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Chapter 1

Introduction

Market participants’ risk preferences and probability beliefs are the two subjective

components in neoclassical asset pricing. Evidence on the empirical magnitude of

risk aversion is essential in understanding the behavior of asset prices. Mehra and

Prescott (1985) presented a momentous estimate of relative risk aversion (RRA)

in the stock market. The estimate’s magnitude was hard to explain and generated

an extensive literature addressing the equity premium puzzle.1 A related subject

in the credit risk literature is the credit spread puzzle. This puzzle relates to

the relatively large part of the bond yield spread generally interpreted as risk

premium, which cannot be explained by expected default loss.2 Both the equity

premium and the credit spread puzzle approach the problem of a reasonable size

of investors’ risk aversion.

Even assuming that asset prices are determined by the investment and

consumption decisions of a representative agent, the estimation of risk aversion

is impeded by the fact that observed prices depend on probability beliefs. Hence,

most RRA estimates are conditional on distributional assumptions about the

state variables. The German bond market had a segment of bond issues that

1 For comprehensive surveys, see Kocherlakota (1996) and Mehra and Prescott (2003).

2 See Amato and Remolona (2003) for a literature overview pertaining to the credit spread
puzzle. Elton et al. (2001), Collin-Dufresne et al. (2001), and Driessen (2005) employ statistical
approaches to decompose credit spreads, while Huang and Huang (2003) provide an overview
of structural approaches to disentangling credit spreads.

1
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were redeemed by a sequence of lotteries (Tilgungsanleihen), providing us with

an exceptional environment to study investors’ risk preferences independent of

subjective probability beliefs. These bonds, subsequently referred to as lottery

bonds, were typically issued by the Federal Republic of Germany, German states,

and government-owned enterprises and can be considered free of default risk.

The issuer was obligated to redeem a certain fraction of the outstanding debt at

predefined dates and redemption values. According to the redemption amounts,

the total issue was split into series equal in size. At each redemption date, one

series was randomly drawn by a lottery with the probability of one over the

number of outstanding series.

It is important to note that there is only one price for the lottery bond and no

individual price for each series, as the maturity of the outstanding series has the

same uniform probability distribution. Therefore, prices of the outstanding series

usually jump at the drawing date due to the following reasoning. The holder of

a bond series has a lottery in his portfolio. If his bond belongs to the series that

is drawn, he receives the face value and the coupon at the next redemption date.

In addition, the series no longer takes part in future lotteries. The traded bond

after a drawing date consists of the non-drawn series only. If, for example, the

lottery bond trades below the discounted redemption value immediately before

the drawing date, its price will drop, as the bond no longer has the chance of being

repaid at the next redemption date. This chance is delayed until the next drawing

date, typically by one year. Another important feature is that the probability of a

price change caused by the redemption lottery is objectively known but cannot be

arbitraged, even though it is public information. Hence, the segment of German

default-free lottery bonds presents an exceptionally clean market setting to

implicitly estimate risk preferences from observed transaction prices. Redemption

risk is the only difference between a lottery bond and a simultaneously traded

straight default-free German government, state, or government-owned enterprise

bond.

Our contribution to the literature is twofold. On the theoretical side, we

develop a fully specified dynamic equilibrium model to price lottery bonds.

In this neoclassical model framework, a representative investor maximizes his

utility of terminal wealth under the well established power utility function. The
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equilibrium price and the implied RRA coefficient are determined recursively by

standard dynamic programming techniques. Comparative static results for the

RRA coefficient are provided which are in line with standard asset pricing theory.

On the empirical side, we employ the valuation model to estimate implied RRA

coefficients from transaction prices of German lottery bonds. The estimates are

based on a unique dataset containing transaction prices of 83 lottery bonds and

483 lotteries traded between 1974 to 1987. Our most important empirical findings

address the magnitude and evolution of risk aversion in the bond market.

To the best of our knowledge, this study is the first to estimate implied RRA

coefficients from lottery bond prices in a dynamic equilibrium setting. One of

the first papers dealing explicitly with lottery bonds is Schilbred (1973). He

studies annuities issued by an Italian government enterprise that were redeemed

by lottery. The study focuses on estimating the market price of risk in a mean-

variance equilibrium model. Green and Rydqvist (1997) evaluate Swedish lottery

bonds for which the coupons and not the maturity are determined by lotteries.

By construction, the lottery risk is idiosyncratic and should not result in a risk

premium. Nevertheless, the authors find empirical evidence that transaction

prices include a premium for lottery risk. In two follow-up studies, Green and

Rydqvist (1999) and Florentsen and Rydqvist (2002) analyze abnormal ex-day

returns of Swedish and Danish coupon lottery bonds and find tax clientele effects.

Our study is closest to the paper by Ukhov (2005). Ukhov uses price data of two

coupon and redemption lottery bonds issued by the Russian government between

1864 and 1866 to estimate the Arrow-Pratt measure of absolute risk aversion

with respect to the coupon lottery risk. In contrast to our study, Ukhov does not

employ a dynamic asset pricing framework and estimates risk aversion under the

assumption that bond prices after the lottery are perfectly known immediately

before the lottery.

The importance of RRA estimates in financial economics can be judged by the

numerous publications over the last four decades attempting to determine the

magnitude of risk aversion. Table 1.1 gives a fragmentary overview of the range of

RRA coefficients reported in previous studies. A large body of empirical literature

attempts to extract risk preferences through direct assessments in hypothetical

environments or from cross-sectional household survey data. Most of these studies
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Table 1.1: Range of RRA Coefficients

This table shows a selection of RRA coefficients reported in literature. For further details, see (1)
Arrow (1970), p. 98, (2) Friend and Blume (1975), pp. 920, (3) Wolf and Pohlman (1983), p. 848,
Table II, (4) Barsky et al. (1997), p. 563, Table XI (harmonic mean (4.2) and arithmetic mean
(12.1)), (5) Holt and Laury (2002), p. 1649, Table 3, (6) Grossman and Shiller (1981), p. 226,
(7) Hansen and Singleton (1983), p. 258, Table I, (8) Ferson (1983), p. 492, Table 5, (9) Brown
and Gibbons (1985), p. 374, Table III, (10) Mehra and Prescott (1985), p. 155, Footnote 5, (11)
Grossman et al. (1987), p. 324, Table 5 (datasets 1 to 4), (12) Weil (1989), p. 413, Table 1 and 2,
(13) Constantinides (1990), p. 532, Table 1, (14) Epstein and Zin (1991), pp. 277, Tables 2 to 5,
(15) Ferson and Constantinides (1991), pp. 216, Table 4, (16) Kandel and Stambaugh (1991), pp.
50, (17) Mankiw and Zeldes (1991), p. 109, Table 6, (18) Cochrane and Hansen (1992), p. 124,
Figure 1, (19) Jorion and Giovannini (1993), pp. 1092, Table 2 and 3, (20) Cecchetti et al. (1994),
p. 135, Table II and p. 149, (21) Campbell and Cochrane (1999), p. 244, (22) Guo and Whitelaw
(2006), pp. 1447, Tables II, IV, V, and VI, (23) Bartunek and Chowdhury (1997), p. 121, Table I,
(24) Aı̈t-Sahalia and Lo (2000), p. 35, (25) Bliss and Panigirtzoglou (2004), p. 431, Table VI (all
observations and power utility).

Study RRA Coefficient

Direct Assessments and Survey Data

1 Arrow (1970) 1
2 Friend and Blume (1975) ∼ 2
3 Wolf and Pohlman (1983) 2 to 4.5
4 Barsky et al. (1997) 4.2 or 12.1
5 Holt and Laury (2002) 0.3 to 0.5

Consumption-based Asset Pricing

6 Grossman and Shiller (1981) ∼ 4
7 Hansen and Singleton (1982, 1983) 0 to 2
8 Ferson (1983) −1.4 to 5.4
9 Brown and Gibbons (1985) 0 to 7

10 Mehra and Prescott (1985) 55
11 Grossman et al. (1987) > 20
12 Weil (1989) 45
13 Constantinides (1990) 2.8
14 Epstein and Zin (1991) 0.4 to 1.4
15 Ferson and Constantinides (1991) 0 to 12
16 Kandel and Stambaugh (1991) 29
17 Mankiw and Zeldes (1991) 35
18 Cochrane and Hansen (1992) 40 to 50
19 Jorion and Giovannini (1993) 5.4 to 11.9
20 Cecchetti et al. (1994) ≥ 6
21 Campbell and Cochrane (1999) ≥ 60
22 Guo and Whitelaw (2006) 1.6 to 7.8

Option Data

23 Bartunek and Chowdhury (1997) 0 to 1
24 Aı̈t-Sahalia and Lo (2000) 1 to 60
25 Bliss and Panigirtzoglou (2004) 2 to 9.5
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suggest low levels of risk aversion between zero to about four. A second body

of literature employs the framework of consumption-based asset pricing models

introduced by Lucas (1978) and Breeden (1979) and their extensions. These

studies rely on time series data on asset returns and aggregate consumption

reporting RRA estimates ranging from zero to above 60. Furthermore, e. g.

Campbell and Cochrane (1999) and Kandel and Stambaugh (1990, 1991) argue

that high risk aversion is not as implausible as commonly believed. The

heterogeneity is caused by the varying characteristics of the underlying valuation

model in particular with respect to the preference specification, alternative

econometric methods, and differing properties of the underlying dataset. A third

body of literature employs option price data to obtain market risk preferences.

For example, Bliss and Panigirtzoglou (2004) assume a parametric stationary

form for the utility function, which they use to adjust the risk-neutral probability

distribution function to deduce implied risk preferences.

Our empirical findings contribute to the dispute in literature on the reasonable

level of risk aversion. We obtain a robust, pooled, implied RRA estimate of 1.78,

indicating a moderate level of risk aversion. The magnitude is in line with RRA

estimates reported by studies based on direct assessments, cross-sectional survey

data, and option price data. However, our results contrast sharply with those

of many studies relying on consumption-based asset pricing models to provide

RRA estimates ranging above 20. Based on our representative agent expected

utility model and data from an exceptionally clean bond market environment,

we provide arguments for a moderate level of the pooled, overall RRA coefficient

below two and find no evidence of “puzzling” risk aversion. We also obtain results

concerning the dynamics of implied risk aversion and the relation between risk

aversion and macroeconomic factors. Implied risk aversion is time dependent and

attains maxima in 1980 and 1981, reflecting the challenging economic situation

after the second oil crisis in 1979. Our results provide further evidence that severe

economic crises coincide with periods of high risk aversion and suggest a structural

break in the relation between changes in risk aversion and macroeconomic factors

in 1977.

The outline of this thesis is as follows. Chapter 2 describes the payment structure

as well as institutional facts for German redemption lottery bonds and gives
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a conclusive market overview. Chapter 3 introduces a dynamic equilibrium

valuation model for redemption lottery bonds and provides comparative static

results. Chapter 4 presents the dataset and briefly discusses the estimation

procedure for the risk-free term structures of interest rates. In Chapter 5, we

analyze the ex-day price behavior of lottery bonds and determine risk premia

within a preliminary setting. We estimate equilibrium RRA coefficients in

Chapter 6. Estimates are reported for several segmentations of the data panel,

tested for robustness, and analyzed from a time series perspective. Chapter 7

contains concluding remarks.



Chapter 2

German Redemption Lottery

Bonds

”[... I ]n der Regel ist es nie der Klugheit angemessen, die
Rückzahlung eines bedeutenden Anlehens auf einen bestimmten Termin
festzusetzen [...]. Man setzt sich der Gefahr aus, daß unvorhergese-
hene Zufälle, die mit dem Rückzahlungstermin zusammen treffen, die
Erfüllung der eingegangenen Verbindlichkeit erschweren, und bereitet
sich oft für die Zukunft Verlegenheiten, die man ohne besondere Opfer
hätte vermeiden können. Diese Gefahr wird in dem nämlichen Grade
vermindert, als die Termine vervielfältigt werden, und nicht nur die
Zinsen, sondern auch das Bedürfniß zur successiven Rückzahlung in
bestimmten Einkünften ihre Deckung erhalten. [...] Da ein großes
Anlehen unter viele Gläubiger vertheilt wird; so läßt sich aber eine
successive Zurückzahlung im Einzelnen, ohne große Schwierigkeiten und
Weitläufigkeiten, nicht vollziehen. Daher die Einrichtung, daß Partial-
Obligationen von einem durchaus gleichen, oder verschiedene Klassen
solcher Obligationen von gleichem Betrage ausgefertigt, und diejenigen
Nummern, zu deren Tilgung die festgesetzte Rückzahlungssumme in
jedem Verfalltermine verwendet werden soll, durch das Loos bestimmt
werden.”

Nebenius (1829), pp. 334.

7
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2.1 Historical Aspects and Classification

Due to political and economical instability during the 19th and early 20th

centuries, bond issuers feared that unforeseen circumstances could coincide with a

single predefined redemption date. Redemption lottery bonds, repaid in constant

fractions, were employed to reduce the refinancing risk associated with repayment

at a single date.1 Lottery bonds soon became an important long term government

financing instrument in the German Reich and Prussia, surviving the Weimar

Republic as well as the Second World War. During the early years of the

Federal Republic of Germany, lottery bonds were the major instrument of federal

government and state bond issues.2

Building on the historical motives for redemption lottery bonds, we provide

arguments for their eventual disappearance.3 We determine bond investors’ risk

preferences and find significant evidence of risk aversion. Investors demanded

compensation for the redemption risk, which was by institutional facts systematic.

Lottery bonds were more expensive than straight bonds, and similar payment

structures could be achieved without introducing extraneous redemption risk,

e. g. by issuing several individual bonds with different maturities. Aversion to

redemption risk appears to be the fundamental motive for replacing lottery bonds

with straight bonds in the 1970s. However, from a theoretical perspective, lottery

bonds provide an exceptional environment for studying investors’ risk preferences

because they disbursed uncertain payoffs by an objective probability distribution.

As redemption lottery bonds are the primary focus of this thesis, we start

with a brief classification of bonds with regard to the redemption feature.4 We

distinguish perpetuity or consol bonds with an unlimited lifetime from redemption

bonds repaid according to a preset redemption schedule. The redemption schedule

1 See e. g. Nebenius (1829), pp. 333.

2 See Müncks (1972), pp. 34.

3 Smith and Villamil (1998) motivate the existence of lottery bonds within a theoretical
framework and provide explanations for the utilization of apparently expensive government
bonds with extraneously randomized returns.

4 See Freund (1907), pp. 177, Dieben and Ebert (1958), pp. 50, Dreißig (1981), pp. 107, and
Rothacker (1986), pp. 6 for detailed classifications of bonds with regard to redemption features.
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obliges the issuer to retire a certain fraction of outstanding debt at predefined

dates and redemption values. Redemption bonds are either repaid once at

maturity or in several fractions prior to maturity. We differentiate between three

types of bonds redeemed in fractions: (i) serial bonds, (ii) redemption lottery

bonds, and (iii) sinking fund bonds.

Serial bonds are composed of individual series, and each series matures at a

definite date.5 Generally, individual series of a serial bond have distinct issue

prices and listings in the secondary market. A variety of the serial bond is a debt

contract composed of series, from which repayments are deducted proportionally.6

This variety is also free of redemption risk for the creditor. In contrast to serial

bonds and their varieties, the creditors of redemption lottery or sinking fund

bonds are exposed to redemption risk.

Redemption lottery bonds are split into series approximately equal in size. In

accordance with the redemption schedule, series are drawn by lottery and repaid.

Hence, the bearer of a single series does not know when his bond will be repaid.

Lottery bonds are classified according to the form of the redemption schedule.

The redemption schedule either sets constant repayment rates or repayments that

increase over time such that the amortization and interest burden is constant for

the issuer. Lottery bonds characterized by a constant amortization and interest

burden are denoted annuity bonds.7

Sinking fund bonds are also split into series and oblige the issuer to amortize

5 The bond issues by the Free State of Bavaria of 1925 (6.5%), the Free State of Oldenburg
of 1925 (7%), and the Free State of Anhalt of 1926 (7%) are examples for German serial bonds.
German serial bonds were also issued in the course of the Gesetz zur endgültigen Regelung
der Liquidations- und Gewaltschäden as of 1928 and the Polenschädenverordnung as of 1930
in conjunction with the Gesetz zur Durchführung der Entschädigung auf Grund des deutsch-
polnischen Liquidationsabkommens as of 1930. See Dieben and Ebert (1958), pp. 52.

6 The bond issues by the Free State of Prussia of 1931 (7%, second issue), the German Reich
of 1944 (3.5%), and the state of Hesse of 1953 (5%, first and second issue) are examples for
such varieties of serial bonds. See Dieben and Ebert (1958), pp. 52.

7 The bond issues by the German Reich of 1923 (Schatzanweisungen K), the Free Hanseatic
City of Bremen of 1925 (7%), and the Free State of Prussia of 1926 (6.5%) are examples for
German annuity bonds. See Dieben and Ebert (1958), pp. 53.
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a predefined portion of the debt prior to maturity.8 Generally, the issuer has the

option to either purchase the required quantity of bonds in the open market to

offset redemption drawings or to call series at the predefined redemption value.

When the issuer chooses to call bonds for redemption, series are drawn by lottery

and repaid. The issuer will purchase the required quantity in the open market

if bond prices are below the respective redemption value and will call bonds if

prices are above the value. Most US-American corporate indentures are sinking

fund bonds.9

In addition to the redemption schedule, debt contracts contain various other

redemption options. We differentiate between the following three early or

increased redemption options: (i) issuer call options, (ii) increased redemption

provisions, and (iii) open market repurchases. Issuer call options allow the

borrower to call the entirety of outstanding series prior to maturity. If the

embedded option is exercised, all outstanding series are repaid at the predefined

redemption value, and the issue is delisted from the secondary market. Issuer call

options were a common feature of public German debt contracts, whereas creditor

put options were rarely granted. Increased redemption provisions enable the

issuer to repay more than the scheduled series at predefined redemption values

and dates. Series repaid in excess of the redemption schedule are deductable from

future repayments. If the bond indenture allows for open market repurchases,

the issuer has the privilege to repurchase bonds in the market to fulfill its

redemption requirements. Repurchased bonds are again deductable from future

redemption obligations. Several indentures contain more than one redemption

option. However, most of the redemption options specify a time interval within

which the options can be exercised and limit the number of series that can be

additionally redeemed.

8 We refer to sinking fund bonds repaid according to a redemption schedule.

9 See e. g. Jen and Wert (1966), p. 697 and Ho and Singer (1984), p. 315.
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Figure 2.1: Structure of Last Redemption Lottery

This figure depicts the time and informational structure of the last
redemption lottery. We consider a lottery bond with annual coupon
payments and redemption lotteries. The time structure is as follows: (i)
at (T − 2)rd, the last coupon before the lottery is paid, (ii) (T − 1)cum is
the last date to trade the lottery bond before the lottery, (iii) at (T −1)l,
between (T −1)cum and (T −1)ex, the lottery takes place, (iv) (T −1)ex

is the first trading date after the lottery of those series not drawn, (v) at
(T − 1)rd, the lottery bond series drawn in the lottery is redeemed, and
the first coupon after the lottery is paid, (vi) at T , the last outstanding
series is redeemed, and the last coupon is paid. The lottery bond price
before the lottery is denoted by B(T−1)cum and immediately after the
lottery by B(T−1)ex . The redemption probability is p1 = 1/2, the annual
coupon of the lottery bond is c, and the redemption value is R.

2.2 Payment Structure and Institutional Facts

German redemption lottery bonds are fixed coupon bonds redeemed by lotteries.

Before issuance, a bond is split into series of equal size identified by a series

number. About three months before a redemption payment, the series to be

redeemed is determined by a random drawing of the series numbers. The series

that are not drawn for redemption participate in the following lottery. A sequence

of lotteries is conducted until all but one series are drawn. A trustee monitors

the indenture and calls the drawn bonds at the prearranged call price, which

is usually the face value. Figure 2.1 characterizes the time and informational

structure of the last redemption lottery.

For the issuer of a lottery bond, the redemption payments are deterministic.

The bearer of a single bond series, however, does not know when his bond

will be redeemed. Therefore, the maturities of outstanding bond series are

uncertain until the last redemption date. However, the bearer knows the objective
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redemption probabilities of outstanding bond series at all future redemption

dates.10 These probabilities can easily be determined by calculating the ratio

of the actual number of series to be redeemed to the total number of outstanding

series. Hence, lottery bonds disburse uncertain payoffs by an observable, and

thus objective, probability distribution. Lottery bonds provide an exceptional

environment to study investors’ tastes as summarized by their preference relation,

since investors’ beliefs about redemption risk are objectified. Furthermore,

redemption risk is by construction independent of other random variables in the

economy.

It is important to note that individual series were not traded on organized

exchanges. As a consequence, there is only one price for a lottery bond, rather

than a price for each outstanding series. The bearer of a lottery bond faces

the risk or chance that his series will be drawn before the final maturity of the

bond. If his bond belongs to the series that is drawn, he will receive the face

value of the bond plus the coupon at the next coupon date. In addition, his

bond will no longer take part in future lotteries. After a drawing date, only

non-drawn series of the bond remain traded. If a lottery bond is trading below

the discounted redemption value immediately before the drawing date, the price

of the undrawn series will jump downwards, since the chance of being repaid at

the subsequent redemption date is zero. Instead, the chance is postponed until

the next drawing date, typically by one year. The upper graph in Figure 2.2

shows a typical downward price jump of a lottery bond issued by the Federal

Republic of Germany around the last redemption lottery. Similarly, the price of

the undrawn series of a lottery bond trading above the discounted redemption

value immediately before the drawing date will jump upwards, since the risk of

being repaid at the subsequent redemption date no longer exists. The lower graph

in Figure 2.2 shows a typical upward price jump of the lottery bond around the

next to last redemption lottery.

A basic problem for our study refers to the question whether lottery risk can be

diversified. The following rules applied during the period in which lottery bonds

were traded in Germany. In the primary market, the issuer assigned perfectly

10 The redemption probabilities are conditional probabilities in the sense that they only apply
to undrawn series.
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Figure 2.2: Price Jumps

This figure shows the time series of the clean price in German Mark
for a lottery bond issued by the Federal Republic of Germany (WKN
110022) in 1963. The upper graph shows a time interval including the
last redemption lottery on March 21, 1980 (upper dotted line). The
lower graph shows a time interval including the next to last redemption
lottery on March 23, 1978 (lower dotted line). The lottery bond paid
an annual coupon rate of 6% and was redeemed at par. Redemption
lotteries were conducted biennially.
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diversified portfolios of lottery bond series to retailers, i. e. portfolios with identical

numbers of bonds from each series. Focusing on the secondary market, German

government bonds were mainly traded in the over-the-counter market, and only

marginal volumes were settled on organized exchanges such as the Frankfurt Stock

Exchange.11 Neither in the over-the-counter market nor on organized exchanges,

lottery bonds were traded as diversified portfolios, and series-specific orders were

not processed either.12 This observation is of great importance for our study,

as the available prices result from transactions in the secondary market. One

explanation for this lack of diversification possibilities is the behavior of traders

in banks who channelled orders to the market and who wanted to avoid research

costs for individual series. As a consequence, an investor ordering a lottery bond

was uncertain about the specific series he would receive until after the trade.

The absence of trading possibilities for individual series impeded diversification

efforts. Hence, we assume that lottery risk was systematic and had to be priced

in equilibrium.13

The taxation of interest income in Germany was enforced by a withholding tax.

Coupons of straight bonds and lottery bonds were subject to such a tax. Taxes

were retained directly by the bank disbursing the coupon payments and were

regarded as an advance income tax payment. Capital gains from government

bonds, however, were tax exempt.14 Therefore, a gain from the redemption

lottery, which was considered a capital gain, was tax-free. Furthermore, a capital

loss could not be used to reduce the tax base. In the following, we abstract from

tax effects.

11 See Deutsche Bundesbank (2000), p. 17.

12 Lottery bond traders of a large German bank affirmed that during the period of our
analysis, transactions for individual series were not processed for reasonable order sizes.

13 Bühler and Rothacker (1986) and Rothacker (1986) abstract from these frictions and
assume German redemption lottery risk to be idiosyncratic. They develop a continuous-time
no-arbitrage valuation model for redemption lottery bonds and analyze the performance of the
model based on German bond market data.

14 See paragraph 20(1.4) and paragraph 23(2.2) of the Einkommensteuergesetz (EStG) as of
1975. Paragraph 23(2.2) EStG was in place for the entire period of our study.
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2.3 Market Size and Issuers

We consider the relevance of German redemption lottery bonds for public

sector financing between 1971 and 1987 by focusing on the outstanding nominal

volume.15 Public sector bonds include securities issued by the Federal Republic

of Germany, German states, German cities, the Deutsche Bundesbahn, and the

Deutsche Bundespost. In 1971, the outstanding nominal volume of public sector

lottery bonds (not due en bloc) was DEM 13.36 billion and DEM 18.30 billion for

straight bonds (due en bloc). The volume of public sector lottery bonds reached

its maximum at DEM 14.43 billion in 1973 and decreased to DEM 0.03 billion in

1987. In the same time interval, the volume of straight bonds increased twentyfold

and reached DEM 383.33 billion in 1987. Figure 2.3 depicts the time series of the

outstanding nominal volume of public sector bonds which are partially repaid or

repaid once at maturity. The time series results illustrate the declining relevance

of lottery bonds. In 1971, about 42% of the outstanding nominal volume of public

bonds were partially repaid, whereas the remaining bonds were repaid once at

maturity. However, in 1973, one of the last lottery bonds was issued by the public

sector, and by 1987 lottery bonds had disappeared from the market.

Lottery bonds were issued by the public sector, financial agencies, and

supranational institutions. We focus on lottery bond issuers and consider the

number of lottery bond issues and the aggregate nominal issue volume. Table 2.1

compiles the aggregate number of issues and volume data segmented by issuer

groups from 1955 onwards. Altogether, 238 lottery bonds were issued. The

Federal Republic of Germany issued a total of eleven lottery bonds. German

states issued 71 and German municipalities 16 lottery bonds. Additionally,

28 lottery bonds were issued by government-owned enterprises such as the

Deutsche Bundesbahn and the Deutsche Bundespost, and 33 bonds were issued by

financial agencies such as the IKB Industriekreditbank AG and Kreditanstalt für

Wiederaufbau (KfW). Supranational institutions such as the Council of Europe

Resettlement Fund, European Investment Bank, or World Bank issued another

15 The data on the outstanding nominal volume were obtained from Deutsche Bundesbank
(1971-1987), Statistical Supplements to the Monthly Report. Before 1971, the outstanding
nominal volume of lottery bonds is not available.
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Table 2.1: Lottery Bond Issuers and Issue Volume

This table shows the number of lottery bond issues and the aggregate
nominal issue volume segmented by issuer groups from 1955 onwards.
The aggregate nominal issue volume is reported in billion German Mark.
The data were obtained from Deutsche Finanzdatenbank (DFDB).

Issuers Issues Issue Volume

Federal Republic of Germany 11 3.80

German States 71 7.79
Baden-Württemberg 4 0.63
Bavaria 7 1.41
Berlin 6 0.60
Bremen 5 0.35
Hamburg 5 0.39
Hesse 5 0.70
Lower Saxony 9 1.23
North Rhine-Westphalia 1 0.20
Rhineland-Palatinate 10 0.88
Saarland 8 0.53
Schleswig-Holstein 11 0.87

German Municipalities 16 1.18
Cologne 2 0.20
Düsseldorf 1 0.05
Essen 1 0.06
Munich 7 0.55
Stuttgart 4 0.31
Wiesbaden 1 0.01

Government Enterprises 28 6.64
Deutsche Bundesbahn 13 3.48
Deutsche Bundespost 15 3.16

Financial Agencies 33 3.43
IKB Industriekreditbank 21 1.36
Kreditanstalt für Wiederaufbau (KfW) 12 2.07

Supranational Institutions 79 10.44
Council of Europe Resettlement Fund 23 2.54
Eurofima 10 0.68
European Coal and Steel Community 20 2.64
European Economic Community 5 0.93
European Investment Bank 11 1.39
Inter-American Development Bank 2 0.16
World Bank 8 2.10

Total 238 33.28
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Figure 2.3: Time Series of Outstanding Nominal Volume

This figure shows the time series of the outstanding nominal volume
of public sector bonds that were partially repaid (solid line) and that
were repaid once at maturity (dotted line). The outstanding nominal
volume is reported in billion German Mark. The data were obtained
from the Deutsche Bundesbank (1971-1987), Statistical Supplements to
the Monthly Report.

79 lottery bonds. The aggregate nominal issue volume for these issuer groups

amounts to DEM 33.28 billion. The mean nominal volume per issue is largest for

the Federal Republic of Germany with DEM 345 million followed by government

enterprises with DEM 237 million. The mean nominal volume per issue for the

remaining issuer groups is between DEM 73 million and DEM 132 million.

Figure 2.4 depicts the absolute frequency of bond issues per year segmented for

the six issuer groups. From 1959 until 1965, the Federal Republic of Germany

issued between one to four lottery bonds per year. German states, municipalities,

government enterprises, and financial agencies issued their last lottery bonds

either in 1972 or 1973. Most lottery bonds were issued by supranational

institutions. However, about 54 issues were placed after 1973, when supranational

institutions were the only remaining issuers of lottery bonds.

In addition to the scheduled redemption by lottery, debt contracts contained

embedded redemption options such as issuer call features, increased redemption

provisions, and open market repurchases. Table 2.2 compiles the number of

lottery bonds that contained these redemption options segmented by issuer
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Figure 2.4: Issue Years

This figure shows the absolute frequency of bond issues per year
segmented for issuer groups. The data were obtained from Deutsche
Finanzdatenbank (DFDB).
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Table 2.2: Redemption Options

This table shows the number of lottery bond issues that contained
early or increased redemption options. The options are segmented
by the following issuer groups: Federal Republic of Germany (FRG),
German states (GS), German municipalities (GM), government
enterprises (GE), financial agencies (FA), and supranational institutions
(SI). The data were obtained from Deutsche Finanzdatenbank (DFDB).

Redemption Options FRG GS GM GE FA SI

Issuer Call Feature
Not Callable 2 25 3 6 0 12
Callable, but Not Exercised 9 44 13 22 33 44
Callable and Exercised 0 2 0 (2)a 0 23

Increased Redemption Provision
Not Possible 2 26 5 6 1 71
Possible, but Not Exercised 9 38 11 22 32 8
Possible and Exercised 0 7 0 (2)a 0 0

Open Market Repurchases
No Offsetting 11 53 15 28 0 51
Offsetting, but Not Exercised 0 18 1 0 32 26
Offsetting and Exercised (1)b 0 0 0 1 2

a For two bond issues by the Deutsche Bundespost (WKN 116001, 106002), either

the embedded issuer call feature or the increased redemption provision was

exercised in October 1963 and in May 1964, respectively.
b One bond indenture issued in 1990 by the FRG (WKN 117018, DEM-

Fundierungsschuld) is excluded because the issuer used the privilege to

repurchase bonds in the open market to fulfill their redemption requirements.

However, the indenture is classified as a sinking fund rather than a redemption

lottery bond, since the issuer used the option to either call series by lottery or

purchase the required quantity of redeemable bonds in the open market.

groups. Of the 238 German lottery bond issues, 190 indentures contained an

embedded issuer call feature, 127 contained an increased redemption provision,

and 80 allowed for open market repurchases. The large majority of lottery bond

indentures (about 80%) were equipped with an embedded issuer call feature.

After an initial call-free period of several years, the call feature enabled the

issuer to redeem the lottery bond before the last scheduled redemption payment.

Callable bonds permitted early redemption either at a coupon or at a scheduled

redemption date.16 The announcement period for the exercise of the option

16 Only two lottery bond issues by the state of Schleswig-Holstein (WKN 179009, 179010)
were callable either at the end or the beginning of the month.
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covered at least three months.17 The call price was usually equal to the face

value of the lottery bond plus a premium that decreased to zero as the maturity

of the lottery bond approached. About 25 lottery bonds were called before the

last redemption date. Of these, two bonds were issued by German states, and the

remaining 23 bonds were issued by supranational institutions. The restrictive call

policies of all issuer groups besides supranational institutions are consistent with

the findings of Bühler and Schulze (1993, 1999). They show that, between 1960

and 1988, only two straight coupon bonds by the Federal Republic of Germany

and no bonds by the Deutsche Bundesbahn or the Deutsche Bundespost were

called early. Both bonds were called on March 8, 1978 when interest rates in the

German bond market dropped to their lowest level within the period we analyze.

More than half of the lottery bond indentures were equipped with an increased

redemption provision. For all issuer groups other than supranational institutions,

increased redemption provisions were a common feature. Most of the provisions

allowed for the unrestricted deduction of additionally redeemed series from

future scheduled repayments. Six provisions restricted the offsetting to the last

scheduled repayments, and one issue by the state of Bavaria (WKN 105025)

contained the option to redeem at most one additional series per lottery date.

