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Chapter 1

Introduction

With important advances made in econometric theory and the rapidly increasing availabil-

ity of computing power and large datasets, the use of nonparametric and semiparametric

techniques has gained considerable importance for applied economic research over the

past three decades. Extensive overviews of recent developments in this area are given for

example by Pagan and Ullah (1999) or Li and Racine (2007).

The general aim of nonparametric and semiparametric techniques is to weaken the

often restrictive assumptions that are imposed in order to be able to use standard econo-

metric methods. In a classical regression framework, for example, it is the aim of the

researcher to investigate the functional relationship between the mean of an outcome

variable of interest and a number of explanatory quantities. A typical, fully parametric

approach to this problem would be to assume that the relationship can be represented

through a function known up to a finite number of parameters, which can be estimated

from the data by maximum likelihood or the method of least squares. Such a procedure

will of course be adequate when the true underlying data generating process can be well

approximated by the postulated functional form. It will, however, potentially result in

grossly misleading conclusions under misspecification.

In order to avoid this problem, nonparametric methods replace the global parametric

restrictions on the functional relationship between the outcome and the regressors with

weaker conditions that only require the relationship to be sufficiently smooth in small

neighborhoods. A typical requirement could for example be the existence of a second

bounded derivative. Various techniques can be used to construct estimators based on
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such restrictions, such as kernel smoothing, local polynomial regression or orthogonal

series approximations, but throughout this thesis the focus will be on the former class.

Nonparametric estimators are highly flexible, but suffer from the so-called curse of di-

mensionality. The typical rate at which of such estimators converge to their corresponding

population values deteriorates drastically if the dimension of the covariate space becomes

larger. Such estimates might therefore not be reliable in practice. One option in this

case is to consider an intermediate class of models, that describe certain aspects of the

relationship through a parametric structure, while others are left more open. These so-

called semiparametric models often represent a reasonable compromise in the sense that

they balance the potential risk of misspecification and the potential inaccuracy of the

estimator due to the curse of dimensionality.

This thesis contains of three main chapters, which contribute to the literature on

non- and semiparametric econometrics. The chapters are self-contained and can be read

separately. Chapter 2 and 3 each end with an appendix that contains the more technical

arguments.

Chapter 2 proposes a fully nonparametric procedure to evaluate the effect of a coun-

terfactual change in the distribution of some covariates on the unconditional distribution

of an outcome variable of interest. Due to the focus on the unconditional distribution, we

are able to circumvent the curse of dimensionality even in settings with a large number

of covariates. In contrast to other methods, we do not restrict attention to the effect on

the mean. In particular, our method can be used to conduct inference on the change of

the distribution function as a whole, its moments and quantiles, inequality measures such

as the Lorenz curve or Gini coefficient, and to test for stochastic dominance. The prac-

tical applicability of our procedure is illustrated via a simulation study and an empirical

example.

In Chapter 3, we analyse a semiparametric estimator for the coefficients of a single

index binary choice model with endogenous regressors. In order to achieve identification,

we employ the control function approach used by Blundell and Powell (2003, 2004). The

estimator we propose is a two-step semiparametric maximum likelihood (SML) estimator,

that can be seen as a generalization of the popular approach of Klein and Spady (1993).

The first step consists of estimating a reduced form equation for the endogenous regressors
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and extracting the corresponding residuals. In the second step, the latter are added as

control variates to the outcome equation, which is in turn estimated by SML. We establish

the estimator’s
√
n-consistency and asymptotic normality. In a simulation study, we

compare the properties of our estimator with those of existing alternatives, highlighting

the advantages of our approach.

In Chapter 4, we study identification of a certain class of parameters, called Uncondi-

tional Partial Effects, in nonseparable models with endogenous regressors, using a control

variable approach due to Imbens and Newey (2009). We thus extend the work of Firpo,

Fortin, and Lemieux (2009), who recently introduced this parameters for models with-

out endogeneity. We also show that these effects can be written in terms of an average

derivative of the conditional CDF of the outcome variable Y given the regressors X and

the control variable V , where the derivative is taken with respect to X. This representa-

tion is useful to give an explicit expression for Unconditional Partial Effects in nonlinear

parametric or semiparametric models.
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Chapter 2

Nonparametric Estimation of

Distributional Policy Effects

2.1 Introduction

In this paper, we propose a fully nonparametric procedure to evaluate the effect of a

change in the distribution of some covariates on the unconditional distribution of an

outcome variable of interest. We consider a general nonseparable model of the form

Y = m(X, ε) (2.1.1)

where Y is the dependent variable of interest, X a vector of regressors and ε an unobserved

error term that will usually represent individual heterogeneity. The question we are

interested in is: How would the unconditional distribution of the dependent variable

change if a policy maker could exogenously shift the values of X to some X∗, i.e what is

the difference between the distribution of Y and the one of the (counterfactual) random

variable

Y ∗ = m(X∗, ε).

We will call any difference between the distribution of Y and Y ∗ a distributional policy

effect.

There are numerous examples in applied economics that fit into this rather abstract

framework: Ichimura and Taber (2002) study the effect of a change in distribution of
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income induced by the introduction of a tuition subsidy on college attendance rates and

future earnings; Stock (1991) considers the effects of cleaning up a nearby hazardous waste

disposal site on average house prices; DiNardo, Fortin, and Lemieux (1996) analyse how

the distribution of wages would have evolved in the United States between 1973 and 1992

if the distribution of workers’ characteristics had remained at their 1973 level (see also

Donald, Green, and Paarsch (2000), Gosling, Machin, and Meghir (2000) or Machado

and Mata (2005)); and Blau and Kahn (1997) consider how much of the gender wage gap

would persist if women had the same observable characteristics as men.

The contribution of our paper is to provide a fully nonparametric method to analyse

these kind of questions. In contrast to other methods, we neither impose any parametric

restrictions on the relation between Y and X, nor do we restrict attention to the policy’s

effect on the mean. In particular, our results can be used to conduct inference on the

the change of the distribution function as a whole, its moments and quantiles, inequality

measures such as the Lorenz curve or Gini coefficient, and to test for stochastic dominance.

We show that the cumulative distribution function (CDF) of the counterfactual random

variable Y ∗ is identified under some weak restrictions, and propose a two-stage estimator,

that does not rely on any parametric specification of the model (2.1.1) and is easy to

implement. In the first stage, we estimate the conditional distribution function of Y

given X through nonparametric kernel methods. Secondly, we take a simple average of

this estimate evaluated at the observed values of X∗ to obtain an estimate of the CDF

of Y ∗. Too see whether the counterfactual distribution differs from the original one,

this result can be compared to an estimate of the distribution function of Y , such as

the ordinary empirical CDF. Furthermore, any functional of the two CDFs can in turn

be estimated by plugging in the respective estimators. For example, in order to obtain

an estimate of the quantile function of Y ∗, one can simply invert the estimate of the

corresponding CDF.

We also provide a complete asymptotic theory for the estimation procedures proposed

in this paper. A key result is that although our method is fully nonparametric, it is not

affected by the curse of dimensionality: using empirical process theory, we show that

our estimates of the functions of interest converge to certain Gaussian processes at the

usual parametric rate
√
n irrespective of the dimension of X. We can therefore expect
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the asymptotics to provide a rather accurate approximation to the finite sample distri-

bution even for moderate sample sizes. A further important result is that the ordinary

nonparametric bootstrap works in our framework. This allows us to conduct asymptoti-

cally valid uniform inference on the entire functions being estimated, and not just some

isolated points. We can thus test a number of important hypothesis involving the whole

distribution of Y ∗ and Y , such as stochastic dominance ordering for example. The use

of our methodology is illustrated through an empirical example and an extensive simu-

lation study. The latter shows that our estimators and the related inferential procedures

have good finite sample properties, even when the sample size is relatively small. Our

approach should thus be appealing to applied researchers.

To the best of our knowledge, our paper is the first to consider estimation and infer-

ence for general distributional policy effects in a fully nonparametric framework. As such,

it complements and extends an extensive literature on the estimation of policy effects in

more restrictive settings. Stock (1989) and Imbens and Newey (2009) consider estima-

tion of policy effects on the mean of the outcome variable in a nonparametric framework.

DiNardo, Fortin, and Lemieux (1996), Donald, Green, and Paarsch (2000), Gosling,

Machin, and Meghir (2000) and Machado and Mata (2005) develop policy estimators

for more general distributional effects, but rely on various parametric restrictions of the

model in (2.1.1). Furthermore, these papers generally focus on estimation rather than

inference, and thus do not provide a full asymptotic theory for their procedures. Cher-

nozhukov, Fernandez-Val, and Melly (2008) derive general limit distribution results for

estimators of distributional policy effects, but again only for the case that model (2.1.1)

is contained in certain parametric classes. In particular, their arguments critically rely

on the assumption that the conditional distribution function of Y given X can be be

estimated at a parametric rate, which is clearly not possible in our fully nonparamet-

ric framework. While using a correctly specified parametric model will obviously result

in efficiency gains compared to our fully nonparametric procedure, such estimators will

generally be inconsistent when the respective restrictions are violated. This trade-off is

discussed in more detail as part of our simulation study.

In another related paper, Firpo, Fortin, and Lemieux (2009) propose a method to esti-

mate the impact of a marginal increase in the covariates on the unconditional distribution
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of the outcome variable in a framework similar to ours. This parameter is different from

the one being estimated in this paper, which corresponds to the effect of a general and

fixed change in the distribution of the covariates. Furthermore, they use a very different

estimation approach based on a linearization of the outcome distribution.

The outline of the paper is as follows. In the next section, we give a more formal

description of our problem, define the parameters of interest, show under which condi-

tions they can be identified, and describe the estimation procedure. Section 3 treats the

asymptotic properties of our estimate of the distribution function, and Section 4 shows

how these results can be used to analyse a wide range of statistics of the CDF. In Section

5 the practical relevance of our procedure is shown through a simulation study and a

small-scale empirical application. Finally, Section 6 concludes. All proofs are collected

in the Appendix.

2.2 Modelling Framework and Estimation Approach

2.2.1 Model

The setup we consider is as follows: we observe a dependent variable Y and a d-

dimensional vector of covariates X, with marginal distribution functions FY and FX ,

respectively. The dependent variable is assumed to be generated through the nonsepara-

ble model

Y = m(X, ε), (2.2.1)

where ε is an unobserved error term. We assume that (2.2.1) is either a structural equation

that describes the causal relationship between the right-hand and left-hand side variables,

or a reduced form equation from a bigger structural system, as in Ichimura and Taber

(2002). In a typical microeconometric application, X and ε would correspond to observed

and unobserved characteristics of an individual, respectively, and m would describe the

decision rule that, given individual characteristics, determines the individual’s choice Y .

This flexible formulation allows the covariates to exert influence on Y in manifold ways.

For example, model (2.2.1) allows for heteroskedasticity or skewness in the conditional

distribution of Y given X. It is fully nonparametric in the sense that we do not restrict
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the function m or the distribution of the random variables involved to belong to some

parametric family.

The values of at least some components of X are assumed to be under control of a

(hypothetical) policy maker, and can thus be shifted exogenously to another observed

random vector X∗ with associated distribution function F ∗
X . Substituting X∗ for X

in (2.2.1), we obtain the counterfactual random variable

Y ∗ = m(X∗, ε),

whose distribution function we denote by F ∗
Y . Our interest is in learning (features of)

this distribution and comparing it to that of Y .

For applications, the random vector X∗ could originate from a number of different

sources. First, X∗ could be drawn from a different subpopulation corresponding to a dif-

ferent demographic group, geographic region or time period, like workers’ characteristics

in a different country for example. Second, X∗ could be a deterministic transformation

of X, i.e. there exists a known function π : Rd → Rd such that X∗ = π(X). Examples of

this case include a public program that causes smoking pregnant women to reduce their

daily cigarette consumption by, say, half, or a tuition subsidy that is paid out subject to

certain eligibility conditions. Third, X∗ could be a repeated measurement on the same

individual at a different point in time, as it would typically be the case when the data

originate from a panel study.

While the specific source of X∗ will not matter for our identification argument or the

computation of the estimator, it is useful for the asymptotic development to distinguish

those cases where X∗ and X are stochastically independent, and those where they are

not. We will call the former case an independent policy implementation, in the sense that

the realization of X∗ does not depend on the old value of X. The latter case is then

accordingly termed as a dependent policy implementation.

2.2.2 Objects of Interest

Depending on the application at hand, a researcher might be interested in learning about

different features of the distribution of Y ∗ and Y . Here we list some useful examples for

which estimation and inference is discussed in detail below. However, our framework is by
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no means limited to these examples, but can be used for any object that can be written

as a sufficiently smooth (in the sense described below) functionals of the distribution

functions of Y and Y ∗.

Our primary objects of interest are the distribution functions FY and F ∗
Y themselves.

Assuming that the latter is identified, we could give a complete description of the effect

of the policy on the distribution of the outcome variable by evaluating them directly.

Furthermore, we will consider the pointwise difference between the two distribution func-

tions,

∆F (y) = F ∗
Y (y) − FY (y), (2.2.2)

which we call the Distribution Function Policy Effect. This quantity can be of interest in

at least two respects. First, in some empirical contexts it might be sufficient to consider

the effect of the policy on the distribution of the outcome variable at some fixed point

only. In development economics for example, if Y is household income and ȳ is some fixed

income level defined as the poverty line, one might be interested in whether the policy

reduces the fraction of households that live under the poverty line, i.e. whether ∆F (ȳ) is

negative. Secondly, it might be interesting to test whether ∆F ≡ 0, and thus the policy

has any kind of impact on the distribution of the outcome variable at all.

Instead of looking directly at the CDF, it is often more intuitive to consider the

unconditional τ -quantiles Q∗
Y and QY of Y ∗ and Y , respectively, where

Q∗
Y (τ) = inf{y ∈ R : F ∗

Y (y) ≥ τ} (2.2.3)

and QY is defined analogously. Another convenient summary statistic is the correspond-

ing Quantile Policy Effect, which is defined as

∆Q(τ) = Q∗
Y (τ) −QY (τ). (2.2.4)

This quantity is analogous to the quantile treatment effect in the literature on program

evaluation.

In our framework, it is also possible to analyse the effect of the policy on the Lorenz

curve and the Gini coefficient. These measures play an important role in the analysis

of inequality and poverty. Formally, for a positive random variable with distribution

10



function F ∗
Y the Lorenz curve L∗

Y (p) is defined as the integral over the quantile function

up to p divided by µ, the mean of F :

L∗
Y (p) =

1

µ∗
Y

∫ p

0

Q∗
Y (τ)dτ =

1
∫ 1

0
F ∗−1

Y (τ)dτ

∫ p

0

F ∗−1
Y (τ)dτ, (2.2.5)

The corresponding Gini coefficient is defined as twice the area between the Lorenz curve

and the uniform distribution line, i.e.

G∗
Y = 1 − 2

∫ 1

0

L∗
Y (p)dp, (2.2.6)

with G = 0 implying perfect equality and G = 1 implying perfect inequality. The

quantities LY and GY are then defined analogously. Again, we can also consider the

Lorenz Curve Policy Effect, given by

∆L(p) = L∗
Y (p) − LY (p), (2.2.7)

and the Gini Policy Effect,

∆G = G∗
Y −GY . (2.2.8)

The final application we consider in this paper is testing for stochastic dominance.

This topic is of great practical importance since the results can be used to evaluate the

welfare implications of a proposed policy without making strong assumptions about social

preferences. In particular, it is well known that if some distributions can be ranked by

stochastic dominance, the same ranking is obtained through the corresponding social

welfare over a wide range of utility functions (Atkinson 1970). To simplify the notation,

define the operator Dj(y, φ) that integrates the function φ up to order j − 1 for j ≥ 1,

i.e.

D1(y, φ) = φ(y), D2(y, φ) =

∫ y

0

φ(z)dz, D3(y, φ) =

∫ y

0

∫ t

0

φ(z)dzdt, etc. (2.2.9)

Then F ∗
Y is said to dominate FY in ”j-th order stochastic dominance” sense if Dj(y, F

∗
Y −

FY ) ≤ 0 for all possible values of y. A Kolmogorov-Smirnov-type test for stochastic

dominance can then be carried out by testing whether supy Dj(y, F
∗
Y − FY ) is negative.

11



2.2.3 Identification

For the setup considered in this paper, the only issue is whether the distribution functions

of Y and Y ∗ are identified, since identification of the quantities (2.2.2)–(2.2.9) discussed

in the previous subsection then follows trivially. While FY is obviously identified by the

data, the case of F ∗
Y is less clear. Identification in nonseparable models is a potentially

delicate issue, that has attracted considerable interest in the recent literature (see for

example Chesher (2003), Matzkin (2003), Imbens and Newey (2009) or Hoderlein and

Mammen (2007)). However, since we are not interested in directly identifying features

of m, our problem is much less complicated. In particular, there is no need to impose

anymore structure on the function m, such as monotonicity in the unobservables. For

identification of our quantity of interest, the following assumption suffices.

Assumption 1 (Identification). (i) The term ε is independent of both X and X∗. (ii)

The support of X∗ is a subset of the support of X.

Proposition 1. Under Assumption 1, F ∗
Y (y) = E(FY |X(y,X∗)) and is thus identified.

The first part of Assumption 1 implies that X is exogenous, which is a strong as-

sumption for many applications. It is straightforward to relax this condition by requiring

independence to hold only conditional on some other random variable V , which is either

observed or estimateable. Such a control variable could be available in a wide range of

contexts, as described in Imbens and Newey (2009) for example. These include treatment

effect models with selection on observables, triangular simultaneous equation models and

certain sample selection models. In all cases, one can extend the result of Proposition 1

to F ∗
Y (y) = E(FY |X,V (y,X∗, V )). Our results on estimation given below then apply imme-

diately when V is observed. The case where V has to be estimated (nonparametrically)

from the data is technically much more involved and beyond the scope of this paper.

The second part of Assumption 1 restricts the policy experiments that can be con-

sidered to ones for which there is already some experience in the data. This restriction

is due to the inability of nonparametric estimators to extrapolate from range of actual

observations. While it limits the potential fields of application, without imposing some

parametric structure on m this condition seems necessary to obtain point identification
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of F ∗
Y . However, it is possible to give meaningful bounds on the CDF of Y ∗ when X∗ is

allowed to take values outside of the support of X with moderate probability.

2.2.4 Estimation

Our estimation approach is to first construct estimates F̂ ∗
Y and F̂Y of the distribution

functions F ∗
Y and FY , respectively, and then estimate any functional of the form Γ =

Γ(F ∗
Y , FY ) through the plug-in method by Γ̂ = Γ(F̂ ∗

Y , F̂Y ). For example, an estimate of

the Quantile Policy Effect ∆Q can be constructed as

∆̂Q(τ) = Q̂∗
Y (τ) − Q̂Y (τ) = inf{y ∈ R : F̂ ∗

Y (y) ≥ τ} − inf{y ∈ R : F̂Y (y) ≥ τ}.

Estimates of all objects of interest defined in eq. (2.2.2)–(2.2.8) can be defined in an

analogous manner.

The structure of the data used for the estimation depends on whether we are consid-

ering a dependent or an independent policy implementation. In the former case, the data

consist of a sample {(Yi, Xi, X
∗
i )}n

i=1 of size n from the distribution of (Y,X,X∗). For an

independent policy implementation, the data consist of a sample {(Yi, Xi)}n
i=1 of size n

from the distribution of (Y,X), and a sample {X∗
i }n∗

i=1 of size n∗ from the distribution of

X∗. While we allow the two samples sizes to be different in this case, we assume for the

later asymptotic analysis that they increase proportionally, so that n∗ = n/λ for some

constant λ.

We now turn to the construction of the estimators. Throughout, we will use the

notation for an independent policy implementation without loss of generality, since it

covers the dependent implementation as the special case with n∗ = n. Starting with

an estimate for the CDF of Y , an obvious candidate is the usual empirical cumulative

distribution function (ECDF),

F̂Y (y) =
1

n

n
∑

i=1

I{Yi ≤ y},

whose theoretical properties are well-known in the literature. To derive an estimator

for F ∗
Y , we know from the identification argument in the previous subsection that under

Assumption 1

F ∗
Y (y) = E(FY |X(y,X∗)).
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Following the analogy principle and replacing unknown quantities with suitable sample

counterparts, it appears intuitive to use an estimator F̂ ∗
Y of the form

F̂ ∗
Y (y) =

1

n∗

n∗

∑

i=1

F̂Y |X(y,X∗
i ),

where F̂Y |X is a first-stage nonparametric estimate of the distribution function of Y

conditional on X. If all covariates are continuously distributed, we propose to estimate

this function by a Nadaraya-Watson-type estimator, i.e.

F̂Y |X(y, x) =
ĝY X(y, x)

f̂X(x)

where

ĝY X(y, x) =
1

n

∑

j

I{Yj ≤ y}Kx,h(Xj − x),

f̂X(x) =
1

n

∑

j

Kx,h(Xj − x).

Here I{A} is an indicator function that equals one if A is true and zero otherwise, h = hn

is a bandwidth sequence that tends to zero as n→ ∞, Kx,h(·) = h−dKx(·/h), and Kx is a

higher-order boundary kernel, i.e. a kernel function whose moments up to a certain order

are zero, and whose shape adapts when the point of evaluation x is in the vicinity of the

boundary of the support of X (see for example Gasser, Müller, and Mammitzsch (1985)).

These properties are needed to derive a uniform rate of convergence for our first-step

estimator later, uniformly over the entire support of Y and X. We will be more precise

about the specifics below.

The estimator F̂Y |X can easily be generalized to admit discrete regressors using the

conventional frequency method. This entails splitting the sample into subsets, or cells,

and then calculating the Nadaraya-Watson estimator within each such subset separately.

