a firm and involve assumptions regarding the firm’s capital structure and the

trading of assets.17 The assumption that the structural variable of a first-passage model

represents the value of firm assets, available to settle the claims of borrowers, is relaxed in

the remainder. Instead, the asset value is supposed to represent a latent default-signalling

variable without an economic correspondence that indicates the ability and willingness

of an obligor to timely fulfill the financial obligations induced by the exposure and that

can be calibrated to approximate a specific term structure of credit spreads or default

probabilities. Credit default is assumed to include over-indebtedness as well as insolvency.

The no-arbitrage requirement that the underlying be a traded asset is circumvented by

assuming the existence of a secondary market for any single-name credit risk, such as

credit insurance or CDS markets, which makes enables the replication of the exposure’s

contingent cash flows and ensure a dynamically complete market. Furthermore, the notion

of obligor default and exposure default are used interchangeably and the ratings of the

obligor and the exposure are assumed to be equal.

17Assumptions necessary to enforce arbitrage-free pricing comprise: firm assets are traded in a continuous-
time frictionless and efficient market, shares of the firm assets are infinitely divisible, short selling is not
restricted, and the borrowing and lending of unrestricted amounts is possible at a constant instantaneous
riskless rate.
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Distributions of Asset Value and Default Time

The asset value Vt of an obligor at time t is supposed to follow a geometric Brownian

motion

dVt = µVtdt+ σVtdWt (3.3)

with constant instantaneous drift µ, standard deviation σ > 0 and standard Brownian

motion Wt. Setting time origin t = 0 with boundary asset value V0, a unique solution of

(3.3) for the asset value at time t > 0 is given by

Vt = V0e
(µ− 1

2
σ2)t+σWt , (3.4)

where the asset value Vt is distributed log-normally with lnVt ∼ N (lnV0+(µ− 1
2
σ2)t, σ

√
t),

expected value E(Vt|V0;φ) = V0e
µt, variance V ar(Vt|V0;φ) = V 2

0 e
2µt(eσ

2t − 1), density

function

fV (vt, t) =

 1√
2tπσ

1
vt
e
(ln vt−lnV0−(µ− 1

2
σ2)t)

2

2σ2t
, vt > 0

0 , vt ≤ 0
(3.5)

and distribution function FV (vt, t) = P [Vt ≤ vt] = P [V0e
(µ− 1

2
σ2)t+σWt ≤ vt] given by

FV (vt, t) =

vt∫
0

fV (v, t)dv =
1√

2tπσ

vt∫
0

1

v
e−

(ln v−ln V0−(µ− 1
2 σ2)t)

2

2σ2t dv. (3.6)

The first-passage model triggers default of an exposure with face value K, if asset value

Vt hits a constant default threshold V = K before maturity T of the exposure, i.e.

min
t<T

Vt ≤ V .18 Thus, the minimum

Mt = min
0<t′≤t

(
(µ− 1

2
σ2)t′ + σWt′

)
(3.7)

of the normalized asset values ln(Vt′/V0) in the interval (0, t] triggers the default of an

obligor. The default time or first-passage time

τ = inf
{
t > 0 : Vt ≤ V

}
= inf

{
t > 0 : Mt = ln(V /V0)

}
. (3.8)

of a first-passage default model is a continuous random variable defined by the cumulative

18Setting V < K involves the distinction of premature default at a time t < T due to Vt hitting the
barrier V , and default at maturity by the asset value VT ∈ [V ,K) falling short on redemption K.
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default time probability

P [τ ≤ t] = P [min
t′≤t

Vt′ ≤ V ]

= P [min
t′≤t

V0e
(µ− 1

2
σ2)t′+σWt′ ≤ V ] (3.9)

= P [Mt ≤ ln(V /V0)].

Harrison (1985) shows that default time τ is distributed inverse-Gaussian with cumulative

probability

P [τ ≤ t] = N

(
ln(V /V0)− νt

σ
√
t

)
+

(
V

V0

)2θ−2

N

(
ln(V /V0) + νt

σ
√
t

)
, (3.10)

where auxiliary variables ν = µ − 1
2
σ2 and θ = (µ + 1

2
σ2)/σ2 are used, and ln(V /V0) is

designated as adjusted default threshold. The distribution function of default time τ is

defined by Fτ (t) = P [τ ≤ t], t ≥ 0 and the corresponding survival function is given by

Sτ (t) = 1−Fτ (t) = P [τ > t]. The conditional default probability pt|s = P [τ ≤ s+t|τ > s]

denotes the probability that an obligor, who survived until time s ≥ 0, defaults before

time s + t, t ≥ 0. Accordingly, qt|s = 1 − pt|s = P [τ > s + t|τ > s] is the conditional

survival probability for the interval [s, t + s]. For the time origin s = 0, pt = P [τ ≤
t] = F (t) is the unconditional probability of default, qt = 1 − pt is the unconditional

survival probability, and p = p1 (q = q1) is the one-year probability of default (survival).

Conditional one-year default probabilities p1|t+s = (pt+1|s−pt|s)/(1−pt|s) result iteratively

from multi-period equivalents, so that a term structure of one-year default probabilities is

defined by the sequence {p1, p1|1, p1|2, ...p1|n}, n = 1, ..., T . From the distribution function

Fτ (t) =
t∫

0

fτ (u) du of the default time, the density function

fτ (t) =
∂P [τ ≤ t]

∂t
= − 1

2t
√

2π

(
x2(t)e

− 1
2
(x1(t))2 + x1(t)(V /V0)

2θ−2e−
1
2
(x2(t))2

)
(3.11)

of the default time results by differentiating (3.10), with

x1(t) =
ln(V /V0)− (µ− 1

2
σ2)t

σ
√
t

, x2(t) =
ln(V /V0) + (µ− 1

2
σ2)t

σ
√
t

.

The distribution function of the first-passage time conditional on τ ∈ (0, t] is given by

P [τ ≤ t|τ ≤ t] =
P [τ ≤ t]

P [τ ≤ t]
, (3.12)

with density fτ |τ≤t(t) = fτ (t)/Fτ (t) of the first-passage time conditional on default up to
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time horizon t. In this context, the instantaneous conditional default probability

lim
∆t→0+

P [t < τ ≤ t+ ∆t|τ > t]

∆t
= lim

∆t→0+

Fτ (t+ ∆t)− Fτ (t)

(1− Fτ (t))∆t
≈ fτ (t)

1− Fτ (t)
(3.13)

can be compared to the time-inhomogenous intensity of reduced-form models.19

The distribution and density function of the first-passage time is calculated under the

real-world probability measure, whereas the valuation of defaultable cash flows is per-

formed using risk-neutral default probabilities pQt = FQ(t) = PQ[τ ≤ t] under the unique

Martingale measure Q derived from (3.10) using Girsanov’s theorem. Risk-neutral de-

fault probabilities result from (3.10) if the drift parameter µ is replaced by the constant

instantaneous riskless rate r. The density of the first-passage time under the risk-neutral

measure is defined by fQτ (t) = ∂PQ[τ ≤ t]/∂t.20

The complementary joint cumulative probability F V,τ (vt, t) = P [Vt > vt, τ > t] is provided

by Bielecki and Rutkowski (2002):21.

F V,τ (vt, t) = N

(
ln (V0/vt) + νt

σ
√
t

)
−

(
V

V0

)2θ−2

N

(
2 lnV − ln(vtV0) + νt

σ
√
t

)
, (3.14)

and the complementary joint density fV,τ (vt, t) of the non-defaulted asset value is obtained

by differentiation:

fV,τ (vt, t) =

t1(vt, t)− t2(vt, t)
(
V
V0

)2θ−2

, vt > V

0 , vt ≤ V
(3.15)

with auxiliary variables

t1(vt, t) =
1√

2πtσ

1

vt
e−

(ln(V0/vt)+νt)2

2tσ2 , t2(vt, t) =
1√

2πtσ

1

vt
e−

(2 ln V −ln(vtV0)+νt)2

2tσ2 , (3.16)

is constituted by two log-normal density functions. Using the law of total probability,

the joint cumulative distribution function of asset values without default until time t is

19The intensity λ(t) used by reduced-form models in the specification of default probabilities pt = 1 −
e−

R t
0 λ(u)du also represents a hazard rate. For a constant intensity λ, the default time density f(t) =

λe−λt is exponentially distributed with default probability pt = 1−e−ht. First-passage model, however,
do not assume credit events to be Poisson distributed, so that the exponential distribution is not
applicable to determine default probabilities within structural models.

20For fτ and fQ
τ to represent probability densities of the default time in the strict sense, it is additionally

defined: P [τ = ∞] ≡ 1−limt→∞ P [τ ≤ t], if limt→∞ P [τ ≤ t] < 1, and PQ[τ = ∞] ≡ 1−limt→∞ PQ[τ ≤
t], if limt→∞ PQ[τ ≤ t] < 1, so that the law of total probability yields P [τ ≤ t] + P [τ > t] = 1.

21Note, that P [Vt > V , τ > t] = P [τ > t] = 1− P [τ ≤ t].
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derived:

P [Vt ≤ vt, τ > t] = 1− P [τ ≤ t]− P [Vt > vt, τ > t] (3.17)

The distribution of the complementary asset value conditional on survival by time t is

P [Vt > vt|τ > t] =
P [Vt > vt, τ > t]

1− P [τ ≤ t]
(3.18)

with density f vt|τ (V ) = f vt,τ (vt)/(1− Fτ (t)), that reveals to be

fV |τ (Vt, t) =
t1(vt, t)− t2(vt, t)

(
V
V0

)2θ−2

N
(

ln(V0/V )+νt

σ
√
t

)
−

(
V
V0

)2θ−2

N
(

ln(V /V0)+νt

σ
√
t

) (3.19)

using (3.10) and (3.15). The distribution of the asset value conditional on survival by

time t is given by

P [Vt ≤ vt|τ > t] = 1− P [Vt > vt|τ > t], (3.20)

while the joint distribution function F (vt, t) = P [τ ≤ t, Vt ≤ vt] of asset value and default

time is derived using the law of total probability twice:

P [Vt ≤ vt, τ ≤ t] = P [Vt ≤ vt]− P [Vt ≤ vt, τ > t] (3.21)

= P [Vt ≤ vt]− (1− P [τ ≤ t]− P [Vt > vt, τ > t]). (3.22)

Finally, the distribution of the default time conditional on Vt ≤ vt is given by

P [τ ≤ t|Vt ≤ vt] =
P [Vt ≤ vt]− (1− P [τ ≤ t]− P [Vt > vt, τ > t])

P [Vt ≤ vt]
. (3.23)

Credit Valuation

The value of a non-defaultable zero bond with maturity T and unity face value at time

t ∈ [0, T ] is defined by BT
t = e−r(T−t), and 1/Bt

0 is the value of the money market account

at time t. Using a constant instantaneous riskless rate r, the interest rate risk is omitted.

In the case of default, the borrower owns a claim on the firm’s assets equal to the face

value of its exposure, whereas accrued interest are not considered in the recovery claim.

Accrued interest and bankruptcy costs such as work-out cost, legal costs or the difference

between the going-concern value of the firm and the liquidation value of its assets are

subsumed under a recovery rate %, and it is assumed that an obligor receives a recovery of

%K at time τ ≤ T . For a credit exposure with redemption of face value K at maturity T

and interest ctiK paid at a constant rate cti = c at time ti = 1, ..., T , a general valuation
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formula is given by

D(Vt, t;φ) = EQ[K(BT
t 1{τ>T} +Bτ

t %1{τ≤T}) + cK
T∑

ti=etd

Bti
t 1{τ>ti}], (3.24)

where EQ[·] represents the expectation under risk-neutral measure Q, φ =

{K,T, c, %, V , r, µ, σ} aggregates the constitutive parameter set of the exposure, 1{τ≤T}

denotes the default indicator, 1{τ>T} indicates the non-default of the exposure during its

lifetime, and etd specifies the next date when interest is paid. The present value

D(Vt, t;φ) = DZ(Vt, t;φ) +DC(Vt, t;φ) (3.25)

of the credit exposure at time t is decomposed into the value of the principal component

DZ(Vt, t;φ) = EQ[K(BT
t 1{τ>T} +Bτ

t %1{τ≤T})] (3.26)

represented by a defaultable zero bond of face value K, and the value of the interest

component

DC(Vt, t;φ) = EQ[cK
T∑

ti=etd

Bti
t 1{τ>ti}] (3.27)

of non-recoverable interest payments. A closed-form expression for the value of the de-

faultable zero bond is derived from Bielecki and Rutkowski (2002):

DZ(Vt, t;φ) = Ke−r(T−t)
(
Φ(h1(Vt, t;φ))− (V /Vt)

2ϑ−2Φ(h2(Vt, t;φ))
)

(3.28)

+ %Vt
(
(V /Vt)

2ϑΦ(h3(Vt, t;φ))− Φ(h4(Vt, t;φ))
)
,

with auxiliary variables ϑ = (r + 1
2
σ2)/σ2, and

h1(Vt, t;φ) =
ln(Vt/K) + (r − 1

2
σ2)(T − t)

σ
√

(T − t)
, h2(Vt, t;φ) =

2 lnV − ln(KVt) + (r − 1
2
σ2)(T − t)

σ
√

(T − t)
,

h3(Vt, t;φ) =
ln(V /Vt) + (r + 1

2
σ2)(T − t)

σ
√

(T − t)
, h4(Vt, t;φ) =

ln(V /Vt)− (r + 1
2
σ2)(T − t)

σ
√

(T − t)
.

Setting % = 1, DZ(Vt, t;φ) converges to the value of the zero bond from the Merton

(1974) model for V → 0. It is assumed that the claim on accrued and future interest does

not enter into the recovery claim and the recovery rate %, and the value of the interest
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component is given by

DC(Vt, t;φ) =
T∑

ti=etd

e−r(ti−t)cKPQ[τ > ti], (3.29)

where the risk-neutral probability of non-default until time ti = etd , ..., T is defined by

PQ[τ > ti] = 1 − PQ[τ ≤ ti]. The present value D(Vt, t;φ) performs jumps at each time

interest is paid and represents a so-called dirty price. In contrast, the clean price defined

by

Dclean(Vt, t;φ) = D(Vt, t;φ)− cK(t− ctb), (3.30)

is continuous in time and differs from D(Vt, t;φ) by the amount of the interest cK(t−ctb)
accrued since the last time ctb< 0 interest was paid.

3.3 Comparative-static Analysis

A comparative-static analysis of credit value D(Vt, t;φ) is conducted with respect to the

basis case of a par-value exposure with face value K ′ = 100, time-to-maturity T ′ = 10,

drift rate µ′ = 8%, volatility σ′ = 10%, default threshold V ′ = K ′, and recovery rate

%′ = 50%. The constant instantaneous interest rate is set to r′ = 5%. A one-year

default probability p′ = p1 = 1% is presumed and the asset value is calibrated by solving

Fτ (V
′
0 , 1) = p′ to obtain V ′

0 = 121.39. Par value D(V ′
0 , 0;φ′) = 100 implies a coupon rate

c′ = 6.18% in the basis parameter set φ′ = {K ′, T ′, c′, %′, V ′, r′, µ′, σ′}. The abbreviation

Dt = D(Vt, t;φ),∀t > 0 applies.

After a consideration of the default time τ , the asset value Vt, that corresponds to a given

one-year default probability p is examined. Second, the coupon rate c that calibrates

D0 to par is investigated for different values of p. Third, a term structure of the credit

value is studied for different values of p, r, µ, and σ. Finally, the term structures of the

partial derivatives of D(V0, 0;φ) with respect to a change in p, r, µ, and σ are analyzed

for different values of p.

3.3.1 Default Time and Calibrated Asset Value

The first-passage distribution Fτ (V0, t) of the default time τ is displayed in the left part of

Figure 3.1 for asset values V0 ∈ {110, 115, 120, 125}, given µ′, σ′, and V ′. The cumulative

default probabilities pt decrease in V0 and increase in t, as expected. The distribution

function of τ is convex for small t and becomes concave later on, converging to a specified
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limit for t → ∞, with default time density fτ (V0, t) reaching a maximum in the short

term and converging to zero afterwards. Consequently, the periodic default risk in form
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Figure 3.1: Firm Value V0 and Default-Time τ

The left graph shows the probability p of an early default by time t for firm values V0 ∈
{110, 115, 120, 125}. The right graph indicates the firm value V0, that corresponds to default
probability p for drift rate µ ∈ {0%, 4%, 8%, 12%}.

of conditional one-year default probabilities is not spread homogenously in time, which

affects the credit risk premium, i.e. the interest rate c of par-exposures, as will be seen

in Section 3.3.2. The low level of default probabilities for leverage ratios V0/V ′ that are

high compared to real-world benchmarks can be attributed to the considerable drift rate

and the relatively low level of the diffusion parameter compared to quotations of stock

price volatilities.

In the right part of Figure 3.1, the calibrated asset value V0 is depicted for different drift

rates µ ∈ {0%, 4%, 8%, 12%} depending on the one-year default probability p. Ceteris

paribus V0 declines in p and in µ. Noted without graphical depiction, p declines with an

increasing drift rate and decreasing volatility for a constant asset value and parameter set.

Correspondingly, for fixed p, the calibrated asset value V0 decreases in µ and increases in

σ. The SDE of the asset value in (3.3) can be calibrated to approximate a pre-specified

term structure of default probabilities by adjusting V0, µ, and σ, whereas in Section 4.4,

V0, µ, and σ are estimated from market data of credit spreads.

3.3.2 Term Structure of the Par-Coupon Rate

The coupon rate c of par-exposures is examined for different one-year default proba-

bilities p ∈ {0%, 0.5%, 1%, 3%, 5%, 10%}. The calibrated interest rate of a dirty-price

par-exposure jumps each time T is increased across a full-year maturity, so that the par

rate c is calculated for full-year maturities only and interpolated in-between to facilitate

interpretation. In the left part of Figure 3.2, the par rate increases with p, with the bot-

tom line indicating the periodic interest rate of a default-free exposure. The par rate takes

a maximum for short-term maturities and declines for T > 2. This effect is inferred from
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the term structure of default probabilities. If the maturity of an exposure is extended, the

default risk of the additional period is compensated for by an additional interest payment.

Induced by the distribution function of the first-passage time, the probability P [τ ≤ 1]

of default in the first year is smaller than the probability P [1 < τ ≤ 2] of default in the

second period for small values of p, so that the interest rate required to compensate for

the default risk of a one-year par exposure is higher than for a two-year par exposure, and

the par rate increases in T in the short-term. For long-term maturities the default risk

P [T < τ ≤ T + 1] of an additional period is smaller than the previous average default

probability P [0 < τ ≤ T ]/T . Consequently, less additional default compensation is re-

quired than provided by the former interest rate and the par rate decreases. For exposures

with p = 5% and above, periodic default probabilities P [T < τ ≤ T + 1] monotonously

decrease in T and par rates decline accordingly.

In the right half of Figure 3.2, the par rate of an exposure with maturity T ′ is displayed

for different default probabilities depending on the default-free market rate r. For a non-

defaultable exposure, par rates increase linearly at the market rate. Furthermore, the

par rates rises in p ceteris paribus. An increase of the market rate has two contradictory

effects on exposure value and par rate. First, the risk-neutral density of the default

time decreases, so that expected payments under the risk-neutral measure increase in r.

Second, the discount factors decrease in r, so that the present value of future cash flows

drops. For high default probabilities p, the first effect dominates if r is small and the

par rate is required to compensate for default risk declines in the market rate until both

effects are equal and a minimum par rate is reached. If r is raised further, the decline of

the discount factor outweighs the decrease of the risk-neutral probability and par rates

increase in r. For small values of p, the discount effects dominate the change in expected

cash flows and par rates grow monotonously at the market rate.
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Figure 3.2: Par-Coupon Rate depending on T and r.

Calibrated coupon rates c are displayed for various p ∈ {0%, 0.5%, 1%, 3%, 5%, 10%}. In the
left graph, c depends on T , and the right graph indicates c for increasing r.
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3.3.3 Loan Value

The term structure of loan values D0 of the basis case exposure are considered for different

p, r, µ, and σ. For a change of default probability p′, drift µ′, or volatility σ′, asset value

V0 is adjusted to keep p constant for the different maturity. In the left part of Figure
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Figure 3.3: Term Structure of Credit Value D0 for different p and r

The left graph depicts D0 for p ∈ {0%, 0.5%, 1%, 2%, 3%, 5%} depending on T . The right
graph shows D0 for r ∈ {0%, 2.5%, 5%, 7.5%, 10%} over T .

3.3, the value of a non-defaultable exposure grows monotonously in the time-to-maturity,

because interest rate c′ increasingly overcompensates for the interest required by a non-

defaultable par-exposure for rising maturities. Ceteris paribus, D0 decreases in p. For

p ≥ 0.5%, D0 reaches a minimum for mid-term maturities, which is explained by coupon

rate c′ compensating for a non-homogenous default risk as introduced in the preceding

paragraph. For small T , additional interest does not fully compensate for the additional

default risk if time-to-maturity is extended. After reaching its peak, the density of the

default time converges to zero for t→∞, so that additional interest overcompensates for

the additional default risk and the credit value improves if T is increased.

In the right half of Figure 3.3, the credit value of the basis exposure is shown for different

market rates r ∈ {0%, 2%, 4%, 6%, 8%, 10%} depending on T . For r > c′, the interest

c′K ′ excluding default risk compensation is not adequate to cover the market rate and

D0 decreases monotonously in T . An increase of r reduces the risk-neutral default prob-

abilities and the expected future payments rise, whereas discount factors fall. Given p′

and a small value of T , the second effect dominates and the loan value drops in r. In

contrast, for high T and small r the first effect outweighs the decrease in the discount

factors and the credit value increases in the market rate. The convex shape of D0 con-

tributes to the evolution of the default intensity in t. For short maturities, the default

risk exceeds the default compensation included in the additional interest payment c′K ′,

if T is extended by one period. For a long time-to-maturity the opposite holds. The

inhomogenous default compensation effects a minimum credit value for small values of r,
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whereas D0 monotonously decreases in T for high market rates.

In the left part of Figure 3.4, the credit value D0 is examined for different µ =

{0%, 4%, 8%, 12%} depending on T . Drift rate µ does not appear directly in the valua-

tion, but affects the probability of default under the real-world measure. For the different

values of µ, default probability p′ is held constant for any maturity of the bond, while V0

is recalibrated.22 Altering µ, the distribution of default times P [τ ≤ t], t 6= 1, the limiting

default probability limt→∞ P [τ ≤ t], and the risk-neutral default probability PQ[τ ≤ t]

change. If µ is lifted, V0 is adjusted downward and an elevated risk-neutral one-year

default probability pQ is obtained. Accordingly, D0 falls, all else being unchanged. The
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Figure 3.4: Term Structure of the Credit Value D0 for different µ and σ

The left graph depicts D0 for µ = {0%, 4%, 8%, 12%}, the right graph shows D0 for σ =
{2%, 6%, 10%, 14%, 18%} depending on T .

convex shape of D0 with minimum credit value at a medium-term maturity attributes to

the relation of additional default risk and additional default compensation by the constant

interest rate c′, if T is enhanced. Setting µ = 8%, the difference of the additional default

compensation exceeds the additional default risk for maturities greater than T = 4. In

contrast, D0 increases monotonously in T for µ = 0%, because the risk-neutral default

probabilities decrease from the re-calibration of asset values and periodic default risk is

overcompensated for by c′K ′ in any period.

Finally, the term structure of credit value is considered for volatilities σ =

{2%, 6%, 10%, 14%, 18%}. If σ is increased for a fix value of V0, default probabilities

rise under both the real-world and the risk-neutral measure, so that D0 deteriorates in

σ. In contrast, if default probability p′ is fixed and if σ is changed, two contradictory

effects appear. First, an increase of σ leads to an increased calibrated asset value V0,

and credit values increase. Second, risk-neutral default probabilities pQt rise for a given

V0. As can be seen in the right-hand graph of Figure 3.4, the first effect dominates for

T < 2 and D0 increases in σ, whereas for T > 2, the second effect outweighs the first, and

22Alternatively, µ can be changed holding V0 constant with an implicit change of p.
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D0 declines in σ for a constant default probability p′ and constant T . For σ = 2%, the

reduction of pQt compared to the basis case dominates the decrease in the adjusted V0 for

any maturity, so that D0 rises monotonously in T . For all other volatilities considered,

D0 takes a minimum value, when the additional default risk excluding net compensation

from an increase in maturity, changes its sign.

3.3.4 Sensitivity of the Loan Value

The partial derivatives of D0, with respect to a change in p, r, µ, and σ, are only piecewise

continuous in T . Due to the jumps of the present value D0, when interest is paid, partial

derivatives of the loan value are only piecewise continuous in T . For the partial derivative

∂D0/∂r a closed-form solution is derived, whereas a right-sided differential quotient is

used to determine sensitivity of D0 to a change in p, µ, and σ.

In the left part of Figure 3.5 the term structure of sensitivity ∂D0/∂p is given for default

probabilities p ∈ {0.5%, 1%, 3%, 5%, 10%}. This p-sensitivity of D0 can be interpreted as
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Figure 3.5: Sensitivity of D0 to a change in p and r.

The graphs depict term structures of partial derivatives ∂D0/∂p in the left part and of
∂D0/∂r in the right part for p = {0.5%, 1%, 3%, 5%, 10%}.

an analogy to the dollar duration, which considers credit risk instead of interest rate risk.

The p-sensitivity for the basis case exposure indicates, for example, a decrease in Dt
0 of

277 basis points if the one-year default probability is increased to p = 2% by adjustment

of V0. The absolute p-sensitivity of D0 monotonously increases in T . For T & 0.8, the

absolute p-sensitivity of the loan value is higher for exposures with small values of p,

whereas the absolute p-sensitivity of D0 otherwise increases with p. The p-sensitivity

turns from a concave to a convex shape if the maximum of the default density is reached.

In the right part of Figure 3.5, term structures of the partial differential ∂D0/∂r are

calculated for default probabilities p ∈ {0.5%, 1%, 3%, 5%, 10%} of the basis case exposure.

The r-sensitivity of defaultable exposures evolves in a similar way to those of a default-

free coupon bond for small values of p: it is negative and its absolute value increases
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with T . Surprisingly, the r-sensitivity is positive for p = 10% and short time-to-maturity,

which is attributed to the fact that the decrease in pQ and the corresponding increment of

the expected future payments, caused by an up-shift of r, outweighs the reduction of the

discount factor. For long maturities, this effect vanishes. Choosing r = 0% and a high p

instead, the r-sensitivity of D0 monotonously increases in T .

The partial derivative ∂D0/∂µ is analyzed for the previous default probabilities of the

basis case exposure. The drift rate does not affect D0 directly, but through the change in

the calibrated asset value, so that a closed-form µ-sensitivity cannot be derived. Instead

a two-fold first order approximation of ∂D0/∂µ is performed. A small change of µ is

transferred into a change of V0 and the differential quotient of D0 is calculated with

respect to the change of V0. An upward shift of µ negatively affects V0, p
Q is enhanced

and it results a negative µ-sensitivity of D0, as can be seen in the left part of Figure 3.6.

The absolute µ-sensitivity increases in T , however, the trend is not monotonous, because

the µ-sensitivity is not continuous in T . The sensitivity ∂D0/∂σ is examined in the right
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Figure 3.6: Sensitivity of D0 to a change in µ and σ.

The figures depict term structures of the partial derivatives ∂D0/∂µ on the left side and of
∂D0/∂σ on the right side for p ∈ {0.5%, 1%, 3%, 5%, 10%} depending on T .

part of Figure 3.6 for the basis case exposure with p ∈ {0.5%, 1%, 3%, 5%, 10%}. As

before, increasing σ affects D0 due to the adverse effects on V0 and pQt . The σ-sensitivity

of D0 is positive for small maturities, reaches a maximum approximately at T = 1, and

decreases in T to negative σ-sensitivities afterwards. Obviously, the increase of V0 has

only a short-term effect, with the rise of pQt dominating for longer maturities. In contrast

to previous sensitivities, the variation of the σ-sensitivity is less pronounced with respect

to a change in p.
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3.4 Credit Portfolio Models

Credit portfolio models are used for pricing, risk management and capital allocation

of credit portfolios and multi-name credit derivatives. Credit portfolio models generate

distributions and derived statistics of portfolio value, portfolio loss or (percentage) number

of defaulted exposures in a credit portfolio.

From a mathematical viewpoint, any model of dependent credit defaults involves a com-

bination of a credit default mixture model, a factor model of default probabilities, and a

concept of default dependence.23 In a generalized form, the defaults of individual obligors

are typically modelled by Bernoulli- or Poisson-distributed default variables. Bernoulli

and Poisson mixture models aggregate individual default variables to determine a (default)

distribution for the number of defaulting obligors.24 The dependence between obligor de-

faults is a result of the joint co-movement of state variables that represent the credit

risk of obligors and typically depend on a set of observable or latent factors. Given a

realization of the factor set, the defaults of obligors are independent and determined by

conditional default probabilities, so that credit dependence is controlled by the joint evo-

lution of factors that is defined by a copula. Frey and McNeil (2001) affirm that, given an

appropriate calibration, models using the same mixture type of individual default events

and the same dependence concept, i.e. the same copula, are equivalent.25 However, the

mathematical generalization of credit portfolio models using a default mixture and a cop-

ula fails to consider model characteristics and objectives with respect to (1) data used

for model estimation, (2) credit risk definition, (3) type of variable that represents credit

risk, (4) risk segmentation, (5) factors used, (6) dependence concept of credit risk, and

(7) time-invariance of parameters.

Estimation data comprise either market price information or historical rating experience.

Time series of market information enable to determine the real-world and the risk-neutral

dynamics of credit risk driving state variables, whereas the information content of rating

and default data is restricted to real-world probability measures. The marketability of the

credit exposures in the portfolio determines whether market price information or historical

credit experience is more suited to model estimation.

The notion of credit risk refers either to the number or percentage of default events, to

pre-specified or stochastic default loss amounts in terms of EAD×LGD, or to a definition

23Cf. Frey and McNeil (2001, 2003), whose generalized view of joint credit default coincides with the
framework of credit portfolio modelling presented by Koyluoglu and Hickman (1998a, 1998b) in Section
2.1.2.

24Cf. Frey and McNeil (2001), p. 7 and Bluhm, Overbeck and Wagner (2003), p. 56ff.

25In contrast, Bluhm, Overbeck and Wagner (2001) contest that mixture models of the Bernoulli and the
Poisson type are compatible.
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of credit loss that involves changes in the valuations of exposures. Components of credit

risk are default risk, risk of rating migration and changes in credit spreads, as well as

systematic spread risk associated with a change in the risk perception and the credit risk

premium required by market participants. In the portfolio context, default distributions

and loss distributions of credit risk are distinguished.

Variables that represent credit risk comprise either multinomial rating variables, asset or

firm value, including other latent structural variables that describe the ability-to-pay of

an obligor, stochastic or homogenous default intensities, or stochastic default times.

Models of credit dependence include multi-name credit risk models and credit portfolio

models with a risk segmentation of exposures. Multi-name credit risk models are used

for the valuation of multi-name credit derivatives, counterparty risk or third-party guar-

antees and consider the risk characteristics and the credit dependence of each individual

exposure explicitly. Risk segmentation is used for portfolios that contain a large number

of exposures against different obligors and involves the classification of exposures with

perceived similarity of credit risk characteristics and a homogenous dependence on a set

of common factors.

Factors that determine the credit risk of obligors represent either observable macroeco-

nomic industry and country-specific factors, fundamental obligor-specific factors, or latent

unobservable statistical factors. The dependence concept, i.e. the joint distribution or

copula of a model, affects portfolio credit risk in the form of fat tail effects or tail depen-

dence of loss distributions. Finally, assumptions regarding the time-homogeneity of model

parameters must be aligned to the length of the time series used for model estimation,

since the dynamics of empirical data are typically time-inhomogenous.

With respect to the aforementioned characteristics of credit portfolio models, econometric

default models, asset value models, actuarial models, intensity models and default time

copula models are distinguished. Table 3.2 categorizes common credit portfolio mod-

els from science and banks and compares the models’ basic properties. Methodological

particularities of the categories are subsequently highlighted.

Comprehensive comparative examinations of credit portfolio models are provided by Koy-

luoglu and Hickman (1998a), Crouhy et al. (2000), Gordy (2000), Bluhm et al. (2003),

and Schönbucher (2003). Studies by Gordy (1998) and Nickell, Perraudin and Varotto

(2001b) compare credit portfolio models with respect to capital requirements. Fundamen-

tal characteristics of credit dependence are pointed out by Gersbach and Lipponer (2000)

and Erlenmaier (2001).
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3.4.1 Econometric Factor Models of Credit Default

Econometric factor models use observable macroeconomic and fundamental factors to fore-

cast conditional point-in-time default or rating migration probabilities. Macroeconomic

factors include level and changes in production, consumption, income, employment, in-

flation, capital market, trade balance and government activities. Fundamental factors

typically include efficiency, solvability, earnings, and balance sheet ratios, as well as man-

agement quality and the market prospects of obligors.

Econometric factor models consider the default probabilities of single obligors or risk

classes as relevant credit risk indicators and use either lagged factors or inherently predict

the evolution of factors for the period of the risk forecast. Since factor models rely on the

historically observed relation between factor values and default rates, they are vulnerable

to shifts in the periodicity of the business-cycle, which may bias established relations

between factors and default rates.

Credit risk factor models are structurally similar to factor models of stock returns.26

A first seminal credit risk factor model was suggested by Altman (1968), who predicts

corporate bankruptcy using a discriminant analysis on the basis of fundamental factors.

Credit Portfolio View, a credit portfolio model proposed by Wilson (1997a, 1997b), is

a two-step procedure that predicts conditional independent point-in-time credit default

and rating migration probabilities for the obligors of a risk class. Using a logit regression,

the default probability of a risk class is predicted from macroeconomic factors which

themselves are predicted by an AR(2) factor model. Risk classes represent industries,

countries or both. In a second step, conditional rating migration matrices are derived from

unconditional migration probabilities by considering the ratio of the predicted conditional

PD to the long-term default rate of the class. Conditional distributions of portfolio default

rates are simulated for single or multiple risk classes. Distributions of the conditional

portfolio loss are derived either by assigning explicit loss amounts to simulated default

events or from portfolio values calculated by risk-adjusted discounting of exposures with

respect to simulated ratings. Unconditional loss distributions are received by averaging

the conditional loss distributions given simulated values of factors.

Among many others, Altman and Suggitt (2000) provide empirical results on default

rates throughout the business-cycle for the US syndicated loan market. Recent studies

by Hamerle, Liebig and Rösch (2003, 2004) as well as Hamerle, Liebig and Scheule (2004)

incorporate macroeconomic, fundamental and latent statistical factors in probit and logit

26Macroeconomic factor models of stock returns are based on the arbitrage pricing theory introduced
by Ross (1976) or, more generally, on the CAPM presented by Sharpe (1964) and Lintner (1965).
Constitutive fundamental factor models are proposed by Fama and French (1973) and Fama and French
(1992). Statistical factor models of stock returns often rely on principle component analysis.
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representations of a linear random-effect panel data model for the simultaneous estimation

of conditional default probabilities and credit correlations. Lucas, Klaassen, Spreji and

Straetsmans (2001) derive an analytic approximation of the credit loss distribution for

an infinite number of exposures in a factor model of conditional independent defaults.

Koopman, Lucas and Klaasen (2003) use credit risk factor models for the examination of

business-cycle effects of credit risk. The evolution and correlation of default intensities

of business sectors is examined by Das, Freed, Geng and Kapadian (2002) and Hamerle,

Liebig and Scheule (2002). Factor models that explain the evolution of credit spreads

are proposed by Duffee (1998), Pedrosa and Roll (1998), Collin-Dufresne and Goldstein

(2001) and Collin-Dufresne, Goldstein and Martin (2001).

3.4.2 CreditRisk+

In an actuarial framework, CreditRisk+ presents a default-only model with closed-form

solutions for unconditional default and loss distributions.27 Credit risk of an obligor is

represented by independent random credit default and loss severity as it is typical for

actuarial models. Changes in credit quality other than default are omitted. Loss severity

is specified as difference between an obligor’s exposure, given by the face value or a mark-

to-model value, and the present value of expected recoveries.

In a basic setting, the defaults of individual obligors are assumed to be Poisson-distributed

with time-homogenous intensity and grouped to a single risk class.28 Individual intensi-

ties are fitted to coincide with exogenously estimated default probabilities of obligors.29

Obviously, in the single-class model, intensities can differ considerably between obligors.

Given obligor-specific intensities, default events are assumed to be independent, which

enables to aggregate the probability-generating functions (pgf)30 of individual obligors,

so that the default rate of the risk class is a Poisson-distributed mixture of independent

Poisson-distributed default variates.

Creditrisk+ may be calibrated to produce unconditional as well as conditional credit risk

forecasts. Fitting intensities to point-in-time PD estimates yields in conditional default

rate distributions adapted to current economic conditions. In contrast, unconditional

default rate distributions reflect the dependence of credit events imposed by a variation

27Cf. CSFP (1997).

28Poisson default models allow multiple defaults to be assigned to a single obligor, however, the effect on
credit risk is considered to be immaterial in the Creditrisk+ framework.

29CreditRisk+ is not an intensity model in the sense of Section 3.1.1 as it does not involve risk-neutral
valuation.

30Cf. Bosch (1992), p. 162ff. for the definition and properties of probability generating functions.
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of default rates, which is assumed to be gamma-distributed in time.31

A generalized multiple risk class approach incorporates background factors of specific sec-

tors on the variation of obligor-specific intensities. Sectors represent a single obligor,

a rating class, business sector or country with gamma-distributed default intensities.

Gamma-distributed obligor-specific intensities result from the aggregation of weighted

sector intensities, and the default rate distribution of the aggregate portfolio is negative-

binomially distributed. The extreme quantiles of the portfolio default rate increase with

the volatility of the pooled intensity, however, since sector intensities are assumed to be

independent, the probability mass of the distributional tail of the default rate tends to be

biased downwards.

For the deduction of loss distributions, exposures are grouped into exposure bands of

similar expected loss. Assuming time-homogenous loss severities loss distributions are

deduced from default distributions. The pgf of the portfolio loss is given by the product

of the loss pgf of each exposure band, and the loss distribution is approximated for single

exposure bands as well as for the entire portfolio using a recurrence algorithm. For the

single-class case, Bluhm et al. (2003, p. 100) show that the portfolio loss converges

toward a negative-binomial distribution with gamma-distributed default intensity for an

infinite number of obligors.

Several comparative studies and extensions of the original CreditRisk+ framework exist.

Gordy (2000) compares CreditRisk+ to a restricted Creditmetrics model. Bluhm et al.

(2001, p. S35) and Bluhm et al. (2003, p. 102) find that Bernoulli mixture models have

systematically fatter tails than Poisson mixture models. Bühler, Uhrig-Homburg, Walter

and Weber (1999) suggest incorporating correlation between sector intensities in the multi-

class case. Haaf and Tasche (2002) calculate single-exposure risk contributions induced

by CreditRisk+. Several contributions in Gundlach (2004) provide model extensions to

incorporate multi-period credit risk forecasts, rating migrations, dependent sectors as well

as simulation and estimation techniques, and a methodology for capital allocation.

3.4.3 Structural Credit Portfolio Models

Structural credit portfolio models used in banking practice include Creditmetrics, pro-

posed by Gupton et al. (1997), and the KMV approach presented by Kealhofer (1995)

and Vasicek (1984).32

31Cf. CSFP (1997), p. 44f.

32Gordy (2000) shows that Creditmetrics and the KMV model represent a Bernoulli mixture models, if
asset returns follow a common factor structure.
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Creditmetrics is a latent-variable approach33 that considers credit risk in the form of a

change in the value of an exposure incurred due to a change in the obligor rating. Under

the assumptions of the Merton model, the continuous latent state-variable can be inter-

preted as a firm’s asset value. A mapping translates the normalized asset returns into a

multinomial rating migration. The domain of the normalized asset return of an obliger

is partitioned into ranges that represent rating migrations over a Credit-VaR horizon in

ascending order, where for each migration range the increase of the Gaussian distribution

function of the asset return equals the probability of a migration of an obligor’s current

rating. The rating migration of an obligor is considered to be a credit event where credit

default is defined as a special grade of the rating system. Probabilities of rating migra-

tions across the Credit-VaR horizon are given exogenously by rating transition matrices

provided either by rating agencies from historical transition experience or estimated based

on default intensities using a Markov process.34

The use of a structural model for the valuation of an exposure with a forecasted asset value

at the Credit-VaR horizon as introduced in Section 3.1.2 is omitted. Instead, exposures

are valued on the basis of the corresponding rating forecast at the Credit-VaR horizon by

discounting the contractual cash flows of the exposure using a risk-adjusted term structure

of forward rates for the respective rating grade. Credit loss is defined as the difference of

the exposure value from its expected value. In the case of default, the exposure value is set

to the time value of expected recovery payment, which is assumed to be beta-distributed.

The dependence of obligors’ asset returns and rating migrations is incorporated by ag-

gregating the asset value of any obligor from a set of correlated systematic and specific

factors. Gupton, Finger and Bhatia suggest using country-sector equity indices as sys-

tematic factors and attributing factor weights in a judgemental procedure, according to

the ”participation” of the obligor in the respective segment. No defined procedure is pro-

vided for determining the weights of systematic and specific factors. Given the standard

deviations and correlations of normalized factors as well as the factor weights for any

obligor, the asset correlation between any pair of obligors is specified. Loss distribution

and related credit risk measures of a credit portfolio are determined by deriving the asset

returns and rating migrations of all obligors in a portfolio from simulated scenarios of

systematic and specific factors.

Creditmetrics’ use of average historical transition rates relies on two critical assumptions:

(1) all obligors within a rating class have the same default and migration probabilities,

and (2) current migration probabilities are equal to historical average transition rates.

However, empirical evidence produced by the KMV corporation shows that historical

33Cf. Frey and McNeil (2001), as well as Bluhm et al. (2003) for the notion of the latent-variable
approach.

34Cf. Jarrow et al. (1997).
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tabulations of rating transitions do not provide a powerful estimator for the migration

and default probabilities of obligors. The average default probabilities of a typical firm

in a rating class are overstated due individual PD being skewed. Furthermore, transition

matrices overstate the probability of a rating staying constant, since agencies are slow

to adjust ratings. In consequence, the probabilities of rating migrations are underesti-

mated.35 Further criticism focusses on the credit spread, used in discounting an exposure’s

cash flows, which is only determined by the rating of the obligor, thus neglecting an ex-

plicit inclusion of the capital structure and balance sheet ratios of the firm. Another

question is, whether equity indices appropriately reflect the credit risk of unlisted oblig-

ors. Finally, unadjusted equity index returns are expected to exceed asset correlations,

which is confirmed by alternative estimates of asset correlations.36

The KMV model as introduced by Kealhofer (1995, 1998) and Crosbie (1999) is an asset

value approach that differs from Creditmetrics in that default and transition probabilities

are calibrated by thresholds of a structural variable. The default threshold at a time

horizon is derived from the book value of short-term and long-term debt, adjusted for

expected growth of the debt. The initial asset value of an obligor and its diffusion pa-

rameter are estimated iteratively using an extended version of the Black-Scholes model37

for the valuation of common stock under more complex capital structures.38 For obligors

without common stock, parameters are derived from comparables. The drift parameter of

the asset value is estimated using a linear regression of asset returns against the returns

of a market index. Instead of calculating default probabilities using the distributional

assumptions of the diffusion process, default risk is indicated by the normalized distance-

to-default (DtD) of the expected asset value at the time horizon to the default threshold.

Obligors are classified according to their distance-to-default, and historical default rates,

referred to as Expected Default Frequency (EDF), are calculated for each DtD class. The

default probability of an obligor is assumed to equal the EDF of its DtD class instead

of referring to its rating. The valuation of exposures is based on the risk-neutral default

probabilities of cash flows, derived from the EDF term structure of the DtD class. Credit

risk dependence is incorporated using a model of global, regional, sector and country fac-

tors similar those used in the Creditmetrics approach, which decomposes the asset returns

into a systematic and obligor-specific component. Simulated distributions of credit port-

folio loss refer to the value of the non-defaultable portfolio. Kealhofer and Kurbat (2001)

show that the KMV approach of assigning default probabilities to obligors discriminates

defaulting obligors more accurately than rating-based PD estimates, and that the time

35Cf. Crouhy et al. (2000), p. 95.

36Cf. Düllmann and Scheule (2003) as well as Dietsch and Petey (2002).

37Cf. Black and Scholes (1973), p. 649ff

38Cf. Vasicek (1984)



96 CHAPTER 3 - Portfolio Credit Risk Modelling

series of expected default frequencies can be useful in the prediction of obligor defaults.

However, only discretion-based criteria are provided for the aggregation of asset returns

to weight factors according to an attribution of sales and assets to factors, which raises

the question of whether Credit-VaR is a reliable risk measure in the portfolio context.

Further structural portfolio models expand single-obligor first-passage models to incorpo-

rate credit dependence. Zhou (2001) provides a closed-form solution for the joint default

probability in a bivariate first-passage model with deterministic default thresholds and

correlated asset values, however, it appears that no generalized closed-form solution for

the joint default probabilities in a multi-obligor case exists.

Hull and White (2000b) suggest a discrete-time approximation of a first-passage model

with time-dependent default barriers and correlated asset values for the valuation of

Basket-CDS. Default events occur if the asset value falls below the default barrier at

a discrete time grid. Given a constant recovery rate, the level of the default barrier is

calibrated to reproduce market-observed credit spreads. Since default barriers are not

constant, the calibration of default dependencies depend not only on the specification of

a factor structure, it also requires the simulation of default times and the derivation of

joint default probabilities from the samples, which is computationally expensive. Non-zero

short-term credit spreads require the barrier to have an infinitely negative slope at the

valuation date for an infinitesimal time interval. For the valuation of Basket-CDS Over-

beck and Schmidt (2003) introduce a transformation of the first-passage time distribution

to improve the calibration of first-passage models with correlated asset values.

Hull, Predescu and White (2005) propose a structural first-passage model with a constant

default barrier, constant drift and diffusion parameters and a constant riskless rate similar

to the default model described in Section 3.2. Credit dependence is introduced by a

factor representation of normalized asset returns. Diffusion parameters are calibrated

to cross-sectional term structures of CDS indices, while asset correlations are fitted to

reproduce the market values of CDO first loss tranches. Empirical experience reveals

that the calibration of CDO valuation models with respect to different tranches leads to

differing dependence parameters. Furthermore, the calibration using cross-sectional term

structures omits the estimation of drift rate of asset values.

3.4.4 Intensity-based Portfolio Models

Intensity-based portfolio models incorporate credit dependence in the form of correlation

of obligors’ default intensities. Concepts which implement correlated default intensities in-

clude basic-affine factor models, joint jump processes of intensities and contagion models,

where infectious default events affect the intensities of economically related obligors.
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Duffie and Garleanu (2001) transfer the general multi-factor model of stochastic short rates

presented by Duffie and Kan (1996) to derive the joint evolution of default intensities of

multiple obligors from a latent factor model of orthogonal systematic and obligor-specific

basic affine intensity processes. Conditional on systematic factors, the default intensities,

default events and default times of obligors are independent. Schirm (2004) estimates a

restricted version of the Duffie and Garleanu model in which obligor-specific basic affine

factors are omitted, whereas Duffee (1999), Driessen (1999) and Zhang (2003) propose

similar default intensity factor models.

Factor models of the default intensity that use observable real-world indices as proxy

factors of obligors’ credit quality are subject to criticism because they generate low default

correlations. According to Yu (2002), low default correlations typically arise from an

insufficient specification of the common factor structure that fails to capture all sources

of common variation of intensities and results in correlated obligor-specific intensities. In

fact, Duffee (1999) finds that idiosyncratic factors, though statistically significant, are

correlated across obligors.

Several extensions of basic affine factor models of default intensities increase default corre-

lations by introducing additional sources of credit risk dependence. Duffie and Singleton

(1999b) propose a multi-variate intensity model with a deterministic mean reversion model

and correlated jumps of default intensity.39 The intensity jump of each obligor consists of

a joint and an obligor-specific jump component. Obligors may not default simultaneously

in this case. Alternatively, in addition to individual Poisson-distributed defaults with

independent obligor-specific intensities, Duffie and Singleton (1999b) and Kijima (2000)

introduce point processes that simultaneously trigger joint credit events, a subset of which

consists of obligors defaults who will default with a positive probability. Joint shocks can

be fatal, resulting in unit default probabilities, or non-fatal in which case default proba-

bilities are smaller than one.40 However, multiple point processes of joint default intensity

are troublesome in terms of notation and calibration, because a joint intensity must be

specified for every joint default process, so that the number of model parameters becomes

gets unmanageably large, even for portfolios which contain few obligors.

Default events are often triggered by the default of a related firm, and default times

tend to show clusters in time. Contagion models of infectious defaults incorporate joint

credit events to reflect the business relations of firms. Default intensities of obligors

are assumed to follow correlated jump-diffusion processes, with default intensities jointly

jumping upwards by a discrete amount in the case of a credit event. David and Lo

39A generalized version of a multi-variate affine jump-diffusion intensity model is introduced by Duffie
et al. (2000).

40Giesecke (2002), p. 4, shows that the Marshall-Olkin copula represents the bivariate survival probabil-
ities in this case.
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(1999, 2000) suggest that in case a firm defaults, the intensities of all remaining firms

are elevated by an enhancement factor for an exponentially distributed period of time.

Jarrow and Yu (2000) take counterparty risk into account more specifically, i.e. default

intensities increase only for obligors which have commercial or financial relations with

the defaulting firm. The default intensity of a firm depends on the default status of all

related firms, which implements a symmetric dependence of default intensities. 41 Primary

and secondary firms are introduced to prevent looping defaults. Default intensities of

primary firms follow a factor model and do not depend on the default status of any other

firm. If a primary firm defaults the intensities of secondary firms increase, so that the

default correlation between secondary firms and between primary and secondary firms is

enhanced, while default correlations between primary firms are substantially lower.

With respect to the real-world economic interrelations of firms, contagion models imple-

ment credit risk dependencies most realistically, however, the number of parameters rises

dramatically for large sets of obligors, which negatively affects model calibration. Intensity

models such as provided by Schirm (2004) or Jarrow et al. (1997) and its continuous-time

generalization by Lando (1998) are less suited to credit portfolio risk applications because

they neglect obligor-specific effects in the evolution of credit risk and extreme events of

joint credit default or joint loss receive insufficient attention. In general, intensity-based

credit portfolio models require the estimation of an extensive number of model parame-

ters, which results in identification problems. For example, jump-diffusion processes suffer

from difficulties in the estimation of size and probability of the jump component, even in

the univariate case.

3.4.5 Default-time Copula Models

Credit portfolio models contain a copula to incorporate credit dependence by definition.

Although, the notion of credit risk copula models is typically used in conjunction with

models that explicitly consider the random joint default time of obligors. Li (1999b)

is one of the first to relate the default time of exposures as explicit state variables of

credit risk by differing copulas to represent the dependence of individual default risks. A

general discussion of copula applications in finance is provided by Embrechts, Lindskog

and McNeil (2001), Cherubini, Luciano and Vecchiato (2004), Malevergne and Sornette

(2006) and McNeil, Frey and Embrechts (2005), including an overview of different concepts

and measures of dependence as well as different families of copulas and copula mixture

models. The use of copulas in credit risk modelling is promoted by Embrechts, McNeil

41Symmetric dependence introduces circularity of defaults into the model. This effect is termed as looping
defaults by Jarrow and Yu and aggravates the determination of the joint distribution of default times.
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and Straumann (2001), Frey and McNeil (2001) and Schönbucher and Schubert (2001).42

Hull and White (2004) present a default time model with a Gaussian copula for the pricing

of nth-to-default basket derivatives as well as for the valuation of CDO. Fermanian (2003)

provides a goodness-of-fit test for copulas.

In the absence of an economic theory on the joint default time, no copula can be favored

unequivocally. Default time copulas are default-only models that neglect the joint evolu-

tion of credit quality apart from default, and are typically used for the pricing of multi-

name credit derivatives, like Basket-CDS and CDO, contingent only on the joint default-

state of obligors. Within conventional credit portfolio models that consider changes in

credit quality irrespective of default, default times can be derived from underlying state

variables of exposures’ credit risk and the default time copula is not explicitly specified,

but results from the copula of state variables. In particular, default time copula represen-

tations exist for factor models of structural and intensity-based credit portfolio models.

For example, within the Creditmetrics framework, a Gaussian copula of default times

can be derived from asset returns with a Gaussian copula that specifies the joint default

events within a homogenous time interval, but omits the determination of the exact joint

default time. Frey and McNeil (2001) show that Creditmetrics, KMV and any structural

latent-variable model with a default threshold and a Gaussian Copula are equivalent if the

marginal distributions of rating migrations are appropriately calibrated and the copulas

coincide.

Credit-VaR and the tail properties of default rate, default time and loss distributions

are affected by the type of copula used and the respective dependence parameterization

of default times. The selection and calibration of an appropriate copula is the major

challenge in the application of default time copula methods. Frey and McNeil (2001)

and Frey, McNeil and Nyfeler (2001) quantify the impact of lower tail dependence on

the default rate of a credit portfolio for a structural one-factor model with multi-variate

normal distributed asset returns and for a respective model with asset returns that follow

a multi-variate t-distribution.

The estimation of default time copula models typically refers to the joint default rate of

obligors, so that the copula is not specified on the basis of the joint default risk across the

complete lifetime of exposures, but with respect to a fixed time interval. Furthermore,

the calibration of models for the pricing of nth-to default baskets and ABS typically refers

to the first loss tranche, whereas model calibration on the basis of another tranche often

results in a differing credit dependence. Alternatively to the use of copulas to incorporate

lower-tail dependence of default times, Andersen and Sidenius (2005) introduce random

recovery and random factor coefficients to achieve the same effect.

42Mashal and Zeevi (2001) and Malevergne and Sornette (2006) use different copulas with lower tail
dependence in a general model of the joint returns of financial assets.
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3.5 A Structural Credit Portfolio Model

A convenient model of credit dependence should be parsimonious in the use of parame-

ters, model the number and the timing of defaults, consider joint changes in credit risk

supplemental to credit defaults, permit default clustering, produce default correlations of

a realistic magnitude and should be easy to calibrate.

A drawback of structural credit valuation models is their limited ability to fit empirical

spread curves. The multi-factor decomposition of default intensities enable a compre-

hensive fit of the term structure dynamics of single obligor credit spreads and spread

volatilities. In an extended multi-factor multi-obligor setting, the decomposition of de-

fault intensities into latent factors enables to approximate the joint evolution of the credit

spreads for several obligors.

In contrast to exponential-affine intensity models, structural models include the asset

value as a single state variable, so that multi-factor decompositions of the asset value

along the lines presented by Duffie and Kan (1996) which improve the fitting of the term

structure of credit spreads, are foreclosed for the valuation model presented in Section

3.2.

With respect to the credit dependencies within a portfolio, multi-obligor models and risk

class models are distinguished. Multi-obligor models enable to specify the individual

correlation between the state variables of any pair of obligors. The number of factors

equals the number of obligors at least, and any discretionary credit correlation matrix

can be specified.

For a large number of obligors in a credit portfolio, the specification of any pairwise credit

dependence is inappropriate for two reasons. First, the robustness of the model estimation

is affected by the non-homogenous quality of the estimation data that typically differ due

to the unequal number, type and maturity of instruments, in the length of sample data

or due to the general absence of data for a specific obligor. Second, the factor model

might become over-parameterized for a complete specification of the correlation structure

and problems with the identification of parameters in simultaneous estimation procedures

may arise.43

Risk class models restrict the dependence structure by grouping obligors into risk classes,

and assume that stochastic properties of normalized asset values coincide for all obligors

of a class, although asset values do not evolve identically. In principle, several corporate

liabilities of a single obligor with different seniority and different time to maturity are

permitted. Correlation is performed by decomposing asset values into a restricted number

43The number of factor coefficients increases quadratically in the number of obligors, so that n(n+ 1)/2
factor coefficients and 2n time-invariant parameters of the asset value process had to be determined.
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of common systematic factors and a supplementary obligor-specific factor. Systematic

factors control for effects on asset values and credit spreads, which are common to all

members of a class. Specific factors add information how obligors’ credit spreads deviate

from the term structure of the risk class’s credit spreads induced by systematic factors.

Within each risk class, the innovations of specific factors are equally weighted and i.i.d.

among themselves and towards systematic factors.

In conclusion, in a risk class model the weightings of systematic and specific factors are

identical for all members of a class. The correlation of normalized asset returns is equal

(1) for any pair of obligors within a class (inner-class correlation), and (2) for any pair

of obligors belonging to two different classes (inter-class correlation).44 The ability to

specify any arbitrary structure of inner-sector and inter-sector correlations requires, that

the number of risk classes does not exceed the number of systematic factors.

The factor system constitutes either of independent abstract factors or correlated real-

world factors.45 Orthogonal factors facilitate the estimation of factor coefficients, whereas

the abstract nature turns the interpretation of factors impractical.

Risk class models that decompose intensities exclusively into systematic factors and omit

obligor-specific factors assume that the credit risk of all obligors in a class evolves identi-

cally and will mis-fit the distribution of credit loss and underestimate Credit-VaR.

The dependence of credit exposures subject to the first-passage default model described

in Section 3.2 is incorporated by a risk class factor model of normalized asset returns. The

asset value of the obligor i = 1, ..., ni assigned to a risk class rci ∈ {1, ..., nrc} is assumed

to follow the SDE

dV i
t = µrciV

i
t dt+ σrciV

i
t dW

i
t (3.31)

with standard Brownian motion W i
t , homogenous constant instantaneous drift µrc, and

volatility σrc in each risk class rc = 1, ..., nrc. Modifying of (3.4) yields the normalized

asset return

εit =
ln(V i

t /V
i
0 )− (µrci − 1

2
σ2
rci

)t

σrci
√
t

(3.32)

which represents a standard Gaussian white noise process dεit = dW i
t /
√
dt ∼ N (0, 1)

of (3.31) that is decomposed into a systematic factor component and a specific factor

44Creditmetrics and the KMV model classify obligors with respect to individual credit risk but allow for
the obligor-specific weighting of factors and avoid the classification of obligors based on their credit
dependence.

45Any system of weighted correlated normal factors can be transferred into a system of weighted uncor-
related normal factors that maintains inner-class as well as inter-class correlations of asset returns and
significantly reduces the number of free coefficients.
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component:

dεit =
nrc∑
j=1

βrci,jdF
j
t +

√√√√1−
nrc∑
j=1

β2
rci,j

dεit, (3.33)

where the systematic factors dF j
t ∼ N (0, 1), j = 1, ..., nrc and the specific factors dεit ∼

N (0, 1), i = 1, ..., n are assumed to be independent processes of standard Gaussian white

noise with covariances dF j
t dF

k
t = 0,∀j 6= k, dF j

t dε
i
t = 0,∀j, i and dεitdε

h
t = 0,∀i 6= h.

The coefficients βrci,j determine the sensitivity of the normalized asset returns of obligor

i = 1, ..., n in risk class rci ∈ {1, ..., nrc} with respect to an instantaneous change of the

systematic factor F j
t and involve restriction

∑nrc

j=1 β
2
rci,j

< 1. In the model, aggregate

vectors of normalized asset values εt, systematic factors Ft and specific factors εt are

defined by

dεt =



dε1
t

...

dεit
...

dεnt


, dFt =



dF 1
t

...

dF j
t

...

dF nrc
t


, dεt =



dε1t
...

dεit
...

dεnt


, (3.34)

and the time-homogenous n × nrc-matrix of systematic factor coefficients B and the n-

vector of specific factor coefficients b shall be given by

B =



βrc1,1 . . . βrc1,j . . . βrc1,nrc

...
. . .

...

βrci,1 βrci,j βrci,nrc

...
. . .

...

βrcn,1 . . . βrcn,j . . . βrcn,nrc


, b =



√
1−

∑nrc

j=1 β
2
rc1,j

...√
1−

∑nrc

j=1 β
2
rci,j

...√
1−

∑nrc

j=1 β
2
rcn,j


. (3.35)

A vector notation of the risk class factor model of normalized asset returns in (3.33) yields

dεt = BdFt + (Ib)dεt, (3.36)

with n-dimensional identity matrix I. The risk class factor model will be used to

simulate credit portfolio loss distributions in Section 5. Regarding the instantaneous

(asset) correlations of normalized asset returns, homogenous inner-class correlations

ρrc = ρi,h = Cov(dεit, dε
h
t ) =

∑nrc

j=1 β
2
rc,j,∀i, h : rc = rci = rch and inter-class corre-

lations ρrci,rch = ρi,h = Cov(dεit, dε
h
t ) =

∑nrc

j=1 βrci,jβrch,j,∀i, h : rci 6= rch are differed

between any pair of obligors in the respective risk classes.
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In a generalized two-obligor case of the first-passage default model defined in (3.10),

with asset values correlated according to (3.36), Zhou (2001) as well as Overbeck and

Schmidt (2003) derive a quasi-closed form expression for the distribution function of

the joint first-passage-time P [τi ≤ t, τh ≤ t] = P [mins≤t V
i
s < V

i
,mins≤t V

h
s < V

h
] of

obligors i and h. Thereby, the joint first-passage-time is formulated in terms of the

modified Bessel function with constant default thresholds V
i

and V
h
, which represents

a unique copula Cih(P [τi ≤ t], P [τh ≤ t]) of the individual default times. Since no

closed-form representation of a multi-variate first-passage time distribution is known,

a generalized distribution function of the joint default times of n obligors cannot be

determined. Furthermore, in credit risk assessments, not only the distribution of joint

default times is of interest, but also the joint evolution of non-defaulted asset values,

for which a closed-form representation is as well not specified and which is determined

by simulative exercise in Chapter 5. Finally, the estimation of model parameters, in

principle, requires a simultaneous estimation of asset value process parameters and the

factor coefficient matrix B, thereby considering the fitting quality of the cross-section of

credit spreads derived from implied asset values, as well as the concordance of the joint

evolution of asset values in time with the distributional assumptions.



Chapter 4

Model Estimation

The estimation of credit portfolio models is based either on historical default and loss

experience of credit portfolios, or market price information from equity, corporate bond

or CDS markets is used either. In this chapter, the credit portfolio model defined by the

single-name credit valuation model of Section 3.2 and the factor model of Section 3.5 is

estimated. In the first section, the corporate bond data used for the model estimation are

analyzed. Risk classes of a credit portfolio are specified in Section 4.2. A parametric fit

of non-defaultable zero curves and of class-specific credit-risky zero curves is performed in

Section 4.3. The pivotal Section 4.4 presents a three-step procedure for the estimation of

the asset value dynamics of risk classes and the factor correlation structure of the portfolio

model. First, process parameters and time series of latent systematic risk class factors

are estimated on the basis of class-specific credit-risky yield curves using a Non-Gaussian

Extended Kalman-Filter (EKF). Second, process parameters, factor decomposition and

the time series of the latent individual asset values of risk classes are estimated analogously

by an EKF using bootstrapped credit yield spreads and the factor series described above.