Seven lottery bond issues by German states actually exercised the increased

redemption provision.

About one-third of the lottery bond indentures was equipped with the option to

purchase bonds in the open market to offset redemption drawings. Bond issues

by the Federal Republic of Germany and government enterprises did not allow for

open market repurchases, but all issues by financial agencies were equipped with

such an option. Most of the open market repurchases allowed for offsetting only

when the respective series was drawn for redemption. However, six issues allowed

for unrestricted offsetting, and the issuer had the option to either call series by

lottery or to purchase the required quantity of redeemable bonds in the open

market. Hence, these bonds are rather classified as sinking fund than redemption

lottery bonds.18 Open market repurchases have been recorded for only three

17 Only one lottery bond issue by the municipality of Düsseldorf (WKN 118003) had an
announcement period of two months.

18 See Section 2.1 for the classification of redemption lottery and sinking fund bonds.
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lottery bond issues by financial agencies and supranational institutions implying

that repurchases were a rather unimportant redemption feature.19

2.4 Other Selected Lottery Bond Indentures

So far, we have focused on German redemption lottery bond indentures. However,

lottery bonds have also been issued by other European governments and

government institutions. We distinguish redemption lottery bonds from coupon

lottery bonds and give a brief overview of selected European government lottery

bond markets.

First, we consider redemption lottery bond markets. The Belgian Government

issued redemption lottery bonds until 1975. Of 32 Belgian government bonds

(Emprunts Belge) issued between 1961 and 1975, 26 indentures contained

a redemption lottery with similar characteristics to the German redemption

feature.20 Furthermore, several issues by state enterprises were also repayable by

lottery. On behalf of the Belgian Government, the Féderation des Coopératives

pour Dommages de Guerre issued seven peculiar redemption lottery bonds

(Emprunts à Lots) between 1921 and 1941 with maximum maturities ranging

from 60 to 90 years.21 The first two lottery bonds matured in 2001 and 2008,

and the last three bonds will mature in 2011, 2012, and 2013. The issues are

annuity bonds paying an annual coupon of 4%. Before issuance, the bonds were

divided into series that are redeemed by a two-tier redemption lottery defined in

the redemption schedule.22 The redemption schedule fixes the lottery dates, the

number of series to be redeemed, and the redemption payments. The number

of series to be redeemed increases over time such that the amortization and

19 Reiter (1967), p. 275, also characterizes open market repurchases as a redemption feature
that is only rarely used.

20 See Banque Nationale de Belgique (2008).

21 The setup of Emprunts à Lots is exemplarily discussed for the issue of 1922 (ISIN Code:
BE000402140).

22 Between 1956 and 1959, the original lottery bond indentures were converted, and nominal
values, coupons, and redemption schedules were adjusted.
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interest burden remains constant. Unlike the German redemption lottery bonds,

both the redemption date of an individual series and its repayment value are

stochastic. However, the distribution of the repayments at all future lottery

dates can be determined from the redemption schedule. In the first monthly

redemption lottery, about 25 series are repaid at up to 800 times their face value.

In addition, a second annual redemption lottery determines series that are repaid

at a premium of about 20% above face value. Overall, less than 0.14% of the

series are redeemed in the first prize drawing, whereas the large majority of series

is drawn in the second redemption lottery. Moreover, the indentures contain an

embedded issuer call option, which has historically never been exercised. The

bonds are traded on Euronext Brussels, and in August 2008 a nominal volume of

EUR 12.3 million remained outstanding.

On behalf of the Italian Government, the Instituto Mobiliare Italiano issued 14

redemption lottery bonds between 1945 and 1963.23 The indentures were annuity

bonds paying a semi-annual coupon between 5% to 6%. Redemption lotteries

were conducted either once or twice a year, and the maximum maturity of the

issues ranged between 14 to 20 years. Lottery bonds were traded on the Italian

stock exchange. Until 1971 bonds were exempt from taxes on interest payments

and capital gains.

Coupon lottery bonds are debt contracts paying coupons determined by lotteries.

Generally, the total amount of interest paid on any given coupon date is fixed in

the coupon schedule. However, the allocation of coupon payments across bonds

within the issue is determined by lottery. For the issuer of a coupon lottery

bond, interest payments are deterministic, whereas the size of coupon payments

is stochastic for the bearer of a single bond. Notwithstanding, the bearer knows

the objective probability distribution of the coupon prizes at all future coupon

dates. Coupon schedules can be designed such that a proportion of the coupon

payment is guaranteed for the bondholders.

Coupon lottery bonds appear in various forms and structures and have historically

23 See Schilbred (1973, 1974).
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been issued by governments in most of the principal European countries.24 We

give a brief overview of selected coupon lottery bond markets. The Imperial

Russian Government issued lottery bonds in 1864 and 1866.25 Russian

lottery bonds contained a combined redemption and coupon lottery. Bond series

were redeemed by lottery according to a redemption schedule with a maximum

maturity of 60 years. The allocation of coupon payments across bonds was

also determined by lottery. A semi-annual coupon of 2.5% was guaranteed,

and additional cash prizes preset in the coupon schedule were randomly drawn.

Lottery bonds were exempt from taxes on interest payments, capital gains, and

lottery proceeds. In 1870, the nominal outstanding volume of Russian government

debt was RUB 300 million, of which RUB 200 million was attributed to lottery

bonds. The two Russian lottery bond issues eventually defaulted.

The Swedish Government has issued coupon lottery bonds since 1918.26

Coupon lotteries have a two-tier structure and are organized two or three times

a year. Large prizes are randomly drawn from all bonds in the issue, and smaller

prizes are drawn from a sequence of bonds. Lottery bonds are traded in mixed

and sequenced form on the Stockholm Stock Exchange. The sequenced form

guarantees a proportion of the coupon payment to bond holders. Lottery proceeds

are subject to a lottery tax at a flat rate of 20% and are exempt from income tax.

Between 1977 and 1997, the Swedish Treasury issued one to three lottery bonds

per year with five to ten years to maturity. About 46 issues were outstanding over

the period 1986 to 1997. In 2007, the nominal issue volume of Swedish lottery

bonds was SEK 9.1 billion, and the total outstanding nominal volume amounted

to SEK 38.2 billion.27

The Danish Government has issued coupon lottery bonds since 1948.28 The

construction of the coupon lotteries is similar in Denmark and Sweden. Coupon

lotteries are organized once or twice a year. Most bonds receive no prizes, but a

24 See Lévy-Ullmann (1896) for details on the historical dispersion of coupon lottery bonds
in Europe.

25 See Ukhov (2005).

26 See Green and Rydqvist (1997, 1999).

27 See Swedish National Debt Office (2007), pp. 18.

28 See Florentsen and Rydqvist (2002).
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few winning bonds receive a coupon payment up to 10,000 times the face value,

ranging from DKK 50 to 200. Lottery proceeds are subject to a lottery tax at

a flat rate of 15% for payments above DKK 200 and are exempt from income

tax. Between 1948 and 1980, the Danish Treasury floated seven issues with ten

to 25 years initial maturity. Until 1998, maturing issues were prolonged such that

the bonds were effectively perpetuities. Bonds that have been prolonged contain

creditor put options, and bonds issued after 1968 contain issuer call options.

Lottery bonds are traded on the Copenhagen Stock Exchange. The aggregate

nominal issue volume of Danish lottery bonds is DKK 1.2 billion.

On behalf of the British Government, National Savings and Investments has

issued premium bonds since 1956.29 Similarly to coupon lottery bonds, British

premium bonds pay coupons determined by lottery. The interest rate used to

calculate the prize fund is set by National Savings and Investments in advance.

For each British Pound invested, bondholders are assigned a chance to win. Prize

drawings are organized at the beginning of each month. Prizes range from GBP

50 to 1,000,000 and are exempt from income and capital gains tax. The major

differences from coupon lottery bonds are that British premium bonds are not

transferable and that their face values are guaranteed. A premium bond can be

exchanged against its face value in cash at any time. Hence, premium bonds are

not traded in a financial market and are similar to lottery-linked deposit accounts

studied by e. g. Guillén and Tschoegl (2002). The minimum amount that can be

invested in premium bonds is GBP 100, and investments are limited to GBP

30,000 per investor. In 2007, total funds invested in premium bonds amounted

to GBP 35.3 billion.30

The German Government issued a premium bond, the so called baby-bond,

in 1951.31 The construction of the German premium bond was similar to the

British one. The interest amount was channelled into a fund from which coupon

payments were determined by lottery. Coupon lotteries were organized four times

a year. At each lottery date, DEM 625,000 were allocated to 270 randomly drawn

29 See Lobe and Hölzl (2007).

30 See National Savings and Investments (2007), p. 22.

31 See Achterberg and Muthesius (1951a, 1951b), Dieben and Ebert (1958), pp. 54, Reiter
(1967), pp. 161.
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bonds. Prizes were spread from DEM 50 to 50,000 and exempt from income and

capital gains tax. The face value of the bonds was DEM 10. Premium bonds

matured in 1956 and were repaid at face value. The nominal issue volume of

the German premium bond was DEM 50 million. Premium bonds were not

accepted by investors, and only a nominal volume of about DEM 38 million was

distributed until 1954. Hence, the German Treasury withdrew a volume of DEM

12 million from the market. Ever since, there have been no further attempts to

issue premium bonds in Germany.



26



Chapter 3

Valuation of Lottery Bonds and

Implied Risk Aversion

3.1 One-period Model Framework

3.1.1 Model Setup and Assumptions

In this chapter, we address the problem of optimal portfolio selection and

equilibrium asset pricing within a dynamic discrete-time model framework.1 We

consider a pure exchange economy without market frictions like transaction costs,

short-selling constraints, or taxes. The market consists of one issue of a typical

lottery bond with annual redemption lotteries, annual coupon payments c, longest

maturity T , and redemption value R, as well as risk-free zero-bonds with multiple

maturities. Interest rates are assumed to be risk-free.2 Hence, the only risk in

our economy is redemption risk. For ease of notation, we assume a flat risk-free

1 Samuelson (1969) was one of the first to develop a dynamic model in discrete-time
examining lifetime planning of consumption and investment decisions. Deviating from
Samuelson, our modeling approach does not allow for interim consumption. As central results
remain unchanged and notation is simplified, we focus on terminal consumption.

2 Note that the integration of interest rate risk would introduce a subjective probability
component and equilibrium prices as well as implied risk preferences would depend on
probability beliefs.
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term structure of interest rates at the interest level r throughout Chapter 3.3

Contrary to standard asset pricing models, we assume that there are as many

homogeneous investor groups with identical risk aversion as there are series of the

lottery bond. Each series is traded by one investor group in a separate market

segment, and individual investor groups have access only to their group specific

segment. This assumption ensures that lottery risk is of systematic nature and

reflects the institutional setting that an individual investor can generally not trade

multiple series in order to diversify lottery risk. Note that the assumption does

not imply that an investor in one specific group knows when the series he trades

will be drawn. Except for the differing series numbers, lottery bonds traded in all

market segments are identical and will have the same equilibrium price. Hence,

it is sufficient to focus on one segment. Whenever a specific series is drawn, the

corresponding segment consists of zero-bonds only. Investors in such a segment

are forced to invest their entire wealth in zero-bonds.

We assume that there exists a representative investor with a power utility function

maximizing his terminal wealth and focus on the last redemption lottery first. At

(T − 1)cum, shortly before the drawing, the investor optimally distributes his

wealth among the lottery bond series and the risk-free instrument. If the agent

invests in the lottery bond, he has to consider two disjoint states of the world

at (T − 1)ex, shortly after the drawing. In state d, the investor holds the lottery

bond series which has been drawn and in state n, he holds the series which has

not been drawn.

Event dates and the time structure of the one-period model are reported in Figure

3.1. The length of the time interval between (T − 1)cum and (T − 1)ex is denoted

by ε, and the length of the interval between (T − 1)ex and the redemption date

(T − 1)rd is equal to δ. The difference between (T − 1)rd and final maturity T is

one year.

We denote vd
1 the present value at (T − 1)ex of future cash flows from the lottery

bond given that the series is drawn at the lottery date (T − 1)l. Analogously, vn
1

3 In the empirical Chapters 5 and 6, we employ the risk-free term structure of interest rates
estimated from daily market prices of straight coupon bonds and money market rates. See
Section 4.2.2 for details on the term structure estimation.
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Figure 3.1: Time Structure

This figure depicts the time structure of the one-period model. We
consider a lottery bond with annual coupon payments and redemption
lotteries. The time structure is as follows: (i) (T − 1)cum is the last
trading date of the lottery bond before the lottery, (ii) (T − 1)ex is
the first trading date after the lottery of those series not drawn, (iii)
at (T − 1)rd, the series drawn in the lottery is redeemed, and the first
coupon after the lottery is paid, (iv) at T , the last outstanding series is
redeemed, and the last coupon is paid. We denote the length of the time
interval between (T −1)cum and (T −1)ex by ε and the interval between
(T − 1)ex and (T − 1)rd by δ. The difference between (T − 1)rd and final
maturity T is one year.

denotes the present value at (T − 1)ex of future cash flows given that the series is

not drawn at all. Considering the typical lottery bond with annual coupon and

redemption frequency, the two expressions specify:4

vd
1 =

R + c

(1 + r)δ
, (3.1)

vn
1 =

c

(1 + r)δ
+

R + c

(1 + r)1+δ

Note that, for c/R = r, i. e. vd
1 = vn

1 , the economy is free of redemption risk and

the representative agent is indifferent between investing in the lottery bond or

risk-free instrument. For ease of notation, we assume c/R �= r throughout this

chapter.

4 The model framework can easily be adapted for lottery bonds with biennial redemption
frequency or semi-annual coupon payments.
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3.1.2 No-arbitrage Bounds

Before proceeding with the analytical deduction of the optimal portfolio choice

and the equilibrium price, we develop upper and lower bounds for the dirty price

Bcum (price including accrued interest) of the lottery bond immediately before

the drawing.5 Traded lottery bonds consist of non-drawn series only. Hence, after

the last drawing, the lottery bond corresponds to a straight coupon bond and its

dirty price at (T − 1)ex is equal to vn
1 .

At (T − 1)cum, the bearer of a lottery bond knows that, at (T − 1)ex, his series

is either worth vd
1 in state d or traded at vn

1 in state n. Under the assumption of

non-satiation, the following bounds hold:

min

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
< Bcum < max

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
, (3.2)

where the value terms are discounted at the risk-free rate to date (T −1)cum. The

bounds are independent of risk preferences and correspond to the minimum and

maximum discounted value of the lottery bond. The no-arbitrage bounds can be

transformed to bounds for the clean lottery bond price bcum by adjusting vd
1 and

vn
1 for accrued interest.

Figure 3.2 depicts the no-arbitrage bounds for below par clean lottery bond prices

bcum as a function of the coupon c and the risk-free rate r. Lottery bond prices

that can be explained by no-arbitrage are located within the bounds characterized

by the black surface. The larger the difference between c and r, the larger is the

no-arbitrage price interval. Results are analogous for above par prices.

If we further assume that the investor is risk-averse, we can deduce a sharper

upper bound on Bcum. Under risk neutrality, the lottery bond price is equal to

5 For ease of notation, we omit the time index and use the superscripts (cum, ex, etc.) only,
e. g. Bcum instead of B(T−1)cum . Unless stated otherwise, the superscript refers to (T − 1).
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Figure 3.2: No-arbitrage Bounds for Clean Lottery Bond Prices

This figure plots the no-arbitrage bounds for below par clean lottery
bond prices bcum against the annual coupon c and the risk-free rate r.
A lottery bond issue with two outstanding series and one outstanding
lottery is considered. The redemption lottery is conducted annually, and
drawn series are redeemed at face value. The time structure is as follows:
ε is zero, and δ is equal to 90 days. In the upper graph, the risk-free
rate is r = 10%. In the lower graph, the coupon rate of the lottery
bond is c/100 = 5%. The black surface contains the clean lottery bond
prices bcum which can be explained by no-arbitrage. The dotted line
characterizes the clean risk-neutral lottery bond price.
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the expected value

Be
cum = p1 · vd

1

(1 + r)ε
+ (1 − p1) · vn

1

(1 + r)ε
, (3.3)

where p1 = 1/2 is the objective probability of early redemption for the last

redemption lottery. A risk-neutral investor is willing to pay at most Be
cum for

the lottery bond at (T − 1)cum. Hence, for a risk-averse investor, we obtain the

following bounds:

min

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
< Bcum < Be

cum

The black surface below the dotted lines in Figure 3.2 characterizes clean lottery

bond prices consistent with no-arbitrage and risk-averse preferences.

3.1.3 Optimal Portfolio Choice

We continue with the problem of optimal portfolio selection immediately before

the last redemption lottery. Throughout this section, lottery bond prices are

assumed to be exogenous and restricted to values within the no-arbitrage bounds

defined by Inequalities (3.2). The representative investor has a state-independent

power utility function defined for terminal wealth at T . The power utility function

is given by

u (ws
T ) =

(ws
T )1−γ

1 − γ
for γ �= 1, s ∈ {d, n}, (3.4)
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where γ is the RRA coefficient and ws
T is investor’s wealth at T in either state

d or n.6 The power utility function is characterized by linear risk tolerance

decreasing absolute and constant relative risk aversion.7 RRA coefficients indicate

risk aversion if γ > 0, risk-seeking preferences if γ < 0, and risk neutrality if γ = 0.

The investor’s utility maximization problem at (T −1)cum is characterized by the

following expression:

max
xcum

Ecum [u (ws
T )] = (3.5)

max
xcum

{
p1 · u

(
wd

ex · (1 + r)1+δ
)

+ (1 − p1) · u
(
wn

ex · (1 + r)1+δ
)}

,

where Ecum is the expectation operator conditional on the information given at

(T − 1)cum and xcum is the proportion of wealth at (T − 1)cum invested in the

lottery bond. Between (T − 1)ex and T the lottery bond is risk-free, and the

wealth terms ws
ex are transformed to wealth at T by risk-free compounding.

Expression (3.5) is maximized subject to the investor’s budget constraint resulting

in the following characterization of wealth at (T − 1)ex

ws
ex = wcum ·

(
xcum · vs

1

Bcum

+ (1 − xcum) · (1 + r)ε

)
, s ∈ {d, n}, (3.6)

where wcum is investor’s wealth immediately before the lottery. Risk-free holdings

are compounded at the risk-free rate from (T − 1)cum to (T − 1)ex.

The first order condition of the general utility maximization problem (3.5) to

6 In the case of γ = 1, u(ws
T ) = log[ws

T ]. Unless stated otherwise, γ �= 1 throughout this
chapter.

7 See e. g. Pratt (1964), Yaari (1969), and Arrow (1970).
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(3.6) is

∂Ecum [u (ws
T )]

∂xcum

!
= 0 ⇔

(
vd
1

Bcum·(1+r)ε − 1
)

(
xcum ·

(
vd
1

Bcum·(1+r)ε − 1
)

+ 1
)γ + (3.7)

(
vn
1

Bcum·(1+r)ε − 1
)

(
xcum ·

(
vn
1

Bcum·(1+r)ε − 1
)

+ 1
)γ = 0 for γ �= 0.

Solving Equation (3.7) for xcum, we obtain the optimal portfolio composition

x∗
cum =

Bcum · (1 + r)ε

Bcum · (1 + r)ε − vd
1 +

vn
1 −vd

1�
vn
1 −Bcum·(1+r)ε

Bcum·(1+r)ε−vd
1

� 1
γ −1

for γ �= 0. (3.8)

The optimal portfolio composition x∗
cum is a function of: (i) the RRA coefficient γ,

(ii) the exogenous lottery bond price Bcum, (iii) the coupon c, (iv) the redemption

value R, and (v) the risk-free rate r.

Comparative static results for x∗
cum are depicted in Figure 3.3.8 For positive

RRA coefficients, x∗
cum is decreasing in γ. The more risk-averse the investor is,

the smaller the proportion of wealth invested in the risky lottery bond. For γ

approaching infinity, x∗
cum converges to zero and the investor holds only risk-free

zero-bonds. However, if γ converges to zero, x∗
cum approaches infinity and the

investor short sells the zero bond and leverages his position in the lottery bond.

For negative RRA coefficients, x∗
cum is increasing in γ.

The optimal portfolio composition x∗
cum is decreasing in the lottery bond price

bcum, increasing in the coupon c, and decreasing in the risk-free rate r. As

expected, the demand for the lottery bond is negatively related to its price

and opportunity cost and positively related to its payout. The results for the

8 The sign of ∂x∗
cum/∂γ is derived in Appendix A.3.1.
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Figure 3.3: Comparative Statics for Portfolio Composition

This figure plots the optimal fraction of wealth invested in the lottery
bond x∗

cum against the RRA coefficient γ, the exogenous clean lottery
bond price bcum, the annual coupon c, and the risk-free rate r. We
consider a lottery bond with two outstanding series equal in size. The
redemption lottery is conducted annually, and drawn series are redeemed
at face value. The time structure is as follows: ε is zero, and δ is equal to
90 days. In the upper and lower right graphs, bcum is constant at DEM
96.5. In the upper left and lower graphs, c/100 = 5%. In the upper and
lower left graphs, r = 10%. In the upper right and lower graphs, γ = 5.
The optimal portfolio composition x∗

cum is reported in percentage points.
All considered parameter combinations yield arbitrage-free lottery bond
prices.
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redemption value R are analogous to those of the coupon c. Exemplarily, we

consider the relation between x∗
cum and the clean arbitrage-free lottery bond

price in further detail. For bcum equal to the clean risk-neutral lottery bond

price, the fraction of wealth invested in the lottery bond is zero. If, however, bcum

converges to the lower or upper no-arbitrage bound defined in Inequality (3.2),

x∗
cum approaches plus and minus infinity, respectively. These results persist for

positive RRA coefficients and multiple combinations of the remaining parameters

within a reasonable range. For negative RRA coefficients, the relation between

x∗
cum and bcum, c, and r is no longer monotonic. Relative to the results for positive

RRA coefficients, the relations are inverted if γ is sufficiently negative.

3.1.4 Equilibrium Prices and RRA Coefficients

Based on the problem of optimal portfolio selection, we derive the equilibrium

lottery bond price. We assume that the lottery bond is in unit-net supply.

Therefore, in equilibrium, the condition

xcum ≡ 1

has to hold. Solving the first order condition (3.7) with market clearing at Bcum,

we obtain the equilibrium price

B∗
cum =

(
vd

1

)1−γ
+ (vn

1 )1−γ(
vd

1

)−γ
+ (vn

1 )−γ
· 1

(1 + r)ε for γ �= 0. (3.9)

For γ = 0, Equation (3.9) is not defined but can be complemented by the risk-

neutral price Be
cum, defined in Equation (3.3), such that B∗

cum is continuous and

differentiable in γ. The equilibrium price B∗
cum is a function of: (i) the RRA

coefficient γ, (ii) the coupon c, (iii) the redemption value R, and (iv) the risk-free

rate r.

In Section 3.1.2, we derived no-arbitrage bounds for the lottery bond price. It is

shown in Appendix A.3.2.1 that for γ approaching infinity, the equilibrium price



Valuation of Lottery Bonds and Implied Risk Aversion 37

is equal to the left-hand side of the no-arbitrage bound in Inequality (3.2) and,

for γ approaching minus infinity, it is equal to its right-hand side.

By adjusting B∗
cum for accrued interest, we obtain the clean equilibrium price

b∗cum. Comparative static results for b∗cum are depicted in Figure 3.4. The clean

equilibrium price b∗cum is decreasing in the RRA coefficient γ.9 As expected, the

higher the level of risk aversion, the lower is the equilibrium price of the risky

lottery bond. Furthermore, b∗cum is increasing in the coupon c and decreasing in

the risk-free rate r. The relation for the redemption value R is analogous to that

of the coupon c. The results persist for multiple parameter combinations within

a reasonable range.

It is important to note that, for a fixed c, r, and R, the relation between the

equilibrium price B∗
cum and γ is strictly monotonic decreasing. Hence, Equation

(3.9) is a one-to-one mapping of the equilibrium price to the RRA coefficient.

Solving the equilibrium pricing Equation (3.9) at a fixed arbitrage-free price Bcum

for γ, we obtain the implied RRA coefficient

γ = −
log

[
Bcum− vn

1
(1+r)ε

vd
1

(1+r)ε
−Bcum

]

log
[

vd
1

vn
1

] . (3.10)

The sensitivity of the implied RRA coefficient γ is of major importance

throughout the empirical Chapter 6. The objective of the subsequent comparative

static analysis is to provide theoretical evidence on the robustness of implied RRA

coefficients helping us to ensure the quality and precision of our estimations.

Therefore, we examine the implied RRA coefficient, the partial derivative of

Equation (3.10), and the elasticity of the RRA coefficient with respect to the

clean lottery bond price bcum in further detail.

Figure 3.5 depicts the comparative static results for γ with respect to the coupon

c and risk-free rate r. For an exogenous and fixed clean lottery bond price bcum,

9 The sign of ∂B∗
cum/∂γ is derived in Appendix A.3.2.2.
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Figure 3.4: Comparative Statics for Equilibrium Price

This figure plots the clean equilibrium lottery bond price b∗cum against
the RRA coefficients γ, the annual coupon c, and the risk-free rate r. We
consider a lottery bond with two outstanding series equal in size. The
redemption lottery is conducted annually, and drawn series are redeemed
at face value. The time structure is as follows: ε is zero, and δ is equal to
90 days. In the upper graph, the coupon rate is c/100 = 5%, and the risk-
free rate is r = 10%. Therefore, vd

1 = DEM 102.53, vn
1 = DEM 98.09,

and accrued interest is DEM 3.71. The lower dashed line depicts the
lower no-arbitrage bound for b∗cum, and the upper dashed line depicts the
maximum price a risk-neutral investor is willing to pay for the lottery
bond. In the middle and lower graph, the RRA coefficient is γ = 5. In
the middle graph, the risk-free rate is r = 10% and in the lower graph,
the coupon rate is c/100 = 5%.
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Figure 3.5: Comparative Statics for RRA Coefficient

This figure plots the RRA coefficient γ against the annual coupon c and
the risk-free rate r. We consider a lottery bond with two outstanding
series equal in size. The redemption lottery is conducted annually, and
drawn series are redeemed at face value. The time structure is as follows:
ε is zero, and δ is equal to 90 days. In both graphs, the clean lottery
bond price bcum is exogenous and constant at DEM 95. In the upper
graph, the risk-free rate is r = 10% and in the lower graph, the coupon
rate is c/100 = 5%.
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the implied RRA coefficient is increasing in the coupon c and decreasing in the

risk-free rate r. The relation for the redemption value R is analogous to that of

the coupon c, and results persist for multiple parameter combinations within a

reasonable range.

The partial derivative ∂γ/∂bcum is denoted γbcum , and the elasticity measuring

the responsiveness of γ to a change in bcum in relative terms is defined

ηγ,bcum = γbcum · bcum

γ
. (3.11)

Figure 3.6 depicts the comparative static results for the partial derivative γbcum

as well as elasticity ηγ,bcum . First, we regard the comparative static results for

γbcum and ηγ,bcum with respect to the exogenous and arbitrage-free clean lottery

bond price bcum in the upper graphs. For bcum approaching the lower no-arbitrage

bound defined by Inequalities (3.2) and characterized by the left dashed line, γbcum

converges to minus infinity. The RRA coefficient is most sensitive to price changes

close to the no-arbitrage bounds and least sensitive to price changes close to the

risk-neutral price defined by Equation (3.3) and characterized by the right dashed

line.10 Note that the no-arbitrage bounds and risk-neutral lottery bond price are

independent of γ. Accordingly, for bcum approaching the no-arbitrage bounds

or risk-neutral lottery bond price, ηγ,bcum converges to minus infinity implying a

perfectly elastic RRA coefficient in bcum.

Second, we consider the comparative static results for γbcum and ηγ,bcum with

respect to the coupon c as well as to the risk-free rate r in the middle and lower

graphs. The larger the spread between c and r the less sensitive is the RRA

coefficient to a price change. For r approaching c/R, γbcum and ηγ,bcum converge

to minus infinity.

10 A small price change in close distance to the no-arbitrage bounds results in a distinct
response of the RRA coefficient such that we control for the distance of price observations to
the no-arbitrage bounds in the empirical Chapter 6.
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Figure 3.6: Derivative and Elasticity of RRA Coefficient

This figure plots the derivative γbcum
and elasticity ηγ,bcum

against the
exogenous and arbitrage-free clean lottery bond price bcum, the annual
coupon c and the risk-free rate r. We consider a lottery bond with two
outstanding series equal in size. The redemption lottery is conducted
annually, and drawn series are redeemed at face value. The time
structure is as follows: ε is zero, and δ is equal to 90 days. The left
dashed lines in the upper graphs depict the lower no-arbitrage bound
for the clean lottery bond price, and the right dashed lines depict the
maximum price a risk-neutral investor is willing to pay for the lottery
bond. In all six graphs, the RRA coefficient is γ = 5. In the upper
and middle graphs, the risk-free rate is r = 10%, in the upper and lower
graphs, the coupon rate is c/100 = 5%, and in the middle and lower
graphs, bcum = b∗cum.
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3.2 Dynamic Model Framework

3.2.1 Model Setup and Assumptions

In this section, the one-period model is extended to a multi-period setting.

Trading possibilities exist at every point in time from issuance until maturity

of the lottery bond at T . First, we deduce equilibrium lottery bond prices at

cum-lottery dates. Second, we show that ex-lottery prices are determined by

simply adjusting the subsequent cum-price for coupon payments and risk-free

discounting. Since the general structure of equilibrium prices between the ex-

and the subsequent cum-lottery date is equal to that of the ex-lottery price, it is

sufficient to characterize equilibrium prices at cum- and ex-lottery dates.

We denote vd
i,j the present value at (T − i)ex of future cash flows from the lottery

bond given that the series is drawn at one of the future drawing dates (T −
j)l, ∀i, j ∈ N, 1 ≤ i < T , and i ≥ j. Analogously, vn

i,1 denotes the present

value at (T − i)ex of future cash flows given that the series is never drawn. The

terms are applied to define the dynamic no-arbitrage bounds and the risk-neutral

lottery bond price. Considering the typical lottery bond with annual coupon and

redemption frequency, the expressions specify11

vd
i,j =

i−j−1∑
k=0

c

(1 + r)k+δ
+

R + c

(1 + r)i−j+δ
, (3.12)

vn
i,1 =

i−1∑
k=0

c

(1 + r)k+δ
+

R + c

(1 + r)i+δ
. (3.13)

For ease of notation, we denote vd
i,i, accumulating cash flows for one period, by

vd
i . The term is equal to vd

1 defined in Equation (3.1). Analogously, we denote

vn
1,1 by vn

1 .

We define Ci as the present value at (T − i)cum of all cash flows the lottery bond

11 The degenerated sum expression is defined
z∑

k=m

≡ 0 for z < m.
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pays between (T − i − 1)ex and (T − i)cum. Considering a typical lottery bond

with annual coupon and redemption frequency, the expression specifies

Ci = c · (1 + r)1−ε−δ , (3.14)

where the difference between the last coupon and the redemption date (T−i−1)rd

and (T − i)cum is equal to (1 − ε − δ).

Note that, for c/R = r, the term vd
i,j simplifies

vd
i,j = R ·

(
i−j−1∑
k=0

r

(1 + r)k+δ
+

1

(1 + r)i−j−1+δ

)

= R · (1 + r)1−δ .

Analogously, the term vn
i,1 simplifies to R · (1 + r)1−δ. Since vd

i,j = vn
i,1, the

economy is free of redemption risk. Hence, for ease of notation we continue to

assume c/R �= r.

Figure 3.7 characterizes the time structure in the dynamic model framework. In

the i-period model, we distinguish i + 1 states of the world. The lottery bond

series is either drawn with probability pi = 1/(i+1) in the first redemption lottery

after the valuation date, or drawn in one of the i− 1 subsequent lotteries, or not

drawn at all.

3.2.2 No-arbitrage Bounds

Before deducing analytical lottery bond prices in the dynamic model framework,

we develop upper and lower bounds for the dirty prices B(T−i)cum .