This procedure is well known to have no effect on the rate of convergence. For notational

convenience, we will therefore maintain the assumption that all covariates are continu-

ously distributed.

A computational advantage of our estimator is that it admits a representation as a

reweighted version of the usual empirical distribution function. To see this, note that

14



F̂ ∗
Y (y) can be written as

F̂ ∗
Y (y) =

1

n∗

n∗

∑

i=1

∑n
j=1 I{Yj ≤ y}KX∗

i ,h(Xj −X∗
i )

∑n
l=1KX∗

i ,h(Xl −X∗
i )

=
1

n

n
∑

j=1

I{Yj ≤ y}wj

where the weights wj are given by

wj = λ

n∗

∑

i=1

KX∗

i ,h(Xj −X∗
i )

∑n
l=1KX∗

i ,h(Xl −X∗
i )
.

Since the weights do not depend on y, they have to be calculated only once even when

F̂ ∗
Y is evaluated at multiple locations, making the estimator extremely cheap to compute

in practice.

A potential caveat when using higher-order kernels is that they are not restricted to

be positive, and hence can lead to estimates of F ∗
Y which are non-monotone or take values

ouside the unit interval in finite samples, which is of course undesirable. This problem

can be circumvented by a slight modification of the estimator: if we replace the weights

wj by w̃j = wjI{wj ≥ 0}/∑i(wiI{wi ≥ 0}), we obtain a modified estimator

F̃ ∗
Y (y) =

1

n

n
∑

j=1

I{Yj ≤ y}w̃j

which is constrained to be monotonically increasing and bounded between 0 and 1. We

show in the following section that this estimator asymptotically equivalent to F̂ ∗
Y under

standard conditions. For the further analysis, we will therefore assume without loss of

generality that there are no issues with non-monotonicity of F̂ ∗
Y .

2.3 Asymptotic Properties

In order to conduct inference on the CDFs and related functionals as a whole, we have

to derive the joint asymptotic properties of the two estimators not only at some fixed

value, but as a random function. To do so, we first state the assumptions and give

some useful preliminary results in the following subsection, before proving the main weak

convergence theorem in the next but one. Finally, we discuss inference and the validity

of the bootstrap.
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2.3.1 Assumptions and Preliminaries

To present our framework, we first have to introduce some notation. For µ a k-vector

of nonnegative integers, we define (i) |µ| =
∑k

i=1 µi, (ii) for any function φ(x) on Rk,

∂µ
xφ(x) = ∂|µ|/(∂µ1x1, . . . , ∂

µkxk)φ(x) and (iii) xµ =
∏k

i=1 x
µi

i . We write ”
d→” to denote

convergence in distribution of a sequence of random variables, and ”⇒”to denote weak

convergence of a sequence of random functions.

To prove our main results, we need the following assumptions.

Assumption 2. The data {(Yi, Xi)}, i = 1, . . . , n and {X∗
j }, j = 1, . . . , n∗ are i.i.d.,

respectively.

Assumption 3. (i) The support of X and X∗ are the compact sets J = ⊗d
i=1[xi, xi] and

J∗ = ⊗d
i=1[x

∗
i , x

∗
i ] ⊂ J , respectively. (ii) X has a probability density function fX(x), which

is bounded away from zero on J . (iii) X∗ has a probability density function f ∗
X(x), which

is bounded away from zero on J∗. (iv) The functions fX(x) and g(y, x) = FY |X(y, x)fX(x)

are r-times differentiable with respect to x on the interior of J , and the derivatives are

uniformly continuous and bounded. (v) The function f ∗
X(x) is r-times differentiable with

respect to x on the interior of J∗, and the derivatives are uniformly continuous and

bounded.

Assumption 4. Let D(c) = {z : x − c ≤ z ≤ c − x}. Then the kernel function

Kc : Rd → R satisfies (i)
∫

D(c)
Kc(z)dz = 1, (ii)

∫

D(c)
Kc(z)z

µdz = 0 for all |µ| = 1, . . . , r,

(iii)
∫

D(c)
|Kc(z)z

µ|dz < ∞ for |µ| = r, (iv) Kc(z) = 0 if |z| > 1 (v) Kc(z) is r-times

differentiable with respect to both z and c, and the derivatives are uniformly continuous

and bounded.

Assumption 5. The bandwidth sequence h = hn satisfies (i) h→ 0, (ii) n1/2hd/ log(n) →
∞ and (iii) n1/2hr → 0.

Assumption 2 is standard in microeconometric applications. Assumptions 3 collects

conventional smoothness restrictions on the functions being estimated through nonpara-

metric methods at some point in this paper. Note that it implicitly restricts the policies

that can be considered to those where both X and X∗ are continuously distributed. It

is straightforward to show that this condition can be replaced by the assumption that
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both random vectors have a probability density function with respect to the same dom-

inating measure. This would allow their components to be discrete or even continuous

with some mass points, as long as the policy does not affect the location of the mass

point. However, all policies for which X∗ has a probability density function with respect

to a different dominating measure than X are excluded in this framework. The fourth

assumption prescribes the use of a higher-order boundary kernel, which is required to

remove asymptotic bias from our first-step estimator. Note that the boundary correction

is not necessary when J∗ is a compact subset of the interior of J . Finally, the last as-

sumption determines the rate at which the bandwidth sequence converges to zero. If h is

of the form h = cn−δ for some constants c, δ > 0, then in order for Assumption 6 to hold

we need that δ ∈ (1/2r, 1/2d) which in turn requires that the order of the kernel exceeds

the dimension of X, so that the interval is not empty.

These assumptions are convenient, because they allow us to prove the following propo-

sition, which is an important ingredient for the further arguments. Similar results have

been obtained by Härdle, Janssen, and Serfling (1988) and Newey (1994a), to mention a

few.

Proposition 2. Under Assumption 1-5, we have that

i) sup
y∈R

sup
x∈J

|ĝY X(y, x) − gY X(y, x)| = Op

(

(

log n

nhd

)1/2

+ hr

)

ii) sup
x∈J

|f̂X(x) − fX(x)| = Op

(

(

log n

nhd

)1/2

+ hr

)

iii) sup
y∈R

sup
x∈J

|F̂Y |X(y, x) − FY |X(y, x)| = Op

(

(

log n

nhd

)1/2

+ hr

)

The proposition provides an explicit uniform rate of convergence for the first-step

estimates. In particular, under Assumption 5 the proposition implies that the difference

between F̂Y |X and FY |X vanishes at a rate faster than n−1/4, whereas the corresponding

bias disappears faster than n−1/2, both uniformly over the two arguments. Thus our

first-stage nonparametric estimator satisfies the well-known minimal convergence rates

given by Newey (1994b).

Another important preliminary result is the asymptotic equivalence of the estimator

F̂ ∗
Y and its modified version F̃ ∗

Y introduced in Section 2.4. The following proposition
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implies that the limit results derived for F̂ ∗
Y in the following section will also apply to

F̃ ∗
Y , which has the practical advantage of being a proper distribution function.

Proposition 3. Under Assumption 1-5, we have that

sup
y∈R

|F̂ ∗
Y (y) − F̃ ∗

Y (y)| = op(n
−1/2).

2.3.2 Main Result

In this section, we derive the limit behaviour of our estimates of the distribution functions

of Y ∗ and Y . In particular, we show that the bivariate random function

y 7→
√
n
(

F̂(y) − F(y)
)

(2.3.1)

converges weakly to some Gaussian process, where we will use the notation that F̂ =

(F̂ ∗
Y , F̂Y )T , F = (F ∗

Y , FY )T and y = (y1, y2)
T .

The main complication for deriving this result originates from the process’ first com-

ponent, the normalized estimate of the CDF of Y ∗, which is given by

√
n(F̂ ∗

Y (y1) − F ∗
Y (y1)) =

√
n

(

1

n∗

n∗

∑

i=1

F̂Y |X(y1, X
∗
i ) − F ∗

Y (y1)

)

.

The properties of this expression are not straightforward to derive, since our estimator

F̂ ∗
Y (y1) is not a sum of independent terms: F̂Y |X(y1, X

∗
i ) does not only depend on the

ith but on all observations. In the appendix, we therefore construct an asymptotic

representation for our estimate, which decomposes F̂ ∗
Y into the following three parts:

√
n(F̂ ∗

Y (y1) − F ∗
Y (y1)) =

1√
n∗

n∗

∑

i=1

√
λ
(

FY |X(y1, X
∗
i ) − F ∗

Y (y1)
)

+
1√
n

n
∑

i=1

f ∗
X(Xi)

fX(Xi)
(I{Yi ≤ y1} − FY |X(y1, Xi)) + op(1).

The first term on the right hand side is the one we would obtain if the function FY |X was

known and did not have to be estimated from the data.1 It accounts for the uncertainty

in our estimate that is induced by replacing the expectation with a sample average. The

second term is an adjustment term that accounts for the uncertainty in our estimate of

1The factor
√
λ is an artefact of scaling the estimator by

√
n instead of

√
n∗.
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FY |X . The last term is op(1) uniformly in y and thus asymptotically negligible.2 Using

this decomposition and the definition of the ECDF, we arrive at the following Theorem:

Theorem 1. If Assumtions 1-5 hold, then

√
n
(

F̂(·) − F(·)
)

⇒ Fo(·)

where Fo is a two dimensional Gaussian process with mean zero and covariance function

ΨF (y, y′) = E(ψF (y, Z)ψF (y′, Z)T ),

where Z = (Y,X,X∗) and ψF (y, Z) =
(

ψF
1 (y1, Z), ψF

2 (y2, Z)
)T

is given by

ψF
1 (y1, Z) =

√
λ(FY |X(y1, X

∗) − F ∗
Y (y1)) +

f ∗
X(X)

fX(X)
(I{Y ≤ y1} − FY |X(y1, X)),

ψF
2 (y2, Z) = I{Y ≤ y2} − FY (y2),

and the convergence is in D(−∞,∞) ×D(−∞,∞).

The theorem shows that in large samples the behaviour of our random function (2.3.1)

can be approximated by a bivariate correlated Gaussian process, whose second compo-

nent is easily seen to be an ordinary FY -Brownian Bridge. The explicit form of the

covariance function ΨF depends on whether we consider a dependent or independent

policy implementation, but the influence function is the same in both cases. Although

our estimator depends in part on high-dimensional nonparametric components, we ob-

tain the
√
n-rate of convergence that one would typically obtain for standard parametric

estimators, irrespective of the dimension of X. Our estimates are thus not affected by the

curse of dimensionality, and hence we can expect the asymptotics to be a rather accurate

approximation even when the sample size is only moderate relative to the dimension of

X.

An immediate implication of Theorem 1 is that our estimator of the Distribution

Function Policy Effect converges to a Gaussian process as well. That is, we obtain that

√
n(∆̂F (·) − ∆F (·)) ⇒ (1,−1)Fo(·, ·).

2For the case of a fixed y, a similar decomposition for averages of nonparametrically estimated func-

tions is shown by Newey (1994a).
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by simply applying the continuous mapping theorem (CMT). In order to analyse the

properties of estimates of more general functionals of the form Γ(F̂), one can use the

following Theorem, which is an application of the Functional Delta Method (van der

Vaart 2000, Theorem 20.8):

Theorem 2. Suppose that the conditions of Theorem 1 hold, and let Γ be a Hadamard

differentiable functional mapping from D(−∞,∞) × D(−∞,∞) to some normed space

S, with derivative Γ′
F
. Then

√
n
(

Γ(F̂)(·) − Γ(F)(·)
)

⇒ Γ′
F
(Fo)(·) ≡ Go(·),

where Go is a Gaussian process with mean zero and covariance function

ΨΓ(y, y′) = E(ψΓ(y, Z)ψΓ(y′, Z)T )

with ψΓ(y, Z) = Γ′
F
(ψF )(y, Z), and the convergence is in S × S.

The Hadamard differentiability condition in Theorem 2 requires the functional of

interest to be sufficiently smooth around the true value F. Roughly speaking, this means

that Γ can locally be well approximated by some continuous linear functional Γ′
F
, in the

sense that

Γ(F + tst) − Γ(F)

t
→ Γ′

F
(s) as t→ 0

for all functions st → s (see van der Vaart (2000, p. 296) for a precise definition). As

we will see below, this condition can be verified for all our applications of interest under

mild additional conditions. Also note that the theorem allows for functionals Γ that map

into Rk instead of some function space. In this case Go is simply a k-variate normal

distribution, and ΨΓ(y, y′) ≡ ΨΓ is its covariance matrix.

2.3.3 Inference

The results in Theorem 1 and 2 immediately provide the basis for conducting pointwise

inference on certain features of the counterfactual distribution, by using the standard

normal approximation. This might already be sufficient in some empirical contexts. In

development economics for example, if Y is household income and ȳ is some fixed income
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level defined as the poverty line, one could simply be interested in whether the policy

reduces the fraction of households that live under the poverty line, i.e. whether ∆F (ȳ) is

negative. Then it follows from the above results that the corresponding estimate ∆̂F (ȳ) is

asymptotically normal with mean zero and standard error
√

(1,−1)ΨF (ȳ, ȳ)(1,−1)T/n,

where ȳ = (ȳ, ȳ). Given a consistent estimate of the covariance function, one could thus

test a null hypothesis such as H0: ”The policy does not change the proportion of people

that earn below ȳ” through an ordinary t-statistic using standard normal critical values.

Many important hypotheses, however, cannot adequately be tested by considering

only a fixed number of isolated points. This includes the hypothesis that the policy has

no effect whatsoever, or that it leads to an improvement in a stochastic dominance sense.

A related problem that involves the entire functions being estimated is the construction of

uniform confidence bands, that cover the true function with some prespecified probability.

One possibility to address these problems would be to simulate the limiting processes

in Theorem 1 and 2 by so-called multiplier methods (see e.g. van der Vaart and Wellner

(1996, Section 2.9)). A disadvantage of this approach is that it requires explicit calculation

and consistent estimation of the covariance function, which can be a cumbersome task

for some applications. A natural alternative to using simulation methods is to conduct

inference using a form of the bootstrap, for which one does not necessarily need to be

able to give an explicit characterization of the limiting distribution of the process of

interest. In particular, by using the bootstrap one can circumvent explicit specification

of the covariance function.

In this paper, we propose using a simple nonparametric (or empirical) bootstrap

scheme, which is based on resampling the original observations. For the implementation,

we again have to take possible dependencies betweenX andX∗ into account. For a depen-

dent policy implementation, the bootstrap data is given by a sample {(Yb,i, Xb,i, X
∗
b,i)}n

i=1

drawn with replacement from {(Yi, Xi, X
∗
i )}n

i=1, whereas for an independent policy im-

plementation it consists of two samples {(Yb,i, Xb,i)}n
i=1 and {X∗

b,i}n∗

i=1 drawn with replace-

ment from {(Yi, Xi)}n
i=1 and {X∗

i }n∗

i=1, respectively. In both cases, the resampled data

is then used to calculate the bootstrap estimates of F ∗
Y and FY , which are denoted by

F̂b = (F̂ ∗
Y,b, F̂Y,b), using the estimator described in Section 2.4. The distribution of F̂b

can then be determined through the usual repeated resampling of the data, and used as
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an approximation of the distribution of F̂. The following Theorem gives a theoretical

justification for this approach.

Theorem 3. Suppose that the conditions of Theorem 1 hold. Then

√
n
(

F̂b(·) − F̂(·)
)

⇒ Fo(·),

conditional on the data, in probability, and the convergence is in D(−∞,∞)×D(−∞,∞).

Furthermore, under the conditions of Theorem 2,

√
n
(

Γ(F̂b)(·) − Γ(F̂(·))
)

⇒ Γ′
F
(Fo)(·),

conditional on the data, in probability3, and the convergence is in S × S.

Theorem 3 states that the nonparametric bootstrap is not only valid for the original

problem of conducting inference on the estimates of the CDFs directly, but that it can

also be used to analyse the properties of general functionals of the CDFs as well. As a

simple example, consider the problem of forming a uniform 1−α confidence band for the

Distribution Function Policy Effect ∆F (·). To this end, let ∆̂F,b(y) = F̂ ∗
Y,b(y) − F̂Y,b(y)

the bootstrapped Distribution Function Policy Effect, and define the pointwise variance

of ∆̂F,b with respect to bootstrap sampling as σ2(y) = Varb(∆̂F,b(y)). It then follows

directly from Theorem 3 that a uniform 1 − α confidence band for ∆F is given by

CB1−α(y) = [∆̂F (y) − cσ(y), ∆̂F (y) + cσ(y)],

where c is the smallest positive constant that satisfies

Pb

(

sup
y

∣

∣

∣(∆̂F,b(y) − ∆̂F (y))
∣

∣

∣ /σ(y) ≤ c

)

≥ 1 − α (2.3.2)

and Pb is the probability with respect to bootstrap sampling. In practice, the unknown

quantities c and σ2(·) can be approximated with the usual resampling techniques.

2.4 Application to Objects of Interest

In this section, we use results from Theorem 1 – 3 do discuss the remaining applications

of interest from Section 2.2. We show that in each case plug-in type estimators con-

3See van der Vaart and Wellner (1996, Section 3.9.3) for a precise definition of conditional weak

convergence in probability.

22



verge to a Gaussian limit, and that the nonparametric bootstrap can be used to conduct

asymptotically valid inference, under appropriate additional regularity conditions.

2.4.1 Quantiles

To analyse the properties of the estimators of quantiles and Quantile Policy Effect, we use

the fact that inversion operator that transforms a CDF into its corresponding quantile

function is a Hadamard differentiable functional, which gives us the following proposition:

Proposition 4. Assume that (i) F ∗
Y and FY are both continuously differentiable with

strictly positive derivative f ∗
Y and fY , and (ii) Y ∗ and Y have compact support, then

√
n(Q̂(·) − Q(·)) ⇒ −

(

Fo1

f ∗
Y

,
Fo2

fY

)

◦ Q ≡ Qo

and

√
n(Q̂b(·) − Q̂(·)) ⇒ Qo(·)

conditional on the data, in probability. Here Qo is a Gaussian process with mean zero

and covariance function

ΨQ(τ, τ ′) = E(ψQ(τ, Z)ψQ(τ, Z)T )

where

ψQ(τ, Z) =

(

ψF
1 (Q∗

Y (τ1), Z)

f ∗
Y (Q∗

Y (τ1))
,
ψF

2 (QY (τ2), Z)

fY (QY (τ2))

)T

.

and the convergence is in ℓ∞(0, 1) × ℓ∞(0, 1).

We thus have the familiar result that the influence function of the quantile process is

just the influence function of the corresponding distribution function divided by the den-

sity of the variable of interest, and evaluated at the respective quantile. The assumption

that Y ∗ and Y have compact support can be relaxed at the cost of restricting convergence

to subsets of the unit interval. Furthermore, it follows directly from the proposition and

the continuous mapping theorem that our estimator of the Quantile Policy Effect satisfies

√
n(∆̂Q(·) − ∆Q(·)) ⇒ (1,−1)Qo(·),

and that the nonparametric bootstrap is valid in this case as well. Thus, one can construct

uniform confidence bands on the Quantile Policy Effect in exactly the same manner as

for the Distribution Function Policy Effect.
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2.4.2 Inequality measures

In this section, we apply Theorem 1–3 to analyse the effect of a proposed policy on the

Lorenz curve and the Gini coefficient. Our approach is similar to that of Barrett and

Donald (2000) and Bhattacharya (2007), who in different contexts also obtained weak

convergence results using the functional delta method. Many other inequality measures

such as the Theil index for example can be treated by analogous arguments. We start by

deriving the asymptotic properties of the estimated Lorenz curves.

Proposition 5. Assume that (i) F ∗
Y and FY are both continuously differentiable with

derivatives f ∗
Y and fY , respectively, (ii) these derivatives are strictly positive on any

compact subset of (0,∞), (iii) Y ∗ and Y have finite second moments, and (iv) it holds

that

lim
y→∞

(1 − FY (y))1+c

fY (y)
= lim

y→0

FY (y)1+c

fY (y)
= 0

for some 0 < c < 1, and similarly for Y ∗. Furthermore, define the process Ho as

Ho(p) =

∫ p

0

Qo(τ)dτ

for p = (p1, p2)
T , and the integral is understood to be taken componentwise. Then

√
n
(

L̂(·) − L(·)
)

⇒
(

Ho1(·)
µ∗

Y

− L∗
Y (·)
µ∗

Y

Ho1(1),
Ho2(·)
µY

− LY (·)
µY

Ho2(1)

)

≡ Lo(·),

and

√
n
(

L̂b(·) − L̂(·)
)

⇒ Lo(·),

conditional on the data, in probability. Here Lo is a Gaussian process with mean zero and

covariance function

ΨL(p, p′) = E(ψL(p, Z)ψL(p′, Z)T )

where ψL(p, Z) = (ψL
1 (p1, Z), ψL

2 (p2, Z))T is given in the Appendix, and the convergence

is in ℓ∞(0, 1) × ℓ∞(0, 1).

The additional assumptions we make are used by Bhattacharya (2007) in order to es-

tablish Hadamard-differentiability of the functional that translates a CDF into its Lorenz
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curve. Note that in contrast to the quantile process, one does not have to assume that

the support of Y and Y ∗ is compact, and thus that their density functions are bounded

away from zero, to obtain weak convergence in ℓ∞(0, 1)× ℓ∞(0, 1). Instead, the tail con-

dition (iv), which is fulfilled by many distributions commonly used to describe income

distributions such as log-normal or Pareto, suffices.

Proposition 4 could again be used to conduct inference on the Lorenz curve as a whole.

Also, as in the case of the quantiles considered above, it follows from the continuous

mapping theorem that our estimator of the Lorenz Policy Effect satisfies

√
n(∆̂L(·) − ∆L(·)) ⇒ (1,−1)Lo(·),

and that the nonparametric bootstrap is valid in this case as well. Here the bootstrap

could be used for example to construct a one-sided confidence band ∆̂L, which could be

used to test the hypothesis of Lorenz dominance, i.e. that ∆L(p) ≤ 0 for all p ∈ (0, 1).