Subsequently, asset correlations are derived from the coefficients and the trajectories of

systematic factors. Finally, the estimation results are analyzed.

4.1 Government and Corporate Bond Data

General requirements to the data used for model estimation comprise:

• obligors included in the estimation data must structurally coincide with obligors in

the portfolio the model is applied to

• price quotations used instead of transaction prices must reflect market conditions

and must be systematically updated

• corporate bond data must exclusively reflect changes in credit spreads and must
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omit effects not related to credit risk

• estimation data must be available in equally spaced and frequent time intervals

and must be rich enough for a robust fitting of yield curves and for a reliable

determination of the stochastic properties of yield residuals for each risk class

• risk classes can be defined to cover the entire market, distinct rating classes and

industry sectors or both of the latter

• estimation data must span a maximum of non-overlapping one-year estimation pe-

riods and must refer to a constant set of obligors for each period

Conventional approaches for the estimation of structural credit models are based on equity

data and focus obligor-specific risk assessments.1 Corporations typically have only a single

type of ordinary shares outstanding, so that equity market data of a corporation is widely

homogenous. Furthermore, stock prices are public information, available free of charge

on a continuous basis and easily accessible from stock exchanges.

In contrast, the estimation approach presented throughout is based on data from Eu-

ropean government and corporate bond markets. Corporate bond market data suffers

from infrequent trading and low volumes; it refers to heterogenous instruments and is

time-consuming to process. OTC trading dominates exchange traded volumes, so that

transaction prices are private information mostly and public market data typically refers

to less-reliable price quotations. Differing bond features preclude a comparison of bond

prices across issues and costly recording and processing of bonds’ specification data is re-

quired. Bond-specific day-count conventions must be used to calculate the present value

from price quotations. Nevertheless, the estimation procedure is based on bond market

data, because data from stock or CDS markets involve some inconveniences:

• The asset value as defined before is considered to be a pure statistical concept of

credit risk that has no economic causality to the value of equity. Furthermore, the

stock prices of large corporations are considered to be an inappropriate indicator for

the dynamics of credit values of small and medium-size companies, while corporate

bond data is conjectured to provide a better indication of loan valuations.

• Equity-based estimation approaches typically take book values of corporate debt

into account and do not incorporate changes of the debt value that coincide with

changes in the value of equity, which contradicts the objective of estimating a credit

valuation model.

1 Cf. Gupton et al. (1997), Kealhofer (1998) or Hahnenstein (2004).
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• CDS data is increasingly used for the estimation of multi-obligor credit valuation

models. In principle, CDS data are advantageous if compared to bond data, because

reliable quotations are typically available on a daily basis and refer to standardized

contracts. However, CDS reference entities do not cover many small and medium

size obligors that are dominant in banks’ loan portfolios. Furthermore, at the time

of this study, CDS quotations were not available across industry sectors and rating

classes for a sample period of sufficient length.

Single national corporate bond markets in Europe do not provide sufficient data for the

estimation of a portfolio model with risk classes defined across rating and industry sectors.

However, the European monetary union and the European economic convergence which

came along with a joint European monetary policy and the termination of mutual foreign

exchange risk has made it possible to consider the aggregate corporate bond market of

the Euro-zone since the introduction of the Euro. A sample period from 01/01/1999 to

31/12/2003 is used. Euro-denominated corporate bonds issued by Swiss and Swedish

companies are included to enlarge the sample, because systematic factors of credit risk in

these countries are assumed to coincide with those in the Euro zone, while issuers from the

UK are excluded, since the British business-cycle and monetary policy differ significantly

from that of the Euro zone.

Euro-denominated corporate and government bonds with deterministic cash flows and

full redemption at a fixed maturity are selected using bond specification data from the

Bloomberg system (BBG). Bond issues with embedded options, partial amortization or

non-fixed coupon rates are excluded, as are bond issues with multi-currency, amortizing,

index-linked, exchangeable, convertible or securitization features. Issues from govern-

mental or multi-national agencies, regional or municipal authorities and from cooperative

and savings banks are disregarded, while bonds issued by regional banks and central in-

stitutions of the cooperative banking sector are included. All in all, bond specification

data, agency ratings and the Bloomberg sector classification data were collected for 9,487

eligible corporate bond issues and 2,517 government bonds.

Daily bond price information is obtained from the German exchange, Bloomberg and

Datastream. Price information includes exchange-traded transaction prices, average and

individual mid quotations contributed by market participants and indicative price quo-

tations from the proprietary bond valuation model of Bloomberg. In case of competing

or missing price information a priority list of data sources was used for the data se-

lection. From clean price observations, present values (dirty prices) are calculated by

adding accrued interest according to the interest conventions 30/360, 30/365, 30/ACT,

ACT/360, ACT/365 and ACT/ACT. Corrupt data is corrected for outliers and repeating

price information. Finally, weekly price information is gathered as of Wednesday, and

continuous-compounding bond yields are calculated.
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The classification of bonds into rating classes refers to the rating of a bond issue at

the start of an estimation period. Ratings available in BBG are provided by different

rating agencies, differ in methodology and refer either to the issuer of the debt (issuer-

type rating) or to specific bond issues (issue-type rating). Issuer-type ratings assess the

financial strength of a company in general, while issue-type ratings refer to debt classes

characterized by seniority, currency-denomination and tenor. Rating grades are assigned

to bonds prices according to the rating type and the corporate entity that a rating refers to.

A corporate entity subsumes all bond issuing entities subject to a cross-default assumption

throughout the sample period, including holding companies, corporate affiliations and

financial services subsidiaries. Corporate mergers trigger a reassignment of the corporate

entity of a debt issue. The rating type is specified by (1) the rating agency, (2) a flag

to differentiate between issuer-type and issue-type ratings, and (3) in case of issue-type

ratings, the category of debt. Rating notches are neglected. Different ratings are assigned

to bonds issued by the same corporate entity, if corporate debt is of a different issue-type,

e.g. senior and subordinated debt.

A priority scheme of rating types is applied if ratings of different type or assigned by

different agencies are available for a particular bond issue. Ratings from Moody’s and

Fitch are preferred to those from Standard & Poor’s (S&P) for methodological reasons.

The former two agencies provide predominantly issue-type ratings that classify corporate

bonds based on homogenous expected loss. Ratings that involve homogenous EL translate

into homogenous PD estimates within a rating grade, given the assumption of a fixed

LGD, and obligors can be grouped into classes of homogenous default risk. In contrast,

S&P’s issuer-type ratings assess the probability of default and neglect the LGD estimate of

bond issues. The credit spreads of bonds with equal issuer-type ratings may differ due to

divergent LGD estimates, which must be taken into account in the definition of risk classes

to receive homogenous credit risk. In practice, however, the issuer-type and issue-type

ratings of obligors tend to be equal, so that issuer-type ratings are also used if no more

appropriate rating type is available. If several rating types are equally appropriate for a

bond issue, the time span of rating histories and the frequency of ratings reassignments

are taken into account in the selection of a rating type.

In line to the conventional time horizon of Credit-VaR, estimation samples are specified

for five consecutive non-overlapping one-year estimation periods and for an additional

sample spanning the entire five-year period. In each estimation, sample bond issues are

assigned to risk classes according to the BBG sector affiliation and to the selected rating

at the beginning of the sample period. The risk class affiliation of issues is held constant

during each estimation period, so that rating changes do not involve a reclassification of

the bond issue for the time remaining in the estimation period. The sector affiliations of

bonds are kept constant throughout the entire sample period, while a change of the rating
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involves a reclassification for the next one-year estimation period. With rating changes

during an estimation period being permitted within a risk class, migration risk would be

included.

For the estimation of riskless term structures 27,911 bond prices of 161 German and 246

French government bond issues are used as indicated in Table A.4. Issuance activity in the

European corporate bond market across economic sectors is presented in Table A.2-A.3.

Abbreviations for the 13 economic sectors are introduced in the left column of Table A.2.

The number of issues in the European corporate bond market increased from 272 in 1998

to 345 issues in 1999, the year after the EMU took effect, and the numbers peaked in

2001 at 465 bonds, which can be attributed to the attractive conditions for debt financing

including low interest rates and improved access to investors caused by the ongoing EMU

bond market integration. In the financial sector, the peak at 334 bond issues in 2001 is

caused by increased liquidity needs in the direct aftermath of 9/11 and a restricted loan

granting in the years that followed. The total number of issues by non-financial issuers

more than doubled from 58 in 1998 to 131 in 2001 and remained at this level until the end

of the sample period. The dip in issuance activity in 2000 is attributable to attractive

conditions in equity financing and to high interest rates, while the large number of issues

from 2001 to 2003 was caused by corporations’ need for liquidity to cover operational loss.

With an increasing number of issues outstanding, improved price availability is observed

throughout the sample period. Although, this fact is only of minor importance for the

supply of price data, the average issue amount of bonds steadily increased from EUR

213.7mn in the last year before the EMU took effect to EUR 530.9mn in 2003, while

average issue amounts in the corporate segment jumped from EUR 322.6mn in 1998 to

EUR 554.5mn in 1999, and remained stable afterwards.

Table A.4 provides detailed statistics on the estimation samples. The entire sample is

made up of 312,799 weekly price data from 2,817 bonds issued by 355 corporate issuers

in 13 sectors. Investment-grade classes AA, A and BBB are taken into account individ-

ually, NI aggregates all non-investment grade ratings, while NR denotes not-rated issues

and obligors. The financial sector FIN, including merchant and retail banks as well as

insurance companies, dominates with 223,461 price observations from 2001 bonds issued

by 119 issuers. Regarding the non-financial sectors, only the AUT, NCC and UTY sec-

tors are data-rich enough to promise a robust estimation of asset value dynamics. The

restricted availability of data makes a robust estimation for the TEC, MED and TRA

sector impossible, although price availability, in general, improves throughout the sample

period.2 Restricted price availability also prevents a model estimation for single non-

financial sectors in 1999, and a non-investment grade rating class cannot be considered.

2 The number of issuers across rating classes does not add up to the total number of issuers in a given
year, because particular issuers have outstanding debt of different ratings.
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In the next section, sectors will be clustered into sector classes of homogenous credit risk,

concentrating the data to enable a more robust estimation and to reduce the complexity

of the risk class model.
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Figure 4.1: Average Yield per Rating-Class and Sampling Effect

Observed rating migrations are summarized on a yearly basis in Table A.5. Along with the

number of price observations, the number of rating migrations increases during the sample

period. Constant ratings dominate, and downgrades occur with significantly greater fre-

quency than upgrades. The percentage of downgrades reaches a peak in 2003 and ratings

are withdrawn in three cases. Bond defaults occur for a total of 15 issues by Parmalat

and its Financial subsidiaries (12 issues), KPNQwest (2) and Global Telesystems Europe.

Especially the credit default of Parmalat has seriously affected the term structure of credit

spreads of BBB issues in the CNC sector in 2003 as will be seen in Section 4.3.2.3

For a brief overview of bond yields, the left-hand graph of Figure 4.1 shows the average

yield-to-maturity of rating classes AA, A and BBB during the sample period. Average

yields in investment-grade classes rise until autumn 2000, reflecting the increase in riskless

rates. Later, a steady decline is observed for ratings AA and A, while the BBB spreads

widen significantly and reach a peak in October 2002. Non-investment grade yields con-

firm this effect, although insufficient data and discontinuous price observation prevent a

further investigation of the NI class.

Risk management applications imposes different requirements on the assignment of issues

to risk classes than bond pricing applications. For bond pricing, the benchmark curves

used refer to a particular sector and rating class, and observed bond prices currently at-

tached to the sector and rating are used to fit the benchmark curve. In a risk management

setting, the dynamics of a portfolio with a constant composition during the time horizon

of a risk forecast are taken into account. Consequently, yield curves used for bond pricing

3 For other corporate bond defaults in the sample period bond prices could not be observed. A detailed
coverage of defaults in the European corporate bond markets between 1998 and 2003 is presented by
Hamilton (2002) and Hamilton, Cantor, Ou and Varma (2004).
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are not applicable to the estimation of a credit risk model, due to the time-variant com-

position of bond samples used in curve fitting. This sampling effect is illustrated in the

right-hand graph of Figure 4.1, which compares the average yield of the BBB bond sample

to a sample adjusted for rating migrations. The average yields of both samples clearly

differ, especially in the second half of each year. Since yield and price effects induced by

rating downgrades exceed those from upgrades, sticking to pricing curves is expected to

underestimate the credit risk of a portfolio.

4.2 Clustering of Risk-Classes

In the risk class factor model described in Section 3.5, exposures of a risk class are assumed

to follow identically specified asset value processes and have homogenous asset correlation

to other exposures. Attributes used to specify the risk class affiliation of exposures are

either its rating or economic sector, or both.

A brief look at the data set reveals that rating-sector-based risk classes subject to the BBG

sector classification do not provide enough bond price observations for a robust fitting of

yield curves. To concentrate the available data, sectors are grouped into sector-classes

of assumed homogenous credit risk using an agglomerative cluster procedure based on a

credit spread related similarity measure.4

Definition of Similarity Measure

The objective of clustering is to achieve a classification that groups bonds exhibiting the

most homogenous evolution of credit risk within sector-classes and that provides most

heterogenous spreads between classes. The indicator for the evolution of credit risk in

a sector is set to be the time series of log-returns of the average credit yield spread in

a sector, denoted as log-returns of sector spreads. Log-returns are preferred to the first

differences of average credit yield spreads because they are less sensitive to outliers. Thus,

they smooth out extreme obligor-specific effects and better represent the dependence of

the sectors’ credit risk, as can be seen in the case of the Parmalat default in December

2003 in the CNC sector.

A hierarchical iterative clustering procedure is used. The prospective joining of two sector-

classes kj and lj in iteration step j is assessed using a similarity measure which is based on

an indicator for the homogeneity of credit risk within the joint sector-class and an indicator

to assess the heterogeneity of credit risk against the remaining classes. Both indicators

rely on the time series rcyskj = (rcys
kj

t )t=2,...,T of log-returns rcys
kj

t = ln(cys
kj

t /cys
kj

t−1) of

the average credit yield spreads cys
kj

t = (
∑

s∈Is
kj

∑
i∈Is cys

i
t)/

∑
s∈Kj

nis,t in a sector-class

4 For a brief introduction into cluster analysis, confer Everitt (1993).
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kj including set Iskj
of sectors. In each iteration j, nis,t denotes the number of bond yield

spreads available in sector s at time t, nskj
gives the number of sectors included in sector-

class kj and nscj = 13 − j represents the number of sector-classes. Is denotes the set of

bonds in sector s. The credit yield spread cysit is defined as the difference between the

internal yield-to-maturity of bond i, derived from the observed bond price and the yield of

an equivalent non-defaultable bond determined using the term structure of riskless rates

fitted in Section 4.3. The dependence of credit spreads of two different sector-classes

kj and lj is measured by the correlation

ρsckj lj
=

Cov(rcyskj , rcyslj)√
V ar(rcyskj)

√
V ar(rcyslj)

(4.1)

of the time series of log-returns of average sector-class spreads. For a join of sector-classes

kj and lj, the homogeneity of credit spreads within the joint class is assessed by averaging

the correlations ρscs1r1 of spread returns of included sectors s1, r1 /∈ {Iskj
, Islj}, s1 6= r1 :

ρsckj lj
=

∑
s1ε{Is

kj
,Is

lj
}
∑

r1ε{Is
kj
,Is

lj
};r1 6=s1 ρ

sc
s1r1

(nskj
+ nslj)(n

s
kj

+ nslj − 1)
(4.2)

The heterogeneity of credit spreads between a joint sector-class of kj and lj and the

remaining sector-classes is measured by the average

ρ
sc
kj lj

=

∑
hj 6=kj ,lj

ρsckjhj
+ ρscljhj

2(nscj − 2)
(4.3)

of all correlations ρsckjhj
and ρscljhj

between the joining sector-classes and all remaining

classes hj ∈ {1, ..., nscj }\{kj, lj} of the current classification at cluster level j. Note that in

each iteration j, the inner-class credit risk homogeneity ρsckj lj
is derived from correlations

ρscs1r1 of sector spread returns rcyss1 and rcysr1 , which do not change throughout the

clustering, while for the calculation of heterogeneity ρ
sc
kj lj

series rcyskj and rcyslj of

average sector-class spread returns need to be aggregated from sample data according to

the current classification of sectors. Ultimately, the similarity measure

SIMkj lj =
ρsckj lj

ρ
sc
kj lj

(4.4)

is used to determine which sector-classes to join at iteration level j.

Clustering Procedure

For the classification of sectors, an agglomerative hierarchical clustering procedure is

used. The financial sector provides by far the largest number of price observations and

is therefore set to be a sector-class on its own in the final cluster. The other 12 BBG
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sectors are partitioned into three sector-classes to provide a sufficient number of price

observations in each sector-class without smoothing out diversification effects imposed by

the heterogenous evolution of the credit spreads of different sector-classes. The sector

clustering is accomplished in a four-step iterative procedure:

Step 1: Initialize sector-classes to represent individual sectors. Set iteration count j = 1.

Step 2: Calculate SIMkj lj for each eligible pair of sector-classes (kj, lj), kj < lj.

Step 3: Join pair of sector-classes (k∗j , l
∗
j ) with similarity SIMk∗j l

∗
j

= maxkj<lj≤nsc
j
SIMkj lj

Step 4: If nscj > 3, then set j = j + 1 and proceed with step 2, else end.

Results of Clustering

Using the clustering procedure described above, the sector-classification received after

j = 10 iterations is given in the right column of Table 4.15. The denomination of sector-

classes in Table 4.1 is set based on the cyclicity of sectors. Market participants typically

consider the cyclicity of business sectors on the basis of lead-lag effects of stock returns

relative to the economic cycle. A similar cyclicity is assumed to determine the evolution

of credit risk markets. It is conjectured that the basic material (BMA) sector and the

technology sector (TEC) lead the business-cycle, while the industrial sector (IND) and the

construction sector (CON) lag behind. The non-cyclic consumer (NCC), utility (UTY)

and energy (ENY) sectors do not show a distinct cyclicity. Correspondingly, sector-

classes are designated as early-cyclic (ECY), late-cyclic (LCY), and non-cyclic (NCY). The

ρsck10l10\ρ
sc
k10l10

ECY FIN LCY NCY Sector Set

ECY 50.4 41.6 73.3 57.5 {AUT, BMA, COM, MED, TEC}
FIN 34.7 100.0 46.4 29.3 {FIN}
LCY 37.7 24.6 39.9 40.0 {CCY, CON, IND}
NCY 41.0 41.2 29.2 45.2 {CNC, ENY, TRA, UTY}

Table 4.1: Sector Classification

correlation matrix in Table 4.1 represents inter-class correlations ρsck10l10 above the diagonal,

average inner-class sector correlations ρsck10k10 within sector-classes on the diagonal, and the

average inter-class sector correlations ρsck10l10 of sectors classes below the diagonal. Inner-

class sector correlations ρsck10k10 with an average of 45.17%, excluding the FIN class, are

higher than the 34.73% average of inter-class correlations ρsck10l10 , which confirms that the

clustering procedure effectively classifies sectors, so that the evolution of credit spreads is

more heterogenous between sector-classes than within classes. Considering the correlation

of log-returns of average credit yield spreads of rating class in Table B.1, correlations are

high for neighboring ratings and decrease with enhanced rating distance, which suggests

5 An analogous clustering procedure was used to generate risk classes specified by the sector and rating
of bonds, however, no intuitive classification emerged, so that a sector-rating classification was omitted.
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the existence of common background factors not included in the rating. In contrast,

no clear-cut pattern of sector spread correlations reveals from Table 4.1, so that it is

assumed that sector affiliations present an appropriate classification of obligors to ensure

a maximum heterogeneity of credit risk between risk classes and to implement a maximum

diversification of credit risk in a portfolio.

p-values ECY FIN LCY NCY

ECY – 0.3899 0.1469 0.0457

FIN 0.0521 – 0.9242 0.4126

LCY 0.0281 0.5903 – 0.5215

NCY 0.0165 0.7415 0.7866 –

Table 4.2: Granger Test of Sector-Class Causality

Table 4.2 presents the p-values of a 2-lag Granger causality test of the column sector-

class leading the row class on the basis of monthly log-returns of average sector-class

spreads. For example, the p-value of 0.3899 indicates that non-causality of sector-class

FIN to sector-class ECY is not rejected at a 5% level of significance, so that a causality

of sector-class FIN to sector-class ECY in the Granger-sense is denied. The sector-class

causalities ECY→LCY, ECY→NCY, NCY→ECY are significant at a 5% level. The fact

that monthly spread returns of the ECY sector-class lead those of the LCY and NCY

sectors gives additional support to the designation of the ECY sector as early-cyclic,

even though the direction of the causality between the ECY and NCY classes is not

unambiguous.

Causalities on a sector level provide additional insights. In Table B.3, results of Granger

tests for sector causalities of monthly spread returns are presented. Figure B.1 graphs

sector causalities that are significant at a 5%-level.

Avg. no. of causalities per sector ECY FIN LCY NCY

Lag causalities 2.80 2.00 3.67 2.75

Lag causalities from different class 1.00 2.00 3.00 1.75

Lead causalities 4.80 0.00 1.67 2.25

Lead causalities to different class 3.00 0.00 1.00 1.25

Net lead-lag causality per sector 2.00 -2.00 -2.00 -0.50

Table 4.3: Causality Analysis per Sector-Class

Summary statistics on sector causalities in Table B.3 reveal that lead causalities and lag

causalities exist predominantly for sectors of a different sector-class. Netting the number

of the average lead and lag causalities per sector for each sector-class reveals that sectors

of the ECY class show two more lead causalities than lag causalities, whereas the net
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lead-lag causality is negative for the LCY class. The NCY sectors show an almost neutral

net causality. Thus, net causalities confirm that the ECY sector-class is early-cyclic, the

LCY class is late-cyclic and the NCY class is almost neutral with respect to the serial

cross-dependencies of the sectors. In the following, sector-classes will be used instead of

sectors to specify risk classes.

The increased number of price observations in sector-classes will affect the fitting of yield

curves in the next section. Four effects are expected: (1) a reduced variation of sector-

class yield curves in time, (2) residuals of yields against sector-curve-induced yields will

show wider spreading, (3) a more synchronous co-movement of sector-class spreads, i.e. a

higher dependence of the credit risk of sector-classes as compared to a sector setting, so

that systematic factors show elevated correlations. The conjectured effects, however, will

not be subject to an empirical assessment, since the fitting of yield curves for sectors is

not possible due to lack of data.

4.3 Term Structures of Credit-risky Interest Rates

4.3.1 Parametric Fitting Method

Two major approaches for fitting the term structures of interest rates can be differenti-

ated.6 McCulloch (1971a, 1971b) introduced spline methods to approximate the discount

function using a continuous piecewise polynomial or exponential function.7 Spline meth-

ods provide sufficient fitting quality and require acceptable computational effort, however,

they are omitted below due to their sensitivity to outliers, especially when data is scarce

as in this case.

Alternatively, parametric models define the term structure of spot or forward rates as

a functional form specified by a set of parameters. Parametric models are stable with

respect to outliers and provide sufficient variation in the shape of fitted term structures.

For its parsimonious parameterization with only four free parameters and its ability to

fit normal, inverse and humped-back term structures, the exponential form provided by

Nelson and Siegel (1987) is used to fit the term structures of riskless rates and for the term

structures of risk classes of defaultable bonds. Nelson and Siegel propose the functional

6 A comprehensive overview of procedures for the fitting of term structures of interest rates is provided
by Anderson et al. (1996), p. 57-64.

7 Cf. Vasicek and Fong (1982), p. 344ff.
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form

Rc
t(τ ; β

c
t ) = βc0(t) + (βc1(t) + βc2(t))

1− e
−τ

βc
3(t)

− τ
βc
3(t)

− βc2(t)e
−τ

βc
3(t) (4.5)

for the time t yield-to-maturity Rc
t(τ, β

c
t ) of a zero-coupon bond with time-to-maturity τ ,

termed as spot rate or zero rate, and the parameter vector βct = (βc0(t), β
c
1(t), β

c
2(t), β

c
3(t)).

The short rate and the zero rate for an infinite time-to-maturity are directly related to

parameters by the convergence characteristics:

lim
τ−>0

Rc
t(τ ; β

c
t ) = βc0(t) + βc1(t) (4.6)

lim
τ−>∞

Rc
t(τ ; β

c
t ) = βc0(t), (4.7)

so that βc0(t) represents the long rate and βc1(t) indicates the term spread of the term

structure. Furthermore, βc2(t) > 0 (βc2(t) < 0) controls for the upward (downward) hump

of the term structure in the short to medium term of the curve, while βc3(t) characterizes

the curvature.

An extension of the Nelson-Siegel form proposed by Svensson (1994) enables an even

more flexible fit of term structures using an additional exponential term with two more

parameters to set. However, limitations of data on defaultable bonds, especially at the

beginning of the sample period, turn the fitting process unstable and result in term

structures that are not robust. Even if a robust fitting of riskless term structures is

possible, the Svensson model is not used, because the increase in fitting quality is negligible

compared to the Nelson-Siegel model, so that the use of different parametric forms for

the fitting of riskless curves and risk class curves is avoided.

The Nelson-Siegel term structures of spot rates at time t is specified by the parameter set

βc∗t which minimizes the sum of the squared differences

∑
i∈RC

(
D̂i
t(τi, CF

i(t); βct )−Di
t

)2

(4.8)

of the present value D̂i
t(τi, CF

i(t); βct ) =
∑t+τi

tj=etd e
−Rc

t (tj−t;βc
t ) · CF i

tj
of the coupon bond

i ∈ Ic in class c ∈ {RC, rl} with deterministic cash flows CF i(t) = (CF i
etd, ..., CF

i
t+τi

) and

time-to-maturity τi to the observed dirty price Di
t of the bond.

Alternatively to (4.8), the Nelson-Siegel term structure can be fitted to minimize differ-

ences in bond yields. Since the sensitivity of bond prices to a change in the term structure

increases in the time-to-maturity of bonds, the fitting of bond prices implicitly accentu-

ates observations of distant maturities, while yield fitting does not involve an implicit

maturity-dependent weighting of observations. However, due to the illiquidity of bond
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markets, yields show an increased spreading close to maturity which negatively affects the

stability of term structures, so that price fitting is preferred.

Before riskless yield curves are fitted, mis-specified prices of government bonds are cor-

rected according to the method proposed by Schwartz (1998). An outlier correction for

credit curves is not feasible, because considerable changes in credit yields cannot easily be

separated into pricing errors and actual changes in credit risk. In the fitting of risk class

curves, the short rate of a risk class is fixed to the short rate of the riskless yield curve

to stabilize credit curves in the short term and to ensure that short spreads converge to

zero if the remaining time to maturity converges to zero, in line with the structural credit

valuation model.

Fitted term structures of risk classes do not incorporate information on the evolution

of residuals of obligor-specific bond yields from term-structure-implied yields. Since the

fitting of obligor-specific yield curves is precluded due to data limitations, the yield curves

of risk classes only qualify to estimate systematic factor processes.

In Section 4.4, the dynamics of risk class factor processes and the trajectories of systematic

factors will be estimated based on yield series of coupon bonds which are derived from

synthetic term structures of credit spot rates. The synthetic nature of the risk class

curves is caused by the constant riskless short rate which is mandatory in the credit

valuation model. The term structure of synthetic spot rates of a risk class is calculated

by adding the riskless short rate Rrl
t (0; βrlt ) to the credit spot spreads Srct (τ ; βrct , β

rl
t ) =

Rrc(τ ; βrct ) − Rrl(τ ; βrlt ), defined as difference between the spot rate Rrc
t (τ ; βrct ) of risk

class rc and the riskless spot rate Rrl
t (τ ; βrlt ). In order to regain the lost information

about specific yield variations in the estimation of specific factor weights of the risk

class factor model, synthetic credit spot rates are used in Section 4.4.6 for bootstrapping

obligor-specific changes in credit spreads.

4.3.2 Results of Term Structure Fitting

The effects of a rating-based versus a sector-rating-based specification of risk classes is

examined using descriptive statistics and by a consideration of the evolution of fitted

term structures of credit spot spreads in time. Autocorrelations and Unit Root tests are

used to investigate if the time series of fitted credit spreads are stationary. A correlation

analysis evaluates alternative definitions of risk classes. A residual analysis is used to infer

on the homogeneity of credit risk in risk classes and to conclude on the strength of asset

correlations induced by systematic factors.
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4.3.2.1 Descriptive Statistics

Descriptive statistics on riskless spot rates and credit spot spreads fitted from year-based

bond samples are given in Table 4.4. The information on year, rating and sector-class

indicate the term structures, where RL refers to the riskless term structure, sector-class

NF includes bonds of all non-financial sectors and risk class ALL contains all bonds of

the respective rating class. Empirically, normal-shaped term structures of credit spot

spreads are prevalent. In the years 2001–2003 increased short-term credit spreads led

to hump-shaped term structures, especially for risk classes with a BBB rating.8 The

shift from normal-shaped to hump-shaped term structures during a sample period is due

either to an increase of the pooled PD or LGD of bonds, or it reflects a higher market

price being asked for bearing the credit risk. Assuming a constant LGD and a constant

riskless rate in the credit valuation model of Section (3.2), the evolution of the fitted term

structures can only represent effects on risk-neutral pooled PD that are caused either by

changes in asset values induced by systematic risk factors, or by a change in the volatility

of asset values, which raises concerns about the time-homogeneity of the parameters. In

both cases, real-world PD change accordingly, so that a change in credit spreads always

indicates a change in the real-world pooled probability of obligors’ default.

The term structure of riskless rates is predominantly of a normal shape, indicated by

average spot rates in Table 4.4 increasing in the time-to-maturity and by the shape of

term structures derived from Figure 4.2. S-shaped term structures are defined by a local

maximum of medium-term rates and a positive slope of long-term rates. This effect

typically accompanies a flattening of the term structure if central bank rates are expected

to rise.
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Figure 4.2: Spot Rates of Riskless-Class and Rating-Classes

8 Hump-shaped term structures of credit spreads are typically observed for low-quality obligors, cf. Sarig
and Warga (1989) as well as Fons (1994).
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Systematic effects on the evolution of the level of interest rates and credit spreads, defined

as average of full-year-maturity rates, are analyzed using the right-hand graph in Figure

4.2. At the beginning of the sample period, interest rates rise due to a prosperous economic

outlook, concurrent fears of inflation and increasing ECB rates. As is typical for the

turning point of an economic cycle, this effect is accompanied by a flattening of the riskless

term structure; however, it is not accentuated enough to result in inverse term structures.

Riskless rates reach a maximum of 5.199% on 30/08/2000 and decline afterwards due to

the crisis of the technology sector and the corresponding recession. The 9/11 event and

two subsequent ECB rate cuts of 50 basis points (bps) each on 18/09/2001 and 9/11/2001

mark a preliminary minimum rate of 3.704% on the 7/11/2001. Expectations of a fast

economic recovery, spurred by low central bank rates, pushed interest rates up to 4.79%

on 15/05/2002, but impairments and the negative operating results of major European

companies, especially in the telecommunication, technology and financial sectors led to

an economic downturn in the second half of 2002. Enforced by political uncertainties

the recession culminated in minimum rates of 2.767% on 11/06/2003. The subsequent

economic recovery in the second half of 2002 came along with a rebound in interest rates

to 3.509% at the end of the sample period.

The credit spreads of the rating classes contract during a booming economical period,

while a spread widening is observed during the technology crisis and the recession of

2002. Spreads increase until October 2001, fall back up to March/April 2002 and spike

afterwards until the fourth quarter of 2002. However, the evolution of credit spreads differs

between rating classes. Credit spreads are closest for AA (A) borrowers on 7/07/1999 at

26.8 bps (39.5 bps) and for BBB borrowers on 23/06/1999 with 58.5 bps. The AA rating

class displays its maximum spread of 73.5 bps on 16/08/2000 during the technology crisis,

and does not have credit spreads of more than 56.1 bps after the 9/11 attacks, which can

be attributed to bond investors seeking a safe haven. In contrast, A and BBB ratings

show maximum spreads of 94.3 bps and 257.7 bps in October 2002.9

Figure 4.3 illustrates the normal-shaped term structures of credit spreads on 07/07/1999,

when average spot spreads of AA and A ratings reached their minimum, and the credit

spread structure on 9/10/2002, when the average spreads of ratings A and BBB reached

a maximum. On 9/10/2002, the term structure is hump-shaped for the BBB class, while

it is normal-shaped for the better credit qualities. For rating BBB, 89 humped-shaped

spread structures are found throughout the sample period, with only one (two) humped

term structures in 2000 (2001), but 50 occurrences in 2003. Hump shapes are rare, with

only three occurrences in 2001 and 2003 in rating class A and no occurrence for rating

AAA.

9 Note that no jumps in credit-risk rates appear in Figure 4.2 at the beginning of any year, which might
have been expected due to the resampling of data.
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Credit spot spreads at 7-July-1999
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Figure 4.3: Term Structures of Credit Spot Spreads

With respect to the term structures of sector-rating classes, hump-shaped term structures

are much more frequent, especially for non-financial sector classes. This can be attributed

to the small sample size of the risk classes. Outlier effects from obligor-specific credit

events and correlation effects in response to credit events of related issuers result in a

more pronounced variation of term structures to credit events for small bond samples.

In contrast, there is a sufficient average of 47 (36.6) different obligors in the financial

classes FIN-AA and FIN-A with an average of 16.7 (14.8) bonds outstanding, so that

short-term obligor-specific spread outliers and correlation effects are better absorbed and

hump-shaped term structures are prevented.

In Table 4.4, the credit spreads of sector-rating classes with a common rating show similar

properties in the years 1999 and 2000, but differ substantially for the years 2001 to 2003.

In 2001, for example, the average and the standard deviation of credit spreads of risk class

LCY-AA are located considerably above the average spreads of other AA classes. This

effect is explained by specific credit events that only enter the spreads of the aggregate

rating class in a smoothed form, while the particular credit events do not affect other

sector-rating classes. The same effects appear for classes ECY-A and ECY-BBB in 2001

and 2002, LCY-A in 2002, and LCY-AA and NCY-BBB in 2003.

Standard deviations of credit spreads typically increase with worsening credit quality.

In case of a credit event, the increase in volatility is more pronounced for short-term

spreads, mirroring the tendency towards hump-shaped term structures, while long-term

spreads remain more stable. For ratings AA and A, spread volatilities either increase

monotonically with time-to-maturity, or they show a hump-shaped term structure. In

times of credit distress, the term structures of spread volatility turn inverse, as can be

observed for the risk classes LCY-A, ECY-BBB and LCY-BBB in 2002. The credit spreads

of non-financial sectors are in general more volatile than those of the financial sector for

any rating class. This effect is attributed to the higher number of observations available

in the financial sector, which reduces the variation of term structures.
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Risk-Class Term structure type Average in bps per TtM Std. dev. in bps per TtM Skewness per TtM
Year Rating Sector normal humped s-shape 1 3 5 10 1 3 5 10 1 3 5 10

1999 RL 39 0 13 304.7 357.1 397.2 457.6 33.4 54.5 59.4 53.7 0.53 0.23 0.13 -0.07
AA FIN 52 0 0 11.5 26.8 36.9 52.1 3.4 3.9 4.7 5.6 0.73 0.27 0.13 0.04

NF 45 0 7 15.1 30.4 37.7 48.9 4.9 4.5 5.1 6.5 0.79 0.32 0.47 0.39
ALL 52 0 0 12.4 27.4 36.8 52.4 3.7 3.7 4.5 5.4 1.01 0.14 0.14 0.12

A FIN 52 0 0 24.2 47.5 56.8 66.8 5.6 6.4 5.7 5.8 0.50 -0.38 -0.69 -0.31
NF 52 0 0 20.7 44.2 56.7 73.6 5.4 5.2 4.4 7.4 1.02 0.31 -0.25 -0.34
ALL 52 0 0 23.2 46.5 56.6 68.1 5.4 6.0 5.3 5.7 0.95 -0.17 -0.79 -0.29

BBB NF 46 6 0 27.2 57.7 75.2 109.6 5.9 8.8 9.9 28.8 0.00 0.15 -0.31 0.55
ALL 42 10 0 31.2 63.9 79.9 105.8 6.0 7.3 7.7 27.2 0.13 -0.21 -0.50 0.26

2000 RL 41 0 11 452.9 483.9 501.5 525.0 44.0 20.3 15.3 16.6 -0.52 -0.19 -1.50 -0.04
AA FIN 52 0 0 14.5 37.6 51.7 68.7 4.5 9.6 10.8 12.0 -0.31 0.52 0.18 -0.10

LCY 52 0 0 13.7 38.1 53.9 74.3 4.7 9.7 12.3 17.0 0.69 0.23 -0.13 0.03
NCY 52 0 0 17.3 44.0 59.0 70.5 7.0 12.1 12.2 9.1 0.23 -0.22 -0.54 -0.27
NF 52 0 0 18.0 45.6 61.0 75.3 7.4 13.8 14.8 12.6 0.36 -0.07 -0.18 0.04
ALL 52 0 0 15.1 38.8 53.4 71.2 5.0 10.3 11.5 12.9 0.37 0.54 0.12 -0.10

A ECY 52 0 0 17.9 52.0 77.3 115.6 6.1 13.2 17.6 29.1 0.30 0.39 0.11 0.41
FIN 52 0 0 20.0 50.7 69.5 94.3 4.3 10.1 12.2 17.6 -0.10 1.33 0.63 -0.13
LCY 52 0 0 22.3 56.7 77.1 102.1 4.9 11.3 15.7 27.8 0.15 -0.27 -0.42 0.53
NCY 52 0 0 20.0 51.2 70.9 95.8 6.1 11.2 12.5 16.8 0.27 0.18 0.02 0.56
NF 52 0 0 20.8 54.7 76.9 105.7 6.6 13.5 16.4 22.4 0.28 0.01 -0.14 0.48
ALL 52 0 0 20.0 51.6 71.5 96.5 3.9 9.9 12.8 17.8 0.44 0.80 0.20 -0.12

BBB ECY 50 2 0 36.9 80.9 102.0 120.9 10.4 16.2 16.7 18.0 0.18 -0.20 -0.17 0.85
LCY 48 4 0 35.2 82.3 105.3 123.4 9.8 11.7 11.0 13.9 0.45 0.29 0.14 -1.29
NCY 49 3 0 32.6 77.5 102.7 130.1 14.9 25.0 25.4 25.1 1.28 0.86 0.37 -0.16
NF 52 0 0 35.0 80.1 103.3 125.1 9.6 15.6 17.0 18.7 0.20 0.15 0.16 0.44
ALL 51 1 0 36.1 81.4 103.6 123.4 9.3 15.0 16.4 17.6 0.25 0.25 0.14 0.20

2001 RL 6 0 46 400.0 410.3 435.8 488.8 48.7 34.3 23.3 16.5 -0.74 -0.89 -0.96 -0.31
AA FIN 52 0 0 20.6 37.8 45.9 62.3 4.4 4.0 4.9 7.9 0.34 -0.45 -0.11 0.61

LCY 36 12 4 32.1 56.3 63.5 78.5 20.0 22.4 15.4 12.5 0.75 1.10 0.75 -0.30
NCY 45 6 1 17.3 41.6 53.5 60.1 7.3 6.6 7.1 4.7 0.64 0.10 -0.45 -0.43
NF 22 30 0 15.6 46.2 59.8 58.4 8.7 7.2 5.3 6.8 1.31 0.64 0.66 1.07
ALL 52 0 0 22.2 39.2 46.6 64.8 4.6 3.7 4.9 6.9 0.12 -0.32 0.06 0.34

A ECY 42 10 0 54.2 105.6 128.7 166.3 25.0 36.2 29.8 15.7 1.22 1.32 1.39 0.57
FIN 52 0 0 26.6 49.8 63.8 104.7 4.8 4.9 5.8 7.0 0.81 -0.24 0.20 0.11
LCY 52 0 0 29.2 63.1 88.3 158.8 10.9 18.9 24.1 24.0 2.00 1.73 1.16 0.66
NCY 52 0 0 22.9 50.3 71.0 117.4 8.3 5.2 7.3 11.1 1.07 0.51 0.34 0.50
NF 48 4 0 43.9 90.1 113.1 142.5 20.1 27.1 22.0 9.2 1.05 1.27 1.25 0.76
ALL 50 2 0 27.5 61.3 81.2 109.2 5.8 8.2 7.6 7.3 0.94 1.11 1.17 0.37

BBB ECY 30 22 0 64.8 120.7 137.6 146.5 22.0 28.3 21.1 19.4 1.01 0.78 0.51 0.25
LCY 50 2 0 50.0 97.5 118.0 147.6 10.8 12.9 14.0 23.2 1.04 1.02 0.70 0.68
NCY 52 0 0 47.0 96.1 126.7 206.0 12.1 15.2 11.5 30.4 0.96 0.51 0.22 -0.39
NF 51 1 0 51.4 101.4 126.5 178.1 14.9 19.5 15.5 20.5 0.92 0.67 0.32 -0.33
ALL 50 2 0 51.5 101.6 126.9 178.2 14.5 18.9 15.2 24.6 0.93 0.58 0.17 -0.37

2002 RL 34 0 18 338.7 389.1 429.2 484.4 32.5 45.4 41.3 27.6 -0.45 -0.29 -0.23 -0.20
AA FIN 51 0 0 19.8 35.0 41.4 54.3 7.2 6.2 4.3 7.1 0.48 0.50 0.50 0.37

LCY 33 19 0 20.0 42.8 51.8 57.3 13.3 14.4 10.0 8.7 1.13 0.51 0.30 0.40
NCY 50 0 2 22.9 43.2 50.8 58.0 7.3 7.6 5.9 6.6 0.67 0.27 0.34 0.48
NF 46 6 0 18.4 42.2 52.0 55.5 3.9 5.8 6.6 5.8 0.15 0.44 0.38 0.61
ALL 52 0 0 19.9 35.8 42.7 54.8 6.6 6.1 4.6 7.0 0.49 0.54 0.51 0.31

A ECY 42 10 0 47.3 85.7 96.3 100.3 10.5 13.8 13.6 13.3 0.59 0.50 0.40 0.36
FIN 52 0 0 20.0 46.1 63.5 90.4 5.8 9.1 10.1 11.9 0.72 0.71 0.55 0.36
LCY 4 48 0 133.0 159.4 143.2 104.5 86.2 55.3 41.9 24.8 2.29 0.91 0.80 1.02
NCY 52 2 0 26.6 56.5 73.0 95.3 11.2 15.1 12.2 9.0 0.41 0.46 0.60 0.12
NF 33 18 1 49.4 87.7 96.1 95.6 15.2 19.4 16.0 10.8 0.64 0.63 0.54 0.70
ALL 52 0 0 29.1 59.0 73.6 90.8 8.7 12.2 11.8 11.4 0.71 0.47 0.34 0.43

BBB ECY 3 49 0 308.3 254.5 217.5 164.8 225.5 95.3 54.5 20.2 0.54 0.15 0.17 1.03
LCY 26 26 0 72.8 121.3 129.1 122.2 35.8 33.9 22.5 16.3 1.94 1.00 0.47 0.16
NCY 50 2 0 64.7 133.4 166.4 201.3 20.7 36.0 43.1 59.4 0.56 0.54 0.44 0.53
NF 26 26 0 147.0 185.6 181.2 158.9 91.1 65.8 42.6 17.3 0.58 0.29 0.26 1.14
ALL 26 26 0 147.3 185.8 181.3 158.9 91.6 66.3 43.0 17.7 0.59 0.31 0.28 1.17

2003 RL 26 0 27 227.6 280.5 334.9 417.7 17.7 25.2 26.1 19.3 -0.07 -0.54 -0.53 -0.78
AA FIN 51 0 2 21.1 32.2 35.8 49.7 3.3 4.0 4.6 7.0 -0.22 0.18 0.56 0.14

LCY 31 20 2 22.0 42.4 48.3 51.7 9.9 6.5 6.6 12.4 0.25 0.28 -0.02 0.89
NCY 40 6 7 23.3 40.9 45.9 49.0 7.2 7.5 5.8 5.7 0.23 0.50 0.64 0.84
NF 36 13 4 22.3 40.4 45.6 49.2 6.9 5.0 3.7 8.6 -0.54 -0.06 0.01 0.55
ALL 46 0 7 22.6 33.5 36.4 51.8 4.2 3.8 3.7 6.9 -0.08 0.08 0.51 0.00

A ECY 53 0 0 36.2 63.3 72.2 86.4 9.0 12.5 13.6 21.0 0.60 -0.13 -0.19 0.79
FIN 51 2 0 32.1 60.3 70.3 78.9 3.6 7.9 10.6 11.5 0.37 -0.25 -0.10 0.32
LCY 35 16 2 33.8 59.5 67.5 91.9 11.4 10.2 12.4 48.5 0.08 0.12 0.01 0.72
NCY 53 0 0 24.8 46.9 56.3 69.9 5.5 7.9 10.5 13.7 1.28 0.44 0.24 0.53
NF 53 0 0 32.6 56.9 65.0 76.0 6.0 10.0 12.2 17.2 0.62 0.21 0.10 0.36
ALL 52 1 0 32.0 58.9 68.5 77.7 3.3 8.2 11.2 13.0 -0.11 -0.19 -0.04 0.24

BBB ECY 16 35 2 68.4 115.5 122.8 122.1 13.2 26.1 33.7 51.4 0.57 0.56 0.55 0.75
LCY 0 53 0 84.9 141.4 139.0 103.9 15.9 27.1 29.4 28.1 0.75 0.27 0.14 0.10
NCY 0 53 0 159.5 219.9 201.7 146.6 73.6 75.4 62.5 49.6 1.27 1.31 1.30 1.02
NF 3 50 0 96.9 152.7 149.6 118.4 23.2 36.9 39.0 39.7 1.26 0.89 0.66 0.62
ALL 3 50 0 97.2 153.1 150.0 118.5 23.4 37.2 39.3 39.9 1.24 0.87 0.65 0.61

Table 4.4: Descriptive Statistics of Credit Spot Spreads
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A skew of credit spreads is considered to be an indicator for the one-year trend of the

systematic factor that determines the credit spreads of a risk class. The credit spreads of

a risk class are assumed to be governed by a geometric Brownian factor with an absorbing

lower threshold where the distribution density of the factor is skewed to the right. Since

credit spreads are not linearly related to the systematic factor, the factor density should

translate into a distribution of observed credit spreads that is skewed to the right. The

skew of spot spreads presented in Table 4.4 is significant at a level of 1% (5%) for 1 (2)

out of 54 spot rates with a negative skew, while positive skewness is significant for 26 (43)

out of 234 observations. The dominating positive skew of the observed spreads supports

the assumption of a positively skewed factor with an absorbing barrier. Furthermore, a

negative skew of credit spreads indicates a positive evolution of the respective factor in

a particular period, as can be seen in the years 1999 and 2000, while significant positive

skews of credit spreads are most frequent in the years 2001 and 2002 for the lower ratings

A and BBB, that were hit strongest by the deteriorating credit conditions at that time.

The credit spreads of a risk class, defined by either a rating or a sector-rating attribution,

are expected to represent a typical obligor of the class and should be of similar size for

risk classes of equal rating. However, even spreads of risk classes with an equal rating

differ at specific points in time, as exhibited in Figure 4.4.

Credit spot spreads at 23-October-2002
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Figure 4.4: Variation of Credit Spot Spreads at Selected Credit Events

Joint events that impact the evolution of risk class spreads are therefore examined using

the time series of credit spreads in Figures 4.5−4.7. The variation of the credit spreads of a

risk class can be attributed either to rating-specific effects, to a general or a sector-specific

systematic effect on the risk class, or to obligor-specific effects. In the sample period from

1999 to 2003, four systematic events can be identified: (1) the technology crisis in the

last three quarters of 2000, (2) the attacks of 9/11, (3) the loan and impairment crisis in

the 3rd quarter of 2002, and (4) the start of the second Gulf war in March 2003. These

systematic events, however, affected the spread curves of sector-rating classes in different

ways.
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The technology crisis caused a modest increase in credit spreads during the year 2000 for

all sectors and ratings and is therefore assumed to result from a general systematic factor

that affected the obligors of all risk classes in a comparable way.

In contrast, the 9/11 attacks affected risk classes in different ways. The credit spreads of

the financial sector show no significant reaction, which may be explained by the fast reac-

tion of central banks in providing liquidity and lowering funding rates. In the non-financial

sectors, short-term credit spreads rise considerably across all ratings, however, no distinct

jump in spreads can be observed. Obligors from cyclic sectors bear the most pronounced

expansion of spreads due to their high sensitivity towards an expected recession.

Corporate impairments in combination with high leverage and gloomy operational results

affected the credit markets of particular sectors and rating grades in the second half

of 2002, representing sector-related and obligor-specific effects. In consequence, time

intervals can be observed in which the spreads of risk classes with equal ratings differ

distinctly. In 2001 and 2002, for example, cyclical sectors show higher spreads than the

financial sector in the 5-year term for AA and A ratings. These differences do not only

result from a potentially dissimilar evolution of obligors’ creditworthiness in both years,

but they also appear at the start of both estimation periods, when ratings definitely

coincide across classes of equal rating. Finally, the second Gulf War is a typical example

of a general systematic effect.

Some peaks of risk class spreads are remarkable. The peak in short-term credit spreads

of the LCY-AA class in Figure 4.5 can be explained by the systematic sector effects of

the 9/11 attacks, which affected the late-cyclic sector to a much higher extent than the

FIN-AA and NCY-AA risk classes, while the extreme peaks of the LCY-A, ECY-BBB and

NCY-BBB classes in 2002 and 2003 predominantly reflect the impact of obligor-specific

events.

Furthermore, the peaks of risk class spreads are compared across the remaining ratings of

the sector. Figure 4.6 shows, that the September 2002 peak in the ECY-BBB class is not

observed for the ECY-A spreads, which leads to the conclusion that the peak was caused

by an obligor-specific credit event that translates into the spread structure of the class.

Accordingly, the first LCY-A spread peak in 2002 cannot be identified as systematic, while

the LCY-A peak in late 2002 partially translates into the LCY-BBB class. Apart from

that, there are no simultaneous changes in spreads that indicate credit events systematic

to a particular sector only. For the non-cyclic sector-class, the spread peaks of the NCY-

BBB class in 2002 and 2003 are only partially reflected in the NCY-A class. A comparison

of the different sectors also reveals the increase and elevated variation of sector spreads

during the technology crisis in 2000 and preceding the second Gulf War.

All peaks of sector spreads are reflected in the spreads of respective NF sector-rating
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classes in a smoothed form, with credit events caused by several bonds being more per-

sistent. The peaks of the BBB class are still considerable, because the financial sector

does not contribute many observations to smooth out obligor-specific effects in the ag-

gregate BBB class. In contrast, the spread peaks of the LCY-A class are dampened in

the non-financial sector-class and vanish almost completely in the rating A class, which

is dominated by observations from the financial sector.

A further examination of the peaks of the ECY-BBB, LCY-A, and LCY-BBB classes in

2002 as well as the NCY-BBB class in 2003 reveals obligor-specific events causing excessive

credit spreads.10 A sudden simultaneous increase in the bond spreads of telecommunica-

tion firms Ericsson and Alcatel triggers an increase of the ECY-BBB spreads from 143 bps

on the 19/06/02 to a maximum of 773 bps on the 9/10/02 and spreads stayed elevated for

the remainder of the year. A rating downgrade occurs not before the third quarter of 2002,

so that both issuers disappear from the BBB sample in 2003, which reveals that ratings

lag behind the credit risk assessment of the market, and that rating-derived spreads may

be biased if used for pricing exposures of a typical obligor of a rating class. Because no

other BBB-bonds from the technology sector exists within the ECY-BBB class, it cannot

be concluded whether the spread increase is due to an effect that is common to all BBB

issues of the technology sector. For single-A bonds of the technology sector, yield spreads

rise from 66.4 bps to 96.2 bps at the same time.

Considering other sectors of the ECY-BBB class, the average yield spreads of the automo-

tive sectors rise from 152 bps on the 19/06/02, the last observation date before the spread

increase starts, to 336 bps at its peak. The mean yield spreads of the basic material

(communications, media) sector increases from 167 (182, 120) bps to 241 (214, 328) bps,

respectively. The reaction of other sectors included in the ECY class is most pronounced

for the automotive and the media sectors, while the economically closely related commu-

nications sector, dominated by phone companies, shows only a modest increase of yield

spreads of 32 bps. It appears that the spread jump was caused by a systematic shock to

the technology sector that partially affected other sectors of the same rating class, as well

as single-A bonds of the technology sector.

In the LCY-A class, both jumps in credit spreads result from the bonds of the Swiss

engineering company ABB that incurred financial difficulties in 2002, leading to three

peaks of credit spreads in the LCY-A class on 27/03/02 (21/08/02, 23/10/02), with one-

year spot spreads reaching a level of 179 (460, 384) bps in response to the spreads of the

ABB bond with ISIN XS0108171298 and maturity date on 8/03/04 spiking up to 767

10Certainly, jumps in credit spreads that do not trigger a default event contradict to the assumption of
credit risk to be represented by a state-continuous asset value.
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Type Credit Spot Spreads First Diff. of Spreads Credit Spot Spreads First Diff. of Spreads
Time-to-maturity 1 1 10 10 1 1 10 10 1 10 1 10

Lag 1 10 1 10 1 10 1 10 1 1 1 1
Year Rating Sector Autocorrelation Augmented Dickey-Fuller Test

1999 RL 94.9 33.3 94.3 51.2 -1.7 5.4 -3.5 26.5 -0.94*** -0.07*** -4.12*** -5.35***
AA FIN 60.3 11.8 73.8 12.7 -41.6 31.3 -36.8 -6.1 -2.61*** -1.84*** -6.22*** -6.95***

NF 59.7 33.3 74.4 26.2 -18.8 20.2 -29.1 3.8 -2.75*** -1.56*** -7.11*** -8.24***
ALL 64.0 17.8 73.2 12.9 -40.0 11.2 -36.4 -8.0 -2.35*** -1.88*** -6.42*** -7.38***

A FIN 60.7 1.6 46.5 3.7 -46.0 12.6 -48.5 3.9 -2.25*** -2.97*** -6.01*** -6.80***
NF 75.2 24.9 75.9 3.9 -28.3 5.1 -33.7 -11.7 -2.31*** -2.07*** -5.86*** -6.36***
ALL 69.1 6.9 57.7 5.1 -46.3 25.4 -44.1 5.1 -2.03*** -2.67*** -5.26*** -6.66***

BBB NF 54.9 -17.2 72.3 15.4 -26.6 4.1 -21.6 -4.4 -3.13*** -2.26*** -7.35*** -8.30***
ALL 63.0 -35.1 82.8 9.6 -14.2 -9.6 -34.9 0.0 -3.05*** -2.05*** -5.97*** -7.27***

2000 RL 94.9 44.4 84.1 11.1 -17.6 -9.4 -8 4.9 -1.14*** -2.60*** -3.55*** -5.43***
AA FIN 48.2 12.2 89.7 43.4 -40.1 -13.0 -33.6 -2.1 -2.91*** -1.07*** -7.41*** -7.58***

LCY 38.3 -0.4 82.3 38.8 -40.2 3.5 -33.7 9.7 -3.38*** -1.28*** -8.78*** -8.00***
NCY 78.0 36.2 88.2 39.1 -30.3 12.1 -34.1 17.5 -1.37*** -1.14*** -7.04*** -5.94***
NF 75.4 35.6 89.8 36.4 -29.9 -5.9 -32.7 -2.3 -1.15*** -0.72*** -7.76*** -5.61***
ALL 58.1 17.3 88.7 42.8 -23.7 -5.4 -39.8 7.9 -3.00*** -0.85*** -9.58*** -8.21***

A ECY 53.7 14.2 91.4 41.4 -18.4 -11.0 4.7 -5.4 -3.58*** 0.86*** -9.20*** -6.43***
FIN 34.8 -6.8 90.9 44.2 -34.8 -10.7 -32.9 -2.0 -3.45*** -0.65*** -9.38*** -8.19***
LCY 39.1 8.3 89.7 30.0 -32.4 -4.5 -28.8 6.0 -3.58*** 0.92*** -9.54*** -5.70***
NCY 64.9 30.6 89.0 22.2 -26.2 10.0 -19.5 17.7 -2.39*** 0.63*** -8.14*** -6.45***
NF 67.0 33.6 87.1 30.4 -37.1 -0.3 -22.4 -11.9 -1.49*** 0.24*** -8.39*** -7.28***
ALL 43.5 9.9 90.1 43.5 -20.6 -0.2 -44.5 17.5 -3.97*** -0.48*** -10.93*** -6.68***

BBB ECY 65.3 -2.9 74.4 26.3 -51.4 3.5 -43.1 -3.5 -1.99*** -0.34*** -5.99*** -6.78***
LCY 54.3 13.9 79.0 18.4 -24.3 9.2 -40.0 -6.1 -3.13*** -1.77*** -6.70*** -6.75***
NCY 83.1 27.2 90.0 23.0 -17.5 -5.8 -26.3 -3.3 0.20*** -1.45*** -6.67*** -5.36***
NF 72.5 8.7 81.6 27.2 -27.0 5.3 -20.7 8.3 -2.18*** -0.68*** -6.08*** -5.66***
ALL 62.8 14.1 80.6 30.8 -39.8 15.4 -28.3 2.9 -2.10*** -1.40*** -7.06*** -7.00***

2001 RL 95.3 36.4 87.6 0.6 12.8 8.6 -16.4 8.1 -1.96*** -0.61*** -5.37*** -4.95***
AA FIN 48.7 10.3 83.7 31.7 -42.5 -10.4 -28.2 -8.2 -2.70*** -1.86*** -7.03*** -5.81***

LCY 89.3 30.1 78.3 -24.0 -22.6 -3.1 -21.5 -28.4 -0.08*** -1.77*** -4.35*** -5.87***
NCY 72.3 12.3 51.3 18.5 -22.3 13.3 -49.6 7.5 -2.59*** -4.34*** -5.70*** -7.39***
NF 77.5 17.1 79.9 23.8 -61.6 -9.7 -32.9 7.3 -1.25*** -5.03*** -7.20*** -9.29***
ALL 58.8 21.7 81.3 34.0 -41.6 -9.9 -36.2 -7.5 -2.35*** -2.77*** -7.06*** -6.19***

A ECY 95.2 9.6 85.3 -16.9 23.7 -37.8 25.4 -3.8 -1.65*** -2.53*** -4.42*** -4.44***
FIN 35.2 3.2 79.7 7.1 -33.6 3.6 -22.9 15.4 -3.83*** -1.77*** -6.45*** -5.26***
LCY 77.4 -25.7 79.2 17.8 -13.2 -4.1 -13.3 -14.4 -2.11*** -1.22*** -5.39*** -5.85***
NCY 80.8 14.8 88.1 8.4 -25.3 4.3 1.9 3.6 -1.82*** -1.02*** -5.83*** -3.03***
NF 94.2 12.8 83.7 -22.9 12.5 -27.8 31.8 -6.8 -1.27*** -3.37*** -4.23*** -3.89***
ALL 51.9 18.0 78.3 15.6 -35.8 15.5 -10.9 13.6 -2.80*** -2.09*** -6.82*** -5.44***

BBB ECY 81.9 19.8 53.9 10.7 -8.1 -5.0 -2.7 -1.9 -0.80*** -3.49*** -5.07*** -6.21***
LCY 77.2 10.6 84.1 20.2 -2.3 2.1 -26.5 -3.8 -2.52*** -1.44*** -6.71*** -5.20***
NCY 83.7 19.1 61.5 18.9 -15.7 -11.4 -3.9 3.2 -2.66*** -4.03*** -6.12*** -6.95***
NF 87.0 18.4 65.7 -10.1 0.0 -11.5 -15.8 5.7 -1.21*** -2.54*** -5.08*** -5.80***
ALL 84.1 11.1 59.0 -22.8 -4.0 -17.4 -18.6 0.7 -1.78*** -2.92*** -6.01*** -8.01***

2002 RL 92.5 39.1 90.8 40 -11.5 -18.3 1.5 -13.2 -0.41*** 0.61*** -5.15*** -6.78***
AA FIN 79.2 33.5 85.5 37.1 -22.1 4.6 -20.7 2.9 -1.63*** -1.51*** -7.48*** -6.68***

LCY 70.5 28.6 74.8 4.3 -7.4 12.4 -6.6 14.7 -4.48*** -2.49*** -5.53*** -5.03***
NCY 81.8 41.5 91.8 29.8 -2.0 27.2 9.1 -0.1 -1.81*** -1.51*** -6.67*** -5.25***
NF 37.8 28.9 89.2 16.5 -28.4 21.9 8.9 11.1 -5.68*** -1.83*** -7.18*** -5.60***
ALL 76.9 35.2 87.9 34.7 -23.7 6.2 -17.9 8.0 -1.77*** -1.47*** -7.51*** -6.47***

A ECY 90.5 38.2 90.3 40.9 -12.5 1.7 8.9 13.1 -1.66*** -3.93*** -7.22*** -6.16***
FIN 79.0 27.4 92.8 31.5 -14.1 5.1 -12.6 -13.1 -2.37*** -1.23*** -6.94*** -5.78***
LCY 61.4 27.0 84.1 20.7 -7.1 33.9 -27.1 11.5 -3.61*** -4.07*** -8.08*** -6.52***
NCY 92.6 45.6 83.8 -20.5 -10.5 -12.0 -0.6 7.1 -0.88*** -4.39*** -6.22*** -6.88***
NF 93.1 40.3 88.6 17.3 -10.7 3.7 13.4 18.7 -0.94*** -4.93*** -4.46*** -7.66***
ALL 82.8 32.4 93.5 33.3 -42.1 -19.2 -1.9 -6.7 -1.21*** -1.52*** -7.42*** -5.89***

BBB ECY 92.0 35.5 65.1 1.8 -11.3 11.1 2.1 3.6 -1.28*** -4.20*** -5.79*** -7.15***
LCY 88.9 19.6 80.3 -1.2 17.9 10.3 24.0 4.5 -1.85*** -4.11*** -3.78*** -5.00***
NCY 92.3 38.9 92.9 46.0 -7.4 -2.8 -24.2 -0.2 -0.54*** -0.78*** -6.75*** -6.11***
NF 89.0 32.4 59.7 23.0 -25.9 -12.3 6.0 2.4 -1.38*** -4.29*** -5.11*** -7.34***
ALL 89.0 32.2 59.0 27.1 -26.9 -11.0 6.8 5.8 -1.38*** -4.46*** -4.81*** -7.59***

2003 RL 87.2 6.2 85.3 -5.2 4.5 -7.3 -2.2 7.2 -1.93*** -2.55*** -5.15*** -5.05***
AA FIN 74.1 27.3 90.3 34.1 -15.9 -3.3 -36.7 -6.0 -2.80*** -1.10*** -5.43*** -6.99***

LCY 76.4 -22.5 89.6 18.2 -30.1 7.7 -18.3 -15.1 -2.13*** -1.51*** -5.17*** -4.79***
NCY 73.9 -11.2 87.1 -8.7 -6.8 12.3 9.2 -3.2 -3.16*** -2.15*** -7.14*** -4.26***
NF 64.5 -22.3 83.8 -21.3 -25.8 12.8 -2.7 -2.0 -2.70*** -1.81*** -6.98*** -4.70***
ALL 83.6 26.0 90.5 19.5 -5.8 12.1 -15.8 -0.1 -1.90*** -0.77*** -5.07*** -5.63***

A ECY 91.7 26.6 92.3 37.3 -27.3 -2.4 -5.0 -3.9 -1.92*** -0.91*** -6.22*** -4.24***
FIN 63.6 23.5 91.4 33.3 -23.0 6.3 -26.1 -7.0 -3.15*** -0.32*** -6.29*** -8.81***
LCY 89.5 17.6 94.7 42.0 -5.9 -0.3 -7.5 4.1 -7.88*** -0.75*** -13.02*** -6.21***
NCY 67.2 -31.5 90.3 20.1 -12.7 -16.1 -13.5 9.8 -3.62*** -1.01*** -7.70*** -5.61***
NF 91.4 31.2 94.8 37.2 -35.6 -8.4 -3.4 -5.5 -5.32*** -0.70*** -11.98*** -4.39***
ALL 69.2 36.1 93.3 37.0 -31.6 13.3 -24.6 -3.0 -2.58*** -0.19*** -7.48*** -6.95***

BBB ECY 93.6 43.0 95.6 32.4 -21.3 24.4 7.2 -33.4 -8.70*** -0.61*** -25.38*** -5.04***
LCY 85.9 34.6 92.7 35.6 -25.1 13.1 -28.7 15.4 -1.66*** -0.28*** -5.58*** -6.54***
NCY 85.8 -9.2 88.0 29.7 22.8 -12.3 -27.0 -7.1 -2.45*** -2.13*** -4.56*** -5.96***
NF 91.6 13.6 95.7 36.8 28.5 -15.0 -4.8 -17.9 -1.94*** -1.01*** -4.83*** -6.72***
ALL 91.8 14.4 95.7 36.9 27.9 -15.2 -4.9 -18.8 -1.89*** -0.99*** -4.78*** -6.66***

Table 4.5: Autocorrelation and Unit Root Test of Fitted Credit Spreads
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(2163, 4513) bps at that time.11 It is possible that the evolution of the credit spreads

from Alcatel and ABB were driven by the same factors, since their business portfolios both

include power generation activities, though Alcatel is assigned to the technology sector

for its predominant business in telecommunication infrastructure, whereas ABB with its

focus on engineering, power generation and power transmission is part of the industrial

sector.