In the i-period model, no-arbitrage bounds are determined from i + 1 present
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Figure 3.7: Dynamic Time Structure

This figure depicts the time structure in the dynamic model framework.
We consider a lottery bond with annual redemption lotteries. Redemp-
tion probabilities pi and present value terms are reported in the binomial
lattice. The first row under the time line shows the lottery dates and
the terminal date T . The second row shows the number of remaining
lotteries at the corresponding cum-dates.
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value expressions. For i > 1, the following bounds for B(T−i)cum hold:12

B(T−i)cum > min
[
vd

i , v
d
i,(i−1), ..., v

d
i,1, v

n
i,1

] · 1

(1 + r)ε , (3.15)

B(T−i)cum < max
[
vd

i , v
d
i,(i−1), ..., v

d
i,1, v

n
i,1

] · 1

(1 + r)ε

If we further assume that the investor is risk-averse, we can deduce a sharper

upper bound on B(T−i)cum . Under risk neutrality, the lottery bond price is equal

to the expected value

Be
(T−i)cum =

1

i + 1
· (vd

i + vd
i,(i−1) + ... + vd

i,1 + vn
i,1) ·

1

(1 + r)ε . (3.16)

A risk-neutral investor is willing to pay at most Be
(T−i)cum for the lottery bond.

Hence, for a risk-averse investor, we obtain the following bounds:

min
[
vd

i , v
d
i,(i−1), ..., v

d
i,1, v

n
i,1

] · 1

(1 + r)ε < B(T−i)cum < Be
(T−i)cum

Analogously, the no-arbitrage bounds for the ex-lottery price B(T−i)ex are

determined by i present value expressions. For i > 1, the following bounds

for B(T−i)ex hold:

B(T−i)ex > min
[
vd

i,(i−1), ..., v
d
i,1, v

n
i,1

]
, (3.17)

B(T−i)ex < max
[
vd

i,(i−1), ..., v
d
i,1, v

n
i,1

]

If we again assume that the investor is risk-averse, we can deduce a sharper upper

bound on B(T−i)ex . Under risk neutrality, the lottery bond price is equal to the

12 No-arbitrage bounds for B(T−1)cum are given by Inequalities (3.2).
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expected value

Be
(T−i)ex =

1

i
· (vd

i,(i−1) + ... + vd
i,1 + vn

i,1). (3.18)

A risk-neutral investor is willing to pay at most Be
(T−i)ex for the lottery bond.

Hence, for a risk-averse investor, we obtain the following bounds:

min
[
vd

i,(i−1), ..., v
d
i,1, v

n
i,1

]
< B(T−i)ex < Be

(T−i)ex

For i = 1, after the last drawing, the ex-lottery price B(T−1)ex is deterministic

and equals vn
1 .

3.2.3 Equilibrium Prices at Cum-dates

In the multi-period setting, equilibrium lottery bond prices are determined by

backward induction using standard dynamic programming techniques.13 As

before, the representative investor has a state-independent power utility function

as specified in Equation (3.4), which is defined for terminal wealth at T . First,

we formulate investor’s optimization problem and budget constraint. We assume

a functional form of the indirect utility function and deduce the first order

condition. Employing market clearing, we assess the equilibrium lottery bond

price.

The investor’s utility maximization problem at a point in time (T − i)cum, ∀i ∈
13 See e. g. Ingersoll (1987), pp. 235 or Huang and Litzenberger (1988), pp. 179 for a

comprehensive treatment of discrete-time inter-temporal portfolio selection and equilibrium
valuation problems.
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N, 1 ≤ i < T , is characterized by the following expression:

max
x(T−i)cum

E(T−i)cum [u (ws
T )] = (3.19)

max
x(T−i)cum

{
pi · u

(
wd

(T−i)ex · (1 + r)i+δ
)

+ (1 − pi) · J(T−i)ex

(
wn

(T−i)ex

)}
,

where pi = 1/(1 + i) is the objective probability of being drawn at (T − i)l, and

x(T−i)cum is the proportion of wealth at (T − i)cum invested in the lottery bond.

The indirect utility function J(T−i)ex(·) is the optimal value of investor’s utility

maximization problem at (T − i)ex.

Expression (3.19) is maximized subject to the investor’s budget constraint

resulting in the following characterizations of wealth at (T−i)ex if the lottery bond

series is drawn in the redemption lottery at (T − i)l and not drawn, respectively:

wd
(T−i)ex = wn

(T−i)cum ·
(

x
(T−i)cum · vd

i

B(T−i)cum
+
(
1 − x

(T−i)cum

)
· (1 + r)ε

)
, (3.20)

wn
(T−i)ex = wn

(T−i)cum ·
(

x
(T−i)cum · B∗

(T−i)ex

B(T−i)cum
+
(
1 − x

(T−i)cum

)
· (1 + r)ε

)
,

where wn
(T−i)cum is investor’s wealth immediately before the lottery at (T − i)l

given that his series was not drawn in any of the previous lotteries.
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The functional form of the indirect utility function J(T−i)ex(·) is given by14

J(T−i)ex

(
wn

(T−i)ex

)
=

1

i
·
(
wn

(T−i)ex

)1−γ

· a(T−i)ex(
B∗

(T−i)ex

)1−γ , (3.21)

where a(T−i)ex is defined15

a(T−i)ex ≡
i−1∑
j=1

u

(
vd

j · (1 + r)j+δ ·
i−1∏
k=j

y(T−k)cum

)
+ (3.22)

u

(
vn

1 · (1 + r)1+δ ·
i−1∏
k=1

y(T−k)cum

)
,

y(T−k)cum is defined

y(T−k)cum ≡ 1 +
Ck

B∗
(T−k)cum

, (3.23)

and Ck is defined in Equation (3.14).

For i > 1, the indirect utility function J(T−i)ex(·) depends on wealth wn
(T−i)ex and

future equilibrium prices B∗
(T−k)cum , ∀k ∈ N, and 1 ≤ k < i. In equilibrium, the

14 It is shown in Appendix A.3.3.1 that:

J(T−i)ex

(
wn

(T−i)ex

)
= max

x(T−i)ex

{
J(T−i+1)cum

(
wn

(T−i+1)cum

)}
,

where the indirect utility function J(T−i+1)cum(·) is the optimal value of investor’s utility
maximization problem at (T − i + 1)cum. See e. g. Ingersoll (1987), pp. 235 for a thorough
derivation of the functional form of the indirect utility function in the classical portfolio selection
framework.

15 Throughout this section the degenerated sum and product expressions are defined as

z∑
j=m

vd
j ≡ 0 and

z∏
k=m

y(T−k)cum ≡ 1 for z < m.
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lottery bond is in unit-net supply, and the term y(T−k)cum characterizes the gross

growth in wealth between (T − k − 1)ex and (T − k)cum.

The first order condition of the general utility maximization problem (3.19) to

(3.20) with respect to the portfolio composition x(T−i)cum is

∂
{
E(T−i)cum [u (ws

T )]
}

∂x
(T−i)cum

!
= 0 ⇔

pi · u′
(
wd

(T−i)ex

)
·
(
(1 + r)i+δ

)1−γ

·
(

vd
i

B(T−i)cum
− (1 + r)ε

)
+

(1 − pi) · J ′
(T−i)ex

(
wn

(T−i)ex

)
·
(

B∗
(T−i)ex

B(T−i)cum
− (1 + r)ε

)
= 0 for γ �= 0.

We assume that the lottery bond is in unit-net supply and the following condition

x(T−i)cum ≡ 1

holds. Solving the first order condition with market clearing at B∗
(T−i)cum , we

obtain the equilibrium price

B∗
(T−i)cum =

1

(1 + r)i+ε+δ
· (3.24)

i∑
j=1

(
vd

j · (1 + r)j+δ ·
i−1∏
k=j

y(T−k)cum

)1−γ

+

(
vn

1 · (1 + r)1+δ ·
i−1∏
k=1

y(T−k)cum

)1−γ

i∑
j=1

(
vd

j · (1 + r)j+δ ·
i−1∏
k=j

y(T−k)cum

)−γ

+

(
vn

1 · (1 + r)1+δ ·
i−1∏
k=1

y(T−k)cum

)−γ
,

for γ �= 0. The equilibrium price B∗
(T−i)cum is a function of the discounted present

value expressions vd
j and vn

1 , which depend on the coupon of the lottery bond c,

the redemption value R, and the risk free rate r, as well as the future equilibrium
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prices B∗
(T−k)cum , ∀k ∈ N and 1 ≤ k < i contained in the y(T−k)cum terms.

For γ = 0, Equation (3.24) is not defined but can be complemented by the

risk-neutral price Be
(T−i)cum , defined in Equation (3.16), such that B∗

(T−i)cum is

continuous and differentiable in γ. Furthermore, Equation (3.24) simplifies to

the equilibrium pricing Equation (3.9) deduced in the one-period framework for

i equal to one.

Comparative static results for the clean equilibrium prices b∗(T−1)cum , b∗(T−4)cum ,

and b∗(T−9)cum with respect to the RRA coefficient γ, the coupon c, and the risk-

free rate r are depicted in Figure 3.8. Corresponding to the results obtained in

the one-period context, dynamic equilibrium prices are decreasing in γ, increasing

in c, and decreasing in r. The relation for the redemption value R is analogous

to that of the coupon. The results persist for multiple parameter combinations

within a reasonable range.

We consider the comparative static results for clean cum-day equilibrium prices

with respect to the RRA coefficient in further detail. First, we regard the

results for below par prices in the upper graph on the left-hand side. Below

par equilibrium prices decrease in the time-to-maturity, as future coupon and

redemption payments are discounted over a longer period at the risk-free rate r

which is larger than the coupon rate c/100. The general no-arbitrage bounds for

dirty lottery bond prices given by Inequality (3.15) can be transformed to bounds

for clean prices by adjusting the terms for accrued interest. The adjusted lower

bounds are characterized by the dashed lines in the graph. Since it is favorable to

be drawn in the redemption lotteries, equilibrium prices converge to the respective

clean price of a straight coupon bond as γ approaches infinity. Note that the price

of the straight below par coupon bond, equal to the lower no-arbitrage bound,

is strictly decreasing in the time-to-maturity. Furthermore, we can numerically

show that, for γ approaching minus infinity, equilibrium prices converge to the

upper no-arbitrage bound equal to the redemption payment vd
i /(1 + r)ε adjusted

for accrued interest. The adjusted redemption payment at (T − i)cum is equal

∀i ∈ N, 1 ≤ i < T . Therefore, the difference between the constant upper and the

lower no-arbitrage bound rises, the more redemption lotteries are outstanding,

and the range of no-arbitrage equilibrium prices increases. In addition, the graph

shows that the higher the RRA coefficient, the larger is the spread between
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Figure 3.8: Comparative Statics for Equilibrium Prices at Cum-dates

This figure plots the comparative static results for the clean equilibrium
lottery bond prices b∗(T−1)cum , b∗(T−4)cum , and b∗(T−9)cum against the RRA
coefficient γ, the annual coupon c, and the risk-free rate r. We consider a
lottery bond with two, five, and ten outstanding series equal in size. The
redemption lottery is conducted annually, and drawn series are redeemed
at face value. The time structure is as follows: ε is zero, and δ is equal
to 90 days. The graphs on the left-hand side depict the comparative
static results for below par prices (c/100 < r), and the graphs on the
right-hand side depict the results for above par prices (c/100 > r). The
dashed lines in the upper graphs depict the lower no-arbitrage bound for
the respective lottery bond price. If applicable, the values of γ, c/100,
and r are reported in the graphs.
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equilibrium prices for different maturities.

Second, we regard the results for above par prices in the upper graph on the

right-hand side. Above par equilibrium prices increase in the time-to-maturity

as future coupon and redemption payments are discounted over a longer period

at the risk-free rate r, which is smaller than the coupon rate c/100. Again,

the adjusted lower no-arbitrage bound is characterized by the dashed line in the

graph. Since it is unfavorable to be drawn in the redemption lotteries, equilibrium

prices converge to the adjusted redemption payment identical for all maturities

as γ approaches infinity. Furthermore, we can numerically show that equilibrium

prices converge to the respective clean price of a straight coupon bond as γ

approaches minus infinity. Note that the price of the straight above par coupon

bond, equal to the upper no-arbitrage bound, is strictly increasing in time-to-

maturity. Therefore, the difference between the constant lower and the upper

no-arbitrage bound rises, the more redemption lotteries are outstanding and the

range of no-arbitrage equilibrium prices increases. In addition, the graph shows

that the lower the RRA coefficient, the larger is the spread between equilibrium

prices for different maturities.

Next, we consider the comparative static results for the clean cum-day equilibrium

prices with respect to the coupon. First, we regard the results for below par prices

in the middle graph on the left-hand side of Figure 3.8. If c/100 approaches r,

the investor becomes indifferent with respect to the outcome of the redemption

lotteries, and equilibrium lottery bond prices for all maturities converge to the

clean price of a straight coupon bond. For c/100 smaller than r, equilibrium

prices decrease in the time-to-maturity. The lower c, the higher is the spread

between equilibrium prices for different maturities. Second, we regard the results

for above par prices in the middle graph on the right-hand side. Again, if c/100

approaches r, equilibrium lottery bond prices for all maturities converge to the

clean price of a straight coupon bond. For c/100 larger than r, equilibrium prices

increase in time-to-maturity. The larger c, the higher is the spread between above

par equilibrium prices for different maturities.

Lastly, we consider the comparative static results for the clean cum-day

equilibrium prices with respect to the risk-free rate. We regard the results for

below par prices in the lower graph on the left-hand side of Figure 3.8 first. If r
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approaches c/100, equilibrium lottery bond prices for all maturities converge to

the clean price of a straight coupon bond. For r larger than c/100, equilibrium

prices decrease in the time-to-maturity. The larger r, the higher is the spread

between below par equilibrium prices for different maturities. Second, we regard

the results for above par prices in the lower graph on the right-hand side. Again, if

r approaches c/100, equilibrium lottery bond prices for all maturities converge to

the clean price of a straight coupon bond. For r smaller than c/100, equilibrium

prices decrease in the time-to-maturity. The lower r, the higher is the spread

between above par equilibrium prices for different maturities.

Analogous to the equilibrium pricing equation in the one-period framework,

Equation (3.24) is a one-to-one mapping of the equilibrium price to the RRA

coefficient.16 Hence, each price corresponds to a unique RRA coefficient. If we

numerically solve the equilibrium pricing Equation (3.24) at a fixed arbitrage-free

price B(T−i)cum for γ, we obtain the implied RRA coefficient.

3.2.4 Equilibrium Prices at Ex-dates

Having deduced and analyzed equilibrium prices at cum-lottery dates, we proceed

by showing that equilibrium prices at ex-lottery dates are determined by simply

adjusting the subsequent cum-lottery price for coupon payments and risk-free

discounting.

We focus on the investor’s utility maximization problem at (T − i)ex, ∀i ∈ N, 1 <

i ≤ (T − 1), characterized by the following expression:

max
x(T−i)ex

E(T−i)ex [u (ws
T )] = max

x(T−i)ex

{
J(T−i+1)cum

(
wn

(T−i+1)cum

)}
, (3.25)

where the indirect utility function J(T−i+1)cum(·) is the optimal value of investor’s

utility maximization problem at (T − i + 1)cum.

Expression (3.25) is maximized subject to the investor’s budget constraint

16 It can be numerically shown that B∗
(T−i)cum is strictly monotonic decreasing in γ.
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resulting in the following characterizations of wealth at (T − i + 1)cum if the

lottery bond series has not been drawn in the redemption lottery at (T − i)l

wn
(T−i+1)cum = wn

(T−i)ex· (3.26)

(
x

(T−i)ex · B∗
(T−i+1)cum + Ci−1

B(T−i)ex
+
(
1 − x

(T−i)ex

)
· (1 + r)1−ε

)
.

The functional form of the indirect utility function J(T−i+1)cum(·) is given by17

J(T−i+1)cum

(
wn

(T−i+1)cum

)
=

1

i
·
(
wn

(T−i+1)cum

)1−γ

· a(T−i+1)cum(
B∗

(T−i+1)cum

)1−γ , (3.27)

where a(T−i+1)cum is defined

a(T−i+1)cum ≡
i−1∑
j=1

u

(
vd

j · (1 + r)j+δ ·
i−2∏
k=j

y(T−k)cum

)
+ (3.28)

u

(
vn

1 · (1 + r)1+δ ·
i−2∏
k=1

y(T−k)cum

)
.

We determine the first order condition of the general utility maximization problem

(3.25) to (3.26) for the portfolio composition x(T−i)ex . Solving the first order

condition with x(T−i)ex ≡ 1 for B(T−i)ex , the equilibrium price at (T − i)ex is given

17 It is shown in Appendix A.3.3.2 that J(T−i+1)cum(·) is the optimal value of the adjusted
general utility maximization problem (3.19) to (3.20).
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by

B∗
(T−i)ex =

B∗
(T−i+1)cum + Ci−1

(1 + r)1−ε (3.29)

=
B∗

(T−i+1)cum

(1 + r)1−ε +
c

(1 + r)δ
.

Equilibrium prices at (T − i)ex are the sum of the discounted equilibrium price

B∗
(T−i+1)cum and the present value of interim coupon payments.

The general structure of equilibrium prices in the interval [(T−i)ex, (T−i+1)cum)

is equal to that of B∗
(T−i)ex defined in Equation (3.29). After the redemption

lottery at (T − i)l and before the subsequent lottery, the economy is risk-free.

Hence, equilibrium prices are determined by simply accumulating the cum-lottery

price B∗
(T−i+1)cum and interim coupon payments and discounting the cash flows at

the risk-free rate to the valuation date.

Employing the equilibrium pricing Equations (3.24) and (3.29), we conduct a

comparative static analysis of the clean equilibrium price b∗t with respect to the

time-to-maturity of the bond. Figure 3.9 shows the price path of a lottery bond

with initial time-to-maturity of 5.25 years. We consider the path of below par

prices in the graph on the left-hand side first. After each of the four redemption

lotteries, the below par price drops because of the foregone chance to receive the

face value at the next redemption date. Between lottery dates, the equilibrium

price evolves like the price of a comparable straight coupon bond. The more

risk-averse the representative investor, the smaller are the price drops caused by

the lottery. As γ approaches infinity, the equilibrium price converges to the clean

price of a straight coupon bond which is independent of redemption risk.

Next, we consider the path of above par prices in the graph on the right-hand side

of Figure 3.9. After each redemption lottery, the above par price rises because of

the foregone risk to receive the face value at the redemption dates. The more risk-

averse the representative investor, the larger are the positive price jumps caused

by the lottery. As γ approaches infinity, the equilibrium price converges to the
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Figure 3.9: Dynamics of Equilibrium Prices

This figure plots the clean equilibrium lottery bond price b∗t against time-
to-maturity for different RRA coefficients γ. Coupons are paid annually,
and the redemption lottery is conducted on an annual basis. Drawn
series are redeemed at face value. The time structure is as follows: ε is
zero, and δ is equal to 90 days. The graph on the left-hand side depicts
the comparative static results for clean below par prices (c/100 < r),
and the graph on the right-hand side depicts the results for clean above
par prices (c/100 > r). In the graph on the left, the coupon rate is
c/100 = 5%, and the risk-free rate is r = 10%. In the graph on the
right, the coupon rate is c/100 = 10%, and the risk-free rate is r = 5%.
The upper and lower dashed lines depict the lottery bond price for γ = 0
and γ → +∞, respectively. The middle line shows the lottery bond price
for γ = 10.



Valuation of Lottery Bonds and Implied Risk Aversion 57

present value of the series which will be drawn in the subsequent redemption

lottery. Hence, jumps are at their maximum and equal for all redemption

probabilities. In the subsequent section, we consider the ex-day behavior of

equilibrium prices in further detail.

3.3 Equilibrium Ex-day Price Behavior

3.3.1 Definition and Bounds

We have deduced equilibrium prices for points in time (T−i)cum, Equation (3.24),

and for (T − i)ex, Equation (3.29). Based on these pricing equations, we focus on

the equilibrium price reactions around lottery dates.

We analyze the ex-day behavior of equilibrium prices caused by redemption

lotteries and focus on the difference between the discounted ex-lottery price

B∗
(T−i)ex and the cum-lottery price B∗

(T−i)cum given by

∆B∗
i =

B∗
(T−i)ex

(1 + r)ε − B∗
(T−i)cum (3.30)

=
B∗

(T−i+1)cum

1 + r
+

c

(1 + r)ε+δ
− B∗

(T−i)cum .

Substituting the ex-lottery price by pricing Equation (3.29), we obtain the second

equality. In the case of ε equal to zero, ∆B∗
i remains unchanged independent of

whether clean or dirty prices are used, as accrued interest cancels out.

The price difference ∆B∗
i characterizes the equilibrium price behavior attributable

to the realization of redemption risk. The larger |∆B∗
i |, the more pronounced is

the reaction of equilibrium prices with respect to the redemption drawings.

Before proceeding with the comparative static analysis for the ex-day behavior
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of equilibrium prices, we consider the upper and lower bounds for ∆B∗
i .

18 First,

we focus on the bounds for ∆B∗
i if c/R < r that specify:

vd
i,(i−1) − vd

i

(1 + r)ε < ∆B∗
i < 0, (3.31)

where vd
i,(i−1), defined by Equation (3.12), denotes the present value at (T −i)ex of

future cash flows from the lottery bond given that the series is drawn at (T−i+1)l

and vd
i denotes the present value given that the series is drawn at (T − i)l.

Appendix A.3.4 shows that it is sufficient to consider the difference between the

equilibrium prices B∗
(T−i)ex and B∗

(T−i)cum at their upper bounds and their lower

bounds, respectively, when determining the bounds for ∆B∗
i .

19 The supremum

of the equilibrium price B∗
(T−i)cum , equal to the respective dirty price of a straight

coupon bond, is ceteris paribus equal to the discounted supremum of B∗
(T−i)ex ,

and ∆B∗
i approaches zero. Furthermore, the infimum of B∗

(T−i)cum , equal to the

redemption payment vd
i /(1 + r)ε, is ceteris paribus larger than the discounted

infimum of B∗
(T−i)ex , equal to the redemption payment vd

i,(i−1)/(1 + r)ε, such that

∆B∗
i attains its infimum. Because of the foregone chance of an early redemption

at face value, ex-prices drop, and the ex-day behavior is negative.

Second, we focus on the bounds for ∆B∗
i if c/R > r that specify:

0 < ∆B∗
i <

vd
i,(i−1) − vd

i

(1 + r)ε (3.32)

The infimum of the equilibrium price B∗
(T−i)cum , equal to the respective dirty price

of a straight coupon bond, is ceteris paribus equal to the discounted infimum of

B∗
(T−i)ex , and ∆B∗

i approaches zero. The supremum of B∗
(T−i)cum , equal to the

redemption payment vd
i /(1 + r)ε, is ceteris paribus lower than the discounted

18 The bounds for ∆B∗
i are derived in Appendix A.3.4.

19 Note that, due to the ceteris paribus assumptions, it is not reasonable to intersect upper
and lower bounds.
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supremum of B∗
(T−i)ex , equal to the redemption payment vd

i,(i−1)/(1 + r)ε, such

that ∆B∗
i attains its supremum. Because of the foregone risk of early redemption

at face value, ex-prices rise, and the ex-day behavior is positive.

As already indicated in Figure 3.9, the ex-day behavior of equilibrium prices is

reversed for clean below par and above par prices. In the case of c/R approaching

r, the ex-day behavior becomes zero, as the lottery bond is equal to a straight

coupon bond, and the economy is free of redemption risk.

3.3.2 Comparative Static Analysis

We derive further properties of the equilibrium ex-day price behavior by

conducting a comparative static analysis of ∆B∗
i . Figure 3.10 depicts the

comparative static results for ∆B∗
1 , ∆B∗

4 , and ∆B∗
9 with respect to the RRA

coefficient γ, the coupon c, and the risk-free rate r. The results in Figure 3.10

persist for multiple parameter combinations within a reasonable range.

We focus on the comparative static results for the ex-day price behavior with

respect to the RRA coefficient. First, we regard the price drops for below par

prices (c/100 < r) in the upper graph on the left-hand side. Price drops are

decreasing in γ. The comparative static results for equilibrium prices at cum-

dates in Figure 3.8 indicate that the more redemption lotteries are outstanding,

the larger is the sensitivity of the equilibrium price with respect to γ.20 Hence, if

γ increases, the decline of the cum-lottery price is larger than the decline of the

ex-lottery price and the ex-day price drop decreases. For γ approaching infinity,

∆B∗
i is zero as equilibrium prices converge to the price of a straight coupon

bond. We can numerically show that, for γ approaching minus infinity, price

drops are equal ∀i ∈ N, 1 ≤ i < T and at their supremum. Dirty equilibrium

prices converge to vd
i /(1 + r)ε and vd

i,(i−1), respectively, while ∆B∗
i converges to

the lower no-arbitrage bound defined in Inequality (3.31). The supremum price

drop for the above parameter specifications is DEM 4.44.

20 It can be numerically shown that the following holds:

∂B∗
(T−i)cum

∂γ <
∂B∗

(T−i)ex /(1+r)ε

∂γ < 0
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Figure 3.10: Comparative Statics for Ex-day Price Behavior I

This figure plots the comparative static results for the ex-day price
behavior ∆B∗

1 , ∆B∗
4 , and ∆B∗

9 against the RRA coefficient γ, the
annual coupon c, and the risk-free rate r. The redemption lottery is
conducted annually, and drawn series are redeemed at face value. The
time structure is as follows: ε is zero, and δ is equal to 90 days. The
graphs on the left-hand side depict the comparative static results for
below par cum-prices (c/100 < r), and the graphs on the right-hand side
depict the results for above par cum-prices (c/100 > r). If applicable,
the values of γ, c/100, and r are reported in the graphs.
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Second, we regard the positive price jumps for above par prices (c/100 > r)

in the upper graph on the right-hand side. Positive price jumps are increasing

in the RRA coefficient. If γ increases, the decrease of the cum-lottery price is

larger than the decrease of the ex-lottery price and also the ex-day price jump

increases. For γ approaching infinity, ∆B∗
i is constant and at its supremum.

Dirty equilibrium prices converge to vd
i /(1 + r)ε and vd

i,(i−1), respectively, while

∆B∗
i converges to the upper no-arbitrage bound defined in Inequality (3.32). The

supremum price rise for the above parameter specifications is DEM 4.70. For γ

approaching minus infinity, ∆B∗
i becomes zero, as equilibrium prices converge to

the price of a straight coupon bond.

Next, we consider the comparative static results for the ex-day price behavior with

respect to the coupon. First, we regard the price reactions for below par prices

(c/100 < r) in the middle graph on the left-hand side of Figure 3.10. Price drops

are not necessarily monotonic in c. A variation of c has two opposing effects

on ∆B∗
i . It influences ∆B∗

i directly via the coupon term Ci−1 = c/(1 + r)ε+δ

contained in the ex-day price B∗
(T−i)ex . If c increases, the coupon term rises and

ceteris paribus the price drop falls. Furthermore, the variation influences ∆B∗
i

indirectly via the equilibrium prices. The comparative static results for below par

equilibrium prices at cum-dates in Figure 3.8 indicate that the lower c, the larger

is the spread between B∗
(T−i)cum and B∗

(T−i+1)cum . Since B∗
(T−i)cum ≤ B∗

(T−i+1)cum ,

an increase in c results in a decrease of B∗
(T−i+1)cum/(1+r)−B∗

(T−i)cum and ceteris

paribus the price drop rises. The fewer redemption lotteries are outstanding and

the larger the coupon, the more the direct effect prevails. For c/100 approaching

r, the price drop becomes zero, as the equilibrium price converges to the price of

a straight coupon bond.

Second, we regard the ex-day price behavior for above par prices (c/100 > r) in

the middle graph on the right-hand side. Positive price jumps are increasing in

the coupon. The larger the spread between c/100 and r, the higher is ∆B∗
i . The

comparative static results for above par equilibrium prices at cum-dates indicate

that the higher c, the larger is the spread between B∗
(T−i)cum and B∗

(T−i+1)cum .

Hence, the direct and indirect effect on ∆B∗
i have the same direction. Again, for

c/100 approaching r, the price jump becomes zero.

Lastly, we consider the comparative static results for the ex-day price behavior
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with respect to the risk-free rate. We first regard the price reactions for below

par prices (c/100 < r) in the lower graph on the left-hand side of Figure 3.10.

Price drops are not necessarily monotonic in r. A variation of r has two opposing

effects on ∆B∗
i . The variation influences ∆B∗

i directly over the coupon term

Ci−1 = c/(1 + r)ε+δ contained in the ex-day price B∗
(T−i)ex and the discount

factor 1/(1 + r) of B∗
(T−i+1)cum . If r increases, the coupon term and discount

factor fall and ceteris paribus the price drop rises. Furthermore, the variation

influences ∆B∗
i indirectly over the equilibrium prices. The comparative static

results for below par equilibrium prices at cum-dates in Figure 3.8 indicate that

the higher r, the larger is the spread between B∗
(T−i)cum and B∗

(T−i+1)cum . Since

B∗
(T−i)cum ≤ B∗

(T−i+1)cum , an increase in r results in an increase of B∗
(T−i+1)cum −

B∗
(T−i)cum and ceteris paribus the price drop falls. The fewer redemption lotteries

are outstanding and the smaller the risk-free rate, the more the direct effect

prevails. For r approaching c/100, the price drop becomes zero, as the equilibrium

price converges to the price of a straight coupon bond.

Second, we regard the ex-day price behavior for above par prices (c/100 > r)

in the lower graph on the right-hand side. Positive price jumps are decreasing

in the risk-free rate. The larger the spread between r and c/100, the higher is

∆B∗
i . The comparative static results for above par equilibrium prices at cum-

dates indicate that the lower r, the larger is the spread between B∗
(T−i)cum and

B∗
(T−i+1)cum . Hence, the direct and indirect effect on ∆B∗

i have the same direction.

Again, for r approaching c/100, the price jump becomes zero.

In a next step, we focus on the ex-price reaction segmented by the i lottery dates.

Figure 3.11 depicts ∆B∗
i at the i lottery dates for selected RRA coefficients γ,

coupons c, and risk-free rates r. We consider the relation between ∆B∗
i and

the RRA coefficient and regard the price drops for below par equilibrium prices

(c/100 < r) in the upper graph on the left-hand side first. Price drops are

decreasing in the RRA coefficient and zero for γ approaching infinity. We analyze

the relation between ∆B∗
i and the number of outstanding redemption lotteries

i. It can easily be shown that, under risk neutrality, price drops fall in the

number of outstanding redemption lotteries. For positive RRA coefficients, this

relation remains negative. However, we can show that for sufficiently negative

RRA coefficients the price reaction reverses and price drops rise in the number
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Figure 3.11: Comparative Statics for Ex-day Price Behavior II

This figure plots the comparative static results for the ex-day price
behavior ∆B∗

i at the i lottery dates for selected RRA coefficients γ,
annual coupons c, and risk-free rates r. The redemption lottery is
conducted annually, and drawn series are redeemed at face value. The
time structure is as follows: ε is zero, and δ is equal to 90 days. The
graphs on the left-hand side depict the comparative static results for
below par prices (c/100 < r), and the graphs on the right-hand side
depict the results for above par prices (c/100 > r). If applicable, the
values of γ, c/100, and r are reported in the graphs.
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of outstanding redemption lotteries such that they are not monotonic in i.

Second, we regard the positive price jumps for above par equilibrium prices

(c/100 > r) in the upper graph on the right-hand side. Price jumps are increasing

in the RRA coefficient and zero for γ approaching minus infinity. Again, we

analyze the relation between ∆B∗
i and i. It can easily be shown that, under

risk neutrality, positive price jumps fall in the number of outstanding redemption

lotteries. For sufficiently high RRA coefficients, this relation reverses and positive

price jumps rise in i. However, for negative RRA coefficients, the relation remains

negative. Reverting to the comparative static results for ∆B∗
i with respect to γ

in Figure 3.10, the intersection of ∆B∗
1 , ∆B∗

4 , and ∆B∗
9 already indicated that

the relation between ∆B∗
i and i is not monotonic.

Lastly, we consider the relation between ∆B∗
i and the coupon as well as the

risk-free rate. First, we regard the price drops for below par equilibrium prices

(c/100 < r) in the middle and lower graph on the left-hand side of Figure 3.11.

Price drops are non-monotonic in the coupon as well as the risk-free rate and

become zero for c/100 approaching r. For positive RRA coefficients, the relation

between ∆B∗
i and i is positive. Second, we regard the price jumps for above par

equilibrium prices (c/100 > r) in the middle and lower graph on the right-hand

side. Price jumps are increasing in the coupon, decreasing in the risk-free rate,

and become zero for c/100 approaching r. For a sufficiently high RRA coefficient

and coupon, respectively low risk-free rate, the relation between ∆B∗
i and i is

positive.

3.4 Valuation under Perfect Foresight

3.4.1 Model Setup and Assumptions

As a benchmark to the fully specified dynamic equilibrium model derived in

Section 3.2, we determine lottery bond prices and implied RRA coefficients in a

simple static one-decision setting under the assumption of perfect foresight.

Contrary to the dynamic framework, we assume that lottery bond prices after the
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redemption drawing are exogenous and perfectly known to agents immediately

before the drawing (perfect foresight). We consider an one-decision problem at a

point in time (T − i)cum, ∀i ∈ N, 1 ≤ i < T , for a representative investor with

a state-independent power utility function and investment horizon ε maximizing

his terminal wealth at (T − i)ex, shortly after the drawing. The agent optimally

distributes his wealth at (T−i)cum among the lottery bond series and the risk-free

instrument.