Another direct consequence of the proposition is the distribution of the Gini coefficient,

which again follows simply from the continuous mapping theorem.

Proposition 6. Under the same conditions as Proposition 4,

√
n(Ĝ − G)

d→ N(0,ΨG) and
√
n(Ĝb − Ĝ)

d→ N(0,ΨG),

conditional on the sample, in probability, where the limiting distribution is bivariate nor-

mal with mean zero and covariance matrix

ΨG = 4E

(∫ 1

0

ψL(p, Z)dp

∫ 1

0

ψL(p, Z)Tdp

)

.

2.4.3 Testing for Stochastic Dominance

The limit results from Section 3 can also be used for various testing problems. Here

we adapt the methods of Barrett and Donald (2003) and consider Kolmogorov-Smirnov-

type statistics to test stochastic dominance of F ∗
Y over FY for any prespecified order, with

critical values obtained via the bootstrap. Other approaches are discussed, for example,

by McFadden (1989), Anderson (1996), Davidson and Duclos (2000), Abadie (2002) and

Linton, Maasoumi, and Whang (2005).
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The test statistics we consider are based on pointwise comparisons of appropriate

measures of distance between F̂ ∗
Y and F̂Y over their entire common support, which we

assume to be the compact interval [0, ȳ]4. Using the operator Dj(y, φ) defined in (2.9), the

hypothesis of ”j-th order stochastic dominance” of F ∗
Y over FY can then be formulated

as

Hj
0 : Dj(y, F

∗
Y − FY ) ≤ 0 ∀y ∈ [0, ȳ],

Hj
1 : Dj(y, F

∗
Y − FY ) > 0 ∃y ∈ [0, ȳ],

for j = 1, 2, . . .. The corresponding test statistics are given by

KSj =
√
n sup

y∈[0,ȳ]

Dj(y, F̂
∗
Y − F̂Y ) =

√
n max

y∈Y1,...Yn

Dj(y, F̂
∗
Y − F̂Y ),

where the last equality follows from the fact that by construction both F̂ ∗
Y and F̂Y are

piecewise constant functions that jump at observed values of Y only.

Our aim is to reject Hj
0 whenever KSj exceeds some critical value. Note that there

can be many different combinations of distribution functions F ∗
Y and FY such that Hj

0

is true, and we are thus testing a composite null hypothesis. However, it is easy to see

that the least favourable case in this context corresponds to F ∗
Y = FY . An asymptotically

valid test procedure can thus be based on bootstrapping the test statistic under the least

favourable null. In particular, one can calculate the bootstrap p-value as

p̂j = B−1

B
∑

b=1

I{K̂Sj,b > KSj},

where

K̂Sj,b =
√
n max

y∈Y1,...Yn

(

Dj(y, F̂
∗
Y,b − F̂Y,b) −Dj(y, F̂

∗
Y − F̂Y ))

)

is the realisation of the test statistic when calculated from the bootstrap sample. Our

test decision can then be based on the following rule:

Reject Hj
0 if p̂j < α for some prespecified significance level α. (2.4.1)

The following proposition delivers a theoretical justification for this approach.

4Focussing on random variables that take only positive values seems natural, since stochastic dom-

inance tests are usually applied to income or wealth distributions. The upper limit on the support is

needed for the proofs and is usually not restrictive for empirical applications.
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Proposition 7. For any j = 0, 1, 2, . . . and α < 1/2, the decision rule (2.4.1) is a test

of Hj
0 vs. Hj

1 that has (i) asymptotic size of at most α and (ii) is consistent against any

fixed alternative.

2.5 Numerical Examples

2.5.1 Simulation Study

Setup

In order to demonstrate the usefulness of our proposed estimation procedures, we conduct

a number of simulation experiments to assess their finite sample properties. Specifically,

we simulate a vector X = (X1, X2, X3) of conditioning variables, where the three compo-

nents are i.i.d. standard exponentially distributed and truncated at 3, and generate the

dependent variable of interest Y through a linear model with conditional heteroskedas-

ticity as

Y = 6 − 2X1 +X2 + σ(X)ε, σ2(X) = X1 +X2, (2.5.1)

and ε follows a standard exponential distribution. Note that Y is restricted to be positive

in this setup, and that X3 is an irrelevant regressor. We consider two dependent policy

implementations, where X∗ is a determininistic transformation of the orginal X-values:

• Policy 1: X3 is reduced by 50%: π1(x1, x2, x3) = (x1, x2, .5x3).

• Policy 2: All regressors are reduced by 50%: π2(x1, x2, x3) = .5(x1, x2, x3).

Since X3 does not appear in the data generating process of Y , the first policy has no

effect on the distribution of Y . In contrast, Policy 2 highly affects the dependent variable,

leading to a distribution of Y ∗ that second-order stochastically dominates that of Y . The

corresponding distribution functions FY and F ∗
Y are plotted in Figure 2.5.1.

For both policies, we consider the applications of interest described in Section 2.2.

Here the CDFs of Y ∗ and Y , and the Distribution Function Policy Effect ∆F are estimated

over the equidistant grid {3, 3.05, 3.1, . . . , 8.95, 9}, whereas for the quantiles of Y ∗ and Y ,

the Quantile Policy Effect, the Lorenz curve of Y ∗ and Y and the Lorenz Curve Policy
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Figure 2.5.1: Plot of FY (solid line) and F ∗
Y (dashed line) for Policy 2.

Effect the grid {.1, .11, .12, . . . , .89, .9} is used. Moreover, we consider tests for first- and

second-order stochastic dominance of F ∗
Y over FY . That is, in each simulation run we test

the hypothesis Hj
0 : Dj(y, F

∗
Y −FY ) ≤ 0 for j = 1, 2. We use the sample sizes n = 100 and

n = 400, and set the number of Monte Carlo replications to 1000. In each replication,

we use the nonparametric bootstrap with B = 1000 repetitions to obtain uniform 90%

confidence bands for the functionals of interest (and approximate p-values in case of the

stochastic dominance tests).

In order to implement our estimators, we have to specify a kernel function and a

bandwidth sequence h that are compatible with the assumptions made in Section 3. A

kernel function that satisfies both the higher-order and the boundary correction property
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is given by

Kc(z) =
d
∏

i=1

eT
1 S

−1
ci

(1, zi, . . . , z
p
i )

Tκ(zi),

where Sc = (µj+l,c)0≤j,l≤p is a matrix of kernel constants µj,c =
∫

D(c)
zjκ(z)dz, e1 =

(1, 0, . . . , 0)T is the unity vector, p = r − 3 and κ(z) is a standard univariate kernel

function that satisfies the remaining regularity conditions of Assumption 4. This is the

product of univariate equivalent kernels of a local polynomial regression estimator (see

Fan and Gijbels (1996) for more details). For our simulations, we let κ(z) be the usual

Epanechnikov kernel and choose p = 1, which implies that Kc(z) is a fourth order kernel.

Regarding the bandwidth, our asymptotic results only prescribe a rate at which h

tends to zero, but are silent about its optimal size in finite samples. Here we use a band-

width of the form h = cn−δ, which requires that δ ∈ (1/2r, 1/2d) = (1/8, 1/6) in order

for Assumption 5 to be fulfilled. Absent further guidelines, we choose h = 1.5σxn
−1/7 for

our simulations, where σx is the standard deviation of the respective covariates. Informal

robustness checks suggest that the results are not too sensitive with respect to this choice.

Results

In Table 1, we present the result of our simulation study regarding the properties of our

estimates of the CDFs of Y ∗ and Y , the Distribution Function Policy Effect, the quantiles

of Y ∗ and Y , the Quantile Policy Effect, the Lorenz curve of Y ∗ and Y , the Lorenz curve

policy effect, the Gini coefficients of Y ∗ and Y and the Gini Policy effect. In each case,

we report Monte Carlo estimates of the integrated bias (IBias), the root integrated mean

squared error (RIMSE), and the coverage rate of a uniform confidence band with nominal

coverage level of 90% (Cov. Rate).

Although the sample sizes we consider are relatively small, our estimators exhibit

reasonable finite sample properties. Finite sample biases are generally small and decrease

rapidly with the sample size. Also note that increasing the sample size from n = 100

to n = 400, i.e. by a factor of four, roughly halves the magnitude of the RIMSE for

all quantities under consideration, which indicates that convergence to the true values

indeed takes places at rate
√
n. The empirical coverage rate of the uniform 90% bootstrap
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Table 2.1: Simulation Results: Properties of Nonparametric Policy Estimators

Policy 1
n = 100 n = 400

IBias RIMSE CR IBias RIMSE CR
F ∗

Y 0.879 9.469 0.855 0.414 5.358 0.894
FY 0.654 7.926 0.813 0.349 3.975 0.862
∆F 0.367 5.059 0.952 0.277 3.553 0.964
Q∗

Y 4.495 30.421 0.900 1.000 16.063 0.898
QY 2.143 22.777 0.843 0.626 11.611 0.861
∆Q 3.557 21.288 0.973 0.453 11.185 0.941
L∗

Y 0.150 1.008 0.833 0.066 0.542 0.877
LY 0.135 0.842 0.805 0.049 0.435 0.846
∆L 0.015 0.566 0.972 0.016 0.340 0.964
G∗

Y 0.353 1.770 0.885 0.154 0.950 0.901
GY 0.310 1.493 0.860 0.115 0.769 0.871
∆G 0.042 0.954 0.955 0.039 0.596 0.947

Policy 2
n = 100 n = 400

IBias RIMSE CR IBias RIMSE CR
F ∗

Y 2.169 10.531 0.862 0.899 5.211 0.857
FY 0.266 7.698 0.847 0.326 3.978 0.865
∆F 2.109 7.513 0.859 0.699 3.717 0.876
Q∗

Y 2.698 20.428 0.868 1.098 9.877 0.861
QY 0.580 22.265 0.875 0.591 11.466 0.853
∆Q 2.833 21.669 0.948 0.811 10.731 0.920
L∗

Y 0.063 0.668 0.825 0.016 0.337 0.856
LY 0.014 0.843 0.812 0.012 0.429 0.865
∆L 0.059 0.780 0.855 0.012 0.379 0.878
G∗

Y 0.098 1.150 0.877 0.007 0.586 0.873
GY 0.028 1.483 0.879 0.026 0.762 0.870
∆G 0.126 1.361 0.864 0.019 0.664 0.885
Note: Integrated Bias and RIMSE figures have been multiplied by 100 to improve readability.
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Table 2.2: Simulation Results: Rejection rates of KS-type tests for stochastic dominance

Policy 1 Policy 2

KS1 KS2 KS1 KS2

α = .05 n = 100 .036 .040 .345 .011

n = 400 .048 .041 .917 .012

α = .1 n = 100 .074 .083 .538 .025

n = 400 .098 .089 .983 .011

confidence bands is generally close to the nominal level. This procedure should thus be

able to provide reliable inference even in small samples.

Table 2.2 presents the simulation results on the stochastic dominance tests. For each

test, we report the empirical rejection rates for the nominal levels α = .05 and α = .1.

Recall that for the first policy F ∗
Y ≡ FY so that Hj

0 is true for j = 1, 2, whereas under

Policy 2 F ∗
Y is dominating FY in a second-order stochastic dominance sense, but not

in a first-order one, so that only H2
0 holds in this case. For Policy 1, both tests are

conservative, but their empirical size gets closer to the respective nominal level as the

sample size increases. Under Policy 2, the KS1 test has non-trivial power for n = 100

and rejects the null in almost all simulation runs for n = 400. The rejection rates of the

KS2 test are substantially below their nominal values, which comes as no surprise as the

test can only be expected to have correct size under the least favourable null hypothesis.

Comparison with Approach based on Quantile Regression

Without any point of reference, it is admittedly difficult to judge whether the finite

sample properties of our estimators are ”good”. In this section, we therefore briefly

compare them with those of an estimator based on a first-step linear quantile regression

(LQR), as discussed in Machado and Mata (2005), Melly (2005) and Chernozhukov,

Fernandez-Val, and Melly (2008). Instead of using a kernel estimator, this method obtains

an estimate of the conditional distribution function FY |X by inverting an estimate of the

conditional quantile functionQY |X , which is assumed to be linear in the regressors at every

quantile, i.e. it imposes the restriction that QY |X(τ |x) = xβ(τ) for all τ ∈ (0, 1). Since

this estimator imposes additional parametric restrictions on the relationship between the
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Table 2.3: Simulation results: Comparisson of estimators.

a = 0 a = .5 a = 1

IBias RIMSE CR IBias RIMSE CR IBias RIMSE CR

NP 1.197 10.623 .920 2.202 13.972 .940 3.363 18.249 .934

LQR 1.883 9.319 .917 8.051 15.082 .702 16.743 26.074 .294

Note: Integrated Bias and RIMSE figures have been multiplied by 100 to improve readability.

dependent variable and the covariates, the result will generally exhibit less finite sample

variation than our nonparametric procedure. On the other hand, such an estimator is

also more prone to misspecification bias. The purpose of this section is to illustrate this

tradeoff.

We compare the properties of the LQR-based estimator to our nonparametric pro-

cedure via simulation. For brevity, we restrict attention on the Quantile Policy Effect,

and consider only the effect of Policy 2 for n = 400. The setup we use is the same as

described above, with the exception that the dependent variable is now generated as

Y = 6 − 2X1 +X2 + aX2
2 + σ(X)ε, σ2(X) = X1 +X2. (2.5.2)

The parameter a governs the complexity of the relationship. For a = 0, (2.5.2) is the

same as (2.5.1) considered above. In this case, a LQR model would be correctly specified.

To illustrate the effect of misspecification, we also consider a = .5 and a = 1.

The result of the simulations, given in Table 2.3, show that our nonparametric es-

timator compares favourably with its competitor and performs well uniformly over the

different values of a we considered. It has the lowest RIMSE under all designs except

for a = 0, where it exceeds the RIMSE of the correctly specified LQR-based estimator

by about 15%. When the underlying model is not correctly specified, the LQR-based

estimator can exhibit a substantial bias, with its magnitude depending on the degree

of misspecification. The coverage rates of uniform confidence bands can also deviate

significantly from their nominal levels in this case.
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2.5.2 Empirical Illustration: The Effect of an Anti-Smoking

Campaign on Infant Birthweights

In this section, we illustrate the application of our estimators through an example form

public health. We consider a (hypothetical) public policy that successfully induces women

who smoke during their pregnancy to cut their average daily cigarette consumption by

75%. Our interest is in the effect of this policy on the distribution of infant birthweight

in general, and whether it helps to reduce the incidence of low-birthweight infants, which

is usually defined by infants weight at birth falling below 2500 grams (about 5 pounds,

8 ounces). These issues should be of concern to policy makers since low birthweight is

known to be associated with a wide range of subsequent health problems, and has even

been linked to later educational attainment and labor market outcomes (see for example

Almond, Chay, and Lee (2005) or Black, Devereux, and Salvanes (2007)).

The data we use is a subsample of the Detailed Natality Data (June 1997) published

by the National Center for Health Statistics. A more extensive analysis of the full data set

is given by Abrevaya (2001) and Koenker and Hallock (2001). The subsample we employ

comprises 4439 white mothers between age 18 and 45 without any college education, who

gave birth to a live, single infant and smoked during their pregnancy. For each woman in

this particular subgroup, we record the infant’s birthweight (in grams) and the average

daily number of cigarettes the mother smoked during the pregnancy, together with other

variables that could possibly confound the relationship between birthweight and the level

of cigarette consumption. These include the mother’s age, mother’s weight gain during

the pregnancy (in pounds) and whether the mother is married. Table 2.4 presents some

descriptive statistics for our full data set. The identifying assumption is that conditional

on these variables unobserved factors that influence birthweight are independent of the

average amount of cigarettes consumed, given that the mother chooses to smoke during

the pregnancy in the first place.

Using the same specifications as for our simulation study in Section 5.1, we estimate

the effect of reducing every woman’s cigarette consumption by 75% on the distribution of

birthweights by our nonparametric procedure. The discrete regressor is accommodated

using the conventional frequency method. Figure 2.5.2 presents the estimate of the Quan-
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Table 2.4: Descriptive Statistics

Mean Std. Dev Min Q25 Median Q75 Max

Birthweight 3176 560.36 457 2889 3204 3515 5245

Cigarettes per day 11.98 7.51 1 6.5 10 20 60

Mother’s age 25.15 5.56 18 21 24 29 45

Mother’s Weight Gain 30.19 14.07 0 20 30 40 98

Married 0.52 0.49 0 – – – 1

Note:N = 4439. Married is an indicator variable for the mother being married.

tile Policy Effect ∆Q(·), together with 90% confidence intervals for every point, and a 90%

uniform confidence band, both obtained via the bootstrap with B = 1000 replications.

The graph suggest that the policy increases infant birthweights over almost the entire

range of quantiles considered. Moreover, the point estimate suggests that particularly the

low quantiles would benefit by such a campaign, with an estimated increase in the 10%

quantile of about 140 grams compared to only 70 grams at the 90% quantile. However,

since the associated confidence band is relatively wide, one cannot reject the hypothesis

that ∆Q(·) is constant, and thus there is no significant evidence of heterogeneous policy

effects.

As mentioned above, another quantity of interest is the proportion of low-weight birth

incidents, which amounts to 9.28% in the subpopulation under consideration. The see how

a change in smoking habit would affect this share, we simply estimate the Distribution

Function Policy Effect ∆F (·) and evaluate it 2500 grams. As a result, we obtain that

∆̂F (2500) = −0.0290 with s.e.(∆̂F (2500)) = 0.0092.

The corresponding 90% confidence interval is given by CI.9 = (−0.0429,−0.0140). This

implies that the policy would reduce low-weight birth incidents by roughly one third,

which is a substantial amount. While the confidence interval is again relatively wide, it

is substantially to the left of zero, which indicates that the policy should be effective for

reducing low-birthweight incidents.
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Figure 2.5.2: Estimated Quantile Policy Effect on Infant Birthweight (solid line), with pointwise

90% confidence bands (dark-grey area) and uniform 90% confidence bands (light-grey area)

based on 1000 bootstrap replications.

2.6 Conclusions

In this paper, we have proposed a fully nonparametric way to assess the effect of an

exogenous change in the distribution of the covariates on the unconditional distribution

of a dependent variable of interest. The method can be used to conduct asymptotically

valid inference on various kinds of statistics that can be written as a sufficiently smooth

functional of the CDF. It is straightforward to implement and performs surprisingly

well in simulations when the sample size is relatively small, even compared to correctly

specified parametric estimators. This is in sharp contrast to classical nonparametric
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methods, whose use is prohibitive due to the curse of dimensionality in situations with

many regressors and few observations.

Appendix

Proof of Proposition 1. From the definition of a distribution function, the law of iterated

expectations, and that ε is independent of both X and X∗, we obtain that

F ∗
Y (y) = P (m(X∗, ε) ≤ y)

=

∫

P (m(X∗, ε) ≤ y|X∗ = x)dF ∗
X(x)

=

∫

P (m(x, ε) ≤ y)dF ∗
X(x)

=

∫

P (m(X, ε) ≤ y|X = x)dF ∗
X(x)

= E(FY |X(y,X∗)),

where FY |X is the conditional distribution function of Y givenX. Since the data (Y,X) certainly

identify this function at any point (y, x) in their support, and X∗ only takes values in a subset

of the support of X with probability 1, this implies that F ∗
Y is identified.

Proof of Proposition 2. The statement can be shown using standard kernel smoothing the-

ory. First, one can show that the rate of the bias of each estimator is uniformly of the order

O(hr) by standard Taylor expansion arguments. The fact that the rate is the same in both the

interior and the vicinity of the boundary of the support of X is a consequence of the use of a

boundary kernel. Second, the rate of the stochastic part can be shown to be Op(log(n)/(nhd))

by using the arguments from, say, Newey (1994a) for (ii), and Härdle, Janssen, and Serfling

(1988) or Akritas and Van Keilegom (2001) for (i) and (iii). Taken together, these results imply

the rates given in the proposition.

Proof of Proposition 3. Consider for notational simplicity the case that λ = 1, and definde

the function w through

w(x) =
1

n

n∗

∑

i=1

KX∗

i ,h(x−X∗
i )

f̂X(X∗
i )

,

so that wj = w(Xj). Noting that F̂ ∗
Y ≡ F̃ ∗

Y when w(x) is positive for every value of x, we obtain
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that

P (F̂ ∗
Y = F̃ ∗

Y ) ≥ P ( inf
x∈J

w(x) ≥ 0)

≥ P ( inf
x∈J

f̂X(x) ≥ c ∩ inf
x∈J

f̂∗X(x) ≥ 0)

≥ P ( inf
x∈J

f̂X(x) ≥ c) + P ( inf
x∈J

f̂∗X(x) ≥ 0) − 1 (2.6.1)

for some constant c > 0, uniformly in y. We now show that both probabilities in (2.6.1) are of

the order 1 + op(n
−1/2) if c is chosen sufficiently small, which gives the desired result.

To see this for the first term in (2.6.1), note that the density of X is bounded away from

zero on J , i.e. there exists some δ > 0 such that infx∈J fX(x) > δ. Now, set c = δ/2. It is

a well-known result that E(f̂X(x)) = fX(x) + O(hr) uniformly in x, and we thus know that

infx E(f̂X(x)) > 3
4δ for some sufficiently large n. This also means that for sufficiently large n

the event {infx f̂X(x) ≥ c} is implied by the event {infx(f̂X(x) − E(f̂X(x))) ≥ −c/2}, which is

in turn implied by the event {supx |f̂X(x) − E(f̂X(x))| < c/2}. That is, it holds that

P ( inf
x∈J

f̂X(x) ≥ c) ≥ P (sup
x∈J

|f̂X(x) − E(f̂X(x))| < c/2).