The spread events of ABB and Alcatel appear simultaneously to spread peaks in the

LCY-BBB class, which where driven by bonds of Dyckerhoff, Printemps, and Sol Melia

Europe, so that the one-year spot spreads of the LCY-BBB class reached a 200 bps high

on 30/10/02. Since these issuers come from the industrial and the cyclical-consumer

sectors, systematic sector effects related to the evolution of the ABB credit spreads can

be ruled out. In conclusion, the simultaneous spread widening in the ECY-BBB, LCY-A

and LCY-BBB classes must be attributed either to simultaneous specific effects or to a

general macroeconomic shock that affected all bonds in the market at that time.

In 2003, two spread peaks occured in the NCY-BBB class, attributed to credit events

involving the Dutch food retail company Ahold and the Italian food producer Parmalat.

Yield spreads of 7 Ahold bonds spiked to a level up to 1617 bps on the 26/02/03, driving

fitted one-year spreads of the NCY-BBB class to 322 bps. The Parmalat default on 10

bond issues on the 8/12/03 forced the NCY-BBB spreads to a maximum of 964 bps on

the 19/11/03.12

In summary, general and sector-specific systematic factors, as well as obligor-specific

factors, affect the credit spreads of risk classes, where the particular type of factor must be

determined on a case by case basis. Systematic factors represent the fundamental effects

in the change of risk class spreads and must be included in the fitting of term structures.

Obligor-specific spread events instead can not only have serious effects on the fit of the

credit spreads of single risk classes, but may also alter the correlations of risk classes’

spreads and should in principle be filtered in the process of curve fitting. Furthermore,

it must be ensured that the bond sample and the fitted credit spreads of risk classes are

representative of the credit portfolio under consideration.

Autocorrelations with a lag of one and ten years are presented in Table 4.5 on a level and

a first-difference basis for one-year and ten-year riskless rates, as well as for the credit

spreads of risk classes. As expected, high positive lag-one autocorrelations are observed

on a level basis for riskless rates of one-year and ten-year tenor, that decrease substantially

if the lag size is increased to ten.

11At the second and third peak yield spreads of the bond with ISIN XS0143736162, issued by Investor
Group and maturing on 5/03/12 were affected, since Investor was a major shareholder of ABB.

12Yield spreads reached an even higher level on a daily basis immediately before the time of default, but
did not enter the data set due to the weekly sample interval.
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Lag-one autocorrelations of credit spreads compare to those of the riskless rate, while auto-

correlations with a lag size of ten are considerably smaller and may even become negative.

Due to their lower volatility, ten-year spreads mostly show higher positive autocorrela-

tions for lag size one. For the years 2001-2003 of credit distress, lag-one autocorrelations

of one-year spreads are elevated in contrast to the less exposed years 1999 and 2000,

but apart from that, on a level basis there are no systematic effects on autocorrelations

apparent for different sectors, rating classes and in time.

In contrast, lag-one autocorrelations of the first differences of credit spot spreads are

predominately negative, which indicates a mean reversion of short-term spreads. However,

autocorrelations of lag size ten are close to zero and do not enable to conclude, if spread

differences are autocorrelated positively or negatively. For the riskless rate, the sign of

first-difference autocorrelations cannot be unambiguously determined. Interpretations

apply analogously to the first differences of ten-year credit spreads.

A lag-one Augmented Dickey-Fuller (ADF) test is applied to test the stationarity of

riskless rates and of credit spreads on a level basis and a first difference basis. The results

in Table 4.5 indicate that the unit root hypothesis cannot be rejected on a level basis for

riskless rates. For the credit spreads the unit root is rejected for 11 (18, 26) out of 72

one-year spread series on a 1% (5%, 10%) level of significance and for 11 (14, 17) ten-year

spreads, respectively. On a first-difference level non-stationarity of rates and spreads is

overwhelmingly rejected, so that credit spreads can be assumed to be difference-stationary

or integrated of order one.

4.3.2.2 Analysis of Credit Spread Correlations

Analyzing the correlations of the changes in credit spreads reveals the variability of the

co-movement structure of credit spreads in time. Three structures of risk classes are

used for model estimation and simulations in the subsequent chapters. Risk classes are

defined either by the rating or by a sector-rating attribution. The first risk class structure

considers rating classes AA, A, and BBB. Second, risk classes are detailed additionally by

a sector differentiation with sector-rating classes either from the financial sector (FIN) or

from the aggregate non-financial sector (NF). Third, all sector-rating classes of the four

sector-classes are taken into account. In sectors LCY and NCY, three rating classes are

available, whereas risk classes ECY-AA and FIN-BBB are omitted due to data limitations.

Spread correlations are considered on the basis of one-year and 10-year credit spot spreads

to carve out differences in the co-movement of short-term and long-term credit spreads.

Furthermore, correlations are examined for yearly and quarterly updates of the bond

assignment to rating classes. Results are presented in Tables 4.6 and 4.7
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For each pair of sector-rating classes, four statistics are calculated. The upper left figure

presents the average correlation of credit spreads’ first-differences for the five one-year

estimation periods. The upper right figure indicates the standard deviation of the cor-

relations. The lower left (right) figure gives the minimum (maximum) correlation of the

estimation period. Both tables present the results for the correlations of one-year spreads

above the diagonal and for ten-year spreads below.

The correlations of the first differences of spreads are high between close ratings and

decrease if ratings become more distant, an effect well-known from other studies. Fur-

thermore, the high-quality rating classes AA and A show an average correlation of 72.7%

that is higher than for rating classes A and BBB with 25.5%. The average correlation

is smallest between AA and BBB classes, with 21.2%, and the range of correlations is

considerably higher for BBB. Obviously, spreads of high-quality obligors evolve in a com-

paratively homogenous way, while the spreads of BBB obligors are more heterogenous,

thereby reflecting more frequent obligor-specific credit events. Negative correlations be-

tween ratings AA and BBB appear in the years 2002 and 2003, which can be explained

by investors’ flight to quality as outlined before. Obviously, one-year spread correlations

between AA and BBB classes change in time and depend on prevailing market conditions.

The first-differences of rating class spreads mostly show a negative correlation with the

first differences of riskless rates, except for the year 2000, when one-year AA and A

spreads as well as riskless rates both increased, resulting in positive correlations. In

contrast, long-term credit spreads are negatively correlated with riskless rates, revealing

a discrepancy between a favorable long-term economic outlook and short-term concerns

about the creditworthiness of obligors. A similar effect can be observed in the year 2003

for the BBB class, where positive correlations of one-year BBB spreads and riskless rates

are explained by a recovery in the short-term economic outlook after the second Gulf War

was accomplished, coinciding with a decrease in riskless interest rates.

Compared to short-term equivalents, the correlations of 10-year credit spot spreads be-

tween rating classes are mostly lower. Obviously, the short-term assessments of credit-

worthiness in time are more homogenous across rating classes than the long-term con-

sideration of credit risk. It is concluded that short-term credit spreads are notably

more sensitive to general systematic factors, while long-term credit spreads are influ-

enced by sector-related or obligor-specific considerations. Additionally, correlations of

10-year spread differences are less volatile, as indicated by standard deviations and the

range of correlations. The average correlation between long-term spread differences and

the changes in riskless rates with -52.0% (-54.6%, -24.7) for rating class AA (A, BBB)

is distinctly negative, when compared to one-year correlations. As before, the standard

deviation and range of correlations decrease, which accentuates the higher stability of

dependence compared to short-term spreads.
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If correlations for year-based periods are compared to those for quarterly periods, the

average spread correlation remains almost unaltered between rating classes AA and A for

one-year and ten-year spreads. In contrast, correlations between BBB and AA (A) in-

crease considerably, on average from 21.2% (25.5%) to 32.6% (29.2%) for one-year spreads

and from 20.7% (23.2%) to 30.7% (36.1%) for 10-year spread differences. Furthermore,

the variation of correlations increases substantially for all pairs of risk classes if quarterly

correlations are taken into account. The strong variation of the co-movement structure

of credit spreads in time raises doubts about the assumption of time-homogenous corre-

lations in credit portfolio models.

With respect to the influence of the economic sector on the dependence structure of credit

spreads, the two-sector case with five sector-rating classes FIN-AA, FIN-A, NF-AAA, NF-

A, NF-BBB is examined. The average correlation of spread differences between FIN-AA

and FIN-A resemble those between the corresponding rating classes, independent of the

maturity of spreads or sample frequency. Clearly, this effect is caused by the dominance

of observations from the financial sector within the high-quality rating classes.

Comparing the credit spreads of FIN risk classes to those of NF classes reveals more

ambiguous results. Average short-term correlations between FIN-AA and risk classes

FIN-A and NF-A are higher than correlations between FIN-AA and NF-AA for yearly

and quarterly periods. This conflicts with the assumption that the rating is the prevailing

attribute to determine the co-movement of spreads. Correlations of the FIN-A risk class,

however, show the pattern already observed between rating classes, so that correlations to

the NF-A risk class are higher than those to the NF-AA and NF-BBB classes. Long-term

correlations on a yearly and quarterly basis show the usual pattern: average correlations

between risk classes of different sectors but equal rating classes exceed correlations be-

tween risk classes of different sectors and rating classes. Within the NF sector, average

correlations between risk classes of adjoint ratings are observed to be higher than those

between classes of more distant ratings. However, correlations between NF-AA and NF-A

are considerably lower than those between FIN-AA and FIN-A. This is attributed to the

smaller sample size of the NF sector, which gives additional emphasis to changes in credit

spreads imposed by non-systematic effects. The standard deviation and the range of year-

based short-term correlations increase with the distance of the ratings in most cases, no

matter whether the sectors involved are different or not. Long-term correlations show a

distinctly lower variation, indicating a more stable co-movement structure for long-term

spreads.

On a quarterly basis, the average short-term correlations are lower than year-based equiva-

lents, while for long-term correlations the reverse effect is prevailing. Quarterly resampling

turns obligors within risk classes more homogenous and more heterogenous between risk

classes, since non-representative obligor-specific spreads are excluded from a risk class



4.3 Term Structures of Credit-risky Interest Rates 135

sooner. The effect of more homogenous bond samples concerning the rating assignment

should lead to an increase in correlations between risk classes of the same rating. An

increase in correlations is, however, only observed for long-term spreads, while quarter-

based short-term correlations between risk classes of equal rating are lower. It is concluded

that the co-movement of spot spreads is robustly indicated only for long term spreads that

reflect effects of systematic factors to a smaller extent. Analogously, quarter-based spread

correlations between rating classes show a higher variation of considerable size.

With respect to year-based correlations between first differences of credit spreads and

riskless rates, negative correlations are observed as before, with correlations being lower

for ten-year spreads. If a resampling is carried out on a quarterly basis, correlations show

a higher variation, and long-term correlations mostly become even more negative.

4.3.2.3 Residual Analysis

The analysis of price and yield residuals of the term structure fitting in Table 4.8 reveals

further insights into the suitability of the Nelson-Siegel functional form and the performed

fitting process as well as into price and yield effects which have not been captured by the

risk class structures used. Price residuals are calculated as present values obtained from

fitted yield curves less the market-observed dirty prices of bonds. Average price residuals

are calculated across all bond observations and term structures of a risk class in a given

year. For the riskless term structures, average price residuals vary between −0.3 bps and

0.8 bps, while credit spread structures range from −16.2 bps to 26 bps. The average price

residuals are considered to represent the potential fitting error that could be reduced if

a better-suited functional form of the term structure or a more efficient fitting algorithm

were used.

Riskless term structures are based on a set of French and German government bonds

and resulting price errors are attributed to the fitting procedure only. For corporate

term structures, fitting errors are notably smaller for data-rich risk classes such as rating

classes, financial sector classes, or aggregate non-financial risk classes.

In contrast, the mean absolute price deviation (MAD) reveals effects from the hetero-

geneity of spreads within the bond sample, which could be eliminated by defining more

homogenous risk classes. The MAD of riskless term structures varies between 5 bps and

16 bps and indicates the price variability attributed to effects other than credit risk, such

as illiquidity, coupon effects or errors in market prices. The average median price residual

is smaller than the average price error for 63 out of 72 fitting scenarios. The price residuals

are in most cases skewed to the right, but 5%- and 95%-quantiles show that the skew is

not considerable and may be attributed to the fact that the short spread is fixed at zero.

The minimization of price residuals in (4.8) ensures that long-term and short-term bond



136 CHAPTER 4 - Model Estimation

Risk-Class Price-Residuals in % Yield-Residuals in bp
Year Rating Sector Average MAD Std. Dev. Median Q05 Q95 Average MAD Std. Dev. Median Q05 Q95

1999 RL 0.007 0.16 0.24 0.03 -0.47 0.33 -1.53 5.64 7.81 -1.56 -11.79 9.64
AA FIN 0.016 0.55 0.86 -0.04 -1.05 1.75 -2.42 11.77 18.69 0.91 -38.23 17.19

NF -0.020 0.63 0.94 0.05 -1.57 1.31 -2.60 12.90 18.75 -1.21 -31.72 22.22
ALL 0.004 0.56 0.88 -0.04 -1.13 1.71 -2.32 11.92 18.80 0.88 -37.31 18.18

A FIN -0.030 1.20 1.51 -0.54 -1.69 2.92 -0.25 21.56 28.13 9.55 -52.03 28.62
NF 0.004 0.61 0.83 0.04 -1.26 1.49 -2.73 14.16 18.71 -1.10 -37.86 23.99
ALL -0.023 1.08 1.40 -0.37 -1.66 2.73 -0.75 20.00 26.44 6.75 -48.52 27.95

BBB NF -0.050 0.78 1.01 -0.03 -1.88 1.68 -3.55 17.76 23.27 -0.53 -49.28 30.60
ALL -0.028 0.88 1.17 -0.09 -2.00 1.92 -3.27 19.24 25.53 0.35 -52.86 32.27

2000 RL 0.008 0.14 0.20 0.02 -0.35 0.29 -0.81 5.71 8.75 -1.09 -11.73 12.28
AA FIN -0.039 0.51 0.75 -0.08 -0.99 1.28 -0.87 12.02 16.99 1.95 -30.95 18.29

LCY -0.024 0.65 0.81 -0.06 -1.27 1.16 0.34 14.73 18.18 0.51 -25.97 28.70
NCY -0.013 0.67 0.97 0.05 -1.60 1.53 -1.64 14.81 19.73 -1.28 -32.92 27.82
NF -0.021 0.77 1.10 -0.03 -1.75 1.77 -1.10 16.25 21.73 0.71 -36.16 29.94
ALL -0.059 0.58 0.84 -0.11 -1.14 1.42 -0.42 13.15 18.21 2.70 -32.31 20.79

A ECY -0.033 0.49 0.70 0.00 -1.09 0.92 -1.58 12.96 19.74 0.13 -32.62 21.61
FIN -0.088 1.08 1.34 -0.42 -1.85 2.32 1.16 22.10 27.44 10.89 -46.60 30.87
LCY 0.021 0.58 0.81 0.00 -1.68 1.20 -1.68 13.12 18.44 0.47 -33.15 33.22
NCY -0.010 0.51 0.74 -0.07 -1.11 1.25 -2.11 12.44 18.10 1.78 -42.63 18.07
NF -0.051 0.55 0.79 -0.05 -1.28 1.13 -0.75 13.51 20.02 1.41 -32.15 23.56
ALL -0.077 0.98 1.25 -0.27 -1.86 2.12 0.61 20.47 26.28 6.70 -43.58 31.28

BBB ECY 0.023 0.62 0.86 0.13 -1.91 1.26 -1.04 14.74 19.66 -3.06 -32.82 39.35
LCY 0.037 0.62 0.86 -0.06 -1.06 1.62 -3.31 16.41 26.12 1.23 -56.61 26.00
NCY -0.034 1.03 1.64 -0.13 -2.55 3.43 0.21 23.80 36.13 3.27 -73.99 54.28
NF 0.007 0.74 1.22 -0.04 -1.87 1.84 -1.43 17.66 30.46 1.16 -40.29 39.93
ALL 0.008 0.75 1.22 -0.04 -1.92 1.89 -1.23 17.72 30.26 1.21 -41.32 40.30

2001 RL -0.003 0.12 0.18 -0.01 -0.26 0.35 -0.06 4.34 6.27 0.51 -8.20 7.82
AA FIN 0.002 0.49 0.78 -0.05 -0.99 1.32 -1.01 11.42 16.84 1.71 -29.59 18.83

LCY 0.031 0.69 0.90 -0.05 -1.11 1.77 -2.06 16.90 21.41 1.62 -41.50 26.73
NCY 0.013 0.61 0.84 -0.07 -1.24 1.60 -0.91 13.29 17.27 1.99 -30.59 20.03
NF 0.007 0.69 0.97 -0.14 -1.31 2.12 -1.01 15.62 21.22 3.71 -43.07 23.69
ALL -0.012 0.53 0.83 -0.08 -1.08 1.44 -0.57 12.15 17.74 2.35 -31.14 20.43

A ECY 0.026 1.68 2.66 -0.45 -2.67 6.33 -2.40 42.12 66.18 14.40 -181.08 57.40
FIN -0.060 1.07 1.45 -0.25 -2.27 2.12 0.56 22.47 29.32 7.87 -40.93 35.79
LCY 0.002 1.02 1.64 -0.12 -2.27 4.14 -0.69 21.70 32.49 3.58 -79.38 43.71
NCY 0.004 0.53 0.76 -0.01 -1.21 1.44 -0.92 12.20 16.33 0.35 -32.56 22.26
NF 0.008 1.57 2.55 -0.44 -2.70 4.65 -1.61 38.21 61.39 13.66 -117.51 55.32
ALL -0.032 1.30 2.08 -0.19 -2.78 2.92 -0.36 29.46 47.13 5.24 -63.98 47.48

BBB ECY 0.264 1.55 2.49 -0.36 -2.42 5.42 -8.01 41.40 62.27 9.84 -157.64 52.79
LCY -0.003 0.60 0.84 -0.15 -1.02 1.66 0.13 14.23 20.10 3.95 -39.18 25.02
NCY 0.063 1.81 2.60 -0.42 -2.97 4.26 -4.64 40.75 58.77 11.35 -90.56 56.41
NF 0.088 1.39 2.25 -0.37 -2.25 3.95 -4.55 33.17 52.54 9.43 -95.77 44.57
ALL 0.059 1.40 2.25 -0.38 -2.31 3.80 -3.85 33.41 52.69 9.58 -93.07 46.64

2002 RL 0.000 0.08 0.12 0.00 -0.22 0.19 -0.57 4.29 6.48 -0.22 -9.32 7.16
AA FIN 0.020 0.55 0.92 -0.02 -1.25 1.48 -2.27 13.95 19.67 0.89 -34.64 22.26

LCY -0.073 0.55 0.82 -0.21 -1.18 1.39 -0.64 12.78 18.43 3.51 -37.94 20.56
NCY 0.004 0.69 0.94 -0.14 -1.22 1.71 -1.19 15.43 20.50 4.08 -41.05 22.63
NF 0.031 0.67 0.94 -0.13 -1.09 1.84 -1.82 15.03 20.53 3.74 -43.29 21.76
ALL 0.020 0.57 0.93 -0.03 -1.26 1.56 -2.13 14.12 19.89 1.26 -35.78 22.88

A ECY 0.022 0.87 1.24 -0.01 -1.88 2.17 -3.39 25.65 33.70 -0.07 -70.23 41.75
FIN 0.014 0.97 1.50 -0.04 -2.15 2.48 -3.07 23.05 38.38 2.08 -55.42 37.40
LCY 0.179 3.81 6.08 -1.84 -3.66 13.90 -30.16 138.05 266.27 62.44 -769.56 109.99
NCY 0.010 0.75 1.17 -0.10 -1.46 2.43 -1.50 19.27 27.62 3.96 -51.28 30.15
NF 0.042 1.26 2.67 -0.34 -2.10 2.83 -6.08 38.98 109.78 11.46 -71.53 49.18
ALL 0.014 1.10 1.99 -0.17 -2.28 2.64 -3.17 29.29 72.44 7.04 -62.18 43.17

BBB ECY 0.020 4.21 5.57 -1.55 -5.90 12.05 -14.18 148.17 214.77 45.13 -504.57 223.27
LCY -0.023 1.23 1.82 -0.56 -1.79 3.49 -2.19 37.51 63.12 17.21 -90.22 44.16
NCY 0.124 2.24 3.20 0.01 -4.45 7.03 -14.46 61.84 85.94 -0.57 -217.66 85.80
NF 0.070 3.26 4.68 -1.24 -4.45 10.02 -17.52 106.10 177.53 39.56 -390.34 114.49
ALL 0.064 3.27 4.68 -1.25 -4.45 10.01 -17.30 106.20 177.53 39.71 -390.49 114.75

2003 RL 0.000 0.05 0.08 0.00 -0.14 0.11 -1.14 4.01 7.53 -0.24 -12.39 5.93
AA FIN 0.007 0.50 0.83 -0.05 -1.12 1.62 -3.46 15.05 29.41 2.65 -39.59 20.10

LCY -0.162 0.78 1.30 -0.08 -3.21 1.64 2.51 10.74 14.45 1.96 -19.21 30.25
NCY 0.024 1.12 2.09 -0.34 -1.60 4.23 -2.32 24.26 42.12 9.23 -116.86 30.40
NF -0.020 1.06 1.98 -0.30 -1.70 3.56 -1.45 22.08 39.13 8.04 -97.31 29.76
ALL -0.010 0.57 1.14 -0.09 -1.25 1.56 -2.70 15.96 31.72 3.80 -38.92 21.86

A ECY 0.022 0.64 0.93 0.02 -1.38 1.69 -4.58 19.47 24.59 -1.09 -47.24 28.20
FIN 0.030 0.73 1.31 0.01 -1.81 1.80 -6.12 22.08 34.44 -0.44 -60.33 33.69
LCY 0.004 0.38 0.52 -0.02 -0.86 1.03 -2.17 11.90 16.19 1.73 -31.26 17.00
NCY -0.007 0.51 0.79 0.03 -1.30 1.38 -2.90 14.32 20.20 -0.77 -38.31 23.91
NF 0.018 0.61 0.92 -0.01 -1.33 1.70 -3.64 17.46 23.33 0.74 -45.94 28.03
ALL 0.025 0.70 1.21 0.00 -1.64 1.75 -5.44 20.80 31.78 0.09 -56.09 31.66

BBB ECY 0.112 1.51 2.33 -0.24 -2.55 3.71 -10.54 46.42 83.52 8.12 -103.34 55.66
LCY -0.069 2.26 3.87 -1.05 -2.88 8.13 3.07 66.00 104.82 40.45 -214.09 70.21
NCY -0.024 4.55 5.98 -2.11 -5.91 12.46 -6.18 139.46 185.94 64.30 -384.50 158.05
NF 0.024 2.68 4.32 -1.14 -3.56 9.85 -5.27 81.56 133.06 40.33 -289.95 86.90
ALL 0.023 2.66 4.29 -1.12 -3.58 9.59 -5.19 80.65 131.87 39.71 -286.79 87.20

Table 4.8: Price and Yield Residuals
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prices show equal fitting quality. In contrast, residuals on a yield basis can be better

compared across bonds, so that yield residuals are more appropriate for use in assessing

the fitting performance. Average yield residuals are calculated as yields derived from

fitted bond prices less market-observed yields, and vary between −1.53 bps and −0.06

bps for riskless term structures, and between −30.16 bps and 3.07 bps for the credit-risky

term structures. The considerable overestimation of market-observed bond yields in some

periods coincides with fitted bond prices being to small on average, which is attributed

to outlier effects. The credit distress of specific bonds moves term structures upward,

leading to an underpricing of the remaining bonds in the sample. This misrepresentation

of typical bond prices in a risk class in case of credit distress is a property specific to term

structures which were determined for risk management purposes and clearly reveals the

difference from term structures used for bond pricing that are gained from bond samples

of instantaneous homogenous credit risk.

In general, market-observed yields in a risk class are positively skewed, due to the down-

ward bounding of bond yields by the riskless term structure and an upward potential of

yields that is typically more pronounced and limited only by the recovery value of bonds.

This effects results in an underpricing and a systematic overestimation of yields for most

bonds. Accordingly, average median yield residuals exceed the average yield residuals in

Table 4.8 for 70 fitting scenarios, suggesting that yield residuals are negatively skewed.

The skewness is more pronounced for risk classes that suffer credit distress during the

estimation period, as can be seen in the case of risk classes LCY-A, ECY-BBB, NF-BBB

in 2002 and all BBB classes in 2003. The average standard deviation of yield residuals

increases with deteriorating credit quality, while no tendency of the average standard

deviation of price residuals can be identified.

Finally, the effect of rating, sector and bond liquidity on yield residuals was examined.

In general, price and yield residuals increase with deterioration of the credit quality,

as observed for different rating classes of a particular period, and also observed from

comparing residuals for the years 1999 and 2000 to those of the recession years 2001-2003.

The hypothesis that trading activity, indicated by the issue amount of bonds as a liquidity

proxy, is negatively related to the absolute size of yield residuals was not supported by

a regression analysis. Data analysis reveals that corporate bonds from the non-financial

sectors have on average a substantially higher issue amount of EUR 556.96mn (421.14mn,

514.17mn) in the ECY (LCY, NCY) sector, compared to EUR 175.88mn in the financial

sector, which may explain the fact that the average absolute yield residuals for non-

financial sectors are not higher when compared to the more homogenous financial sector.

However, unambiguous sector-related effects in the fitting quality could not be identified

across different periods, which confirms that the Nelson-Siegel functional form and the

fitting procedure are suited for a wide range of risk classes specifications.
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4.4 Estimation of the Credit Portfolio Model

4.4.1 Estimation Approach

The latent nature and the dependence of asset values within and between risk classes

challenge the estimation of the structural credit portfolio model introduced in Chapter 3.

Exponential-affine multi-factor term structure models are exposed to similar estimation

requirements, although the two model types seem unrelated at first. The structural default

variable in (3.4) evolves according to a Geometric Brownian motion with constant drift,

while default intensities follow a mean-reverting diffusion process. Concerning the default

model, the default time of an exposure is predictable from a time-continuous structural

variable that represents either the value of a firm’s assets or an abstract default indicator

that triggers obligor default if a constant absorbing default barrier is hit, while default

times from exponential-affine intensity models are not predictable and the default intensity

represents a random parameter of a Poisson distributed default variate.13

Despite these differences, the information content of both concepts is similar. Both model

types have a cross-sectional and a time-series dimension, i.e. the term structure of credit

spreads and its dynamic evolution in time is specified by the current value and the diffusion

process of Markovian state variables. In reverse, the cross-sectional and the time series

dimension of panel data that indicate the dynamics of spread structures in time must be

exploited to estimate both kind of models. Exponential-affine term structure models can

be disaggregated into an affine function of a set of latent state variables, similar to the

risk class factor model in Section 3.5.14 Consequently, the estimation procedure to be

proposed will adapt techniques for the estimation of exponential-affine multi-factor term

structure models, where two major approaches can be distinguished:15

The inversion approach fits unobserved state variables in order to reproduce exactly

market-observed rates conditional on factor dynamics, and typically makes use of a max-

imum likelihood estimator to determine the parameter set. Chen and Scott (1993), Pear-

son and Sun (1994), Duan (2004), as well as Düllmann and Windfuhr (2000) pursue this

approach.

13Cf. Section 3.1.1 as well as Duffie and Singleton (1997, 1999a) and Lando (1998) for the default concept
of intensity-based default models.

14Duffie and Kan (1996) show that a necessary and sufficient condition for the zero-coupon bond price
to be an exponential-affine function of factors requires drift and diffusion terms of the Itô processes of
factors to be affine functions of an underlying state vector.

15Further approaches include proxy models of unobserved state variables by Marsh and Rosenfeld (1983)
as well as Chan, Karolyi, Longstaff and Sanders (1992), a cross-sectional restriction of term structure
estimation as applied by Brown and Dybvig (1986), Titman and Torous (1989), or De Munnik and
Schotman (1994), as well as the generalized method of moments with restricted conditional moments
proposed by Gibbons and Ramaswamy (1993).
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The maximum likelihood estimation of the parameter set and state vector series of a state-

space model using the Kalman-Filter16 (KF) has become the prevalent approach to specify

exponential-affine term structure models. In principle, the Kalman-Filter is a Bayesian

estimator for the joint evolution of a set of latent state variables during a sample period.

State variables are combined to a state vector. Basic components of the Kalman-Filter

are the transition equation and the measurement equation of a state-space model (SSM).

The transition equation determines the conditional expectation of the state vector over

a discrete time interval, taking into account the joint dynamics of state variables. The

measurement equation defines the functional relation between the state vector and a vector

of cross-sectional observations. In contrast to the inversion approach, the measurement

equation does not fit observations exactly, so that empirical observations face a residual

error to the filtered-implied observation estimates. In a sequential procedure, the evolution

of the latent state variables during the sample period is estimated. At each point in

time, a prediction step and an update or filtering step are performed. The prediction step

determines (1) an ex-ante forecast of the state vector, and (2) the covariance matrix of the

state vector prediction error, conditional on the information set at the time of the forecast.

The update step adjusts the prediction of the state vector and the covariance matrix of

state prediction errors using the measurement error of model-derived observations based

on the state prediction. For a general in-depth examination of the Kalman-Filter, see

Harvey (1989), Hamilton (1994) and Gouriéroux and Montfort (1997).

The measurement equation of state-space models can be adapted to implement different

functional relations between latent state variables and observation data, and the transition

equation offers a maximal variability concerning the factor model assumed. State space

models are used for exponential-affine term structure models of riskless short rate and

credit spreads as well as for multi-obligor and risk class models. The exponential-affine

form results in an affine transition equation for the logarithm of factors. For the mea-

surement equation to be linear, observations must be given by continuously compounded

yields of zero-coupon bonds.17

With a Gaussian discrete-time transition density of the state vector, as included in the

model of Vasicek (1977), the standard Kalman-Filter with Gaussian disturbances applies.

Given a Non-Gaussian transition density, as imposed by the CIR model, the filtering steps

remain unchanged, but optimization has to rely on the quasi-maximum likelihood (QML)

concept, with the quasi-maximum likelihood estimator (QMLE) being consistent only

for linear measurement equations. However, a simulation study by Lund (1997a) shows

16See Kalman (1960).

17Duan and Simonato (1995) show that all exponential-affine models can be put in a vector-autoregressive
VAR(1) form and that the conditional covariance matrix of the state prediction error is an affine function
of the lagged state vector estimate.
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that the Kalman-filtering is comparatively well-behaved with regard to the distributional

assumptions of the state variables. Among many others, Chen and Scott (1993), Duan

and Simonato (1995), Lund (1997a, 1997b), De Jong (1999), Geyer and Kossmeier (2001,

2003), and Schirm (2004) are proponents of this estimation approach.

Furthermore, Cumby and Evans (1997) compare Kalman-Filter applications for the esti-

mation of several discrete-time default intensity models, while Claessens and Pennacchi

(1996) apply the Kalman-filtering of state-space models to a structural two-factor credit-

pricing model for Brady bonds. Baadsgaard and Madsen (2000) use coupon bond prices

to estimate an exponential-affine term structure model using a state-space model with a

non-linear measurement equation. In all three of the models, the measurement equation

is non-linear and, as a result, the Extended Kalman-Filter (EKF) as described in Har-

vey (1989) is used to approximate conditional expectations of the state vector and the

covariance matrix of the state prediction error.

Due to its similar informational requirements, the KF-based estimation of exponential-

affine intensity models is adapted to the estimation of the structural risk class based credit

portfolio models. A sequential two-step QMLE of the credit portfolio model introduced

in Chapter 3 is proposed, whose distinctive characteristics comprise:

• A consecutive EKF-based QML estimation of latent systematic and specific factors

in a state-space model with non-linear transition and measurement equations,

• the assumption of normal distributed measurement disturbances and log-normal

transition density of factors,

• observation data that represent yield spreads of synthetic par-coupon bonds based

on fitted term structures of risk classes for systematic factors, and based on boot-

strapped yield spreads for specific factors, and

• asset correlations that are derived from filtered time series of systematic factors and

estimated systematic factor coefficients.

Sequential Kalman-Filter Estimation

The estimation of the structural credit portfolio model involves specifying the asset value

processes that represent the risk classes, and the co-movement structure of asset values.

The estimation of process parameters and times series of latent systematic and specific

factors of risk classes is separated into two consecutive estimation steps which enforces

the identification of parameter and factor estimates. The estimations of systematic and

specific factors are conducted for each risk class individually.

In a first step, a non-linear state-space model relates a single systematic risk class factor

to a panel data set of coupon bond yield spreads derived from the fitted term structure
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of a risk class. The state variable represents the systematic factor of the class. The

non-linear measurement equation relates the benchmark-curve-derived yield spreads of

synthetic par-coupon bonds to yield spreads implied by the credit valuation model of

(3.25), subject to the systematic factor. The non-linear transition equation specifies

the conditional expectation of the systematic factor based on a log-normal transition

density. The Extended Kalman-Filter, as described in Harvey (1989, p. 160ff.), is used to

approximate linearized transition and measurement equations by means of a first-order

Taylor approximation. A maximum likelihood (ML) estimation of EKF-based prediction

errors involves the estimation of process parameters µF and σF of the latent systematic

factor and the filtering of a factor series.

On the basis of the process specification and the time series of systematic factors, a sec-

ond non-linear state-space model is used to estimate the parameters of the asset value

processes, and the coefficients and time series of obligor-specific factors. The explicit

estimation of the obligor-specific factor dynamics of a risk class model based on corpo-

rate bond data represents an innovation when compared to conventional exponential-affine

credit portfolio models, which mostly do not consider obligor-specific factors.18 In contrast

to the systematic-factor state-space model, each observation included in the observation

vector refers to a separate i.i.d. state variable that represents the specific factor.19 The

transition equation is given by the multi-variate log-normal distribution of specific fac-

tors. Observations are given by bootstrapped yield spreads. The measurement function

calculates yield spreads on the basis of asset values derived from the filtered systematic

factor and a specific factor using the systematic factor coefficient and the parameters

of the asset value process. The different specific factors of the state vector share equal

coefficients and distributional properties but take different realizations across obligors.

Observation Data

The credit valuation model used implies a constant and flat term structure of riskless

interest rates, while empirical bond market data is subject to a dynamic non-flat term

structure of riskless rates. Furthermore, the valuation model is not designated to value

zero-coupon bonds, which means that zero rates cannot be used as observation data. The

observations used to resolve these detriments represent credit yield spreads of synthetic

par-coupon bonds with constant time-to-maturity. The use of synthetic bond price ob-

servations is omitted due to their maturity-dependent sensitivities to a change in state

variables. In the case of the systematic-factor state-space model, yield spreads are de-

rived from bond valuations that are subject to synthetic credit-risky term structures of

18Cf. Geyer and Kossmeier (2001), Schirm (2004), whereas Duffie and Garleanu (2001) include specific
factors, but fail to provide model estimates.

19Lund (1997b) points out that for a multi-variate transition density of dependent state variables, con-
ditional expectation and prediction errors cannot easily be calculated, which turns state-space models
with dependent factors inapplicable in practice.
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zero rates made up of a constant riskless rate and the empirically fitted credit spreads of

the respective risk class.

Observations used for the estimation of the specific-factor process are required to represent

the typical variation of coupon bond yield spreads around the spread derived from the

synthetic term structure of the risk class. The reason for using bootstrapped yield spreads

in the estimation of specific factors is the inhomogeneity of empirical bond market data

of the risk classes, which are in general not evenly spread with respect to the number of

observations per risk class and obligor, the time-to-maturity of bonds and the availability

of observations in time.20 With no unambiguous criteria for the selection of representative

bond issues at hand, and due to the change of the time-to-maturity of empirical bonds

a robust estimation of specific factors is ensured best if bootstrapped times series of

observations are used, which incorporate the distributional properties of the discrete-time

changes of empirical bond yield spreads in a risk class.

Distribution Assumptions

Systematic and specific factors are assumed to follow a geometric Brownian motion with

log-normal discrete-time transition densities of state variables in both state-space mod-

els. Although the observation data for the specification of systematic-factor processes

is derived from defaultable bond prices, the risk class itself, represented by the fitted

term structure of spreads, is non-defaultable, so that the systematic factor incorporates

credit risk but precludes the default of the risk class by definition.21 The assumption of

a log-normal transition density for the systematic factor involves the event of a risk class

default with all obligors of the class going bankrupt at the same time as the systematic

factor hits the default barrier. In principle, a factor consistent with economic reality must

preclude a first-passage default of all obligors in a class by using the bounded transition

density of (3.19) at the cost of the state disturbance being non-Gaussian.22

Despite intensive research, no closed-form decomposition or aggregation of variables that

follow a diffusion process with an absorbing barrier could be found in the literature on

stochastics.23 In consequence, the barriers of different bounded factors cannot be added

to receive the default threshold of the aggregate factor and, in reverse, if the barrier of

20Reasons for the discontinuity of bond prices are the illiquidity of the market, the maturing of bond
issues, technical problems, traders’ negligence or the exclusion of improper price quotations.

21Within intensity models, default events are not triggered directly by the state variable, so that the
existence of credit defaults in the observation data does not disturb the assumptions on the transition
density of the state vector, but it may affect estimation results.

22Restrictions to ensure that factor values stay above the default threshold can be compared to restrictions
in the Kalman-Filtering of exponential-affine term structure models that guarantee the non-negativity
of state variables and that keep the covariance matrix of disturbances positive definite. Cf. Lund
(1997a), Chen and Scott (1993) as well as Duan and Simonato (1995) for a discussion.

23In contrast, default intensities of exponential-affine models can easily be aggregated from latent factor
models.
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an factor aggregate is given, individual factor barriers and the first-passage time of single

factors cannot be derived. Due to these considerations, the assumption of a bounded

transition density of systematic factors is omitted.

Correlation Model

The factor coefficients of the specific-factor state-space model determine the inner-class

asset correlations of each risk class. Inter-class asset correlations are estimated using

the correlation of normalized systematic factor series. Aggregating the systematic and

specific factors of decomposed asset values from all risk classes results in a multi-factor

model of asset values with correlated systematic factors, where asset returns in each risk

class depend on only one class-specific systematic factor and exposure-specific factors.

Using the Cholesky decomposition, a risk class model with independent abstract factors

is derived with factor coefficients adapted to reproduce the estimated inner-class and

inter-class correlations.

Procedural Outline

The model estimation begins with the methodological introduction of the state-space

model, the quasi-likelihood function and the Extended Kalman-Filter representation used.

Implementation notes on the EKF-based QML estimation of systematic and specific factor

processes are provided. The correlation structure of the credit portfolio multi-factor risk

class model is calibrated from coefficient estimates and time series of systematic factors

for different sample periods and risk class structures. The results of the estimations are

presented.

4.4.2 General State-Space Model

The Kalman-Filtering of a vector of unobservable state variables exploits cross-sectional

and dynamic information of observations dependent on a vector of state variables. A time

series of the latent state vector and a set of parameters that determine the joint dynamics

of state variables are estimated using a QML estimation. For the Kalman-Filtering of

systematic factors and asset values, the non-linear state-space model

Xt = T (Xt−∆t;ψ) + ηt, ηt ∼ D(0,Q(Xt−∆t;ψ)), t = 1, ..., T (4.9)

St = Z(Xt, tt;φt) + εt, εt ∼ N (0,Ω(ψ)), t = 1, ..., T (4.10)

is defined by the transition equation (4.9) and measurement equation (4.10).

The transition equation specifies the discrete-time series XT = (Xt)t=1,...,T of a state vec-

tor Xt=(Xt,1, ..., Xt,i, ..., Xt,nX
)′ of latent orthogonal state variables Xt,i, i=1,...,nX , that

represent either a single risk class factor or obligor-specific asset values with parameter set

ψ and continuous-time dynamics according to the SDE in (3.3). The non-linear transition
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function T (Xt−∆t;ψ) = (TX(Xt−∆t,1;ψ), ..., TX(Xt−∆t,i;ψ), ..., TX(Xt−∆t,nX
;ψ))′ is a first-

order Markov process defined elementwise by conditional expectations TX(Xt−∆t,i;ψ) =

E[Xt,i|Xt−∆t,i], i=1,...,nX for time interval ∆t=7/365, and it results vector of expectations

T (Xt−∆t;ψ) = E[Xt|Xt−∆t] = (E[Xt,1|Xt−∆t,1], ...,E[Xt,i|Xt−∆t,i], ...,E[Xt,nX
|Xt−∆t,nX

])′.

The disturbance vector ηt=(ηt,1, ..., ηt,i, ..., ηt,nX
)′ contains innovations ηt,i=Xt,i −

E[Xt,i|Xt−∆t,i], which are assumed to be mutually, serially and cross-serially uncorre-

lated, i.e. E[ηt,iηt,h]=0, i 6= h and E[ηt,iηu,h]=0; i,h=1,...,nX ;t 6= u. From ηt ∼
D(0,Q(Xt−∆t;ψ)), the vector of expected disturbances E[ηt|Xt−∆t] = 0 is defined and the

covariance matrix Q(Xt−∆t;ψ) is assumed to be conditionally heteroscedastic with respect

to Xt−∆t and diagonal with conditional variances Qii(Xt−∆t,i;ψ) = X2
t−∆t,ie

2µ∆t(eσ
2∆t−1);

µ, σ ∈ ψ. The marginal transition density fX,i(Xt,i|Xt−∆t,i;ψ) is given by (3.5) and

the marginal discrete-time density of disturbance ηt,i is defined by fη,i(ηt,i|Xt−∆t,i;ψ) =

fX,i(Xt,i|Xt−∆t,i;ψ)− TX(Xt−∆t,i;ψ).

The measurement equation (4.10) defines the functional dependence of the time series

ST = (St)t=1,...,T of observation vectors on the state vector series XT . Observation vec-

tor St = (St,1, .., St,nS
)′ of dimension nS = 4 aggregates the time-t yield spreads St,j of

synthetic credit-risky coupon bonds with time-to-maturity Tj ∈ {1, 3, 5, 10} and is decom-

posed into the nS-vector Z(Xt;φ) = (Zτ (Xt;φt,1), ..., Zτ (Xt;φt,j), ..., Zτ (Xt;φt,nS
))′ of yield

spread predictions calculated using the non-linear time-invariant measurement function

Zτ (Xt;φt,j),
24 and the nS-vector εt = (εt,1, ..., εt,j, ..., εt,nS

)′ of measurement disturbances

St,j − Zτ (Xt;φt,j), j=1,...,nS. The vector φt = (φt,1, ..., φt,j, ..., φt,nS
) contains the pa-

rameter sets φt,j = {K,Tj, ct,j, %, V , r}
⋃
ψ of bond yield spread observation j at time t,

where ct,j denotes the coupon rate of a par-bond with time-to-maturity Tj. Measurement

errors εt,j are assumed to be i.i.d. with a time-invariant covariance matrix Ω(ψ). The

disturbances of measurement and state prediction are assumed to be mutually and serially

independent, i.e. E[ηt,iεs,j] = 0; t,s=1,...,T ; i=1,...,nX ; j=1,...,nS.

In contrast to state-space models of exponential-affine term structure models, here, the

transition and the measurement equations are non-linear, so that the distributional as-

sumptions for εt and ηt will adversely affect the properties of the QML estimation.

4.4.3 Extended Kalman-Filter

The Kalman-Filter in its basic form does not perform an optimal filtering of state vari-

ables for non-linear state-space models in general. Instead, the Extended Kalman-Filter

(EKF) provides an approximate optimal filtering recursion by linearizing the transition

24The non-linear time-invariant measurement functions Zτ (Xt;φt,j) will be defined in Sections 4.4.5 and
4.4.6.
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and measurement functions.25 The non-linear measurement function Z(Xt;φt) and tran-

sition function T (Xt−∆t;ψ) are recursively approximated by a first-order Taylor expansion

around the estimates X̂t|t−∆t and X̂t−∆t of the state vector to obtain the approximative

state-space model (ASSM)

Xt ' T (X̂t−∆t;ψ) +
∂T (X̂t−∆t;ψ)

∂X ′
t−∆t

(Xt−∆t − X̂t−∆t) + ηt, ηt ∼ D(0,Q(X̂t−∆t;ψ))

(4.11)

St ' Z(X̂t|t−∆t;φt) +
∂Z(X̂t|t−∆t;φt)

∂X ′
t

(Xt − X̂t|t−∆t) + εt, εt ∼ N (0,Ω(ψ)). (4.12)

With state variables being orthogonal, and observations being dependent on one state

variable only, the first-order derivative of transition and measurement function is defined

by

∂T (X̂t−∆t;ψ)

∂X ′
t−∆t

= ∇̂T t =


∂TX( bXt−∆t,1;ψ)

∂Xt−∆t,1

...
∂TX( bXt−∆t,nX

;ψ)

∂Xt−∆t,nX

 , and (4.13)

∂Z(X̂t|t−∆t;φt)

∂X ′
t

= ∇̂Zt =


∂Zτ ( bXt|t−∆t,1;φt,1)

∂Xt,1

...
∂Zτ ( bXt|t−∆t,nS

;φt,nS
)

∂Xt,nS

 , (4.14)

where ∇̂T t and ∇̂Zt are introduced for ease of notation. The filtering recursion of the

EKF consists of a prediction and an update step for time t = 1, ..., T :

Prediction Step

The prediction step provides the estimate X̂t|t−∆t of the state vector and the nX × nX-

covariance matrix Pt|t−∆t of the state prediction error Xt− X̂t conditional on the filtered

estimate X̂t−∆t of the state vector. The prediction

X̂t|t−∆t = E[Xt|X̂t−∆t] = T (X̂t−∆t;ψ) (4.15)

of the state vector is defined as conditional expectation of the state vector. The prediction

of the covariance matrix Pt = E[(Xt− X̂t)(Xt− X̂t)
′] of the state prediction error is given

by

Pt|t−∆t = ∇̂T tPt−∆t∇̂T
′
t +Q(X̂t−∆t;ψ), (4.16)

25Cf. Harvey (1989), p. 160ff.
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where the conditional variances Qii(X̂t−∆t,i;ψ) are defined analogously to Qii(Xt−∆t,i;ψ)

to approximate the covariance matrix Q(Xt−∆t;ψ) ' Q(X̂t−∆t;ψ) of state vector distur-

bances.

Update Step

The update step adapts X̂t|t−∆t and Pt|t−∆t to the extended information set St at time t

and is considered either as a linear projection of X̂t|t−∆t or as conditional expectation of

Xt given St. For the approximative non-linear state-space model, the update step is the

equivalent of solving the non-linear generalized least-square problem

X̂t = argmin
X

(X − X̂t|t−∆t)
′P−1

t|t−∆t(X − X̂t|t−∆t) + (St − Z(X;φt))
′Ω−1(ψ)(St − Z(X;φt)),

(4.17)

which needs to be minimized at each observation time using the optimal candidate param-

eter set ψ. The estimator X̂t|t−∆t of Xt is updated when observation St becomes available.

The prediction error

vt = St − Z(X̂t|t−∆t;φt) (4.18)

with error covariance matrix

Σt = ∇̂ZtPt|t−∆t∇̂Z
′
t + Ω(ψ) (4.19)

is defined with respect to the measurement equation being linearized around X̂t|t−∆t. The

Kalman matrix

Kt = Pt|t−∆t∇̂Z
′
tΣ

−1
t (4.20)

= Pt|t−∆t∇̂Z
′
t(∇̂ZtPt|t−∆t∇̂Z

′
t + Ω(ψ))−1

enables to specify the Kalman gain Ktvt, which represents the information gain con-

tributed by observation St to the estimation of Xt.
26 The state update equation is

X̂t = X̂t|t−∆t + Ktvt (4.21)

X̂t = X̂t|t−∆t + Pt|t−∆t∇̂Z
′
tΣ

−1
t (St − Zt(X̂t|t−∆t;φt)),

with X̂t being the optimal estimator of Xt based on the observations up to and including

26The Markov property of the transition equation implies, that only the prediction error vt of the current
observation St contributes additional information at time t.
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St. The update of the covariance matrix27 is given by

Pt = Pt|t−∆t −Kt∇̂Z
′
tPt|t−∆t (4.22)

Pt = Pt|t−∆t −Pt|t−∆t∇̂Z
′
tΣ

−1
t ∇̂ZtPt|t−∆t

Approximate filtering techniques are differ primarily with respect to the implementation

of the update step. For example, Lund (1997b) proposes an Iterative-Extended Kalman-

Filter (IEKF), that employs a first-order linear Taylor approximation based on a Newton-

Raphson iteration scheme for closed-form derivatives. Lund reports the IEKF to be more

efficient than the EKF, though the unbiasedness and consistency of the QMLE is not

proven and the IEKF is computationally more demanding. For the application of the

approximative SSM in the next section, no closed-form derivatives of the transition and

measurement function will be available, so that ∇̂T t and ∇̂Zt are approximated using

differential quotients, which generates computation times of an iterative EKF that are

even longer. Since, further on, the convergence of Lund’s iteration scheme is not proven,

the EKF approach used throughout this study is a restricted single-iteration version of

the IEKF.

4.4.4 Quasi-Maximum Likelihood Estimator

A maximum likelihood estimator (MLE) is typically employed to estimate a parameter

set ψ̂∗, that is optimal with respect to the minimization of the EKF-implied prediction

error vt of a state-space model. The substantial properties of MLE are determined by

distributional considerations. According to Bollerslev and Wooldridge (1992), MLE are

asymptotically normal if the first and second derivatives of the log-likelihood function

are well-defined and the Fisher information matrix is non-zero. Asymptotic normality

induces the MLE to be consistent as well as asymptotically unbiased and efficient. With

the distribution of the EKF prediction error vt of the ASSM being undetermined, the

prerequisite required for the MLE to be consistent and efficient cannot be fulfilled. In

consequence, a quasi-maximum likelihood estimation28 is applied with the log-likelihood

contributions

LLt(St;ψ) = −1

2
log(2π)− 1

2
log |Σt| −

1

2
v′tΣ

−1
t vt (4.23)

27Using the Riccati equation as described in Harvey (1989, p. 106), the recursion of the predicted
covariance matrix Pt+∆t|t can be calculated directly from Pt|t−∆t, so that the update of Pt can be
skipped.

28Cf. White (1982), Gallant and White (1988) and White (1994) for an in-depth exposition of the
quasi-maximum likelihood principle.
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provided recursively by the EKF, based on parameter set ψ, observation St, filter-implied

state vector X̂t and prediction error covariance Σt.
29 Aggregating the log-likelihood con-

tributions of (4.23) yields the quasi-log-likelihood function

QLLbT (ST ;ψ) =
1

n

T∑
t=1

LLt(St;ψ), (4.24)

denoted as prediction-error decomposition. The QML estimate ψ̂∗
T

of the optimal param-

eter set is obtained by maximizing (4.24).

The consistency of the QMLE in (4.24) involves ψ̂∗
T

converge towards the unknown true

parameter set ψ∗ and requires the prediction error vt to have a conditional normal distri-

bution with a specified expected value and covariance matrix Σt. The use of coupon-bond

yields as observations precludes to derive a closed-form formula of the prediction error and

the asymptotic distribution of the QMLE is not known, so that the requirements specified

by Bollerslev and Wooldridge for the QMLE to be consistent and asymptotically normal

are not fulfilled.30 In the absence of formal proof, it remains undetermined, whether the

QMLE is consistent.31

In conclusion, implied by the absence of an exact Kalman-Filter for non-linear non-

Gaussian state-space models, QMLE are inconsistent due to the estimation error being

calculated by approximative filtering techniques.32 Comparable QMLE for EKF-based

non-linear non-Gaussian state-space models provided by Claessens and Pennacchi (1996),

Cumby and Evans (1997) and Lund (1997b) have the same problem, but the finite sample

bias is found to be negligible, so that the QMLE in (4.24) are considered to be appropriate

to determine an optimal parameter set ψ̂∗ = ψ̂∗
T
.

29The information filter presents an alternative to the Kalman-Filter that avoids calculating the inversion
of the prediction error covariance matrix Σt for the log-likelihood using the information matrix P−1

t .

30Lund (1997a, p. 11ff) shows that the KF-based QMLE of a non-Gaussian state-space model are
consistent with respect to the estimation of parameter set ψ if the measurement equation is linear.

31In a similar application, Lund (1997b, p. 13), principally challenges the notion that a non-linear, non-
Gaussian state-space model can be consistently estimated if an EKF approximation is involved. The
approximation error introduced into the log-likelihood by the approximate filtering converges to zero
in the number of observations. However, Lund explains that this property does not ensure the overall
consistency of the QMLE.

32Lund (1997b) conjectures that a consistent and computationally tractable estimation method for non-
linear non-Gaussian state-space models categorically does not exist.
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4.4.5 Estimation of the Systematic Factor Process

4.4.5.1 Observation Data

The approximative state-space model of (4.11-4.12) is used to relate market-derived ob-

servations of factor risk to a systematic factor process using the credit-valuation model of

Section 3.2. Pre-processing is required to derive usable observation data from the term

structures of risk classes, for two reasons. First, the credit valuation model considers de-

faultable claims with fixed periodic interest, whereas empirically fitted term structures of

risk classes represent zero rates. Second, market-observed bond prices and derived term

structures refer to a non-flat and time-variant term structure of riskless interest rates,

whereas the credit pricing model assumes a flat and time-invariant term structure of a

continuous riskless rate.33

The factor filtering of the EKF is conditioned on the riskless rate of the credit valuation

model. Using original credit yield observations of the risk class structures, either the

systematic factor or the constant riskless rate of the model have to be recalibrated with

respect to the term structure of the risk class at each time interval. However, in both cases,

the distribution function of the first-passage time changes under the risk-neutral measure

and, accordingly, credit valuations and prediction errors change, which distorts the EKF.

In consequence, the risk class structures are transformed from a setting of dynamic riskless

rates so that observations represent: (a) yield spreads of synthetic coupon bonds with

respect to (b) a flat term structure of the riskless rate, that is constant throughout the

estimation period.

The data setup refers to each risk class analogously, although a risk class index is omitted

for ease of notation. In each risk class, the term structure of zero spreads at time t is

defined by

ZCSt(T ; βct , β
rl
t ) = Rc

t(T ; βct )−Rrl
t (T ; βrlt ), (4.25)

given term structure Rc
t(T ; βct ) of credit-risky zero rates and the term structure Rrl

t (T ; βrlt )

of the riskless zero rates, as specified by the Nelson-Siegel parametric form in 4.5. The

10-year riskless zero rate Rrl
1 (10; βrl1 ) at the beginning of an estimation period is taken to

specify the term structures of synthetic credit-risky zero rates

ZCRc
t(T ; βct , β

rl
t ) = ZCRrl

t + ZCSt(T ; βct , β
rl
t ) (4.26)

33A flat term structure requires the parameter functions A(rt, T ) = 0 and B(rt, T ) = 1 of an exponential-
affine term structure model to be independent of maturity T , which is not possible in common short
rate models, e.g. by Vasicek (1977) or by Cox et al. (1985). In effect, a flat term structure can only
be calibrated by a stochastic short rate model with time-dependent parameters in the SDE.
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that refer to a flat and time-invariant riskless zero rate ZCRrl
t = Rrl

1 (10; βrl1 ), t = 1, ..., T

and incorporate the empirical zero spreads of a risk class.

Since the credit valuation model used does not enable the valuation of zero-coupon bonds,

the synthetic credit-risky zero curves are transferred to obtain yield spreads of nS = 4

synthetic defaultable par-bonds j = 1, ..., nS with time-to-maturity Tj ∈ {1, 3, 5, 10}
assigned in ascending order. With par-value Dt,j = 100 and par-coupon

ct,j =
(1− e−ZCR

c
t (Tj ;β

c
t ,β

rl
t )Tj)∑Tj

tj=etd−t e
−ZCRc

t (tj;β
c
t ,β

rl
t )tj

, (4.27)

the implicit yield pricing equation

ytm(Y pc
t,j , Dt,j;φj) ≡ ct,j

Tj∑
tj=etd−t

e−ytm
c
t,jtj + e−Y

pc
t,jTj −Dt,j = 0 (4.28)

is solved for the continuously-compounded yield-to-maturity Y pc
t,j of the synthetic default-

able par-bond with time-to-maturity τj. A riskless reference yield to determine par-bond

yield spreads is obtained from the value

Bj
t = 100(cjt

τj∑
tj=etd−t

e−R
rl
t (tj ;β

rl
t )tj + e−R

rl
t (tj ;β

rl
t )Tj) (4.29)

of the corresponding riskless par-bond with par-coupon-rate cjt and time-to-maturity Tj.

Solving the yield pricing equation ytm(Y rl
t,j, B

j
t ;φt,j) for the riskless yield ytmrl

t,j gives the

yield spread St,j = Y pc
t,j − Y rl

t,j of a synthetic defaultable par-bond as observation data of

the ASSM. The time series

Ypc

T
= (Y pc

t )t=1,...,T , (4.30)

Yrl
T

= (Y rl
t )t=1,...,T , (4.31)

ST = (St)t=1,...,T (4.32)

of vectors

Y pc
t = (Y pc

t,1 , ..., Y
pc
t,nS

))′, (4.33)

Y rl
t = (Y rl

t,1, ..., Y
rl
t,nS

))′, (4.34)

St = (St,1, ..., St,nS
))′ (4.35)

collect the synthetic yields and yield spreads of a risk class for t = 1, ..., T .
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4.4.5.2 Implementation of the Extended Kalman-Filter

The EKF described in Section 4.4.3 is used for a QML estimation of the process parameters

of a systematic factor. Individual factor processes are estimated for the risk classes defined

by rating and rating-sector affiliation for one-year estimation periods from 1999 to 2003,

as well as for the entire sample period. With only one single factor Ft considered as a

state variable, the dimension of the transition function T (Ft;ψF ) and disturbance εt ∼
D(0,Qt(Ft−∆t;ψF )) with parameter set φF = {µF , σF} reduces to nF = 1.

Initialization

The observations at time t = 1 are used to specify an initial parameter set ψ0 and an initial

factor value X̂1 with variance P1, that is, filtering does not start before t = 2. Kalman-

Filter applications of mean-reverting short-rate models typically set initial state variables

to unconditional expected values, which represent long-term expectations induced by

the initial parameter set. Given a factor process according to (3.3), the unconditional

expectation of the factor tends either to infinity or to the default threshold, depending

on the drift term and presuming that the variation of the factor is not bounded. In

consequence, no constant long-term unconditional expectation exists to serve as an initial

factor value. Given the initial parameter set ψ0, the initial factor value

F̂1 = argmin
F1

nS∑
j=1

(
Y1,j − ytm(Ŷ f

1,j, D(F1, 1, φ1,j);φ1,j)
)2

(4.36)

is set to minimize the sum of squared measurement errors between the par-bond yields

Y pc
t,i and factor-dependent yield Ŷ f

1,j. As ψF is optimized, the initial factor value will

not be altered to ensure the continuity of the log-likelihood function. The variance of

the factor disturbance and the variance of the state prediction error are initialized by

Q1(F̂1;ψF ) = P̂1 = F̂ 2
1 e

2µF ∆t(eσ
2
F ∆t − 1). Given parameter set ψF , the covariance matrix

Ω(ψF ) of measurement disturbances is calculated from the covariance matrix of filter-

implied prediction errors that result from an initial EKF run with ωj,j = 0.0001, j=1,...,nS.