The investor has to consider two disjoint states of the world: d and n. In state

d, realized with the objective probability pi, the agent receives the redemption

payment vd
i defined in Equation (3.12). In state n, realized with the objective

probability (1−pi), the agent holds a series which has not been drawn and is still

traded. The series is directly sold, and the cash flow, given that the series is not

drawn, specifies

vn
i = B(T−i)ex . (3.33)

Throughout this section, the lottery bond price B(T−i)ex is assumed to be

exogenous and restricted to values within the no-arbitrage bounds defined by

Inequalities (3.17). Perfect foresight implies that B(T−i)ex is already known before

the redemption lottery at (T − i)cum. However, note that before the lottery, the

investor does not know whether his series is drawn or not.

3.4.2 Perfect Foresight Prices and RRA Coefficients

We focus on the investor’s utility maximization problem under perfect foresight

at (T − i)cum, ∀i ∈ N, 1 ≤ i < T , characterized by the following expression:

max
x(T−i)cum

E(T−i)cum

[
u
(
ws

(T−i)ex

)]
= (3.34)

max
x(T−i)cum

{
pi · u

(
wd

(T−i)ex

)
+ (1 − pi) · u

(
wn

(T−i)ex

)}
,
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where ws
(T−i)ex is the investor’s terminal wealth at (T − i)ex in either state d or

n and x(T−i)cum is the proportion of wealth at (T − i)cum invested in the lottery

bond.

Expression (3.34) is maximized subject to the investor’s budget constraint

resulting in the following characterization of wealth at (T − i)ex

ws
(T−i)ex = w(T−i)cum ·

(
x(T−i)cum · vs

i

B(T−i)cum
+
(
1 − x(T−i)cum

) · (1 + r)ε

)
. (3.35)

The first order condition of the general utility maximization problem (3.34) to

(3.35) with respect to the portfolio composition x(T−i)cum is

∂E(T−i)cum

[
u
(
ws

(T−i)ex

)]
∂x(T−i)cum

!
= 0 ⇔

pi · u′
(
wd

(T−i)ex

)
·
(

vd
i

B(T−i)cum
− (1 + r)ε

)
+

(1 − pi) · u′
(
wn

(T−i)ex

)
·
(

B(T−i)ex

B(T−i)cum
− (1 + r)ε

)
= 0 for γ �= 0.

We assume that the lottery bond is in unit-net supply. Solving the first order

condition with x(T−i)cum ≡ 1 for B(T−i)cum , we obtain the perfect foresight price

Bf
(T−i)cum =

pi ·
(
vd

i

)1−γ
+ (1 − pi) ·

(
B(T−i)ex

)1−γ

pi ·
(
vd

i

)−γ
+ (1 − pi) ·

(
B(T−i)ex

)−γ · 1

(1 + r)ε for γ �= 0. (3.36)

The perfect foresight price Bf
(T−i)cum is a function of (i) the RRA coefficient γ,

(ii) the coupon c, (iii) the redemption value R, (iv) the risk-free rate r, (v) the

redemption probability pi, and (vi) the exogenous ex-day price B(T−i)ex .
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For γ = 0, Equation (3.36) is not defined but can be complemented by the risk-

neutral price under perfect foresight,

Be,f
(T−i)cum = pi · vd

i + (1 − pi) · vn
i ,

such that Bf
(T−i)cum is continuous and differentiable in γ. Furthermore, Equation

(3.36) simplifies to the equilibrium pricing Equation (3.9) for i equal to one and

B(T−1)ex equal to vn
1 defined in Equation (3.1).

For a reasonable choice of B(T−i)ex , the relation between the perfect foresight

price Bf
(T−i)cum and γ is strictly monotonic decreasing, and Equation (3.36) is a

one-to-one mapping of the cum-price to the RRA coefficient. Solving Equation

(3.36) at a fixed arbitrage-free price B(T−i)cum for γ, we obtain the implied RRA

coefficient

γ = −
log

[�
1
pi

−1
�
·
�

B(T−i)cum−B(T−i)ex

(1+r)ε

�

vd
i

(1+r)ε
−B(T−i)cum

]

log
[

vd
i

B(T−i)ex

] . (3.37)
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Appendix to Chapter 3

A.3.1 Comparative Statics for Optimal Portfolio Compo-

sition with respect to RRA Coefficient

We analytically derive the relation between the optimal portfolio composition

x∗
cum and the RRA coefficient γ by considering the partial derivative of Equation

(3.8) with respect to γ:

∂x∗
cum

∂γ
= Bcum ·

(
vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

) 1
γ

·
(

vd
1

(1+r)ε − vn
1

(1+r)ε

)
· log

[
vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

]
⎛
⎝( vn

1

(1+r)ε − Bcum

)
·
⎛
⎝1 +

(
vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

) 1
γ
−1
⎞
⎠
⎞
⎠

2

· γ2

(3.38)

for γ �= 0. The denominator of the second product term of Equation (3.38) is

positive for Bcum located inside the no-arbitrage bounds defined by Inequalities

(3.2). Since we are interested in the sign of the partial derivative, we neglect the

first product term and the denominator and focus on the numerator of the second

product term, which is equal to

⎛
⎝ vn

1

(1+r)ε − Bcum

Bcum − vd
1

(1+r)ε

⎞
⎠

1
γ

·
(

vd
1

(1 + r)ε − vn
1

(1 + r)ε

)
· log

⎡
⎣ vn

1

(1+r)ε − Bcum

Bcum − vd
1

(1+r)ε

⎤
⎦ . (3.39)

69
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Applying the no-arbitrage bounds characterized by Inequalities (3.2), we obtain

the following relation between the lottery bond price Bcum and the present value

terms vs
1, s ∈ {d, n}. For vd

1 > vn
1 , the relations specify

Bcum < max

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
=

vd
1

(1 + r)ε (3.40)

Bcum > min

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
=

vn
1

(1 + r)ε ,

and, for vd
1 < vn

1 , the relations specify

Bcum < max

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
=

vn
1

(1 + r)ε (3.41)

Bcum > min

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
=

vd
1

(1 + r)ε .

The first product term of Expression (3.39) is positive, as
vn
1

(1+r)ε − Bcum and

Bcum − vd
1

(1+r)ε have identical signs. Therefore, the second and third product term

characterize the sign of Equation (3.39).

We distinguish two cases and analyze positive and negative RRA coefficients

separately.

Case 1 We consider a risk-averse investor with γ > 0.

A risk-averse investor is willing to pay at most Be
cum = 1

2
· ( vd

1

(1+r)ε +
vn
1

(1+r)ε ) for the

lottery bond. For γ > 0, the following limit on Bcum holds

Bcum <
1

2
·
(

vd
1

(1 + r)ε +
vn

1

(1 + r)ε

)
. (3.42)
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Rearranging Inequality (3.42) and employing Inequalities (3.40) and (3.41), we

obtain

vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

< 1 if vd
1 > vn

1

vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

> 1 if vd
1 < vn

1 .

Hence, if the second product term within Expression (3.39) is positive, the log-

term is negative, as its argument is smaller than one. However, if the second

product term is negative, the log-term is positive, as its argument is larger than

one.

For γ > 0, the first product term of Expression (3.39) is positive and the second

and third product terms have opposite signs. Hence, the sign of Equation (3.38)

is negative, and we obtain ∂x∗
cum/∂γ < 0, ∀γ > 0.

Case 2 We consider a risk-seeking investor with γ < 0.

A risk-seeking investor is willing to pay at least Be
cum for the lottery bond. For

γ < 0, the following limit on Bcum holds

Bcum >
1

2
·
(

vd
1

(1 + r)ε +
vn

1

(1 + r)ε

)
. (3.43)

Rearranging Inequality (3.43), we obtain

vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

> 1 if vd
1 > vn

1

vn
1

(1+r)ε
−Bcum

Bcum− vd
1

(1+r)ε

< 1 if vd
1 < vn

1 .
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Hence, if the second product term within Expression (3.39) is positive, the log-

term is positive, as its argument is larger than one. However, if the second product

term is negative, also the log-term is negative, as its argument is less than one.

For γ < 0, the first product term of Expression (3.39) is positive and the second

and third product terms have identical signs. Hence, the sign of the entire fraction

is positive, and we obtain ∂x∗
cum/∂γ > 0, ∀γ < 0. �
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A.3.2 Comparative Statics for Equilibrium Price in One-

period Model Framework

A.3.2.1 Bounds for Equilibrium Price

We prove that the equilibrium lottery bond price defined in Equation (3.9) is

located within the no-arbitrage bounds characterized by Inequalities (3.2). Two

cases are distinguished, and vd
1 smaller and larger than vn

1 are analyzed separately.

Case 1 We consider vd
1 > vn

1 .

The equilibrium price B∗
cum in Equation (3.9) is defined:

B∗
cum =

(
vd

1

)1−γ
+ (vn

1 )1−γ(
vd

1

)−γ
+ (vn

1 )−γ
· 1

(1 + r)ε

First, we analyze the limit of B∗
cum for γ → +∞. The equilibrium price is

rearranged, and the value of the limit is determined. Since 0 <
vn
1

vd
1

< 1 and

lim
γ→+∞

(
vn
1

vd
1
)γ = 0, the following holds:

lim
γ→+∞

vd
1 ·
(

vn
1

vd
1

)γ

+ vn
1(

vn
1

vd
1

)γ

+ 1
· 1

(1 + r)ε =
vn

1

(1 + r)ε (3.44)

Second, we take the limit of B∗
cum for γ → −∞. The equilibrium price is

rearranged, and the value of the limit is determined. Since
vd
1

vn
1

> 1 and
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lim
γ→−∞

(
vd
1

vn
1
)γ = 0, the following holds:

lim
γ→−∞

vd
1 + vn

1 ·
(

vd
1

vn
1

)γ

1 +
(

vd
1

vn
1

)γ · 1

(1 + r)ε =
vd

1

(1 + r)ε (3.45)

Case 2 We consider vd
1 < vn

1 .

First, we take the limit of B∗
cum for γ → +∞. The equilibrium price is rearranged,

and the value of the limit is determined. Since 0 <
vd
1

vn
1

< 1 and lim
γ→+∞

(
vd
1

vn
1
)γ = 0,

the following holds:

lim
γ→+∞

vd
1 + vn

1 ·
(

vd
1

vn
1

)γ

1 +
(

vd
1

vn
1

)γ · 1

(1 + r)ε =
vd

1

(1 + r)ε (3.46)

Second, we take the limit of B∗
cum for γ → −∞. The equilibrium price is

rearranged, and the value of the limit is determined. Since
vn
1

vd
1

> 1 and

lim
γ→−∞

(
vn
1

vd
1
)γ = 0, the following holds:

lim
γ→−∞

vd
1 ·
(

vn
1

vd
1

)γ

+ vn
1(

vn
1

vd
1

)γ

+ 1
· 1

(1 + r)ε =
vn

1

(1 + r)ε (3.47)

As we show in Appendix A.3.2.2, the equilibrium price B∗
cum is strictly monotonic

decreasing in γ. Hence, the limit of B∗
cum for γ → −∞ is an upper bound, and

the limit for γ → +∞ is a lower bound on the equilibrium price. Considering
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Expressions (3.44) to (3.47), the bounds for B∗
cum specify:

min

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]
< B∗

cum < max

[
vd

1

(1 + r)ε ,
vn

1

(1 + r)ε

]

�

A.3.2.2 Comparative Statics with respect to RRA Coefficient

We analytically derive the relation between the equilibrium lottery bond price

B∗
cum and the RRA coefficient γ by considering the partial derivative of Equation

(3.9) with respect to γ:

∂B∗
cum

∂γ
= −

(
vd

1 − vn
1

) · (log
[
vd

1

]− log [vn
1 ]
)

((
vd

1

)γ
+ (vn

1 )γ)2 ·
(
vd

1

)γ · (vn
1 )γ

(1 + r)ε for γ �= 0 (3.48)

We assume that the risk-free rate r and the present value terms vs
1, s ∈ {d, n},

are positive. Because we are only interested in the sign of the partial derivative,

we neglect the positive denominator of the first product term as well as the entire

second product term and focus on the numerator of the first fraction which is

equal to

− (vd
1 − vn

1

) · (log
[
vd

1

]− log [vn
1 ]
)
. (3.49)

If (vd
1 − vn

1 ) is positive, the second product term within Expression (3.49) is

positive. If (vd
1 − vn

1 ) is negative, the second product term is negative. Hence, for

vd
1 �= vn

1 , Expression (3.49) is negative resulting in a negative sign of Equation

(3.48). We obtain ∂B∗
cum

∂γ
< 0, ∀γ �= 0. �
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A.3.3 Derivation of Indirect Utility Functions

A.3.3.1 Indirect Utility Function at (T − i)ex

We subsequently show that equality

J(T−i)ex

(
wn

(T−i)ex

)
= max

x(T−i)ex

{
J(T−i+1)cum

(
wn

(T−i+1)cum

)}
(3.50)

holds, where J(T−i)ex(·) and J(T−i+1)cum(·) are given by Equations (3.21) and (3.27)

respectively.

We evaluate the right-hand side of Equation (3.50). The expression is maximized

subject to the investor’s budget constraint resulting in the characterization of

wealth wn
(T−i+1)cum defined in Equation (3.26).

Substituting the wealth expression wn
(T−i+1)cum and the market clearing condition

x(T−i)ex ≡ 1 into the right-hand side of Equation (3.50), we obtain the solution

of the maximization problem given by

1

i
·
(

wn
(T−i)ex ·

(
B∗

(T−i+1)cum + Ci−1

B∗
(T−i)ex

))1−γ

· a(T−i+1)cum(
B∗

(T−i+1)cum

)1−γ . (3.51)

Rearranging Expression (3.51), we obtain

1

i
·
(
wn

(T−i)ex

)1−γ

·
(

1 +
Ci−1

B∗
(T−i+1)cum

)1−γ

· a(T−i+1)cum(
B∗

(T−i)ex

)1−γ . (3.52)

Reverting to the expressions a(T−i)ex and a(T−i+1)cum defined in Equations (3.22)

and (3.28) and employing the term y(T−i+1)cum defined in Equation (3.23), the
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following is a straightforward result:

a(T−i)ex =
(
y(T−i+1)cum

)1−γ · a(T−i+1)cum (3.53)

Hence, substituting (y(T−i+1)cum)1−γ · a(T−i+1)cum with a(T−i)ex , Expression (3.52)

simplifies to

1

i
·
(
wn

(T−i)ex

)1−γ

· a(T−i)ex(
B∗

(T−i)ex

)1−γ , (3.54)

which is equal to the indirect utility function J(T−i)ex(wn
(T−i)ex) defined in Equation

(3.21). �

A.3.3.2 Indirect Utility Function at (T − i + 1)cum

We subsequently show that equality

J(T−i+1)cum

(
wn

(T−i+1)cum

)
=

max
x(T−i+1)cum

{
p(i−1) · u

(
wd

(T−i+1)ex · (1 + r)i−1+δ
)

+ (3.55)

(
1 − p(i−1)

) · J(T−i+1)ex

(
wn

(T−i+1)ex

)}

holds, where J(T−i+1)cum(·) is given by Equation (3.27).

We evaluate the right-hand side of Equation (3.55). The expression is maximized

subject to the investor’s budget constraint resulting in the characterization of
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wealth ws
(T−i+1)ex , s ∈ {d, n} which is defined21

wd
(T−i+1)ex = wn

(T−i+1)cum ·
(

x
(T−i+1)cum · vd

(i−1)

B(T−i+1)cum
+
(
1 − x

(T−i+1)cum

)
· (1 + r)ε

)
,

wn
(T−i+1)ex = wn

(T−i+1)cum ·
(

x
(T−i+1)cum · B∗

(T−i+1)ex

B(T−i+1)cum
+
(
1 − x

(T−i+1)cum

)
· (1 + r)ε

)
.

The functional form of the indirect utility function J(T−i+1)ex(·) and the term

a(T−i+1)ex are given by22

J(T−i+1)ex

(
wn

(T−i+1)ex

)
=

1

(i − 1)
·
(
wn

(T−i+1)ex

)1−γ

· a(T−i+1)ex(
B∗

(T−i+1)ex

)1−γ ,

a(T−i+1)ex ≡
i−2∑
j=1

u

(
vd

j · (1 + r)j+δ ·
i−2∏
k=j

y(T−k)cum

)
+

u

(
vn

1 · (1 + r)1+δ ·
i−2∏
k=1

y(T−k)cum

)
.

Substituting the wealth expressions ws
(T−i+1)ex and the market clearing condition

x(T−i+1)cum ≡ 1 into the right-hand side of Equation (3.55), we obtain the solution

21 The wealth terms ws
(T−i+1)ex correspond to the time adjusted terms defined in Equation

(3.20).

22 The terms J(T−i+1)ex(·) and a(T−i+1)ex correspond to the time adjusted terms defined in
Equations (3.21) and (3.22).
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of the maximization problem given by

p(i−1) ·

(
wn

(T−i+1)cum · vd
(i−1)

·(1+r)i−1+δ

B∗
(T−i+1)cum

)1−γ

1 − γ
+ (3.56)

(
1 − p(i−1)

) · 1

i − 1
·
(

wn
(T−i+1)cum · B∗

(T−i+1)ex

B∗
(T−i+1)cum

)1−γ

· a(T−i+1)ex(
B∗

(T−i+1)ex

)1−γ .

Substituting p(i−1) = 1
i

and rearranging Expression (3.56), we obtain

1

i
·
(
wn

(T−i+1)cum

)1−γ

·
(vd

(i−1)
·(1+r)i−1+δ)

1−γ

1−γ
+ a(T−i+1)ex(

B∗
(T−i+1)cum

)1−γ . (3.57)

Reverting to a(T−i+1)cum defined in Equation (3.28) and the term a(T−i+1)ex , the

following is a straightforward result:

a(T−i+1)cum =

(
vd

(i−1) · (1 + r)i−1+δ
)1−γ

1 − γ
+ a(T−i+1)ex (3.58)

Hence, substituting the right-hand side of Equation (3.58) with a(T−i+1)cum ,

Expression (3.57) simplifies to

1

i
·
(
wn

(T−i+1)cum

)1−γ

· a(T−i+1)cum(
B∗

(T−i+1)cum

)1−γ , (3.59)

which is equal to the indirect utility function J(T−i+1)cum(wn
(T−i+1)cum) defined in
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Equation (3.27). �
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A.3.4 Derivation of Bounds for Equilibrium Ex-day Price

Behavior

We derive bounds for the equilibrium ex-day price behavior ∆B∗
i defined in

Equation (3.30). Two cases are distinguished, and c/R < r and c/R > r are

analyzed separately.

Case 1 We consider c/R < r.

First, we derive bounds for B∗
(T−i)cum . The general bounds are given by

Inequalities (3.15). It is unfavorable not to be drawn in the redemption lotteries,

and the supremum equilibrium price is equal to vn
i,1/(1+ r)ε corresponding to the

respective price of a straight coupon bond. However, it is favorable to be drawn

in the earliest redemption lottery, and the infimum equilibrium price is equal to

vd
i /(1 + r)ε.

Hence, if c/R < r, the bounds for B∗
(T−i)cum simplify to

vn
i,1

(1 + r)ε < B∗
(T−i)cum <

vd
i

(1 + r)ε . (3.60)

The present value terms vd
i and vn

i,1, defined in Equations (3.12) and (3.13), specify

vd
i =

R + c

(1 + r)δ
, (3.61)

vn
i,1 =

i−1∑
k=0

c

(1 + r)k+δ
+

R + c

(1 + r)i+δ
.

Second, we derive bounds for B∗
(T−i)ex . The general bounds are given by

Inequalities (3.17). Analogously, it is unfavorable not to be drawn in the

redemption lotteries, and the infimum equilibrium price is equal to vn
i,1, which
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corresponds to the respective price of a straight coupon bond. However, it is

favorable to be drawn in the earliest redemption lottery, and the supremum

equilibrium price is equal to vd
i,(i−1).

Hence, if c/R < r and i > 1, the bounds for B∗
(T−i)ex simplify to

vn
i,1 < B∗

(T−i)ex < vd
i,(i−1). (3.62)

For i = 1, the equilibrium price B∗
(T−1)ex is deterministic and equal to vn

1 .

The present value term vd
i,(i−1) specifies

vd
i,(i−1) =

c

(1 + r)δ
+

R + c

(1 + r)1+δ
. (3.63)

We focus on the bounds for the equilibrium ex-day price behavior ∆B∗
i . The

comparative static results for equilibrium lottery bond prices at cum-dates in

Figure 3.8 show that prices are strictly monotonic decreasing in γ. In addition,

it can be numerically shown that, for c/R �= r, the following holds:

∂B∗
(T−i)cum

∂γ
<

∂
B∗

(T−i)ex

(1+r)ε

∂γ
< 0

Hence, it is sufficient to evaluate Equation (3.30) firstly at the infimum

equilibrium prices and secondly at the supremum equilibrium prices defined by

Inequalities (3.60) and (3.62). The smaller result is equal to the lower bound on

∆B∗
i , while the larger result is equal to the upper bound.

In the following, we regard ∆B∗
i at infimum equilibrium prices:

inf
[
B∗

(T−i)ex

]
(1 + r)ε − inf

[
B∗

(T−i)cum

]



Appendix to Chapter 3 83

Evaluating the infimum expressions, we obtain

vn
i,1

(1 + r)ε − vn
i,1

(1 + r)ε = 0. (3.64)

Next, we regard ∆B∗
i at supremum equilibrium prices:

sup
[
B∗

(T−i)ex

]
(1 + r)ε − sup

[
B∗

(T−i)cum

]

Evaluating the supremum expressions, we obtain

vd
i,(i−1) − vd

i

(1 + r)ε (3.65)

simplifying to

R+c
1+r

− R

(1 + r)ε+δ
. (3.66)

For c/R < r, Equation (3.66) is negative such that the no-arbitrage bounds for

∆B∗
i specify

vd
i,(i−1) − vd

i

(1 + r)ε < ∆B∗
i < 0. (3.67)

Case 2 We consider c/R > r.

First, we derive bounds for B∗
(T−i)cum . It is unfavorable to be drawn in the earliest
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redemption lottery, and the infimum equilibrium price is equal to vd
i /(1 + r)ε.

However, it is favorable not to be drawn in the redemption lotteries, and the

supremum equilibrium price is equal to vn
i,1/(1 + r)ε.

Hence, if c/R > r, the bounds for B∗
(T−i)cum simplify to

vd
i

(1 + r)ε < B∗
(T−i)cum <

vn
i,1

(1 + r)ε . (3.68)

Second, we derive bounds for B∗
(T−i)ex . Analogously, it is unfavorable to be drawn

in the earliest redemption lottery, and the infimum equilibrium price is equal to

vd
i,(i−1). However, it is favorable not to be drawn in the redemption lotteries, and

the supremum equilibrium price is equal to vn
i,1.

Hence, if c/R > r and i > 1, the bounds for B∗
(T−i)cum simplify to

vd
i,(i−1) < B∗

(T−i)cum < vn
i,1. (3.69)

We focus on the bounds for ∆B∗
i . Again, it is sufficient to evaluate Equation

(3.30) firstly at the infimum equilibrium prices and secondly at the supremum

equilibrium prices defined by Inequalities (3.68) and (3.69).

We evaluate ∆B∗
i at infimum equilibrium prices and obtain

vd
i,(i−1) − vd

i

(1 + r)ε . (3.70)

Next, we evaluate ∆B∗
i at supremum equilibrium prices and obtain

vn
i,1

(1 + r)ε − vn
i,1

(1 + r)ε = 0. (3.71)



Appendix to Chapter 3 85

For c/R > r, Equation (3.70) is positive such that the no-arbitrage bounds for

∆B∗
i specify

0 < ∆B∗
i <

vd
i,(i−1) − vd

i

(1 + r)ε . (3.72)

Note that, for c/R approaching r, the present value terms vd
i,j and vn

i,1 converge,

and the economy is free of redemption risk. Therefore, the equilibrium lottery

bond prices approach the prices of straight coupon bonds, and the equilibrium

ex-day price behavior B∗
i becomes zero. �
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Chapter 4

Descriptive Data Analysis

4.1 German Redemption Lottery Bonds

4.1.1 Basic Characteristics

The empirical study covers the period from January 1974 until December 1987.

The analysis starts in 1974, when daily bond price data become available. It ends

in 1987, since the last lottery of the considered issuer groups was conducted in

that year.

We focus on lottery bonds issued by the Federal Republic of Germany (FRG),

German states (GS), and government-owned enterprises (GE). The issuer

structure within these groups is assumed to be sufficiently homogeneous with

respect to credit risk, taxation, and liquidity. Bond issues by the FRG and

GE are presumably free of credit risk. The bonds of the Deutsche Bundesbahn

and the Deutsche Bundespost have been state-guaranteed. The guarantees are

specified in paragraph 2(2) of the Poststrukturgesetz as of June 8, 19891 and

paragraph 3(2) of the Bundesbahngesetz as of December 13, 19512 and were in

place for the entire period of our analysis. Bond issues by GS are assumed to

1 See e. g. Fangmann et al. (1990), pp. 39.

2 See e. g. Finger (1982), pp. 75.

87



88

contain only limited credit risk. However, term structures of interest rates are

determined separately for the FRG, GS, and GE issuer segments. We disregard

bond issues by German municipalities, financial agencies, and supranational

institutions. Financial agencies as well as German municipalities may contain

non-negligible credit risk, and the segment of supranational institutions is rather

illiquid.

To ensure the homogeneity of our dataset, we consider only lottery bonds denoted

in German Mark paying fixed, non-zero, and regularly taxed coupons. Table 2.1 in

Section 2.3 showed that a total of 110 lottery bonds were issued by the FRG, GS,

and GE. Altogether, 15 bonds are excluded because they matured before 1974.

Ten lottery bonds from GS are excluded because of non-standard redemption

lotteries due to either the exercise of early or increased redemption options or

by irregularities in the redemption plan.3 Lastly, two lottery bonds by the FRG

(WKN 110002, 110003) are excluded because price data could not be obtained.

Hence, our dataset contains 83 lottery bonds for which data are available. For

these issues, 483 redemption lotteries were played. Table 4.1 compiles the sample

of lottery bonds segmented by issuer groups.

For our empirical study, we collected detailed data on German lottery bond

characteristics. The data were obtained from Deutsche Finanzdatenbank

(DFDB)4 and Hoppenstedt Rentenführer5. Table 4.2 gives an overview of the

basic lottery bond characteristics segmented by issuer groups. The importance

of the lottery bond indenture as an instrument of the FRG, GS, and GE bond

issues decreased over time. Figure 2.4 indicated that the FRG issued its last

lottery bond in 1965, and GS and GE issued their last lottery bonds in 1973

and 1972, respectively. Daily bond price data do not become available until 1974

such that we disregard lotteries drawn beforehand. The mean nominal volume per

issue is DEM 392.86 million for FRG lottery bonds, DEM 114.45 million for GS

bonds, and DEM 241.90 million for GE bonds included in our sample. The range

is largest for GS, where the state of Saarland has the lowest mean volume per

3 See Table 4.4, Note c, and Table 4.5, Notes a and b, for further details on the excluded
bonds.

4 For further information on the DFDB, see Bühler et al. (1993).

5 See Hoppenstedt (1974–1987).
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Table 4.1: Lottery Bond Issuers

This table reports the number of lottery bonds issued by the Federal
Republic of Germany, German states, and government enterprises as
well as the number of lotteries related to these bonds.

Issuers Bonds Lotteries

Federal Republic of Germany 7 27

German States 55 361
Baden-Württemberg 3 18
Bavaria 4 35
Berlin 5 35
Bremen 3 26
Hamburg 4 28
Hesse 3 24
Lower Saxony 9 57
North Rhine-Westphalia 1 3
Rhineland-Palatinate 9 58
Saarland 8 51
Schleswig-Holstein 6 26

Government Enterprises 21 95
Deutsche Bundesbahn 10 46
Deutsche Bundespost 11 49

Total 83 483

issue of DEM 65.63 million and the state of Bavaria has the highest mean volume

per issue of DEM 240.00 million. During the same period (until 1973), straight

bonds have slightly higher mean nominal volumes per issue of DEM 437.83 million

for FRG bonds, DEM 167.67 million for GS bonds, and DEM 293.75 million for

GE bonds.

Lottery bonds were long term debt contracts with maturities between ten to 25

years and an average maturity of 16.37 years. About one third of the lottery bonds

paid annual coupons, and the remainder paid coupons semi-annually. Coupon

rates ranged from 5% to 9% and averaged 6.55%.

4.1.2 Redemption Features

Each lottery bond contained a redemption schedule specifying the lottery dates,

repayment dates, the number of series to be redeemed, and the redemption

values. Tables 4.3 and 4.4 detail the composition of lottery bonds regarding these
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Table 4.2: Basic Lottery Bond Characteristics

This table shows descriptive statistics for the basic lottery bond
characteristics of issues by the Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE). The first column
reports the characteristics. The second to fourth columns report the
absolute frequencies for bonds. The fifth to seventh columns report the
absolute frequencies for lotteries.

Characteristics Bonds Lotteries

FRG GS GE FRG GS GE

Issue Years
1958 to 1960 0 6 6 0 28 36
1961 to 1965 7 15 13 27 65 47
1966 to 1970 0 19 1 0 151 9
1971 to 1973 0 15 1 0 117 3

Issue Volume (mDEM)
< 50 0 4 0 0 19 0
50 to < 100 0 14 0 0 76 0
100 to < 200 0 28 3 0 195 15
200 to < 300 0 8 14 0 62 60
300 to < 400 2 1 1 5 9 3
400 to 500 5 0 3 22 0 17

Maximum Maturity (years)
10 to < 15 3 32 9 7 209 19
15 to < 20 4 20 10 20 132 58
20 to 25 0 3 2 0 20 18

Coupon Frequency
Annual 5 18 6 17 133 23
Semi-annual 2 37 15 10 228 72

Coupon Rate
5 to < 6 0 4 7 0 21 36
6 to < 7 6 25 12 24 146 52
7 to < 8 1 15 1 3 106 4
8 to 9 0 11 1 0 88 3
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Table 4.3: Redemption Features I

This table shows descriptive statistics for the redemption features
of lottery bonds issued by the Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE). The first column
shows the features. The second to fourth columns report the absolute
frequencies for bonds. The fifth to seventh columns report the absolute
frequencies for lotteries.

Redemption Features Bonds Lotteries

FRG GS GE FRG GS GE

Redemption Value
Par − − − 27 336 95
Above Par − − − 0 25 0

Redemption Frequency
Annual 2 50 15 10 345 80
Biennial 5 5 6 17 16 15

Lag between Issuance and First Lottery (years)
3 to < 5 0 7 1 0 53 3
5 to < 6 2 29 10 10 190 46
6 to < 10 2 16 4 5 101 8
10 to 12 3 3 6 12 17 38

Lag between Lottery and Redemption (days)
< 100 − − − 2 39 10
100 to < 110 − − − 19 101 76
110 to < 130 − − − 6 153 9
130 to < 150 − − − 0 47 0
150 to 200 − − − 0 21 0

redemption features. All redemption lotteries by the FRG and GE and about 90%

of the lotteries by GS were redeemed at par. The remaining GS lotteries were

redeemed at either 101, 102, or 103. Redemption lotteries were conducted on

an annual or a biennial basis. More than 70% of the lottery bonds by the FRG

had biennial drawings, whereas more than 90% of the lotteries by GS and more

than 70% of the lotteries by GE were conducted annually. After issuance, three

to twelve years passed until the first redemption lottery was played. The average

lag between issuance and the first drawing was 6.61 years. The lag between the

lottery and the redemption payments ranged from 68 to 186 calendar days and

averaged 115 days.

The majority of the lottery bonds was split into five to 15 series, and the average

bond was composed of twelve series. At each redemption date, one series was
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Table 4.4: Redemption Features II

This table shows descriptive statistics for further redemption features
of lottery bonds issued by the Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE). The first column
reports the feature. The second to fourth columns report the absolute
frequencies for bonds. The fifth to seventh columns report the absolute
frequencies for lotteries.