Now, since J is compact, it can be covered by vn ≤ γ1n
d open balls with radius n−1, for some

γ1 > 0. The kth of these balls, with midpoint xn,k, is denoted by

Jn,k = {x ∈ Rd : ‖x− xn,k‖ ≤ n−1}.

Then we have that

sup
x∈J

|f̂X(x) − E(f̂X(x))| ≤ max
1≤k≤vn

sup
x∈Jn,k

|f̂X(x) − E(f̂X(x))|.

For x ∈ Jn,k, it follows from the triangle inequality that

|f̂X(x) − E(f̂X(x))| ≤ |f̂X(x) − f̂X(xn,k)| + |f̂X(xn,k) − E(f̂X(xn,k))| + |E(f̂X(xn,k)) − E(f̂X(x))|.

Since the kernel function K has bounded partial derivatives, the first and third term on the

right-hand side of the last equation can be bounded as follows:

|f̂X(x) − f̂X(xn,k)| ≤ C
|x− xn,k|
hd+1

≤ Cn−1h−d−1,

|E(f̂X(xn,k)) − E(f̂X(x))| ≤ C
|x− xn,k|
hd+1

≤ Cn−1h−d−1

for some C > 0. Thus

sup
x∈J

|f̂X(x) − E(f̂X(x))| ≤ max
1≤k≤vn

|f̂X(xn,k) − E(f̂X(xn,k))| + 2Cn−1h−d−1. (2.6.2)
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Using a result from Bosq (1998, p.47–48), we also have that

P ( max
1≤k≤vn

|f̂X(xn,k) − E(f̂X(xn,k))| > c/4) ≤
vn
∑

k=1

P (|f̂X(xn,k) − E(f̂X(xn,k))| > c/4)

≤ vnC exp(−γ2

√
nhd)

≤ C exp(−γ2

√
nhd + γ1 log(n)) (2.6.3)

for some γ2 > 0. Since n−1h−d−1 → 0 by Assumption 5, (2.6.2) and (2.6.3) together imply that

for n sufficiently large

P (sup
x∈J

|f̂X(x) − E(f̂X(x))| < c/2) ≥ P ( max
1≤k≤vn

|f̂X(xn,k) − E(f̂X(xn,k))| < c/4)

≥ 1 − C exp(−γ2

√
nhd + γ1 log(n))

= 1 + op(n
−1/2)

if nhd/ log(n)2 → ∞, which is again ensured through Assumption 5. An analogous argument

then applies to the second term in (2.6.1). This completes our proof.

Proof of Theorem 1. In this section, we will briefly switch to the operator notation typically

used in the empirical process literature. In particular, for A1, . . . , An an i.i.d. sequence of

random variables taking values in (A,B) with distribution P and for some measureable function

φ : X → R we will write

Pφ =

∫

φdP, Pnφ =
1

n

∑

i

φ(Zi), Gnφ =
√
n(Pn − P )φ

for the expectation, empirical measure and empirical process at φ, respectively. Furthermore,

we write ōp(an) as a shorthand notation for ”op(an) uniformly in y ∈ R”.

The difficulties in deriving the limit behaviour of Fn arise from the fact that F̂ ∗
Y is itself a

random function that has been estimated from the data. Using the notation described above,

the first component of Fn can be rewritten as

√
n(F̂ ∗

Y − F ∗
Y ) =

√
n(P∗

n∗F̂Y |X − P ∗FY |X)

where P ∗ is the distribution of X∗ and both F̂Y |X and FY |X are seen as functions of X∗ indexed

by y, i.e. X∗ 7→ F̂Y |X(y,X∗) and similarly for FY |X . The above expression can be decomposed

into the following three terms,

√
n(P∗

n∗F̂Y |X − P ∗FY |X) =
√
λG∗

n∗(F̂Y |X − FY |X) +
√
λG∗

n∗FY |X +
√
nP ∗(F̂Y |X − FY |X)

= T1 + T2 + T3,
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which can now be analyzed separately. Beginning with T1, it is shown below in Lemma 1 that

sup
y∈R

∣

∣

∣G
∗
n∗(F̂Y |X − FY |X)

∣

∣

∣ = op(1)

and thus the first term on the right hand side vanishes as n tends to infinity. The second term

is equal to

T2 =
1√
n∗

n∗

∑

i=1

√
λ(FY |X(y,X∗

i ) − F ∗
Y (y)),

which does not contain any unknown functions and is thus easy to handle. Finally, Lemma 2

establishes that

T3 =
1√
n

n
∑

i=1

f∗X(Xi)

fX(Xi)
(I{Yi ≤ y} − FY |X(y,Xi)) + ōp(1).

To derive the asymptotic distribution for the actual process of interest, we have to distinguish

between a dependent and an independent policy implementation, and we have to introduce some

more notation. First, define the functions

ξ11(y) :X∗ 7→
√
λFY |X(y,X∗)

ξ12(y) :X∗ 7→ 0

ξ21(y) :(Y,X) 7→ f∗X(X)

fX(X)
(I{Y ≤ y} − FY |X(y,X))

ξ22(y) :(Y,X) 7→ I{Y ≤ y} − FY (y)

and let ξ1 = (ξ11, ξ12)
T and ξ2 = (ξ21, ξ22)

T and ξ = ξ1 + ξ2. Second, define the classes of

functions Pij = {ξij(y); y ∈ R} for i, j = 1, 2 and Pi = {ξi(y); y ∈ R2} for i = 1, 2 and

P = {ξ(y); y ∈ R2}. Then it can be shown that each of these classes of functions is Donsker

by combining the results in the Examples 19.6, 19.9 and 19.20 in van der Vaart (2000), and by

noting that if two classes of functions are Donsker then so is their Cartesian product (van der

Vaart 2000, p. 270).

Now consider the case of an independent policy implementation. Letting P be the distribu-

tion of (Y,X), the process of interest can be written as

√
n
(

F̂ − F
)

= G∗
n∗ξ1 + Gnξ2 + op(1).

Since P1 and P2 are Donsker, the first and second term on the right hand side converge to

two independent Gaussian process. Thus, by the continuous mapping theorem, the entire right

hand side of the last equation converges to the sum of these to Gaussian processes, which is
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again a Gaussian process by independence. It is then straightforward to see that this has mean

zero and covariance function as stated in the Theorem.

For a dependent policy implementation, let P̄ be the joint distribution of (Y,X,X∗) and

recall that λ = 1 in this case. The process can then be written as

√
n
(

F̂ − F
)

= Ḡnξ + op(1).

which converges to a Gaussian process since P is Donsker. It is again straightforward to see

that the limiting process has again mean zero and covariance function as stated in the Theorem

(with λ = 1). This completes our proof.

We now prove the two lemmas used in the above argument.

Lemma 1. Under the conditions of Theorem 1, it holds that

sup
y∈R

∣

∣

∣G
∗
n∗(F̂Y |X − FY |X)

∣

∣

∣ = op(1)

Proof. By Lemma 19.24 in van der Vaart (2000), the statement of the lemma follows if (i) the

sequence of random functions F̂Y |X takes its values in some Donkser class F , and if (ii)

sup
y∈R

P ∗(F̂Y |X − FY |X)2 = op(1).

This last condition obviously holds in our case because

P ∗(F̂Y |X − FY |X)2 =

∫

(F̂Y |X(y, x) − FY |X(y, x))2dF ∗
X(x)

= op(n
−1/2)

uniformly in y and x since ||F̂Y |X(y, x) − FY |X(y, x)||∞ = op(n
−1/4) by Proposition 2, and the

integration takes place over a compact set.

To see that the first condition holds, define the class F by

F = {F̂Y |X(y, ·) : y ∈ R},

and note that by Assumption 4 each of it’s elements is r times continuously differentiable, and

the derivatives are uniformly bounded. Hence F ⊂ Cr
M (J∗), the space of all functions on J∗,

the support of X∗, whose derivatives up to order r are uniformly bounded by some constant

M . But this class is Donsker if r > d/2, where d is dimension of J∗, as shown in van der Vaart

(2000, Example 19.9). However, our assumptions on the bandwidth already require that r > d,

so that this condition easily holds in our case.
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Lemma 2. Under the conditions of Theorem 1,

√
nP ∗(F̂Y |X − FY |X) =

1√
n

n
∑

i=1

(I{Yi ≤ y} − FY |X(y,Xi))
f∗X(Xi)

fX(Xi)
+ op(1)

uniformly in y.

Proof. Switching back to the usual notation, we have that

√
nP ∗(F̂Y |X − FY |X) =

√
n

∫

F̂Y |X(y, x) − FY |X(y, x)dF ∗
X(x).

Here and in the following, all integrals are understood to be taken over the entire Rd. In order

to derive an expression for the integral in the above equation, it is useful to split it up into two

components.

∫

F̂Y |X(y, x) − FY |X(y, x)dF ∗
X(x)

=

∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

f̂X(x)
dF ∗

X(x)

+

∫

1

n

∑

i

(FY |X(y,Xi) − FY |X(y, x))
Kx,h(x−Xi)

f̂X(x)
dF ∗

X(x)

= A+B

We start with analysing the term A. Using the fact that X is a continuous random variable

with density function fX , and applying a second order Taylor expansion of 1/f̂X(x) around

1/fX(x), we obtain

A =

∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

f̂X(x)
f∗X(x)dx

=

∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))
Kx,h(x−Xi)

fX(x)
f∗X(x)dx

−
∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))(f̂X(x) − fX(x))
Kx,h(x−Xi)

fX(x)2
f∗X(x)dx

+ op(n
−1/2)

= A1 +A2 + op(n
−1/2)

where the last term is op(n
−1/2) uniformly in x and y since ||f̂X(x) − fX(x)||∞ = op(n

−1/4),

|I{Yi < y} − FY |X(y,Xi)| ≤ 1, and integration takes place over a compact set.

To derive an expression for A1, define u(x) = f∗X(x)/fX(x), let u(µ)(x) = ∂µ
xu(x) and

K
(µ)
c (x) = ∂µ

c Kc(x). Using standard techniques from the kernel smoothing literature, we obtain
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that

A1 =

∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))Kx,h(x−Xi)u(x)dx

=
1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))

∫

Kzh+Xi
(z)u(zh+Xi)dz

=
1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))

∫

(KXi
(z) + zhK

(1)
Xi

(z) + . . .+ (zh)rK
(r)
ξ (z))

× (u(Xi) + zhu(1)(Xi) + . . .+ (zh)ru(r)(ξ))dz

=
1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))(u(Xi) +Op(h
r))

=
1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))
f∗(Xi)

f(Xi)
+ op(n

−1/2)

where ξ is some value between Xi and Xi + zh. Here the second-to-last equality follows from

interchanging the order of differentiation and integration (which in turn follows by dominated

convergence) and using the kernel properties, and the last equality holds because Op(h
r) =

op(n
−1/2) by Assumption 5.

Next, we consider the term A2. Plugging in the definition of f̂X , we obtain

A2 =

∫

1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))(f̂(x) − f(x))
Kh(x−Xi)

fX(x)2
f∗X(x)dx

=
1

n

∑

i

(I{Yi ≤ y} − FY |X(y,Xi))

∫





1

n

∑

j

Kx,h(Xj − x) − f(x)



Kx,h(x−Xi)
f∗X(x)

fX(x)2
dx

=
1

n2

∑

i,j

(I{Yi ≤ y} − FY |X(y,Xi))

∫

(Kx,h(Xj − x) − f(x))Kx,h(x−Xi)
f∗X(x)

fX(x)2
dx

=
1

n2

∑

i,j

(I{Yi ≤ y} − FY |X(y,Xi))

×
(∫

Kx,h(Xj − x)Kx,h(x−Xi)
f∗X(x)

fX(x)2
dx−

∫

Kx,h(x−Xi)
f∗X(x)

fX(x)
dx

)

=
1

n2

∑

i,j

(I{Yi ≤ y} − FY |X(y,Xi))(A21 −A22)

Applying the same kind of argument as for the derivation of A1, we obtain

A22 =
f∗X(Xi)

fX(Xi)
+ op(n

−1/2)

Turning to the first term, defining v(x) = f∗X(x)/f2
X(x), using similar arguments as before, we
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obtain that

A21 =

∫

v(x)Kx,h(Xj − x)Kx,h(x−Xi)dx

=

∫

v(zh+Xi)Kzh+Xi,h(Xj −Xi − zh)Kzh+Xi
(z)dz

= v(Xi)KXi,h (Xj −Xi) + ōp(n
−1/2).

Hence we have shown that

A2 =
1

n2

∑

i,j

v(Xi)(I{Yi ≤ y} − FY |X(y,Xi)) (KXi,h (Xj −Xi) − fX(Xi)) + ōp(n
−1/2)

= Un(y) + ōp(n
−1/2).

To proceed, we need to introduce some further notation. Let f̄X(x) = E(Kx,h (Xj − x)), and

define H(Zi, Zj ; y, h) = v(Xi)(I{Yi ≤ y} − FY |X(y,Xi))
(

KXi,h (Xj −Xi) − f̄X(Xi)
)

. Then,

because by Proposition 2 we have that f̄X(x)− fX(x) = op(n
−1/2) uniformly in x, we can write

Un(y) as

Un(y) =
1

n2

∑

i

∑

j 6=i

H(Zi, Zj ; y, h) +
1

n2

∑

i

H(Zi, Zi; y, h) + op(n
−1/2). (2.6.4)

It is straightforward to see that the first term on the right hand side of (2.6.4) is a degenerate

second order U-process. It then follows from Corollary 4 in Sherman (1994), a Uniform Law of

Large Numbers for U-processes, that

sup
y∈R

∣

∣

∣

∣

∣

∣

1

n2

∑

i

∑

j 6=i

H(Zi, Zj ; y, h)

∣

∣

∣

∣

∣

∣

= Op(h
−dn−1).

To see that the conditions of Sherman (1994, Corollary 4) are satisfied, let

H = {hdH(·; y, h), y ∈ R, h > 0}.

Since hdH(·; y, h) is uniformly bounded as a function of both y and h, the class H has a constant

(and hence square integrable) envelope function. The class also satisfies the so-called euclidean

property required for Corollary 4, by Assumption 3 and 4, Lemma 22(ii) in Nolan and Pollard

(1987) and Lemma 2.14 of Pakes and Pollard (1989). Hence the conditions of the corollary are

satisfied.

One can furthermore directly see that the second term in (2.6.4) is also Op(h
−dn−1) uni-

formly in y, and thus A22 = ōp(n
−1/2) because Op((nh

d)−1) = op(n
−1/2) by Assumption 5. This

completes our argument regarding the term A. Turning to the term B, it can be shown that

B = op(n
−1/2) uniformly in y through similar reasoning.
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Proof of Theorem 2. The statement of the Theorem follows directly from the Functional

Delta Method (see Section 3.9 in van der Vaart and Wellner (1996))

Proof of Theorem 3. To see the first assertion of the theorem, consider the case of a depen-

dent policy implementation. Recall from the proof of Theorem 1 that

√
n
(

F̂ − F
)

= Ḡnξ + op(1).

Since P = {ξ(y); y ∈ R2} is Donsker, the result then follows from Theorem 3.6.1 in van der

Vaart and Wellner (1996). An analogous argument can be made for the case of an independent

policy implementation. The second assertion of the theorem is then simply a consequence of

the Function Delta Method for the bootstrap, see Theorem 3.9.11 in van der Vaart and Wellner

(1996).

Proof of Proposition 3. By Lemma 21.4 in van der Vaart (2000), under the conditions of

the proposition the map Γ with

Γ(φ) = (φ−1
1 , φ−1

2 ) and φ−1
i (τ) = inf{y : φi(y) ≥ τ}, i = 1, 2

is Hadamard differentiable at F tangentially to C(0, 1) × C(0, 1), with derivative

φ 7→ Γ′
F(φ) = −

(

φ1

f∗Y
,
φ2

fY

)

◦ F−1.

Thus, by Theorem 2 the joint quantile process
√
n(Q̂−Q) converges weakly to Qo in ℓ∞(0, 1)×

ℓ∞(0, 1). The validity of the bootstrap then follows directly from Theorem 3.

Proof of Proposition 4. Our process of interest
√
n(L̂ − L) can be rewritten as

√
n(L̂ − L) =

√
n(ΓL(F̂) − ΓL(F))

with the ”Lorenz functional” ΓL defined as

ΓL(φ)(p) =

(∫ p1

0
φ−1

1 (τ)dτ,

∫ p2

0
φ−1

2 (τ)dτ

)

·
(

1
∫∞
0 φ−1

1 (τ)dτ
,

1
∫∞
0 φ−1

2 (τ)dτ

)

≡ S(φ)(p) · µ−1(φ)

for p = (p1, p2)
T . Using this notation, we can rewrite the Lorenz process as

√
n(L̂ − L) = µ−1(F̂) ·

√
n(S(F̂) − S(F)) − µ−1(F̂) · L ·

√
n(µ(F̂) − µ(F))
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The asymptotic properties of this expression can now be derived by looking at the individual

components. First, since µ−1(·) is a continuous functional, it follows from Theorem 1 and the

continuous mapping theorem that

µ−1(F̂) → µ−1(F) ≡ (1/µ∗Y , 1/µY ),

where µ∗Y and µY are the unconditional means of Y ∗ and Y , respectively. Second, using a result

from Bhattacharya (2007, Claim 1), it follows that the map S is Hadamard differentiable at F

tangentially to C[0, 1] × C[0, 1] with derivative

φ 7→ S
′

F(φ)(p) =

(

∫ p1

0

φ1(F
∗−1
Y (τ))

f∗Y (F ∗−1
Y (τ))

dτ,

∫ p2

0

φ2(F
−1
Y (τ))

fY (F−1
Y (τ))

dτ

)

.

Note that this is the componentwise integral over the Hadamard derivative of the quantile

operator from the proof of Proposition 3. Applying Theorem 2, we obtain that

√
n(S(F̂) − S(F)) ⇒ Ho.

Finally, we have that

√
n(µ(F̂) − µ(F)) ⇒ Ho(1)

because µ(·) = S(·)(1). Taking the last results together, the first statement of the proposition

follows from Slutzky’s Theorem. The validity of the bootstrap then follows again directly from

Theorem 3.

Proof of Proposition 5. From the continuous mapping theorem, it follows that

√
n(Ĝ − G) ⇒

∫ 1

0
Lo(p)dp.

Since Lo is a Gaussian process, the term on the right-hand-side is a normally distributed random

variable, with mean zero and variance as given in the proposition. The validity of the bootstrap

follows again from Theorem 3.

Proof of Proposition 6. Our proof follows essentially the same lines as the one of Proposition

3 in Barrett and Donald (2003). First, note that the map φ 7→ Dj(·, φ) is a linear functional of a

Hadamard differentiable mapping. This follows by induction, since D1(·, φ) is the identity and

thus Hadamard differentiable, and the integral operator that transforms Dj−1(·, φ) into Dj(·, φ)

is linear. It thus follows from Theorem 2 that

√
nDj(·, F̂ ∗

Y − F̂Y ) = Dj(·,
√
n∆̂F ) ⇒ Dj(·, (1,−1)Fo).
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Furthermore, since the map φ 7→ supy |φ(y)| is continuous, it follows from the CMT that

KSj
d→ sup

y
Dj(y, (1,−1)Fo) = KSj .

On the other hand, invoking similar arguments and Theorem 3, we obtain for the bootstrapped

test statistic that

KSj,b
d→ KSj , (2.6.5)

conditional on the sample, in probability. Using the same arguments as in Barrett and Donald

(2003, p.102), the distribution of KSj,b is absolutely continuous on (0,∞), and cj(α) defined

by P (KSj > cj(α)) = α is finite for α < 1/2. Then the event that p̂j < α is equivalent to the

event KSj > ĉj(α), where

inf {t : Pb (KSj,b > t) > α} = ĉj(α)
p→ cj(α)

by (2.6.5). Then, under the least favorite null hypothesis,

lim
n→∞

P (reject Hj
0) = lim

n→∞
P (KSj > ĉj(α))

= lim
n→∞

P (KSj,b > cj(α)) + lim
n→∞

(P (KSj > ĉj(α)) − P (KSj > cj(α)))

= α+ lim
n→∞

P (KSj ∈ (ĉj(α), cj(α)))

= α

since ĉj(α)
p→ cj(α). This proves assertion (i) of the proposition. Under the alternative, there is

an additional drift term such that the distribution ofKSj,b diverges, and limn→∞ P (reject Hj
0) =

1 in this case, since cj(α) is finite. This proves assertion (ii).