Drift µ and variation σ of the factor are initialized by searching within a two-dimensional

grid for the maximum log-likelihood provided by the EKF according to (4.24) and with

the initial factor set by (4.36).

Prediction Step

The factor prediction F̂t|t−∆t is given by the expectation of the factor conditional on the

filtered factor estimate Ft−∆t and transition density fV (F, t; F̂t−∆t, ψF ) at time t−∆t:

F̂t|t−∆t = T (F̂t−∆t;ψF ) = E[Ft|F̂t−∆t;ψF ] = F̂t−∆te
µF ∆t (4.37)

The yield pricing equation ytm(Ŷ f
t,j, D̂t|t−∆t,j;φt,j) is solved for the predicted yield-to-
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maturity Ŷ f
t,j of observation j = 1, ..., 4 with coupon rate ct,j and time-to-maturity

Tj and predicted bond value D̂t|t−∆t,j=D(F̂t|t−∆t, t;φt,j), given the predicted factor

F̂t|t−∆t.
34 From vector Ŷ f

t|t−∆t=(Ŷ f
t|t−∆t,1, ..., Ŷ

f
t|t−∆t,4) of predicted factor yields the vec-

tor Ŝft|t−∆t=(Ŝft|t−∆t,1, ..., Ŝ
f
t|t−∆t,4))

′ of predicted factor yield spreads

Ŝft|t−∆t = Z(F̂t;φt) = Ŷ f
t|t−∆t − Y rl

t (4.38)

is derived and prediction error vt = Ŝft|t−∆t − Sft is obtained. First-order derivatives

∇̂T t and ∇̂Zt are approximated using a one-sided first-order differential quotient of

T (F̂t−∆t;ψF ) and Z(F̂t−∆t;φt), respectively. The varianceQ(F f
t−∆t;ψF ) ' Q(F̂ f

t−∆t;ψF ) =

F̂ 2
t e

2µF ∆t(eσ
2
F ∆t − 1) of factor disturbance ηft conditional on the unobserved factor Ft−∆t

is assumed to equal the second central moment of the factor conditioned on the filtered

factor estimate F̂t−∆t at time t−∆t.

Update Step

The update proceeding as described in Section 4.4.3 gives the filtered factor F̂t with

the filtered yield ytm(Ŷ f
t,j, D̂

f
t,j;φt,j), j=1,...,4 calculated from the bond price D̂f

t,j =

D(F̂t, t;φt,j).

The QML optimization of the parameter set ψF applies an iterative search routine on a

discretely spaced grid of parameter sets for the log-likelihood of the EKF until a conver-

gence criterion is fulfilled. With respect to standard errors of the parameter estimates,

the asymptotic covariance matrix of the maximum likelihood estimator must be approx-

imated, since the Hessian matrix of the log-likelihood with respect to changes in the

parameter set ψF is not available in closed-form. Following Greene (2003, p. 480f),

asymptotic standard errors are calculated from the outer product of gradients known as

the BHHH-estimator.35

4.4.6 Estimation of the Asset Value Process

The dynamics of obligor-specific asset values and their dependence within and across

risk classes have yet to be specified. Yield spreads that incorporate a systematic and an

obligor-specific component of credit risk are bootstrapped to represent exposure-specific

observation data. An EKF-based QML estimation is performed to specify process param-

eters and filtered times series of asset values, as well as the dependence of the asset values

on the systematic factor for single risk classes.

34Neither F̂t|t−∆t,j nor Ŷ f
t,j represent the expectation but instead the prediction of credit value and yield-

to-maturity respectively, conditional on the filter factor F̂t−∆t with transition density fV (F ; F̂t−∆t;φF ).

35Cf. Berndt et al. (1974).
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4.4.6.1 Bootstrapping Specific Yield Spreads

The decomposition of asset values into systematic and specific factor components requires

considering that part of a bond yield that is residual to the yield implied by the term

structures of the risk class in question. In principle, residual spreads of bonds with

observed market prices could be used. However, to resolve discontinuities in the data

series and to avoid including effects induced by the inhomogeneity of the bond sample,

the time series of obligor-specific yield spreads for the par-coupon bonds of the factor-

process estimation are bootstrapped on the basis of empirical spread dynamics.36 The

first differences of residual yield spreads at time t are assumed to be i.i.d. across all

obligors within a class and independent of the maturity of the bonds. To ensure that

spreads are strictly positive, a log-normal distribution is used to bootstrap yield spreads

on a weekly basis for all risk classes. As before, a risk class indicator is omitted below to

simplify the notations.

For any bond it = 1, ..., nt of a risk class with market-implied yield Yt,it at time t and

t−∆t, the residual yield spread Srst,it = Yt,it − Y c
t,it with respect to the yield Y c

t,it implied

by the term structure of the class is used to calculate the first difference of the residual

spread ∆Srst,it = Srst,it −S
rs
t−∆t,it

with mean µ∆S
t = 1/nt

∑nt

it=1 ∆Srst,it and standard deviation

σ∆S
t = 1/nt

∑nt

it=1(∆S
rs
t,it − µ∆S

t )2.

Specific yield spreads St,j for class-implied par-coupon bonds j = 1, ..., 4 with time-to-

maturity Tj ∈ {1, 3, 5, 10} are simulated successively across the estimation period, starting

with the class-implied yield spread S1,j = Y c
1,j − Y rl

1,j, so that the residual spreads St,j =

St,j + Y rl
t,j − Y c

t,j are initially set at Srs0,j = 0. Given, the residual spread Srst−∆t,j, the

specific yield spread Srst,j of the par-coupon bond at time t is simulated using a log-normal

distribution with expected value µt,j = Y c
t,j−Y rl

t,j+S
rs
t−∆t,j+µ

∆S
t and homogenous standard

deviation σt,j = σ∆S
t for each maturity Tj at time t. The log-normal distribution of yield

spreads is calibrated by solving the non-linear equation system

µt,j = eγt,j+
1
2
δ2t,j (4.39)

σt,j = e2γt,j+δ
2
t,j(eδ

2
t,j − 1) (4.40)

with respect to parameters γt,j and δt,j. Using random variables Rt,j ∼ U(0, 1), yield

spreads are simulated by solving the log-normal distribution function FLN(St,j; γt,j, δt,j) =

Rt,j for St,j.

36In contrast, CDS data refer to homogenous contracts, constant tenors and time-continuous quotations
typically prevail, so that CDS prices qualify even better for the estimation of risk class processes, if
series of sufficient length are available.
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4.4.6.2 Implementation of the Extended Kalman-Filter

The ASSM is adapted for an EKF estimation of process and dependence parameters of

a vector Vt = (Vt,1, ..., Vt,nS
) of obligor-specific asset values in a common risk class across

estimation period t = 1, ..., T . According to (3.31), the SDE of asset values Vt,j are

assumed to be homogenous across all obligors in a class. Within a risk class, asset values

are dependent and decomposed into a common systematic factor and specific factors as

presented in the risk class factor model discussed in Section 3.5, with SDE and the filtered

time series of the systematic factor resulting from the systematic factor estimation of the

previous section. The parameter set ψV = {µV , σV , ρV } to be estimated includes drift

rate µV , diffusion parameter σV and inner-class asset correlation ρV , represented by the

systematic factor coefficient βV =
√
ρV . Filtered time series of obligor-specific asset values

and specific factors present a side product of the EKF-based QML estimation.

State variables εt,j represent the specific-factor component of asset value Vt,j. The state

vector εt = (εt,1, ..., εt,4) implements multi-variate standard Gaussian noise in the form of

transition equation εt = εt−∆t + ηt with transition function T (εt−1;ψV ) = εt−∆t and state

disturbance vector ηt ∼ N (0, I), t = 2, ..., T , 4× 4 identity matrix I and disturbances εt,j

assumed to be serially and cross-serially i.i.d.

Observations are given by bootstrapped yield spreads St,j of bond j = 1, ..., nS with class-

implied par-coupon Ct,j and time-to-maturity Tj ∈ (1, 3, 5, 10). Apart from the systematic

factor and parameter set ψV , the evolution of spread St,j depends on the single state

variable εt,j only. Since observations refer to defaultable bonds, default thresholds need

not be taken into account in the transition density of specific factors or asset values.

The measurement function ZV (εt;Ft, φt, ψV ) implements the functional relation between

state variable εt,j and spread observation st,j conditional on systematic factor Ft. On the

basis of the normalized discrete-time return

∆F̂ ε
t =

ln(F̂t/F̂t−∆t)− (µF − 1
2
σ2
F )∆t

σF
√

∆t
(4.41)

of the filtered systematic factor, the normalized discrete-time asset return

∆V ε
t,j = βV ∆F̂ ε

t +
√

1− β2
V ηt,j (4.42)

is derived from disturbance ηt,j = ∆εt = εt − εt−∆t, and asset value Vt,j is calculated

iteratively using equation

Vt,j = Vt−∆t,j · exp(µV − 1
2
σ2

V )∆t+∆V ε
t,jσV

√
∆t (4.43)

for j = 1, ..., nV and t = 1, ..., T . Analogous to the specific factor εt,j, the time series of the
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normalized asset value V ε
t,j = V ε

t−∆t,j + ∆V ε
t,j and the series of the normalized systematic

factor F ε
t = F ε

t−∆t + ∆F ε
t are defined iteratively for j = 1, ..., nS.

Initialization

Asset values are initialized at t = 1 by present value Ds
1,j = c1,j100

∑Tj

ti=1 e
−Y s

1,jti +

100e−y
s
1,jTj of the defaultable par-coupon bond, given yield observation Y s

1,j and by solving

the credit valuation equation D(V1,j, 1;φ1,j, ψV ) = Ds
1,j for the implicit asset value V1,j.

The normalized asset and factor values are initially set at V ε
1,j = 0, F̂ ε

1 = 1 and ε1,j = 0,

j = 1, ..., nS.

The vector of measurement disturbances ε ∼ D(0,Ω) is assumed to be multivariate-normal

with time-homogenous zero expectation. The time-invariant covariance matrix Ω is set

equal to the covariance matrix of measurement errors of an initial EKF run with start

parameter set ψV and is held constant throughout the optimization. Accordingly, the

nS × nS covariance matrix of state prediction errors P1 at time t = 1 is set equal to the

EKF-implied covariances of the state variable disturbances.

Prediction Step

The EKF start with a state prediction at time t = ∆t. The conditional expectation of

state vector εt is a Martingale, so that the prediction of state vector

ε̂t|t−∆t = E[εt|ε̂t−∆t] = ε̂t−∆t (4.44)

at time t = ∆t, ..., T is given by the filtered state vector ε̂t−∆t. Using the filtered systematic

factor F̂t, the normalized factor returns ∆F̂ ε
t are calculated according to 4.41 to obtain

the normalized filtered factor F̂ ε
t = F̂ ε

t−∆t+∆F̂ ε
t and the predicted normalized asset value

V̂ ε
t|t−∆t,j =

β · F̂ ε
t +

√
1− β2ε̂t|t−∆t,j√
t

(4.45)

for bond j = 1, ..., nS. Reversing the normalization yields the predicted asset values

V̂t|t−∆t,j = V̂t−∆t,j · exp(µV − 1
2
σ2

V )∆t+(bV ε
t|t−∆t,j

−bV ε
t−∆t,j)σV

√
∆t (4.46)

and predicted bond price D̂s
t|t−∆t,j = D(V̂t|t−∆t,j, t;φt,j, ψV ) of par-coupon bond j =

1, ..., nS. Solving the implicit yield pricing equation

ytm(Ŷ s
t|t−∆t,j;B

j
t , φt,j) ≡ 100(ct,j

Tj∑
tj=1

e−bys
t|t−∆t,j

tj + e−y
s
t,jTj)− D̂s

t|t−∆t,j = 0 (4.47)

for predicted bond yield Ŷ c
t|t−∆t,j and subtracting the yield Y rl

t,j of the equivalent riskless

bond, the prediction of spread vector Ŝt|t−∆t of yield spreads Ŝt|t−∆t,j = Ŷ s
t|t−∆t,j−Y rl

t,j and

the vector of prediction errors vt = St − Ŝt|t−∆t is obtained.
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Gradient vectors ∇̂T t and ∇̂Zt are approximated using elementwise one-sided first order

differential quotients. The predicted covariance matrix of the state prediction error

Pt|t−∆t = qh∇̂T tPt−∆t∇̂T
′
t + (1− qh)I (4.48)

is derived from the updated covariance matrix Pt−∆t and the identity matrix I of the

state disturbance covariances with a scaling factor qh according to Harvey (1989, p. 107),

set at qh = 0.5 after experimental considerations.

Update Step

The EKF filtering update of state vector ε̂t and covariance matrix Pt is carried out as

presented in Section 4.4.3. For an assessment of the Kalman-Filter, the updated spread

vector Ŝst is derived from the updated vector of asset values V̂ ε
t and V̂t and, bond prices

D̂s
t and yield-to-maturities Ŷ s

t , calculated analogously to the prediction step based on the

filtered state vector.

A numerical gradient approach is applied to the QML optimization of EKF, as conducted

for the factor process estimation. Concerning the impact of the initialization of ASSM

components on the estimation result, it turns out that covariance matrix Ω has consider-

able impact on the estimation result and the pre-qualification of Ω, with EKF-implied co-

variances of measurement disturbances, significantly improves the optimal log-likelihood.

With respect to the free parameters, the drift parameter µV has the least influence on the

likelihood, while the optimization is more sensitive to a variation of σV and the depen-

dence parameter βV . Asymptotic standard errors for parameter set ψV are derived using

the BHHH-estimator as in the factor estimation.

4.4.7 Calibration of the Risk-Class Factor Model

From the series of filtered systematic risk class factors and the factor coefficients deter-

mined in the estimation of asset value process estimation, inner-class and inter-class asset

correlations and orthogonal factor coefficients are derived for three representations of the

general risk class factor portfolio models in Section 3.5:

• a rating class model with three risk classes RCrating ∈ {AA, A, BBB}

• a two-sector model with five risk classes RC2−sector ∈ {FIN-AA, FIN-A, NF-AA,

NF-A, NF-BBB},

• a four-sector model with ten risk classes RC4−sector ∈ {ECY-A, ECY-BBB, FIN-AA,

FIN-A, NCY-AA, NCY-A, NCY-BBB, LCY-AA, LCY-A, LCY-BBB}
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Compared to the rating class model, the two-sector model introduces an additional differ-

entiation between obligors of the financial and the non-financial sector. The four-sector

model adds additional details to the risk classes by splitting the non-financial classes into

more granular sector-rating classes of the early-cyclic, non-cyclic and late-cyclic sectors.

The risk classes ECY-AA and FIN-BBB could not be considered due to data limitations.

For the specification of the risk-class factor model m ∈ RC={rating, two-sector, four-

sector} with risk class count nm ∈ {nrating, n2−sector, n4−sector} = {3, 5, 10}, the nm × nm-

correlation matrix ρf,m = (ρf,mrck,rcl)k,l=1,...,nm of the time series ∆F̂
ε,rc

T = (∆F̂ ε,rc
t )t=∆t,...,T

of log-returns of the normalized filtered factor series F̂ε,rc

T
= (F̂ ε,rc

t )t=0,...,T is defined by

correlation ρf,mk,l = Corr(∆F̂
ε,rck

T ,∆F̂
ε,rcl

T ), rck, rcl ∈ RCm, k, l = 1, ..., nm.

Inner-class asset correlations ρa,mrc,rc = βrcV
2, rc = 1, ..., nm are determined using systematic

factor coefficients βrcV from the asset process estimation. For inter-class asset correlations,

the factor correlation matrix ρf,m is required as well. The matrix of risk class asset

correlations ρa,m = (ρa,mrck,rcl)k,l=1,...,nm is defined by

ρa,mrck,rcl = βrckV βrclV ρf,mrck,rcl , m ∈ RC, rck, rcl ∈ RCm, k, l = 1, ..., nm. (4.49)

The Cholesky decomposition ρa,m = Bm(Bm)′ results in a coefficient matrix Bm for a

system of abstract orthogonal factors that reproduce the inner-class and inter-class asset

correlations ρf,mrck,rcl for exposures of risk class rck, rcl ∈ RCm if used to define the coefficient

matrix of a credit portfolio in 3.35. With Bm
k indicating the kth−row vector of Bm, the

specific factor coefficients of exposures in risk class k ∈ RCm is defined by
√

1−Bm
k Bm′

k .

4.4.8 Estimation Results

4.4.8.1 Parameter Estimates

Estimates of parameter sets ψF and ψV for a five-year estimation period from 1999 to

2003 are presented in Table 4.9 for the 16 risk classes involved. The optimal log-likelihood

of factor process and asset value process estimation according to 4.23 is denoted by LLF
and LLV , respectively. The BHHH-estimator of asymptotic standard errors is given in

parentheses. Parameter estimates and standard errors for annual estimation periods are

given in Table D.1 of Appendix D.

Risk classes with few observation data and considerable spread peaks,37 such as the BBB

classes and the LCY-A class, achieve a comparatively small maximum log-likelihood in

the factor and asset value estimation. Estimated drift rates of systematic factors (asset

values) are close to zero, with a minimum of -1.18% (-2.67%) for the risk class NCY-

37Cf. Section 4.3.2.1
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Risk-Class LLF µF σF LLV µV σV ρV βV

AA 11,380.3 -0.0007 0.1274 13,086.1 -0.0028 0.0535 0.0849 0.2913
(0.1407) (0.0156) (0.0046) (0.0018) (0.0366)

A 10,661.5 -0.0015 0.1435 12,743.0 0.0062 0.0561 0.0830 0.2880
(0.1505) (0.0112) (0.0043) (0.0012) (0.0182)

BBB 9,067.7 -0.0071 0.1139 11,782.0 -0.0081 0.0952 0.1142 0.3379
(0.1088) (0.0093) (0.0065) (0.0018) (0.0162)

Table 4.9: Parameter Estimates

AA (NCY-A) and a maximum of 1.02% (0.75%) for the risk class NCY-A (NF-BBB).

The fact that drift rates are close to zero throughout the five-year period is explained by

the cyclicity, i.e. an empirical mean-reversion of credit spreads throughout the economic

cycle. Although the length of the economic cycle cannot be determined unambiguously a

drift rate of zero can be expected across the five-year estimation period.

The drift rates for annual estimations in Table D.1 show a considerable variation across

risk classes for each year, as well as within a single risk class across annual periods,

thereby reflecting the cyclical patterns of credit spreads from 1999 to 2003. In conclusion,

a model specification based on one-year estimation periods is considered to be suited only

to conditional Credit-VaR forecasts based on the current state of the economy, including

a conditional variability of asset values and conditional PD assumed for exposures.

In every risk class except for NCY-A, the factor volatility σF exceeds the asset volatility

σV . This effect is attributed to the fact that the asset volatility in a risk class is a weighted

mean of factor volatility and residual volatility, with the latter being comparatively small

and empirically mean-reverting when compared to systematic spread variation. Estimated

factor volatilities range from 10.09% to 16.05%, while asset volatilities span the range from

3.45% to 24.81%.

The size of the bond sample affects the factor volatility σF , since classes with few bond

observations exhibit a higher sensitivity of fitted credit spreads to jumps of obligor-specific

spreads. The bootstrapping of the specific spread residuals reflects changes in empirical

spread volatilities, so that the maximum estimate of σV is seen in the data-scarce NCY-A

class, where considerable jumps in credit spreads are observed in 2002 and 2003. Volatility

estimates σF and σV are smaller than common historical equity volatilities, which is

attributable to a smoothing effect of the capital structure on the variation of the asset

values. Equity proxies must therefore be corrected for capital structure effects when asset

volatilities are being estimated.

Inner-class asset correlations reach a minimum of 0.74% for risk class NCY-AA and a

maximum of 46.4% for risk class ECY-A. Increased correlation estimates ρV > 20% only

occur for the data-scarce risk classes ECY-A, LCY-BBB, NCY-A, and NF-A. Obviously,
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high asset correlations coincide with high volatility estimates, which is attributed to the

fact that in data-scarce risk classes, obligor-specific jumps in credit spreads are clearly

reflected in the fitted term structures, so that filtered systematic factors have a greater

impact on the variation of asset values than the specific factor component implied by

bootstrapped yield residuals. In contrast, inner-class asset correlations of data-extensive

rating and financial sector classes do not exceed a maximum of ρV = 11.42%, with no

unambiguous relationship between the estimates of asset volatility and asset correlation.

With respect to the different risk class factor models considered, the average inner-class

asset correlation increases with the number of risk classes, while the average asset volatility

remains stable. However, the increased number of inter-class correlations in the correlation

matrix B
′
B of normalized asset returns must be considered, if a conclusion is to be reached

on the correlation effects of a more detailed set of risk classes

The estimated drift rates of the factors are not significant, since the hypothesisH0 : µF = 0

is not rejected by the asymptotic standard errors σε(µF ) that reach a minimum of 6.81%

for risk class LCY-A. Though asymptotic standard errors σε(µV ) are clearly smaller than

σε(µF ), the significance of drift µV is mostly rejected. The asymptotic standard errors

of drift rate estimates therefore support the supposition of a zero drift in line with the

empirically observed cyclicity of credit spreads.

The maximum asymptotic standard errors σε(σF ) = 1.56%, σε(σV ) = 2.82%, and σε(ρV ) =

3.66% of volatility and asset correlation estimates support the zero drift hypothesis of

significant parameter estimates except for the asset correlation of risk class NCY-AA, so

that the specification of an alternative parameter set to backtesting the credit portfolio

model will incorporate a variation of estimated asset volatilities and correlations.

Since bond-market-induced estimations of structural portfolio models are not common, a

comparison of estimation results from affiliated studies is not possible.

4.4.8.2 Probability of Default Estimates

For an assessment of the fitting quality of the factor estimation, credit spreads and corre-

sponding risk-neutral default probabilities of risk classes are examined. Table 4.10 reveals

that average par-bond yield spreads derived from fitted term structures exceed average

yield spreads implied by filtered factors for maturities of one and ten years, while factor-

implied spreads surpass empirically derived spreads for maturities of three and five years.

Even though the average of fitted spreads increases monotonically in the time-to-maturity

for all risk classes, hump-backed term structures of average factor-implied yield spreads are

observed in most risk classes, except for the data-rich low-risk classes FIN-AA, FIN-A, AA

and A, where factor spreads ascend with maturity. The average risk-neutral cumulative
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Risk-

Class

Empirical Yield Spread Yield Spread Periodic risk-neutral Cumulative risk-neutral

of Risk-Class [bps] of Factor [bps] Factor-PD Factor-PD

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 0.35 0.69 0.84 1.04 0.13 0.83 1.02 0.98 0.26 2.73 2.47 1.33 0.26 4.85 9.71 17.24

ECY-BBB 1.01 1.25 1.30 1.32 0.78 1.49 1.43 1.11 1.47 3.41 2.19 0.82 1.47 8.34 12.81 18.05

FIN-AA 0.18 0.33 0.41 0.55 0.02 0.34 0.50 0.54 0.03 1.34 1.50 0.87 0.03 2.02 4.98 10.15

FIN-A 0.25 0.50 0.63 0.83 0.03 0.52 0.77 0.84 0.06 2.03 2.29 1.47 0.06 3.08 7.51 15.52

LCY-AA 0.21 0.41 0.50 0.60 0.05 0.47 0.60 0.57 0.10 1.66 1.53 0.75 0.10 2.79 5.90 10.59

LCY-A 0.48 0.76 0.85 1.02 0.31 0.93 0.97 0.80 0.59 2.53 1.81 0.72 0.59 5.36 9.11 13.84

LCY-BBB 0.54 0.99 1.12 1.19 0.39 1.23 1.27 1.05 0.74 3.34 2.34 0.97 0.74 7.08 11.83 17.80

NCY-AA 0.19 0.39 0.48 0.56 0.04 0.45 0.58 0.56 0.08 1.61 1.51 0.75 0.08 2.65 5.72 10.41

NCY-A 0.23 0.49 0.64 0.86 0.03 0.51 0.77 0.86 0.05 2.02 2.34 1.55 0.05 3.04 7.54 15.86

NCY-BBB 0.67 1.16 1.33 1.53 0.47 1.40 1.48 1.29 0.90 3.78 2.85 1.35 0.90 7.95 13.57 21.20

NF-AA 0.18 0.40 0.50 0.56 0.04 0.46 0.60 0.58 0.08 1.65 1.55 0.77 0.08 2.71 5.86 10.69

NF-A 0.33 0.66 0.80 0.95 0.13 0.80 0.96 0.91 0.25 2.61 2.29 1.17 0.25 4.68 9.23 16.08

NF-BBB 0.72 1.14 1.26 1.35 0.54 1.41 1.42 1.16 1.03 3.59 2.46 1.01 1.03 8.01 12.97 19.11

AA 0.18 0.35 0.42 0.57 0.02 0.34 0.51 0.56 0.03 1.35 1.57 0.95 0.03 2.01 5.08 10.63

A 0.26 0.55 0.69 0.85 0.05 0.61 0.83 0.86 0.10 2.25 2.30 1.35 0.10 3.61 8.11 15.67

BBB 0.73 1.16 1.27 1.35 0.53 1.40 1.42 1.17 1.02 3.60 2.49 1.04 1.02 7.98 13.00 19.29

Table 4.10: Average Factor Spread and Default Probability

default probabilities in Table 4.10 are calculated using the distribution function of the first-

passage time in (3.10) on the basis of filtered factor values. Periodic risk-neutral factor-PD

represent the average factor-implied one-year probability of default during the indicated

year, conditional on the absence of a previous default and decline from a medium-maturity

maximum with increasing maturity for any estimation period.38

Fitted one-year spreads exceed factor-implied spreads because cumulative default proba-

bilities converge to zero with declining time-to-maturity and because of restrictions im-

plied by the functional form of the first-passage time distribution function, which result

in a slow ascent of the cumulative PD for maturities below one year to reach a proper

fit of spreads for long-term maturities. The steep increase in cumulative and periodic de-

fault probabilities for medium-range maturities, typical for first-passage time distribution

functions, yield factor-implied spreads of three-year and five-year maturities that exceed

empirically derived yield spreads. The subsequent flattening of the cumulative PD curve

for maturities greater than five years leads to a compensating under-fitting of empirical

ten-year spreads. Since there is no real-world equivalent to the default probability of a

risk class, factor implied cumulative real-world first-passage times have been omitted.

Default probabilities derived from obligor-specific asset values are shown in Table 4.11.

Cumulative PD are calculated on the basis of asset values calibrated to reproduce the yield

spreads of par-bonds using the optimal parameter set ψV , because filtered asset values

refer to bootstrapped spreads and do not represent the typical default risk implied by

38Cf. Table D.3 for results of the examination of spread and PD for annual estimation periods.
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the asset value process. Periodic PD generate default probabilities for one-year intervals,

conditional on previous non-default as before. Calibrating asset values with respect to the

Risk-

Class

Risk-neutral periodic Risk-neutral cumulative Periodic PD Cumulative PD

PD of Obligor PD of Obligor of Obligor of Obligor

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 0.68 1.91 2.17 2.16 0.68 4.07 8.11 17.84 1.54 5.70 7.08 7.35 1.54 11.02 22.76 47.56

ECY-BBB 1.90 2.52 2.14 1.58 1.90 6.76 10.90 18.44 10.14 20.58 16.69 9.58 10.14 42.47 61.12 79.39

FIN-AA 0.34 0.88 0.98 1.04 0.34 1.94 3.82 8.71 3.88 15.23 14.83 9.97 3.88 28.21 48.39 72.45

FIN-A 0.48 1.39 1.61 1.59 0.48 2.95 5.97 13.37 2.20 9.39 11.02 9.03 2.20 17.33 34.26 61.30

LCY-AA 0.40 1.14 1.21 1.09 0.40 2.44 4.78 10.08 2.18 9.97 11.66 9.78 2.18 18.11 35.82 63.65

LCY-A 0.92 1.75 1.67 1.65 0.92 4.23 7.45 14.84 6.92 18.95 16.62 10.37 6.92 37.06 57.07 78.04

LCY-BBB 1.04 2.56 2.45 1.89 1.04 5.72 10.39 19.39 2.50 8.04 8.62 7.15 2.50 16.04 29.86 53.33

NCY-AA 0.37 1.05 1.07 0.83 0.37 2.26 4.37 8.73 4.28 15.43 13.01 7.04 4.28 29.44 47.62 67.35

NCY-A 0.44 1.45 1.90 2.42 0.44 2.94 6.40 16.54 0.90 3.87 5.54 7.42 0.90 7.23 16.58 41.56

NCY-BBB 1.28 2.67 2.49 2.12 1.28 6.28 11.00 20.58 9.25 22.20 18.07 10.47 9.25 44.03 63.50 81.80

NF-AA 0.35 1.18 1.28 0.98 0.35 2.40 4.88 10.03 1.28 6.48 8.08 7.38 1.28 11.68 24.99 50.15

NF-A 0.65 1.76 1.84 1.51 0.65 3.81 7.33 14.75 3.04 11.49 12.23 8.79 3.04 21.65 39.72 64.84

NF-BBB 1.37 2.65 2.36 1.81 1.37 6.37 10.90 19.39 4.57 11.72 10.62 6.56 4.57 24.35 40.14 60.59

AA 0.36 0.92 1.05 1.14 0.36 2.03 4.02 9.31 2.47 10.67 12.41 10.41 2.47 19.58 38.01 66.31

A 0.51 1.52 1.68 1.43 0.51 3.19 6.38 13.41 2.12 8.70 9.52 6.71 2.12 16.33 31.52 54.63

BBB 1.39 2.81 2.63 2.07 1.39 6.62 11.59 21.21 3.95 11.20 11.97 10.16 3.95 22.48 39.87 66.46

Table 4.11: Average Obligor-Specific Default Probability

prices of par-bonds, risk-neutral obligor-specific PD dissolve the fitting error contained in

factor PD. In consequence, periodic risk-neutral PD of asset values (asset-PD) are strictly

higher than periodic risk-neutral factor PD for one-year and ten-year maturities and

smaller for medium-term maturities. The periodic risk-neutral asset-PD mostly decline

from a medium-maturity maximum with increasing time-to-maturity, however, the hump-

back is not as pronounced when compared to the factor PD and monotonically increasing

term structures of periodic PD appear for risk class FIN-AA, NCY-A, and AA. The

cumulative risk-neutral PD of asset values reflect the evolution of periodic asset-PD,

so that five-year cumulative PD are always smaller than factor equivalents, whereas no

systematic effect can be identified for ten-year cumulative asset-PD.

Obligor-specific real-world PD significantly exceed risk-neutral PD, since near-zero drift

rate estimates are generally smaller than the riskless rate.39 Furthermore, real-world asset-

PD exceed real-world factor-PD due to lower volatility estimates for the asset values.

For all sectors, risk-neutral PD increase as ratings decrease, while different volatility

estimates distort a monotonous increase in real-world PD with declining credit quality,

which is equivalent to the assumption of different market prices of credit risk for different

risk classes.

39Average risk-neutral default probabilities exceed their real-world counterparts for estimation periods
with riskless rates smaller than the drift rate of the asset value, as can be seen in Table D.4.
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Cumulative factor-implied PD by far exceed cumulative default frequencies published by

rating agencies.40 Though model-implied default expectations do not reproduce historical

default rates in the long-run, estimated parameter sets will be used, since a one-year time

horizon of Credit-VaR neglects distant default events from cumulative multi-year PD.

4.4.8.3 Explanatory Power of Estimates

The standard deviations of par-bond yield spreads derived from the fitted term structure

of risk classes and the standard deviation of yield spreads induced by the filtered system-

atic factor in Table 4.12 show only tendentious similarity, which once again illustrates

the limited flexibility of the structural credit valuation model in fitting empirical term

structures of credit spreads. In contrast to the factor estimation, the asset values filtered

by the EKF provide a better explanatory power. This is indicated by similar standard de-

viations of bootstrapped and filtered yield spreads. The spread variation intensifies with

decreasing ratings for risk class spreads of all sectors and for the asset-specific spreads of

most sectors. Asset-specific spreads show a notably higher variation with standard devi-

ations rising threefold for risk class FIN-AA. The spread variations of annual estimation

periods in Table D.2 show equivalent results.

Risk-

Class

Std. Dev. of emp. Std. Dev. of Std. Dev. of Std. Dev. of

Risk class Spreads Factor Spreads Bootstrap Spreads Asset Spreads

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 19.4 29.2 30.0 34.8 15.9 39.1 35.3 25.7 37.8 30.7 39.4 41.5 37.7 30.4 38.8 41.5

ECY-BBB 145.3 84.8 60.6 37.8 116.5 97.5 72.6 45.6 112.0 80.5 60.6 61.3 113.3 81.8 59.5 60.8

FIN-AA 6.1 7.1 8.4 10.3 1.0 8.0 8.6 6.8 32.7 35.8 30.1 29.4 32.5 35.6 29.8 28.9

FIN-A 6.7 9.2 10.1 15.6 1.4 10.4 11.0 8.6 24.4 28.8 33.2 25.4 24.5 28.8 32.0 24.8

LCY-AA 13.6 15.5 13.3 15.5 6.3 19.0 17.4 12.3 16.8 26.6 30.4 29.8 17.5 26.3 30.0 29.4

LCY-A 57.9 50.0 39.0 37.1 47.9 57.2 45.2 29.2 51.3 46.3 29.4 40.8 54.0 46.6 30.3 40.9

LCY-BBB 28.8 35.9 29.3 24.7 26.4 39.1 31.6 20.6 51.3 83.3 36.5 46.3 52.2 83.3 36.3 44.0

NCY-AA 7.5 9.3 10.2 10.2 2.3 11.2 11.0 8.1 13.4 34.5 16.7 23.9 13.4 34.3 16.3 23.6

NCY-A 7.9 10.4 12.0 19.0 1.9 13.3 14.1 11.2 23.3 21.9 26.6 23.3 23.2 21.5 26.4 22.2

NCY-BBB 60.2 69.6 58.5 52.2 58.2 75.7 61.5 41.5 50.4 55.9 61.5 62.9 50.6 56.3 63.4 63.0

NF-AA 7.0 9.6 11.6 12.2 2.7 12.4 12.0 8.9 20.4 20.1 17.3 21.1 20.2 19.7 15.9 20.6

NF-A 16.8 24.8 25.3 27.5 13.2 33.8 30.3 21.8 42.3 62.7 38.1 48.7 43.7 65.1 38.7 48.3

NF-BBB 61.8 59.1 47.0 35.3 52.3 61.8 48.7 31.9 73.0 85.2 51.2 78.9 76.5 86.4 53.7 77.9

AA 6.3 7.3 8.8 10.7 0.9 8.2 9.0 7.2 31.0 27.7 25.5 21.9 30.7 27.7 25.2 21.0

A 7.1 10.5 12.5 17.3 2.8 14.4 14.4 11.0 20.2 25.0 36.0 32.1 20.0 24.4 35.8 32.2

BBB 61.3 57.9 46.0 36.1 55.8 65.0 51.1 33.4 85.6 72.6 46.3 64.4 87.0 73.2 45.9 64.5

Table 4.12: Standard Deviation of Spreads

In Tables 4.13 and 4.14, the explanatory power of EKF estimations is assessed examining

the yield residuals induced by the optimal EKF filtering of factors and asset values.

40Cf. Hamilton (2002) and Hamilton et al. (2004)
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Residual Analysis of the Factor Estimation

In the factor estimation, the credit valuation model of Section 3.2 exhibits a systematic

pattern of mis-fitting factor spreads for particular maturities due to its functional restric-

tions. In accordance with the comparison of average empirical and average factor-derived

yield spreads, the analysis of factor-implied yield-spread residuals in Table 4.13 reveals

that one-year and ten-year empirical spreads exceed filtered spreads, while the negative

residuals for three-year and five-year filtered yield spreads indicate filtered spreads which

exceed empirical spreads. The delayed range of residuals with respect to zero-expectation

supports the hypothesis of a systematical mis-fitting of yield spreads, and the system-

atically positive or negative residuals prevent short-lag auto correlations from becoming

insignificant.

A slight variation in factor yield-spread residuals is observed for the risk classes AA and

A, indicating an improvement of fitting ability of the EKF if the level of spreads is low

and the term structure steepening is moderate. However, mean absolute deviation (MAD)

and the standard deviation of residuals reveal that, for risk classes with a high variation

of empirical spreads, the filter update has difficulties in keeping up with the variation

of spreads. Accordingly, the standard deviations of yield spread residuals for annual

estimation periods in Table D.5 shows that the variation of residuals was only elevated in

2002 and 2003 for BBB risk classes and data-scarce risk classes, which suffer from jumps

in credit spreads in the respective period. Meanwhile, for the same risk classes, filtering

is more effective in periods with a more typical spread variation.

The homogenous occurrence of negative and positive skewness, which is small in abso-

lute terms, and an excess kurtosis close to zero (except for NCY-AA, NCY-A and BBB)

support the assumption of residuals being distributed approximately normal. The cor-

relations of factor spread residuals in Table D.6 show distinct positive correlations of

spread residuals for neighboring maturities, while residual correlations between one-year

and ten-year maturities are mostly negative.

Residual Analysis of the Asset Value Estimation

In the asset value estimation the EKF demonstrates better fitting abilities due to the

fitting of yield spreads by individual state variables. The average yield-spread residuals

exceed two basis points in absolute terms only for the ten-year residuals of the ECY-

BBB class, and the medium spread does not amount to more than one basis point in

absolute terms. The mean absolute deviation of asset yield-spread residuals exceed four

basis points only for the one-year residuals of class LCY-A, where yield spread residuals

show a wide variation due to jumps in empirical spreads.

With the exception of the ten-year FIN-A residuals, average residuals are negative

throughout, which can be attributed to the mostly negative skewness. Skewness and

a notably positive kurtosis contradict the normality assumption of residuals. Autocor-
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Risk-Class Tenor
Residual Statistics on Factor Estimation Autocorrelation

Mean Min Max Med. q0.05 q0.95 MAD σ Skewn. Kurt. ρ1 ρ2 ρ5 ρ10 ρ20

ECY-A 1 21.9 1.2 44.3 22.4 10.0 35.0 1.6 7.9 0.08 -0.42 0.8452 0.7513 0.6891 0.6260 0.5675

3 -13.6 -56.9 12.0 -10.9 -35.0 2.8 4.2 12.7 -0.67 0.14 0.9249 0.8784 0.7807 0.6252 0.3910

5 -17.3 -52.2 5.5 -16.5 -39.4 -1.1 3.5 11.5 -0.56 -0.06 0.9320 0.8862 0.7672 0.6355 0.4335

10 6.6 -26.5 66.0 -0.5 -17.7 48.2 12.1 21.6 0.84 -0.23 0.9730 0.9442 0.8782 0.8325 0.6531

ECY-BBB 1 22.6 -91.2 213.5 15.5 -5.9 112.1 39.4 38.9 2.67 9.61 0.7789 0.6680 0.5422 0.3627 -0.1152

3 -23.9 -114.7 32.0 -20.9 -69.6 -0.5 11.0 20.6 -1.65 4.24 0.8512 0.7758 0.5396 0.3869 0.1988

5 -12.0 -100.7 27.7 -8.1 -55.6 8.1 10.2 19.8 -2.26 6.36 0.8962 0.8163 0.6542 0.3869 0.0839

10 20.9 -88.8 99.0 25.3 -31.8 61.0 21.2 28.6 -1.02 2.07 0.9026 0.8242 0.6662 0.3733 -0.1035

FIN-AA 1 15.8 1.5 31.0 14.9 7.5 25.8 0.8 5.7 0.30 -0.48 0.7802 0.7256 0.6740 0.6006 0.3562

3 -0.4 -13.7 10.3 -0.1 -7.5 5.2 0.4 3.9 -0.39 0.73 0.4854 0.4052 0.3441 0.3076 0.0841

5 -8.8 -21.6 4.1 -8.4 -15.6 -1.9 0.5 4.4 0.05 0.13 0.6770 0.6519 0.5354 0.5131 0.2516

10 1.5 -8.5 16.2 0.3 -6.4 11.2 0.8 5.5 0.46 -0.59 0.8591 0.8194 0.7017 0.6611 0.5170

FIN-A 1 21.7 4.1 37.2 21.6 13.0 31.8 0.9 5.9 0.15 -0.30 0.7207 0.6422 0.5405 0.4695 0.1867

3 -1.6 -16.8 15.1 -1.8 -9.7 6.9 0.7 5.3 0.22 0.34 0.5294 0.4829 0.3839 0.3710 0.2759

5 -13.2 -26.5 7.9 -13.5 -22.7 -4.2 0.9 5.8 0.27 0.00 0.6753 0.6528 0.5405 0.4848 0.2579

10 -0.7 -25.1 23.6 0.2 -19.4 16.1 3.9 12.2 -0.16 -1.26 0.9526 0.9368 0.8861 0.8032 0.6159

LCY-AA 1 15.3 1.1 42.5 13.0 4.2 34.8 2.3 9.4 0.84 -0.03 0.7249 0.5997 0.3419 0.3120 -0.0281

3 -5.7 -48.7 12.5 -4.3 -18.4 5.9 1.8 8.2 -1.22 3.72 0.7779 0.6616 0.4840 0.4093 0.0941

5 -10.2 -46.0 8.4 -9.1 -27.3 1.9 2.1 8.9 -1.24 2.57 0.8486 0.7798 0.6051 0.3844 0.0688

10 2.9 -40.3 41.8 2.6 -23.1 27.3 5.2 14.2 -0.36 0.69 0.9138 0.8535 0.6455 0.3835 0.3051

LCY-A 1 17.0 -31.6 183.3 13.9 -7.1 44.2 10.5 20.1 3.79 25.08 0.5065 0.2714 0.1661 0.2695 0.0647

3 -17.2 -115.1 7.6 -13.2 -42.5 -2.1 6.2 15.4 -2.27 8.94 0.8137 0.6445 0.2838 0.2477 0.4913

5 -11.8 -112.5 15.5 -9.3 -37.0 4.1 5.6 14.7 -2.39 10.69 0.8424 0.6772 0.3893 0.3659 0.3906

10 21.9 -87.9 100.4 18.3 -24.0 69.5 26.7 32.1 0.06 -0.20 0.9403 0.8887 0.7607 0.5822 0.2457

LCY-BBB 1 15.6 -9.6 54.1 15.7 2.1 28.8 1.8 8.3 0.54 1.98 0.6300 0.3944 0.1515 0.1318 -0.0027

3 -23.9 -59.6 10.8 -24.6 -36.0 -9.5 2.0 8.7 -0.04 2.49 0.7175 0.5600 0.2724 0.2770 0.1753

5 -15.5 -57.4 8.0 -13.9 -34.9 -1.3 2.9 10.5 -0.83 1.12 0.8277 0.7295 0.4425 0.3833 0.1286

10 13.9 -58.4 92.1 18.7 -36.8 48.2 16.9 25.5 -0.41 0.07 0.9192 0.8607 0.6976 0.5659 0.2978

NCY-AA 1 15.1 2.5 36.6 14.5 5.7 26.7 1.1 6.4 0.50 0.10 0.7468 0.5942 0.3750 0.4114 0.3101

3 -5.1 -26.9 10.5 -4.9 -13.5 3.7 0.7 5.3 -0.20 1.02 0.6950 0.5527 0.2734 0.3530 0.1325

5 -9.9 -35.2 4.9 -9.3 -19.1 -2.1 0.8 5.5 -0.48 1.07 0.7941 0.7034 0.4790 0.3745 0.1801

10 -0.1 -17.3 14.6 0.0 -11.3 11.0 1.2 6.8 -0.07 -0.67 0.8980 0.8579 0.7597 0.6460 0.4923

NCY-A 1 20.3 5.9 44.5 19.4 11.4 33.8 1.2 6.8 0.76 0.61 0.7918 0.6794 0.4652 0.3067 0.0481

3 -1.9 -18.1 13.6 -1.6 -12.9 6.8 0.9 6.0 -0.33 -0.04 0.8014 0.7138 0.5736 0.4565 0.1406

5 -12.8 -31.5 2.7 -12.2 -25.7 -4.4 1.0 6.3 -0.71 0.56 0.8757 0.8044 0.5796 0.4153 0.0432

10 0.3 -27.2 31.1 -0.7 -19.3 21.0 4.6 13.3 0.03 -0.90 0.9509 0.9195 0.8395 0.7048 0.5484

NCY-BBB 1 19.3 -11.6 150.9 18.8 2.9 33.8 4.6 13.3 4.52 39.86 0.6404 0.3311 0.1326 0.0397 -0.0408

3 -23.9 -88.5 64.3 -24.9 -45.0 0.3 6.7 16.0 0.43 3.44 0.7695 0.6675 0.4740 0.4116 0.3676

5 -15.7 -88.8 74.3 -15.2 -45.9 7.3 7.9 17.5 -0.47 4.08 0.8296 0.7765 0.6453 0.5759 0.3853

10 24.6 -76.2 142.3 26.0 -47.2 88.1 43.7 41.0 -0.21 -0.21 0.9244 0.8786 0.7802 0.6971 0.3407

NF-AA 1 13.6 0.8 29.6 12.8 5.4 24.5 0.9 6.0 0.43 -0.49 0.6857 0.5897 0.4140 0.3395 0.1791

3 -5.3 -25.0 5.4 -4.5 -14.6 3.2 0.8 5.5 -0.73 1.13 0.7455 0.6722 0.4511 0.3636 0.0337

5 -9.6 -27.1 2.7 -9.2 -18.7 -1.6 0.8 5.5 -0.33 -0.19 0.8412 0.7628 0.5428 0.3077 -0.0652

10 -1.4 -17.9 19.0 -1.9 -14.7 12.3 1.7 8.2 0.13 -0.70 0.9072 0.8512 0.7446 0.6352 0.4522

NF-A 1 20.5 5.9 39.9 21.1 10.1 32.0 1.2 6.9 0.20 -0.41 0.8245 0.7478 0.6153 0.5712 0.4588

3 -13.9 -49.4 6.6 -11.9 -37.1 0.2 3.3 11.3 -0.76 0.00 0.9384 0.8990 0.7771 0.6184 0.3423

5 -16.5 -47.3 4.0 -15.0 -40.5 -3.1 2.8 10.4 -0.88 0.49 0.9527 0.9124 0.8012 0.6747 0.4677

10 4.8 -32.6 46.0 2.8 -18.1 35.0 7.9 17.5 0.26 -0.61 0.9628 0.9302 0.8670 0.7809 0.6418

NF-BBB 1 17.5 -17.9 100.9 13.8 -5.1 51.9 9.5 19.1 1.82 5.04 0.6793 0.5699 0.4257 0.2222 0.0366

3 -26.2 -56.6 18.6 -25.9 -50.2 -3.9 4.9 13.7 0.05 -0.09 0.8366 0.7337 0.5126 0.3903 0.1943

5 -15.9 -44.6 27.9 -15.1 -32.1 -3.1 2.7 10.2 -0.04 1.44 0.7538 0.5954 0.3892 0.1423 -0.1123

10 19.7 -31.7 88.2 23.6 -25.3 63.5 17.9 26.2 -0.05 -0.58 0.9062 0.8376 0.7567 0.5850 0.4108

AA 1 16.9 4.8 31.5 15.9 8.5 27.0 0.9 6.0 0.26 -0.89 0.8106 0.7447 0.6846 0.6402 0.3949

3 1.0 -12.8 13.4 1.3 -7.2 6.1 0.4 4.0 -0.52 1.11 0.5054 0.4009 0.3080 0.3491 0.1021

5 -8.9 -20.1 5.1 -8.7 -15.9 -1.8 0.5 4.5 0.20 -0.03 0.6947 0.6538 0.5214 0.5288 0.2917

10 0.4 -9.3 15.8 -0.5 -7.2 10.9 0.8 5.6 0.51 -0.34 0.8594 0.8167 0.6876 0.6115 0.5001

A 1 21.4 7.5 37.9 20.3 13.9 30.9 0.8 5.5 0.31 -0.27 0.7045 0.6324 0.5670 0.4997 0.3066

3 -6.2 -24.7 12.2 -6.7 -17.3 3.3 1.1 6.6 -0.14 -0.30 0.7635 0.7200 0.5950 0.5241 0.2354

5 -14.6 -36.8 5.7 -14.1 -25.0 -4.4 1.1 6.5 -0.22 0.33 0.7755 0.7167 0.5781 0.5112 0.2751

10 -0.6 -21.7 24.5 -2.3 -17.2 18.5 3.3 11.3 0.30 -0.92 0.9471 0.9277 0.8690 0.7885 0.6603

BBB 1 19.3 -21.8 93.2 17.5 1.4 43.4 5.6 14.6 1.72 6.85 0.5483 0.4387 0.2349 0.0789 -0.0270

3 -24.1 -66.2 13.7 -23.4 -45.9 -5.6 4.2 12.6 -0.35 0.66 0.8120 0.6887 0.5043 0.3616 0.2248

5 -15.0 -59.0 28.6 -12.4 -37.9 -0.6 4.0 12.3 -0.72 1.41 0.8193 0.6832 0.5616 0.3019 0.0848

10 18.0 -40.2 95.7 22.2 -32.4 68.4 22.8 29.6 -0.02 -0.55 0.9077 0.8487 0.7725 0.5745 0.4099

Table 4.13: Statistics on KF-induced Spread Residuals of Filtered Systematic Factors
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Risk-Class Tenor
Residual Statistics on Asset Value Estimation Autocorrelation

Mean Min Max Med. q0.05 q0.95 MAD σ Skewn. Kurt. ρ1 ρ2 ρ5 ρ10 ρ20

ECY-A 1 -0.6 -20.4 0.7 -0.2 -2.4 0.2 0.1 1.7 -7.63 74.69 0.1287 0.0585 0.1102 0.0756 0.0042

3 -0.4 -21.0 8.2 -0.1 -4.3 2.7 0.2 2.5 -2.28 16.52 0.3009 0.1787 -0.0123 -0.0388 0.0814

5 -0.4 -19.1 13.7 0.0 -11.2 8.3 0.9 5.8 -0.36 0.40 0.5682 0.4007 0.0924 -0.1837 -0.1886

10 0.0 -17.2 19.1 -0.3 -9.5 9.3 0.7 5.3 0.30 1.26 0.4983 0.2340 -0.1025 -0.0794 -0.0060

ECY-BBB 1 -1.4 -50.5 17.7 -0.3 -6.2 1.0 0.8 5.7 -5.27 37.42 0.1591 -0.0065 0.0995 -0.1396 0.1288

3 -1.5 -40.1 25.3 -0.3 -7.5 1.3 1.0 6.2 -3.82 21.92 0.3606 0.1256 0.0841 -0.1294 0.1398

5 -1.8 -47.3 8.4 -0.2 -11.2 1.3 1.0 6.3 -4.42 22.43 0.6670 0.6571 0.1666 0.1430 -0.0442

10 -2.2 -130.3 3.1 -0.4 -8.7 0.7 2.3 9.4 -10.45 134.81 0.1568 0.0520 0.1906 -0.0002 0.1455

FIN-AA 1 -0.8 -28.2 0.3 -0.3 -2.9 0.1 0.1 2.1 -9.66 120.99 0.1171 -0.0007 -0.0351 0.0030 0.0031

3 -0.5 -14.7 15.6 -0.4 -5.5 5.6 0.3 3.3 0.46 4.60 0.3739 0.1793 -0.0431 -0.0629 0.0331

5 -0.4 -12.8 27.1 -0.6 -7.6 7.7 0.6 4.8 1.25 5.67 0.4590 0.2467 0.0074 -0.1070 0.0375

10 -0.6 -11.5 22.5 -0.2 -6.1 2.6 0.2 3.0 1.29 15.36 0.2591 0.1317 -0.2598 0.1781 -0.0589

FIN-A 1 -1.0 -14.8 0.4 -0.4 -3.7 0.0 0.1 1.6 -4.04 24.80 0.0120 0.0121 0.0337 0.0586 -0.0026

3 -0.7 -8.8 0.8 -0.3 -2.7 0.4 0.0 1.2 -3.08 14.74 0.1384 -0.0686 0.1044 -0.0565 -0.0251

5 -0.9 -18.0 24.8 -1.0 -9.2 7.2 0.7 5.1 0.20 3.07 0.5387 0.3251 -0.0091 -0.0676 -0.0813

10 0.1 -22.4 28.5 -0.3 -9.3 11.9 1.1 6.6 0.77 2.64 0.4578 0.2312 -0.0113 0.0470 -0.1047

LCY-AA 1 -0.9 -56.9 2.0 -0.3 -3.2 0.4 0.4 3.9 -12.19 169.59 0.2434 -0.0366 0.1295 0.0107 0.0229

3 -0.4 -15.4 13.8 -0.4 -7.2 6.0 0.3 3.7 -0.07 2.13 0.4948 0.2177 -0.1354 -0.0300 0.0346

5 -0.3 -19.5 17.1 -0.1 -4.5 3.8 0.2 3.1 -0.55 11.62 0.4725 0.2871 -0.0439 -0.0859 0.1572

10 -0.2 -26.2 11.5 -0.2 -5.6 5.6 0.4 3.9 -1.50 9.28 0.3574 0.2036 -0.0410 -0.0012 -0.1222

LCY-A 1 0.8 -296.8 152.9 -1.0 -37.6 58.9 31.5 34.9 -1.98 22.32 0.5257 0.3604 0.2742 0.1639 -0.1655

3 -1.4 -63.6 6.4 -0.2 -7.9 1.6 1.2 6.8 -6.47 48.45 0.3187 0.2525 0.2857 0.1406 -0.0305

5 -1.0 -76.3 2.7 -0.1 -4.6 0.3 0.8 5.4 -11.14 146.30 0.3247 0.2216 0.0952 0.0444 -0.0282

10 -1.1 -33.9 7.0 -0.3 -5.2 2.3 0.5 4.5 -4.46 24.73 0.1995 0.1956 0.2998 0.1392 -0.1217

LCY-BBB 1 -0.9 -73.1 12.7 -0.3 -6.4 2.8 0.7 5.4 -9.51 128.19 0.1265 0.0634 -0.0055 0.0090 -0.0414

3 -0.4 -9.8 0.8 -0.1 -2.1 0.1 0.0 1.0 -4.99 32.62 0.2968 0.0188 0.0924 0.0865 0.0401

5 -0.3 -13.4 10.3 -0.1 -3.6 2.3 0.1 2.2 -1.64 11.68 0.4344 0.1144 0.1720 0.0824 -0.1838

10 -1.1 -41.7 29.6 -0.8 -14.3 11.8 2.2 9.2 -0.57 3.24 0.5163 0.2458 0.0341 0.0790 -0.2255

NCY-AA 1 -0.9 -12.3 1.6 -0.4 -4.0 0.2 0.1 1.6 -3.27 14.83 0.1727 0.0305 -0.0700 0.1262 0.0477

3 -0.5 -9.1 9.4 -0.2 -3.3 2.2 0.1 1.8 0.11 6.42 0.2750 0.0052 -0.0374 0.1617 -0.0143

5 -0.1 -14.1 14.9 -0.1 -5.9 5.6 0.4 3.7 0.30 3.38 0.4360 0.1250 0.0254 -0.0415 -0.0001

10 -0.4 -9.0 9.0 -0.2 -3.9 2.2 0.1 2.0 -0.21 3.89 0.1969 0.0007 0.0674 -0.0167 0.0029

NCY-A 1 -0.6 -35.2 3.4 -0.1 -2.7 0.9 0.2 2.6 -10.07 130.77 0.2846 -0.0277 -0.0118 -0.0523 0.0239

3 -0.2 -18.9 8.2 0.0 -4.6 3.0 0.1 2.3 -2.27 16.86 0.4112 0.1218 -0.0887 0.0543 -0.0267

5 -0.1 -18.0 15.0 0.0 -4.9 4.5 0.2 3.0 -0.04 6.96 0.2086 0.0856 -0.0597 0.0658 -0.0350

10 0.1 -35.6 20.2 -0.2 -8.8 10.2 1.1 6.4 -0.57 4.20 0.5032 0.2932 -0.0014 0.1485 -0.0487

NCY-BBB 1 -1.4 -75.3 6.6 -0.3 -5.5 1.1 0.8 5.7 -9.69 115.66 0.3957 0.0338 -0.0180 0.0123 -0.0191

3 -1.1 -22.8 6.0 -0.3 -6.2 0.7 0.3 3.1 -4.12 20.22 0.2008 0.0155 0.0437 0.1588 -0.0173

5 -1.4 -68.9 17.6 -0.2 -6.8 2.3 1.3 7.0 -6.91 61.19 0.4223 0.0104 -0.0444 0.1334 0.0115

10 -1.3 -46.3 7.5 -0.2 -6.4 1.0 0.5 4.4 -6.14 52.39 0.3047 0.0190 0.1228 0.0468 0.0052

NF-AA 1 -0.5 -5.5 0.5 -0.3 -2.4 0.2 0.0 0.9 -2.74 9.57 0.1336 0.1296 0.0873 0.0596 0.1021

3 -0.4 -14.2 5.5 -0.1 -3.9 2.5 0.1 2.2 -2.00 9.36 0.2376 0.2291 -0.0288 -0.0492 -0.1372

5 -0.3 -16.8 15.7 0.1 -8.7 6.8 0.5 4.6 -0.20 1.35 0.5539 0.3026 -0.0841 -0.2028 0.0270

10 -0.1 -13.5 14.3 -0.2 -5.8 6.1 0.3 3.6 0.18 1.50 0.2658 0.1802 0.0228 -0.1042 -0.0211

NF-A 1 -0.8 -79.2 3.4 -0.2 -3.4 1.3 0.7 5.2 -13.70 207.14 0.1451 0.0233 0.0020 0.0115 -0.0233

3 -1.1 -124.9 7.9 -0.3 -7.5 4.4 1.9 8.6 -11.85 169.82 0.2600 0.1579 0.0337 0.0359 -0.0097

5 -0.8 -36.3 4.1 -0.1 -4.1 1.5 0.3 3.5 -6.10 48.20 0.2067 0.1127 0.1093 -0.0346 0.0625

10 -0.4 -30.3 12.8 0.0 -4.6 3.7 0.4 3.7 -3.22 22.03 0.1653 0.0254 0.0038 0.1234 -0.0097

NF-BBB 1 -1.1 -155.3 28.0 -0.2 -9.2 5.3 3.1 10.9 -10.89 155.46 0.1508 0.1129 -0.0396 0.1024 -0.1460

3 -1.5 -56.2 2.8 -0.2 -7.7 0.7 0.8 5.6 -6.75 54.99 0.1841 0.4551 0.2812 0.2230 -0.0598

5 -1.3 -107.6 29.5 0.0 -11.0 5.3 2.4 9.6 -6.55 64.51 0.4011 0.0526 -0.0333 0.1287 0.0585

10 -1.4 -26.9 12.3 -0.3 -9.1 1.7 0.4 3.9 -2.21 9.92 0.3050 0.1126 0.1687 0.0926 -0.1467

AA 1 -1.1 -16.2 0.9 -0.4 -4.2 0.1 0.1 2.0 -4.21 23.36 0.2048 0.0877 0.0471 0.0342 0.0758

3 -0.4 -7.7 7.7 -0.2 -3.8 2.6 0.1 2.0 -0.01 1.88 0.0935 -0.0164 0.0505 -0.0239 -0.0605

5 -0.3 -12.0 18.1 -0.3 -5.9 4.4 0.3 3.6 0.86 6.43 0.3986 0.2477 -0.1839 -0.1243 0.0105

10 -0.5 -19.6 15.2 -0.2 -5.9 5.2 0.4 3.8 -0.51 3.54 0.3400 0.1259 0.0005 -0.1843 0.1244

A 1 -1.4 -26.7 1.8 -0.5 -5.8 0.1 0.2 2.7 -5.23 39.23 0.0924 0.0258 0.0122 0.0446 -0.0103

3 -0.7 -21.1 13.9 -0.2 -5.4 2.9 0.2 2.9 -1.29 11.91 0.1300 0.0921 0.0015 -0.0727 -0.0097

5 -0.7 -13.8 1.7 -0.2 -3.1 0.6 0.1 1.6 -4.04 25.49 0.1793 0.1920 -0.0038 0.2063 -0.0261

10 -0.5 -9.7 2.4 -0.2 -2.5 1.3 0.1 1.5 -2.56 11.35 0.1670 0.0123 0.1993 0.0073 -0.0910

BBB 1 -1.6 -36.2 1.8 -0.4 -5.8 0.5 0.5 4.2 -5.51 37.02 0.2371 0.1417 0.1625 0.2573 -0.0018

3 -1.2 -30.2 4.0 -0.3 -4.3 0.9 0.3 3.4 -5.53 38.04 0.1679 0.3132 0.0504 0.1071 -0.0490

5 -0.7 -16.2 25.2 -0.1 -7.8 5.5 0.5 4.3 0.17 6.50 0.1482 -0.0364 0.0045 -0.0003 0.0415

10 -1.0 -40.5 32.2 -0.5 -12.2 5.6 1.1 6.6 -1.04 10.75 0.2819 0.0119 -0.0100 -0.0588 0.0881

Table 4.14: Statistics on KF-induced Spread Residuals of Filtered Asset Values
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relations of residuals strongly converge to zero in the correlogram for most risk classes,

underscoring the fitting capability of the Kalman-Filter.

Correlations of asset-spread residuals in Table D.6 do not show a distinct pattern with

respect to the sign of correlations. Although specific components of asset values are

assumed to be independent, significant residual correlations may appear due to sampling

effects of the bootstrap, systematic fitting deficiencies or due to the non-linear functional

relation between state variables and yield spread residuals.

4.4.8.4 Specification of the Dependence Model

For the rating class model, the two-sector model and the four-sector model, dependence

parameters are presented in Tables 4.15-4.17. For each model, correlations of systematic

factors, asset values and yield spreads are considered. Factor correlations ρfrci,rcj are

calculated from normalized time series of systematic factor returns of risk class rci, rcj =

1, ..., nm, while the correlations of normalized assets returns of risk classes rci and rcj are

given by ρaij = βrciβrcjρ
f
ij. The coefficients of the orthogonal abstract factors are used

to specify the row vectors of the factor coefficient matrix B in (3.35) in the risk class

factor model of (3.36), according to the risk class affiliation of exposures. For the factor

estimation, average correlations of first differences of empirical and filtered yield spreads

are compared, and for the asset value estimation average correlations of first differences

of bootstrapped and filtered spreads are compared.

Factor Correlations Correlations of Factor Spreads

Rating AA A BBB
Avg. diagonal

Avg. off-diag.

```````````̀filtered

empirical
AA A BBB

AA 100.0 79.6 26.8 100.0 AA 100.0 73.6 20.7

A 100.0 36.6 47.7 A 73.1 100.0 21.2

BBB 100.0 BBB 18.0 28.1 100.0

Asset Correlations Correlations of Asset Spreads

Rating AA A BBB
Avg. diagonal

Avg. off-diag.