Redemption Features Bonds Lotteries

FRG GS GE FRG GS GE

Number of Seriesa
3 to < 5 0 2 1 0 5 3
5 to 9 5 8 6 17 31 15
10 1 35 5 2 268 18
11 to 15 1 6 8 8 31 55
16 to 20 0 2 1 0 15 4
100 0 2 0 0 11 0

Redemption Probabilities
1/2 − − − 7 55 21
1/3 − − − 7 52 19
1/4 − − − 5 51 15
1/5 − − − 4 45 12
1/6 − − − 1 39 8
1/7 − − − 1 37 6
1/8 − − − 1 33 6
1/9 − − − 1 29 5
1/10 − − − 0 20 3
< 1/10 − − − 0 (6)b 0
Irregular − − − 0 (8)c 0

a For three lottery bonds, more than one series is regularly redeemed. The

issues by the state of Hamburg (WKN 136510, 136511) consisted of 100

series that were redeemed in 12 and 15 stages, respectively. The issue by

the Deutsche Bundesbahn (WKN 115003) consisted of 20 series that were

redeemed in 14 stages.
b Six lottery observations of two bond issues by the state of Bavaria (WKN

105024, 105025) with redemption probabilities below 1/10 are excluded to

simplify our analysis.
c One lottery bond (eight lotteries) by the state of Schleswig-Holstein (WKN

179005) is excluded because of non-standard redemption probabilities caused

by irregularities in the redemption plan.
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drawn by lottery and repaid. Only two lottery bonds by GS were amortized in

more than 15 stages.6

Since all series of one bond issue were approximately of the same size, the

redemption probabilities can easily be determined by calculating the ratio of

the actual number of redeemed series to the total number of outstanding series.

Within the empirical analysis, we consider the first nine redemption probabilities

(1/2 to 1/10). Lotteries with higher probabilities appear more frequently, since

lottery bonds were issued between 1958 and 1973, and we disregard lotteries

before 1974. To clarify, we consider a typical lottery bond issued in 1965.

The bond was divided into ten series of equal size. After five redemption-free

years, the lottery bond was redeemed by ten annual lotteries. Hence, only

the redemption lotteries with probabilities 1/2 to 1/6 are included. Lotteries

with lower probabilities are disregarded as they were conducted before 1974 and

daily lottery bond prices are not available. Next, we focus on the distribution

of redemption lotteries over time. Figure 4.1 depicts the absolute frequency of

lotteries per drawing year segmented by the nine redemption probabilities. The

histograms illustrate the varying distribution of lottery dates. The higher the

redemption probability, the more recent the mean lottery date and the larger the

range of lottery dates. For probability 1/2, lottery dates range from 1974 to 1987

with a standard deviation of 1,140 days, whereas, for probability 1/10, lottery

dates range from 1974 to 1979 with a standard deviation of only 601 days.

Apart from the scheduled redemption by lottery, most of the indentures contained

early or increased redemption options. Table 4.5 compiles these embedded

options. About 75% of the lottery bond indentures in our sample are equipped

with an embedded issuer call option. However, only two call features out of 64

were exercised by GS within the period of our empirical analysis.7 As already

mentioned, the restrictive call policy of the FRG, GS, and GE is consistent with

the findings of Bühler and Schulze (1993, 1999), who analyze issuer call features

for straight FRG and GE bonds. More than 70% of the lottery bond indentures

are equipped with increased redemption provisions. Out of the 66 lottery bond

6 One issue by the state of Bavaria (WKN 105024) was redeemed in 16 stages, and one issue
by the state of Lower Saxony (WKN 159011) was redeemed in 20 stages.

7 For details on issues that exercised the call feature, see Table 4.5, Note a.
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Figure 4.1: Lottery Years

This figure shows the absolute frequency of lotteries per drawing year
segmented by redemption probabilities.
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Table 4.5: Redemption Options

This table shows the descriptive statistics for early or increased
redemption options of lottery bonds issued by the Federal Republic
of Germany (FRG), German states (GS), and government enterprises
(GE). The first column reports the redemption option. The second to
fourth columns show the absolute frequencies for bonds. The fifth to
seventh columns show the absolute frequencies for lotteries.

Redemption Options Bonds Lotteries

FRG GS GE FRG GS GE

Issuer Call Feature
Not Callable 0 20 1 0 142 3
Callable, but Not Exercised 7 35 20 27 219 92
Callable and Exercised 0 (2)a 0 0 (3)a 0

Increased Redemption Provision
Not Possible 0 23 1 0 172 3
Possible, but Not Exercised 7 32 20 27 189 92
Possible and Exercised 0 (7)b 0 0 (32)b 0

Open Market Repurchases
No Offsetting 7 42 21 27 289 95
Offsetting, but Not Exercised 0 13 0 0 72 0
Offsetting and Exercised (1)c 0 0 0 0 0

a Two lottery bond issues (three lotteries) are excluded from the dataset because the

embedded call feature was exercised. A first issue by the state of Bremen (WKN

108010) was called on April 1, 1977, and a second issue also by the state of Bremen

(WKN 108012) was called before its first lottery on July 1, 1978.
b Seven lottery bond issues (32 lotteries) are excluded from the dataset because

increased redemption provisions were exercised: (i) within the bond indenture

by the state of Baden-Württemberg (WKN 104011), three additional series were

redeemed on November 2, 1978, (ii) within the bond indenture by the state of

Bavaria (WKN 105023), one additional series was redeemed on April 1, 1978, (iii)

within the bond indenture by the state of Hamburg (WKN 136512), one additional

series was redeemed on November 1, 1978, (iv) within the bond indenture by the

state of Hesse (WKN 138003), one additional series was redeemed on July 1, 1978,

(v-vii) the state of Schleswig-Holstein exercised increased redemption provisions

for three issues. Within a first bond indenture (WKN 179010), three additional

series were redeemed on August 1, 1978, within a second bond indenture (WKN

179011), two additional series were redeemed on April 1, 1978, and within a third

bond indenture (WKN 179012), one additional series was redeemed on April 1,

1978.
c One bond indenture issued in 1990 by the FRG (WKN 117018, DEM-

Fundierungsschuld) is excluded because the issuer used the privilege to repurchase

bonds in the open market to fulfill its redemption requirements. However, the

indenture is classified as a sinking fund rather than a redemption lottery bond,

since the issuer used the option to either call series by lottery or purchase the

required quantity of redeemable bonds in the open market.
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issues that allowed for increased redemption, seven provisions were exercised by

GS.8 All of the early and increased redemption options were employed between

1977 and 1978, when interest rates were at a historical low. Lastly, about 13

lottery bond indentures by GS are equipped with the option to purchase bonds in

the open market to offset redemption drawings. All but one of the options allowed

for offsetting only when the respective series was drawn for redemption. One

issue by North Rhine-Westphalia (WKN 159501) allowed for offsetting without

restrictions. However, open market repurchases were not recorded for lottery

bonds in our sample, and repurchases are classified as a rather unimportant

redemption feature.9

During the entire period of our analysis the FRG and GE did not exercise any of

the early or increased redemption options embedded in lottery bond indentures.

Since the issuer groups refrained from exercising redemption options for several

decades, this policy evolved into a market convention. Hence, investors did not

expect the FRG or GE, which feared a loss of reputation, to deviate from their

historical redemption policies.10 However, the FRG called two straight coupon

bonds in 1978, and the exercise of early or increased redemption options was

recorded for eight lottery bonds by GS between 1977 and 1978. Within the

subsequent empirical analysis, we account for the early and increased redemption

options by focusing on clean bond prices quoting below the discounted redemption

value. We assume that these prices are not influenced by the out-of-the-money

redemption options. A total of 18 lottery bonds (130 lotteries) by GS and one

issue (three lotteries) by GE do not contain early or increased redemption options.

These lottery bonds will be used as a control group to test for possible biases

caused by redemption options.

8 For details on issues that exercised increased redemption provisions, see Table 4.5, Note b.

9 One bond issue by the FRG repurchased bonds in the open market to fulfill redemption
requirements. However, the bond is of the sinking fund type and was issued 17 years after the
last lottery bond. See Table 4.5, Note c.

10 See Bühler and Schulze (1999), pp. 248.
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4.1.3 Official Market Prices

German lottery bonds and straight coupon bonds were traded on organized

exchanges and over-the-counter. Our empirical analysis is based on bond market

prices (amtlicher Kurs) fixed once each trading day by official exchange brokers at

organized exchanges such as the Frankfurt Stock Exchange.11 Based on the order

book, the brokers determined the official market price in line with the principle

of maximum execution. The principle ensured the maximum daily turnover of

the bond at the exchange. All orders received during the trading day had to be

included when fixing the price.

Brokers marked prices with an addendum that characterized to which extent

orders were executed.12 The addenda specified whether: (i) all orders could be

executed and markets cleared, (ii) buy or sell orders could not be entirely executed

such that there was additional demand or supply, or (iii) no trades were recorded

and only buy or sell offers existed. A price addendum also specified whether prices

were suspended due to redemption drawings. Prior to the drawings lottery bonds

were not quoted on the stock exchange and trade was suspended for on average

two trading days. According to German bond market conventions, lottery bond

contracts were settled on the second trading day after the execution such that

all trades closed before the lottery were already settled by the drawing date.13

On each trading day the official prices and price addenda were published by the

organized exchange in the official price list (amtliches Kursblatt). Daily clean

market prices and price addenda for most of the outstanding lottery bonds are

available as of January 2, 1974. The prices are restricted to changes in discrete

ticks of DEM 0.05.

Table 4.6 shows descriptive statistics for the trading activity of lottery bonds

segmented by issuer groups. The table reports the aggregate number of trading

days, the number of active trading days with positive trading volumes, and the

11 See Börsenordnung für die Frankfurter Wertpapierbörse (1987), Section V, Paragraphs 24
to 32, and Deutsche Bundesbank (2000), pp. 49, for details on the fixing of the official bond
market price.

12 See Table 4.6, Note a, for the definition of the official addenda used at price fixings.

13 See Oppermann and Degner (1983), p. 35.
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number of trading days with zero trading volume. Our dataset contains 12,953

price observations of lottery bond issues by the FRG, 122,787 prices of issues by

GS, and 35,071 prices of issues by GE. On average, each lottery bond accounts

for about 2,058 price observations.

We distinguish active trading days with positive trading volumes from days with

zero trading volume. First, we focus on days with positive trading volumes in

which the official market prices are transaction prices. The dataset contains 9,605

transaction prices from the FRG, 54,477 transaction prices from GS, and 19,169

transaction prices from GE. About 74.2% of the aggregate price observations

from the FRG, 44.4% of the prices from GS, and 54.7% of the prices from GE

are transaction prices. On more than 90% of the active trading days, all orders

were executed and markets cleared. On the remaining days, orders could only be

partially executed.

Second, we focus on days with zero trading volume. We distinguish days with

sell or buy orders only in which the official market prices are quotes from days

with cancelled or suspended quotes. The dataset contains 3,276 quotes for FRG

lottery bonds, 67,019 quotes for GS lottery bonds, and 15,554 quotes for GE

lottery bonds. On more than 97% of the days without trading activity, only buy

orders existed. It is important to note that, by order and for the account of the

bond issuer, the Deutsche Bundesbank engaged in price management operations

at organized exchanges.14 The major objective of these operations was to ensure

the liquidity of the secondary bond market. The Deutsche Bundesbank held

funds and a substantial volume of bonds for price management purposes. The

predominance of buy offers on days without trading activity documents that the

Deutsche Bundesbank was frequently engaged as a liquidity provider from the

demand side. The bank placed buy orders and guaranteed that lottery bonds

remained tradable. A further objective of the price management operations

was to establish market-related prices at the official price fixings. The Deutsche

Bundesbank frequently claimed that on trading days with zero trading volume,

14 See Barocka (1959), Bösch (1959), and Reiter (1967), pp. 397, for details on the price
management activities of the Deutsche Bundesbank in the bond market. Price management
operations for bonds issued by the Deutsche Bundesbahn were conducted by the Deutsche
Verkehrs-Kreditbank AG.
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Table 4.6: Trading Activity

This table shows descriptive statistics for the trading activity of lottery
bonds by the Federal Republic of Germany (FRG), German states
(GS), and government enterprises (GE). The second row reports the
aggregate number of trading days. The third to fifth rows report the
aggregate number of active trading days. We distinguish days on which
all orders were executed from days on which orders were only partially
executed. The sixth to tenth rows report the aggregate number of
trading days on which no trade was recorded. We distinguish days on
which only buy or sell offers were reported from days on which prices
were cancelled or suspended due to a redemption drawing.

Trading Activitya FRG GS GE

Trading Days 12, 953 122, 787 35, 071

Active Trading Daysb 9, 605 54, 477 19, 169
All Orders Executed 8, 788 51, 747 18, 055
Orders Partially Executed 817 2, 730 1, 114

Days w/ Zero Trading Volumec 3, 348 68, 310 15, 902
Buy Offers Only 3, 276 67, 018 15, 553
Sell Offers Only 0 1 1
Cancelled 18 464 148
Drawing 54 827 200

a Official exchange brokers at the Frankfurt Stock Exchange used the following

addenda at price fixings to specify to what extent orders were executed: (b)

paid: all orders were executed and markets cleared, (G) bid: no trades were

recorded and only buy orders existed, (B) ask: no trades were recorded and only

sell orders existed, (bG) paid, bid: buy orders were not necessarily executed

in full such that there was additional demand, (bB) paid, ask: sell orders were

not necessarily executed in full such that there was additional supply, (ebG)

partially paid, bid: only a small portion of the buy orders could be executed,

(ebB) partially paid, ask: only a small portion of the sell orders could be

executed, (ratG) scaling down, bid: buy orders were only partially executed,

(ratB) scaling down, ask: sell orders were only partially executed, (-) quotation

cancelled: no price was determined, (-T) price estimate was cancelled, (-Z)

quotation cancelled, drawing: quotation was suspended due to a redemption

drawing, (*) small amounts were not traded.
b The segment All Orders Executed comprises prices marked with the addendum

(b). The segment Orders Partially Executed comprises prices marked with the

addenda (bG), (bB), (ebG), (ebB), (ratG), (ratB), and (*).
c The segment Buy Offers Only comprises prices marked with the addenda (G)

and (G*). The segment Sell Offers Only comprises prices marked with the

addenda (B) and (B*). The segment Cancelled comprises prices marked with

the addenda (-) and (-T). The segment Drawing comprises prices marked with

the addendum (-Z).
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their buy orders were actually adjusted reflecting current market conditions.

Nevertheless, we consider throughout our empirical analysis only transaction

prices from active trading days and disregard price quotes from days with zero

trading volume.

We examine the trading volume and number of transactions per lottery bond in

further detail. Trading volume is measured in face value per traded bond. The

data include trades on the Frankfurt Stock Exchange only. In January 1987, the

official definition of trading volume changed such that we restrict our analysis

to volumes and transactions in the interval January 1974 to December 1986.

Figure 4.2 shows the time series of the monthly trading volume and the number

of transactions per lottery bond segmented by issuer groups. For issues by the

FRG, monthly trading volumes and transactions per lottery bond attain their

maxima at DEM 10.21 million in November 1976 and at 83 in October 1975,

respectively. The maxima for GS issues are reached at DEM 1.02 million in April

1975 and at 43 in July 1975, respectively. Finally, the maxima for GE issues are

attained at DEM 6.93 million in July 1975 and at 52 in October 1975, respectively.

The time series demonstrate that trading volume and number of transactions per

lottery bond decreased over time.

Table 4.7 reports the means and standard deviations of the monthly trading

volume per lottery bond, the monthly number of transactions per lottery bond,

and the volume per transaction and lottery bond segmented by issuer groups.

The mean monthly trading volume per lottery bond is DEM 1.61 million for

issues by the FRG, DEM 0.22 million for issues by GS, and DEM 1.18 million

for issues by GE. The mean number of monthly transactions per lottery bond is

42 for issues by the FRG, 18 for issues by GS, and 22 for issues by GE. Hence,

the measures are largest for issues by the FRG followed by issues by GE and

distinctly lower for GS lottery bonds. Table 4.6 already indicated more trading

activity in the FRG and GE market segments relative to the GS segment. The

magnitudes of the monthly trading volume and the number of transactions per

lottery bond are not very pronounced. One reason is the historical definition

of trading volume differing from the current convention and counting the face

value per traded bond only once. In addition, transactions between banks and

transactions between exchange brokers were historically not counted. The low
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Figure 4.2: Monthly Trading Volume and Transactions

This figure shows the time series of the mean monthly trading volume
and the number of transactions per lottery bond segmented by issuer
groups. Trading volume is measured in face value per traded bond and
reported in million German Mark. Between January 3, 1983 and April 5,
1983 as well as between October 3, 1983 and November 1, 1983, trading
volume and transaction data are not available.
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Table 4.7: Monthly Trading Volume and Transactions

This table shows the means and standard deviations of the monthly
trading volume per lottery bond, the monthly number of transactions
per lottery bond, and the volume per transaction and lottery bond.
The results are reported for the Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE) separately.
Trading volume and volume per transaction are measured in face value
per traded bond and are given in thousand German Mark. Between
January 3, 1983 and April 5, 1983 and between October 3, 1983 and
November 1, 1983, trading volume and transaction data are unavailable.

Volume and Transactions FRG GS GE

Trading Volume (tDEM)
Mean 1, 613 221 1, 175
Std. Dev. 728 197 733

Transactions
Mean 42 18 22
Std. Dev. 11 15 11

Volume per Transaction (tDEM)
Mean 35 13 46
Std. Dev. 9 7 18

magnitude also reflects that the majority of trading in German debt securities

took place in over-the-counter markets.

Even though the trading activity in the secondary bond market is rather low, the

quality of the official market price data is notable. First of all, the prices were fixed

by official exchange brokers who included all orders received during the trading

day when fixing the price. Second, the Deutsche Bundesbank ensured that the

official price fixings were market-related. Therefore, we claim that transaction

prices from active trading days are suitable for our further empirical analysis.
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4.2 Straight German Bonds and Money Market

Rates

4.2.1 Basic Characteristics

The certainty alternative to lottery bonds are straight coupon bonds with a fixed

maturity date issued by the FRG, GS, and GE. We estimate term structures of

interest rates from straight coupon bonds separately for each of the three issuer

groups. To ensure a sufficient number of observations in the short-term maturity

segment, we replenish our dataset with money market rates for banks’ cash

deposits. Before estimating the term structures, we focus on the characteristics

of straight coupon bonds and money market rates.

Daily clean market prices for straight bonds are available as of January 2, 1974

such that we include straight bond issues outstanding between January 1974

and December 1987. We disregard issues with embedded call or put options

and without regularly taxed coupon payments to ensure the homogeneity of the

dataset. Four straight bonds by the FRG (WKN 102512, 102516, 102520, and

102524, all Ausgleichsfonds) and one bond by the state of Bremen (WKN 108011)

are excluded because their nominal issue volumes are distinctly below DEM 100

million. We also disregard price observations of issues with time-to-maturities

above ten years or below six months and observations from the first six months

after issuance to guarantee the quality of data and a sufficient liquidity of prices.

Our dataset contains a total of 277 straight coupon bonds for which data are

available. Table 4.8 compiles the straight bond issues and nominal volume data

segmented by issuer groups. A total of 124 bonds are from the FRG, 61 bonds

are from GS, and 92 bonds are from GE. The aggregate nominal issue volume of

straight bonds is DEM 229.90 billion.

Table 4.9 gives an overview of the basic bond characteristics. Unlike that

of lottery bond indentures, the importance of straight coupon bonds as an

instrument of bond issues by the FRG, GS, and GE increased over time. No

more than 30 straight bonds were issued between 1963 and 1969, and about 81

such bonds were issued between 1980 and 1984. Nominal volumes per issue range
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Table 4.8: Straight Coupon Bond Issuers

This table reports the number and nominal issue volume of straight
bonds issued by the Federal Republic of Germany, German states,
and government enterprises. The aggregate nominal issue volume is
reported in billion German Mark.

Issuers Bonds Issue Volume

Federal Republic of Germany 124 148.96

German States 61 24.88
Baden-Württemberg 5 1.95
Bavaria 9 4.60
Berlin 7 1.25
Bremen 3 0.85
Hamburg 7 2.30
Hesse 4 1.28
Lower Saxony 9 2.50
North Rhine-Westphalia 10 8.00
Rhineland-Palatinate 1 0.60
Saarland 1 0.15
Schleswig-Holstein 5 1.40

Government Enterprises 92 56.06
Deutsche Bundesbahn 53 29.98
Deutsche Bundespost 39 26.08

Total 277 229.90
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Table 4.9: Straight Coupon Bond Characteristics

This table shows the basic characteristics of straight coupon bonds
issued by the Federal Republic of Germany (FRG), German states
(GS), and government enterprises (GE). The first column reports
the characteristic. The second to fourth columns report the absolute
frequencies.

Characteristics FRG GS GE

Issue Years
1963 to 1969 13 2 15
1970 to 1974 17 7 30
1975 to 1979 43 17 14
1980 to 1984 35 21 25
1985 to 1987 16 14 8

Issue Volume (bnDEM)
0.10 to < 0.50 24 42 41
0.50 to < 0.75 30 8 14
0.75 to < 1.00 13 11 25
1.00 to < 2.00 33 0 11
2.00 to < 3.00 16 0 1
3.00 to 4.00 8 0 0

Initial Maturity (years)
5 to < 10 38 21 23
10 76 39 54
> 10 to 15 10 1 15

Coupon Frequency
Annual 116 58 82
Semi-annual 8 3 10

Coupon Rate
5 to < 6 9 2 1
6 to < 7 28 15 23
7 to < 8 32 18 17
8 to < 9 35 20 27
9 to < 10 10 3 8
10 to < 11 10 3 16
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Figure 4.3: Number of Outstanding Straight Coupon Bonds

This panel shows the number of outstanding straight coupon bonds for
which transaction price data are available. The time series is based
on weekly observations reported for the Federal Republic of Germany
(FRG), German states (GS), and government enterprises (GE).

from DEM 100 million to DEM 4,000 million. The mean nominal issue volume

is DEM 1,201 million for issues by the FRG, DEM 408 million for issues by GS,

and DEM 609 million for issues by GE. Maturities range from five to 15 years

and average 9.37 years. Only 21 of the straight bonds paid semi-annual coupons,

whereas the remainder paid coupons annually. Coupon rates range from 5% to

10.75% and average 7.74%.

The total number of straight coupon bond price observations available for the

term structure estimation varies over time and across issuer groups. Only

transaction prices from active trading days are considered.15 Figure 4.3 shows

the number of outstanding straight coupon bonds over time for which transaction

price data are available. Between 1974 and 1987, the number of bond price

observations for the FRG ranges from 21 to 62 and averages 45.17 per observation

date. The number of bond price observations for GS ranges from five to 39 and

averages 19.10 per observation date, whereas the number of observations for GE

ranges from 26 to 46 and averages 35.47. The mean number of outstanding

15 According to Section 4.1.3, transaction prices are fixed by official exchange brokers on
active trading days. See Table 4.6, Footnote b, for the definition of an active trading day.
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bonds is lowest for GS, but at the end of 1975 a total of 15 issues were already

outstanding. The jumps in the time series result from the exclusion of prices from

days with zero trading volume.

Money market rates are considered to ensure a sufficient number of observations

in the short-term maturity segment. Daily money market rates for 1-month and

3-month cash deposits are obtainable as of January 2, 1974 from the Deutsche

Bundesbank. As of January 2, 1975 daily money market rates for 1-month, 3-

month, 6-month, and 1-year are obtainable from Datastream. Mid rates are

calculated from banks’ bid and ask quotes for cash deposits in Deutsche Mark

in the German money market. We disregard the overnight and 1-week money

market rates, as they are highly volatile and lead to additional and unexplainable

noise in the estimation.

4.2.2 Estimation of Term Structure of Interest Rates

There is a large body of literature dealing with purely descriptive approaches to

fitting the term structures of interest rates to a set of cross-sectional bond price

observations.16 First, papers on term structures relate the internal rates of return

of coupon bonds to their time-to-maturity. For example, Cohen et al. (1966)

and Fisher (1966) approximate yield-to-maturity curves using ordinary least

squares regression analysis. However, the yield-to-maturity of a coupon bond,

which effectively contains information regarding various interest rates of the term

structure, is only a rough approximation of the interest rate at the given time-to-

maturity. One of the first approaches for fitting the discount function to coupon

bond prices goes back to McCulloch (1971). The basic idea was to approximate

the relation between discount factors and bond maturity using a specified

functional form fitted to price data. McCulloch uses a piecewise polynomial spline

16 See Anderson et al. (1996) for a comprehensive overview of purely descriptive curve fitting
approaches. We distinguish these approaches from spot-rate or forward-rate factor models
based on either equilibrium or no-arbitrage considerations. See e. g. Vasicek (1977), Brennan
and Schwartz (1982), Cox et al. (1985), Ho and Lee (1986), or Heath et al. (1992) for classical
spot-rate or forward-rate factor models.
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technique, whereas subsequent studies employ exponential or cubic splines.17

Spline estimates are highly flexible and allow for the approximation of complex

shapes of the term structure, even though the flexibility has the disadvantage of

imparting shapes that are economically unreasonable.18

Nelson and Siegel (1987) pursue an alternative approach for fitting the term

structure based on a parsimonious parametrization of the discount function. The

discount function is of exponential form with only four unknown parameters.

Svensson (1995) increases the flexibility of the original Nelson and Siegel

formulation by adding two additional parameters allowing for a second hump

in the spot-rate curve. According to the Deutsche Bundesbank, both models are

sufficient to reflect the typical data constellations observed in the German bond

market and are a reasonable compromise between flexibility and smoothness.19

Term structure estimates are robust and relatively independent of outliers also

under critical data constellations, as is the case for the GS issuer segment between

1974 and 1976.20 An additional appealing property of the parsimonious models is

that the parameters have an economic interpretation. Since our primary purpose

for estimating term structures is to extract investors’ risk preferences, we are

interested in sufficiently robust and smooth estimates. Hence, we refrain from

spline-based approximations and employ the Svensson approach to estimate term

structures of interest rates.

The Nelson and Siegel or Svensson term structure models are widely used by

central banks and practitioners.21 As of October 1997, the Deutsche Bundesbank

officially estimates term structures using the Svensson approach. The estimations

are based on clean market prices of straight coupon bonds and five-year special

bonds by the FRG as well as Treasury notes with a time-to-maturity of at least

17 See e. g. McCulloch (1975), Vasicek and Fong (1982), Shea (1984, 1985), Steeley (1991),
and Fisher et al. (1994).

18 See e. g. Shea (1984) who addresses difficulties encountered by spline-based term structure
approximation techniques.

19 See Deutsche Bundesbank (1997), pp. 64.

20 See Schich (1997), p. 23.

21 See e. g. Bank for International Settlements (2005).
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three months.22 Term structures for the GS and GE issuer segments are not

explicitly determined. Since August 1997, term structure parameters of the

Svensson function are provided on a daily basis. In addition, the Deutsche

Bundesbank supplies backward looking parameter estimates on a monthly basis

since October 1972. However, as the short-term maturity segment was historically

thinly represented, these parameters lead to implausibly volatile and in parts

negative interest rates for short maturities.23 Within the subsequent empirical

sections, term structures are used to discount over short time intervals such that

we are interested in sufficiently robust short-term interest rates. To ensure a

sufficient number of observations in the short term segment, we replenish the

straight coupon bond data with 1-month, 3-month, 6-month, and 1-year money

market rates and estimate straight term structures for the FRG, GS, and GE

separately.

The subsequent paragraphs briefly describe the term structure model by

Svensson. We assume the following functional form for the relation between

spot-rates at date t and the time-to-maturity m:24

r (bt, m) =β0,t + β1,t ·
⎛
⎝1 − exp

[
− m

τ1,t

]
m

τ1,t

⎞
⎠+

β2,t ·
⎛
⎝1 − exp

[
− m

τ1,t

]
m

τ1,t

− exp

[
− m

τ1,t

]⎞⎠+ (4.1)

β3,t ·
⎛
⎝1 − exp

[
− m

τ2,t

]
m

τ2,t

− exp

[
− m

τ2,t

]⎞⎠ ,

where bt denotes the Svensson parameter vector consisting of β0,t, β1,t, β2,t, β3,t,

22 See Deutsche Bundesbank (1997) and Schich (1997) for a detailed description of the
estimating procedure of the Deutsche Bundesbank.

23 See e. g. Schich (1997), p. 23, Footnote 12.

24 See Svensson (1995), p. 18, Equation (11).
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τ1,t, and τ2,t to be estimated. We consider the influence of time-to-maturity m on

the spot-rate curve r(bt, m) for a given bt. If the time-to-maturity m approaches

infinity, r(bt, m) converges asymptotically towards β0,t, interpreted as the long-

term interest rate. If, however, m approaches zero, r(bt, m) converges towards

the parameter combination β0,t +β1,t, interpreted as the short-term interest rate.

The remaining parameters identify the shape of the spot-rate curve.25

The term structure of spot-rates r(bt, m) implies the structure of forward-rates

f(bt, m, λ) at date t for the time interval [m, (m + λ)], defined by

f (bt, m, λ) =
(1 + r (bt, m + λ))1+ m

λ

(1 + r (bt, m))
m
λ

− 1, (4.2)

where m,λ ≥ 0.

The objective of the term structure estimation is to determine the parameter

vector bt that minimizes the sum of the squared errors of the implicit and the

observed yield-to-maturity. At each observation date, bt is determined from the

cross-section of straight coupon bonds and money market instruments. Yield

errors rather than price errors are minimized because we want to attribute higher

weights to the short end of the term structure.26

The starting point of the estimation is the definition of the implicit price of a

straight coupon bond compatible with the functional form of the term structure

of spot-rates defined in Equation (4.1). We assume a bond with an annual coupon

frequency such that the implicit dirty price at date t is defined as

Bn,t (bt) =

Tn−�t�∑
i=0

cn

(1 + r (bt, i + �t� − t))i+�t�−t
+

Rn

(1 + r (bt, Tn − t))Tn−t
, (4.3)

25 See e. g. Schich (1997), pp. 15, and Bolder and Stréliski (1999), pp. 6, for a detailed
decomposition of the spot-rate curve.

26 Alternatively, price errors could be adjusted by employing a weighting term based on the
inverse of the duration of the individual bond. See e. g. Bolder and Stréliski (1999), pp. 11.
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where cn is the coupon, Rn is the redemption value, and Tn is the time-to-maturity

in years of security n. The ceiling function �t� returns the next higher integer

for t.27 The implicit price is equal to the present value of future coupon and

redemption payments. Cash flows are discounted with the term structure of spot-

rates r(bt, m). For bonds with semi-annual coupon payments, the relation can

easily be adjusted. We apply German bond market conventions by discounting

annually and using the 30/360 day count rule.

Implicit and observed yield-to-maturities are determined by numerically solving

the following equations for the implicit yield yn,t and the observed yield ȳn,t,

respectively:

Tn−�t�∑
i=0

cn

(1 + yn,t)
i+�t�−t

+
Rn

(1 + yn,t)
Tn−t

= Bn,t (bt)

Tn−�t�∑
i=0

cn

(1 + ȳn,t)
i+�t�−t

+
Rn

(1 + ȳn,t)
Tn−t

= b̄n,t + cn · (1 − �t� + t) ,

where Bn,t(bt) is the implicit dirty price defined in Equation (4.3) and b̄n,t is the

observed clean market price of security n at date t. To obtain a dirty bond price,

b̄n,t is adjusted for accrued interest. Accrued interest is defined as cn ·(1−�t�+ t),

where (1 − �t� + t) is the fraction of the year between the last coupon date and

the estimation date t.

Money market instruments are interpreted as zero-bonds, and their implicit price

is defined as Bn,t(bt) = 100/(1+r(bt, m))m. Hence, the implicit yield-to-maturity

is equal to yn,t(bt) = r(bt, m). Observed yield-to-maturities are determined from

money market rates in the following steps: (i) we observe the rate and calculate

the price by interpreting the security as a zero-bond and employing German

money market conventions, (ii) we determine the observed yield-to-maturity by

applying German bond market conventions.28 We do so, as the estimated term

27 The ceiling function of t is defined by �t� ≡ min{n ∈ N : n ≥ t}.
28 The German money market conventions required linear discounting and the act/360 day

count rule.
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structures are used to price securities in the bond market.

Constraints ensure that the long-term interest rate β0,t and the short-term interest

rate β0,t+β1,t are no more than three percentage points above or below the average

of the observed yield-to-maturities of the three bonds with the longest time-

to-maturity and shortest time-to-maturity, respectively. Additionally, β0,t, the

parameter combination β0,t + β1,t, τ1,t, and τ2,t are restricted to positive values.

For the remaining parameters, the lower and upper limits are set to -30 and

30, respectively.29 The starting value of β0,t is set equal to the average of the

observed yield-to-maturities of the three bonds with the longest time-to-maturity.

Accordingly, the starting value for β1,t is set equal to the difference between the

averages of the observed yield-to-maturities of the three bonds with the shortest

and longest time-to-maturity. The starting values of β2,t and β3,t are set to minus

one, while τ1,t and τ2,t are set to one.30

The underlying estimation routine is non-linear least squares identifying b̂t as

b̂t = arg min
bt

{∑
n

(yn,t (bt) − ȳn,t)
2

}
. (4.4)

The sum of squared errors of the implicit and observed yield-to-maturity is

minimized in the cross-section, and we obtain the estimate of the Svensson

parameter vector at each observation date t. By inserting b̂t into Equation (4.1),

we obtain the estimated term structure of spot rates r(b̂t, m) at observation date

t.