Influence Function of the Lorenz Curve. The influence function ψL of the bivariate Lorenz

process has a lengthy expression, but can be calculated using standard rules of calculus. First,

one has to compute the influence function ψH of the Gaussian process Ho defined in Proposition

5 by integrating over the influence function ψQ of the quantile process. It then follows from the

product rule that

ψL
1 (p, Zi) =

1

µ∗Y
ψH

1 (p, Zi) −
L∗

Y (p)

µ∗Y
ψH

1 (1, Zi),

ψL
2 (p, Zi) =

1

µY
ψH

2 (p, Zi) −
LY (p)

µY
ψH

2 (1, Zi).
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Using the definiton that α(p, x) = Q∗
Y (p)FY |X(Q∗

Y (p), x) − E(I{Y ≤ Q∗
Y (p)}Y |X = x), the

bivariate function ψH can be written as

ψH
1 (p, Zi) = (pQ∗

Y (p) −H∗
Y (p)) − α(p,X∗

i )

− f∗X(Xi)

fX(Xi)
(I{Y ≤ Q∗

Y (p)}(Q∗
Y (p) − Yi) − α(p,Xi)) ,

ψH
2 (p, Zi) = (pQY (p) −HY (p)) − (I{Y ≤ QY (p)}(QY (p) − Yi)) ,

where HY (p) =
∫ τ
0 QY (τ)dτ and H∗

Y (p) is defined analogously. Noting that α(1, x) = E(Y |X =

x), we furthermore obtain that

ψH
1 (1, Zi) = (ȳ − µ∗Y − α(1, X∗

i )) − f∗X(Xi)

fX(Xi)
(ȳ − Yi − α(1, Xi)),

ψH
2 (1, Zi) = Yi − µY ,

which completes the description of the components of ψL.
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Chapter 3

Semiparametric Estimation of

Binary Response Models with

Endogenous Regressors

3.1 Introduction

This paper is concerned with the semiparametric estimation of the coefficients of a single

index binary response model with endogenous regressors when identification is achieved

via the control function approach put forward by Blundell and Powell (2004). The type

of model we consider is of the form

Y =











1 if Y ∗ = X ′θo − U > 0

0 else,

where Y is an indicator of the sign of a latent variable Y ∗ generated through a linear

model with regressors X, vector of parameters θo and error term U . Our interest is in

the estimation of the (normalized) coefficients θo, which is a semiparametric problem in

the sense that the distribution of the unobservable variables is not assumed to belong to

some parametric family. Furthermore, we do not assume that the error is independent of

the regressors since we want to allow some components of X to be endogenous and thus

correlated with U . To account for endogeneity, a control function approach introduces

additional control variables, such as residuals from a reduced form of the endogenous
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variables for example, as covariates into the outcome equation. Within this class of mod-

els, the only estimator that has been suggested so far is the one proposed by Blundell and

Powell (2004), which is an extension of the Ahn, Ichimura, and Powell (1996) ”matching”

estimator.

This paper contributes to the literature by proposing a new two-step semiparametric

maximum likelihood (SML) estimator. The procedure, which is also suggested but not

further developed in Blundell and Powell (2004), is an extension of the Klein and Spady

(1993) estimator, which achieves the semiparametric efficiency bound in the exogenous

case. The first step consists of estimating the control variables through an auxiliary

regression, which can either be fully nonparametric, or incorporate some parametric re-

strictions. In the second step, these are added nonparametrically to the equation of

interest, which is in turn estimated by semiparametric maximum likelihood. Compared

with the Blundell-Powell estimator, our procedure exploits the restrictions implied by

the model more effectively, and does not require high-dimensional smoothing. The es-

timator possesses the classic asymptotic properties of
√
n-consistency and asymptotic

normality, and valid standard errors and test statistics can be obtained via a nonpara-

metric bootstrap procedure. Through a simulation study, we show that using our SML

approach yields a considerable gain in terms of finite sample performance over other ex-

isting semiparametric estimators for binary choice models with endogenous regressors in

many empirically relevant settings. The procedure should thus be appealing to applied

researchers.

Binary response models play a prominent role in microeconometrics and are therefore

the focus of an extensive literature. Estimation is typically carried out using standard

Logit or Probit procedures, assuming that the distribution of the error term follows some

parametric law and that X and U are independent. Having an estimator like ours that

relies on neither of these two assumptions is of considerable practical importance since

both might be inappropriate for many empirical applications.

First, economic theory usually provides no guidance about the functional form of the

distribution of the error term, but misspecifications will generally result in inconsistent

estimates for likelihood-based approaches. A number of semiparametric estimators have

therefore been proposed which do not impose parametric restrictions on the distribution
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of U . Such estimators include Semiparametric Least Squares (Ichimura 1993), Semipara-

metric Maximum Likelihood (Klein and Spady (1993), Ai (1997)), Average Derivative

estimators (Stoker (1986), Powell, Stock, and Stoker (1989)), the Maximum Score esti-

mator (Manski 1975) and the semiparametric estimator for discrete regressors of Horowitz

and Härdle (1996), to mention a few.

Second, when the binary choice model arises in the context of a system of triangular

or fully simultaneous equations, or certain measurement error models, some components

of X will typically be endogenous, violating the independence assumption. Although

neglecting this problem will again render the usual estimates inconsistent, it has received

much less attention in literature. If one has access to an instrumental variable, an ad-

hoc solution often recommended in econometrics textbooks would be to estimate a linear

probability model by two-stage least squares (2SLS), although this procedure is generally

inconsistent and might imply choice probabilities that are not between 0 and 1. More ad-

equate estimators that are widely used have been proposed by Smith and Blundell (1986),

Rivers and Vuong (1988) and Newey (1987), but they require fairly strong parametric

distributional assumptions.

A semiparametric way of recovering the index coefficients that does not assume the

unobservables to follow any parametric law is provided by Newey (1985). The approach

requires a correctly specified parametric reduced form with homoskedastic error terms,

where in particular the latter condition can be restrictive in practice. More recently,

Lewbel (2000) proposed a simple to implement semiparametric procedure for estimating

θo when X contains a continuously distributed, strictly exogenous ”special regressor”

that satisfies a large support condition. While this approach has the advantage that it

allows the endogenous variable to be discrete or even binary, in many applications there

might be no exogenous variable which qualifies as a ”special regressor”.

The control function approach that we use in this paper was proposed by Blundell and

Powell (2004). The general idea of using residuals from a reduced form of the regressors

to account for endogeneity is well established in parametric econometrics and has recently

been used in the identification and estimation of various non- and semiparametric models

with endogenous regressors (e.g. Newey, Powell, and Vella (1999), Blundell and Powell

(2003), Chesher (2003), Das, Newey, and Vella (2003), Florens, Heckman, Meghir, and
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Vytlacil (2008), Imbens and Newey (2009), Blundell and Powell (2007), Lee (2007)). It

has the drawback that it requires the endogenous regressor to be continuously distributed,

but other variables, including the instruments, can well be discrete.

The plan of this paper is as follows. In the next section, we specify the model being

used. In Section 3, we show how identification is achieved and describe our SML approach

to estimation. Asymptotic properties of our estimator are analyzed in Section 4. In

Section 5, we discuss a number of extensions of our setup, while Section 6 deals with

implementation issues and presents the results of our simulation study. The application

of our procedure is illustrated via an empirical example in Section 7. Finally, Section 8

concludes.

3.2 The Model

The setup we consider in this paper is a linear single-index binary response model with

an arbitrary large number of endogenous regressors, similar to the one of Blundell and

Powell (2004). It is given by:

Y = I{X ′θo − U ≥ 0}, (3.2.1)

where Y is the binary dependent variable, X is dx-dimensional vector of regressors, U is

an unobserved random error term, and I{A} is the indicator function that equals 1 when

A is true and 0 otherwise. Furthermore, there is a de-dimensional subvector Xe of X

that contains the endogenous variables, in the sense that these are potentially correlated

with U . We think of (3.2.1) as a structural equation, describing the causal relationship

between the right-hand and left-hand side variables, and refer to it in the following as

the outcome equation.

Since it is clear from the exogenous case that we can only hope to identify the index

coefficients θo up to a multiplicative constant, we normalize the coefficient on the first

component of X to unity, i.e. we assume that θo = (1, βo).
1 The object of interest

that we want to estimate is the remaining vector of coefficients βo. Also, for notational

convenience, we use Xβo as a shorthand for (1, βo)
′X.

1This choice is of course totally arbitrary. In general, we could normalize the coefficient on any of the

regressors as long we can be sure that its true value is different from zero.
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Without making further assumptions, it is generally not possible to identify βo in

equation (3.2.1). To this end, we assume the existence of a control variable. That is,

we assume that U and X are independent conditional on some (unobserved) random dv-

vector V , that can be written as an identified function ofXe and some vector of exogenous

instruments Z, which may include some of the exogenous components of X:

U⊥X|V for some V = vo(X
e, Z). (3.2.2)

Such a control variable can be available under various circumstances, but the specific

source is not important for the construction and analysis of our estimator. We only

require that the function vo is identified and can be estimated by some v̂ satisfying

a ”high-level” condition given below, which can be easily verified under very general

circumstances.

The leading case in which such a control variable will typically be available is when

the endogenous regressors are generated through a second equation as

Xe = mo(Z) + V, E(V |Z) = 0, (3.2.3)

where mo is a conditional mean function. This function can either be left unspecified,

in which case (3.2.3) is the standard nonparametric regression model, or assumed to

satisfy some parametric or semiparametric restrictions. For example, it is possible to

specify (3.2.3) as a single-index model, with mo(Z) = m̃o(Z
′αo) for some unknown func-

tion m̃o and an unknown vector of parameters αo, or as a fully parametric nonlinear

regression model, with mo(Z) = m̃(Z, αo) for a function m̃ that is known up to a finite

dimensional parameter αo.

It has been shown by Blundell and Powell (2004) that under the distributional exclu-

sion restriction that

Pr(U < c|X,Z) = Pr(U < c|V ), (3.2.4)

for all c, the error term V = Xe −mo(Z) ≡ vo(X
e, Z) is a control variable that satisfies

condition (3.2.2). This restriction is more flexible than a ”full independence” condition

like (U, V )⊥Z, since it allows for example the variance of V to be a function of the

instruments. However, it retains the general drawback of the control function approach

53



that one has to correctly specify the relevant instrumental variables Z in (3.2.3), and

that the endogenous regressor has to be continuous, since otherwise the distribution of

V and thus its relation with U will in general depend upon Z, which violates (3.2.4).

A specification like (3.2.3)–(3.2.4) is plausible in a number of contexts. For example,

equations (3.2.1) and (3.2.3) could be seen as a triangular system of structural equations,

with (3.2.3) describing the causal mechanism that determines the values of the endogenous

regressor. Alternatively, such a specification could also arise when the latent variable Y ∗

and Xe are jointly determined through a system of simultaneous equations. In this

case, equation (3.2.3) would be a reduced form equation resulting from an equilibrium

condition. Another option would be a classical measurement error framework such as

Y = I{X̃e′θo1 + Z ′
1θo2 − ǫ1 ≥ 0}

Xe = X̃e + ǫ2

X̃e = mo(Z) + ǫ3,

where Xe is a noisy version of the unobserved regressor X̃e measured with error ǫ2. This

model is equivalent to (3.2.1) and (3.2.3) with U = ǫ1 + ǫ2 and V = ǫ2 + ǫ3.

While in this paper we will focus on control variables emerging from a structure like

the one in (3.2.3), they might also appear under different circumstances, as pointed out by

Imbens and Newey (2009). For example, as shown in Newey (2007), in a sample selection

model where Y is only observed conditional on a selection variable S = I{m(Z) > U∗}
being equal to one, and (U,U∗) is independent of Z, the selection probability P = Pr(S =

1|Z) is a control variable in the sense of condition (3.2.2). Such models can hence be

treated in our framework as well.

3.3 Identification and Estimation Approach

3.3.1 Identification

The most important consequence of the restriction (3.2.2) is that the conditional ex-

pectation of the dependent variable Y given the observable variables X and V can be

written as a function of the linear index Xβo and the control variables V . Denoting the
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conditional distribution function of U given V by Go, we can write

E(Y |X,V ) = E(I{U ≤ Xβo}|X,V ) = E(I{U ≤ Xβo}|V ) = Go(Xβo, V ), (3.3.1)

and thus reduce the dimension from dx + dv to 1 + dv.

This restriction is also useful for identifying βo. In particular, it is clear that our

parameter of interest is identified by the data if the following condition holds:

Identification Condition (IC). There exists a unique interior point βo ∈ B such that

the relationship E(Y |X,V ) = E(Y |Xβo, V ) holds for (X,Z) ∈ A, a set with positive

probability.

Thus, what remains to establish identification of βo is to give conditions on the prim-

itives of the model under which IC is fulfilled. It turns out that for this purpose, in

addition to requiring that vo is identified, only the standard regularity conditions for

identification of single-index binary response models are needed. The reason is that we

are not dealing with an actual multiple-index model: although the function Go has 1+dv

arguments, only the first one contains index parameters to be identified. We therefore

have the following theorem.

Theorem 1 (Identification). The parameter βo in the model (3.2.1)–(3.2.2) is identified

in the sense that the identification condition IC holds, if the following conditions are

satisfied:

i) The function Go is differentiable and strictly increasing in its first argument on a set

A with positive probability under the distribution of X.

ii) Conditional on the control variable V , the vector X contains at least one continuously

distributed component X(1) with nonzero coefficient.

iii) The span of the remaining components X(−1) contains no proper linear subspace

which has probability 1 under the distribution of X.

The proof, which is analogous to the argument in Manski (1988), is given in the ap-

pendix. Note that when the control variables emerge from a structure like (3.2.3)–(3.2.4),

the fact that the endogenous regressors are continuously distributed is not sufficient for
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condition (ii) to be fulfilled. Instead, it is required that additionally either one of the

exogenous regressors or the ”fitted value” mo(Z) from the reduced form is continuously

distributed as well2. To see this, assume that all exogenous regressors and instruments are

discrete. Then X = (Xe, X(−e)) = (mo(Z)+V,X(−e)) is discretely distributed conditional

on V , which violates condition (ii).

3.3.2 The Estimator

To motivate the estimator, assume for the moment that the function Go was known and

that V was observable. If observations are stochastically independent, it would then be

straightforward to estimate βo by maximizing the log-likelihood function

1

n

n
∑

i=1

Yi log(Go(Xiβ, Vi)) + (1 − Yi) log(1 −Go(Xiβ, Vi)) (3.3.2)

with respect to β. When Go and V are unknown, this approach is clearly not feasi-

ble. However, generalizing the idea of Klein and Spady (1993), we can approximate the

objective function by replacing all unknown quantities with appropriate estimates.

To make this idea more precise, we have to introduce some notation. For any candidate

value of β and some function v, define W (β, v) = (Xβ, v(Xe, Z)), and set

G(w|β, v) = E(Y |W (β, v) = w).

Furthermore, we use the convention that arguments indexing a function are dropped

when they are evaluated at their true value, i.e. G(w|β) = G(w|β, vo), G(w) = G(w|βo),

W (β) = W (β, vo), W = W (βo) etc. Using this notation, we have that Go(Xβo, V ) =

G(W (βo, vo)|βo, vo) ≡ G(W ). The idea is now to replace the term Go(Xiβ, Vi) in (3.3.2)

by a nonparametric kernel estimate Ĝ(Ŵi(β)|β, v̂), where Ŵ (β) = W (β, v̂) and v̂ is itself

a (possibly nonparametric) estimate of vo from a preliminary estimation stage. Note

that the function G(W (β, v)|β, v) and its estimate depend on β both through its first

argument, which determines the point of evaluation, and its second one, which influences

the shape of the function.

Since we have made no assumptions about the structural form generating the control

variates, we also do not impose a specific estimation procedure. Instead, we simply assume

2I would like to thank an anonymous referee for pointing this out.
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the existence of an estimator v̂ of vo satisfying some high-level conditions given below.

Then for any β and v, a nonparametric kernel estimate of G(·|β, v) can be obtained as

Ĝ(w|β, v) = N̂(w|β, v)/D̂(w|β, v)

where

N̂(w|β, v) =
1

n

n
∑

j=1

Kh (Wi(β, v) − w)Yj,

D̂(w|β, v) =
1

n

n
∑

j=1

Kh (Wi(β, v) − w)) .

Here Kh(·) = K(·/h)/h is a kernel function on R1+dv and h is a bandwidth sequence that

goes to zero as n goes to infinity. The exact specifications are given below. Substituting

this estimate into equation (3.3.2) we obtain the semiparametric likelihood function

Ln(β) =
1

n

n
∑

i=1

τi(Yi log(Ĝ(Ŵi(β)|β, v̂)) + (1 − Yi) log(1 − Ĝ(Ŵi(β)|β, v̂))),

and define our estimator β̂ of βo as the maximizer of this objective function:

β̂ = argmax
β∈B

Ln(β). (3.3.3)

Here τi = I{(Xi, Zi) ∈ X} is a trimming term that equals 1 whenever the values of

(Xi, Zi) lie within an appropriately chosen compact set X and 0 otherwise. In particular,

the set is chosen such that the probability limit of Ĝ is bounded away from zero and one

on X .

While the maximization in (3.3.3) can be carried out using standard numerical op-

timization procedures, it is certainly computationally expensive, since we have to run n

nonparametric regressions for every iteration step. A further complication is the possible

presence of local maxima in the objective function. We discuss these issues in more detail

in the simulation study.

3.4 Asymptotic Properties

In this section, we establish the asymptotic properties of our estimator. We start with

stating the assumptions and then give results on consistency, asymptotic normality and

variance estimation. Here we only sketch our proofs and delegate rigorous arguments to

the Appendix.
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3.4.1 Assumptions and Preliminaries

Before we present our framework, we have to introduce some more notation. For µ a

k-vector of nonnegative integers, we define (i) |µ| =
∑n

i=1 µi, (ii) for any function f(x)

on Rk, ∂µ
xf(x) = ∂|µ|/(∂µ1x1, . . . , ∂

µkxk)f(x) and (iii) xµ =
∏n

i=1 x
µi

i . Furthermore, we

write ∂k as a shorthand for ∂wk
for k = 1, 2. We can now state the assumptions for our

asymptotic analysis.

Assumption 1. The sample observations {(Yi, Xi, Zi)}n
i=1 are a sequence of independent

and identically distributed random vectors generated according to the model defined in

equation (3.2.1) – (3.2.2). The model is identified in the sense that IC holds.

Assumption 2. The parameter space B is a compact subset of Rdx−1 and βo is an element

of its interior.

These are standard regularity conditions in the semiparametrics literature.

Assumption 3. i) For all β ∈ B, the distribution of the random vector W (β) admits

a density function D(w|β) with respect to the Lebesque measure.

ii) For all β ∈ B, D(w|β) is r times continuously differentiable in w, and the derivatives

are uniformly bounded: supw,β |∂µ
wD(w|β)| <∞ ∀µ with |µ| ≤ r.

iii) For all β ∈ B, G(w|β) is r times continuously differentiable in w, and the derivatives

are uniformly bounded: supw,β |∂µ
wG(w|β)| <∞ ∀µ with |µ| ≤ r.

iv) D(w|β) and G(w|β) are twice continuously differentiable in β.

Assumption 3 collects some conventional smoothness restrictions on the functions

being estimated through kernel methods. The higher-order differentiability conditions

are needed to obtain certain uniform convergence rates on the estimates of G(·|β) and its

derivatives.

Assumption 4. For X a compact subset of the support of (X,Z), define W (X ) = {w ∈
R1+dv : ∃(x, z) ∈ X , β ∈ B s.t. w = (xβ, vo(x

e, z))}. Then X is chosen such that:

i) infw∈W (X ),β∈BD(w|β) > 0
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ii) infw∈W (X ),β∈BG(w|β) > 0 and supw∈W (X ),β∈BG(w|β) < 1.

Assumption 4 prescribes a fixed trimming procedure, which significantly simplifies the

derivation of the asymptotic properties. Since trimming is generally considered to be of

minor practical importance and thus is often disregarded in empirical applications, this

seems to be a mild restriction. However, at the cost of a more complicated proof it would

be possible to replace the fixed trimming function τi = I{(Xi, Zi) ∈ X} with a random,

data dependent one that tends to one as the sample size increases. Using results from

e.g. Pakes and Pollard (1989), one could for example implement a trimming procedure

on the basis of the upper and lower sample quantiles of the data, as in Lee (1995).

Assumption 5. The matrix

Σ = E
[

τ∂βG(W )∂β′G(W ) (G(W )(1 −G(W )))−1]

is positive definite.

Assumption 5 ensures the non-singularity of the asymptotic covariance matrix of our

final estimator. Note that here and in the following the notation ∂βG(W ) is understood

to denote the derivative of G(W (β)|β) with respect to both occurrences of β, evaluated

at β = βo.

Assumption 6. The kernel functions K : Rdv+1 → R satisfies (i)
∫

K(z)dz = 1, (ii)
∫

K(z)zµdz = 0 for all |µ| = 1, . . . , r − 1, (iii)
∫

|K(z)zµ|dz < ∞ for |µ| = r, (iv)

K(z) = 0 if |z| > 1 (v) K(z) is r times continuously differentiable.

Assumption 7. The bandwidth vector h = (h1, . . . , hdv+1) satisfies hi = cin
−δ, i =

1, . . . , dv + 1, for some constants ci > 0 and δ such that 1/2r < δi < 1/(2 + 6dv).

The last two assumptions define a standard bias-reducing kernel of order r, which is

used for reducing asymptotic bias in the estimates of G and its derivatives, and determine

the rate at which the bandwidth sequences go to zero as n→ ∞. In order to ensure that

the set of possible values for δ is not empty, a sufficient condition is that r > 1 + 3dv.

Assumption 8. i) The estimate v̂ of vo satisfies

v̂(Xe
i , Zi) − vo(X

e
i , Zi) ≡ V̂i − Vi =

1

n

n
∑

j=1

ωn(Zi, Zj)ψj + rin,
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with

max
i
τi‖rin‖ = op(n

−1/2) and max
i
τi‖V̂i − Vi‖ = op(n

−1/4),

where ψj = ψ(Xe
j , Zj) is an influence function with E(ψj|Zj) = 0 and E(ψ2

j |Zj) <∞,

and the weights ωn(Zi, Zj) satisfy E(‖ωn(Zi, Zj)‖2) = o(n).

ii) There exists a space V, such that Pr(v̂ ∈ V) → 1 and
∫∞

0

√

logN(λ,V , ‖ · ‖∞)dλ <

∞, where N(λ,V , ‖ · ‖∞) is the covering number with respect to the L∞-norm of the

class of functions V, i.e. the minimal number of balls with ‖ · ‖∞-radius λ needed to

cover V.

This assumption is a high-level condition on the estimator of the control variables.