```````````̀filtered

bootstrap
AA A BBB

AA 8.5 6.7 2.6 9.4 AA 100.0 8.1 7.5

A 8.3 3.6 4.3 A 7.3 100.0 5.0

BBB 11.4 BBB 8.6 3.4 100.0

Latent Factor Coefficients

Rating F1 F2 F3

AA 29.1

A 22.9 17.4

BBB 9.1 8.5 31.4

Table 4.15: Credit Dependence of Rating-Class Model
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Rating-Class Model

Correlations of rating class factors in Table 4.15 are higher for affiliate rating classes

as compared to the correlation between AA and BBB. Asset correlations are smaller

than factor correlations by definition. The average inner-class asset correlation of 9.4%

approximately doubles the average inter-class correlation of 4.3%, which indicates that

the evolution of credit risk within rating classes is recognized to be more homogenous

than the evolution of spreads of different rating classes. However, the average asset

correlation of risk classes cannot easily be used as an indicator of the correlation risk in

a portfolio, since the distribution of exposures across risk classes affects the average of

exposures’ asset correlations. Alternative studies provide asset correlation estimates for

a rating class structure of risk classes in the range between close to zero and 30%, so that

estimated asset correlations are not implausible.41

Factor and asset correlations of annual estimations in Table D.11 differ considerably from

year to year and mostly exceed correlation estimates of the overall period except for 2003.

Although correlations calculated from filtered factor series may vary due to the sampling

effect, without a structural change in the co-movement of factors, credit market events

of the years from 2000 to 2003 suggest correlations throughout the five-year period to

be time-inhomogenous. Since Credit-VaR forecasts of the risk class factor model are

unconditional on realized factor values, the estimation period should span a full factor

cycle, which implies that annual estimation periods are methodologically insufficient.

The correlations of the empirical par-bond yield spreads of rating classes are always smaller

than factor correlations, and the correlations of filtered factor-implied yield spreads are

similar to their empirical counterparts, which indicates the empirical co-movement of

spreads implied from individually filtered factor series are satisfactorily reproduced. Ac-

cordingly, asset correlations are, on average at about the same level as the correlations

of bootstrapped yield spreads, which are sufficiently reproduced by the correlations of

asset-implied spreads.

A comparison of factor correlations with correlations of yield spreads for single maturities

in Table D.7 reveals that correlations correspond best for the three-year and five-year

maturities. Although the correspondence is rather rough, the tendency of correlations

between rating classes is identical, and single-maturity spread correlations are sufficiently

reproduced by filtered spreads.

41Cf. Akhavein, Kocagil and Neugebauer, Dietsch and Petey (2002, 2004), Düllmann and Scheule (2003),
Hamerle, Liebig and Rösch (2004).



168 CHAPTER 4 - Model Estimation

Factor Correlations Correlations of Factor Spreads

Risk-Class
FIN- FIN- NF- NF- NF- Avg. diagonal

XXXXXXXXXfiltered

empirical FIN- FIN- NF- NF- NF-

AA A AA A BBB Avg. off-diag. AA A AA A BBB

FIN-AA 100.0 82.2 47.1 52.8 29.9 100.0 FIN-AA 100.0 78.1 36.8 41.2 22.8

FIN-A 100.0 38.4 46.5 26.9 46.0 FIN-A 82.3 100.0 33.2 36.7 18.1

NF-AA 100.0 53.6 32.0 NF-AA 42.6 35.1 100.0 43.8 15.7

NF-A 100.0 50.9 NF-A 41.8 34.8 44.5 100.0 34.1

NF-BBB 100.0 NF-BBB 22.5 17.4 25.5 44.3 100.0

Asset Correlations Correlations of Asset Spreads

Risk-Class
FIN- FIN- NF- NF- NF- Avg. diagonal

XXXXXXXXXfiltered

empirical FIN- FIN- NF- NF- NF-

AA A AA A BBB Avg. off-diag. AA A AA A BBB

FIN-AA 4.2 4.7 4.5 3.1 1.8 10.1 FIN-AA 100.0 15.3 5.9 6.3 4.1

FIN-A 7.9 5.0 3.7 2.2 4.1 FIN-A 17.4 100.0 9.2 10.7 7.7

NF-AA 21.7 7.1 4.4 NF-AA 4.6 6.7 100.0 7.3 7.4

NF-A 8.2 4.3 NF-A 6.4 7.8 5.6 100.0 9.5

NF-BBB 8.5 NF-BBB 3.2 5.4 6.9 7.1 100.0

Factor Coefficients

Risk-Class F1 F2 F3 F4 F5

FIN-AA 20.5

FIN-A 23.0 16.0

NF-AA 21.9 -0.3 41.1

NF-A 15.1 1.6 9.3 22.4

NF-BBB 8.7 1.2 5.9 10.6 25.1

Table 4.16: Credit Dependence of Two-Sector Model

Two-Sector Model

Factor correlations of the two-sector model in Table 4.16 amount to 46% on average and

show the highest correlations between the affiliate rating classes of a sector. Inter-sector

correlations between risk classes with investment grade ratings are considerably higher

than cross-sector correlations between investment-grade classes and the NF-BBB class.

Asset correlations between exposures from the same sector are higher than inter-sector

asset correlations, except for the FIN-A sector. The average inner-class asset correlation

of 10.1% is more than double the average inter-class correlation of 4.1%. Inner-class asset

correlations in the two-sector model exceed those of the rating class model, while inter-

class correlations have diminished. This effect suggests that the exposures of a risk class

are more homogenous with respect to credit risk in the more granular two-sector-class

model, whereas the heterogeneity of different risk classes is more pronounced.

Factor correlations exceed the corresponding average of empirical factor spread correla-

tions in the left part of Table 4.15. Analogously, factor spread correlations show the

highest inner-sector correlations between affiliate rating classes, and inter-sector corre-

lations between investment-grade classes are higher than correlations with the NF-BBB

class. The relational pattern of average empirical spread correlations and factor corre-

lations is almost identical. Analogously to the rating class model, average asset spread

correlations exceed inter-sector asset correlations. A comparison of the average empiri-
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cal spread correlations to the average filtered spread correlations for the factor and asset

value estimation confirms there is a sufficient fit of spread co-movements for filtered factor

series and for filtered asset values.

The correlations of yield spreads for single maturities in Table D.8 show the best cor-

respondence to factor correlations for three-year and five-year maturities. Since asset

spreads are bootstrapped on the basis of independent specific spread movements, the

single-maturity asset-implied spread correlations coincide only roughly with asset corre-

lations due to the sampling effect. Empirical and bootstrapped correlations of factor and

asset yield spreads are sufficiently reproduced by correlations of filter-derived spreads.

With regard to the factor and asset correlations of annual estimations in Table D.12, the

same considerations regarding the time-inhomogeneity of spreads throughout the overall

estimation apply as they do for the rating class model. Annual correlation estimates

generally exceed their full sample equivalents in every year except 2003. High inner-class

asset correlations indicate risk classes and estimation periods with severe credit events.

Four-Sector Model

The credit dependence of the four-sector model with 10 risk classes is presented in Table

4.17. Factor correlations between high-grade classes (AA and A rating) amount to 42.1%

on average, while correlations between high-grade classes and BBB classes average out

at 30.5% and correlations between BBB classes exhibit a 25.5% average. Analogously to

former risk class models, factor correlations are considerably larger than the 8.0% average

of asset correlation between high-grade risk classes, the 4.1% average between high-grade

and BBB classes and the 7.8% average between BBB classes. Inner-class asset correlations

are comparatively high for the data-scarce sectors ECY-A, LCY-BBB and NCY-A, which

suffer from notable obligor-specific credit events. The average of inner-class (inter-class)

asset correlations is 15.1% (4.6%), which confirms the suitability of the classification of

exposures with respect to the homogeneity of credit risk. Factor and asset correlations of

annual estimations in Table D.13 show a high variation in time. However, no systematic

pattern of factor and asset correlations is obvious in time and across risk classes.

The average empirical spread correlation between high-grade classes, (between high-grade

and BBB classes, between BBB classes) amounts to 33.0% (18.2%, 27.9%), while filter-

implied factor spreads result in correlations of 34.7% (22.6%, 16.8%), which is considered

to be an acceptable fit, except in the case of BBB inner-class correlations, where the

EKF suffers from a lower fitting power due to the high variation of spreads. Equivalent

average correlations of bootstrapped yield spreads amount to 7.3% (6.5%, 3.7%), close

to asset-implied correlations of 6.1% (6.2%, 3.3%). Obviously, the fit of filtered spread

correlations is better for asset spread correlations than for factor-spread correlations.

Spread correlations of annual estimations in Table D.9 and D.10 are attached for reasons

of completeness.
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Factor Correlations

Risk-Class
ECY- ECY- FIN- FIN- LCY- LCY- LCY- NCY- NCY- NCY- Avg. diagonal

A BBB AA A AA A BBB AA A BBB Avg. off-diag.

ECY-A 100.0 40.8 51.7 49.6 52.5 32.0 42.9 39.6 64.1 27.5 100.0

ECY-BBB 100.0 25.7 14.3 35.5 40.5 29.9 26.8 45.4 22.4 35.6

FIN-AA 100.0 82.2 36.6 21.3 33.9 43.6 57.8 22.4

FIN-A 100.0 32.6 17.2 36.3 33.3 54.0 22.1

LCY-AA 100.0 13.8 14.6 29.3 44.4 19.2

LCY-A 100.0 44.7 27.7 39.0 16.5

LCY-BBB 100.0 25.5 48.1 24.1

NCY-AA 100.0 60.9 19.9

NCY-A 100.0 38.6

NCY-BBB 100.0

Asset Correlations

Risk-Class
ECY- ECY- FIN- FIN- LCY- LCY- LCY- NCY- NCY- NCY- Avg. diagonal

A BBB AA A AA A BBB AA A BBB Avg. off-diag.

ECY-A 40.0 8.6 6.7 8.8 10.0 4.1 13.1 2.2 27.6 3.5 15.1

ECY-BBB 11.0 1.7 1.3 3.5 2.7 4.8 0.8 10.2 1.5 4.6

FIN-AA 4.2 4.7 2.3 0.9 3.4 0.8 8.1 0.9

FIN-A 7.9 2.8 1.0 4.9 0.8 10.3 1.2

LCY-AA 9.1 0.8 2.1 0.8 9.1 1.2

LCY-A 4.1 4.4 0.5 5.4 0.7

LCY-BBB 23.3 1.1 15.8 2.3

NCY-AA 0.7 3.6 0.3

NCY-A 46.4 5.3

NCY-BBB 4.1

Latent Factor Coefficients

Risk-Class
ECY- ECY- FIN- FIN- LCY- LCY- LCY- NCY- NCY- NCY-

A BBB AA A AA A BBB AA A BBB

ECY-A 63.3

ECY-BBB 13.5 30.2

FIN-AA 10.6 1.0 17.5

FIN-A 13.9 -1.8 18.6 15.5

LCY-AA 15.8 4.7 3.0 0.5 25.0

LCY-A 6.5 6.1 0.8 0.3 -2.0 18.1

LCY-BBB 20.7 6.5 6.3 6.4 -6.7 13.5 39.4

NCY-AA 3.4 1.0 2.3 -0.5 0.4 1.1 0.2 7.4

NCY-A 43.6 14.4 18.8 6.4 3.7 8.8 8.4 19.2 40.0

NCY-BBB 5.5 2.5 1.8 1.2 0.4 0.9 1.9 1.1 4.1 18.5

Factor Spread Correlations
`````````̀filtered

empirical ECY- ECY- FIN- FIN- LCY- LCY- LCY- NCY- NCY- NCY-

A BBB AA A AA A BBB AA A BBB

ECY-A 100.0 22.8 46.5 45.6 39.1 22.7 28.2 27.2 57.0 19.2

ECY-BBB 25.7 100.0 17.8 12.4 19.9 32.8 35.0 10.8 19.4 24.1

FIN-AA 38.3 19.1 100.0 78.1 29.7 12.2 21.9 33.1 42.3 14.8

FIN-A 34.6 4.2 82.3 100.0 27.4 11.8 22.7 29.4 39.6 11.6

LCY-AA 51.4 25.2 29.7 27.0 100.0 10.7 15.1 28.0 26.7 12.2

LCY-A 17.1 26.0 8.9 6.7 5.7 100.0 26.6 13.0 25.4 6.6

LCY-BBB 35.5 20.2 24.9 27.0 11.7 45.5 100.0 13.2 24.2 24.8

NCY-AA 34.3 25.5 42.2 30.8 22.7 16.7 22.3 100.0 47.1 9.5

NCY-A 51.0 37.7 51.0 46.8 40.3 28.7 46.1 61.9 100.0 19.5

NCY-BBB 15.4 13.4 11.0 11.2 11.4 7.8 16.9 13.7 26.6 100.0

Asset Spread Correlations
`````````̀filtered

bootstrap ECY- ECY- FIN- FIN- LCY- LCY- LCY- NCY- NCY- NCY-

A BBB AA A AA A BBB AA A BBB

ECY-A 100.0 7.5 6.5 8.0 13.7 5.7 3.4 5.8 11.0 10.6

ECY-BBB 7.9 100.0 6.0 10.9 10.3 16.1 0.4 6.5 5.5 6.1

FIN-AA 5.6 6.1 100.0 15.3 0.8 -0.5 0.2 6.2 16.0 0.2

FIN-A 8.5 12.3 17.4 100.0 8.0 5.2 4.8 13.6 7.3 5.2

LCY-AA 15.5 9.7 -2.3 5.9 100.0 -2.4 1.4 6.1 11.5 10.8

LCY-A 5.6 13.4 -0.8 5.0 -4.5 100.0 14.5 5.3 2.9 -0.4

LCY-BBB 4.8 -1.3 3.0 2.9 3.8 11.8 100.0 2.7 3.0 4.5

NCY-AA 5.6 6.7 6.4 10.9 4.0 2.7 3.5 100.0 7.5 5.5

NCY-A 11.9 3.7 9.9 6.0 6.2 1.4 4.3 7.7 100.0 12.1

NCY-BBB 11.0 4.8 -0.1 2.7 11.3 -2.0 6.3 3.4 11.0 100.0

Table 4.17: Credit Dependence of Four-Sector Model
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4.4.8.5 Conclusion of Estimation

For the estimation of the structural risk class factor model price data from the European

corporate bond market from 01/01/1999 to 31/12/2003 was used. Term structures of

interest rates for rating and sector-rating classes were fitted using the Nelson-Siegel func-

tional form. In a two-step procedure, optimal factor coefficients, process parameter and

filtered series of systematic factors and specific asset values are determined by an EKF-

based QML estimation. Observation data for the estimation of the asset value process

were bootstrapped to ensure a homogenous quality of yield spreads.

The observation sample of obligors is held constant throughout annual intervals, so that

credit spreads of different ratings may intercept in the course of the estimation period.

The fitting of riskless term structures results in average price residuals between −0.3 and

0.8 bps. Term structures of credit risk classes show average price residuals in the range

of −16.2 to 26.4 bps. Term structures, standard deviations and correlations of empirical

and bootstrapped yield spreads are sufficiently reproduced by factor- and asset-implied

yield spreads.

Structural credit valuation models with premature default triggered at a constant default

threshold show a distinct pattern of fitting errors for the term structure of par-bond yield

spreads, due to functional restrictions in the shape of the first-passage time distribution.

While an underfitting is observed for one-year and ten-year yield spreads, three-year and

five-year spreads are overfitted. Relaxing the assumption of a constant default threshold,

as it is done in the model presented by Hull et al. (2005), will provide a better fit of

individual term structures. However, the accompanying increase of model complexity

renders the model inappropriate for large portfolio applications.

Estimated asset correlations range from 0.3% to 46.4%, but have an average value of

9.4% (10.1%, 15.1%) for inner-class correlations and 4.3% (4.1%, 4.6%) for inter-class cor-

relations of the rating class (two-sector, four-sector) model. A comparison of factor and

asset correlations of annual estimates with those of the total estimation period reveals a

considerable variation of correlations in time. However, it is unclear, whether the varia-

tion of correlations represents a sampling effect or results from the time-inhomogeneity of

correlations.

Estimation periods that span a complete credit cycle result in drift-rate estimates close

to zero. In connection with strictly positive riskless rates it yields real-world probabilities

of default that exceed risk-neutral default probabilities and that deviate considerably

from historical default rates as determined by rating agencies. The development of credit

valuation models that incorporate mean-reversion of asset values may provide a better

concordance of real-world and risk-neutral default probabilities.





Chapter 5

Simulation Results

The backtesting approach introduced in Section 2.4.4 is assessed in a simulation study

based on the structural risk class factor model from Chapter 3 and the definition of credit

loss in Section 2.3.5. Different specifications of the adequacy zones of portfolio credit

loss are examined. The upper bound of the green zone of model adequacy (acceptance

barrier) is based on an alternative parameter specification of the credit portfolio model

under hypothesis H0 in (2.22), which is more conservative from a regulatory point of view.

The lower bound of the red zone of model rejection (rejection barrier) represents a quantile

of the loss distribution provided by the model to be tested under hypothesis H0 in (2.21).

The range between the acceptance barrier and the rejection barrier is termed as the yellow

zone of model indetermination. After the general decisions on the backtesting hypotheses

and the related specification of backtesting zones, the simulated distributions of credit

portfolio loss, the resulting capital charges and the presumed supervisory judgement on

the model adequacy are examined for different portfolios, parameter specifications and

structural variations of the portfolio model.

The composition of a basis portfolio of homogenous loans and a diversified portfolio of

heterogenous loans that resembles the characteristics of real-word corporate loan portfolios

is detailed in Section 5.1. Section 5.2 outlines the simulation model. In order to gain

insights for the specification of the backtesting procedure the impact of the

• level of significance,

• definition of credit loss, and

• alternative model

on the location of the adequacy zones of credit loss is examined in Section 5.3. In Section

5.4 a basis case scenario is examined to identify the effects of a variation of model struc-

ture, model parameterization and portfolio characteristics on portfolio credit loss and the
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location of zones of model adequacy. The basis case is specified by the basis portfolio of

homogenous loans, a single risk class, a time horizon of one year and four intermediate

simulation intervals. For the basis case, the model components examined with regard to

their effect on backtesting are:

• asset correlation,

• default model (Merton-type vs. premature default),

• number of simulation intervals,

• length of time horizon,

• homogenous probability of default,

• homogenous time-to-maturity,

• granularity of principal values,

• risk class model, and

• drift and volatility parameters.

In Section 5.5, a diversified portfolio with heterogenous probabilities of default, maturities

and principal value of exposures is considered, so that the portfolio better reflects the char-

acteristics of a real-world corporate loan portfolio. Furthermore, the risk class structure

distinguishes between two economic sectors with different inner-sector and inter-sector

asset correlations. This diversified portfolio case is examined with regard to a variation

in

• the number of simulation intervals,

• the length of the forecast period,

• drift and volatility parameter

affecting portfolio credit loss and zone locations. Finally, in Section 5.6, the diversified

portfolio is used in combination with the parameter estimates from Chapter 4 to determine

the zone locations of the backtesting for a real-world model specification. Compared to

the synthetic model parameterization described in Section 5.5 the diversified portfolio will

refer to empirically calibrated rating-class, two-sector and four-sector models that specify

credit dependence on the basis of risk classes defined by the rating and sector affiliation

of exposures.
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5.1 Portfolio Composition

Simulations are based on a portfolio of N = 900 exposures i = 1, ..., N , characterized

by a one-year probability of default pi = P [Ti ≤ 1], coupon rate ci, maturity Ti and

principal amount Ki as well as drift parameter µi and volatility σi of asset value V i
t .

Omitting the interest rate and recovery risk, the riskless rate of each exposure i is fixed

at ri = r = 5% and a homogenous recovery rate %i = % = 50% is set for any simulation

scenario. The Parameter variations considered include maturity, face value, PD, drift and

volatility parameters, as well as asset correlations either for a subset of exposures or for

the entire portfolio.

Variations in the characteristics of exposures and in the underlying portfolio model are

analyzed based on a homogenous basis portfolio and a diversified basis portfolio. The

homogenous basis portfolio consists of exposures with identical time to maturity Ti = T =

5, principal value Ki = K = 1, default threshold V
i
= V = K and one-year probability

of default pi = p = 1% for any exposure i = 1, ..., N . The dynamics of asset values

V i
t are specified by a homogenous drift µi = µ = 0% and standard deviation σi = σ =

10%. Portfolio characteristics closer to real-world credit portfolios are received by relaxing

Parameter
Homogenous Diversified

Parameter Set
Basis Portfolio Basis Portfolio

r 5% 5% {5%}
µi 0% 0% {0%, 8%}
σi 10% 10% {10%}
pi 1% {0.5%, 1.5%} {0.5%, 1%, 1.5%}
Ti 1 {1, 5, 10} {1, 5, 10}
Ki 1 {1, 10, 100} {1, 10, 100}
%i 50% 50% {50%}
ρa

ij {0%, 5%, 10%, 15%, 20%, 25%, 30%}

Table 5.1: Parameter Sets

the requirement of homogeneity for face value, PD, maturity and sector affiliation of

exposures. The diversified basis portfolio divides exposures into one half with probability

of default pi = 0.5%, i ≤ 450 and a second half of exposures with pi = 1.5%, i > 450, with

the average PD of exposures remaining unchanged at 1%. A face value of Ki = 1(10, 100)

is assigned to 563(225, 112) exposures, which approximately represents 4%(16%, 80%) of

the total face value of the portfolio. A maturity of Ti = 1(5, 10) is set to one third of

the exposures, so that the average maturity of the diversified portfolio increases to 5.33

years. Finally, a second risk class assumed to represent a different economic sector is

introduced and exposures are divided by half between sectors. The correlation structure

of exposures is now characterized by asset correlations between exposures of the same

sector (inner-sector correlation) and by asset correlations between exposures of different
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sectors (inter-sector correlation). The inner-sector correlations are set equal for both

sectors and the homogenous inter-sector correlations are considered to be lower than inner-

sector correlations for any simulation scenario. Conditional on the restrictions above,

the attributes of face value, PD, time-to-maturity and sector affiliation are distributed

equally across exposures. A summary of the considered variation of parameters for both

the homogenous and the diversified basis portfolio is given in Table 5.1.

5.2 Simulation Procedure

The risk class factor model of Section 3.5 based on the structural first-passage credit

valuation model of Section 3.2 is used to repeatedly simulate scenarios of jointly moving

asset values in order to derive distributions of credit portfolio value and portfolio credit

loss for different portfolios and model settings.

In the basis case, a one-year holding period between the time of risk consideration t = 0

and time horizon t = 1 is used in accordance with common practice in banking. The

initial asset value V i
0 and coupon rate ci of exposures i = 1, ..., N are calibrated in a

two-stage process. First, given drift µi and volatility σi, asset value V i
0 is calibrated, so

that the distribution function of the first-passage time FT (t) = P [τi ≤ t] = pi equals the

exogenous one-year default probability. Second, using the valuation model presented in

Chapter 3, coupon rate ci is adapted to calibrate the present value D(V i
0 , 0;φi) = Di

0 = Ki

of exposure i to equal par value Ki. With exposure characteristics restricted to full-year

maturities Ti and annual interest frequency, the interest ciKi of any exposure is not paid

not before time horizon t. The simulation of the joint evolution of asset values proceeds

as follows:

1. For interval h of the holding period a multi-variate standard-normal vector of inde-

pendent discrete-time factor returns ∆Ftεh until th is drawn by random

2. The N -dimensional multi-variate standard-normal vector ∆εth of independent spe-

cific factor returns of exposures is drawn.

3. The vector of normalized asset returns ∆V ε
th

is calculated using a discrete-time form

of (3.33). The vector Vth of asset values at the end th of sub-period h is derived

using (4.43).

4. If V i
th
≤ Ki, exposure i has unambiguously defaulted during sub-period h. If V i

th
>

Ki, the premature default in interval h is simulated by a random draw of a Bernoulli

default variable with conditional default probability P [τi < 1/h|V i
th

]. In case of

default, the value Di
th

of the exposure is set to recovery value βKi and the default

time is set at τi = th.
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5. For exposures not defaulted up to time th, steps 1− 4 are repeated until th = t.

6. At time horizon t, the values of credit exposures are calculated. In case of non-

default, it is Dt
i = D(V i

t
, t, φi), if τi ≤ t, it is Di

t
= Kiβe

(t−τ i)r.

7. The credit loss of exposures and the aggregate portfolio credit loss are calculated

according to the loss definitions L(E[D1])− L(D0).

8. Distributions of portfolio credit loss, portfolio value and default rate are generated

by repeating steps 1-7 for 50, 000 times.

First-passage time default models allow continuous-time credit default within any pre-

mature time interval. However, as outlined before, a multi-variate distribution of asset

value-derived continuous-time default times is not available in closed form. Instead, the

simulation of joint asset value-derived default times is performed in a two-stage procedure.

At first, correlated asset values at the end of sub-intervals of the holding period are

simulated by steps 1 − 3 without consideration of the absorbing default barrier being

hit in the mean time. Exposures with V i
th
≤ V

i
are set to credit default status at time

th. In the case that an unrestricted asset value V i
th
> V i exceeds the default barrier at

time th, the occurrence of a pre-mature default event is simulated in a second step using

a Bernoulli default variable with conditional default probability P [τi < th|V i
th−1/h, V

i
th

]

derived in Appendix E.1

In any case of default in interval h, the default time τ i is set equal to th. The specification

of default times is motivated by the monotonous increase of the first-passage density in

the short term, which makes defaults at the end of a sub-interval more likely. The mea-

surement error introduced by the discretization of default times is considered to be small

and is therefore neglected. In any case, the specification of default times is conservative,

since a deferral of the default time reduces accruals on the recovery received up to the

time t and accordingly reduces the portfolio value.

The value Di
t

= D(V i
t
, t;φi) of a non-defaulted exposure is derived from the simulated

asset value V i
th

at time horizon t, and the credit loss of exposures is calculated according

to the loss definitions Li(Di
0) and Li(E[Di

1]) from Chapter 2.3.5.

With respect to backtesting, each simulation run is executed twice, once using the model

specification to be tested and once for the alternative model in question. Estimation

errors for portfolio loss quantiles cannot be determined analytically, and the determination

of approximative standard errors of portfolio loss quantiles is omitted because of the

disproportionate efforts associated with a repeated simulation of loss distributions.

1 Drawing exact default times of exposures is too expensive computationally, since it involves the inversion
of the distribution function of conditional default times in Appendix E.
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5.3 Specification of Backtesting

5.3.1 Loss Definition

The definition of credit loss is critical in a mark-to-model portfolio valuation. For the

decision on the credit losses measure used in backtesting, the location of adequacy zones

is analyzed for different definitions of credit loss. The major characteristics that determine

the properties of a credit loss definition are:

• inclusion of interest income,

• applied reference value, and

• consideration of non-realized mark-to-model profits.

Admittedly, a shift in the location of adequacy zones caused by a different definition of

credit loss coincides with an according shift in portfolio credit loss observation, so that

the decision on model adequacy will generally not be altered. However, the applied credit

loss definitions, differ in the variation of zone locations with respect to different portfolio

characteristic and model specifications.

In Table 5.2, the 1%−, 50%−, and 99%−quantiles of portfolio credit loss are given as a

percentage of portfolio value D0 for different asset correlations. For the basis case, realized

gains do not appear due to a homogenous maturity T = 5 of exposures beyond the time

horizon of risk, so that loss definitions including and excluding unrealized mark-to-model

gains do not differ.

For the diversified case, a positive credit performance results either from exposures ma-

tured at t or from a positive change in the mark-to-model values of exposures. In the lower

part of Table 5.2 the credit loss of the diversified case portfolio is compared with respect

to exclusion vs. inclusion of unrealized mark-to-model profits. If unrealized profits are

excluded, only exposures with non-positive credit performance, i.e. a positive difference

between the reference value and the exposure value at time t, are considered in portfolio

loss. Including mark-to-market profits instead, positive credit performance compensates

for credit losses of other exposures, so that loss quantiles shift marginally to the left and

are even negative for q0.01 for L(E(Di
1)).

There are two reference values considered: the par value Di
0 of exposures at time t =

0 and the expected value E(Di
1) of the exposure at the risk horizon. Portfolio loss is

considered for both reference values including and excluding interest Kic
i paid at the risk

horizon. Asset correlations are considered in a range between 0%, which the represents

independence of exposures, and 30%. The former inner-sector correlation is set equal
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Interest income included not included

Loss Reference D0 E(D1) D0 E(D1)

Scenario ρa q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 q0.01 q0.5 q0.99

Basis case

0% 2.74 3.30 3.93 1.93 2.44 3.03 2.99 3.54 4.15 1.91 2.40 2.96

5% 1.18 3.14 6.97 0.74 2.29 5.63 1.35 3.39 7.21 0.74 2.26 5.46

10% 0.71 2.97 9.08 0.40 2.13 7.51 0.83 3.22 9.26 0.40 2.10 7.26

15% 0.43 2.78 10.82 0.22 1.95 9.10 0.52 3.04 10.97 0.22 1.94 8.77

20% 0.26 2.62 12.47 0.12 1.80 10.60 0.33 2.89 12.56 0.12 1.79 10.21

25% 0.16 2.45 14.10 0.07 1.65 12.15 0.21 2.73 14.15 0.07 1.64 11.66

30% 0.09 2.28 15.71 0.03 1.48 13.66 0.13 2.56 15.68 0.03 1.48 13.11

Diversified case

excl. realized

mtm profits

0% - 0% 1.39 2.40 3.88 0.87 1.79 3.19 1.54 2.53 3.92 0.87 1.75 3.05

5% - 5% 0.70 2.28 5.59 0.39 1.67 4.65 0.81 2.41 5.62 0.39 1.64 4.44

10% - 10% 0.40 2.16 7.13 0.19 1.55 6.04 0.48 2.29 7.14 0.20 1.53 5.79

15% - 15% 0.25 2.03 8.43 0.10 1.43 7.22 0.31 2.17 8.38 0.10 1.41 6.90

20% - 20% 0.15 1.90 9.76 0.05 1.30 8.46 0.20 2.05 9.65 0.05 1.29 8.08

25% - 25% 0.09 1.77 11.09 0.02 1.18 9.71 0.12 1.92 10.91 0.02 1.18 9.26

30% - 30% 0.05 1.64 12.13 0.01 1.06 10.70 0.08 1.80 11.89 0.01 1.06 10.16

Diversified case

incl. realized

mtm profits

0% - 0% 1.34 2.35 3.83 0.68 1.60 3.00 1.54 2.53 3.92 0.70 1.58 2.89

5% - 5% 0.66 2.23 5.54 0.20 1.48 4.47 0.81 2.41 5.62 0.22 1.47 4.29

10% - 10% 0.36 2.11 7.09 0.00 1.37 5.86 0.48 2.29 7.14 0.02 1.36 5.63

15% - 15% 0.20 1.98 8.39 -0.09 1.24 7.05 0.31 2.17 8.38 -0.07 1.24 6.74

20% - 20% 0.11 1.85 9.72 -0.14 1.12 8.29 0.20 2.05 9.65 -0.12 1.12 7.93

25% - 25% 0.04 1.72 11.05 -0.17 1.00 9.55 0.12 1.92 10.91 -0.15 1.01 9.10

30% - 30% 0.01 1.59 12.09 -0.18 0.88 10.54 0.08 1.80 11.89 -0.16 0.89 10.00

Table 5.2: Quantiles for Different Loss Definitions

to the latter inter-sector correlation for the diversified portfolio. With increasing asset

correlation, the variation of loss distributions increases and the median portfolio loss

decreases. Since interest income of the first period represents additional loss potential,

the distances between the quantiles q0.01 and q0.99 increase with the inclusion of interest

at time t in portfolio value D1. In practical applications, the negligence of interest income

will mean the exclusion of calculatory effects such as margin requirements, administration

costs and refinancing conditions, as outlined in Section 2.3.5. Overall, omitting interest

paid at t1 reduces the spreading of portfolio loss and will enhance the discriminatory

power of the backtesting.

Bühler and Engel (2006) reveal that loss distributions that refer to Di
0 are especially sensi-

tive towards a change in the drift rate µ, whereas credit portfolio loss is more robust with

respect to a change in parameters if it refers to the expected values E(Di
1) of exposures.

Furthermore, considering reference values E(Di
1), the distance between the quantiles q0.01

and q0.99 is smaller for both the homogenous and the diversified basis case portfolio, and

the location of quantiles is more robust, so that derived zones of model adequacy will be

less sensitive to portfolio composition and model specification.

In the following, portfolio loss L(E[D1]), defined according to (2.6), is preferred as defi-

nition of portfolio loss, as it excludes interest income and unrealized mark-to-model and

obeys reference values E(Di
1). Furthermore, L(E[D1]) is in line with the objective of the

Basel Committee in that it only takes unexpected loss for the determination of capital
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charges into account, while the consideration of reference valuesDi
0 in loss definition L(D0)

according to (2.6), does not consider the expected dynamics of default risk throughout

the lifetime of exposures, so that portfolio loss is not restricted to unexpected loss. In

conclusion, loss definition L(E[D1]) fits best the criteria of methodological consistency,

robustness, independence of the accounting regime and prudence. However, adequacy

zones defined on the basis of L(D0) will be considered additionally as a reference, because

L(D0) is defined as being equivalent to market VaR.

5.3.2 Alternative Model

Backtesting VaR models, the location of the green zone is defined by the 0.5%−quantile

of an alternative model, whose 95%−quantile of portfolio market rate loss equals the

VaR predicted at a 99% level of confidence. From Section 2.4.4, it is known that the

binomial test of the VaR backtesting is meaningfully applicable only if a sufficient number

of independent observations is available, for example if the conditional pooled PD of a

risk class is to be tested using a cross-section of single-exposure default observations of

a credit portfolio. For the backtesting of the unconditional probability of default or the

portfolio credit loss, the binomial test is dismissed due to a lack of sufficient independent

observations of annual portfolio performance required for a satisfactory significance of the

test.

The backtesting approach suggested in Section 2.4.4 is based on a single observation of

portfolio credit loss with zones of model adequacy defined by quantiles of the loss distribu-

tion of the model to be tested and of an alternative more conservative model. Although the

backtesting approach is defined in principle, the specification of the alternative model to

be rejected is still undetermined. Model and portfolio characteristics that inter-relatedly

impact portfolio credit risk and that are considered to be changed in the alternative model

are the drift and diffusion rates of asset values, correlations, the average and concentration

of face values, PD, recovery rates and the time-to-maturity of the exposures. Distributions

of credit loss are examined for more conservative specifications of exposures’ (1) drift rate,

(2) asset volatility, (3) probability of default, and (4) asset correlation to decide on the

alternative model for backtesting. Model alternatives considered include combinations of

the following changes in portfolio and model specification:

• drift rate µ ∈ {0%,−8%},

• volatility σ ∈ {σ, σ + 10%},

• default probability p ∈ {p, p+ 1%}, and

• asset correlation ρa = ρa + 5%.
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For the distribution of default rate and portfolio loss L(E[D1]) and L(D0), the 0.5%−,

1%−, and 2.5%−quantiles, which potentially qualify as acceptance barrier, are presented

in Table 5.3, where the left four columns indicate the respective parameter set. An

additional indicator for the appropriateness of an alternative model is the median portfolio

loss for the model to be tested, which is required to be lower than the acceptance barrier

to ensure that at least half of the portfolio observations of a correct model fall into the

green zone.

For any parameter set, quantiles of the default rate are not convenient to define the green

zone of model adequacy, because the absence of defaults is required for a model to qualify

as adequate in most cases. Only for an asset correlation ρa ≤ 10% do the parameter

sets with p = 2% allow for a default rate acceptance barrier qα > 0 for level α ≤ 97.5%

of confidence. The parameter set {µ = 0%, σ = 10%, p = 1%} constitutes the basis

Parameter set Default rate L(E[D1]) L(D0)

µ σ p ρa/ρa q0.005 q0.01 q0.025 q0.5 q0.005 q0.01 q0.025 q0.5 q0.005 q0.01 q0.025 q0.5

0% 10% 1% 0% 0.22 0.33 0.44 1.00 1.86 1.91 1.99 2.40 2.93 2.99 3.08 3.54

5% 0.00 0.00 0.11 0.89 0.65 0.74 0.90 2.26 1.20 1.35 1.58 3.39

10% 0.00 0.00 0.00 0.67 0.33 0.40 0.54 2.10 0.71 0.83 1.05 3.22

15% 0.00 0.00 0.00 0.56 0.17 0.22 0.33 1.94 0.40 0.52 0.72 3.04

20% 0.00 0.00 0.00 0.44 0.08 0.12 0.20 1.79 0.25 0.33 0.50 2.89

25% 0.00 0.00 0.00 0.33 0.04 0.07 0.12 1.64 0.15 0.21 0.35 2.73

30% 0.00 0.00 0.00 0.22 0.02 0.03 0.07 1.48 0.08 0.13 0.23 2.56

35% 0.00 0.00 0.00 0.22 0.01 0.02 0.04 1.34 0.05 0.08 0.16 2.41

2% 0% 0.89 1.00 1.11 2.00 3.01 3.07 3.17 3.72 4.37 4.44 4.55 5.14

25% 0.00 0.00 0.00 0.89 0.10 0.15 0.27 2.74 0.29 0.40 0.63 4.16

20% 1% 0% 0.22 0.33 0.44 1.00 4.58 4.65 4.75 5.30 6.58 6.65 6.75 7.34

25% 0.00 0.00 0.00 0.33 0.33 0.45 0.70 4.43 0.89 1.14 1.59 6.55

2% 0% 0.89 1.00 1.11 2.00 6.43 6.51 6.63 7.29 8.67 8.75 8.88 9.58

5% 0.22 0.22 0.44 1.78 3.12 3.44 3.91 7.11 4.82 5.20 5.77 9.41

10% 0.00 0.11 0.11 1.56 2.02 2.32 2.83 6.92 3.42 3.81 4.48 9.23

15% 0.00 0.00 0.00 1.33 1.34 1.62 2.11 6.73 2.54 2.92 3.60 9.06

20% 0.00 0.00 0.00 1.11 0.91 1.15 1.61 6.55 1.90 2.28 2.94 8.91

25% 0.00 0.00 0.00 0.89 0.59 0.82 1.21 6.34 1.41 1.79 2.40 8.72

30% 0.00 0.00 0.00 0.78 0.42 0.58 0.91 6.17 1.11 1.41 1.98 8.57

35% 0.00 0.00 0.00 0.56 0.24 0.38 0.66 5.97 0.77 1.06 1.59 8.40

-8% 10% 1% 0% 0.22 0.33 0.44 1.00 2.09 2.14 2.22 2.66 3.23 3.29 3.38 3.87

25% 0.00 0.00 0.00 0.33 0.05 0.08 0.15 1.86 0.18 0.25 0.40 3.03

2% 0% 0.89 1.00 1.11 2.00 3.37 3.44 3.55 4.11 4.82 4.89 5.01 5.62

25% 0.00 0.00 0.00 0.89 0.12 0.19 0.32 3.10 0.35 0.48 0.74 4.62

20% 1% 0% 0.22 0.33 0.44 1.00 4.81 4.87 4.98 5.53 6.83 6.91 7.02 7.62

25% 0.00 0.00 0.00 0.33 0.36 0.49 0.76 4.66 0.95 1.21 1.69 6.82

2% 0% 0.89 1.00 1.11 2.00 6.74 6.83 6.95 7.62 9.02 9.11 9.24 9.94

25% 0.00 0.00 0.00 0.89 0.66 0.88 1.32 6.69 1.53 1.91 2.56 9.10

Table 5.3: Quantiles for Alternative Parameter Sets (Basis Case)

case scenario with a homogenous portfolio, so that the choice of an alternative model is

restricted to parameter sets that differ by elevated asset correlations. Loss quantiles and

accordingly, the extension of a green zone decrease with increasing correlation, which is

unfavorable with respect to the discrimination power of backtesting.
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The remaining parameter sets represent a change in the basis case portfolio with respect

to the drift rate, volatility and PD assumed for the parameter set of the alternative model.

For all parameter sets loss distributions shift to the right, so that the quantiles considered

as potential acceptance barrier increase, while the elevation of the asset correlation is

accompanied by a left shift in quantiles and a decrease in the discriminatory power.

If changes in the drift rate, volatility and PD are combined, the right shift in loss dis-

tributions is more pronounced and the potential extension of the green zone is enlarged,

with the maximum effect occurring for the parameter set {µ = −8%, σ = 20%, p = 2%}.

Defining the alternative model on the basis of an increased asset correlation provides a

two-fold incentive for banks to underestimate asset correlation. First, capital charges

derived from Credit-VaR decrease with the estimated asset correlation. Second, the green

zone will simultaneously expand which reduces the risk of model rejection. In contrast,

the underestimation of PD lowers capital charges, but at the same time increases the

risk of model rejection caused by a reduced green zone. In consequence, a fixed asset

correlation ρa = 25% will be set for the alternative model, which seems to be conservative

with respect to the estimates of asset correlations.

Furthermore, negative drift rates will be omitted, because the corresponding increase in

calibrated asset values at t = 0 will elevate cumulative probabilities of default in the

long term only, which is considered not to be relevant for examinations of annual credit

loss. Additionally, the alternative model must provide a conservative representation of

a through-the-cycle credit portfolio model, which is not appropriately represented by

negative drift rates as affirmed in the previous chapter by the close-to-zero drift rate

estimates for the five-year estimation period.

The alternative default probability p represents an inadequate specification of exposures’

default probability by the rating model, while asset volatility σ refers to an error in the

estimation of asset value processes. A reasonable backtesting of a model’s ability to set

adequate capital requirements will consider both sources of modelling error, so that setting

µi = µi, σi = σi + 10%, pi = pi + 1%, ρai,j = 25% (5.1)

for exposure i, j = 1, ..., N will define the alternative model of backtesting.2

2 Setting {µ = 0%, σ = 20%, p = 2%, ρa = 25%} stipulates an acceptance barrier that covers the credit
loss incurred by financial institutions in the distressed credit markets between 2001 to 2003. In this
consideration, L(D0) is assumed to approximate the definition of credit loss used by financial institutions
and differences in quality and composition of credit portfolios are neglected.
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5.3.3 Level of Significance

The objective of backtesting is to ensure with a specified level of confidence that the

credit portfolio models employed by financial institutions are adequate to set capital

requirements. Setting the significance level of backtesting, therefore, has to consider

the level of confidence required for an adequate model and the size of credit loss must be

specified, which is considered to be immaterial for the assumption of an appropriate credit

risk model. Quantiles of the loss distributions of the model to be tested and its alternative

Dist. Type ρa q0.0001 q0.001 q0.005 q0.01 q0.025 q0.05 q0.1 q0.5

Default Rate 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.89

L(E[D1]) 25% 0.14 0.30 0.59 0.82 1.21 1.69 2.34 6.34

L(D0) 25% 0.48 0.86 1.41 1.79 2.40 3.10 3.98 8.72

Dist. Type ρa q0.5 q0.9 q0.95 q0.975 q0.99 q0.995 q0.999 q0.9999

Default

Rate

0% 1.00 1.44 1.56 1.67 1.89 2.00 2.11 2.44

5% 0.89 1.89 2.33 2.78 3.33 3.78 4.78 6.78

10% 0.67 2.22 3.00 3.78 4.89 5.78 8.00 11.22

15% 0.56 2.44 3.44 4.56 6.22 7.56 11.44 17.78

20% 0.44 2.56 3.78 5.33 7.56 9.56 14.33 21.67

25% 0.33 2.67 4.22 6.11 8.89 11.22 18.33 29.56

30% 0.22 2.67 4.44 6.78 10.33 13.67 22.22 34.22

L(E[D1])

0% 2.40 2.70 2.79 2.87 2.96 3.02 3.16 3.28

5% 2.26 3.76 4.30 4.83 5.46 5.94 7.09 8.73

10% 2.10 4.37 5.25 6.11 7.26 8.07 9.90 12.39

15% 1.94 4.76 5.98 7.18 8.77 9.84 12.80 16.77

20% 1.79 5.19 6.66 8.20 10.21 11.81 15.32 20.15

25% 1.64 5.52 7.31 9.21 11.66 13.42 18.10 23.90

30% 1.48 5.73 7.84 10.08 13.11 15.32 20.57 26.84

L(D0)

0% 3.54 3.87 3.97 4.06 4.15 4.22 4.36 4.52

5% 3.39 5.22 5.87 6.48 7.21 7.74 9.02 10.78

10% 3.22 5.98 7.01 7.98 9.26 10.16 12.16 14.82

15% 3.04 6.49 7.89 9.20 10.97 12.13 15.32 19.38

20% 2.89 7.02 8.69 10.38 12.56 14.27 17.96 22.93

25% 2.73 7.46 9.46 11.51 14.15 15.96 20.79 26.72

30% 2.56 7.75 10.08 12.49 15.68 18.02 23.36 29.73

Table 5.4: Quantiles of Significance Test (Basis Case)

determine the significance level of the backtesting and the location of the green, yellow and

red zones of portfolio loss that prompt supervisory action in terms a potential add-on to

the capital charge or a detailed supervisory examination of Credit-VaR related processes

and models.

For different levels 1−α and α of test significance with respect to the model to be tested

and the alternative model defined in Section 5.3.2, the quantiles of default rate, L(E[D1])

and L(D0) for the homogenous and the diversified basis case portfolios are depicted in

Tables 5.4 and 5.5.

The difference between the acceptance barrier qα and the rejection barrier q1−α determines

the yellow zone of model indetermination, which is tightened if α or α is increased. The
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median q0.5 of portfolio loss for a tested model must be smaller than the acceptance barrier

to ensure that at least half of the portfolio observations of a correct model are in the green

zone.

For the homogenous basis case, both L(E[D1]) and L(D0) provide q0.01 < q0.5 for any

asset correlation considered. For L(E[D1]), loss quantile q0.1 supersedes q0.5 for any of the

indicated correlations ρa > 5%, whereas an acceptance bound q0.05 exceeds the median of

L(E[D1]) only for ρa > 25%. Accordingly, for L(D0), it is q0.1 > q0.5 for any positive asset

correlation, whereas q0.05 exceeds q0.5 only for ρa of 15% and above. For the diversified

Dist. Type ρa q0.0001 q0.001 q0.005 q0.01 q0.025 q0.05 q0.1 q0.5

Default Rate 25% - 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.89

L(E[D1]) 25% - 25% -0.02 0.22 0.55 0.74 1.09 1.47 2.04 5.19

L(D0) 25% - 25% 0.53 1.03 1.54 1.83 2.33 2.84 3.54 7.07

Dist. Type ρa q0.5 q0.9 q0.95 q0.975 q0.99 q0.995 q0.999 q0.9999

Default

Rate

0% - 0% 1.00 1.44 1.56 1.67 1.89 2.00 2.11 2.44

10% - 0% 0.89 1.89 2.44 2.89 3.56 4.00 5.11 6.44

10% - 5% 0.78 2.11 2.67 3.22 4.00 4.67 6.33 9.11

10% - 10% 0.78 2.22 2.89 3.67 4.67 5.44 7.56 10.78

20% - 0% 0.67 2.33 3.11 4.00 5.22 6.22 8.78 12.67

20% - 10% 0.56 2.44 3.33 4.56 6.00 7.44 10.56 14.67

20% - 20% 0.44 2.56 3.67 5.11 7.22 9.00 13.44 20.00

L(E[D1])

0% - 0% 1.58 2.25 2.46 2.66 2.89 3.04 3.43 3.88

10% - 0% 1.47 2.84 3.33 3.79 4.41 4.87 5.71 7.15

10% - 5% 1.42 3.01 3.61 4.20 5.02 5.56 6.82 8.81

10% - 10% 1.36 3.18 3.90 4.62 5.63 6.36 7.91 10.33

20% - 0% 1.32 3.25 4.04 4.85 5.84 6.56 8.24 11.02

20% - 10% 1.23 3.51 4.52 5.48 6.77 7.88 9.77 13.96

20% - 20% 1.12 3.73 4.89 6.09 7.93 9.21 12.24 16.86

L(D0)

0% - 0% 2.53 3.24 3.47 3.68 3.92 4.09 4.47 4.88

10% - 0% 2.41 4.00 4.56 5.05 5.73 6.25 7.16 8.70

10% - 5% 2.36 4.22 4.90 5.55 6.45 7.05 8.37 10.52

10% - 10% 2.29 4.43 5.25 6.04 7.14 7.90 9.62 12.11

20% - 0% 2.26 4.50 5.38 6.24 7.32 8.06 9.84 12.90

20% - 10% 2.16 4.85 5.96 7.02 8.39 9.56 11.59 15.85

20% - 20% 2.05 5.14 6.42 7.71 9.65 11.02 14.12 18.88

Table 5.5: Quantiles of Significance Test (Diversified Case)

basis case portfolio, the quantiles of portfolio loss under the alternative model in Table

5.5 perform better with respect to model discrimination compared to the homogenous

portfolio. For L(E[D1]), it is q0.05 ≥ q0.5 if the average asset correlation is 5% or above.

For L(D0), it is q0.05 > q0.5 for all correlation structures taken into account.

A level of significance α = 5% is considered to be adequate to stipulate the rejection of the

alternative hypothesis H0 in (2.22), and the acceptance barrier is set to q0.05, so that the

alternative model can be expected to be erroneously rejected in one out of twenty cases,

while given a correct model a realized portfolio loss given a correct model is expected

to appear outside the green zone for not more than half of the portfolio observations.

Although, the backtesting performs better in terms of the type-I-error for the diversified
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portfolio, the extension of the green zone is smaller than for the homogenous basis case

portfolio, which reveals that Credit-VaR and the variation in portfolio loss are smaller for

the diversified portfolio.

The rejection barrier of the yellow zone is defined by a quantile of the loss distribution

itself. In contrast to market-risk backtesting, the confidence level of hypothesis H0 in

2.22 is set to be lower than the presumed quantile of Credit-VaR, because, in market-risk

backtesting, the test statistic is not directly linked to the VaR or to the capital charge, so

that model rejection and the level of test significance are not related to the capital charge.

A model that incurs credit loss above the average regulatory capital charge of 8% must be

considered as inadequate. If the confidence level of H0 were set higher than the confidence

level of Credit-VaR, the credit risk model would not be rejected before the bank ran out of

capital, so that the 99.5% confidence level of credit risk, employed to determine the Basel

II capital requirements, is considered to be a natural upper level for the significance level

of H0. If the rejection barrier and, thus, the level of confidence in H0 is decreased, the

type-I-error of rejecting a correct model increases and supplemental supervisory actions

to evaluate model adequacy are prompted sooner, so that banks’ credit risk models will

be examined more frequently.

A significance level of α = 5% is defined for the rejection of hypothesis H0, and the re-

jection barrier of the yellow zone is specified by the loss quantile q0.95. This specification

has been chosen, because simulation results for the diversified portfolio reveal that other-

wise the model will be rejected with certainty for any asset correlation considered, if the

percentage credit loss is lower than the average 8% capital requirement.

5.4 Simulation of Homogenous Portfolios

5.4.1 Basis Case with a Homogenous Portfolio

In the basis case of a portfolio of homogenous exposures, the distributions of loss and

portfolio value are simulated with risk horizon t = 1 and four sub-intervals. Considering

a single risk class, all exposures refer to one systematic factor in a common way, so that

asset correlations ρi,j = ρa ∈ {0%, 5%, 10%, 15%, 20%, 25%, 30%} between any pair of

exposures i 6= j; i, j=1, ..., N are equal. Asset values V i
0 and coupon rates ci are calibrated,

so that Di
0 = Ki, i = 1, ..., N . Table 5.6 provides location and dispersion statistics on the

distribution of percentage credit default, credit loss L(E[D1]) and L(D0), and portfolio

value D1 for the basis case scenario with homogenous exposures and different ρa.

For ρa = 0, asset values and credit defaults are independent and the quantiles of the

default rate p̂ ∼ Bin(N, p) are specified using a binomial distribution. An increase of ρa
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results in a decrease of q0.01 for the default rate, whereas q0.99 increases up to 10.33% for

ρa = 30%, i.e. the distribution of p̂ becomes more leptokurtic and skewed to the right,

which is also confirmed by the decrease in the median.

Due to the homogenous time-to-maturity T > t adverse changes in credit values are not

only incurred due to credit default but also due to adverse changes in the mark-to-model

values of non-defaulted exposures. In accordance, if the q0.5-quantile of p̂, L(E[D1]), and

L(D0) decreases, then the median of the portfolio value D1 increases with ρa, with the

size of the change in portfolio loss being equal to the change in portfolio value. In Table

Default Rate bp Portfolio Value D1

ρa Min. q0.01 q0.5 q0.99 Max. µ(bp) σ(bp) Skew Kurt. Min. q0.01 q0.5 q0.99 Max. µ(D1) σ(D1) Skew Kurt.

0% 0.00 0.33 1.00 1.89 2.89 1.00 0.33 0.33 0.11 95.82 96.42 97.05 97.62 98.07 97.04 0.26 -0.11 0.01

5% 0.00 0.00 0.89 3.33 7.78 1.00 0.71 1.55 4.13 88.88 93.08 97.20 99.62 100.70 97.04 1.40 -0.70 0.82

10% 0.00 0.00 0.67 4.89 13.56 1.01 1.02 2.48 10.43 84.16 90.93 97.35 100.29 101.36 97.03 2.01 -0.98 1.45

15% 0.00 0.00 0.56 6.22 24.56 1.00 1.29 3.48 21.24 76.64 89.18 97.52 100.75 101.63 97.05 2.46 -1.24 2.49

20% 0.00 0.00 0.44 7.56 31.78 1.01 1.56 4.14 29.27 72.54 87.53 97.67 101.05 101.77 97.04 2.88 -1.42 3.11

25% 0.00 0.00 0.33 8.89 31.44 1.01 1.84 4.75 36.63 72.05 85.90 97.82 101.27 101.94 97.03 3.26 -1.58 3.82

30% 0.00 0.00 0.22 10.33 48.89 1.00 2.14 5.72 53.11 64.73 84.36 97.98 101.44 101.99 97.06 3.59 -1.77 4.83

25% 0.00 0.00 0.89 14.89 55.00 1.99 3.04 3.72 21.75 59.78 75.77 91.34 98.76 101.04 90.55 5.02 -0.89 0.95

L(E[D1]) L(D0)

ρa Min. q0.01 q0.5 q0.99 Max. µ(L) σ(L) Skew Kurt. Min. q0.01 q0.5 q0.99 Max. µ(L) σ(L) Skew Kurt.

0% 1.49 1.91 2.40 2.96 3.45 2.41 0.23 0.15 0.02 2.54 2.99 3.54 4.15 4.71 3.55 0.25 0.12 0.01

5% 0.24 0.74 2.26 5.46 9.21 2.41 1.01 0.98 1.58 0.58 1.35 3.39 7.21 11.30 3.55 1.26 0.82 1.09

10% 0.06 0.40 2.10 7.26 13.48 2.42 1.47 1.38 2.90 0.20 0.83 3.22 9.26 15.92 3.56 1.81 1.15 1.96

15% 0.02 0.22 1.94 8.77 20.65 2.41 1.82 1.77 4.96 0.08 0.52 3.04 10.97 23.39 3.54 2.23 1.46 3.32

20% 0.00 0.12 1.79 10.21 24.62 2.42 2.15 2.02 6.19 0.04 0.33 2.89 12.56 27.47 3.56 2.62 1.65 4.12

25% 0.00 0.07 1.64 11.66 25.11 2.42 2.46 2.26 7.58 0.01 0.21 2.73 14.15 27.95 3.57 2.98 1.84 5.03

30% 0.00 0.03 1.48 13.11 32.36 2.40 2.73 2.53 9.49 0.00 0.13 2.56 15.68 35.28 3.54 3.29 2.06 6.29

25% 0.06 0.82 6.34 21.32 37.27 7.27 4.54 1.12 1.51 0.26 1.79 8.72 24.23 40.22 9.55 4.93 0.94 1.04

Table 5.6: Basis Case Statistics

5.7, the adequacy barriers and the 99.5%−Credit-VaR of the indicated distributions are

presented for different asset correlations, with the alternative model defined by p = p+1%,

σ = σ + 10% and homogenous asset correlation ρ = 25%, as outlined in Section 5.3.2.

In the course of the simulation, exposure values Di
1 and default times τi are derived from

V i
th

, th = t/h, ..., t and i = 1, ..., N to determine the distributions of the default rate p̂,

portfolio loss L(E[D1]) and L(D0), and portfolio value D1 for the model to be tested

and the alternative model. The acceptance barrier of the green zone equals the quantile

q0.05 of the respective loss distribution under the alternative model, whereas the rejection

barrier of the red zone is given by the quantile q0.95 of the original model. For ρa = 0%,

asset values and credit defaults are independent. The acceptance and rejection barriers do

not intersect even for independent asset returns, so that the specification of backtesting is

more restrictive compared to the approach proposed by Bühler and Engel (2006)3, because

the existence of a yellow zone of model indetermination prevents an unambiguous model

3 The intersection of acceptance and rejection barriers is enabled for independent assets by setting p = 5p.
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bp L(E[D1]) L(D0) D1

ρa q0.05 q0.5 q0.95 q0.995 q0.05 q0.5 q0.95 q0.995 q0.05 q0.5 q0.95 q0.995 q0.05 q0.5 q0.95 q0.995

0% 1.00 1.56 2.00 2.40 2.79 3.02 3.54 3.97 4.22 97.05 96.61 96.35

5% 0.89 2.33 3.78 2.26 4.30 5.94 3.39 5.87 7.74 97.20 94.50 92.53

10% 0.67 3.00 5.78 2.10 5.25 8.07 3.22 7.01 10.16 97.35 93.28 90.00

15% 0.56 3.44 7.56 1.94 5.98 9.84 3.04 7.89 12.13 97.52 92.33 87.98

20% 0.44 3.78 9.56 1.79 6.66 11.81 2.89 8.69 14.27 97.67 91.48 85.82

25% 0.00 0.33 4.22 11.22 1.69 1.64 7.31 13.42 3.10 2.73 9.46 15.96 97.23 97.82 90.67 84.09

30% 0.22 4.44 13.67 1.48 7.84 15.32 2.56 10.08 18.02 97.98 90.02 82.00

Table 5.7: Basis Case

discrimination. With increasing asset correlation ρa, the probability of joint defaults and

the probability of joint non-defaults increases, and as does the dispersion of portfolio loss,

Credit-VaR and the rejection barrier.

The acceptance barrier is defined by the quantile q0.05 given ρa = 25% and does not

depend on the asset correlation ρa of the original model. Setting asset correlation ρa =

20% equal to its upper bound in the New Capital Adequacy framework,4 the yellow

zone [1.69%, 6.66%] ([3.1%, 8.69%]) of model indetermination on loss definition L(E[D1])

(L(D0)), does not reach the 8% target capital level and allows, from a banking perspective,

an acceptable but noncritical portfolio loss before triggering regulatory actions. L(D0)

indicates higher acceptance and rejection barriers compared to L(E[D1]), because its

reference values Di
0 turn out to be higher than the expected values E(Di

1) of exposures.

5.4.2 Default-at-Maturity Model

The effects of the type of the default model used are examined by comparing the first-

passage default model with a constant default threshold defined in Section 3.2 to a Merton-

style default-at-maturity model for an adapted basis portfolio with homogenous maturity

Ti = T = t = 1 of exposure i = 1, ..., N . The Credit-VaR and zone locations of L(E[D1]),

L(D0) are presented in Table 5.8 for the usual asset correlations. The acceptance and

rejection barriers as well as median and Credit-VaR are defined as before. A comparison

of the loss quantiles of the homogenous portfolio with one-year maturities to the basis case

portfolio reveals that adverse changes in the mark-to-model values of exposures exceed

credit loss from default by far and account for more than half of the Credit-VaR.

The reduced maturity T = t of exposures results in a negative acceptance barrier of credit

loss L(E[D1]) for the adapted portfolio, because the redemption of face values at time t

overcompensates the default expectation in the low quantiles of loss distribution, while

the par reference values ensure that portfolio loss L(D0) stays positive.

In the right tail of both distributions, the portfolio loss is higher for the Merton-style

4 BCBS (2006c), p. 63ff.
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Default Type Basis Case First Passage Model Default-at-Maturity Model

Loss Type ρa q0.05 q0.5 q0.95 q0.995 q0.05 q0.5 q0.95 q0.995 q0.05 q0.5 q0.95 q0.995

L(E[D1])

0% 2.40 2.79 3.02 0.00 0.28 0.50 0.00 0.29 0.51

5% 2.26 4.30 5.94 -0.05 0.67 1.39 -0.06 0.70 1.51

10% 2.10 5.25 8.07 -0.16 1.00 2.38 -0.17 0.99 2.47

15% 1.94 5.98 9.84 -0.22 1.21 3.21 -0.23 1.26 3.35

20% 1.79 6.66 11.81 -0.27 1.39 4.25 -0.29 1.44 4.48

25% 1.69 1.64 7.31 13.42 -0.50 -0.33 1.55 5.16 -0.52 -0.34 1.66 5.62

30% 1.48 7.84 15.32 -0.38 1.71 6.28 -0.40 1.85 6.64

L(D0)

0% 3.54 3.97 4.22 0.50 0.78 0.99 0.51 0.81 1.03

5% 3.39 5.87 7.74 0.44 1.16 1.89 0.45 1.22 2.02

10% 3.22 7.01 10.16 0.33 1.49 2.87 0.35 1.50 2.98

15% 3.04 7.89 12.13 0.28 1.71 3.71 0.29 1.78 3.86

20% 2.89 8.69 14.27 0.22 1.88 4.75 0.23 1.96 5.00

25% 3.10 2.73 9.46 15.96 0.00 0.17 2.05 5.65 0.00 0.17 2.17 6.14

30% 2.56 10.08 18.02 0.11 2.21 6.77 0.12 2.36 7.16

Table 5.8: Default-at-Maturity Model

model. Although, the asset values are calibrated to a homogenous annual default proba-

bility p = 1% for both models, default events occur earlier under the first-passage model,

so that recovery values accrue until risk horizon t and reduce portfolio loss compared to

the default-at-maturity model. As expected, this accrual effect is more pronounced for

the high quantiles q0.95 and q0.995 than for the median.

Furthermore, simulated default rates in the right tail of the default rate distribution are

slightly higher for the Merton-style default model, while the two models do not differ

significantly in the mean or in the median of the default rate. This is explained by the

calibration of the asset values, which are set higher under the first-passage model, so

that the negative returns of the systematic factor necessary to trigger the simultaneous

default of numerous exposures is more pronounced and therefore more unlikely under the

first-passage model. With respect to simulated default rates and the accrual effect of

recoveries, it can be stated that default-at-maturity models imply a higher likelihood of

simultaneous default events and yield higher Credit-VaR predictions than first-passage

models given identical default probabilities and asset correlations.