We consider the quality of 731 term structure estimations of the FRG, GS, and

GE issuer segment between January 1974 and December 1987 employing bond

market data at a weekly frequency using Wednesday observations. The estimation

29 All restrictions on the Svensson parameter vector bt, except the constraints on the
parameter combination β0,t + β1,t, are similar to that employed by the Deutsche Bundesbank.
See Schich (1997), pp. 19, Footnote 9 and 12.

30 Control estimations showed that the error terms and estimation results were robust with
respect to changes in starting values.
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error is measured by the mean absolute error (MAE) defined as

MAEt =
1

Nt

·
∑

n

|yn,t (bt) − ȳn,t| , (4.5)

where Nt is the number of included price observations at the estimation date t.31

Figure 4.4 depicts the time series of the MAE and the absolute frequency of the

731 weekly estimations per MAE segmented by the three issuer groups. Including

all term structure estimations, the MAE ranges from 2 to 41 basis points. Less

than 5% of the estimations have a MAE above 20 basis points. The overall MAE

is 11 basis points for the FRG, 13 basis points for the GS, and 10 basis points

for the GE issuer segment. The overall standard deviation of the MAE is 4 basis

points for the FRG and GE and 6 basis points for the GS issuer segment. The

statistics of the error term are similar to those found in studies using a comparable

dataset of straight German government bonds to estimate the term structure of

interest rates.32 The second oil crisis in 1979 resulted in a severe recession in

Germany between 1981 and 1982. Interest rates were at a historical high and

became increasingly volatile. Hence, in 1981, error terms are at their maximum.

In the second half of the 1980s, the MAE becomes less volatile and decreases

below 10 to 15 basis points.

Table 4.10 reports descriptive statistics for selected spot-rates segmented by issuer

groups. Mean spot-rates between January 1974 and December 1987 for all three

issuer groups are strictly increasing in time-to-maturity. Standard deviations

are strictly decreasing in maturity, and spot-rates for short maturities exhibit

lower minima and higher maxima. For the GS issuer group, standard deviations

marginally increase from 1.39% to 1.41% between eight to ten years time-to-

maturity. However, the long-term maturity segment for straight GS bonds is

only weakly populated.

31 Alternatively, the estimation error was measured by the root mean squared error (RMSE).
The magnitude of the RMSE and the conclusions are similar to that of the MAE.

32 See e. g. Schulze (1996), pp. 96, Schich (1997), and Uhrig and Walter (1997).
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Figure 4.4: Term Structure Estimation Errors

This figure shows descriptive statistics for the mean absolute error
(MAE), reported in basis points, of the term structure estimations
segmented by issuer groups. The graphs on the left-hand side report
the time series of the MAE. The graphs on the right-hand side report
the absolute frequencies of the 731 weekly estimations per MAE.
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Figure 4.5 depicts the average term structure of spot-rates and one year forward-

rates for the FRG issuer group (upper panel) as well as the spread between the

average term structures of the spot-rates of the GS and GE, respectively, and

the FRG (lower panel). First, we consider the upper panel. The average term

structure of spot-rates ranges from 6.2% to 8.1% and is strictly increasing in the

time-to-maturity. The term structure of forward-rates is located above the spot-

rate curve and ranges from 6.6% to 8.7%. Spot- and one year forward-rates at

one year time-to-maturity are by definition equal.33

Next, we consider the lower panel in Figure 4.5, depicting the spread between

the average term structures of the spot-rates of the GS and GE, respectively, and

the FRG. The average spread is positive, except for short maturities. Since the

estimation samples for all three issuer groups are replenished by money market

rates, the spread is lowest in the short-term maturity segment. For the GS issuer

group, the spread rises up to 20 basis points at 1.5 years time-to-maturity and

levels at about 11 basis points for the long-term maturity segment. For the GE

issuer group, the spread rises up to 4 basis points at 3.5 years time-to-maturity

and levels at about 3 basis points for the long-term maturity segment. We obtain

a mean spread of 14 basis points for the GS and 2 basis points for the GE over

all maturities. The positive spread could be attributed to differences in liquidity

and credit risk. It is minor for bond issues by GE that were state-guaranteed as

well as free of default risk and more pronounced for the GS issuer segment.

Figure 4.6 depicts the term structure of spot-rates for the FRG issuer group

between January 1974 and December 1987 for maturities between one day and

ten years. The figure shows that, between January 1974 and December 1987, most

term structures are increasing in maturity. Flat and inverted term structures are

rarely observed and appear over rather short time periods. In 1974 and between

1979 and 1982, we observe inverted term structures caused by the first oil crisis

in 1973 and by the second oil crisis in 1979, which resulted in a severe recession

in Germany between 1981 and 1982.

Unless stated otherwise, we use the respective risk-free term structure determined

33 From the definition of the term structure of forward rates in Equation (4.2), we obtain
that f(bt, m, 0) is equal to r(bt, m).
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Figure 4.5: Average Term Structure and Issuer Spreads

The upper panel shows the average term structure of spot-rates (solid
line) and one year forward-rates (dotted line) in percentage points for
the FRG issuer group. The lower panel shows the average spreads
in basis points between the term structures of the spot-rates of the
GS (solid line) and the GE (dotted line), respectively, and the FRG
issuer group. Averages are calculated from the 731 weekly observations
between January 1974 and December 1987. Time-to-maturity m is given
in years.
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Figure 4.6: Term Structure for FRG

This figure shows the term structure of spot-rates r(bt, m) for the FRG
issuer group between January 1974 and December 1987 for maturities
m between one day and ten years. Interest rates are given in percentage
points.

from straight coupon bonds for discounting purposes in the subsequent chapters.

Hence, we assume deterministic interest rates in the sense that the implied

forward rates are equal to the spot rates at the forward dates. We abstract

from interest rate risk as well as forward premia and focus on the analysis of the

risk caused by redemption lotteries.



Chapter 5

Empirical Analysis of

Redemption Risk in Prices

5.1 Framework and Hypotheses

Within a standard event study framework, we empirically test hypotheses derived

from the analysis of the equilibrium ex-day price behavior in Section 3.3. Based

on transaction prices of German redemption lottery bonds around drawing

dates, we determine the ex-day price reaction and bond market participants’

risk preferences. We assume that price formation across lotteries is mutually

independent and consider each lottery individually. Focusing on the influence

of redemption risk, we disregard additional sources of risk such as interest rate

risk. Furthermore, we abstract from market frictions such as transaction costs,

short-selling constraints, or taxes.

Our primary focus is the price behavior between the event dates (T − i)cum and

(T − i)ex, ∀i ∈ N, 1 ≤ i < T . The dirty lottery bond price shortly before

the redemption drawing is denoted B(T−i)cum , and the price shortly after the

drawing is denoted B(T−i)ex . Reflecting the institutional setting, we assume that

redemption risk is of systematic nature. Hence, investors are restricted to trade

only one type of lottery bond series. We think of B(T−i)cum as a participation

fee for the subsequent Bernoulli redemption lottery and distinguish two disjoint

119
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states of the world: d and n. In state d, realized with the objective probability pi,

the investor receives the redemption payment, usually the face value plus coupon.

We denote vd
i the present value at (T − i)ex of future cash flows from the lottery

bond given that the series is drawn. Considering a typical lottery bond with

annual coupon and redemption frequency, the expression specifies:1

vd
i =

R + c

(1 + r)δ
, (5.1)

where c is the coupon, R is the redemption value, r is the risk-free rate, and δ is

the time span between (T − i)ex and the early redemption date (T − i)rd.

In state n, realized with the objective probability (1 − pi), the investor holds a

series which has not been drawn and is still traded. If the series is directly sold,

the cash flow, given that the series is not drawn, specifies:

vn
i = B(T−i)ex (5.2)

The gain from the redemption lottery is state dependent and given by

gs
i =

vs
i

(1 + r)ε − B(T−i)cum , s ∈ {d, n} , (5.3)

where ε is the time span between (T − i)cum and (T − i)ex and the cash flow terms

are discounted to (T − i)cum.

It turns out to be practical to classify lotteries according to the gain in state d

and to distinguish drawings resulting in a redemption gain from those resulting

in a redemption loss. The investor realizes a redemption gain if B(T−i)cum

is smaller than the risk-free discounted cash flow term vd
i . Referring to the

dynamic equilibrium valuation model derived in Chapter 3, a lottery resulting

in a redemption gain is corresponding to c/R < r. Analogously, the investor

1 The cash flow term is equal to vd
i defined in Equation (3.12).
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realizes a redemption loss if B(T−i)cum is larger than the discounted cash flow

term vd
i . A lottery resulting in a redemption loss is corresponding to c/R > r in

Chapter 3.

Subsequent to a redemption lottery, only the series not drawn remain traded. For

these series, the risk or chance of being repaid at face value is postponed until

the next lottery such that we expect an ex-day price reaction. We consider the

influence of redemption drawings on lottery bond prices and derive hypotheses

with respect to the ex-day price behavior. Focusing on the actual ex-day price

reaction, we assume for the calculation of gn
i that the time span ε is zero and

refrain, at this point, from discounting B(T−i)ex to (T−i)cum. In the case of ε equal

to zero, the difference between ex-lottery and cum-lottery prices is independent

of whether clean or dirty prices are used, as accrued interest cancels out. Hence,

gn
i reduces to the difference between the clean ex-price b(T−i)ex and the clean

cum-price b(T−i)cum .

First, we consider lotteries resulting in a gain if drawn. Due to the binomial

structure of the lottery and no-arbitrage considerations, a redemption gain implies

a capital loss if not drawn and thus b(T−i)ex < b(T−i)cum . The result is summarized

in our first hypothesis:

Hypothesis 1

Redemption lotteries resulting in a capital gain if drawn (gd
i > 0)

imply a drop of the clean ex-day price (b(T−i)ex < b(T−i)cum).

Hypothesis 1 corresponds to the right-hand side of the no-arbitrage condition for

the equilibrium ex-day price behavior if c/R < r, as defined in Inequality (3.31).

Second, we consider the ex-day behavior for lotteries resulting in a loss if drawn.

A redemption loss implies a capital gain if not drawn and thus b(T−i)ex > b(T−i)cum .

The result is summarized in our second hypothesis:

Hypothesis 2

Redemption lotteries resulting in a capital loss if drawn (gd
i < 0) imply

a positive jump of the clean ex-day price (b(T−i)ex > b(T−i)cum).
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Hypothesis 2 corresponds to the left-hand side of the no-arbitrage condition for

the equilibrium ex-day price behavior if c/R > r, as defined in Inequality (3.32).

Accordingly, lotteries resulting in a zero gain if drawn imply a zero capital gain

if not drawn, and the ex-day price reaction is zero. The result is consistent with

the equilibrium ex-day price behavior for c/R approaching r in Section 3.3.

Third, we consider the relation between the ex-day price behavior and redemption

probabilities for lotteries resulting in a gain if drawn. The comparative static

analysis for the equilibrium ex-day price behavior in Section 3.3.2 implies that,

for c/R < r and a fixed positive RRA coefficient γ, price drops are increasing in

the redemption probability pi.
2 The result is summarized in our third hypothesis:

Hypothesis 3

For investors with constant risk-aversion, redemption lotteries result-

ing in a capital gain if drawn (gd
i > 0) imply an increasing ex-day price

drop (|b(T−i)ex − b(T−i)cum |) in the redemption probability pi.

Note that, for lotteries resulting in a gain if drawn in combination with risk-

seeking preferences and for lotteries resulting in a loss if drawn in combination

with risk-averse preferences, the relation between the ex-day price behavior and

redemption probabilities is ambiguous.

Next, we consider whether observed lottery bond prices are consistent with risk-

neutral preferences or include risk premia compensating for redemption risk. A

risk-neutral investor values a lottery bond series by simply weighting the cash flow

terms vs
i in states d and n defined by Equations (5.1) and (5.2) with the respective

objective state probabilities. Risk-averse investors are willing to trade the bond

below the risk-neutral price. We analyze the difference between the risk-neutral

and the observed lottery bond price and assess whether the valuation is consistent

with the expected wealth setup. Changing our analysis’ focus to determining risk

preferences, we henceforth refrain from assuming that ε is zero when calculating

the gain if not drawn gn
i .

2 See Figure 3.11 for the comparative static analysis of the equilibrium ex-day price behavior
with respect to redemption probabilities.
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Analogous to Schilbred (1973) we choose an intuitive definition of the risk

premium πi on price level, and define:

πi =
pi · vd

i + (1 − pi) · vn
i

(1 + r)ε − B(T−i)cum (5.4)

= pi · gd
i + (1 − pi) · gn

i ,

where πi is equal to the difference between the discounted expected lottery bond

value and B(T−i)cum . The difference is equivalent to the sum of the probability

weighted redemption gains in state d and n. A positive risk premium corresponds

to risk-aversion, whereas a negative or zero premium indicates risk-seeking or risk-

neutral preferences, respectively.3

The only difference between a lottery bond and a simultaneously traded risk-free

straight bond is the redemption lottery. We expect bond market participants

to exhibit risk-averse preferences. Hence, investors should charge a premium for

taking redemption risk implying that lottery bonds trade below their expected

and risk-free discounted value. This prospect is summarized in our fourth

hypothesis:

Hypothesis 4

Bond market participants exhibit risk-averse preferences implying a

positive risk premium (πi > 0).

The relation between the risk premium and the underlying redemption risk σi,

defined as

σi =
(
pi ·

(
gd

i

)2
+ (1 − pi) · (gn

i )2
) 1

2
, (5.5)

3 Note that the classification of risk preferences corresponds to the results for the valuation
model under perfect foresight in Section 3.4. For γ > 0, the perfect foresight price Bf

(T−i)cum

defined in Equation (3.36) is smaller than the risk neutral price Be,f
(T−i)cum , while for γ < 0,

Bf
(T−i)cum is larger than Be,f

(T−i)cum .
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is characterized by πi/σi and denoted price of risk.

5.2 Ex-day Price Behavior

Based on the 483 German redemption lotteries by the FRG, GS, and GE between

January 1974 and December 1987, we empirically test whether observed prices

react according to Hypotheses 1 to 3. Due to the structure of the hypotheses, we

segment our observations and examine lotteries resulting in a redemption gain

separately from those resulting in a redemption loss.

Throughout the empirical study, we consider transaction prices.4 Applying

German bond market conventions in place during the research period, we employ

the 30/360 day count rule. Risk-free rates are determined from the issuer specific

term structures of spot rates defined according to the Svensson method described

in Section 4.2.2.

We start by analyzing the time series of daily returns of observed clean lottery

bond prices in a ten trading day interval around the drawing dates. The return

at date t is defined

b̄t − b̄t−1

b̄t−1

.

Negative returns indicate negative price jumps, while positive returns indicate

positive price jumps. Table 5.1 depicts the mean returns, standard deviations,

minima, and maxima in an interval spanning five trading days before the lottery-

related price suspension and five trading days after the lottery drawing.5 On

average, trading was suspended for two days prior to the redemption drawing.

Hence, the return at trade resumption is strictly speaking a three-day return.

Furthermore, we employ previous transaction prices at non-active trading days

4 According to Section 4.1.3, transactions prices are fixed by official exchange brokers on
active trading days. See Table 4.6, Footnote b, for the definition of an active trading day.

5 Transaction prices are not available for 106 redemption lotteries in the considered interval
around the drawing date. About 90% of these observations are by GS.
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to prevent distinct variation in the number of observations.6

Daily mean returns shortly after the drawing are significantly negative for lotteries

resulting in a capital gain if drawn. The mean return at the drawing date is -26

basis points. Prices continue to fall significantly over the three subsequent days

with means of -10, -8, and -4 basis points. We detect significant and reverse price

changes prior to the lotteries. However, the ex ante changes are small, between 2

and 3 basis points. According to German bond market conventions, lottery bond

contracts were settled the second trading day after the order was executed. Two

days prior to the redemption lottery trade of the respective bond was suspended

such that transactions closed before the lottery were settled before the drawing.7

Hence, lottery-related price reactions realized after the series number of the drawn

series have been published. These results provide a first evidence in support of

Hypothesis 1 indicating that price drops caused by the drawing occur with a lag

of up to three trading days.

Daily mean returns shortly after the drawing are significantly positive for lotteries

resulting in a capital loss if drawn. Note that the mean return at the drawing date

is 1 basis point and insignificant. However, prices rise significantly over the two

subsequent days with means of 7 and 6 basis points. Overall, price reactions

are less significant and pronounced relative to the redemption gain segment.

Nonetheless, we find a first evidence in support of Hypothesis 2.

Having identified significant ex-day price reactions up to three trading days after

the redemption drawing, we focus on the cross sectional price reactions in further

detail. We define b̄(T−i)cum as the last transaction price available before the lottery-

related price suspension and b̄(T−i)ex as the first transaction price available two

6 Note, however, that central results remain unchanged if observations, except those at trade
resumption, for which the previous or current transaction price is unavailable, are excluded.

7 Gørtz and Balling (1977) and Ankerstjerne and Møller (1982) study the price effect of
Danish lottery bond redemptions and find evidence for lottery-related price reactions prior to
the drawing. However, Danish lottery bonds are not excluded from trade before the redemption
lotteries.
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trading days after the lottery, at (T − i)l.8 This ensures that prices reflect the

accrued effects of the redemption lotteries.

Table 5.2 reports the number of lottery observations resulting in a redemption

gain and those resulting in a redemption loss. Observations are reported for the

overall dataset and for segments corresponding to issuer groups and redemption

probabilities. We exclude 88 lottery observations resulting in a redemption gain

and 35 lottery observations resulting in a redemption loss for which the time lag

between b̄(T−i)cum and b̄(T−i)ex is larger than ten trading days.9 More than 90%

of the excluded lotteries are by GS, while the remaining observations are by GE.

The filtered sample contains 256 lottery observations resulting in a redemption

gain, whereof 21 observations are on the FRG issuer group level, 168 observations

are on the GS level, 67 observations are on the GE level, and between 11

and 39 observations are on the redemption probability level. In addition, the

sample contains 104 lottery observations resulting in a redemption loss, whereof

6 observations are on the FRG issuer group level, 82 observations are on the GS

level, 16 observations are on the GE level, and between 7 and 16 observations

are on the redemption probability level. After the adjustment the overall mean

cum-ex lag is 6.5 trading days. The filtered sample is employed for the cross

sectional analysis of the ex-day price behavior in this section.

We consider the relation between the ex-day price reaction (measured by gn
i )

and the difference between the discounted redemption payment and the dirty

cum-price (measured by gd
i ). Figure 5.1 shows the distribution of the ex-day

price reaction segmented by issuer groups. Hypotheses 1 and 2 refer to lotteries

resulting in a redemption gain or loss, respectively, and state that observations

in quadrant four and two of the panels are arbitrage-free, while observations in

quadrants one and three violate no-arbitrage conditions under the assumption of

perfect foresight.

We first examine observations resulting in a capital gain if drawn. For the FRG

8 We define b̄(T−i)ex as the first available price two instead of three trading days after the
lottery because price reactions with lag three are marginal at -4 and -1 basis points, respectively,
and only partly significant.

9 Our empirical results are robust with respect to varying choices of the cut-off point.
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Table 5.2: Number of Lottery Observations I

This table shows the number of lottery observations resulting in a
redemption gain (gd

i > 0) and those resulting in a redemption loss
(gd

i < 0). Observations are given for the overall dataset and for
segments corresponding to issuer groups (Federal Republic of Germany
(FRG), German states (GS), and government enterprises (GE)) and
redemption probabilities (1/2 to 1/10). The second, third, and sixth
column report the total number of observations and the number of
observations resulting in a redemption gain, respectively redemption
loss. The fourth and seventh column reports the number of observations
in the redemption gain segment, respectively redemption loss segment,
excluded because the time lag between the cum-price and ex-price is
larger than ten trading days. The fifth and eighth column reports the
number of observations used in the estimations.

gd
i > 0 gd

i < 0

Total Red. Cum-ex Clean Red. Cum-ex Clean
Gain Lag Loss Lag

Overall 483 344 (88) 256 139 (35) 104

Issuer Group

FRG 27 21 (0) 21 6 (0) 6
GS 361 247 (79) 168 114 (32) 82
GE 95 76 (9) 67 19 (3) 16

Redemption Probability

1/2 83 60 (21) 39 23 (11) 12
1/3 78 55 (19) 36 23 (7) 16
1/4 71 53 (20) 33 18 (4) 14
1/5 61 43 (10) 33 18 (5) 13
1/6 48 33 (6) 27 15 (5) 10
1/7 44 34 (4) 30 10 (1) 9
1/8 40 32 (3) 29 8 (1) 7
1/9 35 23 (5) 18 12 (1) 11
1/10 23 11 (0) 11 12 (0) 12
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Figure 5.1: Distribution of Ex-day Price Reaction

This figure shows the distribution of the reaction of clean lottery bond
prices at lottery dates segmented by issuer groups. The ordinate depicts
the gain if not drawn, gn

i , measuring the ex-day reaction of observed clean
prices. The abscissa depicts the lottery gain if drawn, gd

i , measuring
the difference between the discounted redemption payment and the
observed dirty cum-price. Both terms gd

i and gn
i are expressed in German

Mark. In the corner of each quadrant, we report the fraction of lottery
observations resulting in a redemption gain and loss that coincide with
a negative or positive gain if not drawn, respectively.
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and GE issuer groups, 95.2% and 82.1% of the observations, respectively, are

located in quadrant four supporting Hypotheses 1. A positive ex-day price jump

coincides with 4.8% and 7.5% of the observations, respectively, and GE prices

remain constant for 10.4% of the observations. The results are less distinct for

GS: 64.3% of the observations are located in quadrant four, while 19.6% coincide

with a positive ex-day price jump and 16.1% with a zero ex-day price reaction.

Considering the distribution for the entire sample, 71.5% of the observations are

located in quadrant four, while 15.2% coincide with a positive ex-day price jump

and 13.3% with a zero ex-day price reaction. Applying a standard binomial sign

test, the results are highly significant for the entire sample and the three issuer

groups. Hence, the distribution of price reactions in the redemption gain segment

strongly supports Hypothesis 1.

Next, we examine observations resulting in a capital loss if drawn. For the FRG

and GE issuer groups, 66.7% and 62.5% of the observations, respectively, are

located in quadrant two. An ex-day price drop coincides with 33.3% and 31.3%

of the observations, respectively, and GE prices remain constant for 6.2% of the

observations. For GS, 43.9% of the observations are located in quadrant two,

while 30.5% coincide with an ex-day price drop and 25.6% with a zero ex-day

price reaction. If we again consider the distribution for a combination of all three

issuer groups, 48.1% of the observations are located in quadrant two, while 30.8%

coincide with an ex-day price drop and 21.2% with a zero ex-day price reaction.

Applying a standard binomial sign test, the results are neither significant for the

entire sample nor for the issuer groups. Hence, the distribution of price reactions

in the redemption loss segment does not support Hypothesis 2.

Furthermore, gd
i and gn

i are negatively correlated: -0.67 for the FRG, -0.30 for

GS, and -0.56 for GE. The larger the redemption gain, the more pronounced is

the ex-day price drop.

Table 5.3 considers the robustness of the distribution of price reactions for the

entire dataset. We report the number of lottery observations opposing Hypotheses

1 and 2 for varying tolerance thresholds. For gd
i > 0, out of 256 observations 29%

are in conflict with Hypothesis 1. About half of the misclassifications coincide

with a zero ex-day price reaction, while 39 observations coincide with a positive

ex-day price jump. However, only 20 observations exhibit an opposing price



Empirical Analysis of Redemption Risk 131

Table 5.3: Robustness of Ex-day Price Reaction

This table shows the number of lottery observations opposing
Hypotheses 1 and 2. We report the number of misclassifications for
varying tolerance thresholds. The thresholds for |gn

i | require a minimum
price reaction of DEM 0.05, 0.25, and 0.50. For lotteries resulting in
a redemption gain or loss, the thresholds for gd

i require a minimum
redemption gain or loss of DEM 0.25, 0.50, and 1.00, respectively.
Observations outside the thresholds are not considered. In addition and
as a benchmark, we report the number of unrestricted misclassifications.

Misclassifications Unrestr. |gn
i | > |gn

i | > |gn
i | >

0.05 0.25 0.50

Gain if Drawn

Unrestr. 73 39 29 20
gd

i > 0.25 66 33 24 17
gd

i > 0.50 56 28 21 15
gd

i > 1.00 43 24 20 14

Loss if Drawn

Unrestr. 54 31 23 8
gd

i < −0.25 45 27 19 6
gd

i < −0.50 38 20 14 4
gd

i < −1.00 29 12 7 2
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reaction larger than DEM 0.50. Only 14 misclassifications are attributed to

lotteries with a redemption gain larger than DEM 1.00 coinciding with an ex-

day price jump larger than DEM 0.50. For gd
i < 0, out of 104 observations 52%

are in conflict with Hypothesis 2. About 40% of the misclassifications coincide

with a zero ex-day price reaction, while 31 observations coincide with an ex-day

price drop. However, only eight observations exhibit an opposing price reaction

smaller than DEM −0.50. Only 3.7% of the misclassifications are attributed to

lotteries with a redemption loss larger than DEM 1.00 coinciding with an ex-

day price reaction smaller than DEM −0.50. Hence, Table 5.3 qualifies violating

observations which cluster in a narrow interval around the zero ex-day price

reaction.

We continue our analysis of Hypotheses 1 to 3 by considering the magnitude of the

ex-day reaction of clean lottery bond prices at lottery dates. Tables 5.4 and 5.5

report the mean price reaction segmented by lotteries resulting in a redemption

gain or loss as well as issuer groups and redemption probabilities, respectively.

For gd
i > 0, the mean price reaction is negative and highly significant for the

overall sample, issuer group and redemption probability segments. The average

price drop is DEM 0.49 for the overall sample, DEM 1.22 for the FRG, DEM

0.69 for GE, and DEM 0.32 for GS. Considering the redemption probability

segments, average price drops reach from DEM 0.19 for 1/6 to DEM 0.65 for

1/10. The results confirm Hypothesis 1 at the 1% level of significance, except

for redemption probability segment 1/6, where the hypothesis is confirmed at the

10% level. According to Hypothesis 3, the ex-day price reaction is increasing in

the redemption probability if investors have constant and risk-averse preferences.

However, Table 5.5 reports a hump shaped relation between the ex-day price

reaction and redemption probabilities, and we find no evidence supporting

Hypothesis 3. Referring to the comparative static analysis of the equilibrium ex-

day price behavior in Chapter 3.3, the non-monotonic relation can be rationalized

by time varying risk preferences.

For gd
i < 0, the mean price reaction is positive. The average price jump is DEM

0.13 for the overall sample, DEM 0.42 for the FRG, DEM 0.34 for GE, and

DEM 0.07 for GS. Considering the redemption probability segments, average

price reactions reach from a drop of DEM 0.15 for 1/10 to a rise of DEM
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Table 5.4: Magnitude of Ex-day Price Reaction I

This table shows the ex-day reaction of clean lottery bond prices
at lottery dates segmented by lottery observations resulting in a
redemption gain and loss. The price reaction is defined as the difference
between the clean ex-price b̄(T−i)ex and the clean cum-price b̄(T−i)cum .
Results are given for the overall dataset, the Federal Republic of
Germany (FRG), German states (GS), and government enterprises
(GE) separately. The table reports the mean price reaction, standard
deviation, minimum, and maximum in German Mark. The t-values
are given in parentheses. We report the level of significance based on
the one-sided t-test, where ∗∗∗ denotes significance at the 1% level, ∗∗

denotes significance at the 5% level, and ∗ denotes significance at the
10% level.

Price Reaction Overall FRG GS GE

Gain if Drawn

Mean Reaction −0.49∗∗∗ −1.22∗∗∗ −0.32∗∗∗ −0.69∗∗∗
t-value (−9.72) (−5.92) (−5.57) (−7.53)

Std. Dev. 0.81 0.95 0.75 0.75

min −3.20 −3.20 −3.00 −3.15
max 2.00 0.20 2.00 1.10

Loss if Drawn

Mean Reaction 0.13∗∗∗ 0.42 0.07∗ 0.34∗
t-value (2.38) (1.45) (1.42) (1.47)

Std. Dev. 0.56 0.71 0.43 0.92

min −1.70 −0.60 −1.25 −1.70
max 2.50 1.25 1.80 2.50



134

T
ab

le
5.5:

M
a
g
n
itu

d
e

o
f
E
x
-d

a
y

P
rice

R
e
a
ctio

n
II

T
his

table
show

s
the

ex-day
reaction

of
clean

lottery
bond

prices
at

lottery
dates

segm
ented

by
lottery

observations
resulting

in
a

redem
ption

gain
and

loss.
T

he
price

reaction
is

defined
as

the
difference

betw
een

the
clean

ex-price
b̄
(T−

i)
e

x
and

the
clean

cum
-price

b̄
(T−

i)
c
u

m
.

R
esults

are
given

for
redem

ption
probabilities.

T
he

table
reports

the
m

ean
price

reaction,
standard

deviation,
m

inim
um

,
and

m
axim

um
in

G
erm

an
M

ark.
T

he
t-values

are
given

in
parentheses.

W
e

report
the

level
of

significance
based

on
the

one-sided
t-test,

w
here

∗∗∗
denotes

significance
at

the
1%

level, ∗∗
denotes

significance
at

the
5%

level,and
∗

denotes
significance

at
the

10%
level.

P
rice

R
eaction

1/10
1/9

1/8
1/7

1/6
1/5

1/4
1/3

1/2

G
ain

if
D

raw
n

M
ean

R
eaction

−
0.65 ∗∗∗

−
0.60 ∗∗∗

−
0
.47 ∗∗∗

−
0.40 ∗∗∗

−
0.19 ∗

−
0
.58 ∗∗∗

−
0.38 ∗∗∗

−
0.60 ∗∗∗

−
0.60 ∗∗∗

t-v
a
lu

e
(−

3
.5

9
)

(−
4
.4

4
)

(−
3
.3

5
)

(−
2
.7

3
)

(−
1
.6

2
)

(−
3
.3

4
)

(−
3
.2

9
)

(−
5
.6

3
)

(−
3
.3

6
)

Std.
D

ev.
0.60

0.58
0.76

0.81
0.61

1.00
0.67

0.64
1.12

m
in

−
1.80

−
1.75

−
3.15

−
2.75

−
1.60

−
3.10

−
2
.25

−
2.40

−
3.20

m
ax

0.00
0.50

0.75
1.75

1.25
1.50

2.00
0.40

1.10

L
oss

if
D

raw
n

M
ean

R
eaction

−
0.15 ∗

0
.09

−
0.11

−
0.04

0.14
−

0.03
0.29

0
.27 ∗∗

0.52 ∗∗∗
t-v

a
lu

e
(−

1
.6

3
)

(0
.9

7
)

(−
0
.5

0
)

(−
0
.3

4
)

(1
.1

4
)

(−
0
.3

0
)

(1
.1

7
)

(1
.9

3
)

(3
.2

3
)

Std.
D

ev.
0.32

0.29
0.56

0.39
0.40

0.42
0.91

0.56
0.55

m
in

−
1.00

−
0.25

−
1.25

−
0.75

−
0.35

−
0.75

−
1.70

−
0.50

−
0.40

m
ax

0.15
0.70

0.40
0.50

1.00
0.85

2.50
1.80

1.55



Empirical Analysis of Redemption Risk 135

0.52 for 1/2. The mean price reaction is positive and highly significant on the

aggregate level and for redemption probabilities 1/2 and 1/3. It is, however,

lowly significant or insignificant for the issuer group and remaining redemption

probability segments.10 Overall, we interpret these results as a weak affirmation

of Hypothesis 2.

The quality of our results depends strongly on whether the lotteries considered

result in a redemption gain or in a loss. Statistical evidence for lotteries resulting

in a redemption loss is less distinct and of lower significance relative to lotteries

resulting in a redemption gain. One might expect that embedded redemption

options provide an explanation for this discrepancy. According to Table 4.5, all

of the FRG, 95% of GE, and about 65% of GS lottery bond issues are equipped

with issuer call options and increased redemption provisions. Lotteries resulting

in a redemption loss from investor’s perspective imply a redemption gain for the

issuer, who is able to refinance his debt under more favorable conditions. Hence,

early or increased redemption options of lotteries resulting in a redemption loss

are in-the-money. Over the entire period of our analysis, the FRG and GE did not

exercise any of the embedded options, while GS exercised nine options. We are left

with 33 lottery observations resulting in a redemption loss if we limit our analysis

to bonds without redemption options. The fraction of observations coinciding

with a positive gain if not drawn rises only marginally, from 48.1% to 48.5%,

and the restriction on observations without redemption options does not imply a

considerable improvement in the classification results. This suggests the existence

of an unknown factor not contained in our simple framework. The inclusion of

lotteries resulting in a redemption loss would introduce unexplainable noise into

our estimations. Throughout the subsequent empirical sections, we therefore

disregard lotteries resulting in a redemption loss and focus on the redemption

gain segment.