The first part states that the estimator admits a certain asymptotic expansion, whereas

the second part requires the estimator to take values in some well-behaved function space

with probability approaching 1.

These conditions can be shown to be fulfilled for various scenarios discussed in Section

2. For example, assume that Xe = mo(Z) + V with E(V |Z) = 0, V̂i = v̂(Xe
i , Zi) =

Xe
i −m̂(Zi), m̂ is the usual Nadaraya-Watson estimator, and V is the class of all functions

f taking the form f(xe, z) = xe−g(z) for some function g whose partial derivatives up to

order p exist and are uniformly bounded. Then, under certain assumptions on the kernel

and the bandwidth, the first part of Assumption 8 is fulfilled with

ωn(Zi, Zj) = κb(Zi − Zj)fZ(Zi)
−1 and ψj = −(Xe

j −mo(Zj)) = −Vj,

where fZ is the density function of the vector of instruments Z, κ is a kernel function

and b is the bandwidth. Also, Pr(v̂ ∈ V) → 1 in this case if the kernel function has

uniformly bounded partial derivatives up to order p. The remaining requirement then

follows from Corollary 2.7.4 in van der Vaart and Wellner (1996) if p > dz/2. Similar

arguments can also be used when mo is specified in a semiparametric way, for example

as a single-index or partially linear model, or when other nonparametric smoothers, such

as local polynomials are used (see e.g. Kong, Linton, and Xia (2009)).

On the other hand, when mo(z) = m(z, αo) is known up to some vector of parameters

αo, under standard regularity conditions for nonlinear regression models we obtain that
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part (i) is fulfilled with

ωn(Zi, Zj) = ∂αm(Zi, αo)E(∂αm(Z, αo)∂αm(Z, αo)
′)−1∂αm(Zj, αo)

′ and ψj = −Vj,

whereas part (ii) is true when m satisfies a Lipschitz conditions with respect to α, as

shown van der Vaart and Wellner (1996, Theorem 2.7.11).

3.4.2 Consistency and Asymptotic Normality

To establish consistency, we take the usual route and first show that the estimated likeli-

hood function Ln(β) converges uniformly to a nonrandom limit function L(β). Secondly,

we show that this function attains a unique maximum at βo, which implies both that βo

is identified and that β̂ is consistent. This is formally stated in the following theorem:

Theorem 2 (Consistency). Under Assumptions 1 – 8, it holds that β̂ = βo + op(1) as

n→ ∞.

Showing that β̂ is also asymptotically normal requires a somewhat more involved

argument. Our strategy is to use general results on semiparametric estimation procedures

given in Chen, Linton, and Van Keilegom (2003). As shown in the Appendix, this requires

deriving uniform rates of convergence for the nonparametric estimates of the link function

G(·|β) and its derivatives. This constitutes the main difficulty for the proof, since the

estimates of G(·|β) are in turn based on possibly non- or semiparametrically generated

regressors V̂ .

Intuitively, the asymptotic normality result follows from the following argument. From

a standard Taylor expansion of the semiparametric score function Sn(β) = ∂βLn(β)

around the true parameter values βo we obtain, after rearranging terms,

√
n(β̂ − βo) = −(∂β,βLn(β̄))−1

√
n∂βLn(βo), (3.4.1)

where β̄ is some intermediate value between β̂ and βo. Starting with the first term on

the right-hand-side of (3.4.1), it follows from the uniform convergence results on Ĝ(·|β, v̂)
and its derivatives, and the consistency of β̂ and v̂, that it converges in probability to

some matrix, i.e.

∂ββLn(β̄)
p→ Σ,
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where the limit is positive definite by Assumption 5. Continuing with the second term

in (3.4.1), it is shown in the Appendix that

√
n∂βLn(βo) =

1√
n

n
∑

i=1

Yi −G(Wi)

G(Wi)(1 −G(Wi))
(τi∂βG(Wi) − E(τi∂βG(Wi)|Wi))

+
1√
n

n
∑

i=1

(ξ1i − ξ2i)ψi + op(1),

where ψi is the influence function from Assumption 8, and

ξ1i = E(τ∂βG(W )∂2G(W )(G(W )(1 −G(W )))−1ωn(Z,Zi)|Zi),

ξ2i = E(E(τ∂βG(W )|W )∂2G(W )(G(W )(1 −G(W )))−1ωn(Z,Zi)|Zi).

Taken together, and applying a Central Limit Theorem, we obtain the following result:

Theorem 3 (Asymptotic Normality). Under Assumptions 1–8, it holds that

√
n(β̂ − βo)

d→ N(0,Ω)

where

Ω = Σ−1(Ψ1 + Ψ2)Σ
−1

and

Σ = E

[

τ∂βG(Wi)∂β′G(Wi)

G(Wi)(1 −G(Wi))

]

,

Ψ1 = E

[

(τ∂βG(W ) − E(τ∂βG(W )|W ))(τ∂βG(W ) − E(τ∂βG(W )|W ))′

G(Wi)(1 −G(Wi))

]

Ψ2 = E [(ξ1i − ξ2i)ψiψ
′
i(ξ1i − ξ2i)

′] .

It is instructive to compare our asymptotic variance matrix to that of an infeasible

maximum likelihood estimator using the true functions G(·|β) and vo. If we define Σ̃

be equal to Σ with τ ≡ 1, the variance of such an estimator would be Σ̃−1. In general,

our matrix Ω will be larger for two reasons. First, due to the fixed trimming procedure

our estimator does not use all available observations, which obviously results in a loss of

efficiency. Second, there is an additional penalty in terms of asymptotic variance for only

using an estimate of the function vo. However, there is no penalty term for estimating the

unknown link function G(·|β), which is also the case when all regressors are exogenous.
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To see this, let Ω̃ be equal to Ω with τ ≡ 1, and define Ψ̃1, Ψ̃2, ξ̃1i and ξ̃2i analogously.

Then it follows from the fact that E(∂βG(W )|W ) = 0 (see Klein and Spady (1993, p.

403)) that Σ̃ = Ψ̃1 and Ψ̃2 = E[ξ̃1iψiψ
′
iξ̃

′
1i]. Thus, if we neglect the effect of trimming, the

asymptotic covariance matrix of our estimator would be Ω̃ = Σ̃−1 + Σ̃−1Ψ̃2Σ̃
−1, where

the presence of the second term Σ̃−1Ψ̃2Σ̃
−1 is due to using an estimate of vo. Since this

term is generally nonnegative definite, the variance will be larger than it would be if vo

was known and thus the control variable V was observed.

3.4.3 Variance estimation

In order to be able to conduct inference on β̂, an estimate of the asymptotic variance

matrix is needed, but since Ω depends on a number of unknown functions in a relatively

complicated way, a direct sample moment estimator would be hard to implement. How-

ever, the results in Chen, Linton, and Van Keilegom (2003) justify the use of an ordinary

nonparametric bootstrap procedure to calculate confidence regions for the unknown pa-

rameters. To be specific, let {(Y ∗
i , X

∗
i , Z

∗
i )}n

i=1 be the bootstrap sample drawn randomly

with replacement from the original data {(Yi, Xi, Zi)}n
i=1, and let v̂∗ and Ĝ∗(·|β, v) be the

same estimators as v̂ and Ĝ(·|β, v) but based on the bootstrap data. Also, define the

bootstrap estimator β̂∗ as

β̂∗ = argmax
β∈B

1

n

n
∑

i=1

τ ∗i (Y ∗
i log(Ĝ∗(Wi(β, v̂

∗)|β, v̂∗)) + (1 − Y ∗
i ) log(1 − Ĝ∗(Wi(β, v̂

∗)|β, v̂∗))).

Then it can be shown using Theorem B in Chen, Linton, and Van Keilegom (2003) and

similar arguments as in the proof of our Theorem 3, that
√
n(β̂∗ − β̂) has the same

asymptotic limiting distribution as
√
n(β̂ − βo).

A general disadvantage of using such resampling techniques for a semiparametric

optimization estimator like ours is that they can be extremely costly from a computa-

tional point of view. For practical applications, the following approximation might thus

be useful. Note that the complicated functional form of Ω is mainly an effect of the

fixed trimming procedure. Yet when only a small amount of observations is trimmed,

this effect should be small. In particular, when τ = 1 for most observations, then

E(τ∂βG(W )|W )) ≈ 0 and by continuity the matrix Ω can be well approximated by
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Ω̄ = Σ−1 + Σ−1Ψ̄2Σ
−1, where Ψ̄2 = E[ξ1iψiψ

′
iξ

′
1i]. Under our assumptions stated above,

the matrix Σ can be consistently estimated by

Σ̂ =
1

n

n
∑

i=1

τi
∂βĜ(Wi(β̂|β̂, v̂)∂β′Ĝ(Wi(β̂)|β̂, v̂)
Ĝ(Wi(β̂|β̂, v̂)(1 − Ĝ(Wi(β̂)|β̂, v̂))

.

Estimating the matrix Ψ̄2 is more difficult when using only the ”high-level” condition

on the control function from Assumption 8. However, when imposing more structure on

the estimates of the control variables, the shape of the terms ξi and ψi can usually be

made more explicit, and thus suggest a potential estimator. Consider for example the

case where V̂i = Xe
i − m̂(Zi) is the residual from a nonparametric reduced for equation

estimated by some kernel method, as in (3.2.3). Then ψi = −Vi, and it is easy to

show that ξ1i = E(τi∂βG(Wi)∂2G(Wi)(G(Wi)(1 −G(Wi)))
−1|Zi). Accordingly, one could

estimate Ψ̄2 by

ˆ̄Ψ2 =
1

n

n
∑

i=1

ξ̂1iψ̂iψ̂
′
iξ̂

′
1i,

where ψ̂i = −V̂i, and ξ̂1i is defined as the fitted value of some nonparametric kernel

regression of τi∂βĜ(W )∂2Ĝ(W )(Ĝ(W )(1 − Ĝ(W )))−1 on Z. Under suitable regularity

conditions, one can verify that a Law of Large Numbers holds for ˆ̄Ψ2 in this case.

3.5 Some Extensions of the Structure of the Model

For the ease of exposition, we have chosen a formulation our model in Section 2 that is

simple but also restrictive in many ways, yet various aspects can easily be generalized.

First, the linear relationship in the outcome equation (3.2.1) could be replaced with a

nonlinear one, such as

Y = I{g(X, θo) − U > 0}

for some known function g, at the cost of a slightly more complicated normalization of

the parameters (see Ichimura 1993, Klein and Spady 1993).

Second, we could replace the conditional independence restriction in (3.2.2) with the

alternative, slightly weaker version

U⊥X|(V,Xβo). (3.2.2b)
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This would allow for a limited degree of dependence between X and U even when condi-

tioning on the control variable V , as long as this dependence is restricted to run through

the index values (as would be the case under index heteroskedasticity, for example). In

particular, it would still be possible to write E(Y |X,V ) as some function Go of Xβo and

V , but now this function would not be confined to be monotone in its first argument. As

our estimator (in contrast to the one of Blundell and Powell) does not explicitly use the

properties of a distribution, it automatically works under (2.2b) as well. We illustrate

this point in more detail in our simulation study.

Finally, in this paper we focus on the estimation of the (normalized) index coefficients

βo. Another object of practical interest one could consider would be the choice probability

for some exogenously determined value of the regressors X = x̄. Blundell and Powell

(2004) call this the average structural function (ASF), and show that it is identified as

the partial mean of Go with respect to the distribution of the control variable V ,

ASF (x̄) =

∫

Go(x̄βo, V )dFV , (3.5.1)

provided that the support of V does not vary with x̄. The estimation of this object is

discussed in more detail in Imbens and Newey (2009).

3.6 Simulation Study

3.6.1 Setup

In order to demonstrate the usefulness of our proposed estimator for applications to finite

samples, we report the results of three simulation experiments in this section. Apart

from our SML procedure, we also consider Blundell and Powell’s (2004) semiparametric

”matching” estimator, the ”Two-Stage-Probit” estimator of Smith and Blundell (1986)

or Rivers and Vuong (1988), and Two-Stage Least Squares (2SLS) estimation of a linear

probability model, which is frequently used in applied work. These are intended to serve

as points of reference.

For the three simulations, we always use the same specification for the regressors and

instruments, but change the properties of the joint distribution of the error terms (U, V ).

The dependent variable is generated by a binary response model with two covariates in
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the outcome equation, of which one is endogenous, and two additional instruments in a

linear reduced form equation:

Y1 = I{Xe + Z1βo > U},

Xe = αo0 + Z1αo1 + Z21αo2 + Z22αo3 + V.

The true parameter values βo = 1 and αo = (1, 2/3, 2/3, 1/3)′ are held constant across

simulations. The exogenous variables are independent, with Z1 being exponentially dis-

tributed, truncated from above at 3, and standardized to have mean zero and variance

two, and Z21, Z22 are standard normal. In order to ensure a sensible comparison, all

estimators are based on the OLS residuals from the reduced form equation. For the error

distributions, we simulate V as N(0, 1) and U = U∗ + V , where we use the following

specifications for U∗:

• Design I: U∗ ∼ N(0, 5)

• Design II: U∗ ∼ 0.8N(−1, .6) + 0.2N(4, 2)

• Design III: U∗ ∼ N(0, exp(0.1 + 0.5Xβo))

Design I implies a jointly normal distribution of (U, V ) and is the one under which a Probit

should give the best results. The second design is a mixture of two normal distributions,

resulting in a right-skewed and bimodal density of U . It is constructed such that the

Probit estimator should be markedly biased, and we thus expect a comparatively better

performance of the semiparametric procedures. For the third design, the variance of U

conditional on V is a function of the linear index. It is included to show that our estimator

also works when the restriction in (3.2.2) is replaced with its weaker version (2.2b) (see

section 5).

While these designs correspond to very different distributions, they are chosen such

that some features are approximately the same. In particular, it holds that Var(U) ≈
6,Var(Y2 + Z1) ≈ 4.5, Cor(U, V ) ≈ 0.4 and Cor(U, Y2) ≈ 0.25. With the multiple R2 in

the reduced form regression being about 0.6, we are in a situation with relatively strong

instruments. In all three cases, we consider the sample sizes n = 250, 500, 1000, and set

the number of replications to 1000.
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3.6.2 Implementation Issues

In order to implement our SML estimator, we have to select a kernel function and the

bandwidth parameters. In particular, our assumptions require the use of higher-order

kernels to eliminate asymptotic bias. However, when using higher-order kernels to cal-

culate Ĝ(·|β, v̂), some observations will be given a negative weight and the result is not

confined to be between zero and one, which of course causes problems when taking log-

arithms. For our simulations, we therefore consider two approaches to circumvent this

this problem. The first one employs an idea from Klein and Spady (1993) and consists

of minimizing a modified criterion function L̃n, where

L̃n(β) =
1

n

n
∑

i=1

τi(Yi log(Ĝ(Ŵi(β)|β)2) + (1 − Yi) log((1 − Ĝ(Ŵi(β, v̂)|β, v̂))2)).

The corresponding estimator β̃ can easily be shown to be consistent and having the same

limiting distribution as our SML estimator β̂. In particular, note that both are solutions

of the same first-order condition. We refer to this estimator as SML-1 below.

As a second possibility, we simply compute our estimator as described above, but

without the use of higher-order kernel functions. This is motivated by the frequently

made observation that while higher-order kernel might be required from a theoretical

point of view in many semiparametric applications, the resulting estimators often tend

to have inferior finite sample properties compared to those based on standard kernels

(see Marron (1994) or Jones and Signorini (1997)). Thus, although strictly speaking

not compatible with our asymptotic analysis, we also consider this approach for our

simulations. It is referred to as SML-2 below.

Regarding the choice of the bandwidth parameters h = (h1, h2, . . . , hdv+1), for our sim-

ulation study we follow Härdle, Hall, and Ichimura (1993) and Delecroix, Hristache, and

Patilea (2005), and consider the following pragmatic approach: we treat the bandwidths

as additional parameters of the estimated likelihood and perform the maximization with

respect to both β and h. That is, we use the first component of

(

β̂, ĥ
)

= argmax
(β,h)∈B×R

dv+1

+

Ln(β, h)

as our estimator. While we do not claim any optimality of this approach for our problem

at hand, the method seems to perform well in applications to finite samples, as shown by
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our simulation study. A further advantage is that it can also serve as an informal test

for endogeneity: when Xe is actually exogenous, typically a large value will be chosen for

the bandwidth, because in this case Go(Xβ, V ) does not vary with V . As an alternative,

one could also experiment with various multiples of n−δ, but practitioners are generally

reluctant to do so because it involves a large degree of subjectivity.

In line with most of the literature in this field, no trimming is used. We investi-

gated various forms of trimming, but found no substantial effect on the performance of

the estimator in our simulation scenarios. This result is common when evaluating the

finite sample properties of semiparametric estimators of single-index models in general.

However, the use of trimming might be beneficial in practice if the data contains some

extreme outliers, as they can have a substantial impact on the estimate of the link func-

tion and the chosen bandwidth. In this case, a trimming procedure could for example

be implemented on the basis of the upper and lower sample quantiles of the data, as

mentioned above3.

The numerical optimization is carried out using a Gauss-Newton type algorithm as

implemented in the software package R 2.5.1. We use the Probit results as starting values

for the index coefficients and .4 for the bandwidths. To guard against the algorithm con-

verging to possible local maxima, we also use half and twice the starting values values to

compute the estimator, and retain the result that gives the highest value of the objective

function. However, it turns out that in our simple setup the values coincide in most runs.

All other estimators were implemented as described in the respective literature. For

the Blundell-Powell estimator, we use Least Squares Cross Validation to determine the

bandwidth for the nonparametric regression part, and 1.06σwn
−1/5 for the ”matching”

part, which corresponds to the specification in their empirical application.

3.6.3 Results

To facilitate comparison of our SML estimator with the other procedures, we make use

of a different normalization than the one described in Section 2: instead of setting the

coefficient of the endogenous variable to one, we rescale the estimates of the coefficients

3In the presence of extreme outliers, the use of trimming should of course be beneficial even for

correctly specified parametric estimators
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Table 3.1: Simulation Results Design I

MEAN SD RMSE MAD 25% 50% 75% CR

n = 250 SML-1 1.073 0.443 0.449 0.366 0.722 1.000 1.336 0.997

SML-2 1.008 0.248 0.248 0.199 0.854 1.012 1.177 0.895

Probit 1.011 0.187 0.188 0.149 0.889 1.007 1.122 0.897

2SLS 1.089 0.186 0.206 0.165 0.956 1.090 1.204 0.844

BP 0.735 0.389 0.471 0.391 0.459 0.722 0.969 0.787

n = 500 SML-1 1.061 0.463 0.467 0.371 0.672 0.999 1.333 0.975

SML-2 1.001 0.163 0.163 0.131 0.895 1.002 1.116 0.913

Probit 0.999 0.137 0.137 0.111 0.901 1.000 1.093 0.883

2SLS 1.079 0.138 0.159 0.128 0.979 1.084 1.172 0.789

BP 0.812 0.287 0.343 0.279 0.602 0.810 1.027 0.675

n = 1000 SML-1 1.010 0.444 0.444 0.356 0.667 0.983 1.332 0.945

SML-2 1.002 0.120 0.120 0.095 0.926 0.999 1.080 0.901

Probit 1.003 0.094 0.094 0.077 0.936 1.009 1.070 0.904

2SLS 1.082 0.094 0.125 0.103 1.018 1.088 1.147 0.745

BP 0.857 0.195 0.242 0.197 0.733 0.851 0.981 0.582

such that the sum of their absolute values is equal to 2, which corresponds to the sum

of the magnitude of the true coefficients. The reason for this change is that using ratios

of estimated coefficients results in a number of extreme outliers for the Blundell-Powell

estimator that corrupt the analysis. With the new normalization, the estimates are much

more well behaved.

The results of the simulation experiments are given in Tables 3.1– 3.3. For each

estimator of βo = 1, we report the mean value (MEAN), standard deviation (SD), root

mean squared error (RMSE), median absolute deviation (MAD), the 25%, 50% and 75%

sample quantiles, and the coverage rate (CR) of a bootstrap confidence interval with

nominal level of 90%, obtained via the percentile method from 200 bootstrap replications.