5.4.3 Variation of Simulation Intervals

The simulation procedure outlined in Section 5.2 divides the holding period into sub-

intervals to approximate the joint dynamics of asset values. In Table 5.9, Credit-VaR and

zone locations of simulations of the homogenous basis case model with four and twelve

sub-intervals, i.e. quarterly and monthly sub-periods, are compared to assess the impact

of a more precise modelling of the joint dynamics of asset values. The 99.5%−quantiles of

p̂ (L(E[D1]), L(D0)) are higher with 12 intervals for 2 (5, 5) out of 7 correlation scenarios,

where changes in Credit-VaR mostly coincide to the changes of the respective quantiles

of the default rate. Additionally, with 12 sub-intervals, default events occur earlier and
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Interval Count h = 4 h = 12 Difference in %

Loss Type ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

L(E[D1])

0% 2.79 3.02 2.79 3.02 0.11 -0.21

5% 4.30 5.94 4.30 5.93 -0.08 0.18

10% 5.25 8.07 5.22 8.08 0.50 -0.16

15% 5.98 9.84 5.97 9.99 0.11 -1.53

20% 6.66 11.81 6.64 11.77 0.32 0.40

25% 1.69 7.31 13.42 1.67 7.30 13.60 1.40 0.08 -1.36

30% 7.84 15.32 7.87 15.37 -0.38 -0.32

L(D0)

0% 3.97 4.22 3.97 4.23 0.06 -0.24

5% 5.87 7.74 5.87 7.72 0.04 0.27

10% 7.01 10.16 6.98 10.17 0.32 -0.07

15% 7.89 12.13 7.87 12.30 0.23 -1.37

20% 8.69 14.27 8.66 14.21 0.36 0.40

25% 3.10 9.46 15.96 3.07 9.44 16.17 0.85 0.19 -1.34

30% 10.08 18.02 10.12 18.06 -0.31 -0.19

Table 5.9: Simulation Intervals (Basis Case)

the accrual of recoveries is enforced, so that Credit-VaR is expected to fall. Although, it

appears from the percentage changes of Credit-VaR that Credit-VaR increases marginally

with the number of sub-intervals. From the results, it cannot be proven unambiguously

that credit dependence is more pronounced and loss distributions will change systemat-

ically if the number of sub-intervals is increased. Since the 95%-quantiles of the default

rate are equal for both simulation variants, and the rejection barriers q0.95 of portfolio

loss do not reveal a significant difference resulting from an increase of sub-intervals, four

sub-intervals are considered to be sufficient for an accurate determination of the rejection

barriers.

Analogously, simulations with quarterly and monthly sub-intervals are compared in Table

F.2 for the diversified portfolio described in Section 5.5. With 12 sub-intervals, the 99.5%-

quantile of the default rate, (L(E[D1]), L(D0)), is higher for 6 (6,6) out of 12 correlation

scenarios, so that the results do not confirm a change in credit dependence when the

number of intervals is altered.

5.4.4 Variation of Holding Period

With an enhanced reassessment frequency of obligors’ credit quality and the growing

securitization of credit portfolios, the consideration of sub-annual holding periods of

Credit-VaR is appropriate. Analogously to shortening the Credit-VaR horizon for risk

management purposes, VaR predictions are conducted and backtested on a daily basis,

whereas the determination of market-risk capital requirements refers to a ten-day hold-

ing period. The effect of the use of a quarterly or semi-annual holding period on credit

risk predictions and backtesting is examined in Table 5.10 for the homogenous basis case

model. If the holding period is shortened, a sub-linear reduction of Credit-VaR defined
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Holding Period t = 0.25 t = 0.5 t = 1

Loss Type ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

L(E[D1])

0% 0.89 0.95 1.49 1.60 2.79 3.02

5% 1.33 1.76 2.25 3.10 4.30 5.94

10% 1.57 2.31 2.72 4.16 5.25 8.07

15% 1.78 2.80 3.12 5.18 5.98 9.84

20% 1.98 3.22 3.41 6.08 6.66 11.81

25% 3.30 2.13 3.72 2.38 3.69 6.89 1.69 7.31 13.42

30% 2.31 4.21 4.00 7.79 7.84 15.32

L(D0)

0% 1.19 1.26 2.09 2.21 3.97 4.22

5% 1.71 2.20 3.02 3.99 5.87 7.74

10% 2.00 2.80 3.58 5.17 7.01 10.16

15% 2.24 3.33 4.05 6.27 7.89 12.13

20% 2.46 3.78 4.40 7.23 8.69 14.27

25% 3.91 2.64 4.30 3.41 4.73 8.10 3.10 9.46 15.96

30% 2.84 4.82 5.08 9.03 10.08 18.02

Table 5.10: Holding Period (Basis Case)

by L(E[D1]) (L(D0)) is observed, e.g. from 8.07% (10.16%) to 2.31%(2.8%) of D0 for

ρa = 10%. Moreover, the acceptance barriers increase considerably. For t = 0.25, the

intersection of the acceptance and rejection barriers allows perfect discrimination between

the model and its alternative for both loss definitions. Even with a semi-annual holding

period, perfect discrimination is still possible for asset correlations of 5% and below. The

improved discriminatory power provides some leeway in the definition of the alternative

model or enables the tightening the significance level of backtesting.

5.4.5 Variation of Default Probability

The acceptance and the rejection barriers depend on the characteristics of the portfolio

that is considered, and particularly on the default probability of exposures. Tables 5.11

and 5.12 indicate that Credit-VaR and the rejection barrier increase in the one-year prob-

ability of default p of the homogenous basis portfolio. For default probability p > 1%,

Credit-VaR exceeds the regulatory capital target of 8% even for small values of ρa, which

supports a calculation of model-derived capital requirements on the basis of a Credit-VaR

with a holding period t < 1.

In contrast, the acceptance barriers of L(E[D1]) (L(D0)) reach a minimal value of q0.05 =

1.65% (q0.05 = 2.96%) at p = 2.5% (p = 1.5%),5 which can be explained by a two-fold

effect. First, the sensitivity of the exposure value to a change in the asset value increases

as the default probability decreases, so that credit loss resulting from a change in mark-

to-model values is comparatively high for small values of p. Second, credit default is more

probable for high values of p. In summary, credit loss from adverse changes in mark-to-

5 For the indicated values of p, default probabilities p = p + 1% of the alternative model vary between
1.05% and 11%.
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L(E[D1]) in [%] Homogenous Probability of Default

0.5%

Quantile ρa 0.05% 0.10% 0.25% 0.50% 1.00% & 1.5% 2.00% 2.50% 5.00% 10.00%

1.5%

q0.05 25% 2.42 2.20 1.93 1.76 1.69 1.70 1.65 1.66 1.68 1.82 2.15

q0.95

0% 0.97 1.23 1.68 2.16 2.79 2.71 3.26 3.66 4.00 5.34 7.28

5% 1.51 1.90 2.60 3.33 4.30 4.16 4.99 5.56 6.06 7.96 10.52

10% 1.86 2.33 3.19 4.06 5.25 5.06 6.05 6.73 7.32 9.53 12.42

15% 2.14 2.68 3.67 4.65 5.98 5.76 6.90 7.72 8.38 10.86 14.05

20% 2.38 2.99 4.08 5.20 6.66 6.47 7.73 8.60 9.32 12.01 15.41

25% 2.59 3.26 4.45 5.63 7.31 7.02 8.38 9.38 10.18 13.14 16.79

30% 2.77 3.49 4.78 6.17 7.84 7.67 9.19 10.11 10.97 14.13 17.99

q0.995

0% 1.08 1.35 1.84 2.35 3.02 2.94 3.52 3.94 4.30 5.70 7.71

5% 2.18 2.71 3.67 4.66 5.94 5.72 6.82 7.55 8.18 10.50 13.47

10% 3.02 3.76 5.04 6.32 8.07 7.71 9.11 10.04 10.80 13.63 16.98

15% 3.79 4.70 6.30 7.83 9.84 9.47 11.15 12.29 13.18 16.34 19.85

20% 4.67 5.77 7.67 9.40 11.81 11.32 13.20 14.71 15.72 19.08 22.71

25% 5.39 6.67 8.86 10.85 13.42 13.04 15.17 16.75 17.89 21.56 25.27

30% 6.03 7.44 9.93 12.64 15.32 15.11 17.50 18.51 19.64 23.44 27.20

Table 5.11: Variation of Default Probability for L(E[D1])

model values dominates q0.05 for small values of p, whereas loss from default is prevalent

for high values of p.6

With respect to the different definitions of portfolio loss, the acceptance barrier of

L(E[D1]) is comparatively steady for p > 2%, whereas for L(D0) the location of the green

zone is more stable for p < 2% . Considering exposures in two rating classes with differ-

L(D0) in [%] Homogenous Probability of Default

0.5%

Quantile ρa 0.05% 0.10% 0.25% 0.50% 1.00% & 1.5% 2.00% 2.50% 5.00% 10.00%

1.5%

q0.05 25% 3.16 3.07 2.97 2.96 3.10 3.07 3.19 3.32 3.45 4.02 4.94

q0.95

0% 1.33 1.69 2.34 3.04 3.97 3.86 4.68 5.26 5.78 7.83 10.84

5% 1.99 2.52 3.48 4.49 5.87 5.67 6.85 7.67 8.40 11.19 15.12

10% 2.39 3.03 4.18 5.38 7.01 6.75 8.15 9.11 9.95 13.13 17.53

15% 2.73 3.45 4.74 6.07 7.89 7.61 9.17 10.28 11.21 14.80 19.57

20% 3.01 3.80 5.24 6.73 8.69 8.44 10.15 11.33 12.35 16.17 21.25

25% 3.26 4.13 5.68 7.24 9.46 9.09 10.91 12.27 13.38 17.52 22.94

30% 3.48 4.40 6.06 7.87 10.08 9.86 11.86 13.14 14.31 18.72 24.42

q0.995

0% 1.44 1.82 2.51 3.24 4.22 4.11 4.96 5.58 6.13 8.25 11.35

5% 2.73 3.44 4.70 6.01 7.74 7.48 8.95 9.96 10.86 14.25 18.65

10% 3.66 4.59 6.24 7.90 10.16 9.72 11.59 12.86 13.93 17.92 22.93

15% 4.50 5.62 7.60 9.55 12.13 11.67 13.88 15.39 16.58 21.01 26.38

20% 5.45 6.76 9.09 11.25 14.27 13.66 16.11 18.03 19.36 24.03 29.64

25% 6.21 7.74 10.35 12.78 15.96 15.52 18.24 20.23 21.69 26.72 32.52

30% 6.89 8.53 11.46 14.68 18.02 17.71 20.68 22.03 23.52 28.81 34.66

Table 5.12: Variation of Default Probability for L(D0)

ent default probabilities pi ∈ {0.5%, 1, 5%} in a portfolio with average default probability

p = 1%, the standard deviation of the default rate and, correspondingly, the standard

6 The acceptance barrier q0.05 of the default rate distribution does not include any default event for
p < 3.5%.
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deviation of portfolio loss declines, as previously observed by Bühler et al. (2002), so

that the green zone expands marginally, while the yellow zone shrinks considerably by a

decrease of the rejection barrier.

In conclusion, the acceptance barrier and especially the rejection barrier markedly depend

on the default probabilities of exposures, so that the characteristics of the portfolio must

definitely be considered when the zones of model adequacy are specified. An improved

portfolio diversification with respect to exposure ratings will in general reduce the yellow

zone and produce an improved model discrimination.

5.4.6 Variation of Time-to-Maturity

The prevalent portion of portfolio credit loss does not arise from credit default, rather

it is due to changes in the mark-to-model valuations of exposures, as noted in Section

5.4.2. The sensitivity of a credit valuation to a change in the asset value increases with

the time-to-maturity of the exposure. In Table 5.13, Credit-VaR and zone locations are

examined for three basis-case portfolios with adapted homogenous maturities T = 1, 5, 10,

and additionally for a portfolio of loans with a 5.33 year average maturity and equally

distributed maturities Ti ∈ {1, 5, 10}. For T = 1, a negative portfolio credit loss is

Time-to-Maturity T=1 T=5 Ti ∈ {1,5,10} T=10

Loss Type ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

L(E[D1])

0% 0.28 0.50 2.79 3.02 2.03 2.25 2.99 3.22

5% 0.67 1.39 4.30 5.94 3.17 4.50 4.57 6.26

10% 1.00 2.38 5.25 8.07 3.91 6.23 5.57 8.45

15% 1.21 3.21 5.98 9.84 4.48 7.72 6.31 10.21

20% 1.39 4.25 6.66 11.81 5.04 9.26 7.03 12.28

25% -0.50 1.55 5.16 1.69 7.31 13.42 1.51 5.47 10.78 3.36 7.63 13.90

30% 1.71 6.28 7.84 15.32 5.98 12.57 8.27 15.81

L(D0)

0% 0.78 0.99 3.97 4.22 3.03 3.26 4.30 4.55

5% 1.16 1.89 5.87 7.74 4.42 5.91 6.29 8.22

10% 1.49 2.87 7.01 10.16 5.29 7.83 7.48 10.71

15% 1.71 3.71 7.89 12.13 5.96 9.46 8.37 12.65

20% 1.88 4.75 8.69 14.27 6.61 11.13 9.23 14.87

25% 0.00 2.05 5.65 1.79 9.46 15.96 1.88 7.11 12.71 3.84 9.94 16.61

30% 2.21 6.77 10.08 18.02 7.70 14.57 10.69 18.66

Table 5.13: Variation of Time-to-Maturity

obtained at the acceptance barrier for L(E[D1]), and compared to the basis portfolio with

T = 5, the rejection bounds decrease sharply for L(E[D1]) and L(D0), irrespective of

the asset correlation used. Credit-VaR declines correspondingly. This left shift of loss

distributions is caused exclusively by the absence of adverse changes in mark-to-model

credit valuations, since exposures either default or redeem at T = t = 1.

Accordingly, the sensitivity of credit valuations to a change in the asset value increases

with the time-to-maturity of exposures, which explains the distinct upward shift of loss
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distributions given T = 10 and arbitrary asset correlations. If ρa = 10% is considered

as an example, the acceptance barriers for L(E[D1]) (L(D0)) raise to 3.36% (3.84%),

rejection barriers increase to 5.57% (7.48%) and the resulting Credit-VaR is above the

8% target capital ratio at 8.45% (10.71%).

If time-to-maturity increases, the yellow zone widens from a range of 1.5% (1.49%) for

L(E[D1]) (L(D0)), T = 1 and ρa = 10%, to a range of 3.56% (5.22%) for T = 5, which

reduces the discrimination power of the backtesting. However, for homogenous T = 10,

the yellow zone shrinks again to a range of 2.21% (3.64%).

The acceptance barrier is more sensitive to a change in T than the rejection barrier, be-

cause credit values in q0.05 show a higher variation compared to T = 5 and loss definitions

exclusively consider negative credit performance, whereas mark-to-model valuation profits

are by definition not included in the portfolio loss. For example, with a positive factor

realization, the predominant positive changes in credit valuations do not compensate for

the losses suffered by a few loans, so that portfolio loss may be observed even for extreme

positive states of the factor, which explains the increase in q0.05 for T = 10.

If the portfolio includes exposures of different maturities Ti ∈ {1, 5, 10}, the acceptance

barriers decrease further to 1.51% (1.88%) and the rejection barriers for ρa = 10% de-

crease to 3.91% (5.29%), which indicates that the effect of short-maturity exposures on

Credit-VaR and backtesting barriers overcompensates the increase of the high quantiles of

portfolio loss induced by the distant-maturity exposures. Thus, a diversification of matu-

rities will balance unfavorable maturity-derived effects on the location of the backtesting

barriers, so that the acceptance zone is restricted to a range that might be acceptable with

respect to supervisory requirements, and that nevertheless covers typical observations of

portfolio credit loss throughout the credit cycle.

With respect objective of minimizing the capital requirements in a mark-to-model setting,

banks have an incentive to shorten the average maturity of credit portfolios. This increases

the vulnerability of portfolios to the cyclicity of credit markets, because redemption and

prolongation of an enlarged portion of the portfolio will take place under adverse market

conditions, so that the number of credit defaults will potentially increase and banks’

capital endowments may be distorted.

5.4.7 Variation of Risk Concentration and Asset Correlation

Risk concentrations in a credit portfolio arise from exposures being heterogenous with

respect to face value, correlation, rating or maturity. In Table 5.14, the effects of portfolio

concentrations with respect to face value and economic sectors are examined. First, the

case of a portfolio with 563, (225, 112) exposures of face value Ki = 1 (10,100), but
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otherwise equal to the homogenous basis portfolio, is examined, so that small (medium,

large) exposures make up 4%, (16%, 80%) of the total portfolio value. Second, exposures

of the homogenous basis portfolio are equally assigned to one out of two sectors, which

are defined by equal inner-sector asset correlations and different inter-sector correlations,

indicated by the pair of correlations in the second column of Table 5.14.

Loss Type L(E[D1]) L(D0)

Face Value ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

K=1

0% 2.79 3.02 3.97 4.22

5% 4.30 5.94 5.87 7.74

10% 5.25 8.07 7.01 10.16

15% 5.98 9.84 7.89 12.13

20% 6.66 11.81 8.69 14.27

25% 1.69 7.31 13.42 1.79 9.46 15.96

30% 7.84 15.32 10.08 18.02

Ki ∈ {1,10,100}

0% 3.33 3.92 4.56 5.20

5% 4.48 6.25 6.04 8.04

10% 5.34 8.26 7.10 10.39

15% 6.08 9.93 7.98 12.23

20% 6.79 11.84 8.81 14.26

25% 1.62 7.32 13.49 1.70 9.46 16.07

30% 7.96 15.59 10.20 18.30

K=1

0% - 0% 2.79 3.02 3.97 4.22

5% - 5% 4.29 5.91 5.85 7.71

10% - 0% 4.35 6.06 5.89 7.86

10% - 5% 4.78 6.98 6.44 8.95

10% - 10% 5.21 7.94 6.96 10.01

15% - 5% 5.26 8.04 7.01 10.08

20% - 0% 5.33 8.29 7.06 10.35

15% - 15% 5.93 9.92 7.82 12.22

20% - 10% 5.99 9.94 7.88 12.23

30% - 0% 6.25 10.48 8.11 12.65

20% - 20% 6.61 11.68 8.64 14.10

30% - 10% 6.76 11.87 8.76 14.23

25% - 25% 1.68 7.26 13.45 1.80 9.39 16.01

30% - 20% 7.28 13.42 9.41 15.96

30% - 30% 7.75 15.12 9.99 17.78

Table 5.14: Variation of Risk Concentration

With heterogenous face values, both loss distributions exhibit a higher Credit-VaR and a

lower skewness and kurtosis, so that the acceptance barriers decline to 1.62%(1.7%) for

both L(E[D1]) and L(D0). In consequence, the range of the yellow zone increases and the

discriminatory power of backtesting deteriorates.

For the case of two economic sectors, the alternative model is specified by homogenous

inter- and inner-sector correlations ρai,j = 25%, ∀i 6= j, which represent a conservative

assumption on the diversification effects of different sectors.7 The comparison of corre-

lation structures with an equal average asset correlation, such as the correlation tuples

7 Comparing the quantiles of the homogenous basis portfolio with those of the two-sector model with
respective homogenous inner- and inter-sector correlations reinforces the stability of loss distributions
with respect to simulation error.
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L(E[D1]) µ = -8% µ = 0% µ = 8%

σ ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

σ = 5%

0% 1.79 1.99 1.60 1.81 1.25 1.45

5% 2.83 4.15 2.52 3.73 1.93 2.91

10% 3.51 5.80 3.14 5.29 2.41 4.13

15% 4.03 7.42 3.62 6.69 2.77 5.39

20% 4.53 9.13 4.09 8.13 3.12 6.76

25% 2.06 4.98 10.49 2.06 4.45 9.68 2.25 3.50 8.01

30% 5.40 12.09 4.86 11.47 3.67 9.44

σ = 10%

0% 2.88 3.11 2.79 3.02 2.67 2.91

5% 4.43 6.16 4.30 5.94 4.14 5.71

10% 5.36 8.17 5.25 8.07 5.00 7.89

15% 6.19 10.17 5.98 9.84 5.74 9.69

20% 6.80 11.82 6.66 11.81 6.39 11.42

25% 1.65 7.48 13.85 1.69 7.31 13.42 1.76 6.97 13.22

30% 8.18 15.51 7.84 15.32 7.63 14.89

σ = 20%

0% 4.00 4.26 4.04 4.29 4.08 4.35

5% 6.00 7.93 6.06 8.05 6.12 8.18

10% 7.17 10.27 7.20 10.52 7.29 10.63

15% 8.09 12.44 8.20 12.81 8.35 12.88

20% 8.98 14.72 9.02 14.65 9.28 15.01

25% 1.52 9.79 16.24 1.54 9.89 16.80 1.60 10.07 17.23

30% 10.55 18.27 10.81 18.74 10.85 19.52

Table 5.15: Variation of µ and σ for L(E[D1]) of the Homogenous Portfolio

(5%;5%) vs. (10%;0%), or (10%;10%) vs. (20%;0%), reveals that the rejection bound and

Credit-VaR are lower for more homogenous asset correlations, which raises concerns of

a potential underestimation of credit risk by conventional single-risk class models. Oth-

erwise, the introduction of a second sector with reduced inter-sector correlations lowers

rejection bounds and Credit-VaR, when compared to the respective one-sector scenario,

while the acceptance barriers remain unchanged.

In summary, a more comprehensive sector structure may result in a lower Credit-VaR and

an improved model discrimination, while concentrations in the face values of exposures

produce the opposite effect.

5.4.8 Variation of Asset Value Process

The homogenous drift rate µ and the homogenous diffusion rate σ of asset values impact

the distributions of portfolio value, default rate and portfolio credit loss. In Tables 5.15

and 5.16, Credit-VaR and zone locations of portfolio credit loss L(E[D1]) and L(D0) are

examined on the basis of the homogenous basis case portfolio for a variation of homogenous

µ ∈ {−8%, 0%, 8%} and homogenous σ ∈ {5%, 10%, 20%}. Credit-VaR and rejection

barriers increase with diffusion rate σ for both loss definitions independent of the drift

rate, This effect results from the increased variation of asset values, even if calibration of

asset values ensures that the default probability p = 1% remains unchanged for all loans.

For the acceptance barrier, however, the effects of a change in σ are more complex. For
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L(E[D1]), the acceptance barriers decrease σ as increases, whereas the acceptance barriers

of L(D0) decrease (increase) in σ for µ = 0% (µ = 8%) and yield an inner maximum of

q0.05 = 4.25% for µ = −8%. These mixed effects are due to the exclusion of positive credit

performance in the loss measures, which results in the omission of a varying number of

exposures in the portfolio loss at quantile q0.05.

L(D0) µ = -8% µ = 0% µ = 8%

σ ρa q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

σ = 5%

0% 2.55 2.77 2.09 2.31 1.07 1.26

5% 3.85 5.34 3.21 4.55 1.64 2.53

10% 4.65 7.20 3.93 6.25 2.06 3.63

15% 5.29 8.97 4.49 7.80 2.38 4.79

20% 5.86 10.79 5.03 9.36 2.69 6.01

25% 3.71 6.40 12.26 3.30 5.44 10.99 1.42 3.00 7.22

30% 6.88 13.95 5.94 12.86 3.16 8.49

σ = 10%

0% 5.11 5.37 3.97 4.22 2.50 2.72

5% 7.23 9.30 5.87 7.74 3.89 5.41

10% 8.45 11.70 7.01 10.16 4.71 7.51

15% 9.51 13.98 7.89 12.13 5.42 9.26

20% 10.26 15.79 8.69 14.27 6.04 10.97

25% 4.25 11.10 17.98 3.10 9.46 15.96 1.55 6.60 12.71

30% 11.95 19.79 10.08 18.02 7.23 14.38

σ = 20%

0% 6.89 7.19 5.70 5.99 4.44 4.73

5% 9.61 11.99 8.21 10.51 6.61 8.75

10% 11.14 14.80 9.59 13.31 7.84 11.30

15% 12.33 17.29 10.78 15.88 8.95 13.61

20% 13.43 19.83 11.75 17.86 9.93 15.79

25% 3.84 14.45 21.47 2.78 12.75 20.17 1.86 10.76 18.06

30% 15.38 23.67 13.82 22.21 11.57 20.39

Table 5.16: Variation of µ and σ for L(D0) of the Homogenous Portfolio

With µ = 8% and σ = 5%, L(E[D1]) even provides perfect discrimination for ρa = 5%,

just as L(D0) does for µ = 0% and σ = 5%. The rejection barrier increases beyond the

target capital charges for σ = 20% even for moderate asset correlations. Overall, the

discrimination power of backtesting improves with decreasing σ, while capital charges

decline. This effect gives banks an incentive to underestimate the diffusion rate of asset

values.

With respect to a change in the drift rate, acceptance barriers increase (decline) as µ

increases for L(E[D1]) (L(D0)), irrespective of the σ considered. The decrease in calibrated

asset values for increasing µ dominates for L(E[D1]), whereas the decrease of q0.05 in µ can

be attributed to a growing difference between the reference values Di
0 and the expected

values E(Di
1) of exposures. In contrast, the dependence of the rejection barrier and Credit-

VaR on µ is not clear-cut. For L(E[D1]) the rejection barrier and Credit-VaR decrease in

µ for small diffusion rates, but the effect for σ = 20% is opposite, whereas the rejection

barrier and Credit-VaR of L(D0) decline in µ for any σ.

Overall, the acceptance barriers of L(E[D1]) are more robust against a mis-specification

of µ, whereas acceptance barriers of L(D0) are more stable with respect to a change in σ.
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5.5 Simulation of Diversified Portfolios

5.5.1 Basis Case with Diversified Portfolio

In this section, a generalized model for a diversified portfolio is analyzed. In a two-sector

version of the risk class factor model in (3.36), the credit portfolio of diversified exposures,

defined in Section 5.1 and assumed to represent the characteristics of a typical real-world

corporate loan portfolio, is examined. The risk classes that determine asset correlations

ρai,j between exposures are assumed to be represented by the economic sectors of exposures

irrespective of the rating, i.e. the default probability of exposures. Table 5.17 provides the

backtesting barriers and Credit-VaR for default rate, portfolio loss L(E[D1]) and L(D0)

and portfolio value D1 of the diversified portfolio for different inner-sector and inter-sector

correlations, where correlation scenarios are ordered according to an increasing average

and increasing heterogeneity of asset correlations. Equal inter-sector and inner-sector

correlations correspond to the one-sector case with homogenous asset correlation ρa.

Diversified Case bp L(E[D1]) L(D0) D1

ρai,j q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

0% - 0% 1.56 2.00 2.46 3.04 3.47 4.09 96.94 96.29

5% - 0% 2.00 2.89 2.94 3.99 4.07 5.24 96.26 95.03

5% - 5% 2.33 3.78 3.27 4.72 4.49 6.09 95.78 94.10

10% - 0% 2.44 4.00 3.33 4.87 4.56 6.25 95.72 93.98

10% - 5% 2.67 4.67 3.61 5.56 4.90 7.05 95.35 93.13

15% - 0% 2.78 5.11 3.68 5.76 4.96 7.23 95.29 92.96

10% - 10% 2.89 5.44 3.90 6.36 5.25 7.90 94.97 92.22

15% - 5% 3.00 5.67 3.98 6.39 5.32 7.92 94.89 92.20

20% - 0% 3.11 6.22 4.04 6.56 5.38 8.06 94.85 92.09

15% - 10% 3.11 6.44 4.18 7.09 5.56 8.71 94.63 91.38

20% - 5% 3.22 6.78 4.28 7.16 5.68 8.77 94.51 91.34

25% - 0% 3.33 7.33 4.36 7.37 5.74 8.91 94.48 91.24

15% - 15% 3.33 7.22 4.46 7.69 5.90 9.38 94.26 90.70

20% - 10% 3.33 7.44 4.52 7.88 5.96 9.56 94.21 90.53

25% - 5% 3.56 8.00 4.55 8.02 5.98 9.65 94.20 90.47

30% - 0% 3.67 8.78 4.67 8.33 6.08 9.90 94.11 90.28

20% - 15% 3.56 8.22 4.73 8.54 6.22 10.24 93.93 89.80

25% - 10% 3.67 8.44 4.81 8.65 6.30 10.41 93.86 89.66

30% - 5% 3.78 9.22 4.89 8.83 6.37 10.61 93.79 89.50

20% - 20% 3.67 9.00 4.89 9.21 6.42 11.02 93.71 89.03

25% - 15% 3.78 9.11 4.97 9.26 6.49 11.04 93.64 89.00

30% - 10% 3.89 9.78 5.03 9.32 6.54 11.09 93.61 88.95

25% - 20% 3.89 9.89 5.19 10.02 6.76 11.82 93.36 88.23

30% - 15% 4.00 10.22 5.21 10.02 6.76 11.84 93.37 88.21

25% - 25% 0.00 4.11 10.78 1.47 5.38 10.66 2.84 7.00 12.55 97.31 93.10 87.49

30% - 20% 4.22 11.22 5.49 10.74 7.10 12.58 93.00 87.47

30% - 25% 4.22 11.89 5.62 11.37 7.24 13.27 92.85 86.74

30% - 30% 4.33 12.78 5.78 11.92 7.45 13.85 92.62 86.19

Table 5.17: Diversified Portfolio

The quantiles q0.95 and q0.995 of the default rate are equal to those of the homogenous

portfolio presented in Table 5.7 for independent exposures and for homogenous asset

correlation ρa = 5%. However, as the asset correlation increases, the quantiles of the

default rate reveal to be substantially lower compared to the homogenous portfolio case,
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with differences being more pronounced for q0.995. This reduced dispersion of the default

rate can be attributed to the diversification in default probabilities as observed analogously

for loss distributions in Section 5.4.5.

Portfolio value and credit loss are sensitive to the frequency and the average of maturities

in the portfolio. Compared to the homogenous portfolio in Table F.1 in the Appendix, the

variation in portfolio values increases due to the elevated sensitivity of the values of ten-

year credit exposures to a change in asset value and due to the increased risk concentration

introduced by the variation in face values.8 Reflecting the increase in Credit-VaR, the

dispersion of D1 decreases with increasing asset correlations.

The quantiles q0.99 of D1 in Table F.1 increase, because the missing potential of mark-to-

model loss of exposures that mature at time t overcompensates for the additional potential

of devaluation of the ten-year exposures. The median portfolio values are below par,

because, in a typical state of factors at time t, the outstanding contractual interest does

not suffice to compensate for the default risk of exposures. This effect is less pronounced

for the diversified portfolio, because exposures that redeem at T = t = 1 are not subject

to this effect and overcompensate for the additional decline in credit values of the ten-year

exposures. Since D1 is capped by the value of a corresponding riskless portfolio, quantiles

q0.01 of the value of a diversified portfolio do not exceed those of the homogenous portfolio.

For portfolio loss L(E[D1]) and L(D0) in Table F.1 acceptance and rejection barriers as

well as Credit-VaR are lower for the diversified portfolio with comparable asset correla-

tions. The considerable decrease in Credit-VaR can be explained by the reduced potential

of a mark-to-model devaluation of exposures that mature at time t, which overcompen-

sates the increased loss potential of ten-year exposures. For independent exposures, the

risk-smoothing effect of a variation of maturities is offset by the increased concentration

risk caused by a variation of face values. Acceptance barriers decline because the defi-

nition of credit loss excludes the netting of positive credit performance. The diversified

portfolio allows for fewer combinations of exposures that result in a considerable portfolio

loss, in a state where factors perform positive in general.

Overall, Credit-VaR declines and the yellow zone contracts if the diversified portfolio

is considered, giving banks an incentive to improve the diversification of their credit

portfolios. For example, the rejection barrier is still below banks’ typical 6% target

core capital ratio for an average asset correlation of 15%. In the case of homogenous

ρa = 20%, the yellow zone shifts from (1.69%, 6.66%) to (1.47%, 4.49%) for L(E[D1]) and

from (3.10%, 8.69%) to (2.84%, 6.42%) for L(E[D1]), so that the discriminatory power of

backtesting improves if a diversified portfolio is examined.

8 Cf. findings on Credit-VaR for different maturities in Section 5.4.6 and for different face values in
Section 5.4.7.
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5.5.2 Variation of Holding Period

The effects of a shortened quarterly or semi-annual holding period on the backtesting and

Credit-VaR of a diversified portfolio are generally identical to those of the homogenous

portfolio and are, for reasons of completeness, presented in Table 5.18.

Holding Period t = 0.25 t = 0.5 t = 1

Loss Type ρai,j q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

L(E[D1])

0% - 0% 0.79 0.93 1.38 1.68 2.46 3.04

10% - 0% 1.04 1.41 1.85 2.59 3.33 4.87

10% - 5% 1.13 1.63 1.97 3.00 3.61 5.56

10% - 10% 1.22 1.78 2.15 3.37 3.90 6.36

20% - 0% 1.23 1.83 2.18 3.53 4.04 6.56

20% - 10% 1.36 2.19 2.43 4.10 4.52 7.88

30% - 0% 1.39 2.30 2.54 4.39 4.67 8.33

20% - 20% 1.49 2.48 2.66 4.88 4.89 9.21

30% - 10% 1.51 2.54 2.70 4.87 5.03 9.32

25% - 25% 3.17 1.64 2.79 2.42 2.90 5.59 1.47 5.38 10.66

30% - 20% 1.62 2.87 2.90 5.51 5.49 10.74

30% - 30% 1.76 3.19 3.09 6.34 5.78 11.92

L(D0)

0% - 0% 1.01 1.16 1.82 2.12 3.47 4.09

10% - 0% 1.32 1.72 2.38 3.22 4.56 6.25

10% - 5% 1.43 1.97 2.55 3.67 4.90 7.05

10% - 10% 1.52 2.13 2.75 4.07 5.25 7.90

20% - 0% 1.53 2.18 2.78 4.21 5.38 8.06

20% - 10% 1.69 2.58 3.08 4.86 5.96 9.56

30% - 0% 1.71 2.66 3.17 5.09 6.08 9.90

20% - 20% 1.84 2.89 3.36 5.70 6.42 11.02

30% - 10% 1.86 2.93 3.39 5.66 6.54 11.09

25% - 25% 3.60 2.00 3.22 3.20 3.64 6.47 2.84 7.00 12.55

30% - 20% 1.98 3.30 3.63 6.36 7.10 12.58

30% - 30% 2.15 3.64 3.86 7.22 7.45 13.85

Table 5.18: Holding Period of Diversified Portfolio

Shortening the holding period leads to a decrease in the rejection barrier and Credit-

VaR, whereas the acceptance barrier increases. This yields a contracted yellow zone and

enhances the discriminatory power of the backtesting. For an asset-correlation structure

of (10%; 5%), the Credit-VaR of L(E[D1]) and L(D0) decreases to 1.63% (3.0%) and 1.97%

(3.67%) credit loss for a quarterly (semi-annual) holding period. For a quarterly holding

period, perfect model discrimination is achieved for any correlation structure considered.

Even with a semi-annual horizon, perfect discrimination is obtained for an average asset

correlation of 10% (15%) for L(E[D1]) (L(D0)).

Compared to the homogenous portfolio case, the backtesting barriers and Credit-VaR

are lower for the reasons outlined in the previous section, and the acceptance barriers of

L(E[D1]) and L(D0) decrease from to 1.69% (2.38%,3.3%) and 3.1% (3.41%,3.91%) to

1.47% (2.42%, 3.17%) and 2.84% (3.2%, 3.6%) for the annual (semi-annual, quarterly)

holding period. The improved discriminatory power allows either to define a less divergent

alternative model or to set a higher significance level of backtesting.



200 CHAPTER 5 - Simulation Results

5.5.3 Variation of Asset Value Process

Analogously to Section 5.4.8, the backtesting bounds and Credit-VaR of the diversified

portfolio are presented in Table 5.19 and 5.20 for any combination of a homogenous

µ ∈ {−8%, 0%, 8%} and a homogenous σ ∈ {5%, 10%, 20%}. Corresponding to the

L(E[D1]) µ = -8% µ = 0% µ = 8%

σ ρai,j q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

σ = 5%

0% - 0% 1.72 2.28 1.59 2.13 1.36 1.93

10% - 0% 2.30 3.68 2.11 3.43 1.76 2.92

10% - 5% 2.49 4.18 2.31 3.96 1.90 3.34

10% - 10% 2.75 4.75 2.52 4.39 2.03 3.78

20% - 0% 2.85 5.13 2.61 4.82 2.15 4.05

20% - 10% 3.14 6.12 2.87 5.73 2.36 4.78

30% - 0% 3.37 6.94 3.08 6.49 2.52 5.50

20% - 20% 3.49 7.41 3.17 6.91 2.56 5.70

30% - 10% 3.59 7.59 3.31 7.04 2.66 6.15

25% - 25% 1.83 3.79 8.60 1.83 3.53 8.02 2.00 2.78 6.60

30% - 20% 3.86 8.57 3.53 8.06 2.84 6.78

30% - 30% 4.07 9.69 3.72 9.00 3.07 8.04

σ = 10%

0% - 0% 2.50 3.06 2.46 3.04 2.42 2.99

10% - 0% 3.39 4.90 3.33 4.87 3.26 4.84

10% - 5% 3.69 5.55 3.61 5.56 3.53 5.45

10% - 10% 3.96 6.43 3.90 6.36 3.79 6.13

20% - 0% 4.10 6.61 4.04 6.56 3.96 6.41

20% - 10% 4.59 7.93 4.52 7.88 4.37 7.75

30% - 0% 4.77 8.38 4.67 8.33 4.60 8.21

20% - 20% 4.97 9.34 4.89 9.21 4.82 8.99

30% - 10% 5.14 9.42 5.03 9.32 4.97 9.32

25% - 25% 1.43 5.53 10.73 1.47 5.38 10.66 1.59 5.22 10.52

30% - 20% 5.58 10.74 5.49 10.74 5.30 10.70

30% - 30% 5.89 12.09 5.78 11.92 5.67 12.05

σ = 20%

0% - 0% 3.36 3.97 3.43 4.05 3.52 4.15

10% - 0% 4.51 6.21 4.59 6.34 4.69 6.51

10% - 5% 4.88 7.12 4.98 7.17 5.12 7.42

10% - 10% 5.22 7.88 5.33 8.05 5.47 8.15

20% - 0% 5.40 8.09 5.50 8.27 5.60 8.54

20% - 10% 6.01 9.54 6.13 9.78 6.19 9.98

30% - 0% 6.14 9.86 6.25 10.08 6.45 10.32

20% - 20% 6.53 11.04 6.67 11.31 6.86 11.55

30% - 10% 6.67 11.28 6.81 11.47 6.93 11.85

25% - 25% 1.17 7.08 12.46 1.24 7.25 12.95 1.28 7.44 13.20

30% - 20% 7.17 12.77 7.32 13.01 7.44 13.30

30% - 30% 7.67 14.01 7.82 14.33 7.96 14.77

Table 5.19: Variation of µ and σ for L(E[D1]) of the Diversified Portfolio

homogenous portfolio, Credit-VaR and rejection barriers increase with diffusion rate σ

for both loss definitions, independent of the drift rate. For the acceptance barrier, a

pattern identical to the homogenous portfolio is found. This can be attributed to the

exclusion of positive credit performance in portfolio loss. The acceptance barriers of

L(E[D1]) decrease if σ is increased, whereas the acceptance barriers of L(D0) decrease

(increase) in σ for µ = 0% (µ = 8%) and reach an inner maximum of q0.05 = 3.80% for

µ = −8%. The variability of the acceptance barrier is more pronounced for L(E[D1])

than for L(D0). Overall, the yellow zone expands and discriminatory power and Credit-

VaR rise as σ declines, which gives banks an incentive to underestimate asset volatilities.
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With respect to a change in the drift rate, acceptance barriers increase (decrease) as µ

L(D0) µ=-8% µ=0% µ=8%

σ ρai,j q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

σ = 5%

0% - 0% 2.42 3.00 2.10 2.65 1.39 1.93

10% - 0% 3.14 4.62 2.72 4.12 1.73 2.82

10% - 5% 3.38 5.20 2.95 4.70 1.85 3.21

10% - 10% 3.67 5.81 3.20 5.18 1.97 3.60

20% - 0% 3.75 6.17 3.29 5.59 2.08 3.87

20% - 10% 4.12 7.30 3.60 6.64 2.25 4.52

30% - 0% 4.36 8.03 3.80 7.28 2.41 5.25

20% - 20% 4.53 8.68 3.94 7.88 2.44 5.38

30% - 10% 4.63 8.82 4.08 7.94 2.53 5.82

25% - 25% 3.21 4.90 9.92 2.91 4.35 9.04 1.38 2.62 6.26

30% - 20% 4.96 9.92 4.34 9.08 2.67 6.42

30% - 30% 5.22 11.09 4.57 10.05 2.87 7.52

σ = 10%

0% - 0% 4.32 4.94 3.47 4.09 2.40 2.96

10% - 0% 5.54 7.27 4.56 6.25 3.18 4.72

10% - 5% 5.95 8.07 4.90 7.05 3.43 5.31

10% - 10% 6.30 9.05 5.25 7.90 3.68 5.95

20% - 0% 6.42 9.17 5.38 8.06 3.84 6.24

20% - 10% 7.06 10.71 5.96 9.56 4.22 7.50

30% - 0% 7.17 11.00 6.08 9.90 4.46 8.00

20% - 20% 7.56 12.29 6.42 11.02 4.64 8.70

30% - 10% 7.69 12.25 6.54 11.09 4.80 9.03

25% - 25% 3.80 8.23 13.75 2.84 7.00 12.55 1.45 5.02 10.19

30% - 20% 8.26 13.79 7.10 12.58 5.11 10.36

30% - 30% 8.69 15.19 7.45 13.85 5.45 11.70

σ = 20%

0% - 0% 5.72 6.41 4.81 5.49 3.88 4.51

10% - 0% 7.29 9.26 6.24 8.17 5.08 6.95

10% - 5% 7.79 10.36 6.72 9.14 5.54 7.86

10% - 10% 8.23 11.26 7.13 10.11 5.90 8.63

20% - 0% 8.39 11.43 7.29 10.30 6.03 9.04

20% - 10% 9.19 13.12 8.04 11.97 6.64 10.49

30% - 0% 9.23 13.34 8.12 12.20 6.89 10.81

20% - 20% 9.85 14.73 8.69 13.62 7.33 12.09

30% - 10% 9.98 14.97 8.83 13.74 7.40 12.38

25% - 25% 3.34 10.54 16.29 2.47 9.36 15.33 1.58 7.92 13.76

30% - 20% 10.64 16.62 9.43 15.43 7.93 13.83

30% - 30% 11.26 17.92 10.02 16.81 8.47 15.34

Table 5.20: Variation of µ and σ for L(D0) of the Diversified Portfolio

increases for L(E[D1]) (L(D0)), irrespective of the asset volatility. In contrast, the change

in the rejection barriers and Credit-VaR from a change of µ is special. For L(E[D1]), the

rejection barriers and Credit-VaR decrease in µ for small diffusion rates. However, the

opposite is true for σ = 20%. In contrast, the rejection barriers as well as Credit-VaR of

L(D0) decline in µ for any σ.

Comparing the results for the diversified portfolio with homogenous correlations to the

homogenous portfolio, acceptance and rejection barriers of L(E[D1]) and L(D0) are lower,

predominantly due to the impact of matured exposures in the portfolio. As before, the

specification of adequacy zones for L(E[D1]) is more robust against a mis-specification of

µ, whereas zone locations for L(D0) are more stable with respect to a change in σ.

For low correlations and σ = 5%, both loss measures even allow for perfect discrimination

between the model and its alternative. Compared to the homogenous case, the rejection

barriers and Credit-VaR of the diversified portfolio are considerably lower. Overall, the
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discriminatory power of backtesting improves as σ decreases, while capital charges decline,

which gives banks an incentive to underestimate the diffusion rate of asset values.

5.6 Empirical Model Specification

Subsequent to the examination of portfolio credit loss and the backtesting bounds of

synthetic model and portfolio characteristics, a diversified portfolio based on the empiri-

cally estimated risk class factor models described in Section 4.4 is examined. The model

structures considered, comprise the

• rating class model,

• two-sector model with five financial and non-financial rating classes, and

• four-sector model with ten sector-rating risk classes

introduced in Section 4.4.7.

Each simulation scenario is characterized by its risk class model, the holding period and

the estimation period of parameters. For each simulation scenario, the distributions of

default rate, portfolio value and portfolio credit loss L(E[D1]) (L(D0)) are simulated

for quarterly and annual holding periods, based on process parameters and correlation

estimates for the annual and five-year estimation periods presented in Section 4.4. The

credit portfolio consists of N = 900 exposures k = 1, ..., N with maturities and face

values distributed exactly as in the diversified portfolio case of the previous section, so

that differences in the distributions of portfolio loss are entirely due to differing drift rates,

volatilities, default probabilities of asset values, and changes in asset correlations.

The drift rate µrck and diffusion rate σrck of exposure k = 1, ..., N ; in risk class rck ∈ RCm

are specified by the parameter estimates in Table 4.9. In contrast to the diversified

portfolio model each risk class consists only of homogenously rated exposures. Inner-class

and inter-class asset correlations ρa,mrck,rcl ; k,l=1, ..., N ; rck, rcl ∈ RCm of the risk class

models m ∈ RC and the corresponding matrix of factor coefficients Bm are set according

to the estimation results presented in Section 4.4.8.4.

The asset values of the exposures are specified by the (end-of-period) average of the par-

coupon bond-derived asset values of the risk class throughout the estimation period in

question, as presented in Section Table 4.11. The risk-neutral and real-world default

probabilities of the exposures are given in Table 4.11.
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5.6.1 Rating-Class Model

The aggregation of exposures with a particular rating into a single risk class ignores di-

versification effects across economic sectors. Nevertheless, it is common practice in credit

portfolio modelling to consider only the rating of exposures as class-defining property.

In 5.21, backtesting barriers based on the default rate, L(E[D1]) and L(D0) and portfo-

lio value, simulated for quarterly and annual holding periods, are compared for the six

aforementioned parameter sets.

Rating-Class Model bp L(E[D1]) L(D0) D1

Holding Estimation
q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

Period Period

t = 0.25

1999 0.00 0.11 0.22 4.97 1.65 2.63 5.60 2.11 3.16 94.43 98.03 96.93

2000 0.00 0.11 0.22 3.81 2.01 3.62 4.60 2.66 4.36 95.41 97.39 95.67

2001 0.00 0.00 0.11 3.59 2.73 5.02 4.15 3.25 5.61 95.94 96.84 94.43

2002 0.00 0.33 0.67 5.11 2.36 3.62 6.15 3.11 4.49 93.90 97.06 95.61

2003 0.00 0.11 0.22 3.97 1.85 2.60 4.45 2.19 2.98 95.68 98.20 97.30

1999-2003 0.00 0.00 0.00 4.09 1.28 1.80 4.60 1.61 2.19 95.43 98.59 97.95

t = 1

1999 0.22 10.33 16.78 1.45 6.38 10.15 4.47 9.01 13.12 95.61 91.16 86.99

2000 0.44 14.44 28.56 0.64 9.02 16.00 4.24 13.05 20.54 95.86 86.99 79.49

2001 0.11 9.78 22.78 1.23 8.30 16.11 3.30 10.70 18.76 97.04 89.41 81.29

2002 0.89 19.22 27.22 0.43 8.41 12.35 5.21 12.84 17.26 94.84 87.33 82.85

2003 0.11 6.78 10.11 1.44 4.81 7.10 3.24 6.33 8.77 97.04 94.23 91.66

1999-2003 0.00 4.67 7.33 1.64 4.28 6.41 3.61 5.95 8.29 96.52 94.31 91.90

Table 5.21: Backtesting of Rating-Class Model

For annual holding periods, the Credit-VaR of the yearly estimation periods varies be-

tween 7.1% (6.33%) and 16.11% (20.54%) for L(E[D1]) (L(D0)), while the Credit-VaR of

6.41% (8.29%) for the five-year estimation period is more moderate, due to smaller asset

volatilities and drift rate estimates close to zero. The acceptance barriers for annual model

estimations vary between 0.43% (3.24%) and 1.45% (5.21%) for L(E[D1]) (L(D0)), and

the rejection barrier is positioned at values between 4.81% (6.33%) and 9.02% (13.05%),

representing a yellow zone between 3.37% (3.09%) and 8.38% (8.8%) for L(E[D1]) (L(D0)).

For the five-year estimation period, the acceptance and rejection barriers are set at 1.64%

(3.61%) and 4.28% (5.95%) for L(E[D1]) (L(D0)), which results in a yellow zone of 2.64%

(2.35%).

Backtesting barriers as well as Credit-VaR that refer to the empirically estimated model

parameters show a substantial variation, which is undesirable with respect to the robust-

ness of the backtesting. The use of annual estimation periods implies the specification of a

model used for point-in-time considerations of credit portfolio risk by parameter sets that

condition on an incomplete (annual) period of a full credit cycle. Furthermore, Credit-

VaR is close to the 8% target capital charge given the model specification derived from a

five-year estimation period. However, additional capital requirements for market risk and

operational risk will potentially raise the total capital charge above a level, that is still

convenient for banks.
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For the reason of model consistency and the robustness of backtesting, it is consequently

recommended to use portfolio models specified on the basis of a long-term estimation

period.

A shortening of the holding period results in a reduction of capital charges and an im-

proved discriminatory power without altering the setting of the portfolio model, the sam-

ple period of data, parameter estimation, credit valuation and the backtesting procedure.

When the minimum quarterly holding period is considered, a Credit-VaR of 1.8% (2.19%)

for L(E[D1])(L(D0)) is obtained. The acceptance and rejection barriers of 4.09% (4.6%)

and 1.28% (1.61%) for L(E[D1]) (L(D0)) intersect and allow for a perfect discrimination

between the model alternatives, which are based on the five-year estimation period.

5.6.2 Two-Sector Model

The two-sector model with five risk classes defined by exposures’ sector-rating attribute

provides a more detailed model of credit-risk dependence, when compared to the rating

class model in the previous section. The two-sector model is made up of five risk classes

FIN-AA, FIN-A, NF-AA, NF-A, and NF-BBB, from the financial (FIN) and non-financial

(NF) sector.

Compared to the rating-model, Credit-VaR and the rejection barrier for an annual holding

period increase for both loss definitions, given a five-year estimation period. In contrast,

both quantiles decrease in four cases if the model is based on an annual estimation period.

Quantiles of default rate and portfolio value show analogous results. For a quarterly

holding period, the same effects are observed expect for a marginal decrease in Credit-

VaR for the five-year estimation, which can be explained by peculiarities in the simulation.

The effects, a more detailed risk class structure has on the acceptance barriers is less

clear-cut. The acceptance barrier of L(E[D1]) (L(D0)) is raised for 3(3) year-based simu-

lations and the full-cycle-estimated model. Given quarterly risk horizons, the same effects

are observed. The increase in the acceptance barriers enlarges the range of credit loss ac-

cepted for more fine-grained model of credit dependence, while the yellow zone of model

indetermination remains more or less unchanged, and the increase in rejection barriers

reduces the risk of model rejection at the cost of enlarged capital charges. However, the

location of the backtesting barriers cannot be easily be interpreted without a detailed

examination of the changes in the estimates of process parameters and asset correlations.

In the two-sector model, standard deviations and real-world default probabilities increase

considerably on average, as can be seen in Table 4.9 and Table 4.11, so that an increase in

the rejection barrier and Credit-VaR is expected. With respect to the correlation struc-

ture of the portfolio, the number of inner-sector correlations is decreased from 201,600 for
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Two-Sector Model bp L(E[D1]) L(D0) D1

Holding Estimation
q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

Period Period

t = 0.25

1999 0.00 0.11 0.22 4.57 1.46 2.24 5.17 1.87 2.70 94.86 98.28 97.41

2000 0.00 0.00 0.11 3.45 1.73 2.99 4.11 2.28 3.59 95.91 97.78 96.44

2001 0.00 0.00 0.22 3.59 2.34 3.99 4.22 2.89 4.62 95.85 97.22 95.44

2002 0.00 1.00 1.56 5.57 2.40 3.49 6.76 3.10 4.30 93.27 97.05 95.81

2003 0.00 0.11 0.33 4.23 1.79 2.75 4.75 2.14 3.14 95.34 98.17 97.11

1999-2003 0.00 0.00 0.11 4.56 1.28 1.79 5.10 1.63 2.18 94.93 98.57 97.97

t = 1

1999 0.22 7.44 12.89 1.53 5.42 8.77 4.24 7.74 11.31 95.85 92.45 88.82

2000 0.22 10.33 21.22 0.92 7.53 13.91 3.77 10.70 17.47 96.32 89.37 82.56

2001 0.22 10.33 20.56 1.13 7.66 14.10 3.52 10.31 17.11 96.74 89.83 82.95

2002 1.67 19.67 26.44 0.24 7.86 11.66 5.73 12.38 16.54 94.30 87.77 83.57

2003 0.22 7.89 13.22 1.46 5.17 8.39 3.60 6.87 10.23 96.55 93.52 90.08

1999-2003 0.11 6.11 9.11 1.68 4.43 6.51 4.04 6.27 8.52 96.03 93.99 91.65

Table 5.22: Backtesting of Two-Sector Model

the rating class model to 80,100 for the two-sector model, while the number of inter-sector

correlations increase from 202,000 to 324,000. With inner-sector correlations exceeding

inter-sector correlations on average,9 the average asset correlation decreases with an in-

crease in the number of risk classes. A dampening effect on Credit-VaR can be expected

due to the improved level of detail in the modelling of credit dependence. This is, however,

overcompensated for by the increase in asset volatilities.

5.6.3 Four-Sector Model

The four-sector model with ten sector-rating classes incorporates the maximal differen-

tiation of risk classes that can be specified based on the estimation results presented

in Section 4.4. The Credit-VaR and backtesting barriers are presented in Table 5.23,

analogously to the previous sections.

Four-Sector Model bp L(E[D1]) L(D0) D1

Holding Estimation
q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

Period Period

t = 0.25

1999 0.00 0.00 0.11 4.26 1.64 2.57 4.88 2.09 3.07 95.16 98.07 97.05

2000 0.00 0.00 0.11 3.02 1.66 2.83 3.68 2.20 3.44 96.34 97.87 96.60

2001 0.00 0.00 0.11 3.36 2.25 3.78 3.94 2.75 4.35 96.13 97.39 95.71

2002 0.00 1.56 2.22 4.75 3.01 4.84 6.12 3.96 5.92 93.91 96.16 94.17

2003 0.00 0.56 0.89 3.86 2.28 3.69 4.40 2.66 4.12 95.70 97.58 96.05

1999-2003 0.00 0.11 0.33 5.03 1.42 1.99 5.67 1.81 2.43 94.36 98.39 97.72

t = 1

1999 0.11 7.11 13.67 1.43 5.73 9.93 3.98 8.11 12.54 96.13 92.08 87.58

2000 0.11 7.89 16.22 0.98 6.78 12.14 3.45 9.72 15.42 96.68 90.37 84.61

2001 0.11 8.56 16.22 1.19 6.95 12.07 3.27 9.33 14.78 97.07 90.87 85.31

2002 1.89 20.44 31.78 0.25 9.19 15.07 5.44 14.47 20.67 94.66 85.63 79.40

2003 0.56 7.22 12.11 1.36 5.40 9.22 3.36 7.19 11.14 97.03 93.16 89.07

1999-2003 0.33 7.56 9.89 1.59 4.71 6.65 4.57 6.97 9.13 95.53 93.26 91.05

Table 5.23: Backtesting of Four-Sector Model

9 Cf. Table 4.15 and Table 4.16
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For the full-sample model estimation, Credit-VaR and the rejection barrier increase further

when the maximum achievable level of detail in the risk class structure is examined,

whereas the acceptance barrier declines for L(E[D1]) and increases for L(D0).

Although, inner-sector correlations increase to an average of 15.1%, the number of inner-

sector correlations is further reduced to 39,600, so that the 364,500 inter-sector correlations

with an average of 4.6% are the predominant factor that determining the correlation

structure of the portfolio. A further increase in asset volatilities and default probabilities

of the risk classes, however, compensates for the risk-reducing effects of the diversified

credit dependence. With respect to the use of the one-factor model in portfolio credit risk

assessments, it can be conjectured that one-factor models systematically overestimate the

correlation effects of credit risk, but underestimate the effects of volatility on credit risk,

if asset volatilities are empirically estimated.

For any of the risk class structures that have been examined, the backtesting barriers

result in acceptance and indifference zones, that can be assumed to result in an approval

of banks’ established credit portfolio models and that enables a short-term supervisory

actions in the case a credit loss occurs that endangers the solvency of a bank. However,

for a definite assessment of the applicability of the proposed backtesting approach, a

comparison of Credit-VaR and backtesting barriers with banks’ actual credit portfolio

loss is required, based on an analogous definition of credit risk.
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Conclusion

With respect to a prospective supervisory approval of calculating regulatory capital re-

quirements based on banks’ internal credit portfolio models, this dissertation addresses

the question of accurately estimating and backtesting a structural credit portfolio model.

A structural first-passage model is suggested for the valuation of defaultable loans with

deterministic interest payments and redemption of face value at a fixed maturity. In

the credit valuation model credit default is triggered by a constant default threshold at

any time during the lifetime of the loan. Accordingly, credit default events incorporate

over-indebtedness and illiquidity of the obligor. Comparative statics are used to assess

the properties of the credit valuation model. In the portfolio context, the dependence

of credit exposures values is implemented by a risk class model of orthogonal standard

normal systematic and specific factors that control for the normalized log-returns of the

asset values of exposures.

With respect to the requirements of methodological consistency, robustness, independence

of accounting standards and prudence, several definitions of portfolio credit loss are con-

sidered. Suggesting a two-hypotheses test, the zone approach used for the backtesting

of market risk models is transferred to backtesting credit portfolio models’ adequacy to

assess the credit risk of a loan portfolio. As a test statistic a one-period observation

of portfolio credit loss is used. Three zones of model adequacy are defined for portfo-

lios’ credit loss: a green zone, where an alternative more prudent model is rejected and

the tested model is qualified as adequate to set capital requirements, a yellow zone, in

which the model’s adequacy cannot be determined, and a red zone, in which the model

is rejected.

In an approach, which is unique to the literature on the estimation of structural credit

portfolio models, a two-stage quasi-maximum likelihood estimation of a non-linear non-

Gaussian state-space model based on the Extended Kalman-Filter is introduced. In the

course of the estimation the process parameters, correlations and series of systematic
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factors and asset values the credit portfolio risk-class model are estimated

In a simulation study, first, the backtesting procedure is specified with respect to the

definition of credit portfolio loss, the alternative model which must be rejected, and the

significance level of the test. The prudent model alternative of backtesting is specified to

incorporate a default probability add-on of one percent, an enhancement of asset volatil-

ities by 5% for any exposure, and a fixed asset correlation of 25% between any pair of

exposures. The asset correlations of the alternative model are independent of the cor-

relation estimate of the model to be tested, in order to preclude any incentive to banks

to underestimate the asset correlations of their credit portfolio models. The locations of

zone-defining barriers are examined for differing default models, holding periods and for

different numbers of simulation sub-intervals.

Second, the distributions of default rate and credit portfolio loss are examined for different

specifications of the credit valuation model and the risk class factor model, as well as for

different characteristics of the credit portfolio. Within these analyzes, two definitions of

credit loss are considered that refer to the unexpected credit loss, as prescribed by the

New Capital Adequacy Framework, and to the valuation of exposures at the time of the

risk assessment, as implemented in market risk measurement. The impact of the portfolio

characteristics on the backtesting are analyzed based on a portfolio of homogenous loans

and a diversified portfolio of heterogenous loans. The effect of a variation of exposures’

time-to-maturities, face values and default probabilities on the location of the backtesting

zones is examined. The impact of drift rate and volatility of asset values and the risk-

class structure specified by the model is assessed. The model’s specification of the drift

rate and volatility of asset values and the impact of the risk-class structure on the zone

locations is assessed.

The specification of the portfolio model and the characteristics of the portfolio substan-

tially affect the backtesting barriers. Acceptance (rejection) barriers decline (increase) as

asset correlations increase and the granularity of exposures decreases. The diversification

of the portfolio with respect to the maturities of exposures and the decrease of the holding

period diminishes the yellow zone considerably, i.e. the discriminatory power of the back-

testing is improved. With respect to the different loss definitions, acceptance barriers of

L(E[D1]) are shown to be more robust against a mis-specification of the drift rate, while

acceptance barriers of L(D0) are more stable with respect to a change in σ. In contrast

to the backtesting of market risk models, no unambiguous location of zones of portfolio

loss can be defined to backtest the adequacy of portfolio credit risk models and to prompt

the supervisory interventions.

The proposed test is easily applicable, computationally feasible and requires minimal

data. In principle, the backtesting approach can be used for any credit risk model. In

particular, the specification of the alternative model can be adapted to any parametric
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or structural assumptions of a credit portfolio model. Considering typical amounts of

loss provisions set aside by banks as an indicator for the incurred credit portfolio loss,

the proposed backtesting approach defines adequacy zones that allow the acceptance of

models at a significance level of α = 5% under standard credit market conditions.

Capital requirements derived from our model comply with the core capital ratios typically

maintained by banks only for a confidence level of Credit-VaR that is substantially lower

than the level implicitly pretended by the revised capital adequacy framework. Simulation

results suggest that banks might have difficulties fulfilling capital requirements for default

and devaluation risk derived from Credit-VaR for annual holding periods, however, a

shortened quarterly or semi-annual holding period may provide a solution. Furthermore,

a reduced holding period causes an increased discriminatory power as acceptance barriers

rise and rejection barriers decline.

The implementation of model-based capital requirements to cover the risk of credit-

quality-induced adverse changes in credit portfolio values, in addition to existing capital

charges for market and operational risk, is likely to result in capital requirements that

exceed those of the original Basel Capital Accord or imposed by the IRB approach of the

revised Capital Standards. The calculation of integrated market and credit-risk measures

of bank portfolios may solve the problem of the arbitrary aggregation of dependent credit

exposures without considering the sub-additive nature of credit risk.