Lottery observations resulting in a redemption gain provide strong evidence for

Hypothesis 1. The results are most convincing for the FRG and GE issuer groups.

The fraction of observations coinciding with a positive ex-day price reaction

violating the price hypothesis is limited to 4.8% for the FRG and 7.5% for GE.

10 The t-statistics for the FRG and GE issuer segment and the redemption probability
segments should be interpreted with care, as they are lowly populated.
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Overall, results for the highly populated GS segment are more volatile. However,

the mean price reaction is significantly negative at the 1% level for all three issuer

groups.

5.3 Risk Premia

Within an intuitive setting, we provide first evidence of bond market participants’

risk preferences.11 Based on German redemption lotteries resulting in a drawing

gain, we determine risk premia and test Hypothesis 4.

Table 5.6 reports the number of lottery observations resulting in a redemption

gain for the overall dataset and for segments corresponding to issuer groups and

redemption probabilities. Compared to the filtration in Table 5.2, we in addition

exclude 69 lottery observations resulting in a redemption gain which violate the

adjusted price Hypothesis 1 and thus the no-arbitrage condition under perfect

foresight.12 According to the definition of the risk premium in Equation (5.4),

including observations violating the price hypothesis would result in larger risk

premia. Our filtered sample contains 187 lottery observations on the aggregate

level, 20 observations on the FRG issuer group level, 112 observations on the GS

level, 55 observations on the GE level, and between 10 and 30 observations on

the redemption probability level.

In Tables 5.7 and 5.8 we report the mean lottery gain in states d and n, the mean

risk premium, and the mean price of risk for lottery observations resulting in a

redemption gain. Results are given for the overall dataset as well as for issuer

group and redemption probability segments. We first consider the results on the

aggregate and issuer group level. The mean redemption gain is DEM 4.69, and

the mean loss in state n is DEM 0.80. Due to the filtration of the sample, the sign

of the gain in states d and n is by definition positive and negative, respectively.

11 For a detailed analysis of risk preferences, we refer to Chapter 6, where we estimate RRA
coefficients within the dynamic equilibrium valuation model derived in Chapter 3.

12 Note that in contrast to Section 5.2, we refrain from assuming that ε is zero when
calculating gn

i . Hence, the number of observations violating against the adjusted price
Hypothesis 1 differs compared to Table 5.3.
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Table 5.6: Number of Lottery Observations II

This table shows the number of lottery observations resulting in a
redemption gain (gd

i > 0) for the overall dataset and for segments
corresponding to issuer groups (Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE)) and redemption
probabilities (1/2 to 1/10). The second and third column report the
total number of observations and the number of observations resulting
in a redemption gain. The fourth column reports the number of
observations in the redemption gain segment excluded because the time
lag between the cum-price and ex-price is larger than ten trading days.
The fifth column reports the number of observations excluded because
of a violation against the adjusted price Hypothesis 1 in Section 5.1.
The sixth column reports the number of filtered observations used in
the estimations.

gd
i > 0

Total Red. Cum-ex Price Clean
Gain Lag React.

Overall 483 344 (88) (69) 187

Issuer Group

FRG 27 21 (0) (1) 20
GS 361 247 (79) (56) 112
GE 95 76 (9) (12) 55

Redemption Probability

1/2 83 60 (21) (16) 23
1/3 78 55 (19) (6) 30
1/4 71 53 (20) (8) 25
1/5 61 43 (10) (6) 27
1/6 48 33 (6) (11) 16
1/7 44 34 (4) (11) 19
1/8 40 32 (3) (8) 21
1/9 35 23 (5) (2) 16
1/10 23 11 (0) (1) 10
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Table 5.7: Risk Premia and Prices of Risk I

This table shows mean gains in states d and n, mean risk premia, and
mean prices of risk for lottery observations resulting in a redemption
gain. Results are given for the overall dataset, the Federal Republic
of Germany (FRG), German states (GS), and government enterprises
(GE). The gains in states d and n as well as the risk premia are reported
in German Mark. We report t-values in parentheses for risk premia and
prices of risk as well as standard deviations, minima, and maxima. The
level of significance is based on the one-sided t-test, where ∗∗∗ denotes
significance at the 1% level, ∗∗ denotes significance at the 5% level, and
∗ denotes significance at the 10% level.

Risk Measures Overall FRG GS GE

Gain in State d 4.69 4.39 4.71 4.74

Gain in State n −0.80 −1.30 −0.66 −0.90

Risk Premium 0.28∗∗∗ 0.24∗∗∗ 0.28∗∗∗ 0.27∗∗∗
t-value (7.02) (2.91) (5.03) (4.34)

Std. Dev. 0.54 0.38 0.60 0.47

min −1.87 −0.15 −1.87 −1.68
max 2.30 1.35 2.30 1.29

Price of Risk 0.11∗∗∗ 0.13∗∗∗ 0.09∗∗∗ 0.13∗∗∗
t-value (4.98) (2.77) (2.91) (4.15)

Std. Dev. 0.30 0.21 0.33 0.24

min −0.88 −0.22 −0.88 −0.67
max 0.69 0.69 0.66 0.59
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The mean risk premium is DEM 0.28, and the mean price of risk is 0.11.13 Both

measures are positive and highly significant. Mean risk premia range from DEM

0.24 for the FRG to DEM 0.28 for GS, and the mean risk premium is DEM 0.04

higher for GS relative to FRG issues. The mean prices of risk range from 0.09

to 0.13 and are of moderate magnitude compared to e. g. Schilbred (1973) who

estimates a market price of risk within a mean-variance equilibrium model in a

bond market setting on the order of ITL 0.50 per unit of variance and Hansen and

Jagannathan (1991) or Cogley and Sargent (2008) who infer a Sharpe ratio from

security market data, which is on the order of 0.23. The results provide strong

evidence for Hypothesis 4 and suggest that investors are averse to redemption

risk.

Next, we consider the results for the redemption probability segments. The mean

redemption gain ranges from DEM 9.48 for pi = 1/10 to DEM 2.08 for pi = 1/2

and documents the pull-to-par effect as bond maturity approaches. The mean

loss in state n ranges from DEM 0.58 to 1.27 and is largest for pi = 1/2. Mean risk

premia and prices of risk are significantly positive for redemption probabilities

above 1/7, and mean prices of risk tend to rise in the redemption probability.

Mean risk premia are consistently positive, while we observe one negative mean

price of risk for pi = 1/10.

The magnitude and significance of risk premia in Tables 5.7 and 5.8 confirm Hy-

pothesis 4. Bond market participants are risk-averse and demand compensation

for redemption risk. Hence, lottery bond prices cannot be determined by simply

weighting the future cash flows in states d and n by the respective objective

state probabilities. Rather, lottery bond prices should be determined within an

expected utility framework for risk averse investors.

The results have direct policy implications and provide a fundamental motive for

substituting lottery bonds with straight bonds in the 1970s. From the issuers’

perspective, lottery bonds were more expensive than straight coupon bonds, and

similar payment structures could be achieved without introducing extraneous

redemption risk, e. g. by issuing several individual bonds with different maturities.

13 To facilitate the interpretation of risk premia, we report the mean observed dirty lottery
bond price B̄(T−i)cum . It is equal to DEM 97.55 for the 187 observations on the aggregate level.
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Our findings suggest that public sector lottery bond indentures were dominated

by straight coupon bonds.

We proceed with a more detailed analysis of RRA coefficients in the subsequent

chapter, where we estimate bond market participants’ risk preferences within the

dynamic equilibrium valuation model derived in Chapter 3.
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Chapter 6

Estimation of Implied RRA

Coefficients

”It purports that bond evaluation should be a rewarding field for
empirical studies of investors’ treatment of risk and uncertainty.”

Schilbred (1968), p. 43.

6.1 Estimation Procedure

Standard neoclassical asset pricing models yield equilibrium prices depending

on market participants’ risk preferences and probability beliefs. Preferences are

generally viewed as fixed, primitive characteristics of economic agents, whereas

probability beliefs are subjective and unstable.1 In most real-world settings,

it is impossible to disentangle preferences and beliefs. German redemption

lottery bonds disburse uncertain payoffs according to an observable probability

distribution and provide an exceptional environment for studying investors’ risk

preferences independent of subjective probability beliefs.

We use the dynamic equilibrium valuation model for redemption lottery bonds

derived in Chapter 3 to extract implied risk preferences from bond market data.

1 See Allen (1980), p. 344.

143
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The comparative static analysis demonstrated that equilibrium prices are strictly

monotonic in the RRA coefficient. Each equilibrium price is a one-to-one mapping

to γ and corresponds to a unique risk preference.

The pooled, implied RRA estimate is obtained by minimizing the sum of

squared deviations between the clean equilibrium prices b∗t and the clean observed

market prices b̄t.
2 The underlying estimation routine is non-linear least squares

identifying γ̂ as

γ̂ = arg min
γ

{∑
n,t

(
b∗n,t − b̄n,t

)2}
, (6.1)

where n specifies the lottery bond issue and t the observation date. Conditional

on the observation date, we revert to pricing Equation (3.24) or (3.29) to assess

b∗n,t.

In addition, we estimate pooled, implied RRA estimates under the assumption of

perfect foresight. We employ the clean perfect foresight prices bf
(T−i)cum obtained

by adjusting Bf
(T−i)cum , defined in Equation (3.36), for accrued interest. Note that

RRA estimates under perfect foresight are restricted to cum-days.

After each estimation, we apply an outlier detection rule to avoid model

misspecifications resulting in distorted RRA estimates and invalid inferences.

Observations are classified as outliers if

en − ME > 3 · SE,

where en is the price residual for observation n, ME is the mean price residual,

and SE is the standard deviation of the price residuals. Outliers are excluded

2 Transaction prices are by convention clean prices. We adjust theoretical prices for accrued
interest and base our estimations on clean prices. Alternatively, we could have adjusted
transaction prices for accrued interest and based our estimations on dirty prices.
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from the sample, and the estimation routine is run again.3

We estimate implied RRA coefficients for various segmentations of the lottery

bond data panel. First, we determine pooled, implied RRA estimates based

on cum-day observations and compare dynamic equilibrium estimates to those

under perfect foresight. The restriction to cum-days, however, limits the number

of observations and leads to unstable estimation results. Since lottery bond prices

contain information on risk preferences not only at cum-days but also at trading

days before the lotteries, we then estimate pooled, implied RRA coefficients based

on the entire sample of observed market prices. We analyze the robustness of

our estimations by examining subsamples covering distinct intervals before the

redemption lotteries and by controlling for the proximity of price observations to

the no-arbitrage bounds. Lastly, we focus on the time series properties of implied

RRA estimates and consider the relation between changes in risk aversion and

macroeconomic factors.

6.2 Pooled, Implied RRA Coefficients based on

Cum-days

6.2.1 Equilibrium RRA Estimates

We restrict our attention to the sample of German lottery bond observations

resulting in a drawing gain and determine pooled, implied RRA estimates based

on equilibrium pricing Equation (3.24). We focus on cum-lottery dates (T −i)cum,

∀i ∈ N, 1 ≤ i < T , and extract risk preferences from the last clean transaction

prices b̄(T−i)cum available before the lottery-related price suspensions.

Table 6.1 reports the number of cum-day observations for the overall dataset and

for segments corresponding to issuer groups and redemption probabilities. The

estimation of RRA coefficients within the dynamic equilibrium valuation model

3 We restrict the number of re-estimation loops and apply the outlier detection rule at most
ten times. However, only for the 1/6 redemption probability segment based on the entire sample
of bond price observations this limit was attained.
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Table 6.1: Number of Cum-day Observations

This table shows the number of cum-day lottery observations for the
overall dataset and for segments corresponding to issuer groups (Federal
Republic of Germany (FRG), German states (GS), and government
enterprises (GE)) and redemption probabilities (1/2 to 1/10). The
second and third column report the total number of observations and
the number of observations resulting in a redemption gain. The fourth
column reports the number of observations in the redemption gain
segment excluded because the cum-lottery transaction price is located
outside the no-arbitrage bounds defined by Inequalities (3.15). The
fifth column reports the number of observations classified as outliers.
The last column reports the number of filtered observations used in the
estimations.

Totala Red. No- Outl. Clean
Gain arb.

Overall 465 306 (19) (5) 282

Issuer Group

FRG 27 21 (0) (0) 21
GS 343 212 (16) (9) 187
GE 95 73 (3) (2) 68

Redemption Probability

1/2 83 49 (8) (4) 37
1/3 78 51 (5) (0) 46
1/4 69 47 (3) (0) 44
1/5 58 39 (2) (0) 37
1/6 46 29 (0) (0) 29
1/7 41 32 (0) (0) 32
1/8 37 28 (1) (0) 27
1/9 32 21 (0) (0) 21
1/10 21 10 (0) (0) 10

a Due to an incomplete redemption schedule, we exclude 18

observations by GS from the original sample.
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requires the complete schedule of future redemption dates. Due to an incomplete

redemption schedule and missing data about future lotteries, we exclude 18 price

observations by GS. A lottery observation is classified as a drawing gain if the

observed clean price b̄(T−i)cum is smaller than the present value term vd
i /(1 + r)ε

adjusted for accrued interest.4 Due to the dynamic structure of the equilibrium

model, an observation at (T − i)cum is classified as a drawing gain if, in addition,

vn
j < vd

j , ∀j ∈ N, j < i. Since RRA coefficients can only be extracted from pricing

Equation (3.24) for transaction prices located inside the no-arbitrage bounds, we

exclude 19 price observations, 16 of which are by GS and three by GE, located

outside the no-arbitrage bounds defined by Inequalities (3.15). Furthermore, we

disregard between zero and nine observations classified as outliers. Our filtered

and pooled sample contains 282 lottery observations on the aggregate level, 21

observations on the FRG issuer group level, 187 observations on the GS level,

68 observations on the GE level, and between 10 and 46 observations on the

redemption probability level.

Figure 6.1 depicts the absolute frequency of cum-day price observations per

month. Focusing on lotteries resulting in a redemption gain, we limit observations

in times of relatively low interest rates, e. g. between 1977 and 1978, when risk-

free spot rates reached a historical low. Table 6.2 shows the varying distribution

of price observations per year across issuer groups and redemption probabilities.

For the overall dataset the mean observation date is April 1978. At the issuer

group level, the mean observation date is February 1977 for the FRG, September

1978 for GS, and August 1977 for GE. At the redemption probability level, mean

observation dates tend to rise with the redemption probability. For probability

1/10, the mean observation date is June 1975, whereas, for probability 1/2, the

mean observation date is August 1980.

We proceed to analyze the estimation results compiled in Table 6.3. The overall

least squares RRA estimate for the pooled estimation is 1.15 with a mean absolute

error between theoretical and observed prices of DEM 0.57.5 On the issuer group

level, the RRA estimates are 0.11 for the FRG, 2.99 for GS, and 0.17 for GE.

4 See Equation (3.12) for the definition of the present value term.

5 To facilitate the interpretation of the error terms, we report the mean lottery bond price
(clean) based on the 282 cum-day observations, which is DEM 95.60.
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Table 6.3: Implied Cum-day RRA Estimates

This table shows the pooled, implied RRA estimates based on cum-day
observations. The statistics are given for the overall dataset and for
segments corresponding to issuer groups (Federal Republic of Germany
(FRG), German states (GS), and government enterprises (GE)) and
redemption probabilities (1/2 to 1/10). The second column reports the
least squares RRA estimate γ̂ of the respective segment. Columns three
to seven report the mean price residuals ME, the standard deviation
of the price residuals SE, the minimum and maximum price residual
min and max, and the mean absolute error MAE. All error terms are
reported in German Mark.

γ̂ ME SE min max MAE

Overall 1.15 0.26 0.67 −1.76 2.13 0.57

Issuer Group

FRG 0.11 0.07 0.49 −1.21 1.05 0.37
GS 2.99 0.30 0.60 −1.29 1.88 0.53
GE 0.17 0.02 0.60 −1.44 1.27 0.47

Redemption Probability

1/2 6.99 0.07 0.22 −0.47 0.57 0.17
1/3 2.78 0.19 0.47 −0.88 1.23 0.40
1/4 3.06 0.19 0.60 −1.46 1.06 0.46
1/5 −0.01 0.16 0.61 −1.04 1.62 0.51
1/6 −0.01 0.49 0.67 −0.97 1.85 0.66
1/7 5.26 0.12 0.77 −1.45 1.59 0.66
1/8 1.33 0.10 1.20 −3.22 1.83 0.95
1/9 0.90 −0.09 1.13 −2.84 1.74 0.81
1/10 0.43 0.14 0.78 −1.06 1.46 0.60
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Figure 6.1: Observation Dates for Cum-day Observations

This figure shows the absolute frequency of the 282 filtered cum-day
price observations per observation month.

The mean absolute errors on bond price level are DEM 0.37 for the FRG, DEM

0.53 for GS, and DEM 0.47 for GE. Our results show that agents investing in the

state-guaranteed FRG and GE lottery bond segments are risk-averse at a level

below one. Agents investing in the GS issuer segment exhibit a higher level of risk

aversion. Estimates for the redemption probability segments are rather volatile

and range between -0.01 and 6.99.6

We examine the robustness of the cum-day estimations by considering the

bootstrapped standard errors of the pooled RRA estimates. Table 6.4 reports

the results. The standard deviation of the bootstrap estimation on the aggregate

level is 0.23. From the quantiles we conclude that the pooled RRA estimate

is significantly positive for the overall sample. However, results on the issuer

group level indicate that RRA estimates are rather unstable. The standard

deviations range from 0.27 for GE to 0.35 for GS. The 1% quantile for the FRG

and GE is negative such that we cannot rule out risk-seeking preferences. For

the redemption probability segments standard deviations are even higher ranging

between 0.36 and 1.69. The volatility of the estimates might be caused by the

6 Causes for the heterogeneity across segments are considered in further detail in Sections
6.3.1 and 6.3.2.
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Table 6.4: Bootstrap Statistics for Cum-days

This table shows the bootstrapped standard errors of pooled, implied
RRA estimates based on cum-day observations. Bootstrap statistics
are reported for the overall dataset and for segments corresponding to
issuer groups (Federal Republic of Germany (FRG), German states
(GS), and government enterprises (GE)) and redemption probabilities
(1/2 to 1/10). Between 500 and 1,000 bootstrap samples are randomly
drawn with replacement from the original dataset, and implied RRA
coefficients are estimated. The size of the bootstrap samples corresponds
to the respective number of filtered observations in the original sample
specified in Table 6.1. Columns three to eight report the mean, standard
deviation, minimum, maximum, 1% quantile, and 99% quantile of
the estimated RRA coefficients. We exclude observations classified as
outliers when estimating the bootstrap statistics.

Bootstr. Mean Std. min max 1% 99%
Sample Dev. Quant. Quant.

Overall 1, 000 1.18 0.23 0.47 2.00 0.71 1.74

Issuer Group

FRG 500 0.12 0.33 −2.10 2.11 −0.68 0.79
GS 1, 000 3.04 0.35 2.25 4.71 2.38 4.00
GE 500 0.16 0.27 −1.13 1.25 −0.42 0.85

Redemption Probability

1/2 500 7.05 0.85 4.71 10.13 5.28 9.46
1/3 500 2.80 1.14 −0.75 6.91 0.66 5.64
1/4 500 3.28 1.69 −0.99 7.65 −0.63 6.91
1/5 500 −0.07 0.43 −1.68 1.79 −1.27 0.93
1/6 500 0.25 0.85 −0.37 8.16 −0.30 3.93
1/7 500 5.38 1.04 2.49 11.12 3.08 8.14
1/8 500 1.36 0.89 −2.11 4.74 −1.17 3.52
1/9 500 0.84 0.44 −0.97 2.02 −0.32 1.82
1/10 500 0.50 0.36 −0.20 2.82 −0.03 1.89
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limited number of observations. In Section 6.3, we therefore use the entire lottery

bond data panel to estimate pooled, implied RRA estimates.

6.2.2 RRA Estimates under Perfect Foresight

We continue with the analysis of cum-day price observations and determine

the pooled, implied RRA estimates under the assumption of perfect foresight

employing pricing Equation (3.36). Estimations are based on the last clean

transaction prices b̄(T−i)cum available before the lottery-related price suspensions.

Table 6.5 reports the number of cum-day observations under perfect foresight

for the overall dataset and for segments corresponding to issuer groups and

redemption probabilities.7 We exclude 88 price observations for which the

time difference between b̄(T−i)cum and b̄(T−i)ex is larger than ten trading days

as well as 69 observations violating the adjusted price Hypothesis 1 derived in

Section 5.1 and thus the no-arbitrage condition under perfect foresight. Since

RRA coefficients can only be extracted from pricing Equation (3.36) for cum-

day transaction prices located inside the no-arbitrage bounds, we disregard ten

price observations by GS located outside the no-arbitrage bounds defined by

Inequalities (3.15).8 Furthermore, we exclude between zero and three observations

classified as outliers. Our filtered and pooled sample contains 174 lottery

observations on the aggregate level, 20 observations on the FRG issuer group

level, 101 observations on the GS level, 54 observations on the GE level, and

between 10 and 29 observations on redemption probability level.

Table 6.6 reports the estimation results for the overall dataset and for segments

corresponding to issuer groups and redemption probabilities. The overall least

squares RRA estimate of the pooled estimation is 5.15 with a mean absolute error

7 The numbers complement Tables 5.2 and 5.6 in Section 5.3.

8 Within a control estimation, we also consider the no-arbitrage bounds for ex-day prices
given by Inequalities (3.17), which results in a further exclusion of 35 observations, 20 of which
are from the pi = 1/2 redemption probability segment. The results of the control estimation
are comparable to those of the unrestricted estimation.
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Table 6.5: Number of Perfect Foresight Observations

This table shows the number of cum-day price observations under
perfect foresight for the overall dataset and for segments corresponding
to issuer groups (Federal Republic of Germany (FRG), German states
(GS), and government enterprises (GE)) and redemption probabilities
(1/2 to 1/10). The second and third column report the total number of
observations and the number of observations resulting in a redemption
gain. The fourth column reports the number of observations in the
redemption gain segment excluded because the time lag between the
cum-price and ex-price is larger than ten trading days. The fifth
column reports the number of observations excluded because of a
violation against the adjusted price Hypothesis 1 in Section 5.1. The
sixth column reports the number of observations excluded because the
cum-lottery transaction price is located outside the no-arbitrage bounds
defined by Inequalities (3.15). The fifth column reports the number of
observations classified as outliers. The last column reports the number
of filtered observations used in the estimations.

Total Red. Cum-ex Price No- Outl. Clean
Gain Lag React. arb.

Overall 483 344 (88) (69) (10) (3) 174

Issuer Group

FRG 27 21 (0) (1) (0) (0) 20
GS 361 247 (79) (56) (10) (1) 101
GE 95 76 (9) (12) (0) (1) 54

Redemption Probability

1/2 83 60 (21) (16) (3) (0) 20
1/3 78 55 (19) (6) (1) (0) 29
1/4 71 53 (20) (8) (4) (0) 21
1/5 61 43 (10) (6) (1) (0) 26
1/6 48 33 (6) (11) (0) (0) 16
1/7 44 34 (4) (11) (0) (0) 19
1/8 40 32 (3) (8) (1) (0) 20
1/9 35 23 (5) (2) (0) (0) 16
1/10 23 11 (0) (1) (0) (0) 10
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Table 6.6: RRA Estimates under Perfect Foresight

This table shows the pooled, implied RRA estimates under perfect
foresight. The statistics are given for the overall dataset and for
segments corresponding to the issuer groups (Federal Republic of
Germany (FRG), German states (GS), and government enterprises
(GE)) and redemption probabilities (1/2 to 1/10). The second
column reports the least squares RRA estimate γ̂ of the respective
segment. Columns three to seven report the mean price residuals ME,
the standard deviation of the price residuals SE, the minimum and
maximum price residual min and max, and the mean absolute error
MAE. All error terms are reported in German Mark.

γ̂ ME SE min max MAE

Overall 5.15 0.04 0.45 −1.31 0.98 0.35

Issuer Group

FRG 2.34 0.06 0.36 −0.92 0.95 0.26
GS 5.93 0.02 0.51 −1.37 0.92 0.40
GE 4.12 0.09 0.38 −0.71 1.02 0.32

Redemption Probability

1/2 6.30 0.08 0.37 −0.74 0.74 0.28
1/3 6.09 0.11 0.38 −0.79 0.78 0.33
1/4 8.02 0.10 0.46 −1.27 0.86 0.34
1/5 1.51 0.10 0.43 −0.92 0.95 0.35
1/6 9.32 −0.02 0.43 −0.99 0.60 0.33
1/7 1.93 −0.03 0.67 −1.96 0.82 0.48
1/8 1.74 0.05 0.68 −1.94 0.95 0.49
1/9 4.67 −0.08 0.47 −0.97 0.76 0.36
1/10 3.86 −0.10 0.56 −1.04 0.76 0.45
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between theoretical and observed prices of DEM 0.35.9 On the issuer group level,

the RRA estimates are 2.34 for the FRG, 5.93 for GS, and 4.12 for GE. The mean

absolute errors on bond price level are DEM 0.26 for the FRG, DEM 0.40 for GS,

and DEM 0.32 for GE. Our results indicate that agents investing in the state-

guaranteed FRG and GE lottery bond segments are risk-averse at a level between

two and four, while agents investing in the GS issuer segment are risk-averse at

a level about six. Estimates for the redemption probability segments are rather

volatile, ranging between 1.51 and 9.32.

We examine the robustness of the estimations under perfect foresight by

considering the bootstrapped standard errors of the pooled RRA estimates for

the overall sample and issuer group segments. Table 6.7 reports the results. The

standard deviation of the bootstrap estimation on the aggregate level is 0.75 and

standard deviations on issuer group level range from 1.20 for GE to 1.74 for the

FRG segment. From the quantiles, we conclude that the pooled RRA estimates

are significantly positive on the aggregate level, as well as on the issuer group

level, ruling out risk-seeking preferences. However, the 1% and 99% quantiles

span from 3.40 to 6.87 on the aggregate level, and from 0.13 to 6.74 for the FRG,

from 3.09 to 8.88 for GS, and from 2.34 to 7.87 for the GE segment. For the

redemption probability segments, standard deviations are even higher ranging

between 1.31 and 5.24. The volatility of the estimates might again be caused by

the limited number of observations.

Next, we compare the RRA estimates implied by the dynamic equilibrium

valuation model reported in Table 6.3 with the results under perfect foresight.10

The overall RRA estimate under perfect foresight is 4.5 times larger than the

RRA estimate implied by the dynamic model. On the issuer group level, the

RRA estimates under perfect foresight are 21.3 times larger for the FRG, 2.0 times

9 To facilitate the interpretation of the error terms, we report the mean lottery bond price
(clean) based on the 174 cum-day observations, which is DEM 94.82.

10 Note that the filtration of the sample in Table 6.5 is based on the assumption of perfect
foresight. Hence, the samples characterized by Tables 6.1 and 6.5 have a different scope.
However, control estimations employing the dynamic equilibrium valuation model, which are
based on the sample characterized by Table 6.5, show that results are robust with respect to
the filtration of the sample.
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Table 6.7: Bootstrap Statistics under Perfect Foresight

This table shows the bootstrapped standard errors of pooled, implied
RRA estimates under perfect foresight. Bootstrap statistics are
reported for the overall dataset and for segments corresponding to
issuer groups (Federal Republic of Germany (FRG), German states
(GS), and government enterprises (GE)) and redemption probabilities
(1/2 to 1/10). Between 500 and 1,000 bootstrap samples are randomly
drawn with replacement from the original dataset, and implied RRA
coefficients are estimated. The size of the bootstrap samples corresponds
to the respective number of filtered observations in the original sample
specified in Table 6.5. Columns three to eight report the mean, standard
deviation, minimum, maximum, 1% quantile, and 99% quantile of
the estimated RRA coefficients. We exclude observations classified as
outliers when estimating the bootstrap statistics.

Bootstr. Mean Std. min max 1% 99%
Sample Dev. Quant. Quant.

Overall 1, 000 5.11 0.75 2.88 7.68 3.40 6.87

Issuer Group

FRG 500 2.95 1.74 −0.18 7.29 0.13 6.74
GS 1, 000 5.97 1.22 1.33 10.18 3.09 8.88
GE 500 4.37 1.20 2.12 10.74 2.34 7.87

Redemption Probability

1/2 500 6.20 1.63 0.89 10.27 1.82 9.28
1/3 500 6.42 3.01 −0.45 27.57 1.43 14.57
1/4 500 9.08 5.24 −2.35 40.15 0.86 25.20
1/5 500 1.85 1.31 −0.93 10.52 −0.23 5.56
1/6 500 9.55 2.79 2.10 20.69 2.62 16.70
1/7 500 2.30 3.51 −7.55 16.23 −4.74 12.79
1/8 500 2.31 3.28 −6.12 14.31 −4.85 9.93
1/9 500 4.90 1.71 0.43 12.17 1.57 9.42
1/10 500 3.99 2.14 −8.62 14.87 −0.27 9.25
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larger for GS, and 24.2 times larger for GE. On the redemption probability level,

the difference is most pronounced for probability 1/6, where the RRA estimate

under perfect foresight is 9.32 relative to -0.01 implied by the dynamic model.

In order to explain the difference between RRA estimates implied by the dynamic

equilibrium model and those under perfect foresight, we reconsider the theoretical

framework deduced in Section 3.3. The comparative static results for the

equilibrium ex-day price behavior showed that the larger the ex-day price drop,

the lower is the implied RRA coefficient.11 The same result holds for the ex-day

behavior under perfect foresight. From this property follows that the theoretical

ex-day price drop entering our dynamic equilibrium valuation model is larger than

the observed drop considered under perfect foresight. The dynamic equilibrium

model represents a more realistic valuation setup than the perfect foresight model

and leads to distinctly lower implied RRA estimates. Hence, our results imply

that estimations relying on the perfect foresight assumption overestimate RRA

coefficients.

6.3 Pooled, Implied RRA Coefficients based on

Entire Sample

6.3.1 Equilibrium RRA Estimates

Lottery bond prices contain information on risk preferences at cum-days as well as

at trading days prior to the redemption lotteries. Before (T − 1)ex, market prices

reflect the value of future cash flows from the bond indenture which depends

on the outcome of the lotteries. Based on lottery bond observations within the

interval [(T − 10)ex, (T − 1)cum], we estimate pooled, implied RRA coefficients.

Henceforth, we employ bond market data at a weekly frequency using clean

Wednesday transaction prices.12 Moving to daily price data does not improve

11 See Figure 3.10 for the comparative static results of the equilibrium ex-day price behavior.

12 If a Wednesday transaction price is missing, it is replenished by the next available
transaction price within the calendar week or marked unavailable.
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our estimation results, but increases the computational effort and introduces

unexplainable noise. Table 6.8 reports the number of weekly observations for the

overall dataset and for segments corresponding to issuer groups and redemption

probabilities. For the final estimation, we only include lottery bond prices

resulting in a redemption gain and located inside the no-arbitrage bounds defined

by Inequalities (3.15) and (3.17).13 We exclude 971 observations due to no-

arbitrage violations. On the aggregate level, 417 observations are classified as

outliers and, on the issuer group level, we disregard 19 observations by the FRG,

319 observations by GS, and 122 observations by GE. Our filtered and pooled

sample contains 12,019 observations on the aggregate level, 1,539 observations

from the FRG, 7,133 observations from GS, 3,304 observations from GE, and

between 364 and 2,114 observations on the redemption probability level.

Figure 6.2 depicts the absolute frequency of price observations per month and

illustrates that restricting our analysis to observations resulting in a redemption

gain limits data in times of relatively low interest rates, e. g. between 1977 and

1978. Table 6.9 shows the varying distribution of price observations per year

across issuer groups and redemption probabilities. For the overall dataset the

mean observation date is September 1977. At the issuer group level, the mean

observation date is December 1976 for the FRG, February 1978 for GS, and

February 1977 for GE. At the redemption probability level, mean observation

dates tend to rise with the redemption probability. For probability 1/10, the

mean observation date is September 1975, whereas, for probability 1/2, the mean

observation date is March 1979.

We analyze the data panel by estimating pooled, implied RRA coefficients for

various segments of the dataset. Table 6.10 summarizes the estimation results.