Some general conclusions can be drawn from these results. First, although the SML-

1 estimator has slightly better bias properties than SML-2, it also has a substantially

higher variability in all three designs. Thus, in terms of RMSE or MAD, the SML

estimator based on standard kernels uniformly dominates the one using higher-order

kernels. Secondly, the SML-2 estimator compares favourably with the other alternatives

and performs well uniformly over the different models we consider. It has the lowest
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Table 3.2: Simulation Results Design II

MEAN SD RMSE MAD 25% 50% 75% CR

n = 250 SML-1 1.053 0.459 0.462 0.371 0.667 0.999 1.334 0.995

SML-2 1.122 0.311 0.334 0.264 0.911 1.107 1.317 0.913

Probit 1.209 0.267 0.339 0.265 1.038 1.200 1.368 0.784

2SLS 1.286 0.246 0.377 0.312 1.120 1.282 1.437 0.672

BP 1.019 0.576 0.576 0.497 0.546 0.990 1.558 0.915

n = 500 SML-1 1.084 0.449 0.457 0.366 0.695 1.000 1.344 1.000

SML-2 1.088 0.229 0.245 0.194 0.924 1.073 1.258 0.890

Probit 1.204 0.178 0.271 0.220 1.081 1.199 1.313 0.724

2SLS 1.285 0.170 0.332 0.288 1.169 1.278 1.383 0.523

BP 1.061 0.509 0.512 0.429 0.699 1.022 1.459 0.928

n = 1000 SML-1 1.026 0.412 0.413 0.333 0.668 0.980 1.328 0.989

SML-2 1.054 0.165 0.173 0.136 0.941 1.045 1.157 0.897

Probit 1.200 0.135 0.241 0.207 1.104 1.205 1.281 0.506

2SLS 1.277 0.128 0.305 0.278 1.188 1.283 1.355 0.272

BP 1.065 0.355 0.360 0.293 0.817 1.067 1.341 0.913

Table 3.3: Simulation Results Design III

MEAN SD RMSE MAD 25% 50% 75% CR

n = 250 SML-1 1.052 0.428 0.431 0.349 0.672 1.000 1.333 1.000

SML-2 1.101 0.234 0.255 0.195 0.945 1.080 1.246 0.921

Probit 1.203 0.216 0.296 0.236 1.050 1.191 1.337 0.767

2SLS 1.242 0.204 0.317 0.260 1.114 1.235 1.358 0.677

BP 1.016 0.548 0.548 0.472 0.546 1.008 1.508 0.918

n = 500 SML-1 1.006 0.396 0.397 0.316 0.671 0.986 1.329 0.985

SML-2 1.068 0.170 0.183 0.145 0.941 1.059 1.193 0.896

Probit 1.200 0.144 0.247 0.210 1.105 1.189 1.291 0.587

2SLS 1.238 0.136 0.274 0.241 1.152 1.231 1.324 0.431

BP 1.094 0.464 0.473 0.396 0.731 1.112 1.453 0.922

n = 1000 SML-1 0.973 0.372 0.373 0.287 0.672 0.970 1.243 1.000

SML-2 1.036 0.109 0.114 0.090 0.961 1.032 1.108 0.911

Probit 1.188 0.103 0.215 0.190 1.117 1.182 1.257 0.371

2SLS 1.226 0.097 0.246 0.227 1.159 1.223 1.292 0.193

BP 1.098 0.329 0.343 0.273 0.865 1.074 1.329 0.881
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RMSE under all designs but the first, where it exceeds the RMSE of the correctly specified

Probit by about 20%. In addition, the confidence intervals’ coverage rates are remarkably

close to the nominal level for all sample sizes and designs in the study. Third, the Probit

estimator performs best when the parametric model is correctly specified, as is the case

in Design I, and least well when the deviations from this model are most extreme. In

general, its variance tends to be somewhat smaller than that of the SML estimator, but

the bias is higher. Thus, when the bias induced by the misspecification is not too large, it

tends to give reasonably good estimates. The bootstrap confidence intervals on the other

hand have coverage rates far below their nominal level in the misspecified cases, and can

thus be misleading in practice. Fourth, the Blundell-Powell estimators’ performance is

generally inferior to our that of our SML-2 procedure. For the relatively small sample

sizes we consider, its RMSE and MAD also exceed the ones of the misspecified parametric

estimators. For larger samples however, one would expect this relation to revert, since,

at least for the second and third design, the Blundell-Powell estimator has a relatively

small bias. Since the bootstrap confidence intervals perform satisfactory as well, this

procedure could then be a useful alternative to SML in large samples, since then the

latter is hard to compute. Moreover, it should be possible to improve the performance

of the Blundell-Powell estimator through more effective rules for selecting the smoothing

parameters, which is an important topic for future research. Finally, the 2SLS estimator

turns out to have a low variance, but it is markedly biased in the second and third design.

Consequently, the confidence intervals’ coverage rates are far below their nominal values

in this case. Although this estimator is applied frequently in empirical applications, one

should thus be very careful when interpreting the results.

3.7 An Empirical Application: Home-ownership and

Income in Germany

As an empirical application, we study the role of household income on the decision to

rent an apartment or house versus owning it. The data we use are taken from the 2004

wave of the German Socioeconomic Panel (GSOEP), an extensive longitudinal survey of
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Table 3.4: Descriptive Statistics

Variable Mean Std.Dev. Min Max

Homeowner 0.599 0.490 0 1

ln(total income) 7.853 0.324 6.397 9.473

Age 40.613 5.374 30 50

Children in HH 0.848 0.359 0 1

Education of wife

Low degree 0.482 0.498 0 1

Intermediate degree 0.415 0.493 0 1

High degree 0.103 0.304 0 1

Wife Working 0.699 0.459 0 1

Notes: Sample size is n = 981. Education dummys indicate the highest of the three main sec-

ondary school tracks in Germany completed by the wife: Hauptschulabschluss (”low degree”),

Realschulabschluss (”intermediate degree”) or Abitur (”high degree”; university entry qualifi-

cation)). ”Wife Working” is an indicator that takes the value 1 when the wife has done any

for-pay work in 2004.

households in Germany similar to the Panel Study of Income Dynamics (PSID) in the

United States. The sample we use consists of 981 married men aged 30 to 50 that are

working full time and have completed at most the lowest secondary school track of the

German education system. Our dependent variable Y is an indicator that takes the value

of 1 if a person owns its residence, and 0 if it is rented. The covariatesX we are controlling

for are the 2004 average total monthly income of the corresponding household (Xe), the

person’s age in years (Z11) and an indicator for the presence of children younger than 16

in the household (Z12). Generally speaking, home ownership should be determined by

the permanent component of the income stream, of which monthly income is only a noisy

measure. Therefore, we treat income as a mismeasured and thus potentially endogenous

variable and employ dummy variables for the wife’s education level (Z21) and employment

status (Z22) as instruments. These human capital variables should be strongly related

to the household income but have no direct influence on the housing decision. Some

descriptive statistics for these variables are given in Table 3.4.

A priori, we would expect that all three regressors are positively related with home-

ownership for the following reasons: First, buying a house is associated with high financial

costs including down payments, mortgage interests and repayments, maintenance costs

and transaction costs such as notary fees and transfer taxes. Particularly in the first few
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years after buying a home, these costs can exceed the costs of renting an equivalent place

considerably. Thus, a higher level of income is needed to acquire a house in the first

place. Second, the transition from renting to home-ownership is usually a one-time, non-

reversible event associated with the family lifecycle. Thus, the proportion of home-owners

should increase, other things equal, with age. Finally, it is well known that parenthood

is a trigger for buying a home, and hence families with children should be more likely to

own their residence.

For our application, we normalize the coefficient on the indicator for the presence of

children to unity. Hence the model is given by

Y = I{Xeβo1 + Z11βo2 + Z12 ≥ U},

Xe = mo(Z) + V.

We consider specifying the reduced form for the endogenous regressor both parametrically

as a linear model and in a fully nonparametric way. Since the resulting residuals are

relatively similar, in Table 3.4 only report OLS estimates of αo when the mean function

is specified as mo(z) = z′αo.

We then estimate the unknown parameter vector βo by SML. Following the results

from our simulations, we consider only the SML-2 estimator. The estimated coefficients β̂

and their corresponding standard errors are given in the second column of Table 3.5. For

the purpose of comparison, we also estimate the outcome equation by SML without taking

the potential endogeneity into account, i.e. we use the ordinary Klein-Spady estimator

with kernel and bandwidth specification analogous to the ones described in the preceding

section. Finally, we also report results from applying the Blundell-Smith estimator and

a standard probit model in the fourth and firth column of Table 3.5, respectively.

We can see that under all specifications the general tendencies we described above

are confirmed. However, the difference between the estimates of βo with and without

controlling for endogeneity are quite substantial. Consider for example the estimates

obtained by SML. After accounting for endogeneity, the coefficient on income is about

twice as large as before (relative to the coefficient on the child indicator). Using a fully

parametric approach leads to a quantitatively similar conclusion.

To illustrate the impact of such a change in coefficients, we consider the implications
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Table 3.5: Estimation Results from Semiparametric and Fully Parametric Procedures

Variable Reduced Form SML estimates Probit estimates

Xe Pr(Y |V ) Pr(Y ) Pr(Y |V ) Pr(Y )

log(Total Income) — 3.8533 1.9118 4.7923 2.1343

(1.3338) (.7310) (1.5135) (.5571)

Age .0117 .0982 .1916 0.0863 0.2076

(.0017) (.0889) (.0439) (0.0209) (.0257)

Children in HH .0911 1.0000 1.0000 1.0000 1.0000

(.0194) — — — —

V̂ (Control variable) — — — −3.0348 —

(1.3048)

Education of wife

Intermediate degree .0642 — — — —

(.0185)

High degree .1291 — — — —

(.0298)

Wife Working .0911 — — — —

(.0194)

R2 .1072 — — — —

F -statistic 23.42 (5, 975 df) — — — —

Bandwidth — h = (0.04, .21) h = .03 — —

Notes: Standard errors (based on bootstrap 500 bootstrap replications for SML and the usual

formulas otherwise) in parentheses. Baseline category for Education of wife is ”low degree”.
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for the Average Structural Function (ASF), which gives the choice probabilities when the

value of the regressors X is fixed at some exogenously determined value x̄. As mentioned

in Section 5, this object is identified as a partial mean of the link function Go with respect

to V . Following the advice of Imbens and Newey (2009), we estimate the ASF by

ˆASF (x̄) =
1

n

n
∑

i=1

ĜLL(x̄β̂, V̂i|β̂, v̂), (3.7.1)

where ĜLL(x̄β̂, V̂i|β̂, v̂) is the local linear estimator of E(Y |Xβ, V ) evaluated at x̄β̂ and

V̂i, and the bandwidth is chosen by least squares cross-validation.

In Figure 1, the estimated ASF is plotted from the 5% to the 95% quantile of the

income distribution for a man aged 40 with children. We can see that the two models

imply vastly different probabilities of home-ownership, particularly in the lower half of the

income distribution. For a monthly household net income of 1800 EUR (corresponding

to a log income of about 7.5), the probability of owning the residence reduces from

50% to roughly 20% when controlling for endogeneity. This difference diminishes as

we move up the income distribution, and for values of income larger than 2500 EUR

(which corresponds to a log income of about 7.8), the predictions from the two models

are qualitatively similar.

3.8 Concluding Remarks

This paper presents a semiparametric maximum likelihood procedure for the estimation

of the coefficients of a single index binary choice model with endogenous regressors. We

discuss how identification is achieved via a control function approach, and derive the

asymptotic properties of the new estimator. In our Monte Carlo experiments, the new

estimator performs well in comparison with other related procedures.

One of the major issues of our estimator is its computational complexity when applied

in settings with many regressors and/or observations. In this case, even evaluating the

likelihood function at a specific point is very time consuming, and the function might have

several local maxima. However, these problems are not specific to our SML estimator

but are encountered in general when computing semiparametric optimization estimators

such as the ones by Ichimura (1993) or Klein and Spady (1993). For these estimators, a
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Figure 3.7.1: Estimated probability of owning the residence for a man aged 40 with children.

number of suggestions have been made to improve their numerical properties, such as e.g.

the use of Fast Fourier Transforms or binning techniques (see Ichimura and Todd (2007)

for a comprehensive overview). All of these approaches could in general be adapted to

our estimator as well.

It might also be possible to avoid the use of numerical optimization routines altogether.

In a recent paper, Xia (2006) shows that the computationally much simpler rMAVE

procedure of Xia, Tong, Li, and Zhu (2002) achieves the same asymptotic variance as

the Klein and Spady estimator when applied to a standard binary choice model without

endogenous regressors. Again, it should be possible to adapt this technique to our problem

and thus reduce the computational complexity.

Appendix

Proof of Theorem 1. The proof of the theorem is analogous to the argument in Manski

(1988): First, note that that V = vo(X
e, Z) is identified by assumption. Now assume that there

exists a β̃ ∈ B such that E(Y |X,V ) = E(Y |Xβ̃, V ) = E(Y |Xβo, V ) ≡ Go(Xβo, V ). Then there

must exist a function H(·, V ) that is strictly monotone for all V , such that X(1) +X(−1)′ β̃ =
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H(X(1) + X(−1)′βo, V ). Differentiating both sides of this equation with respect to X(1) for

X ∈ A, we see that H(·, V ) must be the identity function since X(1) is continuously distributed

conditional on V , and thus X(−1)′ β̃ = X(−1)′βo. By condition (iii), this relation can hold with

probability one only if β̃ = βo.

We now turn to the proofs of the consistency and asymptotic normality result. First, we give

some useful preliminary results on uniform rates of convergence for nonparametric estimators

based on generated regressors. Second, we show consistency via a classical, direct argument.

Third, we prove asymptotic normality of our estimator by showing that our problem fits the

framework of Chen, Linton, and Van Keilegom (2003).

Lemma 1. Under Assumption 1-8, we have that uniformly in w ∈ W and β ∈ B, respectively, i)

D̂(w|β, v̂) − D̂(w|β) = op(n
−1/4), ii) ∂βD̂(w|β, v̂) − ∂βD̂(w|β) = op(n

−1/4), iii) ∂kD̂(w|β, v̂) −
∂kD̂(w|β) = op(n

−1/4) for k = 1, 2, iv) N̂(w|β, v̂) − N̂(w|β) = op(n
−1/4), v) ∂βN̂(w|β, v̂) −

∂βN̂(w|β) = op(n
−1/4), vi) ∂kN̂(w|β, v̂) − ∂kN̂(w|β) = op(n

−1/4) for k = 1, 2.

Proof. We only proof the first result, as the remaining ones can by shown analogously. Using

the definition of D̂ and Hölder’s inequality, it follows that

|D̂(w|β, v̂) − D̂(w|β)| =

∣

∣

∣

∣

∣

1

nhdv

n
∑

i=1

∂2Kh(Xiβ − w1, Ṽi − w2)(V̂i − Vi)

∣

∣

∣

∣

∣

≤ h−dv

(

1

n

n
∑

i=1

(∂2Kh(Xiβ − w1, Ṽi − w2))
2

)1/2(

1

n

n
∑

i=1

(V̂i − Vi)
2

)1/2

= h−dvT1 × T2,

where Ṽi is some value between Vi and V̂i. It is then easy to show that T1 = Op(1) uniformly

in β and w. Now consider T2. Substituting the ”high-level” representation for V̂i − Vi from

Assumption 8 into the expression, and applying Jensen’s inequality and the usual projection

arguments for U-Statistics, we obtain that

T 2
2 =

1

n

n
∑

i=1





1

n

n
∑

j=1

ωn(Zi, Zj)ψj + op(n
−1/2)





2

≤ 1

n3

n
∑

i=1

n
∑

j=1

ωn(Zi, Zj)
2ψ2

j + op(n
−1)

= Op(n
−1)

It then follows together with Assumption 7 that h−dvT1T2 = Op(h
−dvn−1/2) = op(n

−1/4), as

claimed.
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Lemma 2. Under Assumption 1–8, (i)

sup
w∈W,β∈B

|Ĝ(w|β, v̂) −G(w|β)| = op(1)

and (ii)

sup
w∈W,‖β−βo‖≤δn

|Ĝ(w|β, v̂) −G(w|β)| = op(n
−1/4)

sup
w∈W,‖β−βo‖≤δn

|∂βĜ(w|β, v̂) − ∂βG(w|β)| = op(n
−1/4)

sup
w∈W,‖β−βo‖≤δn

|∂1Ĝ(w|β, v̂) − ∂1G(w|β)| = op(n
−1/4)

for all δn = o(1).

Proof. This follows from standard kernel smoothing theory together with Lemma 1.

Proof of Theorem 2. To show that β̂ is consistent, we first define an infeasible version of

the semiparametric likelihood function, with Ĝ(Ŵi(β)|β, v̂) replaced with its probability limit

G(Wi(β)|β):

L̃n(β) =
1

n

n
∑

i=1

τi(Yi log(G(Wi(β)|β)) + (1 − Yi) log(1 −Gi(W (β)|β))).

The difference between L̃n(β) and Ln(β) goes to zero uniformly in β, for n→ ∞, because

sup
β∈B

|Ln(β) − L̃n(β)| ≤
(

inf
β∈B

min
i

{

Ĝ(Ŵi(β)|β, v̂), 1 − Ĝ(Ŵi(β)|β, v̂), G(Wi(β), 1 −G(Wi(β))
}

)

× sup
β∈B

max
i
τi|Ĝ(Ŵi(β)|β, v̂) −G(Wi(β)|β)|

= Op(1) sup
β∈B

max
i
τi|Ĝ(Wi(β)|β, v̂) −G(Wi(β)) + ∂2Ĝ(W̃i(β)|β, v̂)|β)(V̂i − Vi))|

= op(1)

by Lemma 2 and Assumption 8, where W̃i(β) is some value between Ŵi(β) and Wi(β). Fur-

thermore, since L̃n(β) is an ordinary parametric likelihood function, by a standard uniform law

of large numbers, e.g. Lemma 2.4 in Newey and McFadden (1994), it converges uniformly in β

to its expectation, i.e. we have

sup
β∈B

|L̃n(β) − L(β)| = op(1),

where

L(β) = E(Ln(β)) = E(τi [Yi log(G(W (β)|β)) + (1 − Yi) log(1 −G(W (β)|β))])
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is a non-random function that is continuous in β. Taken together, it follows from the triangle

inequality that

sup
β∈B

|Ln(β) − L(β)| = op(1),

which implies that β̂ is consistent whenever L(β) attains a unique maximum at βo. By the law

of iterated expectations,

L(β) = E(τ [Go(Xβo, V ) log(G(W (β)|β)) + (1 −Go(Xβo, V )) log(1 −G(W (β)|β))]),

and the term in square brackets attains its maximum whenever the relation G(W (β)|β) =

Go(Xβo, V ) holds. By Assumption 1, this is the case if and only if β = βo. The statement of

the Theorem then follows from the usual consistency argument, e.g. Theorem 2.1 in Newey and

McFadden (1994).

We now turn to the proof of asymptotic normality of our estimator β̂. This is done by

verifiying the conditions of Theorem 2 in Chen, Linton, and Van Keilegom (2003) in Lemma

3–8. Similar arguments are used by Linton, Sperlich, and Van Keilegom (2008), who consider

semiparametric estimation of a transformation model. Their problem is technically related to

ours since they also consider a semiparametric maximum likelihood estimator based on non-

parametrically generated regressors, but the actual model is very different.

We start with introducing some further notation. First, we have to define a criterion function

depending on β and some unknown nuisance function, whose population value is equal to zero

at the true parameter values. To this end, write γ = (γ1, . . . , γ4) for a generic collection

of nuissance functions, and define γβ = (∂1G(·|β), ∂βG(·|β), G(·|β), vo), γo = γβo
, and γ̂β =

(∂1Ĝ(·|β, v̂), ∂βĜ(·|β, v̂), Ĝ(·|β, v̂), v̂o), and γ̂o = γ̂βo
. Then, for any γ, let

Sn(β, γ) =
1

n

n
∑

i=1

s(Yi, Xi, Zi, β, γ)

where

s(Yi, Xi, Zi, β, γ) = (γ1(Xiβ, γ4(Xi, Zi))X̃i + γ2(Xiβ, γ4(Xi, Zi)))

× Yi − γ3(Xiβ, γ4(Xi, Zi))

γ3(Xiβ, γ4(Xi, Zi))(1 − γ3(Xiβ, γ4(Xi, Zi)))

and note that

Sn(β, γ̂β) = ∂βLn(β),
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i.e. Sn(β, γ̂β) is the score corresponding to our likelihood function Ln(β). Furthermore, define

the population version of the criterion function as

S(β, γ) = E(Sn(β, γ)).

Finally, we have to define an appropriate space for the nuissance functions γ. Denote this

space by Γ = Γ1 × V , where V is defined in Assumption 8 and Γ1 is the class of all functions

f : R1+dv → R whose partial derivatives up to order α > (1 + dv)/2 exist and are uniformly

bounded by some constant M . This class of functions is typically denoted by Cα
M (R2) in the

literature (see e.g. van der Vaart and Wellner (1996, p. 154)). A norm ‖ · ‖Γ on the space Γ

that satisfies the requirements of Chen, Linton, and Van Keilegom (2003) can be defined as

‖γ‖Γ = sup
β∈B

max{‖γ1‖∞, . . . , ‖γ4‖∞}.

Note that our Assumption 3 and 8 are sufficient to ensure that γo ∈ Γ.

We can now prove the Lemmas needed to verify the conditions of Theorem 2 in Chen,

Linton, and Van Keilegom (2003).

Lemma 3 (Condition (2.1)). ‖Sn(β̂, γ̂β)‖ = infβ∈B ‖Sn(β, γ̂β)‖ + op(n
−1/2)

Proof. This is trivially satisfied since ‖Sn(β̂, γ̂β)‖ = 0 by construction.

Lemma 4 (Condition (2.2)). The ordinary derivative Sβ(β, γβ) = ∂S(β, γβ)/∂β exists in a

neighborhood of βo, is continuous at β = βo, and the matrix Sβ(βo, γβo
) is of full rank.

Proof. This follows directly from Assumptions 3 and 5.

Lemma 5 (Condition (2.3)). The pathwise derivative Ṡ(β, γβ) of S(β, γβ) exists in all directions

γ − γβ, and satisfies: (i)

‖S(β, γ) − S(β, γβ) − Ṡ(β, γβ)[γ − γβ ]‖ ≤ c‖γ − γβ‖2
Γ

for all β ∈ B with ‖β − βo‖ ≤ δn, all γ with ‖γ − γo‖Γ ≤ δn, some positive sequence δn = o(1),

and some constant c <∞; and (ii)

‖Ṡ(β, γβ)[γ − γβ] − Ṡ(βo, γo)[γ − γo]‖ ≤ o(1)δn.
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Proof. Using standard rules for calculating pathwise derivatives, we obtain after some calcula-

tions that

Ṡ(β, γβ)[γ] = E

[

τ
Y −G(W (β)|β)

G(W (β)|β)(1 −G(W (β)|β))
(γ1(W (β))X̃ + γ2(W (β)))

− τ∂βG(W (β)|β)
1

G(W (β)|β)(1 −G(W (β)|β))
γ3(W (β))

− τ∂βG(W (β)|β)
(Y −G(W (β)|β))(1 − 2G(W (β)|β))

G(W (β)|β)(1 −G(W (β)|β))
γ3(W (β))

− τ∂βG(W (β)|β)
1

G(W (β)|β)(1 −G(W (β)|β))
∂2G(W (β)|β)γ4(X

e, Z)

− τ∂βG(W (β)|β)
(Y −G(W (β)|β))(1 − 2G(W (β)|β))

G(W (β)|β)(1 −G(W (β)|β))
∂2G(W (β)|β)γ4(X

e, Z)

+ τ
Y −G(W (β)|β)

G(W (β)|β)(1 −G(W (β)|β))
∂β,2G(W (β)|β)γ4(X

e, Z)

]

.