The requirement of a long-term estimation period, spanning at least a complete credit

cycle, results in estimated drift rates close to zero. Strictly positive riskless rates result

in real-word probabilities of default that exceed the risk-neutral default probabilities and

that are not realistic in view of the historical default experience of banks and ratings

agencies. There are two likely solutions to this problem: First, in simulating credit risk,

asset values may be calibrated according to real-world default probabilities estimated for

the portfolio and risk class structure in question by a supplemental rating system. Second,

structural credit valuation models with mean reverting drift rate promise a better fit of

the model to the cyclical nature of asset values throughout a credit cycle.

The data used in the estimation provides potential for improvement. Bond market data

have been used, because CDS market data have not available for a complete credit cycle at

the beginning of the examination. Although, bond market data turn the model estimation

more involved because of the heterogeneity of data, and because of unstable, competing, or

missing price information, while CDS prices of credit risk refer to standardized contracts

of obligors and are subject to a time-continuous pricing. Furthermore, it is suspected

that scarce data and intense spread movements of individual obligors are reflected in

fitted term structures of risk classes to an extent that exaggerates the spread movements

typical for a risk class. In this context, the separation of class-specific and obligor-specific

effects in the fitting of risk class curves provides further potential for examination.
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Estimation results reveal deficiencies in the fitting of empirical credit-spread structures,

that are attributed to the use of a structural credit valuation model. With the riskless

rate required to be constant and the drift rate coercively estimated as being close to

zero, factually only the asset value and the diffusion rate remain as free parameters of

model estimation, which seriously restricts the functional ability to fit empirical spread

structures. The zero drift estimates result in real-world default probabilities that differ

substantially from empirical default rates. With respect to the simulation of portfolio

credit loss, the high long-term default probabilities are compensated for by the typically

small increase in the cumulative distribution function of the default time in the short

term, which is constitutive for achieving Credit-VaR figures acceptable to banks. The

development of a structural credit valuation model that incorporates a mean reversion

of the asset value is recommended as a subject of further research. As an alternative,

intensity-based risk-class models are considered to be especially suited to integrated risk

management for their well-behaved aggregation of credit and interest rate risk, the supe-

rior fit of empirical credit spreads, the existence of well-established estimation procedures,

and the provision for mean-reverting credit spreads, which results in an improved fit of

real-world default probabilities.

Beside the adequate modelling, estimation and backtesting of credit portfolio models,

procedural aspects concerning the identification, measurement and disclosure of credit

risk exposures are increasingly important. Extended disclosure standards with respect to

contractual off-balance credit exposures and the composition of structured credit products

are required for a reliable credit risk management. The compliance of the credit-granting

policies with risk assessment standards represents another field of possible improvement.

Additional empirical research is required on the dependence between the credit risk of

single exposures, on the pricing of multi-obligor credit derivatives, and the calibration of

respective credit-risk models. Furthermore, supplementary research on the CDS-based

estimation of the proposed credit portfolio model is required, especially with respect to

the differentiation between systematic and specific risk factors. The estimation of single-

obligor asset value processes using equity market data may be another field of future

research. Finally, the development of benchmark correlation products, such as nth-to-

default basket derivatives for equity-index related credit baskets, which are traded in

active markets, might foster the estimation of credit portfolio models.
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Data Set

Issuer Year <1998 1998 1999 2000 2001 2002 2003 All

DE

No. of bond issues 70 11 17 13 10 19 21 161
Avg. issue amount 5,217.7 7,931.8 7,899.8 9,359.2 10,946.1 10,661.6 9,062.5 7,520.5

Non-matured bonds 95 83 78 80 83 161
Avg. no. of prices 73.3 67.7 65.0 62.8 57.1 65.1

FR

No. of bond issues 32 11 11 29 48 52 63 246
Avg. issue amount 10,212.0 8,457.1 7,223.7 4,842.2 3,395.3 5,572.6 5,736.2 5,912.0

Non-matured bonds 52 71 93 96 110 246
Avg. no. of prices 32.8 36.4 39.8 46.0 53.7 41.8

DE&FR

No. of bond issues 102 22 28 42 58 71 84 407
Avg. issue amount 6,784.6 8,194.5 7,634.2 6,240.3 4,697.2 6,934.4 6,598.6 6,553.0

Non-matured bonds 147 154 171 176 193 407
Avg. no. of prices 106.2 104.1 104.8 108.8 110.8 106.9

Table A.1: Overview of Government Bond Data
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Sectors <1998 1998 1999 2000 2001 2002 2003 All
AUT - Automobile 30 3 13 8 17 22 30 123
BMA- Basic Materials 22 9 7 6 12 8 13 77
COM- Communications 12 8 10 9 12 15 12 78
CON - Construction 14 5 7 3 4 6 4 43
CCY - Consumer, cyclic 20 6 9 4 14 8 6 67
CNC - Consumer, non-cyclic 27 7 11 15 25 15 14 114
ENY - Energy 18 2 4 9 3 4 7 47
FIN - Financial 816 214 252 225 334 89 71 2001
IND - Industrial 6 2 10 5 12 7 4 46
MED- Media 12 5 3 3 2 1 3 29
TEC - Technology 15 – 3 1 6 2 2 29
TRA - Transportation 15 1 1 2 4 3 3 29
UTY - Utilities 28 10 15 14 20 19 28 134
Issues all 1035 272 345 304 465 199 197 2817
Issues all exFIN 219 58 93 79 131 110 126 816

Table A.2: Number of Bond Issues per Sector and Year

Sectors <1998 1998 1999 2000 2001 2002 2003 All
AUT - Automobile 181.6 132.0 601.6 643.8 932.1 515.7 395.6 470.5
BMA- Basic Materials 106.0 198.5 144.3 533.3 314.2 1,012.5 409.2 331.4
COM- Communications 458.8 722.8 1,095.0 836.1 678.2 840.0 1,208.3 833.4
CON - Construction 180.3 173.8 500.9 733.3 443.8 356.7 600.0 358.5
CCY - Consumer, cyclic 168.7 89.2 362.2 275.0 445.7 412.5 496.7 310.3
CNC - Consumer, non-cyclic 166.1 217.3 438.2 510.0 508.2 357.4 590.6 393.1
ENY - Energy 135.5 152.4 1,006.3 305.0 281.7 32.5 521.4 300.8
FIN - Financial 130.5 183.6 172.4 179.5 181.3 275.9 453.3 172.2
IND - Industrial 92.4 75.9 369.4 550.0 604.2 297.9 400.0 399.8
MED- Media 201.4 192.4 483.3 316.7 500.0 30.0 383.3 274.5
TEC - Technology 181.2 – 756.7 1,000.0 645.0 200.0 750.0 405.4
TRA - Transportation 1,595.6 766.9 1,350.0 512.5 607.7 666.7 900.0 1,179.5
UTY - Utilities 354.8 563.3 494.3 385.7 657.8 959.5 568.7 564.9
Issues all 166.8 213.7 278.2 267.6 296.3 460.1 530.9 262.7
Issues all exFIN 300.8 322.6 554.5 515.1 588.0 597.5 570.3 479.9

Table A.3: Average Corporate Bond Issue Amount per Sector and Year in EUR
Bonds denominated in national currencies are converted at the official Euro conversion rates
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Sector Year AA A BBB NI NR All

AUT 1999 6 / 31 / 15.9 2 / 10 / 2.4 3 / 4 / 3.4 10 / 45 / 21.7
2000 5 / 32 / 23.5 2 / 6 / 2.9 2 / 3 / 3.0 9 / 41 / 29.4
2001 6 / 43 / 32.6 2 / 10 / 4.4 3 / 4 / 2.7 11 / 57 / 39.7
2002 7 / 46 / 35.4 4 / 22 / 18.4 2 / 5 / 3.5 12 / 73 / 57.3
2003 7 / 72 / 55.3 3 / 12 / 10.0 1 / 12 / 10.0 1 / 2 / 2.0 12 / 98 / 77.3

AUT all 8 / 102 / 32.6 4 / 28 / 7.6 1 / 12 / 2.0 5 / 8 / 2.9 12 / 123 / 45.2

BMA 1999 5 / 12 / 8.7 2 / 6 / 2.8 6 / 14 / 3.5 13 / 32 / 14.9
2000 1 / 1 / 0.5 5 / 12 / 6.5 5 / 7 / 4.9 9 / 18 / 5.4 20 / 38 / 17.3
2001 1 / 1 / 1.0 4 / 10 / 6.7 7 / 14 / 8.7 1 / 1 / 0.9 12 / 25 / 8.6 25 / 51 / 25.9
2002 2 / 3 / 2.0 6 / 13 / 11.4 9 / 16 / 12.6 1 / 1 / 0.9 11 / 15 / 11.1 28 / 48 / 37.9
2003 3 / 6 / 4.3 7 / 20 / 15.5 7 / 17 / 13.5 3 / 4 / 3.5 10 / 13 / 7.5 30 / 60 / 44.4

BMA all 3 / 6 / 1.6 8 / 25 / 9.8 9 / 24 / 8.5 3 / 4 / 1.1 16 / 30 / 7.2 31 / 77 / 28.2

COM 1999 5 / 17 / 12.8 4 / 6 / 3.5 2 / 2 / 1.1 1 / 1 / 1.0 11 / 26 / 18.3
2000 6 / 20 / 13.5 5 / 11 / 9.8 2 / 2 / 1.8 1 / 1 / 0.0 1 / 1 / 0.3 14 / 35 / 25.4
2001 2 / 4 / 3.7 9 / 35 / 29.1 2 / 2 / 1.9 1 / 2 / 0.1 14 / 43 / 34.8
2002 8 / 28 / 23.6 7 / 27 / 21.1 2 / 2 / 0.4 17 / 57 / 45.1
2003 8 / 28 / 24.4 9 / 37 / 32.0 1 / 1 / 1.0 1 / 1 / 0.5 19 / 67 / 57.9

COM all 6 / 23 / 6.0 12 / 54 / 18.1 10 / 40 / 11.7 3 / 4 / 0.2 3 / 3 / 0.4 22 / 78 / 36.4

CON 1999 1 / 1 / 0.2 2 / 12 / 5.0 7 / 12 / 5.9 9 / 25 / 11.1
2000 1 / 4 / 3.7 2 / 12 / 7.3 1 / 4 / 2.8 5 / 6 / 3.2 9 / 26 / 17.0
2001 1 / 5 / 3.2 1 / 4 / 4.0 3 / 13 / 9.4 5 / 6 / 2.7 10 / 28 / 19.3
2002 1 / 5 / 3.7 2 / 7 / 6.7 5 / 17 / 13.3 1 / 1 / 0.6 4 / 5 / 1.9 12 / 35 / 26.1
2003 1 / 6 / 5.2 2 / 8 / 7.3 4 / 16 / 13.9 2 / 3 / 2.5 3 / 4 / 2.4 12 / 37 / 31.4

CON all 1 / 6 / 3.2 3 / 18 / 6.1 5 / 18 / 7.9 2 / 3 / 0.6 9 / 15 / 3.2 13 / 43 / 21.0

CCY 1999 1 / 1 / 0.4 2 / 3 / 1.9 3 / 4 / 1.4 17 / 21 / 7.0 22 / 29 / 10.7
2000 2 / 2 / 0.3 2 / 3 / 1.8 5 / 8 / 4.2 14 / 19 / 9.5 22 / 32 / 15.8
2001 1 / 1 / 0.0 3 / 3 / 2.5 7 / 19 / 14.6 18 / 23 / 13.9 28 / 46 / 31.1
2002 2 / 2 / 1.1 3 / 3 / 3.0 10 / 29 / 25.5 13 / 13 / 8.0 28 / 47 / 37.6
2003 2 / 3 / 2.0 2 / 3 / 2.6 11 / 34 / 31.8 14 / 14 / 7.7 29 / 54 / 44.2

CCY all 3 / 5 / 0.8 4 / 6 / 2.4 11 / 35 / 15.5 28 / 35 / 9.2 34 / 67 / 27.9

CNC 1999 5 / 14 / 7.3 3 / 6 / 3.3 5 / 6 / 2.0 10 / 13 / 6.8 21 / 39 / 19.4
2000 5 / 16 / 11.2 5 / 10 / 6.2 5 / 9 / 6.7 8 / 16 / 9.0 22 / 51 / 33.0
2001 5 / 16 / 13.7 8 / 16 / 9.9 8 / 28 / 20.7 10 / 12 / 6.1 31 / 72 / 50.5
2002 5 / 11 / 3.6 9 / 25 / 22.7 8 / 33 / 27.1 1 / 1 / 0.9 7 / 11 / 7.3 30 / 81 / 61.5
2003 4 / 17 / 12.1 11 / 29 / 25.7 7 / 31 / 27.4 3 / 4 / 2.1 10 / 14 / 9.2 34 / 95 / 76.5

CNC all 7 / 31 / 9.6 13 / 39 / 13.6 10 / 40 / 16.8 3 / 4 / 0.6 18 / 30 / 7.7 38 / 114 / 48.3

ENY 1999 4 / 24 / 15.1 4 / 24 / 15.1
2000 5 / 29 / 17.7 1 / 3 / 2.7 6 / 32 / 20.4
2001 5 / 29 / 21.0 1 / 4 / 3.1 6 / 33 / 24.1
2002 5 / 30 / 24.5 1 / 4 / 3.4 6 / 34 / 27.9
2003 5 / 33 / 28.8 1 / 4 / 3.5 1 / 1 / 0.5 7 / 38 / 32.8

ENY all 6 / 43 / 21.4 1 / 4 / 1.2 1 / 5 / 1.4 1 / 1 / 0.1 7 / 47 / 24.1

FIN 1999 41 / 647 / 439.8 27 / 346 / 194.4 3 / 4 / 1.3 1 / 1 / 0.6 29 / 104 / 41.6 89 / 1,102 / 677.7
2000 43 / 705 / 497.2 33 / 428 / 246.2 2 / 3 / 1.0 2 / 3 / 1.2 28 / 106 / 43.5 97 / 1,245 / 789.1
2001 51 / 892 / 602.8 40 / 526 / 320.6 1 / 1 / 0.5 2 / 3 / 0.9 29 / 122 / 53.0 106 / 1,544 / 977.8
2002 50 / 865 / 666.7 41 / 670 / 411.2 2 / 3 / 0.9 23 / 93 / 42.6 105 / 1,631 / 1,121.5
2003 50 / 839 / 617.0 42 / 783 / 493.8 2 / 4 / 3.2 2 / 3 / 2.5 23 / 92 / 45.1 110 / 1,721 / 1,161.7

FIN all 60 / 1,241 / 564.9 53 / 907 / 333.9 5 / 9 / 1.2 2 / 3 / 1.2 40 / 158 / 45.2 119 / 2,001 / 946.4

IND 1999 2 / 5 / 4.2 1 / 1 / 0.8 1 / 1 / 0.3 1 / 1 / 0.5 8 / 9 / 1.7 13 / 17 / 7.5
2000 2 / 8 / 6.2 3 / 4 / 1.9 2 / 2 / 1.2 9 / 10 / 4.6 16 / 24 / 13.9
2001 2 / 10 / 8.4 4 / 7 / 5.6 3 / 4 / 2.2 10 / 12 / 6.3 19 / 33 / 22.5
2002 1 / 4 / 3.8 7 / 17 / 14.9 3 / 4 / 4.0 12 / 14 / 7.4 23 / 39 / 30.1
2003 1 / 3 / 3.0 6 / 12 / 10.8 6 / 9 / 7.1 1 / 6 / 4.5 10 / 11 / 5.3 23 / 41 / 30.7

IND 2 / 10 / 5.1 8 / 19 / 6.8 7 / 10 / 3.0 2 / 7 / 1.0 14 / 18 / 5.1 26 / 46 / 21.0

MED 1999 1 / 8 / 2.7 5 / 10 / 7.4 6 / 18 / 10.1
2000 2 / 7 / 5.4 2 / 9 / 4.8 2 / 4 / 2.2 6 / 20 / 12.4
2001 2 / 8 / 6.2 2 / 9 / 6.0 1 / 1 / 0.8 2 / 4 / 4.0 6 / 22 / 16.9
2002 1 / 2 / 2.0 4 / 15 / 11.5 1 / 2 / 1.9 1 / 3 / 2.8 6 / 22 / 18.2
2003 1 / 2 / 2.0 3 / 10 / 9.1 2 / 8 / 5.7 2 / 5 / 3.8 7 / 25 / 20.6

MED all 2 / 8 / 3.1 4 / 20 / 6.8 2 / 8 / 1.7 6 / 14 / 4.0 7 / 29 / 15.7

TEC 1999 3 / 14 / 9.5 1 / 2 / 1.4 4 / 16 / 11.0
2000 3 / 13 / 10.4 1 / 2 / 1.2 4 / 15 / 11.6
2001 3 / 18 / 13.4 2 / 3 / 1.5 5 / 21 / 15.0
2002 1 / 9 / 7.3 2 / 9 / 7.6 3 / 4 / 2.5 6 / 22 / 17.4
2003 2 / 11 / 10.1 2 / 8 / 6.6 3 / 4 / 2.1 7 / 23 / 18.7

TEC all 4 / 23 / 10.1 2 / 9 / 1.5 2 / 8 / 1.3 3 / 4 / 1.8 7 / 29 / 14.8

TRA 1999 1 / 2 / 2.0 3 / 15 / 12.8 4 / 17 / 14.8
2000 2 / 4 / 2.9 3 / 15 / 13.2 4 / 19 / 16.1
2001 4 / 15 / 11.8 2 / 6 / 4.2 6 / 21 / 16.0
2002 5 / 18 / 14.3 1 / 4 / 4.0 6 / 22 / 18.3
2003 4 / 17 / 14.7 1 / 1 / 1.0 1 / 5 / 3.6 6 / 23 / 19.3

TRA all 5 / 22 / 9.2 1 / 1 / 0.2 3 / 15 / 7.5 7 / 29 / 16.9

UTY 1999 7 / 21 / 12.4 3 / 8 / 4.5 1 / 1 / 0.2 5 / 8 / 5.0 13 / 38 / 22.1
2000 8 / 29 / 23.3 4 / 14 / 9.7 1 / 2 / 1.9 4 / 5 / 3.1 16 / 50 / 38.1
2001 11 / 36 / 25.3 8 / 25 / 19.0 2 / 4 / 3.2 2 / 2 / 0.9 20 / 67 / 48.4
2002 12 / 40 / 34.9 12 / 46 / 30.9 2 / 5 / 5.0 2 / 2 / 0.5 26 / 93 / 71.4
2003 8 / 22 / 19.4 16 / 80 / 60.0 5 / 15 / 10.9 2 / 2 / 0.9 31 / 119 / 91.3

UTY all 15 / 62 / 23.1 18 / 89 / 25.0 5 / 15 / 4.3 11 / 15 / 2.1 32 / 134 / 54.4

All sectors 1999 67 / 732 / 494.2 56 / 439 / 247.5 20 / 42 / 14.2 2 / 2 / 1.1 95 / 213 / 97.5 240 / 1,428 / 854.5
2000 75 / 818 / 576.5 70 / 549 / 331.5 27 / 52 / 32.2 3 / 4 / 1.3 86 / 205 / 98.1 261 / 1,628 / 1,039.6
2001 83 / 1,009 / 690.8 89 / 699 / 452.7 37 / 104 / 71.7 5 / 7 / 2.7 95 / 219 / 104.1 309 / 2,038 / 1,322.0
2002 83 / 978 / 754.6 97 / 866 / 569.0 55 / 181 / 149.4 6 / 8 / 5.3 81 / 171 / 91.9 322 / 2,204 / 1,570.2
2003 78 / 946 / 706.5 105 / 1,049 / 708.6 58 / 189 / 162.6 17 / 49 / 38.4 81 / 168 / 90.7 339 / 2,401 / 1,706.9

Overall 108 / 1,449 / 644.8 135 / 1,295 / 462.8 73 / 253 / 86.3 20 / 53 / 9.9 157 / 346 / 96.5 355 / 2817 / 1,300.2

exFIN 1999 26 / 85 / 54.4 29 / 93 / 53.1 17 / 38 / 12.8 1 / 1 / 0.5 66 / 109 / 56.0 139 / 326 / 176.8
2000 32 / 113 / 79.3 37 / 121 / 85.3 25 / 49 / 31.2 1 / 1 / 0.0 58 / 99 / 54.6 153 / 383 / 250.4
2001 32 / 117 / 88.1 49 / 173 / 132.1 36 / 103 / 71.2 3 / 4 / 1.8 66 / 97 / 51.1 186 / 494 / 344.3
2002 33 / 113 / 87.8 56 / 196 / 157.8 55 / 181 / 149.4 4 / 5 / 4.3 58 / 78 / 49.3 206 / 573 / 448.8
2003 28 / 107 / 89.5 63 / 266 / 214.8 56 / 185 / 159.4 15 / 46 / 35.9 58 / 76 / 45.6 220 / 680 / 545.2

exFIN all 48 / 208 / 79.9 82 / 388 / 128.9 68 / 244 / 85.1 18 / 50 / 8.6 117 / 188 / 51.3 236 / 816 / 353.8

Table A.4: Corporate Bond Data per Sector and Year
Available data indicated by no. of issuers / no. of issues / avg. no. of price observations.
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Migration type constant rating upgrade downgrade withdrawn new rating default
AA A BBB NI NR A BBB NI AA AA A A BBB AA NI NR NR NR NR BBB NI
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Sector Year AA A BBB NI NR AA A BBB A NI BBB NI NI NR NR AA A BBB NI D D Overall

AUT 1999 31 10 3 1 45
2000 32 6 3 41
2001 31 10 2 12 1 1 57
2002 46 15 3 7 2 73
2003 72 12 12 2 98

AUT all 212 53 12 13 12 7 4 1 314

BMA 1999 12 6 14 32
2000 1 10 7 17 2 1 38
2001 1 10 14 1 23 1 1 51
2002 3 13 13 1 12 3 1 2 48
2003 6 20 12 4 12 1 4 1 60

BMA all 11 65 52 6 78 1 2 7 3 3 1 229

COM 1999 17 6 2 1 26
2000 4 11 2 1 16 1 35
2001 18 2 4 17 2 43
2002 21 26 2 7 1 57
2003 21 37 1 1 7 67

COM all 21 77 69 1 4 20 31 1 1 3 228

CON 1999 1 12 8 3 1 25
2000 4 5 4 5 7 1 26
2001 5 4 13 4 2 28
2002 5 7 16 1 4 1 1 35
2003 8 12 3 3 6 4 1 37

CON all 15 36 45 4 24 6 7 5 3 2 4 151

CCY 1999 1 3 4 18 1 2 29
2000 2 3 8 17 2 32
2001 1 2 19 16 1 1 1 5 46
2002 2 2 29 13 1 47
2003 3 3 32 14 2 54

CCY all 9 13 92 78 2 2 2 1 9 208

CNC 1999 14 6 6 12 1 39
2000 12 6 9 9 4 4 2 5 51
2001 9 16 27 10 7 1 1 1 72
2002 10 25 32 1 11 1 1 81
2003 10 28 10 4 13 1 7 1 9 1 11 95

CNC all 55 81 84 5 55 1 11 7 4 1 11 1 3 7 1 11 338

ENY 1999 22 2 24
2000 29 3 32
2001 29 4 33
2002 30 4 34
2003 33 4 1 38

ENY all 143 3 8 1 2 4 161

FIN 1999 640 338 3 1 95 8 7 1 2 7 1,102
2000 698 409 1 3 95 19 2 7 11 1,245
2001 831 518 3 107 8 1 61 1 14 1,544
2002 723 633 3 92 36 142 1 1 1,631
2003 771 593 4 1 84 182 68 8 2 8 1,721

FIN all 3,663 2,491 8 11 473 253 3 285 9 1 2 3 41 7,243

IND 1999 5 1 1 9 1 17
2000 8 4 2 10 24
2001 5 7 4 11 5 1 33
2002 4 10 4 12 2 5 2 39
2003 3 12 9 6 10 1 41

IND 25 34 20 6 52 1 5 2 5 1 3 154

MED 1999 8 2 6 2 18
2000 7 9 4 20
2001 2 9 1 3 6 1 22
2002 2 9 2 3 6 22
2003 10 8 1 2 4 25

MED all 11 45 11 13 8 6 6 6 1 107

TEC 1999 1 14 2 17
2000 13 2 15
2001 10 3 8 21
2002 9 1 4 8 22
2003 2 8 4 9 23

TEC all 1 48 1 8 15 17 8 98

TRA 1999 2 15 17
2000 4 6 9 19
2001 15 6 21
2002 17 4 1 22
2003 14 1 5 3 23

TRA all 52 1 36 4 9 102

UTY 1999 21 8 1 1 6 1 38
2000 24 14 2 1 5 2 2 50
2001 31 25 4 1 5 1 67
2002 20 41 5 2 20 5 93
2003 16 70 15 1 6 10 1 119

UTY all 112 158 27 6 36 15 8 4 1 367

All sectors 1999 724 431 41 1 179 8 1 9 1 12 16 6 1,429
2000 786 517 50 3 170 19 2 32 13 13 13 8 1 1 1,628
2001 927 643 102 5 186 8 1 82 48 1 3 20 9 1 2 2,038
2002 814 809 154 8 162 36 163 16 5 27 1 4 5 2,204
2003 856 830 157 47 151 182 2 83 7 36 1 19 2 10 6 1 11 2,401

Overall 4107 3,230 504 64 848 253 5 1 369 7 113 6 48 1 2 28 63 34 3 11 3 9,700

exFIN 1999 84 93 38 84 1 2 10 9 6 327
2000 88 108 49 0 75 25 13 13 2 8 1 1 383
2001 96 125 102 2 79 21 48 1 2 6 9 1 2 494
2002 91 176 154 5 70 21 15 5 27 1 3 5 573
2003 85 237 153 46 67 2 15 7 28 1 19 2 6 1 11 680

exFIN all 444 739 496 53 375 2 1 84 7 104 6 47 1 25 22 34 3 11 3 2,457

Table A.5: Rating Migrations in Sample
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Risk class Clustering

ρ AA A BBB NI NR

AA 100.0 83.0 33.5 11.3 78.5
A 100.0 42.8 16.3 78.5

BBB 100.0 25.7 43.1
NI 100.0 14.1
NR 100.0

Table B.1: Correlations of Spread Returns between Rating-Classes

ρ AUT BMA COM CON CCY CNC ENY FIN IND MED TEC TRA UTY

AUT 100.0 54.8 59.9 51.4 44.9 56.4 37.6 42.3 49.5 55.2 47.5 49.6 56.7
BMA 100.0 44.0 34.4 32.0 43.9 26.4 44.6 44.0 46.7 43.0 33.4 42.5
COM 100.0 39.2 38.1 45.9 35.8 27.3 34.8 47.9 60.4 33.6 58.5
CON 100.0 48.6 29.7 23.7 23.6 41.0 34.1 30.5 24.9 36.9
CCY 100.0 29.8 23.9 15.3 30.1 24.2 32.2 15.3 26.8
CNC 100.0 39.1 34.4 39.4 43.5 41.5 44.6 57.9
ENY 100.0 29.0 25.7 30.8 26.4 34.2 39.6
FIN 100.0 35.0 36.7 22.5 54.1 47.5
IND 100.0 32.5 43.2 32.5 41.6
MED 100.0 44.9 38.7 43.9
TEC 100.0 27.0 48.9
TRA 100.0 55.6
UTY 100.0

Table B.2: Correlations of Spread Returns between Sectors
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Figure B.1: Sector-Causality Analysis

Arrows indicate 2-lag Granger causality at a 5% level of significance
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Appendix C

Non-Gaussian Kalman-Filter

In case of a state-space model with non-Gaussian measurement disturbances an optimal

filtering of state series and a consistent ML estimation of parameters is achieved by a

generalized Kalman-Filter.1 The generalized Kalman-Filter involves a recursion to deter-

mine the density f(Xt|St) of the state vector Xt conditional on the information set at

time t, represented by observation vector St. Given a non-Gaussian transition density

f(Xt|Xt−∆t), the conditional expectation

E[Xt|St] =

∫
Xtf(Xt|St)dXt, (C.1)

based on information set St, is the minimum mean squared estimator of Xt in the update

step of the Kalman-Filter. Transforming the conditional update density

f(Xt|St) =
f(St|Xt)f(Xt|St−∆t)

f(St|St−∆t)
(C.2)

using the conditional density

f(St|St−∆t) =

∫
f(St|Xt)f(Xt|St−∆t)dXt (C.3)

of the observation vector, the log-likelihood of the prediction-error decomposition

LL(ST ;ψ) =
T∑
t=1

log f(St|St−∆t;ψ) (C.4)

is obtained from the non-linear filter recursion of (C.2) and (C.3).2

1 Cf. Harvey (1989), p. 162ff. or Lund (1997b), p. 2ff.

2 The conditional density f(Xt|St−∆t) is obtained from the density f(Xt|Xt−1) of the transition dis-
turbance ηt and the update density f(Xt−∆t|St−∆t) of the previous recursion (cf. Harvey (1989), p.
163).
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For the state-space model of Section 4.4.2, no closed-form solution of (C.3) is available.3

Kitigawa (1987) suggests numerical integration to compute the densities in (C.3), how-

ever, Lund (1997b, p. 4) considers an exact filtering of non-linear state-space models

using numerical integration to be computationally infeasible for state vectors of dimen-

sion nX > 1. For a multi-factor state-space model with non-Gaussian density f(St|Xt),

Frühwirth-Schnatter (1994) proposes to approximate the update density f(Xt−∆t|St−∆t)

of the state vector by a Gaussian density with identical mean and covariance matrix, with

numerical integration only required to calculate mean and covariance matrix of the state

vector. To circumvent the computational requirements of the exact filtering of non-linear

and non-Gaussian state-space models, Lund (1997b) introduces an Iterative Extended

Kalman-Filter (IEKF), but compared to the EKF, the IEKF imposes a loss of efficiency,

unbiasedness and consistency of the resulting QML estimation is not guaranteed and the

selection of the most efficient iteration scheme is not unambiguous.

Since no ambiguously favorable optimal filtering technique is available for the non-linear

state-space model with non-Gaussian disturbances of Section 4.4.2, the approximate Ex-

tended Kalman-Filter (EKF) is employed to estimate state process and series.

3 Closed-form solution of (C.3) are known only in the linear case and for some other exceptional state-
space models (cf. Harvey (1989, chap. 6).
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Estimation Results
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Risk-Class Year LLF µF σε(µF) σF σε(σF) LLV µV σε(µV) σV σε(σV) ρV σε(ρV) βV

ECY-A 2000 2,221.2 -0.1152 0.3501 0.1778 0.0302 2,683.6 -0.0367 0.0174 0.1016 0.0127 0.3148 0.0560 0.5610

2001 1,902.2 -0.0200 0.2704 0.1791 0.0236 2,419.6 0.0217 0.0110 0.0814 0.0041 0.1972 0.0587 0.4440

2002 2,086.3 -0.0195 0.3511 0.1207 0.0287 2,631.4 -0.0025 0.0118 0.0794 0.0122 0.6017 0.0550 0.7757

2003 2,297.9 0.0570 0.3495 0.1119 0.0091 2,837.5 0.0466 0.0323 0.1244 0.0191 0.5467 0.0475 0.7394

ECY-BBB 2000 2,095.1 -0.0836 0.4219 0.1902 0.0241 2,577.3 -0.0237 0.0148 0.1145 0.0122 0.5467 0.0232 0.7394

2001 1,865.7 -0.0371 0.2930 0.1413 0.0307 2,435.7 -0.0086 0.0129 0.0995 0.0067 0.5016 0.0236 0.7083

2002 1,523.1 -0.0356 0.2228 0.1082 0.0244 1,873.0 -0.0067 0.0070 0.0346 0.0014 0.0990 0.0480 0.3147

2003 1,974.0 0.0586 0.4189 0.1226 0.0169 2,559.6 0.0568 0.0221 0.1056 0.0145 0.4232 0.0439 0.6505

FIN-AA 1999 2,398.1 -0.0135 0.3041 0.1321 0.0229 2,653.3 0.0058 0.0073 0.0303 0.0020 0.0594 0.0834 0.2437

2000 2,358.0 -0.0854 0.3239 0.1815 0.0273 2,728.6 -0.0084 0.0109 0.0587 0.0041 0.0825 0.0609 0.2872

2001 2,302.0 0.0322 0.3785 0.1381 0.0270 2,595.5 0.0023 0.0103 0.0621 0.0059 0.1957 0.0782 0.4424

2002 2,377.3 -0.0302 0.2830 0.1306 0.0177 2,549.4 0.0072 0.0053 0.0281 0.0011 0.0239 0.0370 0.1545

2003 2,443.5 0.0324 0.3651 0.1092 0.0220 2,562.5 0.0094 0.0055 0.0401 0.0025 0.1999 0.0727 0.4471

FIN-A 1999 2,230.6 0.0021 0.2476 0.1144 0.0130 2,600.7 -0.0059 0.0114 0.0617 0.0061 0.0787 0.0691 0.2806

2000 2,243.6 -0.0691 0.3202 0.1811 0.0303 2,586.3 -0.0095 0.0078 0.0632 0.0037 0.1574 0.0459 0.3968

2001 2,177.3 0.0223 0.6294 0.1843 0.0543 2,581.4 -0.0080 0.0113 0.0608 0.0043 0.2381 0.0783 0.4880

2002 2,153.7 -0.0629 0.5456 0.1799 0.0381 2,507.9 -0.0001 0.0058 0.0296 0.0015 0.0209 0.0586 0.1445

2003 2,206.4 0.0368 0.4344 0.1122 0.0213 2,459.3 0.0137 0.0106 0.0594 0.0027 0.1212 0.0492 0.3481

LCY-AA 2000 2,315.7 -0.0403 0.3539 0.1822 0.0267 2,812.1 -0.0369 0.0165 0.1048 0.0107 0.2748 0.0543 0.5243

2001 2,116.6 -0.0565 0.2233 0.1152 0.0093 2,658.4 -0.0153 0.0102 0.0637 0.0044 0.2356 0.0470 0.4854

2002 2,201.9 -0.0018 0.1650 0.1104 0.0106 2,693.0 -0.0078 0.0107 0.0567 0.0031 0.2439 0.0487 0.4939

2003 2,386.6 0.0320 0.2533 0.1135 0.0091 2,820.5 0.0062 0.0157 0.0859 0.0152 0.5436 0.0617 0.7373

LCY-A 2000 2,109.0 -0.0900 0.4773 0.1768 0.0340 2,778.0 -0.0661 0.0173 0.1386 0.0234 0.6313 0.0352 0.7945

2001 2,056.8 -0.0652 0.6994 0.3357 0.0511 2,634.4 0.0118 0.0277 0.1701 0.0113 0.3099 0.0288 0.5567

2002 1,743.6 -0.0416 0.1751 0.1220 0.0149 2,087.8 0.0081 0.0054 0.0300 0.0011 0.0201 0.0176 0.1417

2003 2,198.0 0.0966 0.5927 0.1412 0.0240 2,874.4 0.0488 0.0176 0.1225 0.0115 0.7666 0.0188 0.8755

LCY-BBB 2000 1,932.9 -0.0337 0.5397 0.1944 0.0322 2,650.8 -0.0245 0.0176 0.1408 0.0214 0.5255 0.0429 0.7249

2001 2,005.2 -0.0138 0.4188 0.1772 0.0300 2,566.1 -0.0156 0.0184 0.1298 0.0177 0.3705 0.0375 0.6087

2002 1,864.1 -0.0228 0.2350 0.1190 0.0233 2,396.1 -0.0439 0.0160 0.1057 0.0082 0.4828 0.0315 0.6949

2003 2,005.2 0.0260 0.2527 0.1019 0.0104 2,413.9 0.0424 0.0248 0.1001 0.0102 0.2797 0.0539 0.5288

NCY-AA 2000 2,295.7 -0.0736 0.3466 0.1587 0.0160 2,671.8 -0.0342 0.0164 0.0988 0.0127 0.5036 0.0487 0.7096

2001 2,266.9 0.0286 0.2430 0.1278 0.0137 2,718.6 -0.0092 0.0199 0.0913 0.0115 0.4116 0.0368 0.6416

2002 2,313.4 -0.0360 0.4933 0.1806 0.0205 2,811.4 -0.0277 0.0148 0.1083 0.0239 0.5181 0.0600 0.7198

2003 2,375.9 -0.0011 0.1264 0.0816 0.0075 2,830.1 0.0236 0.0095 0.0530 0.0040 0.0900 0.0541 0.3000

NCY-A 2000 2,164.7 -0.0855 0.4635 0.1805 0.0378 2,762.6 -0.0470 0.0236 0.1515 0.0360 0.6977 0.0293 0.8353

2001 2,224.0 -0.0213 0.9391 0.2669 0.0469 2,799.6 0.0083 0.0399 0.1880 0.0893 0.4972 0.0727 0.7051

2002 2,103.1 -0.0211 0.4091 0.1792 0.0230 2,759.7 -0.0208 0.0190 0.1474 0.0337 0.6582 0.0272 0.8113

2003 2,338.0 0.0610 0.3952 0.1313 0.0147 2,782.9 -0.0020 0.0224 0.1433 0.0276 0.6217 0.0306 0.7885

NCY-BBB 2000 2,074.9 -0.1399 0.5878 0.1973 0.0223 2,670.9 -0.0850 0.0285 0.1650 0.0198 0.6492 0.0169 0.8058

2001 1,985.1 0.0463 1.3671 0.3332 0.0483 2,523.2 0.0266 0.0325 0.2415 0.0268 0.5237 0.0242 0.7237

2002 1,853.5 -0.0925 0.5331 0.1991 0.0664 2,393.4 -0.0560 0.0180 0.1219 0.0074 0.3815 0.0414 0.6177

2003 1,747.6 0.0275 0.1425 0.1138 0.0176 1,964.2 -0.0034 0.0126 0.0383 0.0009 0.0963 0.0299 0.3103

NF-AA 1999 2,427.6 -0.0068 0.2312 0.1102 0.0156 2,628.6 -0.0186 0.0109 0.0557 0.0047 0.0832 0.0714 0.2885

2000 2,261.5 -0.1260 0.4167 0.1788 0.0198 2,694.4 -0.0271 0.0122 0.0764 0.0076 0.3307 0.0545 0.5751

2001 2,254.1 0.0042 0.3189 0.1190 0.0097 2,727.4 0.0056 0.0098 0.0595 0.0051 0.3608 0.0580 0.6007

2002 2,331.7 -0.0142 0.2901 0.1255 0.0142 2,878.2 0.0048 0.0132 0.0848 0.0125 0.4856 0.0733 0.6969

2003 2,401.1 0.0081 0.2166 0.1048 0.0104 2,734.3 0.0015 0.0089 0.0586 0.0027 0.1229 0.0467 0.3505

NF-A 1999 2,324.1 0.0155 0.3441 0.1299 0.0227 2,740.6 -0.0134 0.0115 0.0888 0.0192 0.4535 0.0490 0.6734

2000 2,101.5 -0.1141 0.4887 0.1779 0.0505 2,718.3 -0.0541 0.0206 0.1424 0.0288 0.4981 0.0597 0.7058

2001 2,026.1 -0.0226 0.2502 0.1788 0.0139 2,556.3 0.0040 0.0169 0.1115 0.0109 0.3753 0.0421 0.6127

2002 2,011.5 -0.0224 0.2892 0.1121 0.0343 2,248.0 0.0022 0.0092 0.0445 0.0015 0.0916 0.0453 0.3027

2003 2,264.4 0.0322 0.3736 0.1114 0.0139 2,854.8 0.0204 0.0142 0.0845 0.0149 0.5848 0.0484 0.7647

NF-BBB 1999 2,128.8 0.0559 0.3344 0.1788 0.0108 2,472.9 0.0025 0.0125 0.0646 0.0039 0.0908 0.0505 0.3013

2000 2,008.1 -0.0844 0.6037 0.1987 0.0387 2,586.7 -0.0480 0.0189 0.1506 0.0173 0.6094 0.0276 0.7807

2001 1,893.7 -0.0151 0.7139 0.2450 0.0540 2,459.3 -0.0211 0.0225 0.1945 0.0356 0.5038 0.0321 0.7098

2002 1,664.0 -0.0355 0.2800 0.1197 0.0378 1,917.3 -0.0047 0.0071 0.0488 0.0010 0.0884 0.0309 0.2973

2003 1,963.4 0.0247 0.2192 0.1032 0.0093 2,267.5 0.0221 0.0078 0.0576 0.0021 0.0748 0.0425 0.2735

AA 1999 2,400.6 -0.0188 0.3327 0.1313 0.0274 2,609.3 -0.0049 0.0074 0.0356 0.0031 0.0983 0.1068 0.3135

2000 2,340.6 -0.0921 0.3301 0.1863 0.0265 2,632.8 -0.0117 0.0066 0.0472 0.0025 0.0896 0.0596 0.2994

2001 2,281.9 0.0299 0.4200 0.1382 0.0285 2,608.8 -0.0012 0.0117 0.0605 0.0086 0.2389 0.1182 0.4888

2002 2,297.8 -0.0264 0.3066 0.1316 0.0186 2,572.6 -0.0051 0.0068 0.0475 0.0025 0.0894 0.0389 0.2990

2003 2,416.3 0.0289 0.3718 0.1092 0.0195 2,632.9 0.0197 0.0105 0.0587 0.0051 0.1626 0.0889 0.4032

A 1999 2,214.3 -0.0068 0.2647 0.1130 0.0165 2,643.1 0.0082 0.0082 0.0536 0.0049 0.0848 0.0703 0.2912

2000 2,133.1 -0.0746 0.4131 0.1812 0.0415 2,611.6 -0.0437 0.0194 0.1005 0.0125 0.2786 0.0763 0.5278

2001 2,110.7 0.0022 0.4946 0.1800 0.0387 2,467.4 0.0120 0.0108 0.0622 0.0030 0.2374 0.0409 0.4872

2002 2,131.8 -0.0489 0.4462 0.1598 0.0285 2,512.6 0.0060 0.0057 0.0403 0.0024 0.0948 0.0882 0.3079

2003 2,246.7 0.0314 0.4565 0.1122 0.0191 2,518.3 0.0087 0.0086 0.0557 0.0052 0.0832 0.0777 0.2885

BBB 1999 2,119.0 0.0215 0.4226 0.1607 0.0316 2,522.1 -0.0110 0.0155 0.0777 0.0076 0.2456 0.0683 0.4955

2000 2,003.6 -0.0918 0.5992 0.2004 0.0383 2,632.2 -0.0399 0.0148 0.1244 0.0142 0.5920 0.0368 0.7694

2001 1,900.5 0.0102 0.6372 0.2425 0.0438 2,454.6 0.0018 0.0262 0.2067 0.0362 0.6832 0.0173 0.8265

2002 1,663.1 -0.0348 0.2794 0.1197 0.0376 1,949.9 -0.0186 0.0101 0.0752 0.0026 0.1383 0.0412 0.3719

2003 1,962.7 0.0246 0.2194 0.1032 0.0092 2,359.9 0.0275 0.0116 0.0801 0.0044 0.0996 0.0480 0.3156

Table D.1: Parameter Estimates of Annual Estimation
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Risk-

Class
Year

Empirical Yield Spread Factor-implied Bootstrapped Asset-implied

of Risk-Class Yield Spread Yield Spread Yield Spread

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 2000 6.10 12.89 16.80 25.88 3.74 17.66 17.44 13.88 12.38 18.30 17.10 18.96 12.03 17.27 17.17 18.85

2001 25.01 35.76 30.12 14.31 21.18 39.59 33.47 22.77 22.15 48.32 45.36 37.22 22.59 48.07 46.27 37.15

2002 10.46 13.63 13.41 13.13 10.46 15.99 12.92 8.89 17.89 18.14 13.50 8.38 18.17 18.16 12.54 7.04

2003 9.03 12.34 13.39 19.42 7.52 17.84 15.44 11.07 7.74 16.93 9.74 26.66 7.83 16.62 9.52 24.50

ECY-BBB 2000 10.37 15.94 16.34 16.80 6.22 20.24 18.71 14.01 17.87 15.75 12.80 19.63 16.98 14.33 11.72 16.92

2001 21.99 28.10 21.51 15.22 17.84 24.44 19.56 12.39 35.96 49.44 24.72 21.54 36.25 48.83 24.81 18.64

2002 225.51 100.83 62.09 26.83 161.96 102.99 72.89 44.21 253.59 96.71 109.08 54.87 258.09 99.80 111.58 53.43

2003 13.15 25.58 32.63 47.52 22.53 32.23 26.23 19.33 15.17 27.13 24.66 49.92 16.33 26.96 24.34 49.16

FIN-AA 1999 3.42 3.85 4.52 5.26 0.16 2.68 3.26 2.78 9.81 13.73 9.43 10.79 9.81 13.73 9.43 10.79

2000 4.55 9.42 10.52 11.48 1.13 10.72 11.94 9.81 6.82 10.36 14.14 16.81 6.64 9.35 14.08 16.54

2001 4.40 3.95 4.63 7.10 0.44 3.03 3.14 2.50 13.07 21.13 13.20 13.27 13.25 20.30 12.13 12.45

2002 7.23 6.30 4.43 6.56 1.06 6.03 6.02 4.58 11.48 27.16 15.65 10.17 12.41 27.12 15.31 10.38

2003 3.31 3.94 4.52 6.49 0.78 4.79 4.84 3.68 10.04 12.46 16.62 22.83 9.57 11.39 15.96 22.08

FIN-A 1999 5.62 6.36 5.63 5.45 0.98 4.74 4.60 3.39 15.96 13.22 9.09 9.87 15.96 13.22 9.09 9.87

2000 4.35 9.84 11.77 16.03 2.20 11.70 11.73 9.28 10.99 13.73 13.91 12.17 10.84 13.42 13.54 11.72

2001 4.84 4.80 5.52 6.37 0.90 5.57 5.69 4.53 11.96 11.18 17.84 22.71 11.44 10.88 17.99 22.58

2002 5.79 8.95 9.85 11.12 1.65 10.73 11.10 8.77 10.74 24.62 15.97 21.59 11.17 25.15 15.05 22.39

2003 3.61 7.67 10.25 11.02 3.69 9.75 8.59 6.10 26.25 36.74 20.83 27.41 26.50 36.86 19.46 25.42

LCY-AA 2000 4.74 9.52 11.83 15.30 1.25 11.23 12.37 10.15 6.14 7.41 13.01 21.44 5.32 6.79 12.94 21.31

2001 19.98 22.39 15.73 9.52 11.82 23.40 19.57 12.68 14.53 21.77 10.36 8.45 14.60 21.39 10.12 8.17

2002 13.25 14.39 10.18 7.40 5.74 14.20 12.27 8.24 18.03 13.43 13.18 19.99 18.38 13.51 12.41 18.86

2003 9.85 6.47 6.38 11.01 1.90 8.09 7.69 5.71 9.68 10.40 9.21 9.73 8.79 10.39 8.13 6.24

LCY-A 2000 4.91 11.01 14.99 24.52 3.57 16.26 15.90 12.54 14.44 10.45 16.16 22.82 13.91 9.96 16.45 22.23

2001 10.90 18.57 23.16 22.51 1.20 17.62 20.97 18.31 14.01 22.83 23.26 19.88 14.29 23.18 21.82 17.45

2002 86.17 56.03 43.35 27.51 59.74 56.10 42.31 26.99 80.00 54.47 38.54 32.25 79.27 52.75 39.00 33.73

2003 11.39 10.15 12.12 41.60 5.24 21.18 20.19 16.14 10.37 6.27 7.01 35.97 10.14 5.92 7.21 32.36

LCY-BBB 2000 9.80 11.53 10.71 12.26 3.26 9.82 8.95 6.57 11.38 19.83 11.61 13.35 11.03 18.85 11.53 14.71

2001 10.82 12.81 13.61 20.49 6.92 16.54 14.51 11.01 22.42 31.34 14.52 26.72 22.08 31.38 13.99 24.96

2002 35.77 34.01 23.48 14.98 30.23 32.14 24.50 15.26 78.68 34.89 29.98 23.21 79.35 36.20 29.91 22.44

2003 15.89 26.62 28.87 28.20 23.89 25.36 19.67 13.36 18.75 31.33 44.44 51.84 21.62 31.70 43.65 49.58

NCY-AA 2000 6.96 11.94 12.07 9.39 2.85 14.86 14.86 11.32 15.54 12.18 15.32 11.75 14.87 10.79 14.42 9.77

2001 7.34 6.59 6.79 4.77 1.37 5.80 5.51 3.99 11.20 9.44 10.43 8.13 11.54 8.43 9.42 6.63

2002 7.34 7.59 5.99 6.31 0.51 6.18 7.12 5.90 7.39 12.81 8.09 13.22 6.94 12.51 7.56 12.77

2003 7.22 7.54 5.87 5.57 4.03 7.83 6.41 4.20 7.76 10.95 12.20 14.82 7.39 10.70 11.68 14.46

NCY-A 2000 6.08 11.00 12.20 15.35 2.77 14.25 14.21 11.12 8.54 13.67 11.61 15.38 7.36 13.05 10.95 12.27

2001 8.28 5.23 6.78 9.56 0.32 5.81 7.15 6.41 10.30 7.64 14.33 13.56 10.02 7.20 13.17 12.55

2002 11.19 14.97 12.33 8.44 3.91 18.58 18.21 13.56 7.77 12.88 13.03 17.35 7.60 11.39 14.01 15.58

2003 5.48 7.77 10.17 12.84 2.04 10.62 10.55 8.07 8.18 7.34 14.86 13.84 7.87 6.43 13.58 8.32

NCY-BBB 2000 14.91 24.54 24.91 23.54 10.57 31.35 28.85 21.44 24.88 18.29 16.61 24.22 24.94 15.72 15.86 21.93

2001 12.10 15.10 11.61 22.89 1.27 10.72 11.47 8.87 15.25 20.84 10.53 31.66 14.17 19.16 9.64 26.05

2002 20.67 35.30 41.58 54.28 24.98 43.91 37.38 28.99 27.68 48.30 39.00 74.55 28.23 48.40 38.64 74.54

2003 73.57 75.29 63.80 52.33 79.73 63.71 47.83 31.81 62.12 118.78 63.27 47.32 46.53 116.82 73.33 51.08

NF-AA 1999 4.92 4.48 4.85 6.07 0.30 2.53 2.72 2.13 10.07 21.84 19.15 15.44 10.07 21.84 19.15 15.44

2000 7.41 13.53 14.47 12.61 2.70 17.19 17.94 14.13 11.72 17.01 13.00 17.25 11.35 16.79 12.65 16.62

2001 8.70 7.22 5.16 6.12 3.35 9.94 8.84 6.09 9.60 10.70 7.87 12.00 9.52 10.10 7.42 10.56

2002 3.88 5.73 6.41 5.70 1.67 6.26 5.84 4.21 5.99 11.35 9.41 5.99 4.92 10.90 9.09 4.69

2003 6.94 5.02 3.70 7.62 1.24 4.99 4.66 3.39 8.37 17.03 12.29 10.81 7.76 16.42 11.86 9.28

NF-A 1999 5.42 5.24 4.30 6.77 0.68 4.70 4.87 3.77 8.89 9.16 9.34 9.00 8.89 9.16 9.34 9.00

2000 6.62 13.21 15.83 20.55 4.19 18.81 18.39 14.32 16.86 11.24 18.96 21.79 16.64 10.55 17.74 20.40

2001 20.06 26.86 22.24 10.49 14.68 33.32 28.96 20.30 30.93 25.42 25.07 15.32 31.29 25.79 24.64 13.68

2002 15.21 19.23 16.16 11.32 14.90 19.96 15.74 10.34 32.72 83.09 56.64 22.64 32.19 81.78 58.67 21.95

2003 6.01 9.88 11.94 16.23 5.58 14.84 13.08 9.38 12.68 17.80 8.38 18.84 12.32 17.82 7.90 16.78

NF-BBB 1999 5.87 8.68 9.59 24.14 1.62 11.25 11.70 9.89 18.31 17.90 14.33 35.76 18.31 17.90 14.33 35.76

2000 9.61 15.36 16.59 17.55 6.22 20.33 18.85 14.24 21.56 19.16 17.02 17.68 20.81 17.75 13.79 19.38

2001 14.86 19.32 15.61 15.15 4.23 16.69 15.84 11.26 13.52 18.23 29.82 24.15 13.16 18.43 27.91 19.34

2002 91.07 66.85 45.63 20.95 78.07 65.41 48.53 30.56 93.92 39.66 61.25 56.79 94.39 39.82 66.88 54.99

2003 23.21 36.36 38.40 39.24 33.91 33.11 25.52 17.49 40.62 41.99 59.85 18.80 42.84 41.83 59.41 19.10

AA 1999 3.65 3.67 4.38 5.04 0.14 2.33 2.83 2.42 15.08 12.67 13.66 23.98 15.08 12.67 13.66 23.98

2000 4.97 10.12 11.25 12.28 1.19 11.62 13.01 10.74 10.54 14.99 14.80 14.92 10.53 14.51 14.80 14.75

2001 4.59 3.73 4.58 6.21 0.39 2.60 2.69 2.12 31.55 11.40 9.46 12.93 31.54 9.40 7.83 10.48

2002 6.58 6.13 4.72 6.53 1.32 6.91 6.80 5.11 14.73 17.77 10.68 8.54 17.03 17.81 9.91 6.74

2003 4.18 3.83 3.64 6.30 0.76 4.41 4.41 3.33 9.10 14.40 11.76 22.70 8.61 13.33 8.22 21.63

A 1999 5.35 5.93 5.22 5.39 1.02 4.75 4.58 3.36 10.77 17.87 11.43 14.05 10.77 17.87 11.43 14.05

2000 3.87 9.64 12.32 16.38 2.53 12.99 12.94 10.19 15.29 20.30 16.20 27.07 15.03 19.82 15.32 25.42

2001 5.75 8.05 7.53 6.22 1.43 7.10 6.99 5.17 29.22 24.61 15.14 17.40 30.09 24.57 14.56 16.59

2002 8.75 12.10 11.68 11.15 3.85 14.86 14.03 10.45 9.85 13.58 20.04 20.47 9.48 13.50 19.52 20.29

2003 3.32 8.01 10.86 12.47 4.18 11.15 9.85 7.03 14.81 19.96 23.74 19.26 15.11 20.15 23.13 18.88

BBB 1999 6.01 7.24 7.43 23.04 0.90 5.50 5.59 4.93 15.98 21.57 20.67 26.56 15.98 21.57 20.67 26.56

2000 9.27 14.77 15.97 16.61 5.90 19.44 18.04 13.61 13.86 13.55 17.40 24.28 13.73 12.18 16.04 20.70

2001 14.49 18.74 15.24 18.60 4.51 17.18 16.21 11.57 15.91 24.87 15.45 21.69 15.53 24.12 12.03 16.52

2002 91.62 67.31 45.97 21.32 78.69 65.80 48.82 30.75 110.29 60.15 39.65 56.59 111.79 61.47 43.87 56.13

2003 23.37 36.63 38.70 39.43 34.21 33.37 25.72 17.62 37.64 54.65 41.39 51.09 37.63 56.38 41.21 50.83

Table D.2: Standard Deviation of Yield Spreads for Annual Estimation
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Risk-

Class
Year

Empirical Yield Spread Factor-implied Periodic Risk-neutral Periodic

of Risk class [bps] Yield Spread [bps] Factor-PD Factor-PD

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 2000 0.18 0.51 0.74 1.07 0.06 0.63 0.82 0.83 0.12 2.24 2.16 1.19 1.72 27.48 31.47 30.38

2001 0.54 1.04 1.25 1.58 0.28 1.30 1.49 1.38 0.54 3.96 3.27 1.72 1.40 11.39 11.10 8.47

2002 0.47 0.84 0.95 0.99 0.33 1.04 1.05 0.84 0.63 2.79 1.82 0.65 2.59 14.05 12.71 9.38

2003 0.36 0.63 0.71 0.84 0.15 0.75 0.83 0.71 0.30 2.29 1.71 0.69 0.20 1.44 0.96 0.30

ECY-BBB 2000 0.37 0.79 0.99 1.16 0.13 0.92 1.13 1.09 0.25 3.08 2.75 1.48 1.77 21.10 22.86 20.68

2001 0.65 1.19 1.35 1.43 0.49 1.48 1.51 1.26 0.93 3.93 2.71 1.14 3.74 18.21 16.75 13.08

2002 3.08 2.58 2.24 1.77 2.78 2.91 2.37 1.64 5.09 4.42 2.13 0.57 17.77 25.85 21.03 15.63

2003 0.68 1.14 1.21 1.21 0.47 1.37 1.39 1.14 0.90 3.60 2.44 0.98 0.65 2.36 1.43 0.44

FIN-AA 1999 0.12 0.26 0.36 0.50 0.01 0.25 0.43 0.50 0.01 1.08 1.43 0.96 0.05 4.65 6.87 6.49

2000 0.15 0.37 0.50 0.65 0.02 0.38 0.57 0.63 0.03 1.51 1.76 1.10 0.41 16.19 21.12 21.00

2001 0.21 0.37 0.45 0.59 0.02 0.38 0.53 0.54 0.04 1.45 1.50 0.80 0.07 2.22 2.45 1.55

2002 0.20 0.34 0.41 0.52 0.03 0.36 0.48 0.47 0.05 1.33 1.28 0.62 0.36 10.10 12.13 10.77

2003 0.21 0.32 0.35 0.47 0.02 0.31 0.42 0.41 0.04 1.17 1.13 0.53 0.06 1.74 1.79 1.00

FIN-A 1999 0.24 0.47 0.56 0.65 0.05 0.51 0.66 0.64 0.09 1.84 1.71 0.86 0.25 5.40 5.87 4.34

2000 0.20 0.50 0.67 0.89 0.05 0.56 0.77 0.79 0.09 2.09 2.12 1.21 0.68 15.78 18.76 17.48

2001 0.27 0.49 0.62 0.97 0.04 0.60 0.86 0.92 0.08 2.31 2.49 1.55 0.12 3.73 4.27 3.11

2002 0.20 0.45 0.61 0.85 0.03 0.50 0.72 0.78 0.06 1.93 2.14 1.32 0.41 13.34 16.75 15.90

2003 0.32 0.59 0.69 0.77 0.13 0.71 0.80 0.69 0.25 2.22 1.69 0.69 0.30 2.71 2.16 0.98

LCY-AA 2000 0.14 0.37 0.52 0.70 0.02 0.40 0.59 0.65 0.04 1.58 1.81 1.12 0.21 8.91 11.69 10.96

2001 0.32 0.56 0.62 0.75 0.15 0.69 0.76 0.64 0.29 2.08 1.52 0.59 2.83 23.32 24.22 21.54

2002 0.20 0.42 0.51 0.56 0.10 0.52 0.58 0.48 0.19 1.62 1.18 0.42 0.71 7.59 7.38 5.24

2003 0.22 0.42 0.47 0.51 0.04 0.44 0.56 0.52 0.09 1.55 1.38 0.63 0.12 2.25 2.15 1.16

LCY-A 2000 0.22 0.55 0.74 0.96 0.07 0.65 0.84 0.84 0.13 2.30 2.19 1.19 1.32 21.75 24.84 23.37

2001 0.29 0.62 0.85 1.44 0.01 0.56 1.04 1.42 0.02 2.48 3.82 3.47 0.08 7.49 11.66 12.11

2002 1.33 1.59 1.45 1.12 0.94 1.74 1.60 1.19 1.78 3.78 2.21 0.74 8.00 23.06 20.36 15.95

2003 0.34 0.59 0.66 0.87 0.07 0.62 0.80 0.79 0.14 2.19 2.06 1.10 0.04 0.46 0.30 0.07

LCY-BBB 2000 0.35 0.81 1.02 1.18 0.13 0.96 1.18 1.14 0.25 3.23 2.88 1.56 0.91 12.08 12.69 10.39

2001 0.50 0.96 1.15 1.41 0.19 1.12 1.33 1.26 0.36 3.61 3.10 1.65 0.93 9.94 9.88 7.47

2002 0.73 1.20 1.27 1.23 0.64 1.43 1.35 1.03 1.22 3.35 2.00 0.67 4.73 16.70 14.39 10.47

2003 0.85 1.40 1.38 1.09 0.76 1.55 1.43 1.06 1.46 3.48 2.00 0.64 2.16 5.79 3.85 1.70

NCY-AA 2000 0.17 0.43 0.57 0.68 0.05 0.50 0.65 0.64 0.09 1.79 1.71 0.88 0.96 18.68 21.91 20.65

2001 0.17 0.41 0.52 0.58 0.05 0.47 0.60 0.56 0.09 1.66 1.50 0.70 0.14 2.86 2.84 1.69

2002 0.23 0.43 0.50 0.56 0.01 0.34 0.55 0.64 0.02 1.41 1.80 1.22 0.11 7.36 10.39 10.02

2003 0.23 0.40 0.45 0.48 0.13 0.52 0.52 0.39 0.25 1.45 0.89 0.24 1.13 8.41 7.57 5.06

NCY-A 2000 0.20 0.50 0.68 0.90 0.05 0.58 0.78 0.80 0.10 2.14 2.14 1.21 0.94 19.39 22.82 21.62

2001 0.23 0.49 0.69 1.08 0.01 0.45 0.82 1.09 0.02 2.00 2.98 2.51 0.05 4.97 7.66 7.54

2002 0.27 0.56 0.71 0.91 0.06 0.63 0.85 0.88 0.11 2.30 2.34 1.38 0.36 8.21 9.57 8.10

2003 0.25 0.46 0.55 0.67 0.04 0.48 0.64 0.63 0.08 1.76 1.71 0.90 0.05 1.02 0.89 0.36

NCY-BBB 2000 0.33 0.76 0.99 1.23 0.13 0.91 1.13 1.11 0.25 3.05 2.80 1.56 3.03 32.61 35.88 34.40

2001 0.47 0.94 1.23 1.88 0.04 0.90 1.43 1.75 0.07 3.65 4.67 3.77 0.07 3.69 4.73 3.83

2002 0.65 1.31 1.61 1.92 0.40 1.61 1.79 1.66 0.77 4.69 3.78 1.99 4.04 25.47 25.59 22.48

2003 1.60 2.18 2.03 1.56 1.49 2.34 2.09 1.55 2.81 4.68 2.67 0.92 3.73 6.90 4.42 1.95

NF-AA 1999 0.15 0.30 0.37 0.47 0.01 0.29 0.43 0.45 0.03 1.17 1.27 0.69 0.11 5.15 6.60 5.61

2000 0.18 0.45 0.59 0.72 0.04 0.49 0.68 0.71 0.07 1.84 1.93 1.13 1.31 27.89 33.37 33.13

2001 0.16 0.45 0.58 0.58 0.08 0.55 0.64 0.57 0.15 1.80 1.46 0.61 0.44 6.11 6.09 4.23

2002 0.18 0.41 0.51 0.54 0.06 0.48 0.58 0.53 0.11 1.64 1.39 0.60 0.51 8.75 9.43 7.50