The overall least squares RRA estimate is 1.78 with a mean absolute error between

theoretical and observed prices of DEM 0.55.14 At the issuer group level, the RRA

estimate is 1.17 with a mean absolute error of DEM 0.37 for the FRG, 2.93 with a

mean absolute error of DEM 0.60 for GS, and 0.98 with a mean absolute error of

DEM 0.44 for GE. RRA estimates for the FRG and GE are of similar magnitude,

13 See Section 6.2.1 for a compilation of the filtration motives.

14 To facilitate the interpretation of the error terms, we report the mean lottery bond price
(clean) based on the entire sample of 12,019 observations, which is DEM 95.14.
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Table 6.8: Number of Observations for Entire Sample

This table shows the number of price observations for the overall dataset
and for segments corresponding to issuer groups (Federal Republic of
Germany (FRG), German states (GS), and government enterprises
(GE)) and redemption probabilities (1/2 to 1/10). The second and
third column report the total number of observations and the number of
observations resulting in a redemption gain. The fourth column reports
the number of observations in the redemption gain segment excluded
because the transaction price is located outside the no-arbitrage bounds
defined by Inequalities (3.15) or (3.17). The fifth column reports the
number of observations classified as outliers. The last column reports
the number of filtered observations used in the estimations.

Total Red. No- Outl. Clean
Gain arb.

Overall 18, 612 13, 407 (971) (417) 12, 019

Issuer Group

FRG 1, 832 1, 610 (52) (19) 1, 539
GS 12, 462 8, 164 (712) (319) 7, 133
GE 4, 318 3, 633 (207) (122) 3, 304

Redemption Probability

1/2 3, 368 2, 464 (375) (34) 2, 055
1/3 3, 231 2, 367 (225) (28) 2, 114
1/4 2, 872 2, 267 (202) (34) 2, 031
1/5 2, 238 1, 530 (55) (14) 1, 461
1/6 1, 743 1, 286 (30) (94) 1, 162
1/7 1, 629 1, 315 (25) (59) 1, 231
1/8 1, 504 1, 099 (20) (41) 1, 038
1/9 1, 222 701 (28) (14) 659
1/10 805 378 (11) (3) 364
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Table 6.10: Implied RRA Estimates for Entire Sample

This table shows the pooled, implied RRA estimates based on
observations from the entire sample. The statistics are given for the
overall dataset and for segments corresponding to issuer groups (Federal
Republic of Germany (FRG), German states (GS), and government
enterprises (GE)) and redemption probabilities (1/2 to 1/10). The
second column reports the least squares RRA estimate γ̂ of the
respective segment. Columns three to seven report the mean price
residuals ME, the standard deviation of the price residuals SE, the
minimum and maximum price residual min and max, and the mean
absolute error MAE. All error terms are reported in German Mark.

γ̂ ME SE min max MAE

Overall 1.78 0.23 0.66 −1.76 2.22 0.55

Issuer Group

FRG 1.17 0.14 0.45 −1.19 1.43 0.37
GS 2.93 0.28 0.70 −1.82 2.37 0.60
GE 0.98 0.11 0.54 −1.51 1.58 0.44

Redemption Probability

1/2 6.17 0.09 0.36 −0.98 1.15 0.29
1/3 2.68 0.15 0.47 −1.27 1.55 0.40
1/4 1.75 0.16 0.60 −1.59 1.83 0.49
1/5 0.87 0.21 0.73 −1.96 2.22 0.59
1/6 6.37 0.17 0.72 −2.03 2.35 0.59
1/7 5.08 0.12 0.80 −2.27 2.47 0.66
1/8 2.04 0.18 0.94 −2.65 2.42 0.77
1/9 0.96 0.01 1.10 −3.28 2.64 0.85
1/10 0.61 0.33 0.90 −1.98 2.18 0.80
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Figure 6.2: Observation Dates for Entire Sample

This figure shows the absolute frequency of the 12,019 filtered price
observations per observation month.

while agents investing in the GS issuer segment exhibit a higher risk aversion.

Error terms are smaller for the state-guaranteed FRG and GE lottery bonds

relative to the GS bonds. Estimates for the redemption probability segments

are dispersed and range between 0.61 and 6.37. The smaller the probability, the

wider is in general the span of arbitrage-free equilibrium prices and the larger

are the mean absolute price error, the maximum price residual, and the absolute

value of the minimum price residual.

We address potential causes of the heterogeneity of implied RRA estimates across

issuer groups and redemption probabilities. First, we examine implied RRA

estimates for issuer group and redemption probability subsegments. Table 6.11

reports the estimation results. The results show that the overall and issuer group

RRA estimates follow a similar pattern across redemption probabilities. For all

subsegments, RRA estimates for GS are higher than FRG and GE estimates. We

find neither evidence that the different level of issuer group estimates is caused

by redemption probabilities nor that the dispersion of redemption probability

estimates is driven by issuer groups.

Second, we consider the varying distribution of observation dates. Table 6.8

documented that the distribution is similar across issuer groups, but differs
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distinctly for redemption probabilities. In Section 6.4, we show that implied RRA

estimates are time dependent and argue that the underlying dynamic equilibrium

model predicts a higher dispersion of implied RRA estimates in times of relatively

low interest rates. Note that 50.4% and 43.3% of the price observations for the

probability segments 1/6 and 1/7, respectively, are located in the time interval

1976 to 1978, characterized by historically low interest rates. RRA estimates

for these probability segments are rather volatile. Besides, 43.3%, 24.9%, and

22.8% of the price observations for the probability segments 1/2, 1/6, and 1/7,

respectively, are located in the time interval 1980 to 1981, characterized by a

severe recession in Germany after the second oil crisis in 1979. RRA estimates

for these probability segments tend to be relatively high. Hence, a major part of

the heterogeneity across probability segments is driven by the varying distribution

of price observations over time.

Within additional estimations, we control for varying bond characteristics, e. g.

the redemption value, or embedded early or increased redemption options and

find no systematic effects explaining the heterogeneity of implied RRA estimates

across issuer groups. One could ascribe the heterogeneity to differences in

liquidity and credit risk.15 However, we control for the difference in trading

activity by focusing on price observations from active trading days and by

disregarding price quotes from days with zero trading volume. Furthermore,

we control for differences in credit risk by applying issuer specific risk-free term

structures of interest rates. Therefore, our analyses suggest that the heterogeneity

of implied RRA estimates across issuer groups is systematic implying a higher

risk aversion for GS compared to FRG and GE investors.

6.3.2 Robustness Analysis

As a first robustness check, we consider the bootstrapped standard errors of

the pooled RRA estimates based on the entire sample. Table 6.12 reports

15 Tables 4.6 and 4.7 in Section 4.1.3 showed a distinct difference in the trading activity and
mean trading volumes between GS and the FRG as well as GE, respectively. In Section 4.2.2,
we obtained a mean credit spread for straight coupon bonds of 14 and 12 basis points between
the term structures of spot rates of GS and the FRG as well as GE, respectively.
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the bootstrap statistics and reinforces the robustness of our estimations. The

standard deviations of the bootstrap estimation are marginal, ranging between

0.03 and 0.05 for the overall sample and issuer group segments. For the

redemption probability segments standard deviations are higher and more

heterogenous ranging between 0.05 and 0.27. From the quantiles, we conclude

that: (i) the pooled RRA estimates on the aggregate and issuer group level are

significantly positive, (ii) RRA estimates for the FRG and GE segments are of

similar magnitude at a level below two, (iii) relative to the FRG and GE results,

RRA estimates for the GS segment are significantly higher.

By employing the entire sample of filtered market prices, we include observations

for which the next lottery is due between three trading days up to two years. We

consider whether the distance of price observations to the subsequent redemption

lotteries has a systematic effect on pooled, implied RRA estimates and examine

subsamples covering distinct intervals before the redemption lotteries. Table 6.13

reports the results for control estimations based on price observations 180, 90,

and 30 calendar days prior to the redemption lotteries.

First, we compare the results based on the entire sample with the cum-day

estimates. The overall cum-day RRA estimate is 1.6 times smaller than the RRA

estimate based on the entire sample. On the issuer group level, the cum-day RRA

estimates are 10.6 times smaller for the FRG, of similar magnitude for GS, and

5.8 times smaller for GE. On the redemption probability level, the difference is

most pronounced for probability 1/6, where the cum-day RRA estimate is -0.01

relative to 6.37 for the entire sample. We observe neither abnormal returns nor

trading volumes prior to lottery dates and see no evidence of a diverse investor or

market structure at cum-days relative to the entire sample, which could explain

the difference. However, the bootstrap statistics for cum-day RRA estimates in

Table 6.4 suggest that the difference is partly caused by the limited number of

cum-day observations. The standard deviations of the bootstrap estimation are

distinctly lower for the entire sample compared to cum-day observations.

Second, we focus on the difference between RRA estimates based on the entire

sample and the 180-day, 90-day, and 30-day intervals. Overall RRA estimates are

relatively robust with respect to variation in the length of the estimation intervals

and range from 1.18 for the 30-day interval to 2.02 for the 180-day interval. At
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Table 6.12: Bootstrap Statistics for Entire Sample

This table shows the bootstrapped standard errors of pooled,
implied RRA estimates based on observations from the entire sample.
Bootstrap statistics are reported for the overall dataset and for segments
corresponding to issuer groups (Federal Republic of Germany (FRG),
German states (GS), and government enterprises (GE)) and redemption
probabilities (1/2 to 1/10). Between 500 and 1,000 bootstrap samples
are randomly drawn with replacement from the original dataset, and
implied RRA coefficients are estimated. The size of the bootstrap
samples corresponds to the respective number of filtered observations
in the original sample specified in Table 6.8. Columns three to
eight report the mean, standard deviation, minimum, maximum, 1%
quantile, and 99% quantile of the estimated RRA coefficients. We
exclude observations classified as outliers when estimating the bootstrap
statistics.

Bootstr. Mean Std. min max 1% 99%
Sample Dev. Quant. Quant.

Overall 1, 000 1.78 0.03 1.66 1.89 1.71 1.86

Issuer Group

FRG 500 1.18 0.04 1.07 1.30 1.08 1.27
GS 1, 000 2.93 0.05 2.72 3.09 2.80 3.05
GE 500 0.98 0.04 0.86 1.15 0.89 1.08

Redemption Probability

1/2 500 6.17 0.23 5.43 6.83 5.67 6.75
1/3 500 2.69 0.12 2.32 3.21 2.41 2.99
1/4 500 1.75 0.07 1.56 1.97 1.59 1.92
1/5 500 0.88 0.05 0.73 1.04 0.77 1.00
1/6 500 6.38 0.27 5.61 7.53 5.78 6.95
1/7 500 5.09 0.17 4.56 5.61 4.71 5.51
1/8 500 2.05 0.09 1.83 2.29 1.85 2.26
1/9 500 0.97 0.08 0.65 1.22 0.77 1.13
1/10 500 0.60 0.10 0.31 0.93 0.40 0.83
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Table 6.13: Robustness with respect to Estimation Intervals

This table shows the pooled, implied RRA coefficients for various
estimation intervals. RRA estimates are reported for the overall dataset
and for segments corresponding to issuer groups (Federal Republic of
Germany (FRG), German states (GS), and government enterprises
(GE)) and redemption probabilities (1/2 to 1/10). Columns two to six
report the least squares RRA estimate γ̂ based on the entire sample,
intervals containing observations 180, 90, and 30 calendar days prior to
the redemption lotteries, and cum-day observations only. The numbers
of filtered observations are given in parentheses.

Entire 180 days 90 days 30 days cum-days

Overall 1.78 2.02 1.89 1.18 1.15
(12,019) (5,665) (2,807) (961) (282)

Issuer Group

FRG 1.17 1.20 1.23 1.01 0.11
(1,539) (498) (256) (100) (21)

GS 2.93 3.13 3.22 3.21 2.99
(7,133) (3,616) (1,785) (554) (187)

GE 0.98 0.84 0.40 0.21 0.17
(3,304) (1,536) (761) (285) (68)

Redemption Probability

1/2 6.17 5.41 4.87 4.46 6.99
(2,055) (727) (354) (109) (37)

1/3 2.68 3.16 3.07 2.78 2.78
(2,114) (908) (434) (151) (46)

1/4 1.75 4.17 4.87 4.27 3.06
(2,031) (867) (432) (136) (44)

1/5 0.87 1.06 0.63 0.43 −0.01
(1,461) (696) (371) (134) (37)

1/6 6.37 2.10 2.90 0.13 −0.01
(1,162) (633) (310) (112) (29)

1/7 5.08 5.66 5.89 5.17 5.26
(1,231) (719) (361) (120) (32)

1/8 2.04 2.48 2.43 1.94 1.33
(1,038) (603) (293) (99) (27)

1/9 0.96 0.90 0.75 1.12 0.90
(659) (397) (208) (74) (21)

1/10 0.61 0.32 0.17 0.25 0.43
(364) (198) (90) (34) (10)
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the issuer group level, estimates span from 1.01 to 1.23 for the FRG, from 2.93 to

3.22 for GS, and from 0.21 to 0.98 for GE. At the redemption probability level,

results are relatively robust, except for the 1/4 and 1/6 probability segments.

Hence, in case the underlying sample is sufficiently large, variation in the length

of the estimation interval does not systematically alter our inferences on implied

risk preferences.

According to the dynamic equilibrium valuation model derived in Chapter 3,

implied RRA coefficients are most sensitive to price changes close to the no-

arbitrage bounds.16 Hence, a small price change in close distance to the no-

arbitrage bounds defined by Inequalities (3.15) and (3.17) causes a distinct

response of the RRA coefficient. Note, in addition, that price observations

adjoining no-arbitrage bounds imply extreme RRA coefficients. We control for

these model related characteristics by requiring a minimum distance between the

observed market price and both, the upper and lower no-arbitrage bound.

Table 6.14 reports the results for a minimum distance to the no-arbitrage bounds

of DEM 0.25, 0.50, 1.50, and 2.50. Overall RRA estimates are relatively robust

with respect to variation in the no-arbitrage span and range from 1.44 for a

minimum distance of DEM 2.50 to 1.78 for the unrestricted sample. At the

issuer group level, estimates range from 1.13 to 1.17 for the FRG, from 1.97

to 2.93 for GS, and from 0.86 to 0.98 for GE. The stronger the no-arbitrage

restriction, the smaller become the RRA coefficients. Results are most remarkable

at the redemption probability level, where estimates become less dispersed, the

larger the minimum no-arbitrage span. Only the implied estimates for redemption

probability 1/7 are unaffected by a variation in the span and remain in the range

of five. Excluding price observations adjoining no-arbitrage bounds causes RRA

estimates for the GS issuer group and the probability segments to approach the

overall estimate.

Our pooled results provide evidence of a moderate risk aversion in the bond

market. We find no evidence of the “puzzling” RRA coefficients found by e. g.

Mehra and Prescott (1985) based on equity, bond, and consumption indices. On

16 See Figure 3.6 for the comparative static results of the partial derivative and elasticity of
the RRA coefficient with respect to the lottery bond price.
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Table 6.14: Robustness with respect to No-arbitrage Bounds

This table shows the pooled, implied RRA estimates for various
minimum spans between observed market prices and both, upper and
lower no-arbitrage bounds. RRA estimates are given for the overall
dataset and for segments corresponding to issuer groups (Federal
Republic of Germany (FRG), German states (GS), and government
enterprises (GE)) and redemption probabilities (1/2 to 1/10). Columns
two to six report the least squares RRA estimate γ̂ based on the
unrestricted sample and on samples containing observations with a
minimum distance to the no-arbitrage bounds of DEM 0.25, 0.50, 1.50,
and 2.50. The numbers of filtered observations are given in parentheses.

Unrestr. DEM 0.25 DEM 0.50 DEM 1.50 DEM 2.50

Overall 1.78 1.74 1.69 1.57 1.44
(12,019) (11,350) (10,599) (7,637) (5,461)

Issuer Group

FRG 1.17 1.16 1.16 1.15 1.13
(1,539) (1,473) (1,401) (998) (770)

GS 2.93 2.89 2.81 2.65 1.97
(7,133) (6,634) (6,096) (4,269) (3,080)

GE 0.98 0.97 0.97 0.93 0.86
(3,304) (3,182) (3,033) (2,289) (1,603)

Redemption Probability

1/2 6.17 5.90 5.70 4.41 2.68
(2,055) (1,787) (1,514) (561) (97)

1/3 2.68 2.69 2.67 2.43 1.98
(2,114) (1,928) (1,728) (972) (512)

1/4 1.75 1.72 1.70 1.67 1.62
(2,031) (1,915) (1,768) (1,338) (1,024)

1/5 0.87 0.87 0.87 0.85 0.81
(1,461) (1,420) (1,362) (1,018) (710)

1/6 6.37 6.17 5.91 1.57 1.24
(1,162) (1,135) (1,111) (947) (606)

1/7 5.08 5.06 5.03 5.02 4.87
(1,231) (1,204) (1,179) (1,018) (874)

1/8 2.04 2.03 1.96 1.88 1.88
(1,038) (1,022) (1,012) (953) (891)

1/9 0.96 0.96 0.96 1.00 0.96
(659) (654) (653) (634) (592)

1/10 0.61 0.61 0.60 0.56 0.55
(364) (350) (325) (269) (210)
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the contrary, our estimations suggest a level of risk aversion of about one for

the FRG and GE and of about three for GS. Compared to Mehra and Prescott,

our RRA estimates are independent of probability beliefs and determined from

individual bond price data. The magnitude is in accordance with the results

reported by several studies based on direct assessments, cross-sectional survey

data, and option price data as compiled in Table 1.1. RRA estimates are robust

across the length of estimation intervals and for restrictions on the proximity of

price observations to the no-arbitrage bounds.

6.4 Time Series Properties of Implied RRA

Coefficients

6.4.1 Annual Equilibrium RRA Estimates

Having examined pooled, implied RRA estimates for segments corresponding to

issuer groups and redemption probabilities, we focus on the time series properties

of risk aversion. We analyze implied RRA estimates for disjoint and overlapping

time intervals and consider the relation between risk aversion and macroeconomic

factors. The estimations that follow are based on the entire filtered sample

characterized in Table 6.8.

We estimate implied RRA coefficients for disjoint annual time intervals. Intervals

span January 1 through December 31 of the respective year. By restricting our

analysis to price observations resulting in a redemption gain, we limit data in

times of relatively low risk-free interest rates. Note that the restriction biases

estimation results and that RRA estimates for periods with low interest rates have

to be interpreted with caution. For price observations resulting in a redemption

gain, risk-free rates are in general larger than the coupon rate c/R. In Chapter

3, we have shown that the span of arbitrage-free lottery bond prices defined by

Inequalities (3.15) and (3.17) falls, as r approaches c/R. Furthermore, we have

shown that small price changes in close distance to the no-arbitrage bounds cause

a distinct response of the RRA coefficient. Hence, the equilibrium model predicts

a higher dispersion of implied RRA estimates in times of relatively low interest
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rates. We disregard estimates for the years 1978 and 1983 to 1987, as between

1983 to 1987 at most 186 observations per year and in 1978 only 308 observations

resulting in a redemption gain are available and estimation results are unstable.

Table 6.15 reports annual implied RRA estimates ranging from −3.20 in 1977

to 8.65 and 5.81 in 1980 and 1981, respectively. Mean absolute errors between

theoretical and observed prices are smallest in 1977 and 1979 when interest rates

are relatively low and the span of arbitrage-free lottery bond prices is narrow. We

consider the robustness of annual RRA estimates by controlling for the distance

between the observed market price and both, the upper and lower no-arbitrage

bound. Table 6.16 reports the results for a minimum distance to the no-arbitrage

bounds of DEM 0.25, 0.50, 1.50, and 2.50. Relatively unaffected by the no-

arbitrage adjustment, annual RRA estimates remain at a level of about one for

1974 and 1979, at a level between two and three for 1975 and 1976, at a level

of minus three for 1977, and at a level above four for 1980 to 1982. In 1977,

we obtain a robust negative RRA estimate implying risk-seeking behavior. This

could partly be attributed to the recovery of the German economy from the

first oil crisis coinciding with historically low spot interest rates. In 1980 and

1981, implied RRA estimates reflect the challenging economic situation after

the second oil crisis in 1979, which resulted in a severe recession in Germany

and historically high interest rates.17 The relation is consistent with the results

by Kumar and Persaud (2002) and Coudert and Gex (2008) implying that risk

aversion is a leading indicator of financial crises that coincide with periods of high

risk aversion.18

6.4.2 Time Series Analysis

The variability of implied RRA estimates with respect to the estimation year

indicates time dependence of risk aversion. We do not explicitly capture time-

varying risk aversion in our dynamic equilibrium valuation model. However,

in our empirical study, we consider the time behavior of RRA coefficients by

17 See Figure 6.4 for the time series of the adjusted CRB Spot Price Index Fats & Oils.

18 See e. g. Gai and Vause (2004), Deutsche Bundesbank (2005), or Illing and Meyer (2005)
for a comprehensive overview of risk aversion indicators.
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Table 6.15: Annual Implied RRA Estimates

This table shows implied RRA estimates for disjoint annual time
intervals from January 1 until December 31. We only list time intervals
with more than 500 observations. The second column reports the least
squares RRA estimate γ̂t for the respective time interval. Columns three
to eight report the number of observations, the mean price residuals
ME, the standard deviation of the price residuals SE, the minimum and
maximum price residual min and max, and the mean absolute error
MAE. All error terms are reported in German Mark.

γ̂t Obs. ME SE min max MAE

Time Interval

1974 1.20 2, 154 0.18 0.73 −1.98 2.14 0.60
1975 2.99 2, 268 0.25 0.83 −2.21 2.47 0.70
1976 2.18 2, 122 0.25 0.77 −2.05 2.21 0.65
1977 −3.20 882 0.12 0.36 −0.95 1.15 0.30
1979 1.22 1, 117 0.06 0.37 −1.05 1.09 0.30
1980 8.65 1, 230 0.12 0.41 −1.09 1.34 0.34
1981 5.81 1, 083 0.18 0.75 −2.07 2.42 0.59
1982 4.27 590 0.19 0.45 −1.14 1.53 0.39
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Table 6.16: Robustness of Annual Implied RRA Estimates

This table shows implied RRA estimates for disjoint annual time
intervals from January 1 until December 31 for various minimum spans
between observed market prices and both, upper and lower no-arbitrage
bounds. We only list RRA estimates based on more than 500 price
observations. Columns two to six report the least squares RRA
estimate γ̂ based on the unrestricted sample and on samples containing
observations with a minimum distance to the no-arbitrage bounds of
DEM 0.25, 0.50, 1.50, and 2.50. The numbers of filtered observations
are given in parentheses.

Unrestr. DEM 0.25 DEM 0.50 DEM 1.50 DEM 2.50

Time Interval

1974 1.20 1.20 1.20 1.19 1.18
(2,154) (2,154) (2,153) (2,118) (1,986)

1975 2.99 2.89 2.88 2.64 1.92
(2,268) (2,196) (2,135) (1,896) (1,608)

1976 2.18 2.11 2.08 1.93 1.66
(2,122) (2,030) (1,964) (1,533) (1,120)

1977 −3.20 −3.30 −3.46 − −
(882) (790) (691)

1979 1.22 1.33 1.26 − −
(1,117) (1,037) (905)

1980 8.65 8.52 7.66 − −
(1,230) (1,119) (979)

1981 5.81 5.88 5.60 4.69 −
(1,083) (1,034) (984) (647)

1982 4.27 4.13 − − −
(590) (538)
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estimating γ̂t from disjoint monthly time intervals and annual forward looking

rolling windows at a monthly frequency.19 We consistently employ data at a

weekly frequency using Wednesday transaction prices and rates.

Figure 6.3 depicts the time series of implied RRA estimates γ̂t and the three-

month money market rate rt as a benchmark.20 RRA estimates for the disjoint

monthly time intervals between January 1974 and December 1987 range from

-20.99 in November 1978 to 25.02 in June 1980. The mean RRA estimate is

1.95 and significantly positive at the 1% level with a standard deviation of 7.72.

RRA estimates for the annual forward looking rolling windows at a monthly

frequency have a smaller range of -15.26 in April 1978 to 9.56 in December

1979. The mean RRA estimate is 2.82 and significantly positive at the 1% level

with a standard deviation of 4.44. Visual inspection of the panels indicates that

implied RRA estimates and the risk-free rate are negatively related between 1974

until 1976. Between 1977 and 1978, risk-free spot rates reached a historical low,

and due to narrow no-arbitrage bounds and the limited number of observations,

RRA estimates are strongly volatile over this period. From 1979 to 1980, RRA

estimates and interest rates generally rise together. Relative to the implied RRA

estimates, which reach a maximum in June 1980, spot interest rates attain a

maximum in March 1981. For the entire interval, RRA estimates and the risk-

free rate are positively correlated at 49.03% in the upper panel and at 63.58% in

the lower panel.21

The dynamic equilibrium valuation model derived in Chapter 3 uses the risk-

free term structure of interest rates as an exogenous variable. In our comparative

static analysis, we assumed a flat term structure and showed that the equilibrium

RRA coefficient is strictly decreasing in the risk-free rate. Nonetheless, we employ

the entire German term structure for the estimation of RRA coefficients, and the

19 Compared to the implied disjoint monthly interval estimate at e. g. December 1974 based
on all price observations from December 1974, the respective implied annual rolling window
estimate is based on all price observations from December 1974 until October 1975.

20 We report the three-month money market rate instead of the current yield of public sector
debt securities, as the short end of the term-structure of interest rates is generally more reactive
to changes in the overall economic environment.

21 For the calculation of the correlation coefficients, we omit missing values.
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Figure 6.3: Time Series of Implied RRA Estimates

The panels show the time series of implied RRA estimates (solid lines)
and the three-month money market rate (dotted lines). In the upper
panel, we report RRA coefficients for disjoint monthly time intervals and
end of the month money market rates. We only include RRA coefficients
which are estimated using more than 50 observations. In the lower panel,
RRA coefficients and money market rates are determined using annual
forward looking rolling windows at a monthly frequency. We only include
RRA coefficients which are estimated using more than 500 observations.
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Figure 6.4: Time Series of Macroeconomic Factors

The upper panel shows the time series of the 52-week (forward looking)
volatility of the three-month money market rate in basis points. The
lower panel shows the time series of the CRB Spot Price Index Fats &
Oils in German Mark normalized to January 2, 1974. The solid line
refers to end of the month values, and the dotted line refers to values
which are determined using annual forward looking rolling windows at a
monthly frequency.
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relation between risk aversion and risk-free rates does not remain unambiguous

for non-parallel shifts of the term-structure.

Figure 6.4 focuses on further macroeconomic factors and depicts the time series

of the volatility of the three-month money market rate σr,t as well as the CRB

Spot Price Index Fats & Oils in German Mark ot between January 1974 and

December 1982. The volatility of the money market rate is determined from

52-week forward looking intervals and attains maxima in September 1974 (bp

221), January 1979 (bp 181), and August 1980 (bp 186). The oil price index is

normalized to January 2, 1974 and attains maxima in August 1974 (147%) and

October 1979 (140%) reflecting the first and second oil crisis. The second oil

crisis resulted in a severe recession lasting until 1981. Implied RRA estimates

attain a global maximum about eight months and the money market rate about

17 months after the peak of the oil price index in 1979. For the entire interval,

the oil price index and RRA estimates, respectively risk-free rate, are correlated

at −7.05% or −5.48% for end of the month values and at −14.29% or −6.07% for

annual forward looking rolling windows. The volatility of the risk-free rate and

RRA estimates, respectively oil price index, are correlated at 7.28% or 26.44%

for end of the month values and at 26.67% or 30.38% for annual forward looking

rolling windows.

Next, we analyze in further detail how changes in macroeconomic factors are

related to a change in risk aversion. We consider the relation using ordinary least

squares regressions. As the dependent variable, we employ the first difference of

RRA estimates ∆γ̂t. Independent variables are the first difference of the three-

month money market rate ∆rt, the volatility of the money market rate σr,t, and

the first difference of the adjusted CRB Spot Price Index Fats & Oils ∆ot. We

work with first differences in order to control for the non-stationarity of the input

variables.22 All variables are determined from annual forward looking rolling

22 Employing the Augmented Dickey-Fuller (ADF) test, we reject the hypothesis of a unit
root for ∆γ̂t, ∆rt, ∆ot, and the level variable σr,t.
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windows. The three regression equations are given by

∆γ̂t = α + β · ∆rt + et, (6.2)

∆γ̂t = α + β · σr,t + et, (6.3)

∆γ̂t = α + β · ∆ot + et, (6.4)

where α is a constant and et is the error term.

Table 6.17 reports the regression results. The regressions are either based

on Equation (6.2), (6.3), or (6.4). Regressions 1 to 3 are performed for 84

observations in the interval [1974, 1982]. Considering Regressions 1 and 3, the

coefficients of ∆rt and ∆ot are positive at the 1% significance level, respectively

5% level, implying a positive relation between changes in risk aversion and the

money market rate as well as the oil price index. The explanatory power of ∆rt

is 7% compared to 14% for ∆ot. Regression 2 shows that σr,t has an insignificant

coefficient and almost no explanatory power.

We use 1977 as a natural structural break and perform six additional regressions

for the subintervals [1974, 1977] and [1978, 1982]. First, we focus on Regressions

4 to 6 performed for 38 observations in the interval [1974, 1977]. Considering

Regressions 4 and 5, the coefficient of ∆rt is negative and the coefficient of σr,t

is positive, both at the 1% significance level. This implies a negative relation

between ∆γ̂t and the money market rate and a positive relation between ∆γ̂t and

the volatility of the money market rate between 1974 and 1977. The explanatory

power of ∆rt is 20% compared to 16% for σr,t. The negative coefficient of

∆rt agrees with the economic intuition that higher risk aversion is associated

with a rising demand for the risk-free asset, and, hence, with a lower risk-free

rate. Regression 6 shows that ∆ot has an insignificant coefficient and almost

no explanatory power in the first subinterval. Last, we focus on Regressions 7

to 9 performed for 46 observations in the interval [1978, 1982]. Analogous to

the results for the entire interval, Regression 7 and 9 detect a positive relation

between the dependent variable and ∆rt as well as ∆ot at the 1% significance

level. However, the explanatory power of ∆ot is 38% compared to 9% for ∆rt.

Since the second subinterval was strongly affected by the second oil crisis, the oil

price index is a driving factor of changes in risk aversion. The crisis resulted in
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historically high interest rates, and the relation between ∆γ̂t and ∆rt becomes

positive. Regression 8 shows that σr,t has an insignificant coefficient and almost

no explanatory power in the second subinterval.

The regression analysis suggests a structural break in the relation between changes

in risk aversion and macroeconomic factors in 1977. We observe a negative

relation between the RRA coefficient and money market rate between 1974 and

1977 contrasting with a positive relation between 1978 and 1982. However, the

second subinterval was strongly affected by the second oil crisis, and we identify

the oil price index as a driving factor of changes in risk aversion. Overall, the

time series results suggest that severe economic crises coincide with periods of

high risk aversion.



Chapter 7

Concluding Remarks

Both the equity premium puzzle and the credit spread puzzle address the

problem of a reasonable size of investors’ risk aversion. The estimation of

risk aversion parameters is impeded by the fact that observed prices depend

on risk preferences and probability beliefs. The market for default-free German

redemption lottery bonds constitutes an exceptional environment to estimate risk

aversion coefficients from transaction prices, as the probabilities of price changes

caused by redemption lotteries are objectively known.

We develop a dynamic expected utility model using the well established power

utility function over terminal wealth to extract the representative agent’s RRA

coefficient. The equilibrium price and implied RRA coefficient are determined

recursively by standard dynamic programming techniques. Implied RRA

estimates are obtained by minimizing the sum of squared deviations between

theoretical lottery bond prices, calculated within the equilibrium framework, and

transaction prices.

Using a unique dataset, containing transaction prices of 83 redemption lottery

bonds traded between 1974 and 1987, we analyze risk preferences in the German

bond market. Our empirical results describe the magnitude and evolution of risk

aversion in the bond market. The pooled, implied RRA estimates are consistent

with the moderate level of risk aversion found in most of the recent studies.1 We

1 See Table 1.1 for an overview of RRA coefficients reported in the literature.
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obtain a robust pooled, implied RRA estimate of 1.78 and find no evidence of

the extreme level of risk aversion suggested by Campbell and Cochrane (1999)

and Kandel and Stambaugh (1990, 1991). Rather, the estimations indicate

that the pooled, overall RRA coefficient is below two and robust across the

length of estimation intervals as well as for restrictions on the proximity of price

observations to the no-arbitrage bounds. We also obtain results on the dynamics

of implied risk aversion and the relation between risk aversion and macroeconomic

factors. Implied risk aversion is time-dependent and attains its maximum in 1980

and 1981, reflecting the challenging economic situation after the second oil crisis

in 1979. Our time series results suggest a structural break in the relation between

changes in risk aversion and macroeconomic factors in 1977 and provide further

evidence that severe economic crises coincide with periods of high risk aversion.
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