Furthermore, since E(Y −G(W )) = 0, it follows from the Law of Iterated Expectations that

Ṡ(βo, γo)[γ] = E

[

− τ∂βG(W )

G(W )(1 −G(W ))
γ3(W ) − τ∂βG(W )∂2G(W )

G(W )(1 −G(W ))
γ4(X

e, Z)

]

.

The two inequalities then follow immediately by using that under our assumptions the functions

involved satisfy a Lipschitz property.

Lemma 6 (Condition (2.4)). γ̂ ∈ Γ with probability tending to one; and ‖γ̂−γo‖Γ = op(n
−1/4).

Proof. The first part follows directly from the definition of the estimators and the smoothness

conditions imposed on the kernel function, whereas the second part is a consequence of Lemma

2 and Assumption 8.

Lemma 7 (Condition (2.5’)). For all sequences of positive numbers {δn} with δn = o(1),

sup
‖β−βo‖≤δn,‖γ−γo‖≤δn

‖Sn(β, γ) − S(β, γ) − Sn(βo, γo)‖ = op(n
−1/2)

Proof. This statement follows from Theorem 3 in Chen, Linton, and Van Keilegom (2003). To

verify the conditions of that theorem one first has to show that

E

(

sup
‖β̄−β‖<δ,‖γ̄−γ‖Γ<δ

∣

∣s(Y,X,Z, β̄, γ̄) − s(Y,X,Z, β, γ)
∣

∣

2

)

≤ Kδ2

for all (β, γ) ∈ B×Γ, all δ > 0 and some constant K > 0. This follows from the differentiability

of the functions of which s is composed and the mean value theorem.

Secondly, one has to show that

∫ ∞

0

√

logN(λ,Γ, ‖ · ‖Γ)dλ <∞,
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where N(λ,Γ, ‖·‖Γ) is the minimal number of balls with ‖·‖Γ-radius λ needed to cover Γ. This is

a consequence of a result in van der Vaart and Wellner (1996, Corollary 2.7.4) and Assumption

8.

Lemma 8 (Condition (2.6)).

√
n(Sn(βo, γo) + Ṡ(βo, γo)[γ̂ − γo])

d→ N(0,Ω)

Proof. Note that as shown in the proof of Lemma 5, we have that

Ṡ(βo, γo)[γ] = −E

(

E(τ∂βG(W )|W )

G(W )(1 −G(W ))
γ3(W )

)

− E

(

τ∂βG(W )∂2G(W )

G(W )(1 −G(W ))
γ4(X

e, Z)

)

,

and hence

Ṡ(βo, γo)[γ̂o − γo] = −E

(

E(τ∂βG(W )|W )

G(W )(1 −G(W ))
(Ĝ(W |v̂) −G(W ))

)

− E

(

τ∂βG(W )∂2G(W )

G(W )(1 −G(W ))
(V̂ − V )

)

≡ −A1 −A2.

To simplify the notation, let t(w) = E(τ∂βG(W )|W = w)/(G(w)(1 − G(w))). Then we have

that

A1 =

∫

t(w)(Ĝ(w|v̂) −G(w))D(w)dw

=

∫

t(w)((N̂(w|v̂) −N(w)) − N(w)

D(w)
(D̂(w|v̂) −D(w)))dw + op(n

−1/2)

=

∫

t(w)(N̂(w) −N(w))dw (3.8.1)

−
∫

t(w)G(w)(D̂(w) −D(w))dw (3.8.2)

+

∫

t(w)(N̂(w|v̂) − N̂(w))dw (3.8.3)

−
∫

t(w)G(w)(D̂(w|v̂) − D̂(w))dw + op(n
−1/2) (3.8.4)

Now consider the term in (3.8.1). Due to the use of higher-order kernels, the difference between

N(w) and E(N̂(w)) is of the order o(n−1/2) uniformly in w. Hence

∫

t(w)(N̂(w) −N(w))dw =

∫

t(w)(N̂(w) − E(N̂(w)))dw + o(n−1/2)

=
1

n

n
∑

i=1

∫

t(w)(YiKh(Wi − w) − E(YiKh(Wi − w))dw + o(n−1/2)

=
1

n

n
∑

i=1

t(Wi)Yi − E(t(W )G(W )) + op(
−1/2)
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where the last equality follows from standard change-of-variables and Taylor-expansion argu-

ments. Similarly, one obtains for the term in (3.8.2) that

∫

t(w)G(w)(D̂(w) −D(w))dw =
1

n

n
∑

i=1

t(Wi)G(Wi) − E(t(W )G(W )) + op(
−1/2).

Next, inserting the definition of the respective estimators, we obtain for the term in (3.8.3) that

∫

t(w)(N̂(w|v̂) − N̂(w))dw =
1

n

n
∑

i=1

Yi

∫

t(w)(Kh(Xiβo − w1, V̂i − w2) −Kh(Xiβo − w1, Vi − w2))dw

=
1

n

n
∑

i=1

Yi

∫

t(Xiβo − rh, Vi − sh)(K(r, s+ (V̂i − Vi)/h) −K(r, s))drds

=
1

n

n
∑

i=1

Yi(V̂i − Vi)/h

∫

t(Xiβo − rh, Vi − sh)∂sK(r, s)drds+ op(n
−1/2)

=
1

n

n
∑

i=1

Yi(V̂i − Vi)

∫

∂2t(Xiβo − rh, Vi − sh)K(r, s)drds+ op(n
−1/2)

=
1

n

n
∑

i=1

Yi(V̂i − Vi)∂2t(Wi) + op(n
−1/2),

where the 2nd to 5th line follow by substitution, a Taylor expansion of the kernel, partial

integration, and the higher order property of the kernel, respectively. The last expression is

then equal to

1

n2

n
∑

i=1

n
∑

j=1

ωn(Zi, Zj)ψjYi∂2t(Wi) + op(n
−1/2) =

1

n

n
∑

i=1

E(ωn(Z,Zi)E(Y |X,Z)∂2t(W )|Zi)ψi + op(n
−1/2)

using Assumption 8 and common projection arguments for U-statistics. Finally, one can use

similar arguments to show that the term in (3.8.4) is equal to

1

n

n
∑

i=1

E(ωn(Z,Zi)∂2l(W )|Zi)ψi + op(n
−1/2),

where l(w) = G(w)t(w), and thus the terms in (3.8.3)–(3.8.4) are equal to n−1
∑n

i=1 ξ2iψi +

op(n
−1/2) since E(Y |X,Z) = G(W ).

Now consider the term A2. It follows directly from Assumption 8 that

A2 = E

(

τ∂βG(W )∂2G(W )

G(W )(1 −G(W ))
(v̂(Xe, Z) − v(Xe, Z)

)

=

∫

τ∂βG(xβo, v(x, z))∂2G(xβo, v(x, z))

G(xβo, v(x, z))(1 −G(xβo, v(x, z)))

1

n

n
∑

i=1

ωn(z, Zi)ψidFX,Z(x, z) + op(n
−1/2)

=
1

n

n
∑

i=1

E

(

τ∂βG(W )∂2G(W )

G(W )(1 −G(W ))
ωn(Z,Zi)|Zi

)

ψi + op(n
−1/2)

=
1

n

n
∑

i=1

ξ1iψi + op(n
−1/2),
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where FX,Z is the joint CDF of (X,Z). Taken together, we have shown so far that

√
n(Sn(βo, γo) + Ṡ(βo, γo)[γ̂ − γo])

=
1√
n

n
∑

i=1

Yi −G(Wi)

G(Wi)(1 −G(Wi))
(τi∂βG(Wi) − E(τi∂βG(Wi)|Wi))

+
1√
n

n
∑

i=1

(ξ1i − ξ2i)ψi + op(1).

The statement of the Lemma then follows from applying an ordinary CLT, since ψi and Yi −
G(Wi) are orthogonal.

Proof of Theorem 3. The results in Theorem 2 and Lemma 3 – 8 imply that the conditions

of Theorem 2 in Chen, Linton, and Van Keilegom (2003) are fulfilled, which in turn implies the

statement of the theorem.
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Chapter 4

Identification of Unconditional

Partial Effects in Nonseparable

Models

4.1 Introduction

An important feature of many interesting economic models is that they do not imply an

econometric specification with additively separable disturbance terms when they are taken

to data. The properties of such nonseparable models have therefore received considerable

interest in the recent literature, being investigated by Chesher (2003), Matzkin (2003),

Chesher (2005), Chernozhukov and Hansen (2005), Hoderlein and Mammen (2007), Cher-

nozhukov, Imbens, and Newey (2007) and Imbens and Newey (2009), amongst others.

One of the most important issues in this context is how to accommodate the presence

of endogenous regressors, which are frequently encountered in microeconometric applica-

tions. A possible approach is the use of control variable techniques, which are discussed

in detail by Imbens and Newey (2009). They establish identification of various quantities

of interest in triangular simultaneous equation models under relatively general condi-

tions. These quantities include the Average Structural Function, the Quantile Structural

Function, Average Derivatives and Policy Effects.

In this paper, we show that a further interesting class of parameters can be identified

85



under general conditions in their framework: the Unconditional Partial Effects. These

parameters have recently been introduced to the literature by Firpo, Fortin, and Lemieux

(2009) in the exogenous case, and correspond to the following thought experiment: sup-

pose that every member of the population would experience the same exogenous marginal

increase in one of its observable characteristics. How would this affect the unconditional

distribution of the outcome variable? To give a concrete example, a researcher might

be interested in the effect of a marginal increase in everybody’s income on some feature

of the distribution of consumption, such as its moments, quantiles, Gini coefficient or

other measures of inequality. As pointed out by Firpo, Fortin, and Lemieux (2009), such

summary measures are of interest for policy analysis, where the focus is on aggregate as

opposed to individual effects of a variable.

Firpo, Fortin, and Lemieux (2009) show that in a setting without endogenous vari-

ables, Unconditional Partial Effects are identified, showing that they can be represented

by the average derivative of a projection of the recentered influence function of the statis-

tic of interest on the regressors. We demonstrate that this result can be generalized to

the triangular nonseparable models discussed in Imbens and Newey (2009) using their

control variable approach (other papers that use control variable techniques in non- or

semiparametric setting include Blundell and Powell (2003), Blundell and Powell (2004),

Blundell and Powell (2007) and Florens, Heckman, Meghir, and Vytlacil (2008)). As a

further contribution, this paper also provides a slightly different representation of Uncon-

ditional Partial Effects compared to the one given in Firpo, Fortin, and Lemieux (2009).

We show that these parameters can be written in terms of the average derivate of the

conditional CDF of the outcome variable given the regressors and the control variable

(where the derivate is taken with respect to the regressors). This representation is useful

to give an explicit expression for Unconditional Partial Effects when further parametric

or semiparametric restrictions are imposed on the model. This representation is by no

means specific to the setting with endogenous variables but holds under full exogeneity

as well, with obvious simplifications. We illustrate this point by considering the linear

quantile regression model as an example.

The remainder of this paper is organized as follows. In the next section, we describe

the model and give a precise definition of Unconditional Partial Effects. Identification is
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discussed in Section 3. The final section concludes.

4.2 Model and Parameters of Interest

The model we consider in this paper is essentially the same as in Imbens and Newey

(2009). We observe a scalar outcome variable of interest denoted by Y , which is linked to

a random vector X = (X1, Z1) of observable determinants and an unobserved disturbance

term ε through the structural equation

Y = g(X, ε). (4.2.1)

The subvector X1 of X is potentially endogenous and assumed to be determined through

a reduced form equation,

X1 = h(Z, η) (4.2.2)

where η is another unobserved disturbance and Z = (Z1, Z2) is a vector of instruments

that excert influence on X1 in a sense to be made precise below, but are independent of

the error terms. As in Imbens and Newey (2009), no restrictions on the dimesionality

of ε are imposed, allowing for general forms of unobserved heterogeneity. However, for

identification purposes it will be necessary to impose such a restriction on the disturbance

in (4.2.2), as discussed below. To simplify the notation, we will focus in the following on

the case with X = X1 consisting of a single endogenous regressor only, but all arguments

can easily be generalized to allow for the presence of multiple endogenous regressors or

additional exogenous ones.

The parameters we are interested in correspond to the effect of a marginal increase

in X on some feature Γ(FY ) of the unconditional distribution of Y . That is, for some

constant δ 6= 0, define the counterfactual random variable Yδ as

Yδ = g(X + δ, ε).

Denote the CDF of Y and Yδ by FY and FY,δ, respectively, and let Γ(·) be a functional

of interest. For example Γ could be the functional that maps a CDF into one of it

moments, or into its quantile function. With this notation, we can now formally define

an Unconditional Partial Effect.
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Definition 1 (Unconditional Partial Effect). For any functional Γ : D(−∞,∞) → S,

where S is some normed space, the quantity

θΓ = lim
δ→0

Γ(FY,δ) − Γ(FY )

δ
(4.2.3)

is called the Unconditional Partial Effect of X on Γ(FY ), provided that the limit in (4.2.3)

exists.

4.3 Identification

In order to identify the Unconditional Partial Effects in models with endogeneity, we

can use control variable techniques developed in Imbens and Newey (2009). Generally

speaking, a control variable is an identified random vector that is able to absorb the

dependence between the regressors and the unobserved disturbance term in the outcome

equation (4.2.1), in the sense that X and ε will be independent conditional on the control

variable. Imbens and Newey (2009) show that in the triangular model such a control

variable is available under certain restrictions on the second equation. We repeat their

result here for completeness.

Lemma 1 (Imbens and Newey, 2009). Suppose that h(z, ·) is strictly increasing for all

values of z, that η is continuously distributed with strictly increasing CDF, and that

Z⊥(ε, η). Then ε⊥X|V , where V = FX|Z(X,Z).

The reason V = FX|Z(X,Z) has the properties of a control variable in our model is

that the exclusive source of dependence between X and ε is their joint dependence on

the disturbance term η from equation (4.2.2). However, under the conditions of Lemma

1, V is simply a one-to-one transformation of η, which in turn implies the result.

The conditional independence property can be used to derive an explicit representation

for FY,δ. Using the structure of the model and the law of iterated expectations, we obtain
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that

FY,δ(y) =

∫

Pr(m(X + δ, ε) ≤ y|X = x, V = v)dFX,V (x, v)

=

∫

Pr(m(X, ε) ≤ y|X = x+ δ, V = v)dFX,V (x, v)

=

∫

FY |X,V (y, x+ δ, v)dFX,V (x, v)

= E(FY |X,V (y,X + δ, V )).

This implies that the function FY,δ is identified if the support of the random vector

(X + δ, V ) is contained in the support of (X,V ). For identification of the Unconditional

Partial Effect, it will be sufficient that this condition holds for small values of δ only. The

role of this support condition is to ensure that there is a sufficient amount of variation

in the endogenous regressors induced by the instruments. To see this, assume for a

moment that Z does not excert any influence on X. Then V = FX|Z(X,Z) ≡ t(X) is

simply a transformation of the endogenous regressor. While the conditional independence

condition X⊥ε|V will still hold in this case, the joint support of X and V is now given by

{(x, t(x)) : x ∈ supp(X)}, which is generally not a subset of {(x+ δ, t(x)) : x ∈ supp(X)}
for any δ 6= 0.

In order to derive a general formula for the Unconditional Partial Effect of X on

Γ(FY ) for some general functional Γ, we first consider the simplest case where Γ = id is

the identity mapping, i.e. Γ(F ) = F . Then

θid(y) = lim
δ→0

FY,δ(y) − FY (y)

δ

= lim
δ→0

E(FY |X,V (y,X + δ, V )) − E(FY |X,V (y,X, V ))

δ

= E(∂xFY |X,V (y,X, V ))

where the last equality follows by dominated convergence. The Unconditional Partial

Effect of X on FY is thus simply the average derivative of the conditional CDF of Y

given X and V , where the derivative is taken with respect to X. We formally state this

preliminary finding in the following lemma.

Lemma 2. Suppose that the conditions of Lemma 1 hold, and that for some c > 0 and

δ ∈ (−c, c) the support of (X + δ, V ) is contained in the support of (X,V ). Then

θid(·) = E(∂xFY |X,V (·, X, V ))
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and is thus identified.

Using the last result, one can now easily extend the analysis of Unconditional Partial

Effects to more general quantities Γ(FY ), if Γ(·) is sufficiently ”smooth”. In particular,

we consider functionals that satisfy a Hadamard differentiability condition, where Γ is

called Hadamard differentiable at F if there exists a continuous linear functional Γ′
F such

that

lim
δ→0

∥

∥

∥

∥

Γ(F + δhδ) − Γ(F )

δ
− Γ′

F (hδ)

∥

∥

∥

∥

= 0 (4.3.1)

for all sequences of function hδ → h such that F + δhδ is contained in the domain of Γ

for some sufficiently small value of δ. See van der Vaart (2000, Chapter 20.2) for further

details.

To derive a general representation of Unconditional Partial Effects on Γ(FY ), define

the function hδ through hδ = (FY,δ − FY )/δ. We then obtain that

θΓ = lim
δ→0

Γ(FY,δ) − Γ(FY )

δ

= lim
δ→0

Γ(FY + δhδ) − Γ(FY )

δ

= Γ′
F (θid),

where the last equality follows from the continuous mapping theorem since hδ → θid as

shown above. That is, we can identify general Unconditional Partial Effects by using the

effect of X on the unconditional CDF of Y as a building block. We formalize this finding

in the following Theorem.

Theorem 1. Suppose that the conditions of Lemma 2 hold, and that the functional Γ is

Hadamard differentiable at FY with derivative Γ′
F . Then the Unconditional Partial Effect

of X on Γ(FY ) is given by θΓ = Γ′
F (θid).

This representation of the Unconditional Partial Effect of X on Γ(FY ) given in Theo-

rem 1 is convenient for two reasons. First, results on Hadamard differentiablity are widely

available in the literature for many functionals of interest. Under appropriate conditions,

this smoothness property is fulfilled for moments and quantiles, but also for inequality

measures like the Gini coefficient and the Lorenz curve.
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Second, the above representation is particularly useful when further parametric or

semiparametric restrictions are imposed on the relationship of the outcome variable and

the regressors. In this case, the Unconditional Partial Effect of X on FY itself is usually

still easy to compute, and results for other statistics of interest follow immediately from

Theorem 1. Our representation thus allows us to establish a tight link between the

Unconditional Partial Effects and the structural features of the model. This result is

not specific for models with endogeneity, but applies analogously to the exogenous case

where the control variable V is not present. On the other hand, the general representation

in Firpo, Fortin, and Lemieux (2009) for the exogenous case, using a projection of the

recentered influence function of Γ(FY ) on the regressors, can be much more difficult to

evaluate for specific models.

We now illustrate this last point by considering the case where the model in equa-

tion (4.2.1) is a standard linear quantile regression model (see Koenker (2005)). That

is, suppose for the moment that ε is now a scalar random variable, normalized to be

uniformly distributed on [0, 1], and that

g(X, ε) = β1(ε) +Xβ2(ε),

where β1(·) and β2(·) are strictly monotonic functions. The form of (4.2.2) can remain

unchanged. Using standard arguments, one obtains that under this specification we have

that

∂xFY |XV (y, x, v) = −fY |XV (y, x, v)β2(FY |XV (y, x, v))

and thus the Unconditional Partial Effect of X on FY is given by

θid(·) = −E(fY |XV (·, X, V )β2(FY |XV (·, X, V ))).

Now consider the Unconditional Partial Effect of X on Γ(FY ), where Γ(F )[τ ] = F−1(τ) =

inf{y : F (y) ≥ τ} is the functional that transfers a CDF into its quantile function. Then

under some standard restrictions (ensuring e.g. uniqueness of the quantiles) this map is

Hadamard differentiable at FY with derivative

φ 7→ Γ′
FY

(φ) = −
(

φ

∂yFY

)

◦ F−1
Y ,
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which leads to the following expression for the Unconditional Partial Effect:

θΓ(τ) = −θid(F
−1
Y (τ))

fY (F−1
Y (τ))

=
E(fY |XV (F−1

Y (τ), X, V )β2(FY |XV (F−1
Y (τ), X, V )))

fY (F−1
Y (τ))

.

Note that this is a weighted average of the function β2 evaluated at FY |XV (F−1
Y (τ), X, V ),

which can be interpreted as the ”rank” of F−1
Y (τ) in the distribution of Y conditional on

X and V . Firpo, Fortin, and Lemieux (2009) obtain a similar result for the exogenous

case through more involved arguments (compare their Proposition 1). However, while

their arguments apply to the specific case where Γ(FY ) is the quantile function only, our

analysis can easily generalized to other statistics, such as the Lorenz curve or the Gini

coefficient, as long as the Hadamard differentiability condition holds.

4.4 Conclusions

In this paper, we established the identification of Unconditional Partial Effects introduced

by Firpo, Fortin, and Lemieux (2009) in general nonseparable models with endogenous

regressors using a control variable approach due to Imbens and Newey (2009). We also

show that these effects can be written in terms of an average derivative of the conditional

CDF of the outcome variable Y given the regressors X and the control variable V , where

the derivative is taken with respect to X. This representation is useful to give an explicit

expression for Unconditional Partial Effects in nonlinear parametric or semiparametric

models.
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