2003 0.22 0.40 0.45 0.48 0.05 0.43 0.52 0.47 0.10 1.48 1.24 0.51 0.27 4.81 4.92 3.35

NF-A 1999 0.21 0.44 0.55 0.71 0.03 0.45 0.64 0.67 0.05 1.72 1.84 1.06 0.09 3.26 3.78 2.72

2000 0.21 0.53 0.74 0.99 0.07 0.65 0.84 0.84 0.13 2.29 2.19 1.20 1.80 27.43 31.25 30.07

2001 0.44 0.89 1.10 1.36 0.19 1.09 1.30 1.24 0.36 3.51 3.06 1.65 1.03 10.89 11.11 8.76

2002 0.49 0.86 0.95 0.95 0.39 1.06 1.03 0.80 0.75 2.68 1.64 0.53 3.45 15.79 14.10 10.49

2003 0.33 0.56 0.64 0.74 0.12 0.67 0.76 0.66 0.23 2.11 1.63 0.67 0.31 2.99 2.48 1.22

NF-BBB 1999 0.27 0.57 0.73 1.04 0.03 0.62 0.92 1.03 0.07 2.43 2.80 1.89 0.05 1.67 1.82 1.08

2000 0.35 0.78 1.00 1.19 0.12 0.92 1.15 1.13 0.23 3.12 2.87 1.60 1.55 20.25 22.21 20.16

2001 0.51 1.00 1.23 1.66 0.10 1.08 1.46 1.55 0.20 3.89 4.01 2.65 0.42 8.40 9.36 7.61

2002 1.47 1.84 1.81 1.63 1.39 2.11 1.87 1.38 2.61 4.15 2.29 0.73 9.98 22.53 19.05 14.34

2003 0.97 1.51 1.49 1.23 0.89 1.69 1.54 1.14 1.70 3.68 2.10 0.68 2.55 6.25 4.15 1.86

AA 1999 0.12 0.27 0.36 0.50 0.01 0.25 0.42 0.50 0.01 1.07 1.42 0.94 0.06 5.28 7.82 7.52

2000 0.15 0.38 0.51 0.67 0.02 0.39 0.59 0.66 0.04 1.56 1.83 1.17 0.43 17.04 22.23 22.21

2001 0.22 0.39 0.46 0.61 0.03 0.39 0.54 0.55 0.05 1.49 1.52 0.81 0.07 2.42 2.66 1.71

2002 0.20 0.35 0.42 0.52 0.03 0.38 0.51 0.49 0.06 1.41 1.34 0.64 0.37 9.60 11.33 9.85

2003 0.23 0.33 0.36 0.49 0.03 0.33 0.44 0.42 0.05 1.23 1.16 0.54 0.08 2.05 2.11 1.22

A 1999 0.23 0.46 0.56 0.66 0.05 0.51 0.66 0.63 0.09 1.83 1.69 0.84 0.32 6.89 7.60 5.94

2000 0.20 0.50 0.69 0.91 0.05 0.60 0.80 0.82 0.10 2.19 2.18 1.23 0.83 17.26 20.23 18.87

2001 0.28 0.60 0.79 1.03 0.05 0.67 0.92 0.96 0.10 2.50 2.56 1.52 0.23 5.77 6.51 5.04

2002 0.29 0.58 0.72 0.87 0.07 0.65 0.83 0.81 0.14 2.28 2.12 1.12 0.82 14.19 16.01 14.19

2003 0.32 0.58 0.67 0.76 0.13 0.70 0.79 0.68 0.24 2.19 1.68 0.69 0.33 3.17 2.62 1.30

BBB 1999 0.31 0.63 0.78 1.01 0.04 0.65 0.91 0.98 0.08 2.45 2.63 1.64 0.12 3.52 3.95 2.79

2000 0.36 0.80 1.00 1.18 0.12 0.93 1.16 1.14 0.23 3.15 2.90 1.63 1.67 21.63 23.75 21.73

2001 0.52 1.00 1.23 1.66 0.11 1.10 1.47 1.56 0.21 3.94 4.01 2.63 0.33 6.35 6.84 5.17

2002 1.47 1.85 1.81 1.63 1.39 2.12 1.87 1.39 2.61 4.15 2.29 0.73 9.90 22.31 18.84 14.14

2003 0.97 1.51 1.49 1.23 0.90 1.69 1.55 1.14 1.71 3.68 2.10 0.68 2.57 6.28 4.17 1.88

Table D.3: Average Spread and Default Probability of Factors for Annual Estimation
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Risk-

Class
Year

Risk-neutral periodic Risk-neutral cumulative Periodic Cumulative

Asset-PD Asset-PD Asset-PD Asset-PD

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 2000 0.34 1.59 2.13 1.90 0.34 2.96 6.87 16.18 3.28 20.03 25.17 22.11 3.28 32.68 61.57 90.19

2001 1.04 2.70 2.81 2.52 1.04 5.90 11.12 22.28 2.19 6.83 7.12 5.38 2.19 13.85 25.74 45.85

2002 0.90 2.12 1.90 1.20 0.90 4.84 8.56 14.98 4.12 13.43 13.17 9.05 4.12 26.04 44.60 68.39

2003 0.70 1.63 1.70 1.74 0.70 3.72 6.94 14.79 0.65 1.46 1.50 1.54 0.65 3.38 6.24 13.25

ECY-BBB 2000 0.70 2.22 2.41 1.70 0.70 4.60 9.13 17.91 3.59 15.42 17.76 14.73 3.59 27.55 50.71 79.63

2001 1.22 3.03 2.84 1.92 1.22 6.72 12.10 21.57 4.30 13.95 14.38 10.87 4.30 26.82 46.51 72.27

2002 5.70 3.31 2.08 1.05 5.70 12.71 16.75 22.17 38.97 33.84 22.49 12.80 38.97 76.67 86.82 94.37

2003 1.32 2.80 2.39 1.63 1.32 6.60 11.23 19.23 0.96 1.78 1.43 1.00 0.96 4.42 7.30 12.41

FIN-AA 1999 0.22 0.74 0.92 0.94 0.22 1.51 3.25 7.80 3.21 12.84 10.83 5.84 3.21 24.44 40.86 59.98

2000 0.28 1.07 1.22 0.97 0.28 2.11 4.47 9.56 3.96 19.69 19.74 12.88 3.96 33.98 57.96 81.80

2001 0.39 0.97 1.06 1.11 0.39 2.18 4.21 9.39 2.47 9.83 10.79 8.34 2.47 18.51 35.09 60.52

2002 0.38 0.80 0.83 0.87 0.38 1.90 3.50 7.62 9.32 15.94 10.06 5.11 9.32 38.11 51.27 65.38

2003 0.41 0.72 0.72 0.96 0.41 1.84 3.23 7.42 3.16 9.00 7.80 5.28 3.16 18.96 31.64 50.42

FIN-A 1999 0.47 1.27 1.30 1.13 0.47 2.76 5.30 10.82 2.76 11.58 13.08 10.80 2.76 21.28 40.35 68.27

2000 0.38 1.43 1.63 1.32 0.38 2.83 5.94 12.66 4.43 20.46 20.55 13.64 4.43 35.55 59.77 83.39

2001 0.51 1.28 1.54 2.08 0.51 2.84 5.68 14.31 4.43 16.79 18.29 15.05 4.43 30.73 53.64 81.29

2002 0.39 1.19 1.45 1.40 0.39 2.47 5.20 11.95 12.75 26.07 18.63 10.09 12.75 53.55 70.50 85.14

2003 0.62 1.54 1.49 1.11 0.62 3.46 6.37 12.06 2.12 7.15 6.98 4.40 2.12 14.30 26.13 43.97

LCY-AA 2000 0.26 1.17 1.49 1.27 0.26 2.21 5.01 11.51 2.55 16.65 21.62 20.11 2.55 27.31 54.45 86.24

2001 0.60 1.36 1.29 1.35 0.60 3.16 5.69 11.65 5.53 20.04 20.73 16.90 5.53 36.33 60.15 85.64

2002 0.39 1.13 1.09 0.72 0.39 2.42 4.59 8.60 4.33 18.56 18.18 11.72 4.33 33.07 55.74 79.28

2003 0.42 1.13 1.08 0.83 0.42 2.49 4.63 8.97 1.31 5.26 5.94 5.08 1.31 10.11 20.35 40.10

LCY-A 2000 0.42 1.68 2.07 1.79 0.42 3.26 7.12 15.92 3.67 20.27 25.77 25.54 3.67 33.56 62.49 91.82

2001 0.57 1.81 2.59 4.13 0.57 3.67 8.24 23.69 0.99 3.85 5.66 8.34 0.99 7.35 16.79 43.86

2002 2.54 2.66 1.52 0.59 2.54 8.21 11.43 15.05 20.95 18.66 9.35 3.16 20.95 52.67 62.65 70.78

2003 0.65 1.53 1.59 2.04 0.65 3.49 6.50 14.96 0.58 1.27 1.28 1.71 0.58 2.97 5.43 12.52

LCY-BBB 2000 0.67 2.33 2.61 1.90 0.67 4.69 9.56 19.18 2.65 12.39 14.89 13.00 2.65 22.06 43.10 73.30

2001 0.96 2.59 2.80 2.61 0.96 5.58 10.76 22.25 3.02 11.00 12.85 12.24 3.02 20.82 39.48 69.39

2002 1.37 2.87 2.42 1.42 1.37 6.77 11.48 18.98 8.55 25.46 26.14 21.92 8.55 46.20 70.77 92.39

2003 1.63 3.31 2.25 0.79 1.63 7.98 12.58 17.68 1.66 3.40 2.32 0.82 1.66 8.16 12.90 18.17

NCY-AA 2000 0.33 1.29 1.51 0.99 0.33 2.52 5.39 11.10 3.16 18.13 22.29 19.16 3.16 30.22 57.26 86.74

2001 0.33 1.21 1.35 0.89 0.33 2.41 5.02 10.06 1.68 9.36 11.55 9.65 1.68 16.32 34.12 62.47

2002 0.44 1.14 1.20 1.01 0.44 2.52 4.84 9.96 2.66 11.82 14.68 14.60 2.66 21.30 42.06 74.29

2003 0.45 1.01 0.93 0.65 0.45 2.36 4.22 7.81 1.18 3.59 3.34 1.87 1.18 7.55 13.85 23.83

NCY-A 2000 0.38 1.54 1.99 1.83 0.38 2.96 6.63 15.49 2.15 12.66 17.27 17.83 2.15 21.40 45.11 79.90

2001 0.44 1.47 2.16 3.07 0.44 2.94 6.78 19.25 0.77 3.26 4.96 6.88 0.77 6.09 14.47 38.59

2002 0.51 1.60 1.96 1.94 0.51 3.28 6.91 15.92 1.74 7.97 10.71 11.42 1.74 14.43 30.96 62.61

2003 0.48 1.27 1.44 1.56 0.48 2.77 5.49 12.56 1.11 4.13 5.29 6.21 1.11 8.04 17.11 39.21

NCY-BBB 2000 0.61 2.22 2.71 2.31 0.61 4.38 9.35 20.35 4.48 22.13 27.84 27.87 4.48 36.90 66.27 93.70

2001 0.90 2.68 3.59 5.27 0.90 5.54 11.80 30.78 1.12 3.64 4.95 7.08 1.12 7.30 15.70 39.55

2002 1.22 3.53 3.76 2.68 1.22 7.40 14.24 26.94 7.77 27.43 30.16 26.02 7.77 47.30 74.13 94.98

2003 3.06 3.97 2.22 0.76 3.06 11.30 15.86 20.51 21.21 29.07 18.62 9.13 21.21 63.01 76.87 87.68

NF-AA 1999 0.29 0.82 0.91 0.94 0.29 1.77 3.54 7.95 3.74 18.21 21.51 19.44 3.74 31.28 57.21 86.50

2000 0.34 1.30 1.46 1.01 0.34 2.57 5.38 10.97 4.56 23.52 26.13 20.37 4.56 39.13 66.72 90.88

2001 0.29 1.37 1.34 0.53 0.29 2.61 5.32 9.12 1.81 10.97 10.71 5.28 1.81 19.13 36.14 56.00

2002 0.35 1.19 1.21 0.74 0.35 2.43 4.83 9.14 1.45 7.14 8.17 5.94 1.45 12.98 26.52 48.63

2003 0.43 1.02 0.95 0.71 0.43 2.34 4.23 7.98 2.55 9.83 10.17 7.14 2.55 18.72 34.58 57.77

NF-A 1999 0.40 1.25 1.49 1.49 0.40 2.59 5.40 12.41 1.82 8.75 11.50 11.77 1.82 15.68 33.21 64.84

2000 0.39 1.64 2.15 1.94 0.39 3.14 7.08 16.48 2.72 16.08 21.43 21.49 2.72 26.78 53.72 86.74

2001 0.84 2.44 2.75 2.33 0.84 5.13 10.21 21.12 2.16 8.11 9.59 8.18 2.16 15.45 30.56 56.63

2002 0.94 1.99 1.61 1.00 0.94 4.75 8.00 13.35 8.68 20.25 14.71 7.46 8.68 41.67 58.97 75.33

2003 0.63 1.45 1.46 1.30 0.63 3.32 6.13 12.42 1.26 3.78 4.11 3.51 1.26 7.88 15.23 30.29

NF-BBB 1999 0.53 1.60 1.91 2.13 0.53 3.33 6.87 16.14 2.10 8.90 10.59 9.02 2.10 16.48 32.88 60.20

2000 0.66 2.27 2.61 2.05 0.66 4.58 9.42 19.48 3.44 16.06 19.72 18.60 3.44 28.00 52.93 84.06

2001 0.97 2.75 3.30 4.01 0.97 5.81 11.70 27.26 2.28 8.31 10.58 12.44 2.28 15.88 32.04 64.22

2002 2.78 3.38 2.38 1.30 2.78 9.61 14.26 20.98 17.61 27.14 19.71 10.86 17.61 57.32 73.70 87.31

2003 1.87 3.28 2.10 0.81 1.87 8.34 12.68 17.60 4.05 8.24 5.50 2.07 4.05 19.24 28.95 39.16

AA 1999 0.24 0.76 0.91 0.98 0.24 1.57 3.30 7.92 4.65 20.18 19.45 13.06 4.65 35.67 58.85 82.15

2000 0.29 1.07 1.21 0.99 0.29 2.14 4.47 9.60 7.52 28.94 25.55 16.36 7.52 50.07 73.23 90.93

2001 0.43 0.98 1.04 1.21 0.43 2.26 4.26 9.65 3.09 11.78 12.61 10.08 3.09 22.23 40.60 67.24

2002 0.38 0.87 0.89 0.86 0.38 2.01 3.75 7.90 5.70 19.61 17.85 11.73 5.70 36.56 57.91 80.08

2003 0.44 0.76 0.77 1.10 0.44 1.96 3.44 8.13 1.25 3.39 3.61 3.52 1.25 7.37 13.85 28.62

A 1999 0.45 1.24 1.30 1.11 0.45 2.69 5.21 10.70 1.87 7.41 7.92 5.58 1.87 14.14 27.28 48.13

2000 0.38 1.52 1.87 1.52 0.38 2.95 6.45 14.22 4.22 22.81 27.60 24.52 4.22 37.52 66.67 92.73

2001 0.53 1.68 1.93 1.66 0.53 3.46 7.09 15.17 2.19 9.01 9.46 6.07 2.19 16.92 32.07 53.81

2002 0.56 1.46 1.50 1.24 0.56 3.21 6.11 12.30 6.28 17.15 12.94 6.59 6.28 34.85 51.88 69.32

2003 0.62 1.49 1.43 1.10 0.62 3.37 6.17 11.77 2.76 9.32 8.93 5.62 2.76 18.44 32.75 52.84

BBB 1999 0.61 1.75 1.98 1.98 0.61 3.70 7.40 16.33 2.84 11.90 14.23 12.86 2.84 21.72 41.95 72.31

2000 0.68 2.27 2.51 1.81 0.68 4.62 9.32 18.57 4.13 18.47 21.66 19.04 4.13 32.16 57.94 86.58

2001 0.98 2.76 3.32 4.08 0.98 5.83 11.76 27.52 1.69 5.73 7.24 8.71 1.69 11.31 23.17 50.34

2002 2.78 3.60 2.60 1.36 2.78 9.92 14.97 22.08 13.76 26.30 22.94 15.65 13.76 52.30 72.41 89.85

2003 1.87 3.41 2.28 0.90 1.87 8.52 13.17 18.62 2.88 5.98 4.33 1.90 2.88 14.02 22.03 31.73

Table D.4: Asset-implied Default Probability for Annual Estimation
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Risk-

Class
Year

Std. Dev. of Factor-implied Std. Dev. of Asset-implied

Yield Spread Residuals Yield Spread Residuals

T=1 T=3 T=5 T=10 T=1 T=3 T=5 T=10

ECY-A 2000 4.36 7.75 3.95 13.37 1.58 3.11 2.28 3.59

2001 8.29 12.84 12.58 22.23 2.65 3.33 2.73 1.47

2002 2.71 4.61 5.80 5.89 1.49 0.91 2.82 2.75

2003 3.23 5.89 3.85 9.31 0.54 1.49 1.54 6.50

ECY-BBB 2000 6.84 7.99 4.55 8.59 3.62 4.25 4.07 7.12

2001 8.90 9.75 8.56 19.61 3.76 2.33 2.06 7.77

2002 89.30 21.13 20.47 28.15 16.12 12.04 17.15 11.04

2003 10.06 8.32 8.16 29.49 2.44 1.75 2.03 7.89

FIN-AA 1999 3.36 2.88 3.20 3.42 0.96 4.18 3.20 1.19

2000 3.90 5.17 4.08 3.33 1.19 1.89 0.78 1.41

2001 4.45 3.68 2.80 5.14 1.51 3.23 2.62 3.39

2002 6.29 2.63 3.41 2.98 2.93 3.23 1.55 1.19

2003 2.77 2.08 2.11 3.18 2.18 2.05 2.23 4.13

FIN-A 1999 4.89 4.27 4.94 4.63 1.16 2.57 4.02 3.93

2000 3.62 6.18 4.41 7.96 1.38 1.10 1.39 1.34

2001 4.93 4.63 3.46 2.68 1.73 1.22 2.65 1.99

2002 4.54 4.05 4.11 6.13 2.35 1.81 4.94 4.53

2003 3.49 3.46 3.01 6.23 2.33 4.62 4.37 6.67

LCY-AA 2000 4.20 6.04 5.05 8.14 1.86 1.65 1.64 3.35

2001 10.19 5.18 9.25 19.08 1.42 2.33 1.51 1.37

2002 9.60 6.80 6.78 10.64 1.37 1.18 3.11 5.16

2003 8.86 4.94 5.65 6.63 2.60 2.28 4.04 7.32

LCY-A 2000 3.80 7.90 4.04 13.69 1.77 1.55 2.15 6.66

2001 10.56 12.64 8.56 9.62 3.06 1.30 4.79 6.99

2002 56.31 19.07 15.13 16.21 53.83 10.02 5.90 8.12

2003 7.42 11.69 9.12 26.27 0.74 1.75 3.01 8.64

LCY-BBB 2000 8.23 6.83 5.92 10.79 1.24 2.86 0.81 6.57

2001 6.91 7.62 5.84 12.66 2.14 1.26 2.07 5.27

2002 10.53 8.44 10.28 18.79 5.34 3.12 2.48 4.59

2003 11.24 4.93 10.00 15.46 5.81 1.10 5.88 7.47

NCY-AA 2000 4.53 5.26 4.71 3.52 2.77 4.50 5.05 6.29

2001 6.57 4.67 6.30 4.63 1.62 2.76 3.15 4.45

2002 6.91 3.49 3.38 3.52 1.06 1.27 2.59 3.14

2003 4.87 3.77 2.52 2.85 1.93 1.75 1.42 2.26

NCY-A 2000 4.17 6.19 4.03 6.83 2.67 1.80 5.55 8.60

2001 8.13 3.72 5.90 3.96 1.47 2.27 5.74 4.45

2002 7.74 5.98 8.79 13.26 1.57 4.05 3.22 3.99

2003 4.83 4.12 2.44 5.90 1.68 1.83 3.73 13.41

NCY-BBB 2000 5.90 9.08 5.21 13.80 1.92 5.92 4.28 9.36

2001 11.15 7.59 3.79 24.44 3.15 3.92 2.94 16.57

2002 7.01 10.49 8.44 27.91 1.75 1.43 1.83 3.65

2003 31.96 23.05 23.20 27.09 48.59 37.16 30.94 9.92

NF-AA 1999 4.85 3.42 3.50 5.12 1.43 1.94 4.32 1.28

2000 5.08 5.91 4.91 3.69 1.88 1.38 1.40 3.75

2001 5.68 5.48 7.93 7.96 2.42 2.28 1.07 3.24

2002 3.37 2.78 2.92 3.42 2.65 1.75 1.43 2.35

2003 6.17 3.33 2.92 5.64 2.09 2.58 2.40 3.70

NF-A 1999 4.89 2.76 3.72 5.66 0.86 2.11 3.09 2.95

2000 3.70 7.46 4.09 8.45 2.21 2.30 3.48 6.10

2001 8.35 11.24 11.42 14.39 2.20 2.62 2.73 3.72

2002 3.12 4.39 5.73 7.19 4.60 12.48 7.48 4.61

2003 2.07 5.17 2.06 7.35 2.19 1.45 2.87 4.78

NF-BBB 1999 6.06 15.55 14.56 16.05 5.12 0.80 2.73 4.32

2000 6.14 8.07 3.89 7.67 2.72 3.23 8.34 6.08

2001 11.73 9.09 6.93 20.37 1.96 1.24 5.80 10.03

2002 30.81 12.70 11.15 19.09 7.98 7.80 15.15 8.95

2003 13.50 7.19 14.18 23.60 6.75 2.69 7.53 3.48

AA 1999 3.62 2.92 3.06 3.41 3.33 1.90 6.14 2.38

2000 4.16 5.28 4.35 3.62 1.32 1.65 0.87 1.17

2001 4.66 3.46 2.78 4.90 0.95 5.51 3.24 5.10

2002 5.45 3.13 3.89 3.19 5.48 1.29 3.40 3.43

2003 3.63 2.05 2.28 3.37 2.62 2.72 5.76 3.54

A 1999 4.56 3.88 4.72 4.61 2.57 2.08 2.87 1.88

2000 3.04 6.78 4.52 7.18 1.10 3.25 3.97 4.54

2001 5.01 4.26 4.34 7.61 6.12 2.32 1.54 2.33

2002 5.35 4.95 5.06 5.04 1.74 1.87 2.17 3.12

2003 2.68 3.70 2.15 6.22 3.40 2.48 4.23 2.01

BBB 1999 5.94 8.37 6.84 19.12 1.68 1.02 1.79 7.38

2000 6.09 7.95 3.64 7.19 1.46 4.05 4.03 12.00

2001 11.32 9.43 7.16 22.66 1.74 2.41 7.65 12.84

2002 31.04 12.87 11.26 19.25 9.85 4.93 7.94 8.53

2003 13.59 7.10 14.26 23.63 1.99 4.85 2.27 10.50

Table D.5: Standard Deviation of Yield Spread Residuals for Annual Estimation
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Correlations of Factor-implied Correlations of Asset-implied

Yield Spread Residuals Yield Spread Residuals

ECY-A T=1 T=3 T=5 T=10 ECY-A T=1 T=3 T=5 T=10

T=1 100.0 78.4 37.3 -0.2 T=1 100.0 26.0 -14.2 -1.1

T=3 100.0 82.4 3.9 T=3 100.0 -1.5 -52.8

T=5 100.0 30.7 T=5 100.0 -16.7

T=10 100.0 T=10 100.0

ECY-BBB T=1 T=3 T=5 T=10 ECY-BBB T=1 T=3 T=5 T=10

T=1 100.0 33.9 -5.8 -30.8 T=1 100.0 41.3 -3.8 -16.6

T=3 100.0 80.9 -7.2 T=3 100.0 20.2 -2.4

T=5 100.0 41.3 T=5 100.0 18.0

T=10 100.0 T=10 100.0

FIN-AA T=1 T=3 T=5 T=10 FIN-AA T=1 T=3 T=5 T=10

T=1 100.0 80.4 44.6 30.1 T=1 100.0 -7.4 19.5 -0.1

T=3 100.0 87.2 42.5 T=3 100.0 -26.2 -10.6

T=5 100.0 52.6 T=5 100.0 -28.8

T=10 100.0 T=10 100.0

FIN-A T=1 T=3 T=5 T=10 FIN-A T=1 T=3 T=5 T=10

T=1 100.0 81.8 54.0 25.9 T=1 100.0 3.6 8.7 10.1

T=3 100.0 90.8 39.1 T=3 100.0 0.4 -15.9

T=5 100.0 52.1 T=5 100.0 -34.9

T=10 100.0 T=10 100.0

LCY-AA T=1 T=3 T=5 T=10 LCY-AA T=1 T=3 T=5 T=10

T=1 100.0 72.9 8.1 -21.4 T=1 100.0 15.8 5.7 2.5

T=3 100.0 69.6 -17.2 T=3 100.0 -39.9 -47.1

T=5 100.0 15.5 T=5 100.0 54.4

T=10 100.0 T=10 100.0

LCY-A T=1 T=3 T=5 T=10 LCY-A T=1 T=3 T=5 T=10

T=1 100.0 13.7 -29.5 -45.3 T=1 100.0 57.4 44.3 44.4

T=3 100.0 83.1 -2.6 T=3 100.0 59.1 83.6

T=5 100.0 34.4 T=5 100.0 44.1

T=10 100.0 T=10 100.0

LCY-BBB T=1 T=3 T=5 T=10 LCY-BBB T=1 T=3 T=5 T=10

T=1 100.0 70.6 19.4 -32.1 T=1 100.0 13.8 4.4 10.4

T=3 100.0 75.9 -9.3 T=3 100.0 20.9 22.1

T=5 100.0 42.4 T=5 100.0 -52.5

T=10 100.0 T=10 100.0

NCY-AA T=1 T=3 T=5 T=10 NCY-AA T=1 T=3 T=5 T=10

T=1 100.0 75.8 25.0 -7.7 T=1 100.0 8.6 6.6 10.9

T=3 100.0 77.9 3.1 T=3 100.0 -20.4 5.1

T=5 100.0 31.7 T=5 100.0 -31.5

T=10 100.0 T=10 100.0

NCY-A T=1 T=3 T=5 T=10 NCY-A T=1 T=3 T=5 T=10

T=1 100.0 76.1 14.2 4.2 T=1 100.0 -7.2 34.4 -14.8

T=3 100.0 69.7 -11.4 T=3 100.0 -25.2 0.3

T=5 100.0 4.7 T=5 100.0 -43.8

T=10 100.0 T=10 100.0

NCY-BBB T=1 T=3 T=5 T=10 NCY-BBB T=1 T=3 T=5 T=10

T=1 100.0 58.2 30.9 -6.3 T=1 100.0 4.5 18.4 7.6

T=3 100.0 87.1 16.9 T=3 100.0 49.9 46.4

T=5 100.0 52.6 T=5 100.0 38.2

T=10 100.0 T=10 100.0

NF-AA T=1 T=3 T=5 T=10 NF-AA T=1 T=3 T=5 T=10

T=1 100.0 72.2 19.2 -13.7 T=1 100.0 14.7 -22.9 -3.4

T=3 100.0 76.5 -16.5 T=3 100.0 -2.1 -45.3

T=5 100.0 12.2 T=5 100.0 -21.4

T=10 100.0 T=10 100.0

NF-A T=1 T=3 T=5 T=10 NF-A T=1 T=3 T=5 T=10

T=1 100.0 79.9 30.4 -2.2 T=1 100.0 6.1 29.2 24.9

T=3 100.0 74.1 -2.0 T=3 100.0 26.7 48.6

T=5 100.0 34.5 T=5 100.0 32.7

T=10 100.0 T=10 100.0

NF-BBB T=1 T=3 T=5 T=10 NF-BBB T=1 T=3 T=5 T=10

T=1 100.0 56.4 -4.3 -43.1 T=1 100.0 13.1 20.4 11.9

T=3 100.0 70.6 -8.5 T=3 100.0 20.1 11.1

T=5 100.0 51.1 T=5 100.0 1.4

T=10 100.0 T=10 100.0

AA T=1 T=3 T=5 T=10 AA T=1 T=3 T=5 T=10

T=1 100.0 82.1 48.4 27.2 T=1 100.0 20.0 -5.6 10.5

T=3 100.0 87.9 37.5 T=3 100.0 -5.5 -25.9

T=5 100.0 48.4 T=5 100.0 -21.3

T=10 100.0 T=10 100.0

A T=1 T=3 T=5 T=10 A T=1 T=3 T=5 T=10

T=1 100.0 70.8 35.5 17.1 T=1 100.0 12.6 -3.9 6.9

T=3 100.0 88.8 30.0 T=3 100.0 21.6 -24.2

T=5 100.0 45.4 T=5 100.0 24.8

T=10 100.0 T=10 100.0

BBB T=1 T=3 T=5 T=10 BBB T=1 T=3 T=5 T=10

T=1 100.0 41.6 -16.6 -45.8 T=1 100.0 1.8 -4.6 20.3

T=3 100.0 73.7 -9.1 T=3 100.0 34.3 -11.4

T=5 100.0 44.8 T=5 100.0 -10.9

T=10 100.0 T=10 100.0

Table D.6: Inner-Class Correlations of Yield Spread Residuals
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Correlations of Correlations of

Empirical Risk class Spreads Bootstrapped Spreads
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τ=1 AA A BBB
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τ=1 AA A BBB

AA 100.0 75.5 7.4 AA 100.0 4.6 9.2

A 63.4 100.0 11.5 A 6.5 100.0 5.6

BBB 10.2 22.7 100.0 BBB 8.4 3.7 100.0

τ=3 AA A BBB τ=3 AA A BBB

AA 100.0 76.3 26.2 AA 100.0 11.0 23.6

A 74.7 100.0 24.7 A 6.2 100.0 1.5

BBB 17.4 27.8 100.0 BBB 24.4 1.8 100.0

τ=5 AA A BBB τ=5 AA A BBB

AA 100.0 72.6 32.4 AA 100.0 16.5 7.1

A 76.3 100.0 30.1 A 15.9 100.0 13.0

BBB 20.1 29.5 100.0 BBB 6.8 11.1 100.0

τ=10 AA A BBB τ=10 AA A BBB

AA 100.0 69.9 16.9 AA 100.0 0.1 -9.7

A 78.0 100.0 18.6 A 0.4 100.0 -0.1

BBB 24.3 32.4 100.0 BBB -5.0 -2.9 100.0

Table D.7: Rating-Class Model Yield Spread Correlations

Correlations of Correlations of

Empirical Risk class Spreads Bootstrapped Spreads
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τ=1 FIN-AA FIN-A NF-AA NF-A NF-BBB
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τ=1 FIN-AA FIN-A NF-AA NF-A NF-BBB

FIN-AA 100.0 77.4 34.0 51.6 12.2 FIN-AA 100.0 23.1 5.6 1.6 5.9

FIN-A 81.7 100.0 31.9 45.0 18.0 FIN-A 21.7 100.0 6.8 16.6 7.9

NF-AA 36.3 30.2 100.0 44.5 5.9 NF-AA 5.7 5.8 100.0 9.3 3.7

NF-A 31.9 24.9 33.4 100.0 24.3 NF-A 0.4 10.0 11.9 100.0 5.8

NF-BBB 15.8 11.0 18.0 39.6 100.0 NF-BBB 2.9 -2.0 2.3 -0.6 100.0

τ=3 FIN-AA FIN-A NF-AA NF-A NF-BBB τ=3 FIN-AA FIN-A NF-AA NF-A NF-BBB

FIN-AA 100.0 80.7 38.9 46.6 29.5 FIN-AA 100.0 16.4 9.4 8.5 0.2

FIN-A 82.1 100.0 36.6 41.3 20.0 FIN-A 16.9 100.0 4.8 1.6 9.7

NF-AA 43.8 35.6 100.0 48.6 17.3 NF-AA 7.0 4.6 100.0 8.5 12.1

NF-A 43.7 36.1 46.2 100.0 42.4 NF-A 6.0 -6.0 0.4 100.0 -2.7

NF-BBB 22.2 17.6 26.0 44.8 100.0 NF-BBB 1.0 9.5 13.9 2.3 100.0

τ=5 FIN-AA FIN-A NF-AA NF-A NF-BBB τ=5 FIN-AA FIN-A NF-AA NF-A NF-BBB

FIN-AA 100.0 80.4 35.4 37.0 30.4 FIN-AA 100.0 17.9 8.0 4.6 11.5

FIN-A 82.3 100.0 31.5 34.9 19.4 FIN-A 17.1 100.0 10.9 12.9 1.9

NF-AA 44.8 36.4 100.0 45.9 21.9 NF-AA 6.3 6.8 100.0 4.9 -0.9

NF-A 45.5 38.1 48.1 100.0 45.9 NF-A 2.3 18.7 -1.2 100.0 11.9

NF-BBB 24.5 19.2 28.0 46.4 100.0 NF-BBB 8.7 -0.7 -3.6 5.0 100.0

τ=10 FIN-AA FIN-A NF-AA NF-A NF-BBB τ=10 FIN-AA FIN-A NF-AA NF-A NF-BBB

FIN-AA 100.0 73.8 38.8 29.5 19.0 FIN-AA 100.0 3.7 0.6 10.4 -1.3

FIN-A 83.2 100.0 32.9 25.6 14.9 FIN-A 13.7 100.0 14.4 11.8 11.5

NF-AA 45.6 38.0 100.0 36.1 17.8 NF-AA -0.7 9.6 100.0 6.5 14.8

NF-A 46.3 40.1 50.2 100.0 23.9 NF-A 17.0 8.7 11.1 100.0 23.0

NF-BBB 27.5 21.9 29.9 46.3 100.0 NF-BBB 0.3 15.0 15.0 21.8 100.0

Table D.8: Two-Sector Model Yield Spread Correlations
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Correlations of

Empirical Risk Class Spreads
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τ=1 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 8.2 55.7 51.0 38.3 0.7 23.1 27.3 49.5 14.9

ECY-BBB 15.8 100.0 4.4 5.5 16.9 31.9 15.3 9.7 13.1 1.6

FIN-AA 26.4 12.4 100.0 77.4 30.7 -7.5 20.8 29.3 41.4 11.1

FIN-A 22.0 -3.3 81.7 100.0 33.2 -7.4 20.2 30.3 38.3 6.8

LCY-AA 47.4 16.5 21.1 19.6 100.0 0.0 7.5 19.5 27.4 7.3

LCY-A 8.9 23.1 2.5 1.6 1.6 100.0 25.1 2.6 3.9 -1.7

LCY-BBB 25.0 10.8 14.6 17.0 5.8 44.8 100.0 3.7 8.5 8.6

NCY-AA 28.9 22.9 39.4 27.1 16.5 9.9 14.9 100.0 61.8 5.0

NCY-A 38.7 34.6 41.5 37.3 32.3 23.5 42.8 61.1 100.0 13.0

NCY-BBB 7.9 6.0 4.9 6.2 5.5 3.5 11.4 9.8 19.2 100.0

τ=3 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 30.4 49.7 47.4 45.1 17.8 24.4 26.8 56.4 17.1

ECY-BBB 26.3 100.0 16.4 7.0 22.2 36.6 32.1 9.7 22.8 17.3

FIN-AA 40.0 18.0 100.0 80.7 30.2 12.0 20.7 31.7 47.3 16.4

FIN-A 35.9 3.1 82.1 100.0 27.3 9.7 19.1 27.9 43.4 12.9

LCY-AA 51.4 27.2 30.9 27.6 100.0 5.1 8.5 26.0 27.6 8.6

LCY-A 17.2 27.8 9.0 6.3 5.5 100.0 30.3 12.3 21.8 7.5

LCY-BBB 35.4 18.9 24.8 27.0 9.3 45.3 100.0 4.0 20.7 18.9

NCY-AA 34.8 25.1 42.9 31.1 23.3 17.0 21.6 100.0 52.8 7.7

NCY-A 52.3 37.6 53.2 48.5 40.8 28.5 45.5 62.4 100.0 20.1

NCY-BBB 15.5 11.3 11.0 11.4 11.2 7.1 15.4 13.9 27.2 100.0

τ=5 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 36.3 43.6 44.6 39.2 29.9 32.1 21.8 60.1 21.4

ECY-BBB 29.1 100.0 21.9 13.7 24.4 50.1 49.0 9.5 27.7 37.4

FIN-AA 42.4 20.3 100.0 80.4 28.0 18.3 24.0 28.7 47.0 17.3

FIN-A 38.6 5.5 82.3 100.0 25.1 17.1 23.0 20.2 44.7 12.4

LCY-AA 51.9 28.9 32.5 29.0 100.0 16.0 22.3 28.7 33.6 14.8

LCY-A 19.3 28.4 10.9 7.8 6.8 100.0 26.2 16.6 31.6 22.1

LCY-BBB 37.4 22.0 27.1 29.0 11.2 45.6 100.0 16.4 30.9 35.0

NCY-AA 35.8 26.0 43.1 31.6 24.6 18.9 23.0 100.0 43.5 12.2

NCY-A 54.7 38.6 54.7 50.2 41.9 30.2 46.2 62.1 100.0 25.8

NCY-BBB 17.2 13.9 12.8 12.7 12.7 8.5 17.0 14.9 28.9 100.0

τ=10 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 16.4 37.2 39.2 33.8 42.7 33.3 32.8 62.0 23.3

ECY-BBB 31.6 100.0 28.4 23.3 16.2 12.6 43.7 14.4 13.9 40.1

FIN-AA 44.4 25.8 100.0 73.8 29.7 26.2 22.3 42.8 33.3 14.5

FIN-A 42.0 11.6 83.2 100.0 24.1 28.0 28.7 39.4 31.9 14.2

LCY-AA 54.7 28.3 34.4 31.6 100.0 21.6 21.9 37.9 18.1 18.0

LCY-A 23.1 24.8 13.3 11.2 9.1 100.0 24.6 20.6 44.1 -1.4

LCY-BBB 44.0 28.9 32.8 34.8 20.6 46.5 100.0 28.5 36.9 36.5

NCY-AA 37.8 27.9 43.4 33.4 26.4 21.2 29.7 100.0 30.1 13.1

NCY-A 58.3 40.2 54.7 51.3 46.1 32.7 50.0 62.1 100.0 19.1

NCY-BBB 21.0 22.4 15.3 14.4 15.9 12.3 23.8 16.2 31.1 100.0

Table D.9: Four-Sector Model Yield Spread Correlations of Risk classes
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τ=1 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 5.4 3.4 13.2 0.8 -0.1 2.8 9.1 -0.6 9.9

ECY-BBB 5.0 100.0 1.3 9.5 8.6 22.0 -12.1 8.6 2.8 4.0

FIN-AA 1.8 2.3 100.0 23.1 1.7 2.4 7.1 -1.1 11.6 -2.2

FIN-A 15.7 10.9 21.7 100.0 8.1 -0.6 3.7 15.8 6.3 4.5

LCY-AA 5.9 4.2 3.5 5.1 100.0 -14.1 3.9 3.8 10.5 7.3

LCY-A 0.4 9.9 1.3 3.3 -13.4 100.0 26.5 9.9 4.9 1.3

LCY-BBB 5.5 -14.8 4.2 -7.8 4.1 19.0 100.0 -0.5 2.5 5.9

NCY-AA 7.9 7.6 -3.3 14.1 -1.4 2.4 3.0 100.0 3.6 4.1

NCY-A -3.5 2.9 8.7 2.2 4.3 0.8 1.8 -0.1 100.0 10.4

NCY-BBB 8.2 2.1 0.8 -1.5 4.3 3.9 9.1 2.9 6.6 100.0

τ=3 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 12.2 10.5 9.3 26.4 6.9 5.6 12.7 18.3 12.9

ECY-BBB 10.5 100.0 3.1 8.8 2.6 12.4 20.3 12.1 13.4 7.6

FIN-AA 10.7 7.9 100.0 16.4 -0.1 -4.0 1.8 19.0 14.1 5.7

FIN-A 9.7 9.3 16.9 100.0 14.5 3.5 8.4 5.7 11.2 3.2

LCY-AA 33.0 1.7 0.1 11.0 100.0 -6.3 0.0 5.7 9.4 14.0

LCY-A 4.2 5.9 -1.4 3.8 -9.8 100.0 10.6 2.6 2.6 -10.9

LCY-BBB 5.2 14.8 3.8 7.6 1.8 9.9 100.0 5.6 -10.2 6.1

NCY-AA 12.4 10.8 19.3 3.4 0.9 -0.3 4.0 100.0 8.1 10.7

NCY-A 19.1 13.1 8.4 5.7 6.2 0.9 -9.6 5.8 100.0 10.7

NCY-BBB 15.3 5.9 4.8 0.3 19.8 -13.3 4.7 10.0 8.7 100.0

τ=5 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 5.8 2.8 9.5 6.1 6.8 1.4 2.9 4.3 9.2

ECY-BBB 7.1 100.0 0.1 34.0 24.2 17.5 -0.8 5.6 -2.5 14.0

FIN-AA 0.0 1.5 100.0 17.9 -2.5 -0.7 -1.1 4.3 14.6 3.5

FIN-A 6.2 31.8 17.1 100.0 14.4 11.0 -2.8 16.1 5.4 7.6

LCY-AA 2.5 25.2 -8.5 12.9 100.0 10.6 2.2 8.4 15.6 12.4

LCY-A 3.8 9.0 -2.9 6.4 3.8 100.0 14.1 5.9 0.0 7.8

LCY-BBB 4.2 -2.3 4.1 -1.4 3.6 19.9 100.0 -7.0 9.6 4.4

NCY-AA 5.6 7.2 7.5 14.2 11.9 7.2 -6.9 100.0 14.0 5.1

NCY-A 15.1 -5.5 9.6 7.0 7.1 3.4 11.9 19.5 100.0 11.3

NCY-BBB 8.7 11.7 0.4 0.4 8.6 1.8 2.9 0.2 16.2 100.0

τ=10 ECY-A ECY-BBB FIN-AA FIN-A LCY-AA LCY-A LCY-BBB NCY-AA NCY-A NCY-BBB

ECY-A 100.0 6.7 9.3 0.0 21.7 9.2 3.8 -1.3 22.0 10.6

ECY-BBB 8.9 100.0 19.4 -8.8 6.1 12.4 -5.8 -0.4 8.2 -1.2

FIN-AA 10.1 12.6 100.0 3.7 4.0 0.3 -6.9 2.6 23.6 -6.0

FIN-A 2.5 -2.8 13.7 100.0 -5.3 6.8 10.0 16.8 6.4 5.5

LCY-AA 20.6 7.8 -4.4 -5.5 100.0 0.2 -0.4 6.7 10.6 9.6

LCY-A 14.2 28.9 -0.3 6.5 1.6 100.0 6.7 2.9 4.1 0.1

LCY-BBB 4.1 -2.9 -0.1 13.2 5.6 -1.7 100.0 12.4 10.2 1.4

NCY-AA -3.4 1.4 2.0 11.9 4.5 1.6 13.8 100.0 4.3 2.1

NCY-A 16.7 4.2 12.7 8.9 7.2 0.6 13.0 5.3 100.0 15.8

NCY-BBB 11.6 -0.3 -6.4 11.4 12.6 -0.5 8.6 0.4 12.7 100.0

Table D.10: Four-Sector Model Yield Spread Correlations of Assets
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Factor Correlations Asset Correlations Betas

1999 AA A BBB AA A BBB F1 F2 F3

AA 100.0 82.9 60.4 100.0 9.8 7.6 9.4 14.3 31.4

A 100.0 61.9 68.4 8.5 8.9 8.6 24.1 16.3

BBB 100.0 24.6 29.9 10.5 38.1

2000 AA A BBB AA A BBB F1 F2 F3

AA 100.0 87.4 39.0 100.0 9.0 13.8 9.0 32.0 29.9

A 100.0 43.8 56.7 27.9 17.8 13.5 46.1 25.7

BBB 100.0 59.2 30.0 15.4 69.2

2001 AA A BBB AA A BBB F1 F2 F3

AA 100.0 76.1 49.4 100.0 23.9 18.1 20.0 38.6 48.9

A 100.0 69.8 65.1 23.7 28.1 22.1 37.1 31.6

BBB 100.0 68.3 40.8 41.0 59.0

2002 AA A BBB AA A BBB F1 F2 F3

AA 100.0 79.8 27.8 100.0 8.9 7.3 3.1 10.7 29.9

A 100.0 41.0 49.5 9.5 4.7 5.0 24.6 18.6

BBB 100.0 13.8 10.3 11.6 33.8

2003 AA A BBB AA A BBB F1 F2 F3

AA 100.0 59.3 3.8 100.0 16.3 6.9 0.5 11.5 40.3

A 100.0 24.2 29.1 8.3 2.2 3.2 17.1 23.2

BBB 100.0 10.0 1.2 8.6 30.3

Table D.11: Credit Dependence of Rating-Class Model with Annual Estimation

Factor Correlations Asset Correlations Betas

1999 FIN-AA FIN-A NF-AA NF-A NF-BBB FIN-AA FIN-A NF-AA NF-A NF-BBB F1 F2 F3 F4 F5

FIN-AA 100.0 80.0 37.5 62.7 45.3 100.0 5.9 5.5 2.6 10.3 3.3 15.3 24.4

FIN-A 100.0 40.1 59.0 42.9 48.7 7.9 3.2 11.1 3.6 6.1 22.5 16.8

NF-AA 100.0 42.7 23.1 8.3 8.3 2.0 10.8 4.9 26.3

NF-A 100.0 53.3 45.3 10.8 42.2 9.9 12.3 50.0

NF-BBB 100.0 9.1 13.6 3.3 1.4 9.1 25.0

2000 FIN-AA FIN-A NF-AA NF-A NF-BBB FIN-AA FIN-A NF-AA NF-A NF-BBB F1 F2 F3 F4 F5

FIN-AA 100.0 88.6 52.2 72.7 41.9 100.0 8.3 10.1 8.6 14.7 9.4 33.6 28.7

FIN-A 100.0 46.8 69.7 41.1 58.7 15.7 10.7 19.5 12.7 16.6 35.2 18.4

NF-AA 100.0 78.7 42.1 33.1 31.9 18.9 30.0 0.7 49.0

NF-A 100.0 53.4 49.8 29.4 51.3 8.0 33.6 34.0

NF-BBB 100.0 60.9 32.7 6.7 18.5 17.4 65.9

2001 FIN-AA FIN-A NF-AA NF-A NF-BBB FIN-AA FIN-A NF-AA NF-A NF-BBB F1 F2 F3 F4 F5

FIN-AA 100.0 87.4 36.0 44.1 38.9 100.0 19.6 18.9 9.6 11.9 12.2 33.5 44.2

FIN-A 100.0 41.0 45.0 47.8 51.0 23.8 12.0 13.4 16.6 16.5 42.6 23.7

NF-AA 100.0 42.3 65.1 36.1 15.6 27.8 21.6 11.7 54.8

NF-A 100.0 62.6 37.5 27.2 27.0 8.2 16.0 52.0

NF-BBB 100.0 50.4 27.6 20.2 35.4 24.0 45.1

2002 FIN-AA FIN-A NF-AA NF-A NF-BBB FIN-AA FIN-A NF-AA NF-A NF-BBB F1 F2 F3 F4 F5

FIN-AA 100.0 75.4 57.7 62.2 30.0 100.0 2.4 1.7 6.2 2.9 1.4 14.2 15.4

FIN-A 100.0 45.2 59.7 26.6 52.4 2.1 4.5 2.6 1.1 4.9 10.9 9.5

NF-AA 100.0 65.6 45.1 48.6 13.8 9.3 40.2 1.7 56.9

NF-A 100.0 56.8 9.2 5.1 18.8 5.9 10.8 20.2

NF-BBB 100.0 8.8 8.9 1.8 10.1 11.1 24.0

2003 FIN-AA FIN-A NF-AA NF-A NF-BBB FIN-AA FIN-A NF-AA NF-A NF-BBB F1 F2 F3 F4 F5

FIN-AA 100.0 66.4 27.9 11.7 -1.5 100.0 20.0 10.3 4.4 4.0 -0.2 22.1 44.7

FIN-A 100.0 0.5 16.1 3.4 24.2 12.1 0.1 4.3 0.3 4.7 23.1 26.0

NF-AA 100.0 30.5 23.3 12.3 8.2 2.2 9.8 -8.5 32.6

NF-A 100.0 63.8 58.5 13.3 8.9 8.5 24.6 71.4

NF-BBB 100.0 7.5 -0.4 1.6 7.4 16.0 20.8

Table D.12: Credit Dependence of Two-Sector Model with Annual Estimation
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Appendix E

Conditional Default Probability

The conditional probability, that an asset value with dynamics according to (3.3) and value

Vt = V at time t has hit barrier V at time τ ≤ t, is defined as P [τ ≤ t|Vt = V ]. The closed-

form formula of P [τ ≤ t|Vt = V ] is derived by a convergence consideration. For continuous

Vt, the probability of an early default conditional on asset value Vt ∈ (V −∆V, V + ∆V ]

is defined by

P [τ ≤ t|V −∆V < Vt ≤ V + ∆V ] =
P [τ ≤ t, V −∆V < Vt ≤ V + ∆V ]

P [V −∆V < Vt ≤ V + ∆V ]
.

By use of the integral form of distributions FV,τ (V, t) = P [Vt ≤ V, τ ≤ t] =∫ t

0

∫ V

0
fV,τ (v, u)dv du with density fV,τ (V, t), and FV (V, t) = P [Vt ≤ V ] =

∫ V

0
fV (v, t)dv

with log-normal density fV (V, t) as defined in (3.6) and (3.5), it results the limit

P [τ ≤ t|Vt = V ], according to the rule of l’Hôspital:

lim
∆V→0

P [τ ≤ t|V −∆V < Vt ≤ V + ∆V ] = lim
∆V→0

t∫
0

V+∆V∫
V−∆V

fV,τ (v, u)dv du

V+∆V∫
V−∆V

fV (v, t)dv

=

t∫
0

fV,τ (V, u)du

fV (V, t)
,

A close-form solution of P [τ ≤ t|Vt = V ] =
∫ t

0
f(V,u)
fV (V,t)

du requires to express
∫ t

0
f(u, V )du

explicitly. Using the law of total probability, it is

t∫
0

fV,τ (V, u)du = fV (V, t)−
∞∫
t

fV,τ (V, u)du, .
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With fV,τ (V, t) defined by (3.15), it results a closed-form solution for the probability

P [τ ≤ t|Vt = V ] =

t∫
0

fV,τ (u, V ) du

fV (V, t)
=

fV (V, t)−
∞∫
t

fV,τ (u, V ) du

fV (V, t)
,

of an early default in the interval (0, t] conditional on Vt = V . [q.e.d.].



Appendix F

Simulation Results

Distribution Type bp L(E[D1]) L(D0) D1

Portfolio Type ρai,j q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 q0.01 q0.5 q0.99 q0.01 q0.5 q0.99

Homogenous

Portfolio

0% 0.33 1.00 1.89 2.99 3.54 4.15 1.91 2.40 2.96 97.62 97.05 96.42

5% 0.00 0.89 3.33 1.35 3.39 7.21 0.74 2.26 5.46 99.62 97.20 93.08

10% 0.00 0.67 4.89 0.83 3.22 9.26 0.40 2.10 7.26 100.30 97.35 90.93

15% 0.00 0.56 6.22 0.52 3.04 10.97 0.22 1.94 8.77 100.75 97.52 89.18

20% 0.00 0.44 7.56 0.33 2.89 12.56 0.12 1.79 10.21 101.05 97.67 87.53

25% 0.00 0.33 8.89 0.21 2.73 14.15 0.07 1.64 11.66 101.27 97.82 85.90

30% 0.00 0.22 10.33 0.13 2.56 15.68 0.03 1.48 13.11 101.44 97.98 84.36

Diversified

Portfolio

0% - 0% 0.33 1.00 1.89 0.70 1.58 2.89 1.54 2.53 3.92 98.96 97.91 96.47

5% - 0% 0.11 0.89 2.67 0.38 1.53 3.67 1.06 2.47 4.88 99.57 97.97 95.41

5% - 5% 0.00 0.89 3.33 0.22 1.47 4.29 0.81 2.41 5.62 99.91 98.03 94.59

10% - 0% 0.00 0.89 3.56 0.21 1.47 4.41 0.80 2.41 5.73 99.92 98.02 94.50

10% - 5% 0.00 0.78 4.00 0.11 1.42 5.02 0.63 2.36 6.45 100.16 98.07 93.74

15% - 0% 0.00 0.78 4.33 0.08 1.40 5.09 0.60 2.34 6.50 100.19 98.09 93.69

10% - 10% 0.00 0.78 4.67 0.02 1.36 5.63 0.48 2.29 7.14 100.37 98.13 93.01

15% - 5% 0.00 0.67 4.78 0.03 1.35 5.64 0.49 2.29 7.14 100.36 98.14 93.02

20% - 0% 0.00 0.67 5.22 0.01 1.32 5.84 0.47 2.26 7.32 100.37 98.17 92.87

15% - 10% 0.00 0.67 5.22 -0.02 1.29 6.13 0.40 2.22 7.71 100.51 98.20 92.41

20% - 5% 0.00 0.67 5.67 -0.04 1.28 6.32 0.37 2.21 7.86 100.54 98.21 92.27

25% - 0% 0.00 0.56 6.11 -0.05 1.26 6.51 0.36 2.19 8.06 100.53 98.23 92.10

15% - 15% 0.00 0.56 5.89 -0.07 1.24 6.74 0.31 2.17 8.38 100.65 98.25 91.73

20% - 10% 0.00 0.56 6.00 -0.07 1.23 6.77 0.31 2.16 8.39 100.65 98.26 91.71

25% - 5% 0.00 0.56 6.44 -0.08 1.22 6.99 0.29 2.15 8.61 100.67 98.27 91.53

30% - 0% 0.00 0.56 7.11 -0.09 1.19 7.20 0.28 2.12 8.80 100.67 98.29 91.36

20% - 15% 0.00 0.56 6.56 -0.09 1.17 7.23 0.25 2.10 8.92 100.75 98.31 91.15

25% - 10% 0.00 0.56 7.00 -0.10 1.17 7.44 0.24 2.09 9.11 100.76 98.32 90.98

30% - 5% 0.00 0.44 7.44 -0.11 1.13 7.66 0.22 2.07 9.28 100.78 98.34 90.86

20% - 20% 0.00 0.44 7.22 -0.12 1.12 7.93 0.20 2.05 9.65 100.85 98.36 90.42

25% - 15% 0.00 0.44 7.22 -0.12 1.10 7.84 0.20 2.03 9.55 100.84 98.38 90.53

30% - 10% 0.00 0.44 7.78 -0.12 1.10 8.09 0.19 2.02 9.78 100.84 98.39 90.31

25% - 20% 0.00 0.44 8.00 -0.14 1.06 8.48 0.16 1.99 10.27 100.93 98.42 89.78

30% - 15% 0.00 0.44 8.22 -0.14 1.05 8.55 0.16 1.97 10.29 100.92 98.43 89.78

25% - 25% 0.00 0.33 8.67 -0.15 1.01 9.10 0.12 1.92 10.91 101.01 98.48 89.13

30% - 20% 0.00 0.33 8.89 -0.15 1.00 9.08 0.12 1.92 10.88 101.01 98.49 89.17

30% - 25% 0.00 0.33 9.22 -0.16 0.95 9.46 0.09 1.86 11.30 101.07 98.54 88.76

30% - 30% 0.00 0.33 9.78 -0.16 0.89 10.00 0.08 1.80 11.89 101.11 98.59 88.14

Table F.1: Quantiles of Homogenous and Diversified Portfolio
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Interval Count h = 4 h = 12 Difference in %

Loss Type ρai,j q0.05 q0.95 q0.995 q0.05 q0.95 q0.995 q0.05 q0.95 q0.995

L(E[D1])

0% - 0% 2.46 3.04 2.45 3.04 0.24 -0.12

10% - 0% 3.33 4.87 3.30 4.81 1.13 1.22

10% - 5% 3.61 5.56 3.61 5.59 -0.06 -0.47

10% - 10% 3.90 6.36 3.89 6.32 0.15 0.61

20% - 0% 4.04 6.56 4.01 6.60 0.78 -0.66

20% - 10% 4.52 7.88 4.46 7.82 1.43 0.78

30% - 0% 4.67 8.33 4.64 8.41 0.72 -0.99

20% - 20% 4.89 9.21 4.95 9.23 -1.25 -0.22

30% - 10% 5.03 9.32 5.02 9.46 0.16 -1.47

25% - 25% 1.47 5.38 10.66 1.48 5.39 10.63 -1.01 -0.05 0.25

30% - 20% 5.49 10.74 5.41 10.73 1.41 0.02

30% - 30% 5.78 11.92 5.79 12.24 -0.17 -2.63

L(D0)

0% - 0% 3.47 4.09 3.47 4.08 0.19 0.20

10% - 0% 4.56 6.25 4.51 6.18 1.20 1.07

10% - 5% 4.90 7.05 4.90 7.07 -0.03 -0.34

10% - 10% 5.25 7.90 5.23 7.88 0.23 0.31

20% - 0% 5.38 8.06 5.33 8.11 1.02 -0.58

20% - 10% 5.96 9.56 5.89 9.48 1.21 0.88

30% - 0% 6.08 9.90 6.06 10.00 0.29 -0.99

20% - 20% 6.42 11.02 6.47 11.00 -0.83 0.19

30% - 10% 6.54 11.09 6.53 11.25 0.16 -1.37

25% - 25% 2.84 7.00 12.55 2.85 6.99 12.51 -0.54 0.04 0.32

30% - 20% 7.10 12.58 7.02 12.65 1.10 -0.54

30% - 30% 7.45 13.85 7.47 14.19 -0.20 -2.44

Table F.2: Simulation Intervals of Diversified Portfolio
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Düllmann, K. and Windfuhr, M.: 2000, Credit spreads between german and italian

sovereign bonds: Do one-factor affine models work?, Canadian Journal of Adminis-

trative Sciences 17, 166–181.

Eberlein, E., Frey, R., Kalkbrenner, M. and Overbeck, L.: 2007, Mathematics in financial

risk management. Working Paper.

Embrechts, P., Lindskog, F. and McNeil, A.: 2001, Modelling dependence with copulas

and applications to risk management. Working Paper, Department of Mathematics,

ETH Zürich.
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Hamerle, A., Liebig, T. and Rösch, D.: 2003, Credit risk factor modeling and the basel

ii irb approach. Discussion Paper No. 02/2003, Series 2: Banking and Financial

Supervision, Deutsche Bundesbank.
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default correlations. Dresdner Beiträge zu Quantitativen Verfahren Nr. 36/03, Uni-

versität Dresden.



250 Bibliography

Jarrow, R. A., Lando, D. and Turnbull, S. M.: 1997, A markov model for the term

structure of credit risk spreads, Review of Financial Studies 10(2), 481–523.

Jarrow, R. A. and Protter, P.: 2004, Structural versus reduced form models: A new

information based perspective, Journal of Investment Management 2(2), 1–10.

Jarrow, R. A. and Turnbull, S. M.: 1995, Pricing derivatives on financial securities subject

to credit risk, Journal of Finance 50, 53–86.

Jarrow, R. A. and Yu, F.: 2000, Counterparty risk and the pricing of defaultable securities.

Working Paper, Johnson GSM, Cornell University.

Joe, H.: 1997, Multivariate Models and Dependence Concepts. Chapman & Hall, London.

Kalman, R.: 1960, A new approach to linear filtering and prediction problems, Journal

of Basic Engineering 82, 35–45.

Karatzas, I. and Shreve, S. E.: 1988, Brownian Motion and Stochastic Calculus, 2 edn.

Springer, New York.

Karatzas, I. and Shreve, S. E.: 1998, Methods of Mathematical Finance. Springer, New

York.

Kealhofer, S.: 1995, Managing default risk in portfolio of derivatives, in R. Publications

(ed.), Derivative Credit Risk, pp. 49–63.

Kealhofer, S.: 1998, Portfolio management of default risk. KMV.

Kealhofer, S. and Kurbat, M.: 2001, The default prediction power of the merton approach,

relative to debt ratings and accounting variables. KMV.

Keenan, S. and Sobehart, J.: 1999, Performance measures for credit risk models. Moody’s

Risk Management Services, Research Report 10-10-99.

Kern, M. and Rudolph, B.: 2001, Comparative alternative credit risk models. Working

Paper - Center for Financial Studies.

Kijima, M.: 2000, Valuation of a credit swap of the basket type, Review of Derivatives

Research 4, 81–97.

Kijima, M. and Komoribayashi, K.: 1998, A markov chain model for valuing credit risk

derivatives, Journal of Derivatives 6(Fall), 97–108.

Kim, I. J., Ramaswamy, K. and Sundaresan, S.: 1993, Does default risk in coupons affect

the valuation of corporate bonds? a contingent claims model, Financial Management

22, 117–131.



Bibliography 251

Kitigawa, G.: 1987, Non-gaussian state space modelling of non-stationary time series,

Journal of the American Statistical Association pp. 1032–1063.

Koopman, S. J., Lucas, A. and Klaasen, P.: 2003, Pro-cyclicality, empirical credit cycles,

and capital buffer formation. Working Paper, Tinbergen Institute, Amsterdam.

Koyluoglu, H. and Hickman, A.: 1998a, A generalized framework for credit risk portfolio

models. Working Paper.

Koyluoglu, H. and Hickman, A.: 1998b, Reconcilable differences, RISK pp. 56–62. Octo-

ber 1998.

Kupiec, P.: 1995, Techniques for verifying the accuracy of risk management models,

Journal of Derivatives pp. 73–85. Winter 1995.

Kupiec, P.: 2001, Why basel must brush-up on credit, RISK pp. 74–77. June 2001.

Kupiec, P. and O’Brien, J. M.: 1997, The pre-commitment approach: Using incentives

to set market risk capital requirements. Board of Governors of the Federal Reserve

System.

Lando, D.: 1997, Modelling bonds and derivatives with default risk, in M. Dempster and

S. Pliska (eds), Mathematics of Financial Derivatives, pp. 369–393.

Lando, D.: 1998, On cox-processes and credit risky securities, Review of Derivatives

Research 2, 99–120.

Leland, H.: 1994, Corporate debt value, bond covenants and optimal capital structure,

Journal of Finance 49(4), 1213–1252.

Leland, H. E. and Toft, K. B.: 1996, Optimal capital structure, endogenous bankruptcy,

and the term structure of credit spreads, Journal of Finance 51(3), 987–1019.
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